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Abstract

Message Authentication Codes (MACs) are valuable tools for ensuring the integrity

of messages. MACs may be built around a keyed hash function. Our main motivation

was to prove that universal hash functions can be employed as underlying primitives

of MACs in order to provide provable security in ultra-low-power applications such

as the next generation self-powered sensor networks. The idea of using a universal

hash function (NH) was explored in the construction of UMAC. This work presents

three variations on NH, namely PH, PR and WH. The first hash function we propose,

PH, produces a hash of length 2w and is shown to be 2−w-almost universal. The

other two hash functions, i.e. PR and WH, reach optimality and are proven to be

universal hash functions with half the hash length of w. In addition, these schemes

are simple enough to allow for efficient constructions. To the best of our knowledge the

proposed hash functions are the first ones specifically designed for low-power hardware

implementations. We achieve drastic power savings of up to 59% and speedup of up

to 7.4 times over NH. Note that the speed improvement and the power reduction

are accomplished simultaneously. Moreover, we show how the technique of multi-

hashing and the Toeplitz approach can be combined to reduce the power and energy

consumption even further while maintaining the same security level with a very slight
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increase in the amount of key material. At low frequencies the power and energy

reductions are achieved simultaneously while keeping the hashing time constant. We

develope formulae for estimation of leakage and dynamic power consumptions as

well as energy consumption based on the frequency and the Toeplitz parameter t.

We introduce a powerful method for scaling WH according to specific energy and

power consumption requirements. This enables us to optimize the hash function

implementation for use in ultra-low-power applications such as “Smart Dust” motes,

RFIDs, and Piconet nodes. Our simulation results indicate that the implementation

of WH-16 consumes only 2.95 µW at 500 kHz. It can therefore be integrated into a self-

powered device. By virtue of their security and implementation features mentioned

above, we believe that the proposed universal hash functions fill an important gap in

cryptographic hardware applications.
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Chapter 1

Introduction

Computing technology is reaching every corner of our lives. Recent advances have

enabled developers to embed technology in even tiny devices used in our daily lives,

which leads to ubiquitous computing. The trend to ubiquitous computing goes fur-

ther from mobile communication and personal computing level to ultra-low-power

autonomous devices. Here are a few examples of this trend. Piconet [BCE+97] is

a general-purpose, low-power ad hoc radio network. It can connect a full range of

portable and embedded sensing and computing objects. RFIDs are being used to

replace bar codes on goods and to track inventory [SBA00]. “Smart Dust” motes

[KRP99] are tiny autonomous nodes containing sensors, transceivers and a power

source, and they have limited computing power. Common to all these devices is that

they communicate wirelessly and their energy source is extremely limited. Batteries
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CHAPTER 1. INTRODUCTION 2

for these devices are tiny and can supply 10 µW for only one day [KRP99]. Moreover,

some of these technologies collect energy from environmental sources, such as light,

heat, noise, or vibration. Devices that harvest power from environmental sources are

commonly referred to as power scavengers, and autonomous nodes that use scavengers

are called self-powered. An implementation of a signal processing unit powered by a

large scavenger device that can generate up to 400 µW is described in [AC98]. Newer

scavengers are based on microelectromechanical systems (MEMS). They can be in-

tegrated on the chip and therefore reduce the cost and size. The scavenger shown

in [MMMA+01] produces around 8 µW of energy relying solely on ambient vibration.

A major application of this technology is distributed sensor networks. The security

aspects of these networks have been reviewed by NAI Labs in [CKM00]. However, this

study focused only on software implementations on current processors whose energy

consumption is far above the amount that can be supplied by a scavenger circuit.

Since power consumption is the vital issue in many applications of these tech-

nologies, highly complex cryptographic schemes such as public key cryptography are

seldom feasible. Many times, however, what is of primary concern in such systems

is protecting the integrity of data. For example, smart dust motes that are embed-

ded in a bridge can monitor stress and inform the authorities in case of emergency.

Wireless sensors may monitor plant growth, moisture and PH-value on a farm. In

both cases the data is not confidential but its authenticity and integrity are crucial.
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For this purpose, digital signature schemes have been proposed [DH76]. However, on

low-end computing platforms where processing speed and communication bandwidth

are critical, digital signatures may not be the best available choice. Instead, efficient

Message Authentication Codes (MACs) [Sim92] may be preferable due to their high

encryption throughput and short authentication tags.

1.1 Message Authentication Codes

Message Authentication Codes (MACs), also called keyed hashes, are used to verify

the authenticity of a message, i.e. whether a message did really originate from a given

source (with very high probability). Let us suppose Alice (the sender of a message)

and Bob (the recipient) share a secret key. Alice uses the message and the key to

compute the MAC, and sends it along with the message. When Bob receives the

message, he computes the corresponding MAC, and compares it to Alice’s. If they

match then he knows that the message is, indeed, from Alice and that nobody has

altered it since she sent it, in other words the authenticity of the message is verified.

MACs have the following properties:

1. It is difficult to create a valid MAC for any message without knowing the key.

2. Given a message and the corresponding MAC, it is difficult to create a new

message with the same MAC, or any other desired MAC.
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3. Given any MAC, it is difficult to find a message that corresponds to that par-

ticular MAC.

There are four types of MACs: (1) unconditionally secure [Sti95], (2) stream

cipher-based [LRW92], (3) block cipher-based [BKR94] and (4) hash function-based

(hash functions introduced in Chapter 3 will underlie this particular type of MACs).

A big disadvantage for both traditional MACs and their counterpart digital sig-

nature schemes is that they provide only computational security. This leads to the

following consequences:

1. An attacker with sufficient computational power may break the scheme.

2. The lack of a formal security proof makes these schemes vulnerable to possible

shortcut attacks.

3. One may need to include a safety margin in his/her design since the exact

security level of the scheme may not be known for sure.

Due to their provable security feature in addition to their suitable nature for effi-

cient hardware implementations, we have chosen to focus on universal hash function-

based MACs rather than their computationally secure counterparts such as MD5

[Riv92] and SHA [Nat02]. We will present mathematical details on provable security

in Section 2.2
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1.2 Universal Hash Functions

Universal hash functions, first introduced by Carter and Wegman [CW78], provide

a solution to the security problems mentioned at the end of the previous section.

Roughly speaking, universal hash functions are collections of hash functions that

map messages into short output strings such that the collision probability of any

given pair of messages is small. A universal hash function family can be used to

build an unconditionally secure MAC. For this, the communicating parties share a

secret and randomly chosen hash function from the universal hash function family,

and a secret encryption key. A message is authenticated by hashing it with the shared

secret hash function and then encrypting the resulting hash using the key. Carter and

Wegman [CW81] showed that when the hash function family is strongly universal, i.e.

a stronger version of universal hash functions where messages are mapped into their

images in a pairwise independent manner, and the encryption is realized by a one-

time pad, the adversary cannot forge the message with probability better than that

obtained by choosing a random string for the MAC. The one-time pad encryption and

the hash function selection (from the hash function family) require many key bits,

which may be too demanding for most applications. In [Bra83] Brassard observed that

combining a universal hash function with a pseudo-random string generator provides

a computationally secure message authentication tag with short keys. In this scheme

the security of the MAC is dependent on the security of the encryption with the
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pseudo-random string and the strength of the pseudo-random key used for selecting

the hash function.

To our knowledge not much work has been done on improving the performance of

universal hashing in hardware. Ramakrishna published a study on the performance

of hashing functions in hardware based on universal hashing [RFB94]. However, the

main emphasis was on using hash functions for table organization and address trans-

lation. In an early work Krawczyk [Kra94] proposed efficient hash functions from

a hardware point of view. Considering that a linear feedback shift register (LFSR)

can be implemented quite efficiently in hardware, Krawczyk’s work introduced two

constructions: a CRC-based cryptographic hash function, and a construction based

on Toeplitz matrix multiplication. The reference gives a sketch for hardware im-

plementation, which includes a key spreader. However, it is difficult to estimate

the power consumption of this function from a sketch. There have been no im-

plementations reported so far. In the past decade we have seen many new hash

constructions being proposed, constantly improving in speed and collision probability

[Sho96, HK97, Rog95b, Kra95, BHK+99, PR99]. For a survey see [NP99]. However,

most of these constructions have targeted efficiency in software implementations, with

particular emphasis on matching the instruction set architecture of a particular pro-

cessor or taking advantage of special instructions made available for multimedia data

processing (e.g. Intel’s MMX technology). While such high end platforms are essen-



CHAPTER 1. INTRODUCTION 7

tial for everyday computing and communications, in numerous embedded applications

space and power limitations prohibit their employment. For instance, smart dust sen-

sor nodes employ a 4-bit or 8-bit low end microprocessor, run the operating system

TinyOS [LC02] and are battery powered. These microprocessors do not provide ef-

ficient multiplication or variable rotate/shift instructions [PST+02] which are used

by many cryptographic functions. Moreover, self-powered sensor nodes commonly

employed in RFID tags [SBA00] do not contain a microprocessor but rather a simple

control logic. Therefore additional ultra-low-power hardware specifically tailored to

perform cryptographic functions might be useful.

Therefore additional ultra-low-power hardware specifically tailored to perform

these functions might be useful. Self-powered sensor nodes which do not contain a mi-

croprocessor but rather a simple control logic are also common in RFID tags [SBA00].

In [BHK+99] a new hash function family NH for the UMAC message authenti-

cation code was introduced. Although NH was intended for efficient and fast im-

plementation in software, we realized that it seems promising for implementation in

hardware as well. Therefore, we implemented NH in hardware with an emphasis on

low-power and noticed that its power consumption exceeds our limits by far. Instead

of optimizing the implementation even more and reducing its power consumption by

a fraction we took a different approach. We identified the main power consumers (i.e.

registers, adders) and carefully removed those components one by one. We formu-
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lated the resulting new algorithms (WH) mathematically and proved that they are

still at least as secure as NH. While WH, the variant with the best performance, is

consuming an order of magnitude less power than NH, its leakage power consumption

still remains a bottleneck. The leakage power is proportional to the circuit size which

is proportional to the size of the hash value which, in turn, is proportional to the se-

curity level. The technique of multi-hashing was introduced [Rog95a] to increase the

security level of a given hash function without changing the size of the hash value at

the expense of more key material. We reverse this procedure to preserve the security

level while reducing the size of the hash value and therefore the leakage power. We

use the Toeplitz approach to reduce the amount of key material needed. The result-

ing design is scalable and can be tailored to specific energy and power consumption

requirements without sacrificing security. We present our implementations of these

functions and NH, and compare the results.

1.3 Security Aspects

The security setting of UMAC, described in [BHK+99], is as follows. The parties

share two things: a secret and randomly chosen hash function from the universal

hash function family, and a secret encryption key. A message is authenticated by

hashing it with the shared hash function and then encrypting the resulting hash us-

ing the encryption key. Wegman and Carter showed that when the hash function
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family is strongly universal and the encryption is realized by a one-time pad, the ad-

versary cannot forge with probability better than that obtained by choosing a random

string for the MAC. Since the combinatorial property of the universal hash function

family is mathematically proven (making no cryptographic hardness assumptions), it

needs no “over-design” or “safety margin” the way a cryptographic primitive would.

Another benefit of employing a universal hash function comes from the fact that the

cryptographic primitive is applied only to the (much shorter) hashed image of the

message and therefore, we can select a cryptographically conservative design for this

step at the expense of only a minor impact on speed. In the same paper the secu-

rity of UMAC is rigorously proven, in the sense of giving exact and quantitatively

strong results which demonstrate an inability to forge UMAC-authenticated messages

assuming an inability to break the cryptographic primitive (pseudo-random function).

In our work we focus on the hash function underlying UMAC not the whole

scheme. Hence, we use the term “security” in order to refer to collision probability

rather than the exact security of a complete system.

1.4 Thesis Outline

In Chapter 2 the notations used throughout this text will be introduced followed by

some concepts about universal hashing as well as the definition of NH, the almost-

universal hash function that inspired our investigation.
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Chapter 3 starts with the definitions of the three new hash functions and explains

how they were developed with an emphasis on low-power hardware implementation.

This is followed by the theorems and their proofs showing that the new constructions

are at least as secure as NH. Chapter 4 describes how we can further reduce power

consumption while maintaining the same level of security by employing the technique

of multi-hashing in combination with the Toeplitz approach.

Following that, the detailed implementations of NH and its variants together with

illustrative figures are given in Chapter 5. The next chapter presents and discusses

the results. Furthermore, we explain how the Toeplitz parameter t can be used to

optimize WH with respect to specific energy and power consumption requirements. I

would like to mention here that the work presented in these two chapters (Chapters 5

and 6) was made possible by the invaluable help of my colleague Jens-Peter Kaps.

Finally, in Chapter 7 a summary of the work that has been done is given with

possible future research on this topic.



Chapter 2

Mathematical Background

The purpose of this chapter is to provide the reader with the notation that will be

used throughout the following chapters as well as to introduce the mathematics of

universal hashing.

2.1 Notations

Let {0, 1}∗ represent all binary strings, including the empty string. A set H = {h : A → B},

together with some probability distribution, is a family of hash functions with domain

A ⊆ {0, 1}∗ of size a and range B ⊆ {0, 1}∗ of size b. The set C ⊆ {0, 1}∗ denotes

the finite set of key strings. HK denotes a single hash function chosen from the set of

hash functions H according to a random key K ∈ C. In the text we will set h = HK

to denote a hash function h selected randomly from the set H.

11
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The element M ∈ A stands for a message string to be hashed and is partitioned

into blocks as M = (m1, · · · ,mn), where n is the number of message blocks of length

w. Similarly the key K ∈ C is partitioned as K = (k1, · · · , kn), where each block ki

has length w. We use the notation H[n,w] to refer to a hash function family where

n is the number of message (or key) blocks and w is the number of bits per block.

Let Uw represent the set of nonnegative integers less than 2w, and Pw represent

the set of polynomials over GF (2) of degree less than w. We will view each message

block mi and key block ki as belonging to either Uw, Pw or GF (2w). Here GF (2w)

denotes the finite field of 2w elements defined by GF (2)[x]/p(x), where p(x) is an

irreducible polynomial of degree w over GF (2). Note that in this setting, the bits of

a message or key block are associated with the coefficients of a polynomial. Finally,

the addition symbol ‘+’ is used to denote both integer and polynomial addition (in a

ring or finite field). The meaning should be clear from the context.

2.2 Universal Hashing

A universal hash function, as proposed by Carter and Wegman [CW78], is a mapping

from the finite set A with size a to the finite set B with size b. For a given hash

function h ∈ H and for a message pair (M,M ′) where M 6= M ′ the following function

is defined: δh(M,M ′) = 1 if h(M) = h(M ′), and 0 otherwise, that is, the function

δ yields 1 when the input message pairs collide. For a given finite set H of hash



CHAPTER 2. MATHEMATICAL BACKGROUND 13

functions δH(M, M ′) is defined as
∑

h∈H δh(M,M ′), which tells us that δh(M,M ′)

yields the number of functions in H for which M and M ′ collide. When h is randomly

chosen from H and two distinct messages M and M ′ are given as input, the collision

probability is equal to δh(M, M ′)/|H|. We give the definitions of the two classes of

universal hash functions used in this paper from [NP99]:

Definition 1 The set of hash functions H = {h : A → B} is said to be universal

if for every M, M ′ ∈ A where M 6= M ′,

|{h ∈ H : h(M) = h(M ′)}| = δH(M,M ′) =
|H|
b

.

Definition 2 The set of hash functions H = h : A → B is said to be ε-almost

universal (ε− AU) if for every M, M ′ ∈ A where M 6= M ′,

|h ∈ H : h(M) = h(M ′)| = δH(M,M ′) ≤ ε|H| .

In this definition ε is the upper bound for the probability of collision. Observe that

the previous definition might actually be considered as a special case of the latter

with ε being equal to 1/b. The smallest possible value for ε is (a− b)/(b(a− 1)).

In the past many universal and almost universal hash families were proposed

[Sho96, HK97, Rog95b, Kra95, BHK+99, PR99]. Black et al. introduced an almost

universal hash function family called NH in [BHK+99]. The definition of NH is given

below.
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Definition 3 ([BHK+99]) Given M = (m1, · · · ,mn) and K = (k1, · · · , kn), where mi

and ki ∈ Uw, and for any even n ≥ 2, NH is computed as follows:

NHK(M) =




n/2∑
i=1

((m2i−1 + k2i−1) mod 2w) · ((m2i + k2i) mod 2w)


 mod 22w .

Theorem 1 ([BHK+99]) For any even n ≥ 2 and w ≥ 1, NH[n,w] is 2−w-almost

universal on n equal-length strings.

We refer the reader to the same paper for the proof of the above theorem.



Chapter 3

Variations on NH

In this chapter we introduce three variations to the NH construction. Each one

improves upon the previous one in terms of efficiency, and diverges further from NH.

3.1 Definitions

NH - Polynomial (PH) In this construction NH is redefined with message and key

blocks as polynomials over GF (2) instead of integers:

Definition 4 Given M = (m1, · · · ,mn) and K = (k1, · · · , kn), where mi and ki ∈ Pw,

for any even n ≥ 2, PH is defined as follows:

PHK(M) =

n/2∑
i=1

(m2i−1 + k2i−1)(m2i + k2i) .

15
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In a hardware implementation this completely eliminates the carry chain and thereby

improves all three efficiency metrics (i.e. speed, space, power) simultaneously. That

is, due to the elimination of carry propagations, the operable clock frequency (and

thus the speed of the hash algorithm) is dramatically increased. Likewise, the area

efficiency is improved since the carry network is eliminated. Finally, due to the re-

duced switching activity, the power consumption is reduced.

NH-Polynomial with Reduction (PR) The main motivation that led to this con-

struction was to reduce the size of the authentication tag. This is a concern for two

reasons. The tag needs to be transmitted along with the data therefore the shorter

the tag, the less energy will be consumed for its transmission. The energy consumed

by transmitting a single bit can be as high as the energy needed to perform the en-

tire hash computation on the node. The energy needed for transmitting the tag is

proportional to its bit-length. Secondly, the size of the tag determines the number

of flip-flops needed for storing the tag. The original NH as well as PH introduced

above require a large number of flip-flops for the double length hash output. In this

construction, the storage and transmission requirement is improved by introducing a

reduction polynomial of degree matching the block size, hence reducing the size of

the authentication tag by half.

Definition 5 Given M = (m1, · · · ,mn) and K = (k1, · · · , kn), where mi and ki ∈

GF (2w), for any even n ≥ 2, and a polynomial p of degree w irreducible over GF (2),



CHAPTER 3. VARIATIONS ON NH 17

PR is defined as follows:

PRK(M) =

n/2∑
i=1

(m2i−1 + k2i−1)(m2i + k2i) (mod p) .

Note that the original NH construction eliminates the modular reductions used in the

previously proposed hash constructions (e.g. MMH proposed in [HK97], SQUARE

proposed in [PR99]) since reductions are relatively costly to implement in software. In

hardware, however, reductions (especially those with fixed low-weight polynomials)

can be implemented quite efficiently.

Weighted NH-Polynomial with Reduction (WH) While processing multiple

blocks, it is often necessary to hold the hash value accumulated during the previous

iterations in a temporary register. This increases the storage requirement and trans-

lates into a larger and slower circuit with higher power consumption. As a remedy

we introduce a variant of NH where each processed block is scaled with a power of

x. This function is derived from the changes we make to PR which are described in

Section 5.4.

Definition 6 Given M = (m1, · · · ,mn) and K = (k1, · · · , kn), where mi and ki ∈

GF (2w), for any even n ≥ 2, and an irreducible polynomial p ∈ GF (2w), WH is

defined as follows:

WHK(M) =

n/2∑
i=1

(m2i−1 + k2i−1)(m2i + k2i) x(n
2
−i)w (mod p) .
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Due to the scaling factor x(n
2
−i)w, perfect serialization is achieved in the implemen-

tation where the new block product is accumulated in the same register holding the

hash of the previously processed blocks. This eliminates the need for an extra tem-

porary register as well as other control components required to implement the data

path.

3.2 Security Analysis

In this section we give three theorems and their proofs establishing the security of

the NH variants.

Theorem 2 For any even n ≥ 2 and w ≥ 1, PH[n,w] is 2−w-almost universal on n

equal-length strings.

Proof Let M , M ′ be distinct members of the domain A with equal sizes. We are

required to show that

Pr [PHK(M) = PHK(M ′)] ≤ 2−w .

Expanding the terms inside the probability expression, we must prove

Pr




n/2∑
i=1

(m2i−1 + k2i−1)(m2i + k2i) =

n/2∑
i=1

(m′
2i−1 + k2i−1)(m

′
2i + k2i)


 ≤ 2−w . (3.1)

The probability is taken over uniform choices of (k1, k2, . . . , kn) with each ki ∈ Pw

and the arithmetic is over GF (2). Since M and M ′ are distinct, mi 6= m′
i for some
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1 ≤ i ≤ n. Addition and multiplication in this ring, i.e. GF (2)[x], are commutative,

hence there is no loss of generality in assuming m2 6= m′
2. Now let us prove that for

any choice of k2, k3, . . . , kn we have

Prk1∈Pw


(m1 + k1)(m2 + k2) +

n/2∑
i=2

(m2i−1 + k2i−1)(m2i + k2i) =

(m′
1 + k1)(m

′
2 + k2) +

n/2∑
i=2

(m′
2i−1 + k2i−1)(m

′
2i + k2i)


 ≤ 2−w

which will imply (3.1). Let

y =

n/2∑
i=2

(m′
2i−1 + k2i−1)(m

′
2i + k2i)−

n/2∑
i=2

(m2i−1 + k2i−1)(m2i + k2i) .

Rewriting the probability yields

Prk1 [(m1 + k1)(m2 + k2)− (m′
1 + k1)(m

′
2 + k2) = y] ≤ 2−w .

Next, we show that for any m2, m′
2 and y ∈ Pw there exists at most one k1 ∈ Pw such

that

k1(m2 −m′
2) + m1(m2 + k2)−m′

1(m
′
2 + k2) = y .

Then the identity becomes

k1(m2 −m′
2) = y −m1(m2 + k2) + m′

1(m
′
2 + k2) . (3.2)

Since m2 6= m′
2, the term (m2 −m′

2) cannot be zero. The analysis can be concluded

by examining two possible cases. Since there is no zero divisor in GF (2)[x], either
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(m2 −m′
2) divides the right hand side of (3.2), i.e., (m2 −m′

2) is a factor of the right

hand side, and there is one k1 ∈ Pw satisfying the equation, which is

k1 = (y −m1(m2 + k2) + m′
1(m

′
2 + k2)) /(m2 −m′

2) ,

or (m2 − m′
2) does not divide the right hand side of (3.2) and there is no k1 ∈ Pw

satisfying this equation. These two cases prove that there can be at most one k1 value

(out of 2w possible values), which causes collision. Therefore,

Pr [PHK(M) = PHK(M ′)] ≤ 2−w .

¤

Theorem 3 For any even n ≥ 2 and w ≥ 1, PR[n,w] is universal on n equal-length

strings.

Proof Let M , M ′ be distinct members of the domain A with equal lengths. We are

required to show that

Pr [PRK(M) = PRK(M ′)] = 2−w .

Expanding the terms inside the probability expression, we obtain

Pr




n/2∑
i=1

(m2i−1 + k2i−1)(m2i + k2i) =

n/2∑
i=1

(m′
2i−1 + k2i−1)(m

′
2i + k2i) (mod p)


 = 2−w .

We proceed as in the proof of Theorem 2 with the only exception of the arithmetic

performed in GF (2w), instead of Pw. Similarly the derivation yields

k1(m2 −m′
2) = y −m1(m2 + k2) + m′

1(m
′
2 + k2) (mod p) .
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Since m2 6= m′
2, the term (m2−m′

2) cannot be zero and its inverse in GF (2w) exists.

Hence there is exactly one k1 ∈ GF (2w) satisfying the equation, which is

k1 = (m2 −m′
2)
−1 (y −m1(m2 + k2) + m′

1(m
′
2 + k2)) (mod p) .

Therefore,

Pr [PRK(M) = PRK(M ′)] = 2−w .

¤

Theorem 4 For any even n ≥ 2 and w ≥ 1, WH[n,w] is universal on n equal-length

strings.

Proof Let M, M ′ be distinct members of the domain A with equal lengths. We are

required to show that

Pr [WHK(M) = WHK(M ′)] = 2−w .

Expanding the terms inside the probability expression, we obtain

Pr




n/2∑
i=1

(m2i−1 + k2i−1)(m2i + k2i)
(
x(n

2
−i)w

)
=

n/2∑
i=1

(m′
2i−1 + k2i−1)(m

′
2i + k2i)

(
x(n

2
−i)w

)
(mod p)


 = 2−w . (3.3)

The probability is taken over uniform choices of (k1, . . . , kn) with each ki ∈ GF (2w)

and the arithmetic is over GF (2w). Since M and M ′ are distinct, mi 6= m′
i for some
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1 ≤ i ≤ n. Let m2l 6= m′
2l. For any choice of k1, . . . , k2l−2, k2l, . . . , kn having

Prk2l−1∈GF (2w)




n/2∑
i=1

(m2i−1 + k2i−1)(m2i + k2i)
(
x(n

2
−i)w

)
=

n/2∑
i=1

(m′
2i−1 + k2i−1)(m

′
2i + k2i)

(
x(n

2
−i)w

)
(mod p)


 = 2−w (3.4)

satisfied for all 1 ≤ l ≤ n/2 implies (3.3). Setting y and z as

y =

[
l−1∑
i=1

(m′
2i−1 + k2i−1)(m

′
2i + k2i)x

(n
2
−i)w

−
l−1∑
i=1

(m2i−1 + k2i−1)(m2i + k2i)x
(n
2
−i)w

]
(mod p)

and

z =




n/2∑

i=l+1

(m′
2i−1 + k2i−1)(m

′
2i + k2i)x

(n
2
−i)w

−
n/2∑

i=l+1

(m2i−1 + k2i−1)(m2i + k2i)x
(n
2
−i)w


 (mod p)

we rewrite the probability bound in (3.4) as

Prk2l−1

[
x(n

2
−i)w

[
(m2l−1 + k2l−1)(m2l + k2l)− (m′

2l−1 + k2l−1)(m
′
2l + k2l)

]

= y + z (mod p)] = 2−w .

Since x(n
2
−i)w is invertible in GF (2w), the equation inside the probability expression

can be rewritten as follows.

k2l−1(m2l −m′
2l) + m2l−1(m2l + k2l)−m′

2l−1(m
′
2l + k2l) = x−(n

2
−i)w(y + z) (mod p)
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Solving the equation for k2l−1, we end up with the following

k2l−1 = (m2l−m′
2l)

−1
(
(x−(n

2
−i)w)(y + z)−m2l−1(m2l + k2l) + m′

2l−1(m
′
2l + k2l)

)
(mod p) .

Note that (m2l−m′
2l) is invertible since in the beginning of the proof we assumed that

m2l 6= m′
2l. This proves that for any m2l, m′

2l (with m2l 6= m′
2l) and y, z ∈ GF (2w)

there exists exactly one k2l−1 ∈ GF (2w) which causes a collision. Therefore,

Pr [WHK(M) = WHK(M ′)] = 2−w .

¤



Chapter 4

Toeplitz Approach

This chapter consists of the details of how we can achieve further improvements in

the newly introduced hash functions utilizing the well-known Toeplitz approach. Our

main motivation here is to reduce the leakage power.

We know that the power consumed by a VLSI circuit has two components: Leakage

power and dynamic power. Only the latter depends on frequency. This means that

at lower frequencies the total power consumption is dominated by the leakage power

consumption. Since this component is directly proportional to the size of the circuit,

we now aim to design a smaller circuit. The circuit size scales with the data path

width, i.e. the block size w of the message and the key. Since the collision probability is

equal to 2−w (see Section 3.2), reducing the block size w will significantly increase this

probability and impair the security of the system. In order to decrease the collision

24
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probability without changing the word size, [BHK+99] uses the technique of multi-

hashing [Rog95a] in which different random members of the hash function family are

applied to the message, and the results are concatenated to form the hash value. We

use a similar approach, however, we preserve the collision probability while reducing

the word size. For instance, to obtain the collision probability of 2−w with a block

size of w/4 bits, each message block is hashed 4 times with independent keys. The

computed hash outputs (w/4 bits each) are then concatenated to form the w bit hash

result. The drawback of this method is that it requires 4 times the key material. As a

remedy one can employ the well-known Toeplitz approach [MNT90, BHK+99, Kra94]

in which shifted versions of one key rather than several independent keys are used. In

this case, however, since the keys are related to each other, it is not obvious that the

collision probability can be maintained. In Theorem 5 we will prove that the Toeplitz

construction for WH can still achieve the desired result.

4.1 Construction

The hash function family WHT [n,w, t] (“Toeplitz-WH”) has three parameters, namely

n, w and t. The additional parameter t stands for Toeplitz iteration count, where

t ≥ 1, and the others are defined as before. Domain A remains the same whereas the

range is now B = {0, 1}wt. A function is selected by a key K of length w(n+2(t−1))

bits. In other words, K is composed of (n + 2(t − 1)) w-bit words. We have
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K = (k1, k2 · · · , kn+2(t−1)), where each ki is a w-bit word. The notation Ki..j repre-

sents K = (ki, ki+1, · · · , kj). Then for a message string M ∈ A, WHT
K(M) is defined

as follows.

WHT
K(M) = (WHK1..n(M),WHK3..n+2(M), · · · ,WHK2t−1..n+2t−2(M)).

Theorem 5 For any w ≥ 1, t ≥ 1, and any even n ≥ 2, WHT [n,w, t] is universal

on equal-length strings with collision probability of 2−wt.

Proof For the sake of brevity we will use WH and WHT instead of WH[n,w] and

WHT [n,w, t], respectively. Let M and M ′ be distinct members of the domain A with

equal lengths. We are required to show

Pr[WHT
K(M) = WHT

K(M ′)] = 2−wt (4.1)

We have M = (m1,m2, · · · ,mn), M ′ = (m′
1,m

′
2, · · · ,m′

n) and K = (k1, k2, · · · , kn+2(t−1)),

where mi, m′
i and ki are all w bit words associated with polynomials. Note that the

arithmetic is carried out over GF (2w) with the irreducible polynomial p of degree w.

Next we define the event Ej for j ∈ {1, · · · , t} as follows.

Ej :

n/2∑
i=1

(k2i+2j−3 + m2i−1)(k2i+2j−2 + m2i)x
(n
2
−i)w =

n/2∑
i=1

(k2i+2j−3 + m′
2i−1)(k2i+2j−2 + m′

2i)x
(n
2
−i)w (mod p)
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We call each term in the summations of the Ej a “clause” (e.g., (k1 + m1)(k2 +

m2)x
(n
2
−1)w is a clause). Now the probability in (4.1) can be rewritten as

Pr[E1 ∩ E2 ∩ · · · ∩ Et] .

Without loss of generality, we can assume that M and M ′ disagree in the last clause

(i.e., mn−1 6= m′
n−1 or mn 6= m′

n). Notice that if M and M ′ agreed in the last clause

then each Ej would be satisfied if and only if it was also satisfied when that last clause

was omitted. Hence, we could truncate M and M ′ after the last clause in which they

disagree, and still obtain exactly the same set of keys causing collisions.

Now, again without loss of generality, we can assume that mn−1 6= m′
n−1 be-

cause for each iteration of Ej the key is shifted by two words making the case

symmetric. We proceed by proving that for all j ∈ {1, · · · , t}, Pr[Ej is true |

E1, · · · , Ej−1 are true] = 2−w, implying the theorem.

For j = 1, the claim is satisfied due to Theorem 4. For j > 1, the events E1

through Ej−1 depend only on key words k1, · · · , kn+2j−4 while Ej depends also on

kn+2j−3 and kn+2j−2. By fixing k1 through kn+2j−4 such that E1 through Ej−1 are

satisfied, and fixing any value for kn+2j−3, we prove that there is only one value of

kn+2j−2 satisfying Ej. Let

y =

n/2−1∑
i=1

(k2i+2j−3 + m′
2i−1)(k2i+2j−2 + m′

2i)x
(n
2
−i)w −

n/2−1∑
i=1

(k2i+2j−3 + m2i−1)(k2i+2j−2 + m2i)x
(n
2
−i)w .
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Thus, Ej becomes

Ej : (kn+2j−3+mn−1)(kn+2j−2+mn)−(kn+2j−3+m′
n−1)(kn+2j−2+m′

n) = y (mod p) .

Now we are required to prove that

Pr[(kn+2j−3+mn−1)(kn+2j−2+mn)−(kn+2j−3+m′
n−1)(kn+2j−2+m′

n) = y (mod p)] = 2−w .

Solving the equation inside the above probability expression for kn+2j−2, we end up

with the following

kn+2j−2 = (mn−1−m′
n−1)

−1
(
y −mn(mn−1 + kn+2j−3) + m′

n(m′
n−1 + kn+2j−3)

)
(mod p) .

Note that (mn−1−m′
n−1) is invertible since in the beginning of the proof we assumed

mn−1 6= m′
n−1. This proves that for any kn+2j−3, mn−1, m′

n−1 (with mn−1 6= m′
n−1)

∈ GF (2w) there exists exactly one kn+2j−2 ∈ GF (2w) which causes a collision. There-

fore,

Pr[WHT
K(M) = WHT

K(M ′)] = 2−wt .

¤



Chapter 5

Implementations

This chapter discusses the design process that has been followed in the course of

realizing the NH-variants as well as the NH construction itself.

The power dissipation in CMOS devices can be summarized by the following

formula [DM95]:

P =

(
1

2
· C · V 2

DD + Qse · VDD

)
· f ·N

︸ ︷︷ ︸
PDynamic

+ Ileak · VDD︸ ︷︷ ︸
PLeakage

(5.1)

The term PDynamic represents the power required to charge and discharge circuit

nodes as well as the power dissipation during output transitions. The terms C, Qse,

and VDD are technology dependent [DM95]. The switching activity, i.e. the number

of gate output transitions per clock cycle, is represented by N and the operating

frequency by f . The second term PLeakage represents the static power dissipation due

to the leakage current Ileak. The leakage current is directly determined by the number
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of gates and the fabrication technology. For more information about low-power design

see [RP96]. In order to minimize the power consumption, we designed our CMOS

circuits according to the following rules:

• The number of transitions (‘0’ to ‘1’ and ‘1’ to ‘0’) has to be minimal.

• The circuit size should be minimized.

• Glitches cause unnecessary transitions and therefore should be avoided.

5.1 NH

The algorithm for NH is described in [BHK+99] and also given in Definition 3 as

NHK(M) =




n/2∑
i=1

((m2i−1 + k2i−1) mod 2w) · ((m2i + k2i) mod 2w)


 mod 22w .

This leads to the simplified block diagram shown in Figure 5.1. The actual block

diagram for the circuit is much more complex and can be found in Figure 5.2. The

message and the key are assumed to be split into n blocks of w bits. Messages that

are shorter than a multiple of 2 · w are padded. All odd message blocks are applied

to input m1, all even message blocks to input m2. The blocks of the key are applied

similarly to k1 and k2. The final adder accumulates all n/2 products.

The output of Adder 1 is ma = m1 + k1 mod 2w, the output of Adder 2 is mb =

m2 + k2 mod 2w. These are integer additions where the carry out is discarded. The
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Adder 1 Adder 2

Multiplier

Adder 3

64 64 64

64 64

128

64

128

m1 k1 m2 k2

ma mb

sum

mout

Figure 5.1: Simplified Functional Diagram for NH

multiplication results in mout = ma · mb. For each multiplication of two w-bit

numbers, w partial products need to be computed and added: mout =
∑w

j=1 ma ·

mb[j] · 2j−1. As power consumption is our main concern and not speed we chose to

implement a bit serial multiplier. It computes one partial product during each clock

cycle and adds it to the sum of the previous partial products using the Right Shift

Algorithm [Par00].

A bit serial adder produces one bit of the result with each clock cycle, starting

with the LSB and it has minimal glitching. We used a bit serial adder for Adder 2 as

its result can directly be used by the bit serial multiplier. However, the multiplicand

has to be available immediately. Therefore we used a simple ripple carry adder to

implement Adder 1. Its main disadvantage is that it takes a long time until the carries

propagate through the adder, causing a lot of glitching and therefore a high power
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consumption. However, Adder 1 needs to compute a new result only every 64 clock

cycles, hence its dynamic power consumption is tolerable. The addition of the partial

products is accomplished using a carry-save adder. This adder uses the redundant

carry-save notation which results in minimal glitching as the carries are not fully

propagated. However, 64 additional flip-flops are required to store the carry bits.

After one multiplication has been computed, its result has to be added to the

accumulation of the previous multiplications as indicated by Adder 3 in Figure 5.1.

Rather than having a separate multiplier and adder, in the actual implementation we

add the partial products of the next multiplication immediately to the result of the

previous additions. This technique stores the result of Adder 3 in the Multiplier thus

saving a 128 bit register and a 128 bit multiplexer.

The carry-save adder has separate data paths for sum and carry. It can add the

partial products of one multiplication very efficiently. However, after the product is

computed it needs to be re-aligned before the partial products of the next multipli-

cation can be added to this result. This re-alignment involves converting the number

from carry-save notation to standard binary notation, i.e., adding the carries to the

sum. This addition is done using a ripple carry adder (Figure 5.2 shows that this

Ripple Carry Adder has the signal rcasum as output). Even though the products of the

multiplication are 128 bits wide, the carry is only 64 bits wide, hence the ripple carry

adder is only 64 bits wide. This sum needs to be computed only after a multiplication
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has finished, i.e., every 64 clock cycles. As the result is not needed during the other

63 clock cycles, we isolate the operands from the ripple carry adder, hence the adder

does not consume power due to switching activity when its output is not needed.

After one multiplication is completed and the result is re-aligned, the carry registers

are set to zero for the next computation.

Bit Multiplier

Carry−Save Adder

64

Operand Isolation

Ripple Carry Adder

Swap

64

128

64 64

128

Multiplexer Multiplexer

128

128 64

6464

64

64

128

R1

Sum Register Carry Register

64

64

Right Shift Register Right Shift Register

Full Adder

64 64

MuxSum Register

Ripple Carry Adder

64

64 64

64128

Swap

128

128

128

Reg.

a

s_sft1 c_in

c_outs_out

s_oi

rcasum

s_sum

s_swap

c_oi

c_null

c_loop

s_loop c_loop

saout sbout

a b

k2

cout

ccin

0

m1 k1

rcasout

ma sout

mult

0

sout

b

cin

m2
Bit Serial Adder

s_loop

Figure 5.2: Block Diagram for NH
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We use this implementation of the original NH algorithm as a reference for com-

parison with its variations described below.

5.2 NH-Polynomial (PH)

The main power consumers in the implementation of NH are the ripple carry adders

and flip-flops needed for the multiplier and the bit serial adder. PH is a variation

on NH in that it uses polynomials over GF (2) instead of integers. This replaces the

costly adders with simple XOR gates which consume significantly less power. Adder 1

is replaced by 64 XOR gates. The bit-serial adder (Adder 2) is replaced by XORs and

a 64 bit shift register which reduces the complexity of this unit by 64 flip-flops. The

Multiplier and Adder 3 are combined as in NH but the carry-save adders are replaced

by XORs. As there are no carries another 64 flip-flops are saved. Just changing NH

from using integers to polynomials reduces the number of cells by 65%, the dynamic

power consumption by 38% and the leakage power by more than a half.

5.3 NH-Polynomial with Reduction (PR)

The main difference between PR and PH is that the result is reduced to 64 bits using

an irreducible polynomial. In our hardware implementation the multiplication and

the reduction are interleaved. This makes the reduction very efficient. Moreover,
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using low Hamming-weight polynomials the reduction can be achieved with only a

few gates and minimal extra delay. However, the Multiplier and Adder 3 can no longer

be merged. Therefore, we are not able to reduce the number of flip-flops in our

implementation but we reduced the switching activity as Adder 3 computes a new

result only once every 64 clock cycles. The number of cells for this implementation

is slightly higher than for PH and thus the leakage power is increased. Due to the

reduced switching activity, however, the dynamic power consumption is now 50% less

than that of NH.

5.4 Weighted NH-Polynomial with Reduction (WH)

This design was inspired by the bottlenecks we observed in the implementation of

PR. For instance, the Multiplier and Adder 3 (Figure 5.1) could not be merged as in

PH. We removed from PR’s implementation a 64 bit register, a 64 bit multiplexer

and the XOR gates of Adder 3. The function of the resulting design is characterized

by the construction shown in Definition 6. Compared to NH, the removal of the

mentioned components reduced the dynamic power consumption by 59%, the leakage

power consumption by 66%, and the number of cells by 74%. These dramatic savings

become more obvious when the block diagrams for NH in Figure 5.2 and for WH in

Figure 5.3 are compared.
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XORXOR

64/t64/t 64/t 64/t

Modulo Reduction

Left Shift

64/t+1msft

64/tb

Bit Multiplier Left Shift Register

64/tma 64/tmb

Sum Register

XOR

64/t

64/tsout
64/t

64/ta

m1 k1 m2 k2

0
sin

mult

m_out

m_loop

Figure 5.3: Detailed Block Diagram for WH Datapath Depending on Toeplitz Param-

eter t

5.5 WH with Toeplitz Construction

We have shown in Section 4 that it is possible to preserve the security level while

reducing the word size if the message is hashed multiple times with independent

keys. The Toeplitz approach describes how these keys can be generated efficiently.

For our implementation we assume that the circuit, which generates the messages

and the keys, implements this approach and delivers keys and the appropriate parts

of the message to our hash function implementation.

Figure 5.3 shows a detailed block diagram for WH depending on the Toeplitz

parameter t. We define the word size w as 64 bits. The block size is the word
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size divided by the Toeplitz parameter t. The implementation of WH with a 64 bit

word size, i.e. t = 1, is called WH-64. The minimum input length in this case is

2 · w = 128 bits. Half of these bits are applied to m1 and the other half to m2. The

same holds for the key. In order to achieve the same level of security for a word size

of 32 bits we would hash the message twice. Hence, the Toeplitz iteration count t

would be two. The implementation of this is called WH-32. In order to hash the same

input of 128 bits WH-32 would need to compute four hashes. The length of the final

output is the same.

5.6 Control Logic

The control logic manages the switching of the multiplexers, loading of the next data

set and resetting the carry registers. Due to the iterative nature of the multiplier,

the control logic requires a counter. Traditionally, counters are built using a register

and a combinational incrementer. The incrementer requires long carry propagations,

which cause glitching and introduce latency. As the critical delay of the datapath

is minimized in our design to only a few levels of logic, the delay of an incrementer

would create a bottleneck in the control circuit. Hence, optimization of this unit is

essential. Instead of an integer counter, we use a linear feedback shift register (LFSR)

with 6 flip-flops, enhanced to “count” up to 64. LFSRs have minimal glitching and

therefore make power efficient and fast counters. The control logic for WH-32 and
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WH-16 uses the same principle and “counts” only to 32 and 16.



Chapter 6

Results

This chapter presents and discusses the results obtained from the synthesis tools for

a number of different parameter settings. In particular, this means power, delay

and area efficiency for several configurations with different choices of hash functions,

frequency and the wordsize w (as the Toeplitz iteration count t varies). The maximum

delay determines the highest operable frequency.

For synthesizing our designs we used the Synopsys tools Design Compiler [Syn02a]

and Power Compiler [Syn02b], and the TSMC 0.13 µm ASIC library. The results of

the simulation on many input sets were verified with the Maple package [HHR98] for

consistency.
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6.1 Comparing NH to Its Variants

Table 6.1 lists power, area, and delay results of the hash function implementations,

synthesized for operation at 100 MHz. As shown in this table, the best performance

is achieved by WH.

Table 6.1: Comparison of Hash Function Implementations at 100 Mhz

Dynamic Leakage Number Total Cell Maximum
Design Power Power of Cells Area Delay

µW % µW % % µm2 % ns speedup
NH 1093.9 100 28.1 100 1576 100 26943 100 9.92 1.0
PH 682.7 62 12.1 43 557 35 11997 45 1.35 7.4
PR 549.9 50 14.0 50 616 39 12919 48 1.35 7.4
WH 452.3 41 9.4 33 412 26 8662 32 1.35 7.4

When run at 100 MHz, WH consumes 41% of the dynamic power and 33% of

the leakage power consumed by NH and at the same time occupies only 32% of the

area1 and WH can run 7.4 times faster than NH. We proved that it can provide the

same level of security, though. However, the dynamic power consumption of WH at

this frequency is 452.3 µW. This is much higher than our aim of 20 µW. The CMOS

power formula in Equation 5.1 shows that the dynamic power consumption is directly

proportional to the operating frequency. Hence, the implementations consume 1/200th

of the dynamic power when clocked at 500 kHz (this lower frequency is used in sensor

node implementations [AC98]), however, the leakage power remains the same. For

this reason the leakage power, at low speeds, becomes the limiting factor for ultra-

1The area is given in terms of two input equivalent NAND gates.
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low-power implementations as demonstrated on Table 6.2. This leads us to look

for ways to reducing the leakage power by using various block sizes with Toeplitz

Approach (see Chapter 4 for mathematical details) as depicted for WH construction

in Sections 6.2 and 6.3.

WH can operate with as little as 11.6 µW and this is in the range of the power

produced by a MEMS scavenger [MMMA+01]. However, we would like to note that

we used an ASIC standard cell library to obtain these results. A full custom IC-design

would yield even higher power savings.

Table 6.2: Comparison of Power Consumption at 100 Mhz and 500 kHz

100 MHz 500 kHz
Design Dynamic Leakage Total Dynamic Leakage Total

µW % µW % µW % µW % µW % µW %
NH 1093.9 100 28.1 100 1122.0 100 5.47 100 28.1 100 33.6 100
PH 682.7 62 12.1 43 694.8 62 3.41 62 12.1 43 15.5 46
PR 549.9 50 14.0 50 563.9 50 2.75 50 14.0 50 16.8 50
WH 452.3 41 9.4 33 461.7 41 2.26 41 9.4 33 11.6 35

6.2 WH with Various Block Sizes

We implemented WH with block size w of 64 bits (WH-64), 32 bits (WH-32), and

16 bits (WH-16). Table 6.3 shows the results for power, area, and delay for these

hash implementations, synthesized for operation at 100 MHz .

It can be seen in Table 6.3 that the dynamic and leakage power consumptions as
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Table 6.3: Comparison of WH Implementations at 100 Mhz

Dynamic Leakage Circuit Maximum
Design Power Power Area Delay

µW % µW % gates % ns speedup
WH-64 452.3 100 9.36 100 1701 100 1.35 1.0
WH-32 217.5 48 4.81 51 873 51 1.31 1.0
WH-16 126.2 28 2.32 25 460 27 0.76 1.8

well as the circuit size are reduced almost linearly with the block size. We analytically

verify these observations. For simplicity, in our analysis we ignore the contributions of

the control and reduction units to the power consumption. From the power dissipation

formula for CMOS (Equation 5.1) we see that the leakage power is proportional to

the number of gates (i.e. area A) used: PLeak ∝ A. The area in turn is proportional

to the block size, i.e. A ∝ w, and therefore

PLeak ∝ w .

The dynamic power consumption is proportional to the operating frequency and the

number of logic transitions: PDyn ∝ f N . Since N ∝ w, the dynamic power consump-

tion scales with the frequency and the block size as follows.

PDyn ∝ f w

The total power consumption P = PDyn + PLeak is related to f and w as

P ∝ w(cf + 1) .

Here c is a fixed constant factor. The energy E consumed is the total power times
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the running time: E = P T . Since T = w
f
, the total energy consumption is related to

the block size and the frequency as

E ∝ w2

(
c +

1

f

)
.

The slight nonlinearity observed in Table 6.3 can be explained by considering the

control and the modulo reduction units, which are the only parts in the circuit that do

not scale linearly with the block size. The size of the modulo reduction unit depends

on the primitive polynomial and can be made negligible by utilizing a low-Hamming

weight polynomial such as a trinomial. The control unit scales with the logarithm of

the block since an LFSR of r flip flops may be used to count through 2r − 1 states.

This explains why the reduction is not exactly linear. The critical timing path in all

implementations is from the control logic to the shift register.

6.3 WH with Toeplitz

Table 6.4 shows the power consumptions of three implementations of WH. The first

one is the standard implementation of WH with a block size of w = 64. The other two

implementations are utilizing the multi-hashing technique with t = 2 and 4, and with

block sizes of w = 16 and 32, respectively. The figures given in Table 6.4 represent

the power/energy consumptions of the three hash algorithms for processing the same

amount of input data (i.e. 64 bits).



CHAPTER 6. RESULTS 44

In the table we observe that both the dynamic and the leakage power consumptions

decrease almost linearly with increasing multi-hash iteration count t. We observe

the same behavior for all frequencies. On the other hand the energy consumption

remains about the same regardless of multi-hashing and only increases with decreasing

operating frequency. Also notice that the leakage power remains the same and it

becomes the limiting factor at lower frequencies. One way to reduce the dynamic

power consumption is to lower the operating frequency. However, this increases the

energy consumption as the leakage power is now consumed over a longer period of

time.

Table 6.4: Comparison of Power and Energy Consumption

Frequency Design PDyn PLeak P E
µW µW µW nJ

WH-64 452.3 9.36 461.7 0.30
100 MHz WH-32 217.5 4.81 222.3 0.28

WH-16 126.2 2.32 128.6 0.33
WH-64 2.261 9.36 11.62 1.49

500 kHz WH-32 1.087 4.81 5.90 1.51
WH-16 0.631 2.32 2.95 1.51
WH-64 4.523 9.36 9.37 599.5

1 kHz WH-32 2.175 4.81 4.82 616.4
WH-16 1.262 2.32 2.31 592.9

As evident from the table using the Toeplitz approach it is possible to reduce

the power consumed to hash w bits of data. We next analyze the dependency of

power and energy on the block size, the operating frequency, and the multi-hashing

iteration count. As a first step we define w as a constant block size of 64 bits. The
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Toeplitz count is t. In order to achieve the same security for an implementation with

a block size of w
t

the result has to be hashed t times. The effective block length

becomes w′ = w
t
. This approach reduces the power consumed to hash a block of

w bits independently of the operating frequency as

P ′
Dyn ∝ f w′ = f

w

t
, and

P ′
Leak ∝ w′ =

w

t
.

The total power consumption is found as

P ′ ∝ w

t
(cf + 1)

where c is a fixed constant factor. This is in line with what we have observed in

Table 6.4: The total power consumption is reduced by a factor of t. This improvement

does not come for free. Since we have now t blocks of length w
t
, where each will be

hashed t times, it will take t times longer to compute the hash of w bits of data:

T ′ = t T = tw
f
. However, the energy remains unaffected:

E ′ = P ′ T ′ ∝ w2

(
c +

1

f

)
.

Figure 6.1 shows how the power consumption of a circuit depends on its area and

the clock speed. The graph is extrapolated from simulation data at 100 MHz. It

shows clearly that at low frequencies the power consumption scales linearly with the

area, i.e. the leakage power is the dominant part. At higher frequencies the dynamic
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power takes over. The dynamic power consumption scales linearly with the frequency.

Note that the frequency axis in Figure 6.1 is logarithmic and only the powers of ten

are shown.

The energy consumption is shown in Figure 6.2. The axes have a different orienta-

tion than in Figure 6.1 such that the frequency is decreasing towards the right and the

area is decreasing towards the left. The frequency axis in Figure 6.2 is in logarithmic

scale. Figure 6.2 demonstrates that the energy consumption decreases linearly with

increasing frequency. However, the energy consumption is independent of the area.

This allows us to reduce the circuit size, i.e. increase the Toeplitz parameter t, with-

out any penalty on the energy consumption. Reducing the circuit size decreases the

leakage power and at low frequencies this has a big impact as shown in Figure 6.1. It

is now possible to increase the frequency to a level such that the power consumption

is the same as it was before reducing the area. Looking back into Figure 6.2, we can

see that the energy consumption is reduced while the power consumption remained

the same. This is a powerful tool for optimizing this hash function with respect to

specific energy and power consumption requirements.

Equalizing Runtime We have demonstrated that the Toeplitz construction pro-

vides a drastic t-fold reduction in power consumption and circuit size at the price of

t-times slower hash computation. In order to maintan the runtime one may decide to

increase the operating frequency t times: f ′′ = f t. In this arrangement the dynamic
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power consumption does not depend on t anymore, only the leakage power does.

f ′′ = f t T ′′ = T ∝ w

f

P ′′
Dyn ∝ f ′′ w′ = f w P ′′

Leak = P ′
Leak ∝

w

t

P ′′ ∝ w

(
cf +

1

t

)
E ′′ ∝ w2

(
c +

1

t f

)

The most important result of this is that at low frequencies (i.e. P ′′
Dyn ¿ P ′′

Leak) the

total power consumption as well as the energy consumption scales with the Toeplitz

parameter t.

for low frequencies : E ′′ ∝ 1

t

w2

f
P ′′ ∝ 1

t
w

for high frequencies : E ′′ ∝ w2 P ′′ ∝ w f

Table 6.5 shows that the energy needed to compute the hash of a 128 bit data

block can be reduced without affecting the runtime. The dynamic power consumption

remains roughly constant as time increases, but the leakage power consumption is

reduced. Note that the header of the table specifies the frequency for WH-64 only.

The frequency for WH-32 is twice higher (t = 2) and for WH-16 four times higher

(t = 4).

The only way to reduce the leakage power of a circuit, aside from using a different

technology, is to reduce the circuit size. Multiple hashing enables us to reduce the

circuit size while maintaining the security level. The amount of additional key mate-

rial is reduced through the Toeplitz approach so that this becomes a viable solution.
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Table 6.5: Comparison of Power and Energy Consumption with f ′ = f t

Frequency Design PDyn PLeak P E
µW µW µW nJ

WH-64 452.3 9.36 461.7 0.30
100 MHz WH-32 435.5 4.81 440.0 0.28

WH-16 505.0 2.32 507.3 0.32
WH-64 2.261 9.36 11.62 1.49

500 kHz WH-32 2.175 4.81 7.00 0.89
WH-16 2.525 2.32 4.84 0.62
WH-64 4.523 9.36 9.37 599.5

1 kHz WH-32 4.350 4.81 4.82 308.4
WH-16 5.050 2.32 2.32 148.5

Table 6.5 shows that at 500 kHz we can reduce the power and energy consumptions

by more than half and still compute the hash with the same security and in the same

amount of time.
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Conclusions

Our main motivation for starting this research was to prove that universal hash func-

tions can be employed to provide provable security in ultra-low-power applications

such as next generation sensor networks. More specifically, hardware implementations

of universal hash functions with an emphasis on low-power and reasonable execution

speed are considered. We implemented NH (the underlying hash function of UMAC)

for the first time in hardware and presented its simulation results in comparison to

those of our newly proposed hash functions: PH, PR and WH.

The first hash function we propose, i.e. PH, produces a hash of length 2w and is

shown to be 2−w-almost universal. The other two hash functions, i.e. PR and WH,

reach optimality and are shown to be universal hash functions with a much shorter

hash length of w. Since their combinatorial properties are mathematically proven,

50
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there is no need for making cryptographic hardness assumptions and using a safety

margin in practical implementations. In addition, these schemes are simple enough

to allow for efficient constructions.

To our knowledge the proposed hash functions are the first ones specifically de-

signed for efficient hardware implementations. Designing the new algorithms with

efficiency guidelines in mind and applying optimization techniques, we achieved dras-

tic power savings of up to 59% and speedup of up to 7.4 times over NH. Note that

the speed improvement and the power reduction are accomplished simultaneously.

We also observed that at lower operating frequencies the leakage power becomes the

dominant part in the overall power consumption. The only way to reduce the leakage

power is to reduce the circuit size. Therefore, we applied multi-hashing integrated

with the Toeplitz approach to our hash function WH resulting in the designs WH-32

and WH-16. Without sacrificing any security we achieved drastic power savings of up

to 90% over NH and reduced the circuit size by more than 90% to less than 500 gates

at the expense of a very slight increase in the amount of key material.

We presented a powerful method for optimizing WH with respect to specific energy

and power consumption requirements. We have shown that with the introduction of

multi-hashing (t times) together with the Toeplitz approach the circuit size and the

power consumption is reduced by a factor of t while it takes t times longer to compute

the hash. Therefore the energy consumption stays about the same. On the other
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hand the operating frequency may be increased t times to achieve the hash without

increasing the runtime. Then the dynamic power consumption is increased t-fold,

however, the leakage power is not affected. Hence, at low frequencies (i.e. PDyn ¿

PLeak) the total power consumption as well as the energy consumptions decrease

linearly with increasing parameter t. This is a powerful technique to decrease the

circuit size, and the power and energy consumptions simultaneously while maintaining

the hashing speed. The only limiting factor is the maximum operating frequency.

Note that our implementation of WH-16 consumes only 2.95 µW at 500 kHz and

uses only 460 gates. It could therefore be integrated into a self-powered device. This

enables the use of hash functions in ultra-low-power applications such as “Smart

Dust” motes, RFIDs, and Piconet nodes. By virtue of the security and implementa-

tion features mentioned above, we believe that the proposed universal hash function

together with the Toeplitz approach will fill an important gap in cryptographic hard-

ware applications.

7.1 Future Research

We believe that ultra-low-power cryptographic hardware applications will gain more

importance in the near future in accordance with the advances in ubiquitous com-

puting. In particular, the research in universal hashing for various cryptographic

hardware applications is still at an early stage. Possible directions to future research
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on this topic are listed below:

1. Since cryptographic hardware has to work in conjunction with other units (e.g.

clock generator) of a full system, integration of universal hash function imple-

mentations with the entire chip (such as an RFID chip) will have to be studied

further.

2. Circuit area and delay characteristics of universal hash function implementa-

tions may be improved utilizing the repetitive nature of Toeplitz method (de-

scribed in Chapter 4). In this method the same message is hashed multiple

times with the shifted (and slightly modified) versions of the same key. There-

fore the same circuit can be employed with some correction terms (gates) in

order to evaluate each individual hash, which could shrink down the circuit

considerably.

3. [NP99] shows how universal hash functions can be combined in different ways

in order to increase their domains, reduce collision probability, or decrease the

range. This way it may be possible to start with fairly simple universal hash

functions and by combining them properly to come up with complicated schemes

with desired properties. This method may save us in terms of analysis since

it could be much more time consuming (or even infeasible) to mathematically

analyze the security of such a scheme without breaking it apart.
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4. Universal hash functions can also be employed in true random number genera-

tors (TRNGs) as randomness extractors — a function which, when applied to

the source, produces a result that is statistically close to the uniform distribu-

tion [BST03].
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