
Running head: HARDWARE VULNERABILITY TOOL

Hardware Vulnerability Tool

A Major Qualifying Project submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Submitted by

Jeffery Collard

Valentina Harrison

Date

May 5, 2021

Advised by

Adrienne Hall-Phillips

Patrick Schaumont

 This report represents work of WPI undergraduate students submitted to the faculty as evidence

of a degree requirement. WPI routinely publishes these reports on its web site without editorial

or peer review. For more information about the projects program at WPI,

see http://www.wpi.edu/Academics/Projects.

https://nam03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.wpi.edu%2FAcademics%2FProjects&data=04%7C01%7Cahphillips%40wpi.edu%7Cf4db4497322b4b41c21f08d90f009bb1%7C589c76f5ca1541f9884b55ec15a0672a%7C0%7C0%7C637557317547280569%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=8cqfH8DNEHmvC1sHJwreztXlsiGQKA7JtqcqK17e1d4%3D&reserved=0

HARDWARE VULNERABILITY TOOL

2

Abstract

All types of devices are potentially vulnerable to physical data leakage. In order to assess device

security pre-fabrication, a simulator that can determine a cryptographic system’s vulnerability to

side-channel attacks is useful. Researching and understanding differential power analysis (DPA)

attacks and side channel vulnerabilities of devices, is of great interest to manufacturers,

consumers, and security scholars. The purpose of our project is to create a simulator to detect the

vulnerabilities in a user's hardware. Our product uses ModelSim to simulate the operation of the

device, then runs a side-channel-based attack on the data from the simulation. Based on the

results of this attack, the user can understand their systems vulnerability to side-channel attacks

and take appropriate precautions. This way, the developer can make the needed adjustments

without the need for manufacturing a physical prototype on which side-channel leakage can be

tested.

HARDWARE VULNERABILITY TOOL

3

Acknowledgements

Our team would like to thank our advisors for their help and input within the project. Without

them the project would not have been able to happen. Our team would like to thank Professor

Hall-Phillips from the Foisie Business School for her knowledge and help with the management

aspect of our project. Our team would also like to thank Professor Schaumont from the Electrical

Computer Engineering department at WPI for his knowledge and help with the technical aspect

of our project. Our team would also like to thank WPI for the ability to complete a Major

Qualifying Project to gain a deeper understanding of our majors.

HARDWARE VULNERABILITY TOOL

4

Table of Contents
Introduction.. 8

Literature Review .. 9

Side Channel Attacks .. 10

Attacks .. 10

Levels of Accuracy. .. 12

Power Models. .. 13

Differential Power Analysis Side Channel Attacks .. 14

Methodology ... 22

Simulator Development ... 22

Results ... 26

Hardware Simulation Results ... 26

Python DPA Attack. .. 29

Vulnerability Demonstration. ... 32

Conclusion .. 33

Results ... 33

Stakeholders ... 34

Limitations.. 36

Future Research ... 38

Conclusion .. 39

References ... 40

HARDWARE VULNERABILITY TOOL

5

Executive Summary

Currently, there are not a lot of reliable simulators that help detect a software systems

vulnerability to differential power analysis side channel attacks. Side channel attacks are a type

of cryptographic vulnerability of a system where key information can be learned by an attacker

through information other than the inputs and outputs of the system. When delving deeper into

our project to gain a better understanding of what we wanted to accomplish we needed to select

the type of side channel leakage we wanted to tackle. When we were deciding what to attack and

what we wanted to accomplish we had to decide if we wanted to do offensive or defensive

technique to protect against the attacks. As a team we decided to do a more offensive approach to

side channel attacks. After thoughtful consideration as a team, we decided to use Differential

Power Analysis (DPA) as our side-channel attack technique. Our reason for picking this type of

side channel attack is not only is it something that interests both of us, but it allows us to take an

offensive approach to the side channel attack.

Differential power analysis uses multiple power traces and uses comparisons between the

actual measurements and the hypothetical measurement based on a power model. The power

model is created using a partial cryptographic key guess. A successful DPA attack involves

knowing the power consumption, what algorithm is computed, and need plaintext or ciphertext

(Skorobogatov, 2011, p.8). For our project to work we will need a deep understanding of DPA

attacks. Differential power analysis attacks are conducted by observing several cryptographic

operations and measuring power traces during the operation, then, depending on the encryption

implementation mathematical analysis is performed on the set of power traces. All differential

power analysis attacks use a “divide and conquer” strategy (Randolph, 2020, p.2). That is, they

HARDWARE VULNERABILITY TOOL

6

define a function that maps each key into a subkey, allowing them to make a series of subkey

guesses using their mathematical analysis on the power trace sets.

Our team started our project by familiarizing ourselves with Verilator. We then used

Modelsim for Verilog implementation and tested it with a simple test bench to verify that the

encryption works. We also used a value change dump to run the DPA attack algorithm. Our team

found that we would get more accurate results if we run 100 encryptions instead of ten. After that

we used Python with Verilog VCD library to parse the VCD file and write our attack. Our DPA

algorithm generates the most likely key guesses for each encryption so our next step is to lay out

the data in a series of graphs that we will provide to the user. For best results we decided to use

the IPython and the Pandas library to present the data for the user. To confirm our methods, we

made sure to test along the way instead of running into an issue at the end.

Our project was used to help meet a management engineering requirement which allowed

us to gain a deeper understanding of the business implications of our project. To do this we

aimed to make the tools and simulator as user friendly as possible to allow more people to use

the tools without issues. The most important part of our project in a business view is to

understand the main stakeholders of our project. This allowed us to develop our product in a way

that was best for the stake holders. Understanding the stake holders also helps us show the results

in the most efficient way.

As our team gained a deeper understand of our project and started producing final results

for the project, we were able to solidify who the main stakeholders of our project. Beforehand

our team focused on understanding the main groups of stakeholders. Our team decided to focus

mainly on four stakeholders we would be interested in our project. The stakeholders we choose

HARDWARE VULNERABILITY TOOL

7

to focus on are electrical engineering business firms, engineering professors, electrical computer

engineering professionals, and electronic hobbyists.

Our main goal was to create a tool to help users mitigate side channel leakage that might

occur in their technology. Though there are so many diverse types of side channel attacks, we

chose to focus on differential power analysis (DPA). This choice allowed us to create solutions

from an offensive view instead of from a defensive view.

HARDWARE VULNERABILITY TOOL

8

Introduction

Every device is vulnerable to attacks by hackers. When creating new devices companies

attempt to develop devices that are safe and free of security vulnerabilities. Another concern is

when a company is attacked, they lose money during the process of having to recall hardware

projects. The more reliable of a device a company makes the more likely customers will return

to the company. Currently, there are not a lot of reliable simulators that help detect a software

systems vulnerability to differential power analysis side channel attacks. Electrical companies

want to protect their devices against hardware attacks to keep their business running. If devices

from one company tends to be vulnerable to attacks consumers will no longer go to that company

slowly shutting down the company. To help protect companies from shutting down due to their

devices being vulnerable to attacks we set a main goal of our project. Our goal is to use

ModelSim, an environment used for hardware simulation, to help us develop a tool to simulate

power analysis attacks on a system. Our team completed testing our simulator and recommended

strategies to mitigate the possibility of side channel attacks. Our project can also be used to help

companies guarantee that their devices are safer and more protected against DPA attacks than

competitors’ products.

Looking into this project you might be thinking “what is a side channel attack?” Side

channel attack are a type of attack that “takes advantage of patterns in the information exhausted

that computers constantly give off: the electric emissions from a computer monitor or hard drive”

(Greenberg, 2020). Our project aims to develop a tool that will help protect against side channel

attacks it also is able to be used in electrical businesses to allow their devices to be protected

against these attacks. Some characteristics of side channel leakage are power consumption,

timing, acoustic and electromagnetic emissions. With side channel attacks there are a variety of

HARDWARE VULNERABILITY TOOL

9

different types of attacks. The main categories being cache-based attacks, thermal attacks,

electromagnetic attacks, and power-based attacks.

When delving deeper into our project to gain a better understanding of what we wanted to

accomplish we needed to select the type of side channel leakage we wanted to tackle. This is due

to there being so many types of side channel leakage we would run out of time before we were to

accomplish methods for protecting against these attacks. Our team believed that power-based

side-channel leakage attacks are important to protect against so our product will allow business

to help protect their products. When we were deciding what to attack and what we wanted to

accomplish we had to decide if we wanted to do offensive or defensive technique to protect

against the attacks. As a team we decided to do a more offensive approach to side channel

attacks. This allowed us to think a step ahead of attackers. After thoughtful consideration as a

team, we decided to attack differential power analysis side channel attacks. Our reason for

picking this type of side channel attack is not only is it something that interests both of us, but it

allows us to take an offensive approach to the side channel attack. We also wanted to focus on

this type of attack because it allows companies to save money if they are able to protect against

attacks.

Literature Review

This chapter presents more information about different type of side channel attacks. This

chapter is meant to give a better understanding of all types of side channel attacks, but it focuses

on differential power analysis side channel attacks. We also provide a deeper context of why we

chose differential power analysis side channel attacks.

HARDWARE VULNERABILITY TOOL

10

Side Channel Attacks

Side channel leakage are a type of cryptographic vulnerability of a system where key

information can be learned by an attacker through information other than the inputs and outputs

of the system. Side channel attacks are considered the “most powerful attack that can be mounted

by an adversary. This is because the adversary is assumed to have physical access to the physical

device where the crypto algorithm is implemented and executed” (Ye, 2015, p. 28). These kinds

of attacks are new, first being proposed by Paul Kocher et al in their 1999 paper, Differential

Power Analysis. Before that, researchers focused more effort on the development of

mathematical encryption and security algorithms. More recently, researchers have focused more

on implementation and countermeasures (Chen, 2006, p. 76). With side channel attacks there are

a variety of different types of attacks. The main categories being cache-based attacks, thermal

attacks, electromagnetic attacks, and power-based attacks. In cache-based attacks, there are two

subcategories, access-based and timing-based, where access attacks observe the vector of the

cache lines accessed during operation to gain information, and timing attacks observe the number

of cache misses. Electromagnetic attacks observe the fluctuations in electromagnetic fields to

gain information. However, our project will focus on power-based attacks, because they are a

type of attack that can be protected against if users take an offensive approach.

Attacks When it comes to side channel attacks there are many different types. These

types of attacks can be broken into invasive attacks and noninvasive attacks. Figure 1 shows a

chart of different types of attacks. Some of the attacks shown are possible attacks on chips not

solely on side-channel attacks. This chart is useful because it shows the line between invasive

attacks vs non-invasive attacks. Examples of invasive attacks are micro-probing, reverse

engineering, and fault attacks. Invasive attacks are important for businesses to protect against

because it attacks the hardware making their device defective. The more vulnerable their devices

HARDWARE VULNERABILITY TOOL

11

are to these types attacks the less customers will trust them and the business will slowly lose

customers. Micro-probing is a method where you directly probe an integrated circuit after

package decapsulation and possible removal of the chip’s upper passivation layer. The next type

of invasive attack is reverse engineering attacks. The last type of invasive attacks are fault

attacks.

Figure 1. Hardware Attacks (Neustadter, 2018)

 This is where the environmental conditions of the circuit are manipulated to generate faults

(Skorobogatov, 2011, p. 9). Unlike micro-probing and reverse engineering attack's fault attacks

are only considered semi-invasive attacks. The other category of attacks are noninvasive attacks

such as timing attacks, simple and differential power analysis, and electromagnetic analysis.

Noninvasive attacks are useful because it does not require the device to be opened.

(Skorobogatov, 2011, p. 5). Noninvasive attacks are important for the businesses to protect

against because customers want a reliable device. These types of attacks are important to protect

against allowing the businesses to test multiple times before the product is released to allow them

to guarantee that their devices are protected. Another reason companies and businesses should be

concerned against protecting against noninvasive attacks is because if their own devices are

attacked within the company the entire system might shut down. There are different outcomes

HARDWARE VULNERABILITY TOOL

12

that could happen if the company is attacked such as system shutting down, data leakage, and

files lost. This is not good for a company because it slows down operations for the day and also

makes customers not trust their data with the company. Another issue comes when a company

needs to recall devices due to how vulnerable to attacks, they are. The first type of noninvasive

attacks are timing attacks. These types of attacks were founded in 1996 and they “exploits the

observation that computations performed in some of the cryptographic algorithms often take

different amounts of time on different inputs” (Peeters, 2013, p. 13). Another type of noninvasive

attack would be simple and differential power analysis attacks. These types of attack record the

power traces that are leaked by a device and analysis it. The last type of noninvasive attack is

electromagnetic analysis. This type of attack can recover information from a device by exploiting

the electromagnetic emanations due to the current flowing through the device (Skorobogatov,

2011, p. 8). Our project focus on differential power analysis side channel attacks which is a type

of power-based attack. In Figure 2 below it shows different types of attacks that can occur on a

device. Our team is focusing on the power aspect of attacks allowing us to take an offensive

approach to the attacks.

Figure 2. Attacks (Mai, 2012, p. 176)

Levels of Accuracy. When looking into power consumption one would find that there

are three modeling abstraction levels: analog, logic, and behavioral. The most accurate power

HARDWARE VULNERABILITY TOOL

13

consumption simulation is the analog level. “The basis of such a simulation is a transistor netlist

of the circuit that lists all transistors of the circuit and the connections between them” (Mangard,

2007, p. 34). The next level of power simulation is the logic level which has a lower precision

than an analog level, but it does require fewer data points. “The basis of a power simulation at

the logic level is a netlist of the cells of the circuit” (Mangard, 2007, p. 35). The netlist is

important for attacks because it shows the connection between different cells within a circuit.

The last type of level is the behavioral level this level has a fast power simulation. Though the

power simulation is fast it tends not to be an accurate method to simulate the power

consumption. “The basis of a power simulation at this level is a high-level description of the

digital circuit. This high-level description contains the major components of the digital circuit

(microcontrollers, memories, dedicated hardware modules, etc.) and some high-level power

models of these components” (Mangard, 2007, p. 37). The information found within the

behavioral level is important to power analysis attacks because they are the only power

simulation level that is important. This is because they have information on “data-dependent and

the operation-dependent portions of the power consumption” (Mangard, 2007, p. 37).

Power Models. In power analysis attacks there are multiple different types of power

models that attackers will look at; these attacks are either under the categories of Hamming-

Distance models, Hamming-Weight models, or other. The Hamming-Distance model is a way to

compare binary data which is normally two strings. In this model “attackers commonly use the

Hamming-Distance model to describe the power consumption of buses and registers” (Mangard,

2007, p. 40). This model is used to simulate power consumption when the attacker knows

consecutive values in the netlist. Another type of model is the Hamming-Weight model. This

model is easier to use than the Hamming-Distance model. Unlike the Hamming-Distance model

HARDWARE VULNERABILITY TOOL

14

this model can be used if the attacker has no information on the netlist. “In the case of the

Hamming-Weight model, the attacker assumes that the power consumption is proportional to the

number of bits that are set in the processed data value” (Mangard, 2007, p. 40). The attackers

prefer looking at the Hamming-Distance model but will look at a Hamming-Weight model if

they do not have the required information for a Hamming-Distance model. Sometimes there are

other types of models, but it varies device to device. These models tend to be a subcategory of

Hamming-Distance models.

Differential Power Analysis Side Channel Attacks

Power based attacks have two main types of attacks, simple power analysis (SPA) and

differential power analysis (DPA). Simple power analysis uses one power trace to learn the key

to a system, usually by attempting to learn all the bits of a cryptographic variable. Differential

power analysis uses multiple power traces and uses comparisons between a hypothetical key

passed through the system with one measured power stat and the actual measurement. Simple

Power Analysis (SPA) “examines a chip’s current consumption over a period of time” (Side-

channel attacks, 2017). This type of attack allows an attacker to understand what function is

being performed at a specific period of time. In this type of attack, it is important to evaluate the

ratio of 1 vs 0 and that can be shown within the power. In Figure 3 this is an example of a SPA

but shown in a simple way.

HARDWARE VULNERABILITY TOOL

15

Figure 3. SPA Attack (Side-channel attacks, 2017)

SPA is best used when the power traces are known or are obvious. If there is noise in the system,

it would not be an efficient method and that is when it is useful to look into a DPA.

A successful DPA attack involves knowing the power consumption, what algorithm is

computed, and need plaintext or ciphertext (Skorobogatov, 2011).

Figure 4. Measurement Setup for Differential Power Analysis (Pellegrini, 2009)

Differential Power Analysis (DPA) attacks are one of the most popular and powerful

types of power attacks. DPA attacks were originally considered the “’cheap’ way to recover

secret information from side channel leakages” (Batina, 2014, p. 148). This paper was based on

HARDWARE VULNERABILITY TOOL

16

the concept “security faults often involve unanticipated interactions between components

designed by different people.” (Velegalati, 2008, p. 1) “In the classic Differential Power

Analysis, the first moment or mean is first used to reduce all the traces in each class down to a

master trace. The class master traces are then compared at each point in the trace, to determine if

those points are significantly different from each other.” (Velegalati, 2008, p. 1) This

information will be used to help us understand and create our simulator to protect against DPA

attacks.

Differential power analysis attacks are conducted by observing several cryptographic

operations and measuring power traces during the operation, then, depending on the encryption

implementation mathematical analysis is performed on the set of power traces. A company can

help protect their customers if they are able to protect their devices from people being able to

measure the power traces during operation. All differential power analysis attacks use a “divide

and conquer” strategy (Randolph, 2020, p. 2). That is, they define a function that maps each key

into a subkey, allowing them to make a series of subkey guesses using their mathematical

analysis on the power trace sets. This increases the efficiency of improving the guesses by giving

each subkey guess more defined inputs. The attacker then uses the mapping function to find the

original key. This process can be used to attack many different encryption algorithms and has

been proving effective and powerful repeatedly.

DPA on Different Devices

In this section, we will discuss DPA attacks on different devices, including examples of

DPA attacks on SIMON and LED Block Ciphers. The first attack we are going to dive into is the

attack on SIMON.

HARDWARE VULNERABILITY TOOL

17

According to Dillibabu Shanmugam, Ravikumar Selvam, and Suganya Annadurai

“SIMON is based on Feistel structure and the algorithm supports various block and key sizes.”

(Shanmugam, 2014, p. 112) Below we show an example of the power consumption of SIMON

according to the paper “Differential Power Analysis Attack on SIMON and LED Block

Ciphers.” This graph is important because it helps show the power difference within the

encryption period. This graph has time in nanoseconds as the X values. As the Y values it shows

the voltage during the encryption cycle.

Figure 5. Power Consumption Of SIMON (Shanmugam, 2014, p. 112)

Figure 6. Register Value After First Round (Shanumgam, 2014, p. 114)

Figure 7. Register Value After Second Round (Shanumgam, 2014, p. 114)

HARDWARE VULNERABILITY TOOL

18

As stated earlier, attackers look into different types of models to structure their attack. For this

attack the attackers focused on a Hamming Distance model. A Hamming distance model is used

when the attacker knows consecutive values in the net list. In the paper “Differential Power

Analysis Attack on SIMON and LED Block Ciphers'' (Shanmugam, 2014, p. 110) they chose to

focus on SIMON32/64 in order to show an attack. Above in Figure 6 and 7 are their register

values after the first and second round. They chose L3 because it is considered the intermediate

result and can be used to perform a DPA attack. Figure 8 is the DPA attack results in the form of

a graph. When understanding the results of a DPA attack you will notice that there is one value

that looks best in the graphs. In the case below you can see that it is (x 12, y 0.01789) and (x 5,

0.0201). On these graphs the X value are always the key hypothesis where the Y values are the

correlation value. Figure 8 shows graphs where the left graph is the first bit correlation, and the

right is the second bit correlation.

When we are looking to structure our results, we will be looking into the importance of a

graph. The graph is important to prove that the DPA attack showed one value that was more

likely than the rest of the values. The next device that the paper Differential Power Analysis

Attack on SIMON and LED Block Ciphers investigates is LED Block Ciphers.

HARDWARE VULNERABILITY TOOL

19

 Our team found it important to look at both examples that this paper showed because it

will help us structure our attack and gain a better understanding of how to format our results.

“LED is based on a design principles of Advanced Encryption Standard (AES)” (Shanmugam,

2014, p. 117). Figure 9 shows the Power consumption of LED-64 according to the paper. This is

important to show again because it looks different from the one above. It shows that the power

consumptions change from device to device. Again, the X value is time in nanoseconds and the

Y value is the voltage.

Figure 9. Power Consumption of LED (Shanmugam, 2014, p. 117)

Figure 8. Results of DPA Attack On SIMON (Shanmugam, 2014, p. 116)

HARDWARE VULNERABILITY TOOL

20

Just like the model above they used the Hamming Distance model to perform the attack. Unlike

SIMON the LED-64 runs on a row major matrix. This is important to know because it will

change what the attack looks like. Below in figure 10 we have shown the power model for the

first attack according to the paper Differential Power Analysis Attack on SIMON and LED Block

Ciphers.

Figure 10. Attack Matrix of LED (Shanmugam, 2014, p. 118)

The attack looks like this because of the way that LEDs run, and the attack needs to be in

the format of a matrix in order to be a successful attack. Finally, we wanted to understand their

results of the attack. In Figure 11 you will see that the attack has more noise than the attacks

before and the graph looks a bit different. This is because the graph varies device to device

another factor that varies how results look is how may keys you give it. If you have only five it

will be difficult to fully understand what one is better than the other. But in the LED attack you

HARDWARE VULNERABILITY TOOL

21

can see that the X value ends up being 1456 and the Y value ends up being 0.06209. Again the x-

axis shows the key hypothesis and the y-axis shows the correlation value.

Figure 11. Results of LED DPA Attack (Shanmugam, 2014, p. 120)

HARDWARE VULNERABILITY TOOL

22

Methodology

The purpose of our project is to create a simulator to detect the vulnerabilities in a user's

hardware. To achieve this, we will start by attempting to use simple power analysis to attack the

systems. Our methods include having testing phases in between each step allowing us to fix any

problems that might arise. Another valuable tool when it comes to completing this project is

having code that everyone on the team can look at. We are achieving this using GitHub and

sharing latest versions of the code on there.

Simulator Development

 We started this project by familiarizing ourselves with Verilator and how to read the

information we receive from it. However, we through this process we discovered that ModelSim

was better suited for our needs. The ability to use the built in $dumpvars command to generate a

VCD file in line with our test bench code perfectly suited our needs. With that knowledge we

used ModelSim for a Verilog implementation of AES encryption and we made sure to test it with

a simple test bench to verify that it works. We wrote our encryption implementation and tested

its functionality, finding that it functioned but did not have enough clock cycles per encryption

for DPA to work. So, we set out to modify our design to use 10 cycles per encryption. To

achieve this, we added an enable signal and a flip flop that would only pass new input into the

modules at the positive edge of our clock signal when that enable signal was high. Then, in our

top-level module, we created a state machine that updated at the negative edge of the clock

signal. The enables of each individual round were tied to their own unique state in the state

machine. At each negative edge, the state machine moved to the next state, triggering the

subsequent round. After the final round, the state machine moved into a “ready” state which

simply set a “ready” signal to high, indicating that a new encryption was finished. Then the

HARDWARE VULNERABILITY TOOL

23

encryption would return to the initial state, load more data, and start the process anew. Our next

step was to begin simulating power traces for our differential power attack.

 We approached this by adding the $dumpfile and $dumpvars commands in our test

bench module to generate a value change dump(VCD) file that records each bit flip during

encryption.

Figure 11. ModelSim $dumpfile Example

 We then wrote an algorithm that counted each time a bit went high by parsing this data.

This gave us a one-to-one simulation of power draw during operation. Once we had our VCD

file it was time to run our actual DPA attack algorithm. After much testing and advisement, we

determined we would need at least 50 rounds of encryption to gather enough data for a

successful attack. We decided to go with 100 encryptions for the sake of robustness. We used

Python with the Verilog VCD library to parse the VCD file and write our attack.

The DPA algorithm generates likely key guesses for each encryption, by analyzing the

correlation between possible key guesses for each byte and producing a graph for each byte. Our

next step was to lay out the data in a series of graphs that the program provides to the user. We

experimented with the Python libraries IPython and pandas to process and present the data. Then,

we used this data to provide the first, second, and third most likely keys to the user. This process

HARDWARE VULNERABILITY TOOL

24

will constitute a completed DPA attack. Figure 12 is a block diagram showing the flow of our

overall process.

Figure 12. Block Diagram of Attack Process

The development of our methods required various testing between each step. This testing

allowed us to confirm that each step works along the way. Another important part to each step is

research. When we researched between each step or before we did different steps allowing us to

see different challenges others might have ran into when attempting to do something similar. For

example, we found in our research on the Verilog $dumpvars command, that we could specify

the level of abstraction we wanted included in our VCD. Looking at our research on DPA, we

decided that every level under the test bench abstraction should be included.

Importance of Stakeholders. When starting a business or even creating a new device or

product it is important to evaluate stakeholders. Stakeholders help shape the development of

services or products because it helps the creator understand how ‘user-friendly’ the tool needs to

be. For this element our team made the tool and simulator as user friendly as possible. We also

worked hard to gain a deeper understanding of who could be the main stakeholders for a

simulation tool. Using a stakeholder map, we evaluated possible stakeholders and their level of

interest and influence.

HARDWARE VULNERABILITY TOOL

25

Figure 13. Stakeholder Map Example (Simon, 2016)

In Figure 13 above we show an example of a stakeholder map. These maps are very

useful to help understand who to focus the project or the product around. Our team believes just

from looking at the map that a majority of the stakeholders will fall around the manage most

thoroughly section of the map. Figuring out stakeholders is a crucial step of our process because

it will help show us how to develop our product the best we can for our stakeholders. This can be

in a sense of marketing our product for the people who will use our product. It is also important

to understand the main stakeholders because it will allow us to show our results in the most

efficient way for our stakeholders. Stakeholders also are important to building a company

because with a well-developed company stakeholder are found in many different forms from

employees to people who use the product. Our stakeholders were found by looking into the

results of the product and by figuring out how our product could be used in the market. Using the

methods stated above allowed us to get the results we show next.

HARDWARE VULNERABILITY TOOL

26

Results

The purpose of our project is to create a simulator to detect the vulnerabilities in a user's

hardware. This allows business to create reliable hardware and allows business to know they are

safe from attacks. We accomplished this task by creating a simulator using ModelSim to

understand DPA attacks. The results our team was able to simulate are discussed within this

section.

Hardware Simulation Results

 In our first attempt at AES encryption simulation, we took a simple combinational

approach. We created modules for the substitution box, key generation, and column mixing steps

of AES, as well as a module each for the initial rounds and for the final round of encryption. Our

top module simply passed the output from each round directly into the output for the next round.

Therefore, our encryption occurred in one clock cycle. This proved to be problematic when we

reached the DPA attack step, as there was nowhere near enough data per encryption to run a

proper correlation attack because the generated power trace was too noisy for a successful DPA

attack. In addition, we were running the encryption on the same data repeatedly.

 As such, we reworked our Verilog modules. The modules for individual encryption steps

remained the same. However, for the round modules, we added an enable signal and a flip flop

that would only pass new input into the modules at the positive edge of our clock signal when

that enable signal was high. Then, in our top-level module, we created a state machine that

updated at the negative edge of the clock signal. The enables of each individual round were tied

to their own unique state in the state machine. At each negative edge, the state machine moved to

the next state, triggering the subsequent round. After the final round, the state machine moved

into a “ready” state which simply set a “ready” signal to high, indicating that a new encryption

HARDWARE VULNERABILITY TOOL

27

was finished. Then the encryption would return to the initial state, load more data, and start the

process anew.

In addition, we added a stimulus generation module to generate a random and random

plaintext data for our encryption. To achieve this, we simply used the System Verilog commands

$random and $writememh to iteratively generate random bytes, then write those bytes into files

to be read by our Verilog test bench.

 We then had to add logic to our testbench to load in this data using the $readmemh

command. We first added logic to load our key, byte by byte, from the key file we generated

using our stimulus generation module. Next, we added an always loop that triggered at each

positive clock edge. This loop checks the ready signal from our top-level module as well as a

“sim_ready” signal we added and set in our test bench to indicate that the initialization steps of

our simulation were complete. If both were high, the loop would load the next 4 lines of our

plaintext file, with each line being 4 bytes long, thus giving our simulation a new 128-bit data

input to be encrypted.

 This process led to a more robust encryption process that was now 12 clock cycles long

instead of one, giving us more data on which to run our attack. Figure 14 is an image of

waveforms from the simulation as well as excerpts from our VCD file.

HARDWARE VULNERABILITY TOOL

28

Figure 14. AES Encrpytion Simulation Wavevform

Figure 15. VCD Variable Definition and Value Change Section Excerpts

After analysis and testing, it also became clear that our encryption was actually not vulnerable to

a DPA attack. This was because our implementation used separate registers for each round of

HARDWARE VULNERABILITY TOOL

29

encryption, preventing the algorithm from ever getting a lock on the correlation and providing a

likely key guess. This implementation, under further review would not be viable due to the high

memory cost.

Python VCD Parsing. In order to determine whether our encryption was vulnerable to a

DPA attack, we wrote a Python script to load the data from the VCD file and run our attack. Our

parsing method used the Python function “open” to read the VCD file line by line. Each line in a

VCD file starts with a unique string character depending on the purpose of that line, so all we

had to do was use the Python function strip to look at the first string in the array it returned.

There were only a few we cared about so we could simply check for the correct strings or

character and move on if none of them were present. The first thing we checked was whether the

string was “$timescale” indicating that this line was setting the timescale for the VCD file. In

this case, we ran our calc_mult function that calculated and set the time scale for the data. The

next possibility was the string starting with a ‘#’, indicating the start of a new timestep. In this

case we created a new time entry in our trace and initialized the entry to 0. Next, if the line

started with ‘x’, ‘X’, ’1’, ’0’ ,’z’, or ‘Z’, that line was showing a value change. We would then

check whether that value was ‘1’. If this was the case, this was a positive bit flip and we

incremented our value for the current time step.

 After all lines were parsed, we went through the trace data structure to reformat it,

counting the timesteps as clock edges. We would store each value in a new entry for the current

sample. Then once we reached 24 edges, indicating a new encryption, we would create a new

sample and begin the process over again.

Python DPA Attack. Finally, it was time to run our actual DPA attack. The attack starts

by going through our plaintext file line by line, reading each byte from the line and storing it in

HARDWARE VULNERABILITY TOOL

30

the “pbytes” array before moving on to the next line. When 4 lines have been stored, indicating a

complete data set, it moves on to the next entry in the array and repeats the process until the

entire file has been parsed. The next step is to populate a three-dimensional array with

correlation numbers. For each encryption, the attack calculates a hamming weight value based on

substitution box output of a plaintext byte and stores it in an array. The function then runs

through each sample in the trace for that encryption and calculates the correlation between that

sample and the estimate, before storing that entry in the array. This process is then repeated for

every possible guess for that byte of the key, then in turn for every byte in the key. The

correlation results are then dumped into separate files for each byte. Finally, the program goes

through each byte correlation and looks for the biggest peaks in correlation for that byte, giving a

most likely guess for that byte. When this process is finished, we have a complete guess for the

key as shown in the image below.

Figure 16. DPA Attack Initial Output

HARDWARE VULNERABILITY TOOL

31

For each byte of the key, the program provides two guesses, each consisting of three

pieces of information. The first being the actual guess for that byte, followed by the position of

that guess in an array of correlation values. The final line is the standard deviation of the

correlation of that guess, As you can see from the image, the standard deviation values are all

fairly low, never reaching above .25, indicating that these guesses are most likely not accurate

and indicative of a successful DPA attack.

The script also provides correlation plots for each byte of the key, an example of which is shown

below in Figure 17.

Figure 17. Correlation Plot

The data from these plots is analyzed by the program, looking for significant spikes in

correlation for specific byte values for the given byte. The values with the biggest spikes are the

most likely guesses for that byte. This process is repeated for each byte, generating most likely

guess for the value of the key. The data shown in this plot show a fairly noisy correlation signal,

HARDWARE VULNERABILITY TOOL

32

further demonstrating an unsuccessful attack. This proves to be true as none of the combinations

of our key guesses match with the key used by our AES simulation

Vulnerability Demonstration. Based on the current output of our attack, we are

currently unable to prove vulnerability to DPA based on our methods. Our likely key guesses are

currently not matching up with the key provided to our example encryption algorithm. This

would likely suggest that our algorithm is not vulnerable to a DPA attack. However, since we

know this not to be the case, there is something wrong with either our simulation, or our

algorithm. To attempt to fix this problem we ran a series of tests to attempt to identify the issue.

Our first step was to attempt to identify an issue with our simulation. We reran the simulation

first using a constant key, hoping to see correlation spikes at the constant points in each byte

guess. However, there was no significant change in our correlation data. Next, we attempted to

identify a misalignment between the plaintext data passed to our simulation and the data passed

to the attack algorithm. In debugging the alignment, we identified some inconsistencies and

eliminated them, however these changes did not create any improvement in our correlation data.

Next, we investigated our AES implementation. Our original design used a separate 128 bit

register for each round of encryption. We realized that this method would not be feasible in

actual implementation for fabrication as each instance of the encryption would require 10 times

the amount of memory as the amount of data being encrypted. So, we changed our algorithm to

use a single encryption register. Theoretically, this would allow our encryption algorithm to get a

better lock on our encryption in order to break it. However, there was still no accurate correlation

data. It was at this point that our team ran out of time to make any further changes.

HARDWARE VULNERABILITY TOOL

33

Conclusion

We set out on this project with the goal of creating a simulator to determine a systems

vulnerability to side-channel attacks. We have made significant progress toward that goal

however there is still more work to be done, either by us, or by future projects. We successfully

created a method for simulating a power trace on a hardware implementation of an encryption

method and in addition were able to write a Python script to run a complete DPA attack. Some of

the work left to complete could be in further investigation of our power mode. In addition, there

is a great deal of potential in development of this simulator as an easy-to-use tool that can just be

sent out as a complete software package to clients.

Results

 Although we were able to complete a simulated DPA attack, our results are not quite we

had in mind when we started this project. We expected to be able to successfully recover the key

used by our simulation, however our power data always proved to be too noisy to accomplish

this. Furthermore, as this issue persisted even after we rewrote our AES implementation to use a

single data register, and even used an established standard implementation, we were able to

determine that the issue does not lie in our implementation of AES. Theoretically, this could

mean that DPA attacks do not work on AES encryption, however based on tests we were able to

run on a DPA attack on AES with real-time data, we know this to not be the case. What remains

is the accuracy of our power model. We believe the issue could lie in the fact that Verilog’s

$dumpvars command also dumps some variables in a binary string instead of purely bit by bit,

which could cause some issues with our model, and these issues could have caused our negative

result. Of course, more testing would be needed to confirm these hypotheses.

HARDWARE VULNERABILITY TOOL

34

Stakeholders

As our team gained a deeper understanding of our project topic and started producing

final results, we were able to explore more of who the stakeholders could be. Our team decided

to focus on four stakeholders who we think would the most interested in our projects topic and

results. The stakeholders we choose to focus on are electrical engineering business firms,

engineering professors, electrical computer engineering professionals, and electronics hobbyists.

Figure 18 shows where we believe each of these falls within the stakeholder map.

Figure 18. Stakeholder Map

According to the map our team was able to also fill out a stakeholder analysis matrix to gain a

better understanding of all of the stakeholders. In this map and matrix (Table 1), we have

evaluated each of the stakeholders to see how the project and product should be aimed around

their needs.

Electronics hobbyists

HARDWARE VULNERABILITY TOOL

35

Table 1

Stakeholder Table

Stakeholder Power (ability to stop or

change project)

Interest Type and frequency

of communication

Professionals High power to improve

or change project

Very interested Frequent

communication

Professors No power to change the

project

Very interested Not constant

communication

Hobbits No power to change the

project

Main interest is

studying it for fun

Do not need constant

communication

Firms High power to improve

or change project

Very Interested Frequent

communication

 To start our analysis, we examine how professors could teach topics like side channel

attacks as part of ECE classes or projects. This project helps explain and show deeper

understanding of DPA attacks providing some general content that professors can use to teach

students about DPA attack. We think the results of our project could also be used in middle

school or high school STEM curriculum.

 The next stakeholder we examined was electrical engineering businesses. We believe that

businesses that work with devices that could be affected by DPA attacks are an important

stakeholder. This is due to the fact that they could use our project and code to test and understand

DPA attacks and help protect their products against the attacks. We believe that they have high

power to improve and change the project because they can adjust and change the project to work

best for their devices. Our project is more like a skeleton for them to use and understand

allowing them to adjust to their own projects. We believe they have high interest, and we should

have frequent communication with them. This is due to the fact that we want them to understand

and use our product for good and not have any trouble using it. If we were not to help them, they

HARDWARE VULNERABILITY TOOL

36

might end up using it wrong and in the long run that will hurt their business which is not a goal

of ours.

The next stakeholder we examined was electrical computer engineering professionals.

This project can help them gain a better understanding of the attacks. We believe that they are

able to adjust how the project works and the code to improve the project and format it to fit their

own personal needs. Our team also believes that these people can use our project to dive into an

even deeper analysis on DPA attacks than we were able to. The findings from our project can be

used as a starting point to a more intense project working on protecting against DPA attacks. Our

project will allow them to start with a base knowledge and code of the topic, so they are able to

skip the ‘set up’ steps in the process expediting their research.

 The last stakeholder we examined was electronics hobbyists. We believe they have very

low power and low interest in our findings. This is due to the fact they might be looking into the

project to learn something new. We would love to help them a bit, but we would not see a need

for constant communication with them. Our project knowledge might also spark interest in topics

they previously were not interested in learning.

Limitations

 As with any project, there were some limitations to our findings. Our team experienced

several obstacles that impacted our findings and scope of work and ran into many different

problems when starting this project. Some of our problems were technical issues and some of our

issues had to do with timing and lack of resources. When we created this project, we discovered

that simulators of this type do not widely exist. We had to come up with everything on our own

and found that we had lots of technical issues.

HARDWARE VULNERABILITY TOOL

37

 One of the biggest limitations and issues our team ran into when creating the simulator

was the environment, since were trying to create a perfect simulation. When we developed the

simulator, we found that we needed to run ModelSim on a Linux interface. To do this we ended

up having to set up a virtual machine to run a Linux set up with a ModelSim and to run and test

our simulator. We recommend the best way to adapt our simulator for the most ideal use in

businesses is by creating a simulator that does not need such a controlled environment. Not all

businesses will have the capability to run and set up a simulator that is so difficult to set up so if

that was changed in the future more companies and businesses would be able to use our product.

Another limitation that our team ran into was with technical issues when setting up our

simulator. We had issues with the simulations not running correctly due to settings on the

simulation not being correct. To fix this our team attempted to remake the project and readd the

files. Our team was able to solve this issue by adding files to the project directory.

 Another limitation our team ran into was with the VCD generation. We tried the VCD

commands and those did not work for us. What happened was the code seemed to function but

there was no output given. We could not generate the WLF file from VCD. Our solution to this

problem was by using the $dumpfile instead. Some other issues we ran into when creating the

VCD was that ModelSim did not process string literals and we had simple syntax errors we

needed to fix within the code.

 Despite these limitations, we think that future projects could look into our code and go

off of what our team created to avoid running into the problems we found. Our team believes that

if others end up looking at our code files, they will be able to avoid the basic set up errors we ran

into. This would allow business that wanted to repurpose our product to save some money by

using our code to start off instead of having to pay someone to do everything from the start.

HARDWARE VULNERABILITY TOOL

38

Future Research

As our team reflected on our project, we identified different ways to improve this project

with future research. One of the main categories of improvement would be on the business front

by creating advertisements and guides. Another category of improvement would be improving

the technical aspects of the project.

Our team believes there are some important business aspects to add to this project. The

first being a way to advertise our product and simulator to companies. An example advertisement

is attached in Appendix A. Advertisement is important to get interest in companies making them

want to implement our simulator within the company. Without adding an advertising feature to

future projects, the research done will not be shown to companies. Another part of the project we

think is important to create for future research is a step-by-step guide for companies on how to

use the product. A simple layout for one of these guides is attached in Appendix B. This guide

allows companies to troubleshoot on why the simulator might not be working for them. This

guide would also streamline the implementation process of our simulator within the company.

Our team has also created a layout for showing companies how easy the simulation is to use.

This is helpful to get companies to realize that the product would be easy to implement within

their company.

Our team also believes that there are some ways to improve the technical aspect of our

product. The main improvement would involve finding a way to create the simulator to just be

ran by the press of a button. Currently the simulator needs a specific environment to run which is

not ideal for companies because they might not be able to set up that environment. If this project

was created to just be a software package that companies could download and run it would gain

HARDWARE VULNERABILITY TOOL

39

interest in more companies. Another important aspect future projects could look into is adding

the ability to test for other hardware vulnerabilities within the software package.

Conclusion

Devices are potentially vulnerable to physical data leakage. Our team developed a

simulator, using ModelSim, to simulate the operations of a device then we ran a side-channel-

based attack on the data from the simulation. This simulator can be used with business to allow

them to save money by making sure none of their devices are vulnerable to attacks. This can also

be used within businesses to help them create a guarantee that their devices have minimal

vulnerabilities to DPA attacks.

HARDWARE VULNERABILITY TOOL

40

References

Batina, L., & Robshaw, M. (2014). Cryptographic hardware and embedded systems 16th

international workshop; proceedings. Heidelberg: Springer

Cai, X., Li, R., Kuang, S., & Tan, J. (2020). An Energy Trace Compression Method for

Differential Power Analysis Attack. IEEE Access, 8, 89084–89092.

https://doi.org/10.1109/ACCESS.2020.2993701

Chen Z., Zhou Y. (2006) Dual-Rail Random Switching Logic: A Countermeasure to Reduce

Side Channel Leakage. In: Goubin L., Matsui M. (eds) Cryptographic Hardware and

Embedded Systems - CHES 2006. CHES 2006. Lecture Notes in Computer Science, vol

4249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894063_20

Daemen, J., Rijmen, V.: Rijndael for AES. In: AES Candidate Conference, pp. 343–348 (2000)

Greenberg, A. (2020). What Is a Side Channel Attack? Retrieved October 17, 2020, from

https://www.wired.com/story/what-is-side-channel-attack/

Kocher, P., Jaffe, J., Jun, B., & Rohatgi, P. (2011). Introduction to differential power analysis.

Journal Of Cryptographic Engineering, 1(1), 5-27. doi: 10.1007/s13389-011-0006-y

Mai K. (2012) Side Channel Attacks and Countermeasures. In: Tehranipoor M., Wang C.

(eds) Introduction to Hardware Security and Trust. Springer, New York, NY.

https://doi.org/10.1007/978-1-4419-8080-9_8

Mangard, S., Oswald, E., & Popp, T. (2007). Power Analysis Attacks: Revealing the Secrets of

Smart Cards (1. Aufl.). Springer-Verlag. https://doi.org/10.1007/978-0-387-38162-6

Neustadter, D. (2018, October 08). Using threat models and risk assessments to define device

security requirements. Retrieved May 03, 2021, from

https://doi.org/10.1109/ACCESS.2020.2993701
https://doi.org/10.1007/11894063_20
https://www.wired.com/story/what-is-side-channel-attack/
https://doi.org/10.1007/978-0-387-38162-6

HARDWARE VULNERABILITY TOOL

41

https://www.techdesignforums.com/practice/technique/using-threat-models-and-risk-

assessments-to-define-device-security-requirements/

Peeters, E. (2013). Advanced DPA Theory and Practice Towards the Security Limits of Secure

Embedded Circuits. New York, NY: Springer New York.

Pellegrini, M. (2009, March 18). Differential power analysis [Self made diagram of differential

power analysis.]. Retrieved from

https://commons.wikimedia.org/wiki/File:Differential_power_analysis.svg

Randolph, M., Diehl, W. (2020). Power Side-Channel Attack Analysis: A Review of 20 Years of

Study for the Layman. Cryptography, 4(2), 15. doi:10.3390/cryptography4020015

Shanmugam, D., Selvam, R., & Annadurai, S. (2014). Differential Power Analysis Attack on

SIMON and LED Block Ciphers. Security, Privacy, and Applied Cryptography

Engineering, 110–125. https://doi.org/10.1007/978-3-319-12060-7_8

Side-channel attacks: How differential power analysis (dpa) and simple power analysis (spa)

works. (2017, September 27). Retrieved February 10, 2021, from

https://anysilicon.com/side-channel-attacks-differential-power-analysis-dpa-simple-

power-analysis-spa-works/

Simon, B. (2016, November 26). What is stakeholder analysis and mapping and how do you do it

effectively? Retrieved May 03, 2021, from https://www.smartsheet.com/what-

stakeholder-analysis-and-mapping-and-how-do-you-do-it-effectively

Skorobogatov, S (2011). Side-channel attacks: new directions and horizons

https://www.cl.cam.ac.uk/~sps32/ECRYPT2011_2.pdf

https://www.techdesignforums.com/practice/technique/using-threat-models-and-risk-assessments-to-define-device-security-requirements/
https://www.techdesignforums.com/practice/technique/using-threat-models-and-risk-assessments-to-define-device-security-requirements/
https://commons.wikimedia.org/wiki/File:Differential_power_analysis.svg
https://doi.org/10.1007/978-3-319-12060-7_8
https://anysilicon.com/side-channel-attacks-differential-power-analysis-dpa-simple-power-analysis-spa-works/
https://anysilicon.com/side-channel-attacks-differential-power-analysis-dpa-simple-power-analysis-spa-works/
https://www.cl.cam.ac.uk/~sps32/ECRYPT2011_2.pdf

HARDWARE VULNERABILITY TOOL

42

S. Mangard, E. Oswald and F. -. Standaert, "One for all - all for one: unifying standard

differential power analysis attacks," in IET Information Security, vol. 5, no. 2, pp. 100-

110, June 2011, doi: 10.1049/iet-ifs.2010.0096.

Velegalati, R., & Yalla, P. (2008). Differential Power Analysis Attack on FPGA Implementation

of AES (Unpublished doctoral dissertation). George Mason University.

Ye, X. (2015). Side Channel Leakage Analysis - Detection, Exploitation and Quantification.

Retrieved from https://digitalcommons.wpi.edu/etd-dissertations/47

https://digitalcommons.wpi.edu/etd-dissertations/47

HARDWARE VULNERABILITY TOOL

43

Appendix A

Running head: HARDWARE VULNERABILITY TOOL

Appendix B

How To Use The Tool

Page 1: What is this tool?

 This tool was created for your use to detect vulnerabilities in your hardware. This

simulator uses ModelSim and Python to simulate an attack on hardware to find if it is vulnerable.

This attack will show you if you need to improve your hardware, so it is not vulnerable to these

types of attacks.

Page 2: How does it work?

 In this section you will want to explain exactly how the product works. You do not need

to have step by step instructions here, but you should explain what happens during the process.

This part will easy peoples concern about if the simulator is safe.

HARDWARE VULNERABILITY TOOL

45

Page 3-4: Steps to implement the tool

HARDWARE VULNERABILITY TOOL

46

Page 6: Common errors

 In this section it is important to discuss what common errors might happen during the set-

up process. You will also want to explain different ways to fix these common errors. This allows

the customer to know ways to fix the simulator without needing to contact help right away.

Page 7: Contact

 In this section you would want to put a way to contact you to ask for help if they come

across errors that are not listed in the common errors section.

Page 8: Resources

 In this section you will want to include resources on these types of attacks and ways to

protect against them. This section allows the customer to do more research on the topic if

interested.

HARDWARE VULNERABILITY TOOL

47

a

	Introduction
	Literature Review
	Side Channel Attacks
	Differential Power Analysis Side Channel Attacks

	Methodology
	Simulator Development

	Results
	Hardware Simulation Results

	Conclusion
	Results
	Stakeholders
	Limitations
	Future Research
	Conclusion

	References

