
Scaling Up with New Technologies: A Case Study in the Application of
Containerization and Microservice Technology

A Major Qualifying Project report:

Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the degree of

Bachelor of Science

by

Brittany Goldstein

Date: March 23, 2021

Project Sponsor: Johns Hopkins Applied Physics Laboratory

Sponsor Liaison: Dr. Jason Miller

Approved:

Professor George Heineman, Major Advisor

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement.

WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the

projects program at WPI, see http://www.wpi.edu/Academics/Projects.

1

Abstract

Johns Hopkins University Applied Physics Lab (JHU/APL) sponsored this project with the goal of identifying

means for increasing scalability of processing, through the targeted use of technologies such as containerization

and microservices, producing a guide to streamline their continuous integration and delivery processes. This project

looks into best code practices using these technologies and associated strategies such as autonomic computing to

develop code more efficiently and of higher quality.

I. INTRODUCTION

A software project cycles through seven main stages: ideation, defining, designing, development, testing,

deployment, and maintenance [1]. As projects expand in size and intricacy, this cycle can be slowed down

by increasingly complex testing and debugging, resulting in the need for higher volumes of communication

between developers and increasing the time from ideation to deployment. At the same time, a project’s

popularity and customer base tends to grow with the more features it has to offer, increasing the demand

to deploy new updates as the development cycle slows. Companies use a variety of strategies to maintain

this cycle’s efficiency under increased pressures.

Johns Hopkins University Applied Physics Lab (JHU/APL) has sponsored this project with the goal

of of identifying means for increasing scalability of processing, through the targeted use of technologies

such as containerization and microservices. As a trusted technical expert for the government, JHU/APL

works on some of the most critical problems facing our nation [2]. Developing and deploying high-quality

solutions to these problems in a timely fashion is important to achieving their mission. The objectives for

this project are:

1) Research a number of container-based technologies and select one for extensive investigation for

potential use at JHU/APL.

2) Investigate best practices for Continuous Integration (CI) to maximize productivity and increase

quality in software development projects.

3) Investigate best practices for Continuous Delivery (CD) to increase scalability in software develop-

ment projects.

4) Develop a case study using a “plain vanilla” application whose architecture is closely related to

JHU/APL’s existing software applications.

2

5) Educate software engineers on the CI/CD process, which can have a steep learning curve, especially

for domain-specific engineers.

6) Adapt the plain vanilla application to allow for autonomic computing on Amazon Web Services.

II. BACKGROUND

Best practices for software development and deployment have evolved quickly since the invention of the

computer and the internet. Microsoft deployed their first software on a CD-ROM in 1987 [3]. This required

companies to upload their software to the CD-ROM and distribute the CD-ROM to stores, and then users

to physically go to the store and purchase it. These software licenses were called shrink-wrap licenses,

because by opening the plastic packaging around the CD-ROMs, users would automatically accept the

terms of the software’s license [4]. Now, the majority of computers no longer include a CD-drive to read

CDs and install their contents, as software deployment has become more sophisticated.

The advancement of the internet has made it increasingly easy to deploy and access software. This has

aided the rise in popularity of Unix’s Tape Archive (TAR) format, which was released in 1979 [5]. A

tarball is a file containing other files that can be compressed into many formats such as .tar.gz or .tgz. This

is a common format for companies to distribute their code over the internet. When a user decompresses

the tarball, they then must build and install the source code on their machine prior to the software’s

use [6]. Since Unix developed this tool, Linux, MacOS, and Windows have all developed or integrated

additional tools to allow users to extract and compress tar files [7].

A. Virtual Machines

In the 1960’s, IBM began working on virtualization to make deployment easier for their customers

[8]. Over time, this has evolved from user-level virtualization, to application virtualization, to hardware

virtualization. Virtual machines allow companies to run isolated instances of different operating systems on

the same machine’s hardware, saving them the cost of buying multiple machines with different hardware

configurations. The user can scale the amount of resources allocated to the virtual machine based on its

needs. This allows software developers to run their code in a variety of different environments. Today,

users can deploy full virtual machines to other machines or the cloud for development, testing, and running

purposes.

3

B. Containers

Recently, many companies have shifted their projects to containers due to the portability, modularity,

and scalability they provide, which make them ideal for deployment [9]. Containers hold everything an

application needs to run, so that the user does not need to install anything additional on their host machine.

This allows developers to easily deploy containers to other machines without worrying about the host

machine’s configurations. Additionally, developers can model the environments where their applications

will be deployed for testing and debugging purposes.

Compared to virtual machines, containers require less resources and have a faster startup time, increasing

project efficiency [10]. This is because each container uses the host’s operating system instead of creating

an operating system for each virtual machine. Although containers’ smaller size make them easier to

transport and faster to startup, it also makes them more vulnerable to security threats. Containers are less

isolated from the rest of the host machine, so if the host machine or another container becomes infected,

the chances of the container becoming infected are high.

There is an Open Container Initiative (OCI) to create industry standards for container formats and run-

times with which most containerization software systems either meet or are working towards becoming

compatible [11]. The OCI is sponsored by Docker and CoreOS rkt, two of the leading containerization

software applications, and promotes a) the ability to run an image (the precursor to a container) without

additional parameters and b) standard image specifications. The image specifications include an image

manifest, file system serialization, and an image configuration.

1) Microservices: Many containerization software applications encourage users to only assign a single

responsibility (and ideally a single process) to a container [12]. This requires applications with multiple

responsibilities to be restructured into multiple containers communicating with one another through an

architecture called microservices. Microservices can be highly beneficial in large projects due to the ability

to deploy sections of the project without making changes to the project in its entirety [13]. This makes the

application easier to maintain and test and reduces extraneous communications between development teams

working on separate features. However, this does require more work in the initial stages to develop well-

defined individual application program interfaces (APIs) for intercommunication between microservices.

Without well-defined APIs, microservices can become heavily co-dependent on one another, difficult to

maintain, or highly individualized - all things the structure is should minimize [14].

4

In some cases, it is beneficial to contain multiple processes in a single container, called a fat container

[15]. This includes when:

• multiple processes communicate through shared memory, and

• one process either controls or produces one or more other processes.

2) Cloud-Based Computing Services: There are many cloud-based computing services available for

use by developers that offer a Container as a Service (CaaS) design [16]. CaaS design allows customers

to host, manage, and run their containers on a cloud-based system. Due to the cloud-based nature, the

hosting services can scale up based on a project’s needs [17]. If they need less resources, the company

would not have to pay for those resources.

C. Continuous Integration and Delivery (CI/CD)

Continuous integration (CI) is the process by which developers automatically build, test, and merge

their code changes [18]. This allows developers to simultaneously work on different features of the same

software while maintaining an up-to-date working version of the code.

Continuous delivery (CD) is the ability to deploy code to users quickly despite changes to the system

[19]. This requires that each project have a substantial set of unit tests for automatic code testing at regular

intervals - typically daily or when new code is pushed - to ensure that new code does not break the existing

systems. Although producing the unit tests can come at a higher initial labor cost to developers, they tend

to save more time long term by finding bugs as they occur. Ideally, unit tests should cover 70% to 80% of

the code; however, this percentage is dependent on the software’s subject matter and the risk associated

with a bug in the code [20]. Code coverage also does not indicate whether the unit tests are testing cases

indicative of the variety of cases that the software will face in the field, so it is important that multiple

developers knowledgeable of the code aid in the development of the unit tests to ensure that all edge

cases are covered. Otherwise, the unit tests will not perform their function. Only when code has been

thoroughly tested, should it move from the development branch to the deployment branch. These two

branches ensure that there is always a deployable version of the code.

D. Scalability of Processing

If implemented correctly, containers, microservices, cloud-based applications, and continuous integration

and delivery can all help increase scalability of processing. Scalability of processing refers to the ability

5

of a company, its systems, and project architecture to keep up with the growth of a software project and

its subsequent demands. This can be divided into internal growth and external growth.

1) Internal Scalability: Internal scalability is the ability of the developing team and its systems to

handle the increased burden created by growth in software demand. In cases where this requires adding

new developers to the team, they should be able to quickly begin working on the software systems

without experiencing a steep learning curve or having to undergo extensive training, which removes other

developers’ focus away from their assigned tasks.

2) External Scalability: External scalability is the ability to deploy the project to as many customers as

needed to meet demand without placing additional strain on the developers or their hardware’s capabilities.

This can be achieved through autonomic computing, a field of development where computers manage

themselves and their resources, thereby taking the strain off of developers [21]. Autonomic computing

includes automatically responding to varying amounts of demand by varying resource usage accordingly,

detecting and preventing threats to the system’s security, and reconfiguring the system based on new

information and optimal performance.

III. METHODOLOGY

This project was divided into three main phases:

1) The first phase involved investigating and selecting both a container-based technology and cloud-

based technology. These selected technologies were used in later phases to make recommendations

to the sponsor on how to adapt software projects to a container-based approach.

2) The second phase of the project focused on creating a simple “plain vanilla” project to mimic the

architecture of some of JHU/APL’s projects. We applied a container-based structure to the existing

architecture using the technologies chosen in phase one to learn how to best adapt JHU/APL’s

software. This involved developing recommendations on how to containerize software projects to

ease the learning curve.

3) The third phase originally was supposed to focus on researching best practices for CI/CD and

applying them to the plain vanilla project to streamline development and deployment. However,

discussions with another team at JHU/APL revealed that they had been working to develop more

effective CI/CD practices during the same timeline as this project. In order not to duplicate

6

their work, phase three shifted to focus on researching and applying best practices for autonomic

computing, using Amazon Web Services (AWS) and the plain vanilla project as a model.

Further details about how each phase was completed can be found below.

A. Phase 1: Comparison of Container-Based Technology

This project compared the technology available on the market for containerization and cloud-based API

services to inform its recommendations to the sponsor. As different technologies offer different features,

we wanted to ensure that the software we chose to apply to the plain vanilla project best met the sponsor’s

needs.

1) Container-Based Technology: The four leading container technologies on the market are Docker,

CoreOS rkt, Apache Mesos, and LXC [22]. However, LXC only creates system containers, which are

containers that host the entire system including the operating system, similar to a virtual machine [23].

As the sponsor is looking for an application-based container, LXC was eliminated from consideration.

Further research into Apache Mesos revealed that although it has some overlapping capabilities

with Docker and Rkt, its primary purpose is for cluster management, not application-based container

development [24]. Among the many workloads that Apache Mesos manages, it does have a container

orchestration extension called Marathon that can run on its base framework. This allows users to

simultaneously orchestrate Docker containers, Kubernetes, Java applications, distributed data services and

much more. If we attempted to use Apache Mesos to meet the sponsor’s needs, we would ultimately end

up needing to use Docker as well.

The two remaining container technologies, Docker and CoreOS rkt, were compared based upon

market popularity, image format, container security, OCI compliance, microservice capabilities, continuous

integration and delivery features, ease of debugging, and additional features/partnerships with other

software applications for development [Fig. 1, 2]. Docker was chosen for further investigation and use in

the remainder of this project due to its:

• Popularity: It was used to create the majority of containers in 2018 and many large companies use

it to implement their software [22] [25]. This suggests that it has an easier learning curve or higher

quality features that make it more desirable.

7

Fig. 1. Comparing Docker and CoreOS rkt (part 1)

8

Fig. 2. Comparing Docker and CoreOS rkt (part 2)

• Security: Since JHU/APL does sensitive work, it is important for developers to be able to secure

the containers from outside attacks. Docker containers have many design specifications to ensure this

including [27]:

– Kernel namespaces to isolate processes in a container from the host machine and other containers.

– Individualized network stacks so that each container only has access to its own ports and

interfaces.

– Control groups which monitor resource distribution on all containers and will attempt to block

a Denial of Service attacks if they notice a spike in resource usage.

– Reduced root privileges in containers so that if an attacker manages to infect a container, it

would be more difficult for them to breach the host machine and cause harm. There is a set

of 14 root privileges that are provided by default to ’root’ users in a container, any desired

9

additional features must be configured.

– Docker Content Trust Signature Verification which allows developers to sign their images and

clients to verify that images they run are signed by the developer. By default, images are not

signed; however, the image signature can be configured and enabled in the dockerd binary and

daemon.json.

Additionally, Docker’s partnership with Snyk allows developers to pinpoint the location of vulner-

abilities in a container and their severity, so that vulnerabilities can be triaged [26]. Docker is also

compatible with security applications such as TOMOYO, AppArmor, SELinux, GRSEC, and PAX and

is the first container application to gain the Security Technical Implementation Guide Certification

from the Defense Information Systems Agency [27] [42]. This guide teaches developers how to

strengthen their containers to protect against malicious attacks. Through the guide’s certification

process, the government has verified that Docker is safe to use on JHU/APL’s government contracts,

if they choose. However, Docker is not immune to security vulnerabilities. Docker allows containers

to share a file system with their host machine. This is controlled by the Docker daemon. To prevent

a malicious user from gaining access to this gateway, Docker recommends that only trusted users be

given access to the Docker daemon. Additionally, the REST API endpoints used by Docker command

line to communicate with the Docker daemon uses a Unix Socket, whose access permissions can

be reconfigured. Docker also requires that the REST API endpoints are secured with HTTPS and

certificates.

• Support for Microservice Architecture: Docker aids multi-container application development

through the docker-compose feature. Docker-compose allows users to define a series of services in a

docker-compose.yml file [30]. These services each have their own Dockerfile, container, environment,

and ports. Using the docker-compose “up” command, Docker builds services based on their dependent

containers. Docker also allows multiple docker-compose.yml files in a project, for different stages of

development or different environments. These can be built in a hierarchical manner to allow for one

base application that can be customized.

• CI/CD Features: Docker Hub has several CI/CD capabilities built-in, including automatic builds,

build testing, slack integration, and webhooks [31]. Users can configure webhooks to trigger a new

image build, or any other event of their choosing, upon receiving a code push [43]. If this image

10

build is successful, it can then automatically be pushed to the Docker Hub registry [44]. There is

an ‘Autotest’ feature on every Docker Hub registry which, when enabled, runs user-made unit tests

on the source code when a change to the repository is initiated [45]. These unit tests are configured

as a service in a docker-compose.test.yml file. Additionally, users can connect their Docker Hub

repository to a slack channel to receive automatic updates when a build passes or fails [46].

• Ability to be Debugged: Docker is capable of debugging NodeJS, Python, and .NET Core

applications in containers using Visual Studio’s debugger [32]. For applications written in other

languages, Docker has several commands to aid a user in debugging an already running container,

including [33]:

– the attach command which outputs the live results of stdout within the container,

– the exec command which allows the user to run additional commands,

– the pause command which pauses a running container, and

– the top command which provides information about all the processes running in the container.

• Partnerships with Container as a Service Providers: Docker’s partnerships with Amazon Web

Services (AWS) and Microsoft Azure make it easy for users to build and deploy containers to cloud-

based hosting services in only one or two commands [36] [37]. Previously, users would have to

provision spaces for their projects on the AWS and Microsoft Azure end prior to returning to the

Docker command line and deploying their containers. This process is now automatic, increasing

project efficiency.

• Docker-Provided Resources: Docker has put a lot of effort into creating many additional resources

to aid developers using their core Docker Engine. Docker Hub, Docker Swarm, and Docker Cloud

ease the process of storing, accessing, orchestrating, and hosting containers, freeing up developer

time for coding.

2) Cloud-Based Technology: In addition to container-based technologies, this project examined cloud-

based computing services on the market for hosting, running, managing, orchestrating, and deploying

containers in a streamlined fashion. The three major cloud-based computing services on the market

are Amazon Web Services (AWS), Google Cloud, and Microsoft Azure. However, Google Cloud was

eliminated from consideration due to its incompatibility with Docker compared to the other two choices.

Since Docker was already chosen as the container-based technology for further investigation, it is

11

Fig. 3. Comparing Amazon Web Services and Microsoft Azure

12

important that the cloud-based technology chosen is compatible. Although Google Cloud does allow

Docker containers to be stored and deployed on its framework, the initial set up places a much higher

burden on developers than AWS and Microsoft Azure. Developers must create a Compute Engine instance

and install Docker on it, prior to uploading their Docker image [47]. In comparison, Docker’s partnerships

with AWS and Microsoft Azure allow the same steps to automatically be completed through a couple

lines from Docker command line [36] [37].

The two remaining cloud-based computing services, AWS and Microsoft Azure, were compared based

upon customer base, security, container registry, and container orchestration service [Fig. 3]. Our research

revealed that there were no major differences in features between AWS and Azure in the areas relevant

to this project. Both services had a comparable service in each of the categories analyzed that could be

used to achieve the same effect. Therefore, we let the sponsor choose their preference. They chose AWS,

because it has a longer standing reputation in the field (having been on the market for four more years

than Azure) and the sponsor currently utilizes AWS for other related applications which may make the

transition easier [59].

B. Phase 2: Plain Vanilla Project

JHU/APL works on many complex software projects, whose architecture we aimed to mimic with our

plain vanilla project to create a base for adopting container-based technology. Through several iterative

discussions with the sponsor, we decided upon a Python application that would read in JSON files

representative of cars and return the car’s average length [Fig. 4]. The application is user configurable

and screens cars based upon a discrete feature, such as make, model, or color.

{"color":"blue","make":"toyota","model":"tundra","length_measurement_ft":
22.461144419949264,"length_measurement_uncertainty_ft":1.5,"width_ft":7,

"speed_mph":35,"license_plate":"ABC1234","position":{"latitude":25,
"longitude":25,”artificial processing time sec”:0.05,”time”: ”2020-10-05T12:34:45.789012”}}

Fig. 4. An Example Car JSON

1) Formulating the Project: Due to the limited time frame of this project, we tried to keep the plain

vanilla project as simple as possible, while still including all the necessary features to ensure that it would

be a representative case study. The sponsor’s desired features included user configurable settings, data

screening, state estimation, aggregation of results, output formatters, and a health and status monitor.

13

This application was first built as a series of processes and helper files running on the localhost machine.

The application was broken up into multiple processes to aid in the division of the application into multiple

services later on. For the purposes of this paper, the terms services and containers are synonymous.

Communication between the processes was brokered by Apache ActiveMQ which was downloaded onto

the local machine [60]. The files necessary for the application are:

• amqsend.py: A STOMP ActiveMQ producer. It connects to a specified host, port, and topic and

sends the input message to all of the connected consumers on the same topic.

• amqecho.py: A STOMP ActiveMQ consumer. It listens for messages on a specified host, port, and

topic and stores any incoming messages to a queue.

• main.py: This process continuously checks for two things (1) updates to the user specified

configuration file and (2) new car JSON files in the queue. It then screens the car JSON files based

on the user configurations and sends only cars that meet these specifications to the estimator.

• data extractor.py: This file has helper functions that parse the user defined configuration file and car

JSON files. It expects each line of the configuration file to be in the format of “<type> <specifier>”

where type is either color, make, or model and specifier is along the lines of blue, Toyota, and Camry,

respectively.

• Car.py: This is a Python class that stores the make, model, length, and color information for each

car. It also stores the time each car enters a process, so that process latency can be tracked.

• AvgCar.py: Continuously receives car JSONs and calculates the average length of cars based on

specified fields.

• Output.py: Continuously receives updates on the average length of cars in user specified fields and

prints them out to the screen.

The components of this application were divided into services to be compatible with the con-

tainer/microservice architecture [Fig. 5]:

• Data Broker: This project used a pre-made Docker container image containing Apache ActiveMQ

accessible on Docker Hub. This was retrieved by running docker pull rmohr/activemq in

the command line. To prevent communication streams from getting mixed up, multiple topics are

used to differentiate communications between different services and of different message types.

The data broker was placed in its own service instead of individually being installed on every other

14

Fig. 5. Plain Vanilla Application: The gray boxes represent the Docker containers. The blue boxes are python files. The interconnections
between containers are Stomp sockets passing through the ActiveMQ data broker.

service to reduce redundancy and centralize communication. Installing ActiveMQ on each individual

container would make each container a fat container, despite the conditions for a fat container not

being met, and require greater networking to connect the application.

• Data Producer: The car JSON files were individually sent to the application by the user using the

Stomp ActiveMQ producer. To send a file, the producer expects the data broker’s IP address (-i) and

port number (-p), the connection topic (-t), and the path to the car JSON file (-f) via the command

line. The topic must match the one provided to the data screener.

• Data Screener: An ActiveMQ listener received these JSON files and extracted and stored the

necessary information in an internal data structure. This is passed to the data classification process

which regularly pulls from the user configuration process to identify which cars should be passed

along for further processing by the state estimator (their features match the features specified in the

configuration file). In order to run, it expects the IP address (-i) and port number (-p) to connect to

data broker, topic (-t), subscriber ID (-s), and the path to the configuration file (-f) to be specified via

the command line. The topic and subscriber ID create a consumer to consume car JSON messages

from the host computer. This topic must match the host computer’s amqsend.py topic.

15

• State Estimator: The state estimator averages the lengths of the cars passed to it based on their

specific features. For example, if the user specified “make Honda” and “make Toyota” in the

configuration file, the state estimator would calculate the average length of all Hondas and the average

length of all Toyotas separately. It would then aggregate these results to find the average length of all

Hondas and Toyotas. Additionally, we added some unnecessary matrix multiplication to mimic the

amount of processing that data in JHU/APL’s systems undergo. The service expects the IP address

of the data broker (-i) via the command line. It assumes that the data broker’s communication will

all be through the 61613 port as all the socket connections in the service use the Stomp protocol.

• Output Handler: This service updates the live output of the average length of cars by user defined

feature, along with the overall average length of cars processed as time passes. Theoretically, these

values should be more extreme at the beginning with fewer data points, but smooth out as the

application receives more data. Like the state estimator service, this service only expects the data

broker’s IP address (-i) via the command line.

2) Docker Setup: The project was developed on a machine with a Windows 10 Home operating system.

Docker Desktop was installed following Docker’s documentation [61]. This required enabling the Windows

Subsystem for Linux and installing a Linux Distribution for Windows, in this case, we chose Ubuntu [62].

Docker Desktop includes the Docker Engine, Docker Command Line (CLI) Client, Docker Compose,

Notary, Kubernetes, and Credential Helper. Docker commands were run in the Windows Powershell.

3) Dockerfiles: Dockerfiles can be thought of as instruction manuals that a Docker engine uses to

construct Docker images [63]. They were created for each of the application’s services, with the exception

of the ActiveMQ service whose image was pulled fully constructed from Docker Hub [35] [Fig. 6].

Each line of a Dockerfile has an instruction followed by arguments. The following are valid Dockerfile

instructions:

• FROM: The FROM directive indicates what pre-existing docker image the Dockerfile should build

this Docker image upon, called its base image. Since all of these services were developed in Python,

they were built on the python:3.8 docker image, which provides access to the Python version 3.8

programming language (ex: FROM python:3.8). More Docker images can be found at Docker Hub

for this purpose [35]. There are base Docker images for most programming languages and operating

systems. Each Docker image only has one base image, but it is possible to have a Dockerfile which

16

builds multiple Docker images and therefore has multiple FROM commands.

• RUN: The RUN directive tells Docker to run a command (shell format) or executable (exec format).

The default shell format is /bin/sh -c on Linux and cms /S /C on Windows, but the user can configure

the command to run in a different shell, such as bash, by changing the first argument (ex: RUN

/bin/bash -c <command>) [63]. If the user is trying to run an executable, the format is RUN

["executable", "argument1", "argument2"]. A Dockerfile can include as many lines

with the RUN directive as the creator deems necessary.

The RUN directive is used to install any dependencies that the files in the container require to run.

Since our containers used the STOMP protocol for communication between the data broker and

containers, the stomp.py library was required on all containers. To do this, we used the command

RUN pip install stomp.py. The RUN directive is also helpful for creating a directory in

each container for storing the source code (ex: RUN mkdir -p /code). This directory can be set

as the working directory in the following step.

• WORKDIR: The WORKDIR directive sets the working directory for commands in the Dockerfile. If

no working directory is set, the container creates a default working directory. However, best practice

is to always set the working directory, so that the developer can always ensure that everything in the

container is located where it should be, especially if a program relies on specific paths.

• USER: The USER directive instructs the Dockerfile to run all the subsequent commands as the

specified user. To create a Windows user in a Docker Container: RUN net user /add <user>.

The container’s current user can then be set with USER <user>.

• COPY: The COPY directive loads files and directories into the Docker image. The first parameter is

the file/directory path and name on the host computer and the second parameter is the destination

file/directory path on the Docker container. This can be used for as many files as needed to run the

service. For example, COPY amqecho.py /code/amqecho.py. If no file path is specified on

the host machine, it assumes that the file is located in the same directory from which the container’s

Dockerfile is being built. If the file or path contain spaces, then the command can be put into square

brackets and quotes as: COPY ["amq echo.py" "/code/amqecho.py"]. Additionally, the

developer can set the file’s ownership to be one of the developer defined groups or users with

the - - chown parameter (ex: COPY --chown=<user>:<group> <files> <dest>). If the

17

developer would like to protect against specific files being accidentally copied, they can specify this

in a .dockerignore file [64]. This is similar to a .gitignore file and should be placed in the same

directory where the Docker image will be built. Like a .gitignore file, the developer can list UNIX

regular expressions in the .dockerignore file which will be checked against any file copied into the

Docker image to make sure there is no match.

• ADD: The ADD directive performs the same operations as the COPY directive with broader

capabilities. In addition to files, it allows the developer to upload files directly from URLs and

automatically upload and extract tar files to a destination. Despite its broad capabilities, the ADD

directive should not be overused. Best practice states that the COPY directive should be used for

files and directories still as it is more direct in meaning [65]. Additionally, if the file being uploaded

from the URL is a .zip, then it is better to use the RUN directive with the curl command. Otherwise,

this would require two commands in the Dockerfile - an ADD command to upload the .zip file

and a RUN command to extract the .zip - compared to one, increasing the size and complexity

of the Docker image. For uploading tar files, the ADD directive is the best command to use as

it does both the uploading and extracting in one step. The format follows the same as the COPY

directive: ADD --chown=<user>:<group> <src file/directory/URL> <dest> with

the option to add square brackets and quotes if there are spaces in the source or destination [63].

• EXPOSE: The EXPOSE directive instructs the specified ports in the container to be opened to listen

for traffic from other machines in the network at run time. There is the option to specify the protocol

as well. If the protocol is not specified, it is assumed to be tcp. As the data broker, the ActiveMQ

container exposes many of its ports to listen for different types of traffic. Since STOMP traffic is

normally conducted over port 61613/tcp, the ActiveMQ Dockerfile includes EXPOSE 61613/tcp.

• ENV: The ENV directive allows the developer to set environment variables. The format is ENV

<variable name>="<variable value>".

• LABEL: The LABEL directive sets Docker image metadata. A Docker image can have multiple labels

or none at all. The format is LABEL <label1_name>=<value> <label2_name>=<value>

.... The values and label names only need to be in quotes if there is a space in them. It is important

to note that Docker images automatically inherit the labels from their base image.

• HEALTHCHECK: The HEALTHCHECK directive runs a developer-specified command regularly to

18

check on the status of the container. The container’s initial status is starting. When the container passes

a health check, it becomes healthy. If it fails several consecutive health checks, its status changes

to unhealthy. The developer can choose to specify how often the health check is run (–interval),

duration of a health check before it times out (–timeout), how long after the container’s initialization

to start health checks (–start-period), and number of retries before declaring a container unhealthy (–

retries). The default values are 30 seconds for the interval and timeout, 0 seconds for the start period,

and 3 retries. The format is HEALTHCHECK --interval=DURATION --timeout=DURATION

--start-period=DURATION --retries=N CMD <command> <parameter1>

• VOLUME: The VOLUME directive mounts a directory so that it can be shared between a group of

containers and its data can remain available even after the container stops running. Once a volume

is initialized in a container the first time it is run, every subsequent time it is run, the same volume

is used to access and store data. The format is VOLUME <directory>.

• ONBUILD: The ONBUILD directive is used to add commands that will only be run when the

current Dockerfile is used as a base image for another Docker image. The format is ONBUILD

<DOCKERFILE DIRECTIVE> <arg1>

• CMD: The CMD directive can only be used once at the end of a Dockerfile. This runs the main process

of the service. The components are placed within square brackets. The first element is a command

or executable. The remaining elements are any parameters that are associated with the command.

For example, CMD ["python3", "/code/Output.py", "-i", "activemq"] runs Out-

put.py using python3, which was loaded using the FROM command. The third and fourth arguments

indicate to Output.py that the host name for connecting to the data broker is activemq.

FROM python:3.8
RUN mkdir -p /code
WORKDIR /code
ENV BROKER activemq
RUN pip install stomp.py
RUN pip install pyvim
COPY Output.py /code/Output.py
COPY amqecho.py /code/amqecho.py
COPY amqsend.py /code/amqsend.py
CMD python3 /code/Output.py -i ${BROKER}

Fig. 6. Output Service Dockerfile

19

It is important to remember that the container is acting as an isolated process, so it needs to be given

all the necessary files and tools to run. This does not just mean the main process, but every file or

dependency that file depends on and so forth. However, there is a fine line between adding everything

the container needs to run and adding too much. A container should only include the bare minimum of

what is necessary to run as it is supposed to be a portable, easy to debug, and fast to build and run.

Although pyvim is not a necessary dependency for any of the files or processes in any of the containers,

it was installed on all of them. This allowed us to open files and make minor changes while the containers

were running during the debugging process, since no editor naturally exists on a container. However, once

the Docker container is working, it is better to rebuild the image without this line, to reduce the size of

the image and the container.

4) Building a Container: To build a container using a Dockerfile, run the command:

docker build -t <image>:<tag> -f <Dockerfile> .

This prints out the Dockerfile’s step by step execution, so that if it errors, we can identify what caused

the issue. The tag is the image version. It is optional, but most docker images have a “latest” tag, indicating

that the Docker image is the latest version of the project.

The ‘.’ at the end of the Docker build command indicates the location of the Docker context. If there is

only a . and no path, then the Docker context is the current directory where the Docker build command is

run. When the Docker build command is run, all the files within the Docker context and its sub-directories

are sent to the Docker Daemon [66]. The Docker Daemon listens for requests from the Docker client and

manages all the images, containers, volumes, and networks [67]. This is to provide the Docker Daemon

with all the potential files that could be copied/added in the Dockerfile. If the Docker context is large,

even if not all of the files are added in the Dockerfile, the Docker image and container will be much

larger. This increases build, push and pull time. To increase efficiency, the Docker context should only

contain the necessary files. It should be noted that although the .dockerignore file keeps specific files from

being added to the Docker image, it does not prevent the files from being added to the Docker context

[63].

To pull a pre-built image from Docker Hub, user the command: docker pull <image name>.

5) Running Individual Containers: Once an image is built, a container can be run from it at any time.

To view the images loaded/built on the host machine, use the command: docker images. This brings

20

up the image names, their tags, ids, when they were created, and size. To remove an image from the host

machine, use the command: docker rmi <image id>.

To run a container based on an image, the user must use docker run. This command has many

options; the most important ones to know are container name (–name), ports (-p), and detached state (-d)

[68]. The user also has the option to override any of the Dockerfile specifications. The container name

should only be specified if absolutely necessary for the application’s functioning. Overspecification of

container names prevents multiple copies of the same container being created to handle high volume of

data. One case where the container name should be specified is the data broker, as every other container

must connect to it and needs to know its host name. In this application there is only one data broker;

however, if an application had multiple data brokers, it would be important to make sure each data broker

had a unique name and producers and consumers on the same topic were connected to the same data

broker. The ports option binds a host machine port to one of the container’s ports. The detached state

automatically stops a container when it exits, which prevents errored containers from continuing to run.

An example of all these options put together is docker run -d --name <container name> -p

<host machine port>:<container port> <image name>.

A user has the option to expose or bind ports or sometimes do both. It is important to understand the

difference between the two options to ensure proper port configurations. Ports are normally exposed in the

Dockerfile; however, this can be overridden in the docker run command just like any other Dockerfile

configuration. Exposing a port in a container allows the container to listen for traffic on that port. This

is necessary in cases such as the data broker where the container is expecting a lot of traffic on specific

ports.

Port binding normally happens during the Docker run step. This maps the container’s port to a port on

the host machine. Therefore, if the container is not on the same network as the host machine, it can still

receive communications from the host machine through that port. To confirm which ports a container has

open and is listening on, use docker port <container name>.

Once the Docker container is running, the inside of the container can be accessed using Docker command

line or docker exec. If using Docker Desktop, the running container can be selected, followed by the

Docker command line button in the top right corner to open up a bash window inside the container.

This bash window can be used for debugging purposes. The same bash window can be accessed by

21

running docker exec -it <container id> /bin/sh. If an editor, such as vim, is installed in

the image via the Dockerfile, then the user can use it to examine the file structure in the container while

it is running, edit it, and run new commands. However, these changes will not persist once the container

is removed, so they should be limited and transferred to the original files once the user decides to keep

them.

To list all the containers on the host machine, there are two commands the user can use: docker

container ls or docker ps.

Before removing a container from the host machine, it must be stopped. Otherwise, it can cause an

error in Docker. This error can normally be resolved by restarting the Docker Engine. To stop a running

container, use the command: docker stop <container name>. To then remove the container, use

the command: docker rm <container name>.

6) Connecting the Containers: Once all the services were decided, we had to figure out how to connect

them. We first attempted running only the ActiveMQ service with the rest of the processes running on

localhost. This required opening up the ports that ActiveMQ was listening on our host machine. STOMP’s

default port is 61613, which we opened to listen for both incoming and outgoing traffic. When running

the ActiveMQ service, we bound the internal 61613 port to the host machine’s 61613 port using the -p

directive as seen: docker run -p 61613:61613 rmohr/activemq. With this setup, all of the

processes successfully ran on the local machine and all communication was directed through the data

broker container. The next step was to determine how to launch the other processes as containers and

connect them to the data broker.

7) Docker Networking: Docker networking enables the communication between Docker containers

required to maintain the microservices approach. The four containers in the plain vanilla project were run

on the same Docker network to allow constant communication between the services [Fig. 7]. All Docker

containers are assigned an IP address upon run time which allows them to ping and connect with other

Docker containers. If their container name is unique, it can also act as a domain name. The container’s

ports are automatically open to other Docker containers on the same network. To allow the host computer

to send traffic into the network, we bound ActiveMQ’s 61613 port to the host computer’s 61613 port.

The networks currently running on the Docker engine can be viewed using the command docker

network ls. Prior to adding any networks, there should be three networks in this list: bridge, host, and

22

Fig. 7. The Plain Vanilla Application’s Networking Configuration: The ActiveMQ connections are represented by yellow arrows with each
producer pointing to each consumer. ActiveMQ identifies unique connections through specified topics. The bound 61613 port allows car
JSON messages to pass from the host machine into the application network.

none. The bridge network is the only fully functional network [69]. To connect all the containers, they all

must be added to the same network. To create a network, the command docker network create

--driver bridge <network name> was used. The bridge network is the default driver for any

new network and does not have to be specified.

Once the network is created, the containers have to be added to it. If the containers are already running,

they can be added using docker network connect <network name> <container name>.

If the containers are not running, the Docker run command has a –network option that allows the developer

to specify which network they would like the container to be added to: docker run -dit --name

<container name> --network <network name> <image name>. However, this can only

be used once in the run command, so if the user would like to connect the container to multiple networks

they have to run the previous command for any additional networks. The container’s addition to the

network can be confirmed with docker network inspect <network name>. This lists all the

23

containers in the network and their IP addresses along with other relevant information.

Once there are multiple containers in the network, they should be able to ping each other with docker

exec using their host names or their IP addresses. The host names are the container names themselves.

The ActiveMQ databroker requires that only the ActiveMQ container expose its 61613 port. Every other

container does not have to configure its ports, as the STOMP connections are solely being hosted by the

ActiveMQ container on port 61613. If for some reason, the other containers did require a listener of some

type, specific ports on each container could be exposed by altering the Dockerfile or using the –expose

option at run time. The command docker port <container name> makes it easy to view which

ports are open on each Docker container.

Once all the containers are in the network, they can all communicate with one another, but they

cannot communicate with machines outside of the network. To allow us to send Car.JSON files

from the host machine into the system without setting up an entirely separate container, we bound

ActiveMQ’s 61613 port to the host machine’s 61613 port upon run time. This allows ActiveMQ

to receive traffic from the host machine via its 61613 port. The host machine could then locally

send Car.JSON files through the command: python amqsend.py -i localhost -p 61613 -t

test -f Car0001.JSON. It is important to note that the Car.JSON files are sent to the local host

machine’s 61613 port rather than the ActiveMQ machine’s 61613 port. This is due to the fact that the

two machines are not on the same network and cannot ping each other. Their only connection is this port

through which ActiveMQ is listening to all traffic on the localhost machine and vice versa.

C. Phase 3: Autonomic Computing

1) Continuous Integration and Delivery: As mentioned previously, we met with a representative from

JHU/APL working on improving the CI/CD process at the beginning of phase three. Their efforts were

in parallel with the duration of this project and achieved many of the continuous integration and delivery

goals set forth at the project’s beginning. However, when talking with them, they indicated that there were

two places for possible improvement of their CI/CD systems:

1) Incorporating static code analysis into the continuous integration pipeline

2) Streamlining their artifact management systems

Prior to shifting focus in phase three, we investigated the feasibility of a tool called SonarQube to

achieve this first goal. SonarQube checks for bugs, security vulnerabilities, and code smell - places where

24

the code is confusing or difficult to maintain [70]. Upon finding one of these issues, it rates it on a

scale of one to five. SonarQube is compatible with Java, C#, C, C++, JavaScript, TypeScript, Python, Go,

Swift, COBOL, Apex, PHP, Kotlin, Ruby, Scala, HTML, CSS, ABAP, Flex, Objective C, PL/I, PL/SQL,

RPG, T-SQL, VB, VB6, and XML. It can be integrated with the Gitlab CI/CD pipeline and other CI/CD

pipelines to automatically check new pushes, pull requests, branches, and merges.

To examine the plain vanilla project using SonarQube, we first ran the local SonarQube server. The

instructions to host/run this server are on a publicly accessible Docker image. We pulled this image with

docker pull sonarqube:latest. We then ran the local server using the command: docker

run -d --name sonarqube -e SONAR_ES_BOOTSTRAP_CHECKS_DISABLE=true -p

9000:9000 sonarqube:latest. Since the local SonarQube runs on the 9000 port, we had to open

this port on our host machine to allow traffic. The first time this is run locally, the server requests that

the user change the password. Using the interface located at http://localhost:9000, we were able to create

a project key called “MQP”.

SonarQube then requires a specific scanner to be run on the code depending on the language type - there

are seven main scanners including a default scanner. They can be run using provided docker images or by

installing the scanners locally on the user’s machine via downloadable zip files. We were unable to get the

Docker images of the scanners to work, because it could not locate the sonar project.properties file in the

project root directory among other issues when running the Docker image. However, we were successful

in running the locally installed SonarScanner. Once the contents were extracted from the zip file, the

machine’s environment variables had to be updated to include a pathway to the scanner’s binary. The

scanner was run with the command: Sonar-scanner.bat -D sonar.login="<username>"

-D sonar.password="<password>" -D sonar.projectKey=<projectkey> -D

sonar.projectBaseDir="<path>". The results of the plain vanilla project’s analysis were

then viewable at http://localhost:9000. Each file was graded based on the number/severity of the issues

and the amount of time SonarQube estimated the issues would take to correct. This information aids the

user’s prioritizing of the changes.

One benefit of SonarQube is that it allows users to add additional rules for code analysis of the following

languages: C#, COBOL, Flex, Java, JavaScript, PHP, PL/SQL, PL/I, Python, RPG, VB.NET, XML [70].

This would allow JHU/APL to enforce and maintain their own style guides.

25

Through discussions with the sponsor, the second goal was not further investigated due to the inability

to fully test any discoveries with JHU/APL’s CI/CD systems in progress. At this point, the project shifted

to focus on applying autonomic computing to the plain vanilla application.

2) Autonomic Computing: The goal of this phase was to modify the existing plain vanilla application to

automatically scale up resources when high traffic flow is detected. Specifically, we wanted to automatically

scale up the Screener service during periods of high influx traffic to handle car JSON parsing, while only

using one of every other service type to process the data parsed. Although this required many pieces of

the AWS infrastructure, the main technology used was Amazon’s Elastic Container Service (ECS) which

allows users to create clusters of containers.

To access our AWS account, we used both the online AWS console and AWS Command Line Interface

(CLI). After installation on our local machine, the AWS CLI had to be configured to work with our account

by loading config.txt and credentials.txt files [71] [72]. Additionally, the account logged us out after

every 12 hours and aws ecr get-login-password | docker login --username USER

--password PASSWORD ACCOUNT_ID.dkr.ecr.REGION.amazonaws.com was required to

re-login on the local machine. Using the CLI, we could access the AWS account from our local command

window.

AWS Infrastructure

We began by configuring the network for the AWS version of the plain vanilla application. Amazon’s

Virtual Private Cloud (VPC) acts as a private network on which to develop applications [73]. Within it,

there are multiple availability zones, the exact number depending on the region being used for development.

We created four subnets within our personal VPC, two on each of the availability zones, with one in each

zone having public access.

We then created an ECS cluster called cars via the AWS console [74]. ECS is automatically supposed to

generate the specified number of ECS instances upon the creation of the cluster. These ECS instances are

linked to an autoscaling group which automatically generates new instances if the old ECS instances are

terminated. However, we ran into issues where the created ECS instances were not linked to the cluster.

There are several ways to approach fixing this. The first method involved creating an ECS instance

through its components. At its core, ECS instances are Amazon Elastic Compute Cloud Instances (EC2)

running an Amazon ECS container agent. Therefore, we tried to launch an EC2 instance and run a

26

container agent on it [75]. To launch an EC2 instance, we had to specify an Amazon Machine Image

(AMI), which acts a model for the EC2 instance [76]. We chose the Amazon Linux AMI because it

provided access to the Linux operating system, Python, mySQL, and AWS CLI. By adding a key pair to

an EC2 Instance, upon its creation, we could conceivably connect to its inner configurations files once

it was launched and modify them to link it to our cluster. Users can generate key pairs on AWS and

download the private keys to their local computers. Without the correct key pair, an EC2 instance would

deny us access for not having the appropriate credentials [77]. However, key pairs are not required when

creating AWS resources if the user does not expect to alter the resource in the future. To launch the

ECS instances, we had to ssh into it. This required altering the ECS instances’ security group to allow

incoming traffic on port 22 from the ssh protocol [78]. After following all these steps, we still had issues

launching our ECS instances and accessing their configuration files, most likely because we chose the

wrong AMI or made a mistake in configuring the network.

The second method involved trying to determine what was blocking the cluster-generated ECS instances

from registering with the cluster. Since both ECS instances had public IP addresses, they needed access

to the internet to register. However, we discovered that we were missing an internet gateway to the VPC.

Once we created this gateway and added it to the routing table, the ECS instances began to register [79].

After the ECS cluster was registering the ECS instances, we had to work towards creating cluster

services. Cluster services are comparable to microservices within the cluster. Prior to launching autoscaling

cluster services, there are multiple steps:

1) Creating new AWS Identity and Access Management (IAM) Roles to authorize further development

2) Uploading Docker images to the AWS Elastic Container Repository (ECR)

3) Configuring a task definition for each cluster service

4) Creating a network load balancer (NLB) and target group to reroute traffic based on the number of

Screener services and traffic density

5) Configuring each cluster service

We first created an ecsTaskExecutionRole to allow our ECS containers permission to make API calls.

Example API calls include retrieving Docker images from the ECR and sending information to awslogs.

This role was created via the AWS IAM console and the AmazonECSTaskExecutionRolePolicy was

attached [80]. Policies define what a role can do and multiple policies can be added to the same role, if

27

needed.

To run our previously created Docker images on the cluster, we had to upload them to the

ECR. This had to be done through the CLI. Within our command window, we created a repository

for each individual Docker image: aws ecr create-repository --repository-name

NAME --image-scanning-configuration scanOnPush=true --region REGION.

We then modified our Docker image tag to include our aws account information: docker tag

DOCKER_IMAGE ACCOUNT_ID.dkr.ecr.REGION.amazonaws.com/DOCKER_IMAGE.

Finally, we pushed the Docker image to the repository we created: docker push

ACCOUNT_ID.dkr.ecr.REGION.amazonaws.com/DOCKER_IMAGE.

Each cluster service runs one or multiple tasks. These tasks are defined by a task definition. Task

definitions can be created via the AWS console or an uploaded JSON file. Task definitions define all the

Docker containers each service relies on and their dependencies. In our case, we only ran one Docker

image within each service, but we could have ran more. There are two types of task definitions/services:

EC2 and Fargate. EC2 tasks require EC2 instances to run and are for resource heavy applications that

run constantly [81]. In contrast, Fargate tasks are only supposed to run as needed for testing and do not

require EC2 instances. In theory, we wanted to use Fargate tasks because we only needed to run our

application while testing, and did not need to consume resources otherwise. However, Fargate tasks limit

the choices in networks to awsvpc, thereby limiting the docker configurations for the containers on the

network. This was something that we did not want to have to deal with, so we chose to proceed with

EC2 tasks.

Once the task definition type is decided upon, the task definition must define the network mode, task

role, task execution role, containers, and app mesh (if applicable). The network mode choices include

Bridge, Host, awsvpc, and none [82]. We tried to use the awsvpc network, because it is the most flexible for

autonomic computing - it allocates an elastic network interface for each task, which allows it to dynamically

reassign port host mappings as needed. In comparison, the Host network uses an EC2 instance’s network

interface and the Bridge network uses the container interface.

The task definition requests a task role and task execution role. Since we are not attempting to make API

calls to any other AWS services through our task definitions, we do not need a task role [82]. However,

the task execution role is the ecsTaskExecutionRole we made earlier.

28

The Docker images used to form the containers are passed in to the task definitions by ids registered to

each image uploaded to the ECR. Since a container consists of a Docker image plus all the specifications

to run the image, the task definition includes port mappings, environment variables, hostnames, and more

[82]. A task definition also records dependencies between any of the containers, if multiple containers

exist in the task. Additionally, there is the option for AWS to produce cloud logs for each container in

the task by choosing a check box under container definitions -> auto-configure cloud watch logs. These

logs show what is happening inside the container if it exits prematurely.

To scale up the Screener service, there needs to be a load balancer to reroute traffic to all of the

containers running the Screener task. There are three main types of load balancers to choose from:

Application, Network, and Classic [83]. The application load balancer can only direct HTTP traffic, making

it incompatible for our application which uses TCP traffic. The classic load balancer is a deprecated load

balancer that only works with the older version of ECS clusters. This made the network load balancer

the best choice for use with our application as it supports both our clusters and TCP traffic. The load

balancer requires a target group indicating where to send the traffic [84]. In our case, it is the containers

in the Screener service. The Screener service is placed in an autoscaling group with a policy to scale up

(add more containers) when its average CPU usage is higher than a specified percentage. The incoming

traffic port must also be defined in the load balancer and the security group was modified to allow traffic

via that port. This load balancer is linked to the Screener service upon its creation.

Using the task definitions, we launched EC2 cluster services. Each cluster service was assigned a name,

task definition, number of tasks, VPC, and subnets [85]. We chose to make each service of type Replica

with only one task. Replica services spread the specified number of tasks across the number of containers

within the cluster, while Daemon services keep only one copy of the task on each container [86]. Unlike

Daemon services, Replica services can be autoscaled. Each cluster service, with the exception of the

Screener service, was placed within its own autoscaling group with the desirable number of containers

set to one. This ensured that a new container would automatically be created if a container was stopped.

Docker Container Changes

When switching to the AWS platform, alterations had to be made to the Docker containers to be

compatible with autonomic computing. To centralize data among all the containers, we created a mySQL

database on the AWS Relational Database Service (RDS). This database holds the most recent user

29

configurations and the specifications of cars that have passed screening. If traffic increases and new

containers are launched, the new containers can access older containers’ data through this database. The

database also allows data to persist even when a container goes down. This also removed the need for

producers and consumers connecting the Screener and Estimator services, as they both could individually

update and poll the database for more information.

Due to the flexible nature of autonomic computing, values relating to resources and networking cannot

be hard coded within the Docker containers, as multiple copies of the same Docker container would then

be fighting over those communication pathways and resources. This was not an issue when running the

Docker containers locally with only one copy of each one.

The first place where this became a concern was the individual consumer’s subscriber IDs within each

container. For the ActiveMQ data broker, each consumer needs a unique subscriber ID to identify it.

These values were originally hard coded, as we knew exactly how many consumers the containers were

using and the IDs of each of them. However, prior to transferring the container’s images to AWS, we

had to update the code to randomly generate subscriber IDs between 0 and 1,000,000 every time a new

consumer is created. Due to the large range, the odds of the same number being generated more than

once while the application is running is minimal.

We also updated the Dockerfiles to include environment variables so that we did not have to hard

code the values for connecting to the ActiveMQ container or mySQL database. Instead, the ActiveMQ

hostname, mySQL database hostname, and mySQL database permissions could be passed into the Screener,

Estimator, and Output services, as needed, through their task definitions.

Resolving Cluster Errors

Despite following all the steps to add our services to the cluster, we ran into two major issues revolving

around ActiveMQ, which made it seemingly incompatible for use with Amazon’s Elastic Container Service

and autonomic computing:

1) only the tasks within the ActiveMQ service would progress to RUNNING status, and

2) ActiveMQ’s subscriber model did not allow for a load balancer to be added.

There are eight states an AWS task can achieve with the ideal one being RUNNING [87]. The tasks in

the Output and Estimator services consistently remained at PENDING or PROVISIONING before timing

out and STOPPING. By looking at the logs, we were able to see that the consumers within the Output

30

and Estimator containers could not connect to ActiveMQ. By connecting to the ECS instances through

ssh (using the key pair we specified during its creation), we were able to see that the services, and

therefore containers, were not always being added to the same ECS instance. When originally making

the cluster, we specified that we would like two ECS instances, not realizing that those instances have no

way of communicating with each other. Therefore, we altered the autoscaling group for the cluster’s ECS

instances so that the desirable number of ECS instances was one, causing one ECS instance to terminate

and all containers to move to the other instance. Despite this, the containers still continued to produce

logs indicating that they could not connect to ActiveMQ.

On the advice of an Amazon representative, we then changed the network mode in each services’ task

definition to Bridge as that is the closest comparable network to the Docker networks we created locally

in phase 2. Those networks were based on a bridge network driver. However, this is also the most rigid

of all the options, which makes it less desirable for autonomic computing. This did not fix the issue.

We determined it was because of the difference between the Bridge network mode and the user created

Docker networks. User created Docker networks can connect to each other by name or alias, while the

default Bridge network mode can only connect to other containers using IP addresses. Since every time the

AWS task stops and reconnects the container IP address changes, it is not possible to pass the ActiveMQ

container IP address as an environment variable to the Screener, Estimator, and Output services. The

only way to fix this without removing ActiveMQ would be to move all the containers into the same

task definition, and therefore, service, thereby removing the microservice architecture and defeating the

purpose of switching to containers.

The second issue had to do with ActiveMQ’s subscriber model. ActiveMQ is a data broker that passes

messages back and forth between producers and consumers. It has defined ports for each protocol type -

61613 being the port for the STOMP protocol. Producers send information to this port, while consumers

subscribe to information from this port. The information a consumer receives is determined by its “topic”.

Each consumer only subscribes to one topic, while each producer must specify a topic when sending each

piece of information. A consumer only receives the information on its topic. This setup does not mesh

well with a load balancer which expects a port number which it can listen to and divide all traffic from

which it hears among the containers in its target group. There is no way to give ActiveMQ’s port number

to the load balancer, because that would require also specifying the topic that the load balancer’s target

31

group is trying to listen to, which is not possible in AWS’s current setup.

Due to the multiple issues with using ActiveMQ, we theorized a method of running the application

without it. In this method, the ActiveMQ and Output services would be removed entirely, and the Screener

service would be broken into two services: UserConfig and Screener [Fig. 8]. The UserConfig service

would take over the Screener’s responsibility of checking the user configuration file (whose path would

be passed via environment variable) every couple minutes to determine if there had been any changes,

and updating the mySQL database to reflect the user’s wishes. This needs to be compartmentalized from

the rest of the Screener, because otherwise the application would be wasting resources checking the user

configuration file far more often than needed as the number of Screener services scaled up.

Fig. 8. The theorized alternative AWS networking configuration for the plain vanilla application without ActiveMQ. The blue S’s and R’s
in the corner of each service denote whether the service stores information or retrieves information from the database. The orange circles
represent two ports on which the load balancer and User Configuration service are listening to the host computer.

The Screener service would be responsible for screening car JSON files based on the user configurations

that they read from the mySQL database. Any cars that passed the user configurations would be added

to the mySQL database. To enable on demand scaling, the Screener service would be added to the target

group of a network load balancer, which would split the incoming traffic among all its targets. When the

CPU usage of each Screener service surpassed a specified percentage, the number of Screener services

would automatically increase. The network load balancer would read the car JSON in through a dedicated

TCP socket. A security group for the network load balancer would allow all TCP traffic to come in via

32

the socket’s specified port, but no outgoing traffic.

The Estimator service can then access the database to retrieve the user specifications and the cars

that passed screening. For each user specification, it would calculate the average car length of the cars

meeting that specification and print it out to the console’s logs. This would eliminate the need for the

Output service as there would be no reason to send print statements to a service just to print them out.

Additionally, the Estimator and Output services had been connected by ActiveMQ, so if we did keep the

Output service, we would have to create a socket to connect them.

Based on the struggles we experienced trying to adapt the plain vanilla application to AWS, we

suggest designing applications with the goal of autonomic computing in mind in the future. This means

emphasizing maximum abstraction so that individual containers can spin up and terminate at will without

impacting the overall application. Additionally, understanding the system requirements is necessary prior

to determining the container’s communication methods. Otherwise, issues such as the ones we ran into

with ActiveMQ and the load balancer may persist.

IV. FUTURE WORK

Time prevented us from implementing our theoretical model of a scalable version of the plain vanilla

application without ActiveMQ. Future steps would include implementing this model and also further

investigation into the limits of AWS and ActiveMQ. AWS provides a service called AmazonMQ, which

has the same functionality as ActiveMQ. Theoretically, since AWS provides both the ECS Container

Service and AmazonMQ functionality there should be a way, though possibly less than ideal, to get the

two services to interact.

Additionally, the plain vanilla application is a simplistic model of the applications JHU/APL develops

on a regular basis. This was a conscious decision based on time constraints; however, a more accurate

model would factor in time-based data latency, confusion matrices, and multi-hypothesis decision makers.

Future work would include learning the optimal methods to replicate this work on a more complex and

authentic application.

REFERENCES

[1] What is the software development life cycle? [Online]. Available: https://phoenixnap.com/blog/software-development-life-cycle

[2] The johns hopkins university applied physics laboratory. [Online]. Available: https://www.jhuapl.edu/

[3] A history of the cd-rom drive. [Online]. Available: https://www.gcis.co.uk/a-history-of-the-cd-rom.html

33

[4] S. J. Spooner, “The validation of shrink-wrap and click-wrap licenses by virginia’s uniform computer information transactions act,”

Richmond Journal of Law & Technology, vol. 7, no. 3, p. 27, 2001.

[5] (2020, 06) .tarfile extension. [Online]. Available: https://fileinfo.com/extension/tar

[6] J. Price. (2009, 06) How to install software from a tarball in linux. [Online]. Available: https://www.maketecheasier.com/install-

software-from-a-tarball-in-linux/

[7] F. Wahab. (2018, 07) How to use tar on windows 10. [Online]. Available: https://www.addictivetips.com/windows-tips/use-tar-on-

windows-10/

[8] S. Conroy. (2018, 01) History of virtualization. [Online]. Available: https://www.idkrtm.com/history-of-virtualization/

[9] J. Lin. (2019, 03) Deploying a scalable web application with docker and kubernetes. [Online]. Available: https://medium.com/better-

practices/deploying-a-scalable-web-application-with-docker-and-kubernetes-a5000a06c4e9

[10] A. Pollock. (2020, 09) Virtualization vs. containerization. [Online]. Available: https://www.liquidweb.com/kb/virtualization-vs-

containerization/

[11] About the open container initiative. [Online]. Available: https://opencontainers.org/about/overview/

[12] H. Lai. (2015, 01) Baseimage-docker, fat containers and ”treating containers as vms”. [Online]. Available:

https://blog.phusion.nl/2015/01/20/baseimage-docker-fat-containers-treating-containers-vms/

[13] C. Richardson. Pattern: Microservice architecture. [Online]. Available: https://microservices.io/patterns/microservices.html

[14] L. Rosenstock. (2019, 02) Designing apis for microservices. [Online]. Available: https://stoplight.io/blog/designing-apis-for-

microservices/

[15] Devops. (2015, 05) Containers should be fat or thin? [Online]. Available: https://www.boynux.com/containers-fat-thin/

[16] E. Baez. (2019, 04) Containers as a service: A complete guide to understanding. [Online]. Available:

https://www.scalyr.com/blog/containers-as-a-service-complete-guide/

[17] What is containers as a service (caas)? [Online]. Available: https://www.ibm.com/services/cloud/containers-as-a-service

[18] What is ci/cd? [Online]. Available: https://www.redhat.com/en/topics/devops/what-is-ci-cd

[19] What is continuous delivery? [Online]. Available: https://continuousdelivery.com/

[20] S. Cornett. (2013) Minimal acceptable code coverage. [Online]. Available:

https://www.bullseye.com/minimum.html#::̃text=Code%20coverage%20of%2070%2D80,higher%20than%20for%20system%20testing.

[21] A. Banafa. (2016, 07) What is autonomic computing? [On-

line]. Available: https://www.bbvaopenmind.com/en/technology/digital-world/what-is-autonomic-

computing/#: :text=Autonomic%20computing%20is%20a%20computer’s,maintenance%20such%20as%20software%20updates.

[22] B. Doerrfeld. (2019, 01) 5 container alternatives to docker. [Online]. Available: https://containerjournal.com/topics/container-

ecosystems/5-container-alternatives-to-docker/

[23] C. Tozzi. (2017, 07) What’s the future of lxc, docker’s semi-forgotten stepmother? [Online]. Available:

https://containerjournal.com/features/whats-future-lxc-dockers-semi-forgotten-step-mother/

[24] A. Abdelrazik. (2017, 07) Docker vs. kubernetes vs. apache mesos: Why what you think you know is probably wrong. [Online].

Available: https://d2iq.com/blog/docker-vs-kubernetes-vs-apache-mesos

[25] (2020, 06) Docker vs coreos rkt. [Online]. Available: https://www.upguard.com/blog/docker-vs-

coreos#: :text=CoreOS%20Rocket%20(rkt)%20is%20the,inherent%20in%20Docker’s%20container%20model

34

[26] J. Armstrong. (2020, 05) Snyk and docker partner to secure containerized applications. [Online]. Available: https://snyk.io/blog/snyk-

docker-secure-containerized-applications/?utm medium=Partner&utm campaign=Docker-partnership-launch-05-19-2020

[27] Docker security. [Online]. Available: https://docs.docker.com/engine/security/

[28] Overview. [Online]. Available: https://coreos.com/rkt/?utm source=thenewstack&utm medium=website&utm campaign=platform

[29] Faq. [Online]. Available: https://opencontainers.org/faq/

[30] (2020, 01) Defining your multi-container application with docker-compose.yml. [Online]. Available: https://docs.microsoft.com/en-

us/dotnet/architecture/microservices/multi-container-microservice-net-applications/multi-container-applications-docker-compose

[31] Pricing and subscriptions. [Online]. Available: https://www.docker.com/pricing

[32] (2020, 01) Debug containerized apps. [Online]. Available: https://code.visualstudio.com/docs/containers/debug-common

[33] M. Betz. (2016, 03). [Online]. Available: https://medium.com/@betz.mark/ten-tips-for-debugging-docker-containers-cde4da841a1d

[34] rkt commands. [Online]. Available: https://coreos.com/rkt/docs/latest/commands.html

[35] Docker hub. [Online]. Available: https://www.docker.com/products/docker-hub

[36] C. Puccio. (2020, 07) Aws and docker collaborate to simplify the developer experience. [Online]. Available:

https://aws.amazon.com/blogs/containers/aws-docker-collaborate-simplify-developer-experience/

[37] P. Yuknewicz. (2020, 05) Microsoft and docker collaborate on new ways to deploy containers on azure. [Online]. Available:

https://azure.microsoft.com/en-us/blog/microsoft-and-docker-collaborate-on-new-ways-to-deploy-containers-on-azure/

[38] Docker swarm. [Online]. Available: https://www.sumologic.com/glossary/docker-swarm/#: :text=A%20Docker%20Swarm%20is%20a,

join%20together%20in%20a%20cluster.&text=The%20activities%20of%20the%20cluster,are%20referred%20to%20as%20nodes.

[39] (2016) Docker cloud. [Online]. Available: https://www.docker.com/sites/default/files/Docker%20Cloud.pdf

[40] Using rkt with systemd. [Online]. Available: https://coreos.com/rkt/docs/latest/using-rkt-with-systemd.html

[41] rkt and selinux. [Online]. Available: https://coreos.com/rkt/docs/latest/selinux.html

[42] A. Clemenko. (2019, 08). [Online]. Available: https://www.docker.com/blog/docker-enterprise-first-disa-stig-container-platform/

[43] P. Ram. (2018, 04) What is a webhook? [Online]. Available: https://codeburst.io/what-are-webhooks-b04ec2bf9ca2

[44] Set up automated builds. [Online]. Available: https://docs.docker.com/docker-hub/builds/

[45] Automated repository tests. [Online]. Available: https://docs.docker.com/docker-hub/builds/automated-testing/

[46] Set up docker notifications in slack. [Online]. Available: https://docs.docker.com/docker-hub/slack integration/

[47] Containers on compute engine. [Online]. Available: https://cloud.google.com/compute/docs/containers

[48] Amazon elastic container service. [Online]. Available: https://aws.amazon.com/ecs/?c=cn&sec=srv

[49] Amazon elastic kubernetes service. [Online]. Available: https://aws.amazon.com/eks/?c=cn&sec=srv&whats-new-cards.sort-

by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&eks-blogs.sort-by=item.additionalFields.createdDate&eks-

blogs.sort-order=desc

[50] D. Sudhanshu. Who are biggest customers of the microsoft azure platform? [Online]. Available: https://www.cisin.com/coffee-

break/Enterprise/who-are-biggest-customers-of-the-microsoft-azure-platform.html

[51] Amazon identity and access management (iam). [Online]. Available: https://aws.amazon.com/iam/

[52] (2020, 03) Azure security baseline for azure container registry. [Online]. Available: https://docs.microsoft.com/en-us/azure/container-

registry/security-baseline

[53] Amazon elastic container registry. [Online]. Available: https://aws.amazon.com/ecr/

[54] Container instances. [Online]. Available: https://azure.microsoft.com/en-us/services/container-instances/#features

35

[55] Aws app mesh features. [Online]. Available: https://aws.amazon.com/app-mesh/features/

[56] Service fabric. [Online]. Available: https://azure.microsoft.com/en-us/services/service-fabric/

[57] Amazon eks features. [Online]. Available: https://aws.amazon.com/eks/features/

[58] Azure kubernetes service. [Online]. Available: https://azure.microsoft.com/en-us/services/kubernetes-service/

[59] C. Preimesberger. (2019, 08) Aws vs azure. [Online]. Available: https://www.eweek.com/cloud/at-a-high-level-in-the-cloud-aws-vs-azure

[60] “Apache activemq.” [Online]. Available: https://activemq.apache.org/download.html

[61] Install docker desktop on windows home. [Online]. Available: https://docs.docker.com/docker-for-windows/install-windows-home/

[62] (2020, 09) Windows subsystem for linux installation guide for windows 10. [Online]. Available: https://docs.microsoft.com/en-

us/windows/wsl/install-win10

[63] Dockerfile reference. [Online]. Available: https://docs.docker.com/engine/reference/builder/

[64] madflojo. (2017, 05) Leveraging the dockerignore file to create smaller images. [Online]. Available: https://rollout.io/blog/leveraging-

the-dockerignore-file-to-create-smaller-images/#: :text=dockerignore%20File-,The%20.,of%20a%20docker%20build%20command.

[65] N. Janetakis. (2017, 05) Docker tip #2: The difference between copy and add in a dockerfile. [Online]. Available:

https://nickjanetakis.com/blog/docker-tip-2-the-difference-between-copy-and-add-in-a-dockerile

[66] Best practices for writing dockerfiles. [Online]. Available: https://docs.docker.com/develop/develop-images/dockerfile best-practices/

[67] Docker overview. [Online]. Available: https://docs.docker.com/get-started/overview/#: :text=The%20Docker%20daemon%20(%20dockerd

%20)%20listens,daemons%20to%20manage%20Docker%20services.

[68] Docker run reference. [Online]. Available: https://docs.docker.com/engine/reference/run/

[69] Network tutorial standalone. [Online]. Available: https://docs.docker.com/network/network-tutorial-standalone/

[70] Sonarqube documentation. [Online]. Available: https://docs.sonarqube.org/latest/

[71] Installing, updating, and uninstalling the aws cli version 2. [Online]. Available: https://docs.aws.amazon.com/cli/latest/userguide/install-

cliv2.html

[72] Configuring the aws cli. [Online]. Available: https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

[73] Vpc and subnets. [Online]. Available: https://docs.aws.amazon.com/vpc/latest/userguide/VPC Subnets.html

[74] Creating a cluster. [Online]. Available: https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create cluster.html

[75] Launching an amazon ecs container instance. [Online]. Available:

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/launch container instance.html

[76] Amazon machine images (ami). [Online]. Available: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html#amazon-linux

[77] Amazon ec2 key pairs and linux instances. [Online]. Available: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-

pairs.html

[78] Security groups for your vpc. [Online]. Available: https://docs.aws.amazon.com/vpc/latest/userguide/VPC SecurityGroups.html#Security

GroupRules

[79] Internet gateways. [Online]. Available: https://docs.aws.amazon.com/vpc/latest/userguide/VPC Internet Gateway.html#working-with-

igw

[80] Amazon ecs task execution iam role. [Online]. Available: https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task

execution IAM role.html

[81] Ec2 or aws fargate? [Online]. Available: https://containersonaws.com/introduction/ec2-or-aws-fargate/

36

[82] Task definition parameters. [Online]. Available: https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task definition

parameters.html

[83] Load balancer types. [Online]. Available: https://docs.aws.amazon.com/AmazonECS/latest/developerguide/load-balancer-types.html

[84] Create a network load balancer. [Online]. Available: https://docs.aws.amazon.com/elasticloadbalancing/latest/network/create-network-

load-balancer.html

[85] Creating a service using the new console. [Online]. Available: https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-

service-console-v2.html

[86] Amazon ecs services. [Online]. Available: https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs services.html

[87] Task lifecycle. [Online]. Available: https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-lifecycle.html

