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Abstract 

 The chain ladder method is a popular heuristic used to estimate ultimate losses. This report, based 

on “Measuring the Variability of Chain Ladder Reserve Estimates” by Thomas Mack, will present how 

the method works, its underlying assumptions, and how these can be combined to create reserves and 

ultimate losses confidence intervals based on the variability of chain ladder estimations. This confidence 

interval also allows the chain ladder method to be compared to other methods, and provide greater 

certainty for those methods. 
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Section 1: Introduction 

This paper starts in Section 2 with a thorough introduction and description of the chain ladder 

method and its underlying assumptions, as well as its associated age-to-age factors. In Section 3, the age-

to-age factors of the chain ladder method are described, as well as their independence in Section 4. 

Section 5 uses the prior sections to calculate a confidence interval for the ultimate losses. In Section 6, 

this entire method is then demonstrated with a complete numerical example. Finally, in Section 7, 

examples of ways to test for is the underlying assumptions of the chain ladder method are demonstrated. 

Throughout this paper, a series of estimators shall be used in order to form the ultimate losses 

confidence interval. These estimators are notated in bold, such that, as an example, fk is an estimator for 

the parameter fk. 

Additionally, reported claims total in each development triangle are notated as Cj, k, where j 

represents the accident year (with j =1 being the oldest listed year in a development triangle), while k 

represents the accident period. The term Cj, I, the reported claims of accident year j at development period 

I, is considered the ultimate losses, where I is the greatest observed value of k, which is equal to the 

greatest observed value of j. 
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Section 2: The Chain Ladder Method 

 

 Reported claims as of (months) 

Accident Year 12 24 36 48 60 

1998 37,017,487 43,169,009 45,568,919 46,784,558 47,337,318 

1999 38,954,484 46,045,718 48,882,924 50,219,672  

2000 41,155,776 49,371,478 52,358,476   

2001 42,394,069 50,584,112    

2002 44,755,243     

Table 1: Development Triangle Example 

 A development triangle, as pictured above, consists of a series of paid or reported claims from 

different accident years, as well as claims totals for each development period. In the above example, the 

total claims for AY2000 were $37,017,487 on 12/31/1999, 12 months after the start of the period. 24 

months after the start of the period, those claims had increased to $43,169,009, and the pattern of 

cumulative reported claims amounts continue to the right, ending at 12/31/2002. This same process is true 

for the other accident years as well, continuing to the right until it reaches the diagonal, highlighted in 

yellow. 

 At some point, these reported claims amounts reach a point at which they cease to continue 

developing, as all claims for that accident year have fully resolved. This amount is called the ultimate 

losses. Throughout this paper, the rightmost column of each development triangle is considered the 

ultimate amount, but this is not necessarily the case in practice. 

 Age-to-age factors 

Accident Year 12 to 24 months 24 to 36 36 to 48 48 to 60 

1998 1.166 1.056 1.027 1.012 

1999 1.182 1.062 1.027  

2000 1.200 1.061   

2001 1.193    

Table 2: Age-to-Age Factors Example 
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 Given a development triangle, the age-to-age factors of development periods can be calculated, as 

pictured above. These are calculated by taking a reported claims amount, and dividing it by the preceding 

amount. For example, when the reported claims as of 24 months for AY1998 ($43,169,009) are divided 

by the reported claims as of 12 months ($37,017,487), the resulting age-to-age factor is 1.166. 

 On their own, these age-to-age factors do not reveal any information that was not already 

apparent from the original development triangle. However, they can be useful for estimating the “true” 

age-to-age factors that the chain ladder method assumes to exist, as described in the next section. 
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Section 3: Age-to-Age Factors 

 The core premise of the chain ladder method is the assumption of the existence of age-to-age 

factors for each development period, which are the same for every accident year. The observed age-to-age 

factors are usually different from these assumed factors notated as fk, where k represents which 

development period it is. For example, the age-to-age factor from 12 to 24 months is notated as f1, while 

the age-to-age factor from 48 to 60 months is notated as f4.  

Accident Year 12 months 24 months Age-to-age factor 

2001 100 210 2.10 

2002 140 200 1.43 

2003 135 180 1.33 

2004 150 190 1.27 

2005 130   

Table 3: Observed Age-to-Age Factors from 12 to 24 Months 

 There exist multiple ways of choosing an estimated value of fk. In the table above, the reported 

claims as of 12 and 24 months are shown, as well as the observed age-to-age factors. Examples of 

estimates for the true age-to-age factor include, but are not limited to: 

Arithmetic Mean 

• (2.10 + 1.43 + 1.33 + 1.27) / 4 =  1.53 

Arithmetic Mean (excluding maximum and minimum) 

• (1.43 + 1.33) / 2 = 1.38 

Geometric Mean 

• √(1.54 ⋅ 1.43 ⋅ 1.33 ⋅ 1.27)4 = 1.50 

Weighted Average 

• (210 + 200 + 180 + 190) / (100 + 140 + 135 + 150) = 1.49 

Squared-Weighted Average 

• (100 ⋅ 210 + 140 ⋅ 200 + 135 ⋅ 180 + 150 ⋅ 190) / (1002 + 1402 + 1352 + 1502) = 1.45 
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User-chosen value 

Due to changes in how claims are handled over time, or due to observable trends, it is also 

possible to choose an estimated value of fk that is based on actuarial judgement. For example, there is a 

downward trend in age-to-age factors seen in the data, so the mostly recently observed and minimum 

value, 1.27, could be an appropriate estimator. 

 These age-to-age factors can be used to predict how claims will continue to develop. In the 

previous example, if the arithmetic mean of 1.53 was chosen as an estimator, then it would be expected 

that AY2005 reported claims amount of 130 would increase by a factor of 1.53, to 199. Below is an 

example of a development triangle that has been entirely filled in with estimated values of future claims 

amount, based on the weighted average of age-to-age factors. 

 

 Reported claims as of (months) 

Accident Year 12 24 36 48 60 

1998 37,017 43,169 45,568 46,784 47,337 

1999 38,954 46,045 48,882 50,219  

2000 41,155 49,371 53,358   

2001 42,394 50,584    

2002 44,755     

 12 to 24 24 to 36 36 to 48 48 to 60  

Age-to-age 

factors 1.186 1.067 1.027 1.012  

 Reported claims as of (months) 

Accident Year 12 24 36 48 60 

1998 37,017 43,169 45,568 46,784 47,337 

1999 38,954 46,045 48,882 50,219 50,813 

2000 41,155 49,371 53,358 54,800 55,448 

2001 42,394 50,584 53,950 55,409 56,064 

2002 44,755 53,073 56,605 58,135 58,823 

Table 4: Development Triangle and Expected Future Claims 
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These are the expected future claims amount, and any deviation from that can be considered a 

random disturbance from the “true” age-to-age increase, as estimated by the chosen age-to-age factors. 

For this reason, at the end of a development period, all unknown future claims amounts (those to the right 

of the diagonal) can be treated as random variables, and all currently known claims amounts can be 

treated as scalars, because they are constants. 

The chain ladder method only uses the most recent claims information, the total claims reported 

to date, from the diagonal, for each accident year to estimate future claims amount. Additional estimators 

could be formed by using earlier claims amounts and multiplying by their respective chosen age-to-age 

factors for each development period. The chain ladder method ignores these other estimators, and thus the 

relationship for future claims amount can be seen here: 

 

Assumption 1 

• E [ Ci, k+1 | Ci, 1, … , Ci, k ] = Ci, kfk, or equivalently, 

• E [ Ci, k+1 / Ci, k | Ci, 1, … , Ci, k ] = fk 

 

 This relationship is an implicit assumption of the chain ladder method, which shows that the 

estimated value for future claims is not impacted by claims amounts preceding the diagonal. This 

assumption is not necessarily true for every development triangle, and ways to test if a given development 

triangle meets this assumption, as well as examples of development triangles that do not meet this or 

other assumptions are included in Section 7. For the body of this paper, it will be treated that these 

assumptions are met for the discussed development triangle. 

The equation E [ Ci, k+1 / Ci, k | Ci, 1, … , Ci, k ] = fk also shows how the expected development from 

Ci, k to Ci, k+1 is fk regardless of all previous observed development factors, including the preceding Ci, k / 

Ci, k-1. Consecutive development factors are uncorrelated; after a small value of Ci, k / Ci, k-1, it is not 

expected that Ci, k+1 / Ci, k will be larger, and vice versa. This is once again not an assumption that can be 

met for every development triangle, and will be discussed further in Section 7. 
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Section 4: Age-to-age Factors & Independence of Accident Years 

 The true values of age-to-age factors f1, … fI-1 can not be inferred through the limited data of a 

single development triangle, and can only be estimated. The estimator used in this paper is the weighted 

average, which is an unbiased estimator of fk. This is the case with the additional assumption that claims 

amount of different accident years are independent of one another. Mathematically, this is expressed as:  

 

Assumption 2 

• The variables {Ci, 1, … , Ci, I} and {Cj, 1, … , Cj, I} of different accident years i ≠ j are independent. 

 

 Because the defining equations of the chain ladder method do not take into account any 

dependency between accident years, the independence of accident years can thus be taken as another 

implicit assumption of the chain ladder method. Once again, this is not necessarily true of every 

development triangle, but shall be assumed to be true until it is discussed in Section 7. 

 Proof 1: The Weighted Average Estimators are Unbiased 

 The weighted average estimators f1, …, fI-1 are unbiased estimators of f1, …, fI-1, as shown here, 

with the definition: 

• fk = ∑ CI−k
j=1 j, k+1 / ∑ CI−k

j=1 j, k , 1 ≤ k ≤ I-1 . 

• E [ fk ] = E [ E [ fk | Bk ] ] by the iterative rule of expectations, where Bk represents the set of all 

reported claims totals. Because these claims can all be considered scalars, 

• E [ fk | Bk ] = ∑ E [ CI−k
j=1 j, k+1 | Bk] / ∑ CI−k

j=1 j, k , but because of the assumption of the independence 

of accident years, any conditions related to accident years besides Cj, k+1 can be ignored. Thus, 

• E [ Cj, k+1 | Bk ] = E [ Cj, k+1 | Cj, 1, … , Cj, k ] = Cj, kfk , which yields 

• E [ fk | Bk ] = ∑ CI−k
j=1 j, kfk / ∑ CI−k

j=1 j, k = fk , and finally 

• E [ fk ] = E [ fk ] = fk , proving it is an unbiased estimator. 
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 The weighted average is not the only unbiased estimator of fk. Every observed development 

factor Ci, k+1 / Ci, k is also an unbiased estimator of fk, as shown below. 

• E [ Ci, k+1 / Ci, k ] = E [ Ci, k+1 / Ci, k | Ci, 1, … , Ci, k ] 

= E [ E [ Ci, k+1 l Ci, 1, … , Ci, k ] / Ci, k ] 

= E [ Ci,kfk / Ci,k ] 

= E [ fk ] 

= fk                 ∎ 

 The reason that the weighted average is chosen over these or any other unbiased estimator is 

because in point estimation, the preferred estimator is the one that minimizes variance. This is the case if 

and only if the chosen weights wj, k are inversely proportional to Var(Cj, k+1 / Cj, k | Cj,1, … , Cj,k), as proven 

here: 

 Proof 2: The Weighted Average of Age-to-Age Factors Minimizes Variance 

Given some number of independent unbiased estimators Ti of parameter t with E [ Ti ] = t, the 

variance of a linear combination of them, T, (with weights wi adding to 1) is minimal if and only if the 

weights are inversely proportional to the variance of those estimators. That is to say, wi = c / Var(Ti). 

To minimize Var(T) = ∑ wI
i=1 i

2Var(Ti), the extremum must be found. These are where the 

derivatives of the Lagrangian are equal to 0, such that 

• 
∂

∂wi
 (∑ wI

i=1  i
2Var(Ti) + λ(1 - ∑ wI

i=1 i)) = 0, which yields 

• 2wiVar(Ti) – λ = 0, or 

• wi = λ / (2Var(Ti)). 

With the chain ladder method, Ti = Ci, k+1 / Ci, k. To minimize the variance 

• Var(∑ wI
i=1 iTi | Ci, 1, … , Ci, k), 

it can be seen that the minimizing weights are inversely proportional to Var(Ti | Ci, 1, … , Ci, k), and 

since the independence of accident years ensures that Ti = Ci, k+1 / Ci, k are independent, the result is that 

the minimizing weights are proportional to Var(Cj, k+1 / Cj, k | Cj,1, … , Cj,k).             ∎  
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Mathematically,  

• Var(Cj, k+1 / Cj, k | Cj,1, … , Cj,k) = αk
2 / Cj,k , 

where αk
2 is a non-negative proportionality constant independent of j, but possibly dependent on 

k. Because Cj,k is a scalar, the statement can be restated as: 

 

Assumption 3 

• Var(Cj, k+1 | Cj, 1, … , Cj, k) = Cj, kαk
2 

 

Once again, this equation is an implied assumption of the chain ladder method, and not every 

development triangle meets this assumption, as will be described in Section 7. Until then, Assumptions 1, 

2, and 3 can be used to calculate the uncertainty of the ultimate losses estimator Ci, I.  



15 
 

Section 5: Variance of Ultimate Losses 

 The point of the chain ladder method is to find an estimation for the ultimate losses Ci, I for 

accident years i = 2, … I. The chain ladder method creates a point estimate for Ci, I by Assumption 1: 

• Ci, I = Ci, I+1-i ⋅ fI+1-i ⋅ … ⋅ f1 , 

which is an unbiased estimator of Ci, I, under Assumptions 1 and 2, as shown here: 

Proof 3: The Ultimate Losses Estimator is Unbiased 

 First, it must be shown that the age-to-age factors fk are uncorrelated, given the same set Bk as 

before, with j < k. 

• E [ fjfk ]  = E [ E [ fjfk | Bk ] ] by the iterative rule of expectations. 

   = E [ E [ fjfk | Bk ] ] because fj is a scalar for j < k. 

   = E [ fjfk ]  due to equation [INSERT NUMBER]. 

   = E [ fj ]fk  because fk is a scalar. 

   = fjfk . 

 This result can be iterated to any number of fk’s, resulting in 

• E [ fI+1-i ⋅ … ⋅ fI-1 ] = fI+1-i ⋅ … ⋅ fI-1 , which yields 

• E [ Ci, I ] = E [ E [ Ci, I | Ci, 1, … , Ci, I+1-I ] ] by the iterative rule of expectations. 

  = E [ E [ Ci, I+1-i ⋅ fI+1-i ⋅ … ⋅ f1 | Ci, 1, … , Ci, I+1-I ] ] by the definition of Ci, I. 

  = E [ Ci, I+1-i ⋅ E [ fI+1-i ⋅ … ⋅ f1 | Ci, 1, … , Ci, I+1-I ] ] because Ci, I+1-I is a scalar. 

  = E [ Ci, I+1-i ⋅ E [ fI+1-i ⋅ … ⋅ f1 ] ] because conditions independent of fI+1-i, …, f1  

can be ignored. 

  = E [ Ci, I+1-i ] ⋅ E [ fI+1-i ⋅ … ⋅ f1 ] because E [ fI+1-i ⋅ … ⋅ f1 ] is a scalar. 

  = E [ Ci, I+1-i ] ⋅ fI+1-i ⋅ … ⋅ f1 as stated above. 

Assumption 1 can be iterated upon as follows: 

• E [ Ci, I ] = E [ E [ Ci, I | Ci, 1, … , Ci, I+1-I ] ] 

  = E [ Ci, I-1fI-1 ] 
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  = E [ Ci, I-1 ] ⋅ fI-1 

  = etc. 

  = E [ Ci, I+1-i ] ⋅ fI+1-i ⋅ … ⋅ f1 

   = E [ Ci, I ], proving Ci, I is an unbiased estimator of Ci, I.             ∎ 

 

However, as stated before, this only results in a point estimate for the ultimate amount. The actual 

ultimate amount is considered a random variable, and can deviate from the estimated amount. What 

would be preferred, in addition to Ci, I is, the mean squared error 

• mse(Ci, I) = E [ (Ci,I - Ci, I)
2 | D ] , 

where D is the set of all observed claims totals so far. 

 Calculating the mean squared error based on all observed claims is important, because the goal is 

to calculate the ultimate losses of the given development triangle based on future randomness, rather than 

possible deviations from previous observed claims, which are treated as scalars. The mean squared error 

can also be expressed as such: 

• mse(Ci, I) =  Var(Ci,I | D) +  (E [ Ci,I | D] - Ci, I)
2 

 This is because Ci, I is a scalar under the condition that D is all known. The rest of the expression 

is an inherent definition of variances, namely, that 

• E [ X - c ]2 = Var(X) + (E [ X ] - c)2 

This calculation for the mean square error is only true if Assumptions 1, 2, and 3 remain true into 

the future. Development triangles where this is not the case are not discussed in this paper. 

The average distance between the estimated ultimate losses and the actual ultimate losses is found 

through calculating the mean squared error of the ultimate losses. The square root of the estimator mse(Ci, 

I), known as the standard error, is the standard deviation ultimate losses. 

The standard error s.e.(Ci, I) is equal to the standard error s.e.(Ri) of the estimator, 

• Ri = Ci, I - Ci, I+1 ,  
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which estimates the outstanding claims reserve, 

• Ri = Ci, I - Ci, I+1 . 

The mean squared error of the reserve and ultimate losses are equivalent because, 

• mse(Ri)  = E [ (Ri - Ri, I)
2 | D ] 

= E [ (Ci,I - Ci, I)
2 | D ] 

= mse(Ci, I) . 

  The derivation for mse(Ci, I) shown here: 

Proof 4: Derivation of the Mean Squared Error of Ultimate Losses 

• mse(Ci, I) = Var(Ci, I | D) + (E [ Ci, I | D ] - Ci, I)
2 

The following abbreviations shall be used: 

• Ei [ X ] = E [ X | Ci, 1, …, Ci, I+1-i ] 

• Vari(X) = Var(X | Ci, 1, …, Ci, I+1-i) 

Due to the independence of accident years, the condition on D can be ignored, and thus 

• mse(Ci, I) = Vari(Ci, I) + (Ei [ Ci, I ] - Ci, I)
2, which can be further broken into 

• Vari(Ci, I) = Ei [ Ci, I ] – (Ei [ Ci, I ])
2 by the rule Var(x) = E [ X ] – (E [ X ])2, and 

• Ei [ Ci, k+1 ] = Ci, I ⋅ fI+1-i ⋅ … ⋅ fk, as described before. 

Ei [ Ci, I
2 ] is calculated as follows, for k ≥ I+1-i: 

• Ei [ Ci, k+1
2 ] = (Ei [ E [ Ci, k+1

2 | Ci, 1, …, Ci, k ] by the iterative rule of expectations. 

  = Ei [ Var(Ci, k+1 | Ci, 1, …, Ci, k) ] + (E [ Ci, k+1 | Ci, 1, …, Ci, k ])
2 

  = Ei [ Ci, kαk
2 + (Ci, kfk)

2 ] by Assumptions 1 and 3. 

  = Ei [ Ci, k ]αk
2 + Ei [ Ci, k

2 ]fk
2 . 

These values for Ei [ Ci, k+1 ] and Ei [ Ci, k+1
2 ] can be combined to find 

• Ei [ Ci, I
2 ] = Ei [ Ci, I-1 ]αI-1

2 + Ei [ Ci, I-1
2 ]fI-1

2 

= Ci, I-1 ⋅ fI+1-1 ⋅ … ⋅ fI-2 ⋅ αI-1
2 + Ei [ Ci, I-2 ]αI-2

2fI-1
2 + Ei [ Ci, I-2

2 ]fI-2
2fI-1

2 

   = etc. 
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   = Ci, I+1-i ∑  I−1
k=I+1−i fI+1-i ⋅ … ⋅ fk-1 ⋅ αk

2 ⋅ fk+1
2 ⋅ … ⋅ fI-1

2 + Ci, I+1-i
2 ⋅ fI+1-i

2 ⋅ … ⋅ fI-1
2 

 The value of Ei [ Ci, k+1 ] also leads to 

• (Ei [ Ci, I ])
2 = Ci, I+1-i

2 ⋅ fI+1-i
2 ⋅ … ⋅ fI-1

2 

These two most recent equations can be inserted into the equation for Vari(Ci, I) to get 

• Vari(Ci, I) = Ci, I+1-i ∑  I−1
k=I+1−i fI+1-i ⋅ … ⋅ fk-1 ⋅ αk

2 ⋅ fk+1
2 ⋅ … ⋅ fI-1

2 . 

This sum can then be estimated using the unbiased estimators fk and αk
2
 to get 

• Ci, I+1-i ∑  I−1
k=I+1−i fI+1-i ⋅ … ⋅ fk-1 ⋅ αk

2
 ⋅ fk+1

2
 ⋅ … ⋅ fI-1

2
 = 

= Ci, I+1-i
2 ⋅ fI+1-i

2
 ⋅ … ⋅ fI-1

2
 ∑

𝛂𝐤
𝟐 / 𝐟𝐤

𝟐

Ci,I+1−i ⋅ 𝐟 𝐈+𝟏−𝐢 ⋅ … ⋅  𝐟 𝐤−𝐢 

I−1
k=I+1−i  

= Ci, I
2 ∑

𝛂𝐤
𝟐 / 𝐟𝐤

𝟐

𝐂𝐢,𝐤 

I−1
k=I+1−i  , 

where Ci, k is an unbiased estimator of Ci, k calculated in the same way as Ci, I for k > I+1-i, with 

Ci, I+1-i = Ci, I+1-I. 

(Ei [ Ci, I ] - Ci, I)
2 can be calculated as follows: 

• (Ei [ Ci, I ] - Ci, I) = Ci, I+1-i
2 (fI+1-i ⋅ … ⋅ fI-1 - fI+1-i ⋅ … ⋅ fI-1)

2 

Replacing fk with fk will not make for a good estimator, as the result will be 0, when some 

difference is expected. Instead, this algebraic approach is taken: 

• F = fI+1-i ⋅ … ⋅ fI-1 - fI+1-i ⋅ … ⋅ fI-1 

= SI+1-I + … + SI-1, with 

• Sk = fI+1-i ⋅ … ⋅ fk-1 ⋅ (fk - fk) ⋅ fk+1 ⋅ … ⋅ fI-1 , which yields 

• F2 = (SI+1-I + … + SI-1)
2 

= ∑  I−1
k=I+1−i Sk

2 + 2 ∑  I−1
j,k=I+1−i SjSk, j < k. 

 To approximate this, Sk
2 is replaced with E [ Sk

2 | Bk ] and SjSk with E [ SkSj | Bk ]. It has been 

shown that E [ fk – fk | Bk ] = 0, so E [ SkSj | Bk ] = 0 because all fr, r < k, are scalars included in Bk. Next, 

• E [ (fk – fk)
2 | Bk ] = Var(fk | Bk) 

= ∑  I−k
j=1 Var(Cj, k+1 | Bk) / (∑  I−k

j=1 Cj, k)
2 
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= ∑  I−k
j=1 Var(Cj, k+1 | Cj, 1, …, Cj, k) / (∑  I−k

j=1 Cj, k)
2 

= ∑  I−k
j=1 Cj, kαk

2 / (∑  I−k
j=1 Cj, k)

2 

= αk
2 / ∑  I−k

j=1 Cj, k, resulting in 

• E [ Sk
2 | Bk ] = fI+1-i

2
 ⋅ … ⋅ fk-1

2
 ⋅ αk

2
 ⋅ fk+1

2 ⋅ … ⋅ fI-1
2 / ∑  I−k

j=1 Cj, k 

This can replace (Σ Sk
2), with all unknown parameters replaced with their unbiased estimators. 

This means that F2 can be estimated by 

• ∑  I−1
k=I+1−i (fI+1-i

2
 ⋅ … ⋅ fk-1

2
 ⋅ αk

2
 ⋅ fk+1

2
 ⋅ … ⋅ fI-1

2
 / ∑  I−k

j=1 Cj, k) 

= fI+1-i
2
 ⋅ … ⋅ fk-1

2
 ∑

𝛂𝐤
𝟐 / 𝐟𝐤

𝟐

∑ Cj,k
I−k
j=1

I−1
k=I+1−i  

= Ci, I
2
 ∑

𝛂𝐤
𝟐 / 𝐟𝐤

𝟐

∑ Cj,k
I−k
j=1

I−1
k=I+1−i  , 

which leads to the following estimator for mse(Ci, I): 

• (s.e.(Ci, I))
2 = Ci, I

2 ∑
αk

2

fk
2 (

1

Ci,k
+ 

1

∑ Cj,k
I−k
j=1

)I−1
k=I+1−i , where 

• αk
2
 = 

1

I−k−1
∑ CI−k

j=1 j, k (
Cj,k+1

Cj,k
 - fk)

2 ,  1 ≤ k ≤ I - 2 

and is an unbiased estimator of αk
2.                 ∎ 

 

 This does not reveal an estimator for αI-1
2, and thus one needs to be found separately. If fI-1 = 1, 

i.e. it is predicted that claims have already finished developing, then αI-1
2
 = 0. Otherwise, it is seen that the 

series α1
2
, α2

2
, … , αI-1

2
, αI-2

2
, is usually decreasing. Or, αI-1

2
 can be set with the equation 

• αI-3
2
 / αI-2

2
 = αI-2

2
 / αI-1

2
 , with αI-3

2
  > αI-2

2
 

These two means of estimating αI-1
2
 can be combined into the following: 

• αI-3
2
 = min (αI-2

4
 / αI-3

2
 , min (αI-2

2
, αI-3

2
) ) 

 With all of this, a confidence interval for the reserve Ri can now be calculated. It can be assumed 

by the central limit theorem that the reserve follows a Normal distribution if the number of claims is 

sufficiently high enough. An X% confidence interval for the reserve would thus be 
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• ( Ri - ZX s.e.(Ri) , Ri + ZX s.e.(Ri) ) , 

where Z is the corresponding standard score to create an X% confidence interval. 

 Because the chosen value for ZX is usually greater than or equal to 2 (ZX = 2 creates a 95% 

confidence interval for Ri), a symmetric Normal distribution for Ri is not appropriate if s.e.(Ri) > Ri / 2, 

and can lead to a negative lower limit for the reserve, which though not always impossible, is typically 

not the case. 

 When this is the case, it is better to use a Lognormal distribution to find a confidence interval for 

Ri, with parameters μi and σi
2 such that 

• exp(μi + σi
2 / 2) = Ri and 

• exp(2μi + σi
2)(exp(σi

2) - 1) = (s.e.(Ri))
2 , 

so that the mean and variances of the distributions are the same. It follows that, 

• σi
2 = ln(1 + (s.e.(Ri))

2 / Ri
2) and 

• μi = ln(Ri) - σi
2 / 2 . 

 This results in the new confidence interval, 

• ( exp(μi - ZXσi) , exp(μi + ZXσi) ), which will no longer have a negative lower bound. 

In the same way as shown before, this method can be used when calculating the confidence 

interval for R = R2 + … RI with estimator R = R2 + … + RI . While R2 , … , RI are independent of each 

other, their respective estimators R2 , … , RI are not, as they are all dependent on the same age-to-age 

factors fk. Thus, s.e.(R) ≠ s.e.(R2) + … + s.e.(RI). Instead, s.e.(R) is derived as follows: 

 

Proof 5: Derivation of the Standard Error of the Reserve 

First, mse(R) must be determined. 

• mse(∑  I
i=2 Ri)  = E [ (∑  I

i=2 Ri - ∑  I
i=2 Ri)

2 | D ] 

  = E [ (∑  I
i=2 Ci, I - ∑  I

i=2 Ci)
2 | D ] 

  = Var∑  I
i=2 Ci, I | D) + (E [ ∑  I

i=2 Ci, I | D ] - ∑  I
i=2 Ci, I)

2 . 
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The independence of accident years results in 

• Var(∑  I
i=2 Ci, I | D) = Var(∑  I

i=2 Ci, I | Ci, I, …, Ci, I+1-i), which has previously been calculated. 

 Continuing, 

• (E [ ∑  I
i=2 Ci, I | D ] - ∑  I

i=2 Ci, I)
2 = (∑  I

i=2 (E [ Ci, I | D ] - Ci, I))
2 

    = ∑  2≤i,   j≤I (E [ Ci, I | D ] - Ci, I) ⋅ (E [ Cj, I | D ] - Cj, I) 

    =  ∑  2≤i,   j≤I Ci, I+1-iCj, I+1-jFiFj 

    = ∑  I
i=2 (Ci, I+1-iFi)

2 + 2sum Ci, I+1-iCj, I+1-jFiFj 

Where Fi follows the same definition as F from before. From there, when compared with the 

equation from before: 

• mse(Ri) = Var(Ci, I | Ci, I, …, Ci, I+1-i) + (Ci, I+1-iFi)
2, it can be seen that 

• mse(∑  I
i=2 Ri) = ∑  I

i=2 mse(Ri) +  ∑  2≤i,   j≤I 2Ci, I+1-iCj, I+1-jFiFj . 

 From there, all that remains is an estimator for FiFj, which is analogous to the estimator for F2, 

resulting in the estimator,  

• ∑  I−1
k=I+1−i fI+1-j ⋅ … ⋅ fI-i ⋅ fI+1-i

2
 ⋅ … ⋅ fk-1

2
 ⋅ αk

2
 ⋅ fk+1

2
 ⋅ fI-1

2
 / ∑  I−k

n=1 Cn, k, which leads to 

• (s.e.(R))2 = ∑  I
i=2 { (s.e.(Ri)

2 + Ci, I(∑  I
j=i+1 Cj, I) ∑  I−1

k=I+1−i
2𝛂𝐤

𝟐 / 𝐟𝐤
𝟐

∑ Cn,k
I−k
n=1

 } .             ∎ 

With the equation for the standard error of the total reserve R, it is now possible to create a 

confidence for the overall reserve of a development triangle, as shall be presented in the following 

section. 
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Section 6: Numerical Example 

 This section is an example of completing this entire process for a 5x5 development triangle. The 

result of such a process would not seem to indicate that the ultimate losses has been reached after only 

five years, but a development of such a small size has been used for the sake of simplicity. Additionally, it 

shall be treated from the start that this development triangle meets Assumptions 1, 2, and 3. The methods 

described in Section 7 could be used to test for this. 

This is the development triangle of incurred losses in dollars: 

 Development Period (k) 

AY (i) 1 2 3 4 5 

1 5012 8269 10907 11805 13539 

2 1506 4285 5396 10666  

3 3410 8992 13873   

4 5655 11555    

5 1092     

Table 5: Numerical Example Development Triangle 

This development triangle results in the following age-to-age factors: 

 Development Period (years) 

AY 1-2 2-3 3-4 4-5 

1 1.6498 1.3190 1.0823 1.1469 

2 2.8453 1.2593 1.9766  

3 2.6370 1.5428   

4 2.0433    

Table 6: Numerical Example Observed Age-to-Age Factors 

Below are the chosen values for fk, all equal to the weighted average of age-to-age factors, as well 

as the squared-weighted average and simple average for comparison. 

k 1 2 3 4 

Squared 

weighted 2.0269 1.4204 1.2582 1.1469 

Weighted 2.1242 1.4005 1.3783 1.1469 
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Simple Average 2.2939 1.3737 1.5295 1.1469 

fk 2.1242 1.4005 1.3783 1.1469 

Table 7: Numerical Example Estimators of Age-to-Age Factors 

The values for αk
2
 are as follows, following the equations 

• αk
2
 = 

1

I−k−1
∑ CI−k

j=1 j, k (
Cj,k+1

Cj,k
 - fk)

2, and 

• α4
2
 = min (α3

4
 / α2

2
 , min (α3

2
, α

2
) ) 

k 1 2 3 4 

αk
2
 

711.0931 107.4921 1443.6524 107.4921 

Table 8: Numerical Example Proportionality Constants 

This leads to the following results for the ultimate losses, the outstanding reserve Ri, the standard 

error s.e.(Ri), and the ratio of the standard error to the reserve: 

AY (i) Ultimate Losses Reserve = Ri s.e.(Ri) s.e.(Ri) / Ri 

2 12232.70 1566.70 1432 91% 

3 21930.36 8057.36 6897 86% 

4 25582.35 14027.35 7969 57% 

5 5135.51 4043.51 3508 87% 

Overall 64880.92 27694.92 16348 59% 

Table 9: Numerical Example Reserve and Standard Error 

The ratio s.e.(Ri) / Ri is greater than 50% in all instances, including for the overall reserve R, so it 

is more appropriate to use a Lognormal distribution to form a confidence interval for the reserve. 

Consequently, it is found that 

• σ2 = ln(1 + (s.e.(R))2 / R2) = 0.2989, and  

• μ = ln(R) - σ2 / 2 = 10.0795 . 

 σi
2 and μi can also be found in this way for each accident, substituting R with Ri. With this, the 

following 90% confidence intervals can be formed: 

AY (i) 90% Confidence Interval 
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2 (426, 3139) 

3 (2478, 15118) 

4 (7699, 19322) 

5 (1214, 7686) 

Overall (14586, 38997) 

Table 10: Numerical Example 90% Confidence Interval 

 As an additional example, here are the resulting tables for a development triangle where the 

observed age-to-age factors are nearly identical, which results in confidence intervals that are extremely 

close to the expected ultimate losses. (Note: A development triangle with completely identical age-to-age 

factors in each accident year can lead to issues in formulas involving dividing by zero.) 

 Development Period (k) 

AY (i) 1 2 3 4 5 

1 5012 8269 10907 11805 13539 

2 5013 8270 10908 11806  

3 5014 8271 10909   

4 5015 8272    

5 5016     

Table 11: Development Triangle with Close Values 

 Development Period (years) 

AY 1-2 2-3 3-4 4-5 

1 1.6498 1.3190 1.0823 1.1469 

2 1.6497 1.3190 1.0823  

3 1.6496 1.3189   

4 1.6495    

Table 12: Observed Age-to-Age Factors with Close Values 

k 1 2 3 4 

Squared 

weighted 1.6496 1.3190 1.0823 1.1469 

Weighted 1.6496 1.3190 1.0823 1.1469 

Simple Average 1.6496 1.3190 1.0823 1.1469 
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fk 1.6496 1.3190 1.0823 1.1469 

Table 13: Estimators of Age-to-Age Factors with Close Values 

k 1 2 3 4 

αk
2
 

0.000105226 0.000008202 0.000000155 0.000000003 

Table 14: Proportionality Constants with Close Values 

AY (i) Ultimate Losses Reserve = Ri s.e.(Ri) s.e.(Ri) / Ri 

2 13540.15 1734.15 0.008064 0.0005% 

3 13541.44 2632.44 0.057655 0.0022% 

4 13543.47 5271.47 0.366469 0.0070% 

5 13547.77 8531.77 1.328065 0.0156% 

Overall 54172.82 18169.82 1.408877 0.0078% 

Table 15: Reserve and Standard Error with Close Values 

The ratio s.e.(Ri) / Ri is less than 50% in all instances, including for the overall reserve R, so it is 

Normal distribution shall be used to form a 90% confidence interval for the reserve, as follows:  

AY (i) 90% confidence interval 

2 (1734.1336, 1734.1369) 

3 (2632.3406, 2632.4354) 

4 (5270.8658, 5271.4685) 

5 (8529.5805, 8531.7648) 

Overall (18167.4985, 18169.8158) 

Table 16: 90% Confidence Interval with Close Values 

 A Lognormal distribution produces similarly narrow confidence intervals. These narrow 

confidence intervals indicate that the chain ladder method estimations are accurate. 

  



26 
 

Section 7: Assumption Testing 

This final section is about testing whether a development triangle meets the assumptions 

necessary to be appropriate for the chain ladder method. To repeats the assumptions, they are as follows: 

• E [ Ci, k+1 | Ci, 1, … , Ci, k ] = Ci, kfk 

• The variables {Ci, 1, … , Ci,I} and {Cj, 1, … , Cj,I} of different accident years i ≠ j are independent 

• Var(Cj, k+1 | Cj, 1, … , Cj, k) = Cj, kαk
2 

 The first test is to determine if there is a calendar year effect that would indicate that different 

accident years are not independent of each other. A calendar year effect would influence one of the 

diagonals of the development triangle, as well as the sets of development factors associated with that 

diagonal. What this means is that if the reported claims of a diagonal are larger than usual, then the 

preceding development factors are also larger than usual, and the subsequent development factors are 

smaller than usual, and vice versa. 

 The observed age-to-age factors of the columns of a development triangle can thus be categorized 

as either larger (L), or smaller (S). The median of these development factors will divide these two groups, 

and shall by any further part of this test. It is expected that each diagonal of the- age-to-age factors 

triangle should have an approximately equal number of larger and smaller development, since every non-

median development factor has a 50% chance of being either larger or smaller. If this is not the case, then 

that would serve as evidence for there being a calendar year influence. Mathematically, if Zj = min(Lj, Sj) 

is significantly less than (Lj + Sj) / 2, where Lj and Sj are the number of larger and smaller development 

factors in column j respectively, then this would indicate a calendar year effect. 

 The result of a generalized derivation is as follows, with n = Lj + Sj and m = ((n-1) / 2), truncated: 

● E [ Zj ] = 
n

2
 - (

n − 1
m

) 
n

2n  

● Var(Zj) = 
n(n−1)

4
  - (

n − 1
m

)
n(n−1)

2n  + E [ Zj ] - (E [ Zj ] )
2 . 

 To test the entire triangle as a whole, the analysis can be applied to the sum Z = Z2 + … + ZI-1. Z1 

is excluded, because with only one element in the diagonal, Z1 will always be equal to 0, and is thus not a 
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random variable. Similarly, any diagonal for which Lj + Sj ≤1 will also be excluded from the sum. The 

null hypothesis of this test will be that the different Zj’s are uncorrelated, and thus 

• E [ Z ] = E [ Z2 ] + … + E [ ZI-1 ] 

• Var(Z) = Var(Z2) + … + Var(ZI-1) , 

with Z having an approximately Normal distribution. The null hypothesis will be rejected if Z 

falls outside of the interval (E [ Z ] - 2√Var(Z), E [ Z ] + 2√Var(Z)), the equivalence of an error 

probability of 5%. 

Here is an example of applying this to a triangle of development factors. 

 

 Development Period 

AY 1 2 3 4 5 6 7 8 9 

1 1.61 1.32 1.08 1.15 1.20 1.11 1.03 1.00 1.01 

2 4.42 1.26 1.98 1.29 1.13 1.01 1.04 1.03  

3 2.63 1.54 1.16 1.16 1.19 1.03 1.26   

4 2.04 1.36 1.35 1.10 1.11 1.04    

5 8.85 1.66 1.40 1.17 1.01     

6 4.36 1.82 1.11 1.23      

7 7.27 2.72 1.12       

8 5.18 1.89        

9 1.79         

Table 17: Calendar Year Effect Test – Observed Age-to-Age Factors  

 

The different development factors are ranked as follows: 

 Development period 

AY 1 2 3 4 5 6 7 8 9 

1 S S S S L L * S * 

2 L S L L * S L L  

3 S S * S L S S   
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4 S S L S S L    

5 L L L L S     

6 * L S L      

7 L L S       

8 L L        

9 S         

Table 18: Calendar Year Effect Test – Ranked Age-to-Age Factors  

 

J Sj Lj Zj n M E [ Zj ] Var(Zj) 

2 1 1 1 2 0 0.5 0.25 

3 3 0 0 3 1 0.75 0.1875 

4 3 1 1 4 1 1.25 0.4375 

5 1 3 1 4 1 1.25 0.4375 

6 1 3 1 4 1 1.25 0.4375 

7 2 4 2 6 2 2.065 0.6211 

8 4 4 4 8 3 2.90625 0.8037 

9 4 4 4 8 3 2.90625 0.8037 

Total   14   12.875 

3.9785 = 

1.99462 

Table 19: Calendar Year Effect Test – Count of Ranked Age-to-Age Factors  

 

The 95% confidence interval for Z = Σ Zj for this triangle is (12.875 - 2(1.9946), 12.875 + 

2(1.9946)) = (8.886, 16.864), which includes the test statistic Z = 14, so the null hypothesis is not 

rejected. This indicates that there is not enough of a calendar year effect to reject using the chain ladder 

method. 

Here is an example of a development triangle which does not pass the test for a calendar year 

effect, following the same steps as before: 
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 Development Period 

AY 1 2 3 4 5 6 7 8 9 

1 1.61 1.32 1.08 1.15 1.20 1.11 1.04 1.00 1.01 

2 4.42 1.26 1.98 1.29 1.13 1.01 1.26 1.03  

3 2.63 1.72 1.16 1.17 1.01 1.03 1.03   

4 2.04 1.36 1.35 1.10 1.11 1.04    

5 8.85 1.66 1.12 1.16 1.19     

6 4.36 1.82 1.11 1.23      

7 7.27 1.54 1.40       

8 1.79 1.89        

9 5.18         

Table 20: Calendar Year Effect Failed Test – Observed Age-to-Age Factors 

The different development factors are ranked as follows: 

 Development period 

AY 1 2 3 4 5 6 7 8 9 

1 S S S S L L * S * 

2 L S L L * S L L  

3 S L * L S S S   

4 S S L S S L    

5 L L S S L     

6 * L S L      

7 L S L       

8 S L        

9 L         

Table 21: Calendar Year Effect Failed Test – Ranked Age-to-Age Factors  

 

J Sj Lj Zj n m E [ Zj ] Var(Zj) 

2 1 1 1 2 0 0.5 0.25 

3 3 0 0 3 1 0.75 0.1875 

4 2 2 2 4 1 1.25 0.4375 
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5 1 3 1 4 1 1.25 0.4375 

6 0 4 0 4 1 1.25 0.4375 

7 4 2 2 6 2 2.065 0.6211 

8 7 1 1 8 3 2.90625 0.8037 

9 1 7 1 8 3 2.90625 0.8037 

Total   8   12.875 

3.9785 = 

1.99462 

Table 22: Calendar Year Effect Failed Test – Count of Ranked Age-to-Age Factors 

 

The 95% confidence interval for Z = Σ Zj for this triangle is (12.875 - 2(1.9946), 12.875 + 

2(1.9946)) = (8.886, 16.864), the same as the previous development triangle. This time, however, Z = 8, 

which is outside of this confidence interval. Thus, the null hypothesis is rejected, and it is assumed that 

there is a calendar year effect for this development triangle, indicating that the chain ladder method would 

not be appropriate to use. 

Assumptions 1 and 3 can be checked by using a regression model. For development period k, the 

known values Ci, k, 1 ≤ i ≤ I, can create a regression model of the form, 

• Yi = c + xib + εi , 

where E [ εi ] = 0. In the case c = 0 and b = fk, then Yi = Ci, k+1 and xi = Ci, k. b = fk can then be 

estimated using the least squares method by minimizing ∑ (I−k
i=1 Ci, k+1 - Ci, kfk). Setting the derivative of the 

sum with respect to fk equal to 0 results in 

• fk0 = ∑ CI−k
i=1 i, kCi, k+1 / ∑ CI−k

i=1 i, k
2 

fk0 is not equal to the previous estimator fk, and is in fact the squared-weighted average of the 

development factors, as opposed to the squared-weighted average. Therefore, fk0 assumes that 

• Var(Ci, k+1 | Ci, 1 , … , Ci, k) is proportional to 1 

such that Var(Ci, k+1 | Ci, 1 , … , Ci, k) is the same for all observed values, which is not in agreement 

with the third assumption of the chain ladder method. This is because the least-squares method assumes 

that Var(Yi) = Var(εi), independent of i. If this is dependent on i, then a weighted least-squares method 
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should be used, minimizing the sum ∑ wI
i=1 i(Yi - c - xib)2 with weights wi inversely proportional to 

Var(Yi). If the weights wi are instead proportional to 1 / Ci, k , this results in the estimator fk1 = fk. Finally, 

using weights proportional to 1 / Ci, k
2  results in: 

• fk2 = 
1

I−k
∑

Ci,k+1

Ci,k

I−k
i=1  , 

which is the arithmetic average of development factors. 

 With these three estimators, the following regression plots can then be formed, 

• Ci, k+1 - Ci, kfk0 versus Ci, k 

• 
(Ci,k+1 − Ci,kfk1) 

√Ci,k
 versus Ci, k 

• 
(Ci,k+1 − Ci,kfk1) 

Ci,k
 versus Ci, k , 

and then checked to see which residual plot exhibits the most random behavior, for all values of k 

for which a sufficient number of data points exist. If the regression plot for fk1 exhibits nonrandom 

behavior for multiple values of k, while the other two plots do not, then it would make sense to instead to 

replace fk = fk1 with fk0 or fk2 instead. 
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Section 8: Conclusion 

 The chain ladder method has applications beyond just providing a confidence interval for ultimate 

losses. The confidence interval can also be compared to alternate estimates for ultimate losses, such as the 

Expected Claims, Banktender, and Cape Cod methods, all of which consider additional information about 

reported premiums that the chain ladder method does not, as well as other computerized estimators. If for 

example, the resulting estimates for these methods fall within the confidence interval provided by the 

chain ladder method, then that serves as further evidence that those could be appropriate estimates for the 

ultimate losses. 

 Additionally, the weaknesses of the chain ladder method must be addressed. The estimators for 

the final few age-to-age factors fI, fI-1, etc. are based on very few observed claims amounts. Similarly, the 

estimated ultimate losses for the most recent accident year has a large range, due to the immaturity of the 

claims, and the point estimate for such claims is highly variable. The results of the chain ladder method 

must still be given actuarial judgement, even if the development triangle met all of the given assumptions. 

If changes in future claims processes occur, then the estimates of the chain ladder method may become 

obsolete anyways. 

 In spite of these weaknesses, the chain ladder method is still a simple method, and can be 

intuitively explained to those not in the field. 
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Appendix 

The following is a link to complete, development triangles, currently with the values used Section 

6. The formulas used in these excel sheets provide complete development triangles, reserve estimates, and 

confidence intervals. 

Measuring the Variability of Chain Ladder Reserve Estimates Development Triangles.xlsx 

Measuring%20the%20Variability%20of%20Chain%20Ladder%20Reserve%20Estimates%20Development%20Triangles.xlsx

