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ACES             Analytical, Computational, and Experimental Solution  
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Qsurface  Q-factor related to surface damping 

Qair  Q-factor related to air damping 

QTED   Q-factor related to thermoelastic damping 
E  Young’s modulus 
I                      area moment of inertia along z axis 
A                     cross sectional area 
Y(x)                 mode shape of the vibrating beam 
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 amplitude of the applied force                   ݋ܨ
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w  cantilever beam’s width 
γ  complex eigenfrequency 
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δ  coating thickness 
 ௗ௦  dissipative portion of complex modulus of coatingܧ



 
 

8 
 

ζ  damping ratio 
 a coefficient in Lifshitz’s equation for QL  ߦ

 ௔௡௖௛௢௥ damping coefficient due to anchor lossߦ
λ, μ  lamé coefficients 
஽݂  doppler frequency shift 
௡݂                     nth resonant frequency 
  velocity  ݒ
 Poisson ratio                      ߥ
 ௅  laser wavelengthߣ
 ௜௝                    stress tensorߪ
 ௜௝௞௟                 6x6 stiffness matrixܥ
 ௞௟                    strain tensorߝ
 ௜௝                    Kronecker deltaߜ
∆ܶ                    temperature variation from the initial temperature 
PBS  Polaraizing Beam Splitter 
QWP  Quarter Wave Plate 
BC  Bragg Cell 
߱௖  reference frequency 
PD  Photo Detector 
FFT                 Fast Fourier Transform  
 
  



 
 

9 
 

Abstract 

Recent advances in microelectromechanical systems (MEMS) technology have led to 

development of a multitude of new sensors and their corresponding applications.  Great many of 

these sensors (e.g., microgyroscopes, accelerometers, biological, chemical, etc.) rely on 

vibrations of either sensing elements or elastic suspensions that resonate.  Regardless of their 

applications, sensors are always designed to provide the most sensitive responses to the signals 

they are developed to detect and/or monitor.  One way to describe this sensitivity is to use the 

Quality factor (Q-factor).  Most recent experimental evidence indicates that as physical sizes of 

sensors decrease (especially because of advances in fabrication by surface micromachining) the 

corresponding Q-factors increase.  This report develops a preliminary model of Q-factors of 

MEMS resonators using Analytical, Computational, and Experimental Solutions (ACES) 

methodology to investigate the effects of various damping mechanisms on the Q-factor of micro 

mechanical resonators. We have focused on the contributions of air damping, thermoelastic 

damping (TED), and surface damping to the Q-factor.  Laser Doppler Vibrometry (LDV) and 

Michelson Interferometry were used to characterize the damping of tipless atomic force 

microscopy (AFM) probes through ring down tests. Tests were performed at various levels of 

vacuum with different beam geometries and coatings. COMSOL was used to model the TED as 

well as resonance characteristics of the beams and the computational results were compared to 

analytical and experimental results.  It was found that as surface area to volume ratio increases 

beyond approximately 1 µm-1, surface damping becomes the dominant damping mechanism.   

Additionally air damping was significant at a vacuum level greater than approximately 0.1 µbar. 

It was also found that the surface damping was much greater with an about 28 nm Au-Pd coated 



 
 

10 
 

as compared to about 30 nm Al coated and uncoated beams. Finally, the dissipation term in the 

analytical approximation of surface damping was calculated for the above coatings.   
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Project summary 

 The goal of this Major Qualifying Project (MQP) was to investigate the effects of 

material  properties and sensor geometry on the Quality factor (Q-factor) of resonating 

microscale and nanoscale sensors in order to optimize their sensitivity. The Q-factor is a way to 

describe the sensitivity of these resonators. The Q-factor is adversely affected by various 

damping mechanisms including TED, air damping, anchor damping, and surface damping.  

 In order to accomplish this task, analytical solutions for calculating TED based on the 

works of Zener (Zener, 1937) and Lifshitz (Lifshitz and Roukes, 1999) for a simple 

commercially available Single Crystal Silicon prismatic cantilevered beam were used to 

calculate the Q-factor. A finite element solution was also generated using COMSOL 

Multiphysics (2011) and compared with the analytical solution. Additionally experiments were 

conducted using a Michelson Interferometer and a Laser Doppler Vibrometer (LDV) to attain the 

resonant frequency and overall damping ratio, respectively. These data were compared with the 

analytical and computational results. Once the analytical and computational methods were 

validated, the results were used to investigate the effects of material properties and geometries in 

the hopes of improving the Q-factor of current resonators.  

 It was found that as size of the sensor decreases to the microscale, surface damping 

becomes a significant factor on the Q-factor, and for this reason it deserves attention. The 

analytical, numerical, and experimental results agreed with the calculated uncertainty so as to 

validate our analysis. Based on the experimental, analytical, and numerical analysis we have 

developed we have obtained a relationship for the optimum geometry so as to maximize Q-

factor. We have identified the key material properties to focus on in order to maximize Q-factor. 
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Additionally, the effects of surface damping were clearly shown and the importance of 

minimizing the surface damping as the sensor reaches the nanoscale has been demonstrated. 

These results can be used in the fabrication of current and future resonating sensor designs. This 

will lead to the increased sensitivity of these devices. In addition, our results have the potential to 

benefit many sectors including but not limited to communication, medical, defense, and 

aerospace. 
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I. Introduction 

First proposed by Richard Feinman in his 1959 presentation at California Institute of 

Technology, some 50 years later micro scale and nano scale fabrication has progressed to the 

point that it is used in objects we rely on every day, including automotive safety systems, and 

various consumer products such as active stability control in camcorders (Feynman, 1992). This 

progress has been spurred on by the advances in stereo lithography made by the integrated circuit 

industry. The progression of micro scale and nano scale devices is continuing to increase with 

applications in the automotive, medical, entertainment, aerospace, and defense industries. 

I.1. Micromechanical resonators 

I.1.1. Principles of operation 

A particularly important class of MEMS is the micromechanical resonant sensor. The 

more traditional sensor is based on the effect the measurand has on the capacitance or resistance 

of the sensor. In the case of the resonant sensor, the resonator is excited at its natural frequency; 

the measurand shifts the natural frequency of the resonator either by changing its mass or 

stiffness. A general rule of thumb is that resonating devices can achieve 10 times greater 

measurement accuracy as compared to capacitive or resistive methods (Gad-el-Hak, 2002).  

Micromechanical resonators are produced in various shapes, including beams, 

diaphragms, “butterfly” structures, and “H” structures.  Figure 1 shows some examples of 

micromechanical resonators (Elwenspoek and Wiegerink, 2001). The dimensions of these 

structures are on the micrometer scale and now reaching the nanometer scale. Each shape can 

have several types of vibration, including longitudinal, transverse, torsional, and lateral. Each 

resonator has infinite degrees of freedom and thus an infinite number of resonant modes, 
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however each sensor is usually designed so that one type of vibration and resonant mode will 

dominate (Elwenspoek and Wiegerink, 2001).  

 
Figure 1. Various structures used in resonant microsensors (Elwenspoek and Wiegerink, 2001). 

 

There are several techniques for exciting resonators into resonance and detecting the shift 

in the resonance frequency. Electrostatic excitation and capacitive detection can be used where 

the resonator acts as one plate of a capacitor and the substrate acts as the other plate. The charged 

capacitor creates a current if the capacitance fluctuates, which occurs based on the displacement 

of the resonator. This is a relatively simple method, however, the resonator must be close to the 

substrate in order to act as a capacitor, when this occurs squeeze film damping can happen and 

negatively impact the performance of the sensor. Additionally, the capacitance of this type of 
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sensor is usually small and thus leads to a small detection signal (Elwenspoek and Wiegerink, 

2001). 

Piezoelectric excitation and detection can also be employed. Piezoelectric materials 

experience a strain when a voltage is applied. In order to exploit this phenomenon, a thin 

piezoelectric film, such as PZT, is sandwiched between two electrodes and a voltage is applied. 

This voltage causes a change in the dimensions of the piezoelectric film which forces bridges or 

membranes into bending. A major benefit to this type of actuation is that frequencies realized by 

piezoelectrically actuated resonators can be in the GHz range (Lange et al., 2002). However, 

because two different materials are sandwiched together, temperature can have a large affect on 

the sensors performance since the two materials will have different coefficients of thermal 

expansion. The composite structure can also cause unwanted damping of vibrations (Elwenspoek 

and Wiegerink, 2001).  

Electrothermal excitation and piezoresistive detection has been used in resonant sensors. 

A heat source causes a thermal gradient across the resonator. This thermal gradient leads to 

bending in the resonator. A typical electrothermally actuated resonator is pictured in Fig. 2, the 

heat source is located between d1 and d2 (Lange et al., 2002). To detect the vibration the change 

in resistance due to strain is measured. Some materials such as Silicon change resistivity when a 

stress is applied, this is known as piezoresistivity. This type of actuation is limited to less than 1 

MHz (Lange et al., 2002). Additionally, this thermal actuation can lead to high thermal stresses 

and thermal management becomes more important in sensors actuated this way (Elwenspoek and 

Wiegerink, 2001). 
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Figure 2. Cross-section of a thermally actuated composite cantilever beam (Lange et al., 2002). 

Similar to electrothermal excitation, optothermal excitation relies on creating a thermal 

gradient in the resonator and thus inducing bending. The heat is generated by the absorption of 

light. Optical detection is employed and relies on the variation of light transmitted through a gap 

in a wave guide. Optionally, integrated interferometry can be employed using the surface of the 

beam and the end of a glass fiber as mirrors (Elwenspoek and Wiegerink, 2001).  The benefit of 

this method of actuation and detection is the fact that it avoids electrical voltages at the sensor 

which can be important for sensors that operate in explosive regions or in high electric fields. 

Magnetic excitation and detection has been used for micromechanical resonators. The 

resonator is placed in a permanent magnetic field and a harmonic electric current will flow 

through a bridge type beam resonator and result in a Lorentz force. This force will cause the 

beam to vibrate and magnetic induction is used to detect this force. In most applications an “H” 

structure is used where one beam is used for excitation and the other for detection (Elwenspoek 

and Wiegerink, 2001). This is illustrated in Fig. 3, B is the magnetic field, i is the current and FL 

is the induced Lorentz force (Lange et al., 2002). This method uses less power than the 

electrothermal method and with a large enough magnetic field, excitation can be extended to 
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frequencies above 1 MHz. The disadvantage is the additional complexity since a permanent 

magnet must be integrated into the package (Lange et al., 2002). 

 
Figure 3. Schematic of a electromagnetically actuated beam. 

 

A final method worth mentioning is that of Dielectric excitation and detection. Similar to 

piezoelectric excitation, a thin dielectric film is sandwiched between two electrodes. As a voltage 

is applied across the electrodes an electrostatic force is created and causes a lateral deformation 

of the film which induces bending of the resonator. The detection is based on the change of 

capacitance if the dielectric is deformed. The signals are small, however and require materials 

with high dielectric constants (Elwenspoek and Wiegerink, 2001). 

I.1.2. Applications 

A successful application of the resonant micromechanical sensor is the pressure sensor. 

This sensor consists of a membrane onto which is sputtered a thin piezoelectric film. A voltage 

causes a lateral strain in the membrane which induces bending. The membrane is exposed to the 

medium to be measured and a change in pressure will shift the resonant frequency of the sensor. 

This frequency shift can be used to calculate the pressure of the medium. The downside of this 
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design is that resonant frequency is not only dependent on the pressure but also the mass of the 

gas in the vicinity of the membrane so the measurement becomes dependent on the type of gas 

being measured. Additionally because the membrane is in direct contact with the gas, corrosion, 

chemical absorption, and dust buildup can cause a drift in the readout over time (Elwenspoek and 

Wiegerink, 2001). A modified version of this sensor in which the membrane does not vibrate 

employs a resonating beam attached to the bottom surface of the membrane or inside the 

membrane. An example with the resonators inside the membrane is illustrated in Fig. 4 (Gad-el-

Hak, 2002). As the membrane deflects, strain is induced onto the beam, shifting the resonant 

frequency. This design separates the resonator from the atmosphere, thus eliminating some of the 

drawbacks of the above design in which the membrane vibrates (Korvink and Paul, 2006).  

 
Figure 4. Schematic of a resonating beam pressure sensor (Gad-el-Hak, 2002). 

 

An interesting sensor takes advantage of the stresses induced from the thermal expansion 

of a constrained beam. The resonant mass-flow sensor utilizes this phenomenon by relying on 

gas flow to control the temperature of a heated beam-type resonator. Heat flow out of the beam 

will depend on the velocity of the gas, and since thermal expansion of the beam will induce 
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mechanical stress, a resonance frequency, which is a function of flow, is obtained. An example 

of the resonant mass-flow sensor is illustrated in Fig. 5 (Elwenspoek and Wiegerink, 2001). 

 
Figure 5. Schematic of a resonant mass flow sensor (Elwenspoek and Wiegerink, 2001). 

 

Another application of the resonant micromechanical sensor is to measure gas 

concentration. The resonant vapor sensor employs a cantilever resonating beam coated with a 

polymer surface layer. The polymer is used as a sensitive layer that the gas molecules diffuse 

into and out of until equilibrium is obtained. The absorption of the gas molecules increases the 

mass of the beam and thus produces a shift in the resonant frequency. Mass resolution of better 

than 0.4 pg has been obtained. An example of a resonant gas sensor is depicted in Fig. 6 (Lange 

et al., 2002). 

 
Figure 6. Schematic (a) and micrograph (b) of a thermally acuated, piezoresistive detected 

resonant gas sensor (Lange et al., 2002). 
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Resonant micromechanical sensors have also found a home in acceleration 

measurements. In the resonant accelerometer, a proof mass is suspended by four resonating 

beams. Acceleration in either direction would cause differential stresses in the corresponding 

pair of resonators. The difference in resonant frequency becomes a measure of acceleration. A 

typical resonant accelerometer design is depicted in Fig. 7 (Elwenspoek and Wiegerink, 2001). 

Resonant micromechanical sensor technology has brought the cost of accelerometers down to 

where they are used in automotive applications, such as air bag deployment, stability control, and 

electronic suspension control, as well as in biomedical applications and consumer products like 

camcorders for active stabilization (Elwenspoek and Wiegerink, 2001). 

 
Figure 7. Schematic of a resonant accelerometer (Elwenspoek and Wiegerink, 2001). 

 

Similar to the design of the resonant accelerometer, the resonant yaw rate sensor or 

gyroscope measures angular rate by exploiting the Coriolis effect. A proof mass is driven into 

oscillation in one axis. Rotation of the reference frame will displace the mass into a second axis; 

this reaction causes a shift in the resonant frequency of the beams (Gad-el-Hak, 2002). A 

Draper/Honeywell MEMS gyroscope is pictured in Fig. 8 (Weinburg and Kouropenis, 2006). 

8(a) is a photomicrograph, in 8(b) and 8(c), silver represents metal, blue represents Silicon 

attached to glass, and white indicates suspended Silicon. Electrical contact pads are Right Motor 
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drive (RM), Right Sense electrode (RS), Motor Pick Off (MPO), Left Sense electrode (LS), Left 

Motor drive (LM), and Sense Pick Off (SPO). 

 
Figure 8. Schematic of a Draper/Honeywell MEMS gyroscope. 

 

The micromechanical resonant sensor also has applications in the medical field as a way 

to detect pathogens, including cancer detection. Lee et al. (2004) demonstrated the successful 

design of a resonant micromechanical sensor to detect prostate-specific antigen (PSA), the 

marker or indicator of prostate cancer. The resonator consisted of a layered Ta/Pt/PZT/Pt/SiO2 

on SiNx beam with an Au coating. The Au coating was treated with antibodies and immobilized 

via calixcrown self-assembled monolayers. PSA is attracted to the antibody and increases the 



 
 

22 
 

mass of the beam, shifting the resonant frequency. For a 50 µm x 150 µm x 2.26 µm beam the 

authors demonstrated a frequency shift of 273 Hz for 1 ng/ml of PSA (Lee et al., 2004). 

 
Figure 9. Frequency shift as a function of PSA antigen concentration for two sizes of cantilever  

( Lee et al., 2004). 

 

I.1.3. Manufacturing techniques and materials 

MEMS industry evolved from integrated circuit (IC) industry, so MEMS manufacturing 

techniques are very similar to those used in IC fabrication. MEMS and IC devices are generally 

fabricated on a single crystal silicon wafer. To make this wafer, a single crystal silicon bulk is 

made from a single crystal silicon seed and drawn into rod shape. This rod is sawed into circular 

slices and polished to form wafers. Many identical MEMS devices can be made on one wafer 

and are then separated into single device called die for packaging into MEMS chips (Liu, 2011). 

The schematic of the process is in Fig.10. 
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Figure 10. Process flow for MEMS production (Liu, 2011). 

 

Some micro fabrication processes that are most commonly used in MEMS are described 

as followed. 

I.1.3.1 Thin film deposition 
 

Functional materials can be incorporated on a wafer through an additive deposition  
 

process. This deposition process can involve a direct transfer of material from a source to the  
wafer in an atom-by-atom, or layer-by-layer fashion, as shown in Fig.11(Liu, 2011). The source  
 
material can be transferred by evaporation or by sputtering. The achieved thickness is  
 
proportional to the process power and duration (Liu, 2011).  
 

Evaporation involves the heating of the source material to a high temperature to generate 

a vapor that condenses on the substrate to form a film. Many elements and compounds can be 

evaporated, including Al, Si, Ti, Au, and Al2O3. The evaporation process is performed in a 

vacuum chamber with pressure typically below 10-4 Pa to avoid contaminating the film (Maluf 

and Williams, 2004). 
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Figure 11. Schematic of the additive deposition process (Liu, 2011). 

 

In sputtering deposition, the source material is called a target and is physically 

bombarded with a flux of inert gas ions in a vacuum chamber at a pressure of 0.1-10Pa. The 

vacuum is to avoid the interruption with the air molecules. The atoms or molecules from the 

target are ejected and deposited onto the wafer. Nearly any inorganic material can be sputtered. 

Sputtering is a favored method in MEMS for deposition at low temperatures (<150oC) for thin 

metal films such as aluminum, titanium, chromium, tungsten, Al/Si and Ti/W alloys, amorphous 

silicon, and piezoelectric ceramics (Maluf and Williams, 2004). 

Another common method in deposition is Chemical-Vapor Deposition (CVD). In this 

process, a chemical reaction is initiated near the heated surface of the wafer in a controlled 

atmosphere, resulting in a deposition of the reacted species on the wafer. In contrast to 

sputtering, CVD is a high temperature process (>300oC). Common thin films deposited by CVD 

included polysilicon, silicon oxides and nitrides (Maluf and Williams, 2004). 

I.1.3.2 Photolithography 

  The purpose of photolithography is to produce fine features on the wafer surface. The 

process involves depositing a layer of photoresist material, which is a photo-sensitive chemical, 

on the wafer surface, then exposing this layer to light through a mask which contains the pattern 
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to be made on the photoresist. This process is illustrated in Fig.12 ((Maluf and Williams, 2004). 

The patterned photoresist layer then can be used in deposition or etching processes to create the 

desired features. The layer of photoresist is then removed and what is left is the desired feature 

on the wafer surface. 

 
Figure 12. Schematic of the photolithography process (Maluf and Williams, 2004). 

 

I.1.3.3 Etching 

Etching techniques can be divided into two techniques: wet etching and dry etching. Wet 

etching is a technique to remove material by wet chemical reaction. The selectivity of the etching 

against photoresist material, substrate material, and deposited material is a crucial issue in 

MEMS design and fabrication. In reality, the etching chemical can affect any material that it 

contacts. An etching process with two windows A and B is illustrated in Fig. 13 (Liu, 2011). 

Ideally, the etch rate on the thin film deposition should be much higher than the etch rate on the 

photoresist mask. The etch rate in different window sizes can also be different. However, at the 

end of the etching process, the thin film in each window should be completely removed and the 

mask’s thickness is reduced in a small amount. Moreover, although the vertical etching is of 

interest, the etching can also remove material in lateral direction. The extent of the lateral etch 
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during the process time is called undercut. The undercut obviously affects the precision of the 

desired feature (Liu, 2011). 

 
Figure 13. Schematic of the wet etching process (Liu, 2011). 

 

Dry etching, or plasma etching, gets its name because it does not involve wet chemical. 

In plasma etching, gas species are broken up by the electric field into active gaseous radicals that 

are electrically charged and can react with the wafer chemically. Moreover, because of the 

electric field, the charge radicals are also accelerated to high speed and interact with the wafer 

physically. Thus both the chemical and physical removal processes can happen at the same time. 

In general, the physical etching is more directional and hence anisotropic, whereas the chemical 

etching is more isotropic and material selective (Liu, 2011). 

I.1.3.4 Doping 

 Another common process in micro fabrication is doping, which is a process of planting 

dopant atoms into the host semiconductor lattice in order to change the electrical and also 

mechanical characteristics of the material. The dopant atoms can further diffuse from a high-

concentration to low-concentration regions under thermal activation; the process is called 

thermal diffusion. The concentration of the doped material at a location depends on the time of 

the doping process, the distance from the surface, and the temperature at which the doping is 

implemented. The doping process for a selected region is illustrated in Fig. 14 (Liu, 2011). 
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Figure 14. Schematic of the doping process (Liu, 2011). 

 

 Unfortunately, the doping process can only be performed on the top surfaces of the wafer, 

and the high temperature encountered in consequent steps in the fabrication process can cause a 

redistribution of the dopant atoms and change the electrical characteristics of the material (Liu, 

2011). 

I.2. Flexural beam theory 

 The configuration of the micro resonator in this project is a cantilever. Therefore, this 

section reviews the classical analysis of a flexural cantilever which derives the mode shapes and 

the modal frequencies of the beam. Damping is ignored in this analysis. Fig. 15 is a schematic of 

a flexural beam on which a distributed load f(x, t) is applied. 

 
Figure 15. Flexural beam under distributed load. 

 

 Newton second law in vertical direction for a small element dx of the beam yields the 

governing differential equation of the motion of the beam in vertical direction 
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where ρ is the mass density of the beam, A is the cross sectional area, E is the Young’s modulus 

of the material of the beam, and I  is the area moment of inertia along z axis (going out of the 

page in Fig. 15). To solve Eq. 1, we assume that the displacement function of the beam y(x, t) is 

separable in space and time, which is 

 .)(),( tiexYtxy                                           (2) 
 

Y(x) is the amplitude of the vibration at different location on the beam, ω is the angular 

frequency at which the beam is vibrating. Substituting Eq. 2 into Eq. 1 and assuming that there is 

no applied force, we obtain 
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The solution of Eq. 3 has the form 
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where Y(x) is the mode shape of the vibrating beam. The constants C1, C2, C3, and C4 are solved 

by using the boundary conditions of the beam. For a fixed-free cantilever beam there are four 

boundary conditions applied: at the fixed end, the displacement and slope of the beam are zero, 

and at the free end, the moment and shear force are zero 
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Using the boundary conditions given by Eqs 6a and 6b we can solve for the modal shape  
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function of a cantilever beam and the natural frequency for each mode. Theoretically for a  
 
continuous system like the cantilever beam there is an infinite number of modes and thus infinite  
 
number of natural frequencies, with the first, or fundamental, mode at the lowest frequency.   
 
However, because higher modes require much higher energy to excite and are harder to detect,  
 
we are interested only in the first several modes. Their natural frequencies are as follows (Rao,  
 
2004)  
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Table 1. Constants for resonant frequencies at the first 6 modes (Rao, 2004). 

β
1
  β

2
 β

3
 β

4
 β

5
 β

6
 

1.875 4.694 7.855 10.996 14.137 17.279 

where  βi are constants that are numerically solved, L is the length of the beam, ρ is the mass 

density of the beam, A is the cross sectional area, E is the Young modulus of the material of the 

beam, and I is the area moment of inertia along z axis. 

 At a given excitation frequency, vibration of the beam is a superposition of all the modes. 

When the excitation frequency is close to the natural frequency of a particular mode, resonance 

will occur and the displacement of that particular mode will be dominant. Thus, once the natural 

frequency for each mode is known, we can excite the beam at those frequencies to observe the 

beam’s displacement at each mode. 

I.3. Q-factor 

In resonance, one expression for Quality factor (Q-factor) is the ratio of the resonant 

frequency to the frequency bandwidth of half-maximum amplitude. It can be understood by first 
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introducing the expression for the steady-state response amplitude for a forced oscillation 

(Gorman, 2002) 

 
଴ሺ߱ሻݔ ൌ

ிబ
௠ሾሺఠబ

మିఠమሻమାସሺఠఋሻమሿభ/మ
 , 

(8)

where ݋ܨ is the amplitude of the applied force, ݉ is the mass, ߱଴ is the natural angular 

frequency, ߱ is the angular frequency of the applied force, and ߜ ൌ ζω଴, where ߞ is the damping 

ratio. The plot of the response amplitude is shown in Fig. 16. 

 
Figure 16. Amplitude response vs. applied frequency. 

 

 It can be shown from Eq. 8 that the length of the half-maximum amplitude bandwidth is 

 The Quality factor can be described as a ratio of the resonant frequency to .(Gorman, 2002) ߜ2

the half-maximum amplitude bandwidth (Gorman, 2002) 
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ൌ ଵ

ଶ஖
 . 

(9)

 The expression in Eq. 9 shows that the higher the Q-factor, the higher is the peak 

amplitude, and the narrower is the bandwidth, which means the more sensitive is the vibrating 

body to that resonant frequency. Also from Eq. 9, because the overall damping ratio is just the 

sum of the damping ratio of each type of damping, we have 
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(10)

Equation 10 shows that the overall Q-factor will be smaller than each Q-factor caused by 

each damping mechanism. Thus, the damping mechanism that has the smallest Q will have the 

most significant impact on the overall Q. 

 Q-factor can also be calculated in different ways, leading to alternate expressions for the 

Q-factor. Another definition of the Q-factor is the ratio of the total amount of stored energy to 

lost energy, which is the work done to maintain oscillation, in one radian (Gorman, 2002). The 

energy lost in one radian can be found by the integral over one cycle of oscillation and then 

divide that amount by 2π. 
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             (11) 

where ߪ and ߝ are stress and strain. The energy stored can be found by the integral from zero to 

maximum strain 
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             (12) 

Thus the Q-factor is 
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 .              (13) 
 

 Another expression for the Q-factor is in terms of the complex natural frequency of the 

oscillation (Gorman, 2002). The general equation of motion for a vibrating body, assuming zero 

applied force 

ሷݔ݉                                                         ൅ ሶݔܾ ൅ ݔ݇ ൌ 0 ,                                                        (14) 
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where  m, b, k are equivalent mass, equivalent damping constant, and equivalent spring constant. 

For oscillation with ݔ ൌ ܺ݁ఊ௧, where ߛ is the complex natural frequency, Eq.14 gives 

 
ଶߛ݉                                  ൅ ߛܾ ൅ ݇ ൌ 0. 

 
             (15) 
 

Solve for the complex frequency 

ߛ                                                           ൌ ௕

ଶ௠
േ ݅ට௞

௠
 .                                                             (16) 

Hence, now the Q-factor can be written in terms of the complex frequency as 
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             (17) 

 The expressions of Q in Eqs 9, 13, and 17 are all equivalent. The individual contributions 

to Q-factor are discussed below. 

I.3.1. Thermoelastic damping 

Unfortunately, damping is an unavoidable mechanism. Zener was the first one who 

proved the existence of internal friction in solids and calculated the damping (Zener, 1937 and 

1938).    There are many sources of damping, for example, electronics damping, air damping, 

anchor damping, residual gas damping, etc. Among all these damping, thermal elastic damping 

(TED) has been identified as the most important loss in micro-resonators (Duwel et al. 2002). 

TED occurs in any thermal-elastic solid that is subjected to cyclic stress, which causes strain 

field as long as the thermal expansion coefficient is non-zero, and consequently the temperature 

field based on the law of thermodynamics. As a temperature gradient exists, heat conduction 

occurs. This is an irreversible flow of heat because of the coupling of the stress-strain 

relationship to heat flow in material. This gives rise to the increase in entropy and consequently 

to the dissipation of vibration energy (Hao et al. 2009). It has been shown that when the period of 
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cyclic stress decreases, the rate of mechanical energy loss increases and thus TED increases 

(Pryputniewicz, 2006).  

  Thermal elastic damping was first discussed and calculated by Zener based on the 

extension of Hooke’s law. The thermalelastic damping for a flexural mode beam resonator is 
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ఠఛ
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 , 

 
             (18) 

with  

                                                                         ߬ ൌ ஼ೡ௧మ

௞గమ
 ,                                                         (19) 

where E is Young’s modulus, ߙ is the linear coefficient of thermal expansion, ଴ܶ is the original 

temperature, ߱ is the resonance frequency, ܥ௩ is the specific heat per meter cubic volume, ݐ is 

the thickness of the beam element and ݇ is the thermal conductivity.  

From the Eq.18, we can see that there is a damping peak at ߱ = 
ଵ

ఛ
 ; when ߱ ≫ ଵ

ఛ
߱	ݎ݋	 ≪

ଵ

ఛ
 , the damping is the minimum.  

Later a more accurate equation for TED of a thin beam was derived by Lifshitz and 

Roukes (Lifshitz and Roukes,  2000) based on the Euler-Bernoulli beam theory. Lifshitz’s 

equation is more sophisticated in that it takes into account the fact that the resonance frequency 

has a small dependence on the Q factor (Chandorkar et al. 2009). The equation for TED is 
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ଶ௞
 , 

 
             (21) 

where E, ߙ, ଴ܶ, ߱, ܥ௩, ݄ and ݇ are the same parameters as described previously.  

In comparison with Lifshitz’s equation, Zener’s equation overestimates TED by 2% at 

low frequencies for 2√/ߨ> ߦ  and underestimates by a maximum of 20% as ߦ → ∞ (Prabhakar 

and Vengallatore, 2008). Both Zener’s and Lifshitz’s relations, Eqs 18 and 20 respectively, are 

only applicable for beams with rectangular cross-sections, with length to thickness ratio greater 

than 40,  and where only one thermal mode is coupled to the mechanical mode. The maximum 

error in Zener’s and Lifshitz’s relations can exceed 80% for doubly clamped beams with length 

to thickness ratio less than 10 (Prabhakar and Vengallatore, 2008). For beams with more 

complex geometries, for example, with openings or slots, multi-thermal modes are coupled to the 

mechanical mode (Candler et al. 2006). Prabhakar derived a formula to predict TED for short 

beams with aspect ratio less than 10. Prabhakar also derived the equation for TED in hollow and 

slotted microresonators by dividing the beam into a number of convenient sub-regions, summing 

up the work lost in each sub-region as the total work lost. By definition, the magnitude of TED is 

(Prabhakar and Vengallatore, 2009). 
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 ,                                                           (22)                         

where n is the number of sub-regions; ∆ ௝ܹ is the work lost per cycle due to TED in sub-region j, 

௝ܹ is the peak strain energy stored within region j during a cycle of vibration.  

I.3.2. Anchor Damping 

When a cantilever beam vibrates, elastic waves can dissipate into the mounting medium 

through attachment points. This is known as anchor damping and can have a significant effect 
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based on the dimensions of the beam. Assuming a fixed-free prismatic cantilever beam, the 

damping ratio due to energy dissipation through fixed attachment point can be calculated by 

(Hosaka et al, 1994) 

௔௡௖௛௢௥ߦ							                                             ൌ 0.23 ൈ ௧య

௅య
 ,                                                (23) 

where, t is the thickness and L is the length of the cantilever, respectively. From this relationship 

the Q-factor related to anchor damping can be calculated as 

                                                             ܳ௔௡௖௛௢௥ ൌ 2.17	 ൈ 	 ௧
య

௅య
 .                                                (24) 

I.3.3. Air damping 

An additional source of damping is produced fro the interaction of the micro cantilever and 

the surrounding medium. This form of damping is termed air damping or gas damping and can 

be quite large depending on the pressure of the medium. Air damping can be broken down into 

three regions, depending on the pressure of the medium (Yang et al, 2004): 

1) Viscous damping region, where the air or gas medium acts as a viscous fluid. 

2) Molecular region, where the interaction of individual molecules with the surface of the 

beam is responsible for damping. 

3) Intrinsic region, where air damping is negligible. 

The values for which these regions begin and end depend on several factors such as beam 

dimensions and type of fluid. The authors found that for sub-micron sized beams the viscous 

region began to dominate at a pressure level of 6 mbar and the molecular region began at 10-2 

mbar, for pressure levels below 10-2 mbar, damping was negligible (Yang et al, 2004).  
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I.3.4. Surface damping 

As the dimensions of the cantilever approaches the nanoscale, surface damping becomes 

dominate. Surface damping is a surface effect and thus becomes quite large as the ratio of 

surface area to volume increases. Surface damping is caused by absorbates or flaws on the 

surface of the cantilever. The surface layer will not store vibrational energy, however it does 

dissipate the energy leading to damping (Yasumara et al, 2000).  The Q-factor related to surface 

damping is given by (Yang et al, 2004) 

                                             ܳ௦௨௥௙௔௖௘ ൌ
௪௧

ଶఋሺଷ௪ା௧ሻ

ா

ா೏ೞ
 ,                                                    (25) 

where w is the width of the cantilever, t is the thickness of the cantilever, E is the elastic modulus 

of the cantilever,  ߜ is the thickness of the absorbate layer or coating, and ܧௗ௦is the dissipation 

value of the Young’s modulus of the surface layer. 

The authors found that in sub-micron cantilever beams surface damping dominated and 

the Q-factor was largely a function of surface damping, particularly as the ratio of the surface 

area to volume increased (Yang et al, 2004). 

I.3.5. Material Properties and Q-factor 

  Micro-cantilevers are typically made of silicon, silicon nitride, or silicon oxide (Vashist, 

2007). From both Zener’s and Lifshitz’s relations, Eqs.18 and 20 respectively, we can see that 

material mechanical properties have direct effects in the Q-factor. Previous work has been done 

in varying the concentration of boron in boron-doped SiGe epitaxial materials in calculating the 

Q-factor of MEMS gyros. The presence of Ge in Si would bring great advantages in device 

machining and material processing. However, Ge would reduce the thermal conductivity due to 

phonon scattering (Duwel et al. 2002). The result shows that boron-diffused silicon, where the 
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boron concentration is approximately 1021 molecules per cubic centimeter has the highest Q 

factor, followed by the SiB epi. A detailed comparison of materials mechanical properties and Q-

factor can be found in Table 2. 

Table 2. Material and device parameters used in TED calculations. 

The notation “Int” refers to a linear interpolation between the silicon and germanium values, 
based on the alloy composition (Duwel et al. 2002). 

 

To obtain the desired material properties on Q-factor, both Zener’s and Lifshitz’s 

relations, Eqs.18 and 20 respectively, show that different material properties have different effect 

in the Q-factor. It is important to know which properties affect Q-factor the most, and thus focus 

on optimizing those specific properties. A plot showing how the Q-factor changes as each 

material property changes is prepared in MathCad as shown in Fig. 17. From the plot, we can tell 

that the coefficient of thermal expansion ߙ and Young’s modulus E have negative effects in the 

Q-factor, while the density ߩ and thermal conductivity k have positive effects in the Q-factor. 

The effect of specific heat cp is not noticeable. Among all these investigated material properties, 

coefficient of thermal expansion ߙ has the greatest effect, followed by the thermal conductivity k 
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and Young’s modulus E. So materials with low coefficient of thermal expansion and Young’s 

modulus but high thermal conductivity are desirable.  

The decision for material selection must be made carefully while taking into 

consideration compatibility with silicon technology, desirable electromechanical properties, and 

low values of residual stresses (Srikar, 2003). We are going to follow Ashby’s approach in 

material selection for the micro-cantilever beam (Ashby, 1999). The first step of this approach is 

to acquire ranges of values for many classes of materials. From Fig. 17, we know that we need 

the class of materials with very low to zero coefficient of thermal expansion. So ceramics is the 

best class of materials. Once the class of the material is chosen, we will narrow the choices down 

to a few materials and will need to know the values of their material properties in greater 

precision. At this point, material properties like Young’s modulus, density, specific heat, 

Poisson’s ratio and coefficient of thermal expansion can be obtained from bulk materials.  

Because the physical origins of these properties lie at the atomic scale, these properties thus can 

be expected to be the same as those of bulk materials. However, other properties like thermal 

conductivity and yield strength are affected by length scales and processing parameters. 

Therefore, experimental data are needed for these properties (Srikar, 2003). In the class of 

ceramics, we continue to look for specific materials with low coefficient of thermal expansion, 

low Young’s modulus, and high thermal conductivity.  
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Figure 17. A log-log plot for Q-factor vs. material properties generated from MathCad. 
“n” is the number used to multiply by the nominal value. Each material property ranges from 
0.1*(nominal value) to 3*(nominal value). 
 

I.3.6. Geometry and Q-factor 

 Research has been done to investigate novel geometry that is intended to disrupt the heat 

flow in order to alter the Q-factor. It has been proposed to make slots through the width of the 

beam to disrupt the heat flow along the thickness (Candler et al., 2006). They also investigated in 

the impact of the slots location on the TED-related Q-factor. Prabhakar and Vengallatore (2009) 

also presented an analytical framework to compute TED in general micro resonator containing 

discontinuities in form of slots. 

 In Candler’s work, they designed beams with slots of various sizes at different locations, 

created simulations for their slotted beams and compared them with the experimental results and 
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Zener’s theory. Their beams are clamped-clamped. Beams without slots were also studied to 

determine the locations of slots that have the greatest impact. Figure 18 is the simulation of the 

beam without slots with temperature profile which is in black and white gradient (Candler et al., 

2006). 

 
Figure 18. Temperature profile of a slotted beam; note the increased temperature gradient near 

the end and center of the beam (Candler et al., 2006). 

 

 It has been reasoned that due to higher strain gradient near the anchors and the middle of 

the beam, the temperature gradient at those locations are higher than that at different locations of 

the beam. The temperature gradient causes the heat flow, which is the energy loss mechanism of 

TED. Thus, the slots at those locations should have the greatest impact. This intuition is 

confirmed by their results. Figure 19 is an illustration of the actual slots that are made in their 

beams (Candler et al., 2006). 

 
Figure 19. Schematic of the slotted beam (Candler et al., 2006). 
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   Figures 20 and 21 are the results for slots which have length 1/10 and 1/6 of the beam 

length. The slot width is 1 micron while the beam thickness is 12 micron and the beam length is 

400 micron (Candler et al., 2006). 

 
Figure 20. Results for no slots, slot length = 1/6 beam length, slot length = 1/10 beam length, and 

Zener's analytical solution (Candler et al., 2006). 

 
Figure 21. Experimental results of beams with 4 slots, the same thickness, and varying length 

compared to simulation and analytical results (Candler et al., 2006). 

 Candler et al.(2006) have come up with several meaningful conclusions: 

 Most importantly, in slotted beam the mechanical mode can couple to more than one 

thermal mode. This is reasonable, because with the slotted beam, in addition to the 

temperature gradient in the direction of the thickness of the beam, temperature gradient in 

other directions can become significant. Thus, simplified Zener’s Eq.18   as in Eq. 1 

which includes only one thermal mode no longer satisfactorily predicts the Q-factor for 
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slotted beams, as shown in Fig. 20, as the experimental results do not match the Zener’s 

results. However, simplified Zener’s Eq.18   is still a fair approximation for clamped-

clamped unslotted beam, as shown also in Fig. 20.  

 There is a frequency shift of the minimum Q between the slotted beam and unslotted 

beam, which is shown in Fig. 20. This shift is caused by the shifting from coupling with 

the initial thermal mode to the coupling with higher frequency thermal mode of the 

slotted beam. Thus multiple thermal modes are affecting the Q-factor. 

 The minimum Q-factor of the slotted beam is different from that of the unslotted ones. 

Candler et al. (2006) explained that because the slots weaken the coupling between the 

mechanical mode with the initial thermal mode, while the increased coupling with higher 

frequency mode is not enough to compensate for the reduction in coupling with the initial 

thermal mode. Therefore, minimum Q-factor is increased with the addition of slots, as 

shown in Fig. 20. 

 Finally, the Q-factor for the slotted beam is worse than the slotted beam in some 

frequency regimes, which is also shown in Figs 20 and 21. While the minimum Q-factor 

in the slotted beam increases, it is not higher than that of the unslotted beam at all 

frequencies, especially at higher frequencies. The reason, as explained by Candler et 

al.(2006), is that the slotted beam is partially coupled with higher frequency thermal 

modes. 

II. Facilities 

In order to carry out these objectives, a combination of analytical, computational, and 

experimental instruments were used in combination with a detailed uncertainty analysis as 

follows. 
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II.1. Michelson Interferometer 

 A schematic of the Michelson Interferometer that was used to measure the frequencies of 

the beam vibration is shown in Fig. 22. 

 
Figure 22. Schematic of a Michelson Interferometer. 

 

 In Fig. 22, light from the LED, whose intensity can be controlled by the amount of 

supplied current, is divided into two perpendicular beams by a beam splitter: the reference beam 

which goes to a mirror, and the object beam which illuminates the micro cantilever. The beam is 

shaken by a piezoelectric transducer (PZT). The voltage amplitude and vibration frequency 

applied to the PZT are controlled by a function generator. The reference beam, which is reflected 

by the mirror, and the object beam, which is reflected by the object, are then combined again at 

the beam splitter and interfere with each other. The interference is recorded as a time average 

holography by a CCD (Charge-Coupled Device) camera and sent to a computer. 
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 To characterize the interference, we need to take into account that light is an 

electromagnetic wave. Based on literature, let F0(x, y, z) be the value of the light field that is 

reflected by the cantilever beam at rest (Pryputniewicz, 1985) 

 
,ݔ૙ሺࡲ ,ݕ ሻݖ ൌ ,ݔ૙ሺ࡭ ,ݕ ,ݔሻexpሺ݅߶଴ሺݖ ,ݕ  .ሻሻݖ

 
             (26) 

 The displacement of the cantilever beam is a function of time, and for a cosinusoidal 

excitation, the displacement of the cantilever beam can be expressed as 

 
																 ,ݔሺ࢚ࡸ				 ,ݕ ,ݖ ሻݐ ൌ ,ݔ૙ሺࡸ ,ݕ          .ሻݐሻcosሺ߱ݖ

 
             (27) 

 This displacement causes a temporal change in the phase of the light field reflected by the 

object. This shift in phase, Ωt(x, y, z, t) can be calculated by the dot product between the 

sensitivity vector K(x, y, z) and the displacement vector Lt 

 
Ω୲ሺx, y, z, tሻ ൌ ۹ሺx, y, zሻܜۺሺx, y, z, tሻ, 

 
             (28) 
 

where 
 

,ݔሺࡷ ,ݕ ሻݖ ൌ ,ݔ૛ሺࡷ ,ݕ ሻݖ െ ,ݔ૚ሺࡷ ,ݕ  ,ሻݖ
 
             (29) 
 

with K1(x, y, z) and K2(x, y, z) being the illumination and observation propagation vectors 

representation. They are unit vectors in space and in our Michelson interferometer are in the 

directions of the beams which come to and reflect from the micro cantilever surface. Thus the 

magnitude of this sensitivity vector is maximum in this case. 

 The new light field reflected from the cantilever beam, after the change in phase is 

applied, is 

,ݔሺ࢜ࡲ																													 ,ݕ ሻݖ ൌ ,ݔ૙ሺ࡭ ,ݕ ,ݔሺ݅߶଴ሺ	ሻexpݖ ,ݕ ሻݖ ൅ ݅Ω୲ሺx, y, z, tሻሻ.                        (30) 
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Meanwhile, the value of the light field of the reference beam which is reflected from the mirror 

is 

,ݔሺ࢘ࡲ                                               ,ݕ ሻݖ ൌ ,ݔሺ࢘࡭ ,ݕ ,ݔሺ݅߶௥ሺ	ሻexpݖ ,ݕ  ሻሻ.                             (31)ݖ

The mirror is adjusted and then kept fixed so that the lens is in focus on both the mirror 

and the cantilever beam before exciting the beam. Thus the reference beam is fixed and is a 

representation of the light field of the beam reflected from the cantilever beam at rest. Thus the 

resulting light field now has the following form, with the phase of the beam at rest is cancelled 

by the reference beam 

 
,ݔሺࡲ ,ݕ ሻݖ ൌ ,ݔ૙ሺ࡭ ,ݕ ,ሻexpሺ݅Ω୲ሺxݖ y, z, tሻሻ. 

 
             (32) 

The camera does not record the instantaneous value of this interference field but rather 

the average value over the exposure time T, which is given by 

 
,ݔሺࢍ࢜ࢇࡲ														 ,ݕ ሻݖ ൌ lim

்→ஶ

,ݔ૙ሺ࡭ ,ݕ ሻݖ
ܶ

න expሺ݅Ω୲ሺx, y, z, tሻሻ݀ݐ
୘

଴
. 

 
             (33) 

Taking into account that the time-dependent part of the phase change Ωt(x, y, z, t) is a 

sinusoidal function, the above integral is equivalent to 

 
,ݔሺࢍ࢜ࢇࡲ ,ݕ ሻݖ ൌ ,ݔ૙ሺ࡭ ,ݕ ,଴ሾΩ୲ሺxܬሻݖ y, zሻሿ. 

 
             (34) 

 

With J0 being the zero order Bessel function of the first kind. Because the camera records 

the intensity of the light field, which is proportional to the square of the value of the light field, 

the observed intensity in the image is 

,ݔ௠ሺܫ																																				 ,ݕ ሻݖ ൌ ,ݔ଴ሺܫ ,ݕ ଴ܬሻݖ
ଶሾΩ୲ሺx, y, zሻሿ.                                        (35) 

The plot of the zero order Bessel function of the first kind is shown in Fig. 23. 
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Figure 23. Zero, first, and second order Bessel functions of the first kind. 

 

 From Fig. 23, it is clear that the pattern to be observed in the camera image is a fringe 

pattern. Also, according to Eqs 28 and 35, the intensity is brightest at the locations where the 

displacement is zero. Thus the brightest area on the image represents the nodes of the vibrating 

cantilever beam. Therefore, the mode of vibration is identified by counting the number of 

brightest spots on the image of the cantilever beam. In addition, it is shown that an area of the 

cantilever beam reaches maximum displacement when the number of fringes over that area is 

maximum, because more peaks of the Bessel function will be included as the displacement 

increases. Thus, in order to find the correct resonant frequencies, we need to look for the 

frequency that gives the most fringes at a given vibration mode.   

II.2. Laser Doppler Vibrometer 

A Polytec OFV-502 Laser Doppler Vibrometer (LDV) was used to measure the velocity 

of resonators as a function of time. A LDV is used to measure vibration displacement or velocity 
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of a fixed point. It is based on the Doppler-effect, measuring the frequency shift of back-

scattered light from the vibrating surface. The frequency shift due to the Doppler effect is given 

by 

																																																																							 ஽݂ ൌ 2 ൈ ௩

ఒ
 ,                                                             (36) 

 
where ݒ is the velocity of the moving object and ߣ is the laser wavelength (Polytec, 2011). By 

measuring the Doppler shift, the velocity and displacement of the object can be calculated using 

the wavelength of the laser. 

The optical arrangement of a heterodyne vibrometer is shown in Fig. 24 (Johansmann et 

al., 2005). The laser beam is divided into two beams by a Polarizing Beam Splitter (PBS), one 

being the measurement beam and the other a reference beam.  A Quarter Wave Plate (QWP) 

rotates the polarization of the back-reflected light 90 degrees, then a second PBS guides it to the 

detector. The reference beam goes through an acousto-optic modulator, or Brag Cell (BC) 

inducing a frequency shift onto the reference beam. Finally the two beams are combined and two 

photo detectors (PD) to receive twice the signal power and remove the DC component. If the 

object is stationary, the PD will see only the BC reference frequency ωc. When the object is in 

motion, the PD will detect an increase in frequency when the object moves away from the beam 

and a decrease in frequency when the object moves towards the beam. This method allows not 

only velocity but direction to be determined (Johansmann et al., 2005). Polytec vibrometers are 

capable of attaining a resolution of 2 nm (Polytec, 2011). 
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Figure 24. Schematic of a heterodyne vibrometer (Johansmann et al., 2005). 

 

II.3. MathCad 

Mathcad 15.0 was used for analytical solutions. MathCad is a software package which 

enables engineers to easily perform, document and share calculation and design results. MathCad 

allows variables and equations to be input and solved in an easy manner. This allows for the 

convenient changing of parameters without the hassle of resolving equations. Additionally 

results can be displayed graphically (PTC, 2011). 

II.4. COMSOL 

COMSOL 3.5a was used for designing beams with different geometries, calculating Q-

factor, obtaining temperature and stress distributions etc. COMSOL is a Finite Element Analysis 

(FEA) software package for modeling various physics and engineering problems including 

coupled phenomena such as thermoelasticity (COMSOL Multiphysics, 2011). 

III. Methodology 

Since the Q-factor is comprised of several different contributors, each of these must be 

considered in analyzing the Q-factor of a resonant sensor. Q-factor is comprised of anchor 
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damping, air damping, TED, and surface damping. In general, anchor losses are small as 

compared to other loss mechanisms in the resonator. Air damping is relatively small since these 

micro-cantilever resonators are operated in vacuum. TED is a volumetric phenomenon and is 

most prominent when the dimensions of the cantilever are in microscale. As the size of the 

cantilever approaches the nanoscale, TED becomes less dominant. Surface damping is a surface 

effect and becomes dominant as the ratio of surface area to volume becomes large. As the 

cantilever approaches the nanoscale, surface damping begins to dominate.  

For these reasons it is important to focus on the surface damping effect as the current 

trend is to build smaller and smaller sensors. Many sensors require a coating to function and 

these coatings can have a substantial negative impact of the surfaced damping of the resonators. 

In addition to the effect of surface damping on bare resonators, the effect of coating material and 

thickness is investigated. 

 In order to investigate the impact of surface damping on the Q-factor of uncoated and 

coated beams an Analytical, Computational, and Experimental Solutions methodology was 

carried out. Through a combination of analytical and computational analysis, combined with 

experimental results, the effect of surface damping on the Q-factor was investigated. 

III.1. Sample Selection 

In order to facilitate the experimental testing it was determined the best samples would be 

Atomic Force Microscopy (AFM) probes. These are cantilever beams manufactured in differing 

geometries. Tipless AFM probes were chosen to simplify the analytical and computational 

computations. It was determined through analytical analysis that depending on the geometry, 

differing damping mechanisms can dominate the Q-factor. Silicon was chosen for the material 
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due to its widespread use in the MEMS industry. By keeping the material properties constant, the 

effect of surface damping could better be investigated. 

Individual damping values for uncoated, tipless Silicon AFM probes available from 

Applied Nanostructures were calculated using the manufacturer supplied nominal dimensional 

values. In addition material properties of Silicon were obtained from Granta’s CES EduPack 

2011 software, the dimensions and material properties of the available AFM probes are listed in 

Table 3 (Granta, 2011).  

Table 3. Dimensions of potential samples. 

 

Table 4. Properties of single-crystal silicon. 

 

Equation 20 was used to calculate TED with the values from Table 4. It was found that as 

the surface area to volume ratio became small, TED began to dominate the damping. The Ted is 

plotted as a function of thickness for the probes available from Applied Nanostructures in Fig.26.  
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Note as the thickness increases, the Q-factor decreases, indicating an increase in damping as the 

thickness increases. This makes sense since TED is a volumetric phenomenon and thus increases 

as the ratio of surface area to volume decreases. 

 
Figure 25. Q-factor due to TED plotted as a function of thickness. 

  

Equation 24 was used to calculate anchor losses with the values from Table 3. It was 

found that, similar to TED, as the surface area to volume ratio became small, the anchor losses 

became quite large. The Q-factor associated with anchor damping is shown in Fig. 27, plotted as 

a function of thickness. Note as the thickness increases, the Q-factor decreases, indicated an 

increase in damping due to anchor losses as the thickness increases. This makes sense since for a 

larger cross-sectional area the anchor makes up a larger portion of the cantilever.  
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Figure 26. Q-factor due to anchor loss plotted as a function of thickness. 

 

Equation 25 was used to calculate surface losses with the values from Table 3 along with 

the value of δEDS reported by Hao et al. (2003). It was found that as the surface area to volume 

ratio became large, surface damping became dominant. The Q-factor associated with surface 

damping is shown in Fig. 28, plotted as a function of thickness. Note as the thickness decreases, 

the Q-factor decreases, indicated an increase in damping due to surface losses as the thickness 

decreases. This makes sense since surface damping is a surface phenomenon and thus increases 

as the ratio of surface area to volume increases. 
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Figure 27. Q-factor due to surface damping plotted as a function of thickness. 

 

Using Eq. 10 the expected Q-factor for each probe can be calculated. The Q-factor is 

plotted as a function of thickness in Fig. 29. Note the value of Q-factor for the thickest and 

thinnest beams is smallest, while the maximum value is at a thickness of around 3 microns. For 

this reason, the FORT and SICON probes were chosen for analysis. Additionally, the SHOCON 

probe was chosen because of the large amount of surface damping present in this probe. The 

ACL probe was also chosen due to the large TED and anchor damping predicted to be exhibited 

from this probe. 
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Figure 28. Q-factor plotted as a function of thickness. 

 

In addition to the uncoated probes, coated probes were required for analysis. Aluminum 

is a common coating for AFM probes and is available in different thicknesses. Beams coated on 

both sides and only on one side were chosen for this study and are listed in Table 5. In addition 

to the Aluminum coated beams, it was decided to coat the uncoated beams with an AuPd 

mixture. It was decided to focus on the effect the increased mass had on the Q-factor of the 

beams. The properties of the AuPd mixture and Aluminum are listed in Table 6 and were 

obtained from Granta’s CES EduPack 2011 (Granta, 2011). Note the modulus is similar, but the 

much greater density of the AuPd mixture. 
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Table 5. Dimensions of Al coated beams. 

 

Table 6. Material properties of Al, Au, PD, and AuPd mixture. 

 

III.2. Analytical solution 

 The analytical solutions for TED were carried out using the both the relation proposed by 

Zener and the relation proposed by Lifshitz, Eqs 18 and 20, respectively. The dimensional values 

will be measured and the material properties of Silicon listed in Table 4 will be used. Due to the 

small size of the beam it is not feasible to measure the thickness of every beam. However, the 

thickness can be calculated with the relation 

 

ݐ ൌ ඨ
ఘ൬

మ೑೙ഏಽమ

ഁ೙
మ ൰

మ

ಶ
భమ

 ,                                                               (37) 
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where ߩ is the density, ௡݂ is nth the resonant frequency, ܮ is the length of the beam, ܧis the 

elastic modulus, and ߚ௡ is the nth modal proportionality constant for a fixed-free cantilever beam 

(note this corresponds to the resonant frequency used). 

 In order to insure all resonators were tested at a frequency far away from their 

characteristic damping frequency, the characteristic damping frequency was calculated for each 

beam. The characteristic damping frequency is defined as follows 

଴ܨ ൌ
గ௞

ଶఘ஼೛௧మ
 ,                                                                      (38) 

where ݇ is the thermal conductivity, ߩ is the density, ܥ௣ is the heat capacity, and ݐ is the thickness 

of the cantilever (Pryputniewicz, 2007). TED as a function of relative frequency, actuation 

frequency divided by characteristic damping frequency, is shown below in Fig. 30. TED is 

maximum at the characteristic damping frequency and all tests should be performed far away 

from this frequency in order to avoid biased results.  

 
Figure 29. Q-factor as a function of relative frequency (Pryputniewicz, 2006). 
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The results of the calculations for characteristic damping frequency along with relative 

frequency for the chosen samples assuming actuation in the first bending mode are listed in 

Table 7. Note all values except the ACL sample lie within the 0.0001 to 0.01 range. This 

suggests that TED for the ACL sample  will be quite large.  

Table 7. Characteristic damping frequencies and relative frequencies of selected samples. 

 

Anchor Damping will be calculated using Eq. 24 along with the measured dimensions of 

the beam. All tests will be conducted in a vacuum level of at least 10-4 mbar, so air damping can 

be ignored. Surface damping can be calculated with Eq. 25, assuming δ and Eds are known. In 

our case, for the uncoated beams neither δ nor Eds are known. For these beams we can use the 

experimentally obtained value of Q-factor along with the calculated value of TED and anchor 

damping to calculate Qsurface and δEds utilizing Eqs.10 and 25, respectively. In the case of the 

coated beams, δ is known, so Eds can be calculated. 

III.3. Computational solution 

The analytical equations to calculate the TED-related Q-factor proposed by Zener and 

Lifshitz are derived using a simple rectangular beam model. Although the beam samples used in 

this project can be approximated as a simple rectangular beam, it is still preferable to develop a 

finite element model to analyze the real geometry of the beam as well as to facilitate future 

analysis with various geometries. 
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 In finite element model, the Q-factor can be calculated by using the expression of Q as a  
 
ratio of the real part and the imaginary part of the complex frequency 
 

ܳ ൌ
ଵ

ଶ

|ோ௘ሺఠሻ|

|ூ௠ሺఠሻ|
 .                                                                 (39) 

 
 The complex frequency can be found by solving for the eigenvalues of the multiple  
 
degrees of freedom system (the finite element cantilever beam). In terms of the eigenvalue  
 
ߛ ൌ ݅߱ the Q-factor in Eq. 39 can be rewritten as 
 

ܳ ൌ
ଵ

ଶ

|ூ௠ሺఊሻ|

|ோ௘ሺఊሻ|
 .                                                                    (40) 

 
 According to Gorman (2002), to establish the eigenvalue problem, the coupled 

thermoelastic and heat transfer differential equations need to be obtained. Gorman has derived 

the coupled equations from stress-strain equation for isotropic materials and Fourier’s law for 

heat conduction. 

III.3.1. The coupled thermoelastic and heat transfer equations 

 The constitutive stress-strain relationship for an isotropic thermoelastic solid is (Gorman,  
 
2002) 
 

௜௝ߪ ൌ ௞௟ߝ௜௝௞௟ܥ െ
ఈ∆்

ሺଵିଶఔሻ
 ௜௝,                                                    (41)ߜ

 
where  ߪ௜௝ is the stress tensor, ܥ௜௝௞௟ is the 6x6 stiffness matrix, ߝ௞௟ is the strain tensor, ߙ is the 

thermal expansion coefficient, ∆ܶ is the temperature variation from the initial temperature, ߥ is 

the Poisson ratio, and ߜ௜௝ is the Kronecker delta. By definition, ߜ௜௝ ൌ 1 when i=j, and ߜ௜௝ ൌ 0 

when i≠j. The repeated suffix notations k and l denote the summation over all values of k and l. 

Eq. 41 is for a infinitesimally small stress cube, and can be expanded into simplified matrix form 
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 (42)

 
  

where the first three entries of the stress and strain vectors are normal components, and the last  
 
three are shear components, and λ and μ are Lamé coefficients 
 

                                      λ ൌ
୉

ଵାఔ
ቀ

ఔ

ଵିଶఔ
ቁ and	μ ൌ

୉

ଶሺଵାఔሻ
 .                                                   (43) 

 
By substituting the force balance equation and the strain-displacement relationship into Eq. 42,  
 
we obtain the first of the two coupled equations (Gorman, 2002) 
 

ߩ డమ୳ሬሬԦ

డ௧మ
െ ଶuሬԦ׏ߤ െ ሺλ ൅ μሻ׏ሬሬԦ൫׏ሬሬԦ ∙ uሬԦ൯ ൅ ஑୉

ሺଵିଶఔሻ
ሬሬԦT׏ ൌ 0 ,                                   (44) 

 
where uሬԦ is the displacement vector of a small stress cube in the cantilever beam 
 

    	uሬሬሬԦ ൌ ሺu୶, u୷, u୸ሻ ,                                                                (45) 

 
uሬԦ ൌ ቆ

߲ଶu୶
ଶݔ߲

൅
߲ଶu୶
ଶݕ߲

൅
߲ଶu୶
ଶݖ߲

,
߲ଶu୷
ଶݔ߲

൅
߲ଶu୷
ଶݕ߲

൅
߲ଶu୷
ଶݖ߲

,
߲ଶu୸
ଶݔ߲

൅
߲ଶu୸
ଶݕ߲

൅
߲ଶu୸
ଶݖ߲

ቇ, (46)

 
ሬሬԦ׏ሬሬԦ൫׏ ∙ uሬԦ൯ ൌ gradሺdiv	uሬԦሻ	,                                                   (47) 

 
 

ሬሬԦT׏ ൌ ቀப୘
ப୶
, ப୘
ப୷
, ப୘
ப୸
ቁ.                                                         (48) 

   The second of the two coupled equations is derived from the heat conduction equation at 

a point (x, y, z) in the cantilever beam. Fourier’s law gives 

ܶ ௗௌ

ௗ௧
ൌ  .                                                              (49)	ଶܶ׏݇
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For an isotropic linear thermoelastic solid, the entropy per unit volume is given by (Comsol,  
 
2011) 
 

ܵ ൌ ௣݈݊ܥߩ
்

బ்
൅ ଵߪሺߙ ൅ ଶߪ ൅  ଷሻ .                                                (50)ߪ

 
 Substituting Eq. 49 into Eq. 48 and linearize the resulting equation, and then convert  
 
stress into displacement using strain-displacement relationship, we obtain the second coupled  
 
equation (Gorman, 2002) 

 

ଶܶ׏݇ െ ௣ܥߩ
డ்

డ௧
െ ఈா బ்

ሺଵିଶఔሻ
ሬሬԦ׏ ∙ ቀడ୳

ሬሬԦ

డ௧
ቁ ൌ 0. 

 
 

(51)

Thus we obtained two coupled equations, and they are rewritten as followed 
 

ߩ డమ୳ሬሬԦ

డ௧మ
െ ଶuሬԦ׏ߤ െ ሺλ ൅ μሻ׏ሬሬԦ൫׏ሬሬԦ ∙ uሬԦ൯ ൅ ஑୉

ሺଵିଶఔሻ
ሬሬԦT׏ ൌ 0,                                    (52) 

 

ଶܶ׏݇ െ ௣ܥߩ
డ்

డ௧
െ ఈா బ்

ሺଵିଶఔሻ
ሬሬԦ׏ ∙ ቀడ୳

ሬሬԦ

డ௧
ቁ ൌ 0.                                           (53) 

 Equation 51 is a vector equation and is equivalent to three scalar equations corresponding  
 
to three components of each vector. By assuming that the temperature function and the  
 
displacement function can be separable in terms of position and time, we can bring the  
 
eigenvalue γ into the coupled equations 
 

uሬԦሺݔ, ,ݕ ,ݖ ሻݐ ൌ uሬԦሺx, y, zሻeஓ୲	ܽ݊݀	ܶሺݔ, ,ݕ ,ݖ ሻݐ ൌ ܶሺݔ, ,ݕ                              (54)	ሻeஓ୲.ݖ
 
The eigenvalue can be solved for by using commercial finite element analysis software.  
 

III.3.2. Using COMSOL Multiphysics to solve for the resonant frequencies and Q-factor 

 The problem of calculating the TED-related Q-factor is common, COMSOL has a built in 

function for calculating the Q-factor using the theory mentioned above. The beam model is 

created by using the Damped Eigenfrequency application mode coupled with the Heat Transfer 
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application mode in COMSOL.  Figure 25 shows the boundary conditions used in our beam and 

the material properties in Table 4 were used in the model. 

 

 
Figure 30. Boundary conditions of beam model. 

 . 

III.4. Experimental solution 

The experimental setup used to investigate the beams is shown below in Fig. 31 

(Klempner et al., 2009). The sample is mounted to a 1 inch diameter Al disk with a 

cyanoacrylate adhesive. It is placed inside the vacuum chamber and is mounted to a steel disk 

attached to five piezoelectric actuators driven by a TTi TGA1442 40 MHz Arbitrary Waveform 

Generator. The setup can utilize interchangeable interferometer modules or the LDV. 
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Figure 31. Schematic of measurement setup: (1) Interchangeable Interferometer modules, (2)   

Vacuum chamber, (3) Vacuum pump ( Klempner et al., 2009). 

 

The dimensions of the beams provided to us by the manufacturer are only nominal value, 

and the tolerances associated with them, especially the thickness, make our analytical results less 

accurate. Therefore, we decided to measure the dimensions of the beam ourselves instead of 

using the provided nominal values. Using a microscope and micro-positioner system, we are able 

to measure the dimensions of the beam as shown in Fig. 32. 
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Figure 32. Schematic of cantilever beam. 

 

 We position the beam as parallel to the screen cursor as possible and displace the beam to 

measure its length and widths. The positioner is able to displace the beam with 0.5µm accuracy, 

so we assume a 1µm accuracy in our dimensions measurement (we need to catch 2 edges to get a 

dimensions), providing that the beam’s dimensions are even. The undercut shows up as the inner 

width and outer width of the beam, so we use the average of the two for the width in our 

calculation. Figure 33 shows the setup used for obtaining dimensions. A cantilever beam can be 

seen on the monitor in the middle, on the right is the didital readout from the Nikon 

Measurescope MM-11which is on the left. 

Microscope 
screen cursor 
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Figure 33. The measurement setup used for determining dimensions of the cantilevers. 

III.4.1. Interferometry 

 We need to measure the resonant frequency as accurate as possible to improve the 

uncertainty in our thickness calculation as well as Q-factor calculation. We can achieve a high 

accuracy of the resonant frequency with the Michelson Interferometry system.  As discussed in 

section II.1, the beam’s amplitude of vibration is maximum when the number of fringes is 

maximum. However, as the excitation frequency approaches the resonant frequency, the 

amplitude of the beam can be so high that the beam can be broken, which did happen to us in 

some cases. Thus we need to continue to decrease the excitation voltage amplitude, while at the 

same time adjusting a smaller fraction of a kHz in the function generator to get the highest 

number of fringes again. Using this technique we can obtain resonance to an accuracy of one 

tenth of a Hertz (the limit of the function generator) with the excitation voltage as small as 5mV. 

This technique is illustrated in Fig. 34. 



 
 

65 
 

 
Figure 34. From left to right: maximum fringes obtained at one digit of excitation frequency, 

reduce excitation amplitude, move to next digit, reduce amplitude again. 

III.4.2. Laser Doppler Vibrometry 

To calculate the Q-factor of our samples, a LDV was utilized to perform ringdown tests. 

The LDV is mounted in place of the interferomic module shown in Fig. 31. The test consists of 

vibrating the probe with our piezoelectric shaker actuated by the waveform generator. The laser 

of the LDV is positioned onto the beam. The LDV outputs a Voltage as a function of time 

proportional to velocity.  

It was decided the best location for taking velocity measurements would be the very tip 

of the beams, since the testing would take place in the first bending mode. The location of the 

laser on the beam is shown in Fig. 35 (Appnano, 2012). 

 
Figure 35. Image of a cantilever beam with laser location indicated by circle (Appnano, 2012). 
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To aid in finding the tip of the beam a Pixelink 6.6 Megapixel CCD camera with an 

Edmund Optics 1X telocentric lens was used to locate the base of the beam. The angular 

orientation of LDV head was adjusted to maximize the signal as indicated by the signal level 

gauge on the LDV unit. Once the signal was maximized the beam was moved with an X-Y 

positioner. The edge of the beam could be located because the signal would fall off when the 

laser was no longer on the beam since the flat black surface below the beam did not reflect 

enough of the laser to obtain a signal. This was repeated until the tip of the beam was reached. 

Once the tip of the beam was located the piezoelectric shaker was turned on at a value 

close to the estimated resonant frequency of the beam. The output of the LDV was monitored on 

an Agilent Technologies DS06012A 100 MHz 2 GSa/s oscilloscope and the frequency of the 

signal generator was adjusted until the beam reached resonance. This was determined to be at the 

point of maximum velocity. Once resonance was reached, the signal generator was turned off 

and the output of the LDV was recorded with the oscilloscope at a sample rate ten times the 

actuation frequency of the beam. From this relationship the Q-factor of the beam can be 

calculated as described in the next section. 

There was concern over the effect that the position of the laser on the beam would have 

on the results of the experiments. Since a range of angles of the head relative to the beam will 

saturate the signal meter on the LDV, there was no way to insure the angle would be the same for 

every test. Additionally the laser cannot be placed exactly on the tip of the beam, but 

approximately on the tip. In order to investigate these variables, a beam was tested under normal 

conditions to get a baseline. The test was repeated after moving the laser 25% of the length of the 

beam toward the base and then again after moving the beam 50% of the length of the beam 

towards the base.  
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The beam was then reset to the baseline position and the angle of the LDV head was 

adjusted. The angle was increased to the maximum value in one direction to the point just before 

the signal was lost and the test run. Following this the head was adjusted on an axis 

perpendicular to the first to the point just before the signal was lost. Additionally, since the test is 

being repeated under identical test conditions, these results can be used as a measure of precision 

of the experimental setup. 

Another variable worth investigating is the frequency at which the test is performed. The 

testing is performed at the resonant frequency of the cantilever. Theoretically, there are an 

infinite number of resonant frequencies of the beam, however we are limited to the first six or 

seven modes due to the limitations of our equipment. The most convenient mode to test is the 

first, but to determine if this variable was significant, seven resonant frequencies were tested on a 

single beam under similar test conditions. The mode shapes were further investigated with 

Michelson interferometry. 

In order to eliminate the effect of air damping on the Q-factor of the beams, all tests were 

conducted in a vacuum greater than 10-5 mbar. In order to insure that the air damping was 

negligible, tests were conducted on a beam at pressures ranging from atmospheric to 6.3 x 10-6 

mbar. 

III.4.3. Extracting Q-factor from the ring-down test 

 The LDV data of the decaying velocity of the beam can be used to extract the damping  
 
ratio, which is directly related to the Q-factor. The equation for the decaying velocity is 
 

v ൌ V଴eି஖ன୲ ,                                                                (55) 
 
where V଴ is the initial velocity, ζ is the damping ratio, and ω is the angular frequency (rad/s). To  
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extract ζ, we need to generate the envelope curve of the decaying data.  Thus we decided to  
 
import the data into MATLAB and run an algorithm to record all the positive peak data points  
 
and fit an exponential curve to those positive peak data points. Please see Appendix II. for the  
 
MATLAB algorithm. The fitting gave us two parameters p1 and p2 of the exponential equation 
 

peaks ൌ pଵe୮మ୲ .                                                        (56) 
 
 The equation is plotted with the original decaying data, as shown in Fig. 36, to verify the 

accuracy of the obtained p1 and p2. It is not unusual that the obtained p1 and p2 does not yield 

an accurate envelope curve. The reason we identified is that the data recorded may be too early 

that they include the time before the decaying happens or too late that they include mainly the 

noise. Therefore, we need to trim the raw data that we obtain from the oscilloscope until p1 and 

p2 yield the most accurate envelope curve. The region in the recorded data that we usually trim is 

shown in Fig. 36.  An example of a final curve fitting is shown in Fig. 37. 

 

 
Figure 36. Region of ring-down curve used for analysis. 
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Figure 37. Ringdown curve shown with curve-fit. 

 

Since we excited all the beams at a known forced frequency (their first resonant 

frequency), we can back-calculate the damping ratio 

ζ ൌ െ୮మ
ன

 .                                                                     (57) 

 Here we have assumed that after switching off the excitation signal, the beam will  
 
continue to vibrate at the same frequency as the excitation frequency. This may not be always  
 
accurate since the damping can change the frequency of a freely vibrating beam. However, we  
 
have verified our assumption by running a Fast Fourier Transform (FFT) of the decaying data  
 
and the peak of the FFT curve is right at the excitation frequency. The Q-factor is calculated  
 
from the damping ration by the equation 
 

Q ൌ ଵ

ଶ஖
 .                                                                           (58) 

 

III.5. Uncertainty analysis 

In order to determine the uncertainty of the results of this project, Root Sum of the  

Squares (RSS) uncertainty analysis will be conducted. The process begins by identifying the  
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phenomenological equation. The uncertainty can then be calculated as follows: 

 

ܳߜ ൌ ට∑ ቀడொ
డ௩೔

௜ቁݒߜ
ଶ

௡
௜ୀଵ ,                                                         (59) 

 
where ܳ is the phenomenological equation consisting of n variables, ݒ௜is the ݅th variable of the  
 
phenomenological equation, and ݒߜ௜ is the uncertainty of the ݅th variable. 

IV. Results 

IV.1. LDV precision 

The results of the laser position study are displayed in Table 8. The sample was an 

uncoated SHOCON beam and the tests were done with the same pressure, amplitude, and 

frequency. Position one corresponds to the baseline position. Positions two and three are at 

locations laser 25% of the length of the beam toward the base and 50% of the length of the beam 

towards the base, respectively. Positions four and five correspond to the angles just before the 

signal was lost. The mean value of Q-factor was determined to be 44,824. The standard deviation 

is 1,908 or 4.3% of the mean Q-factor. The precision of our experimental measurements can be 

considered to be 4.3 %. 

Table 8. Results from lower position study. 
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The results of the frequency investigation are shown in Table 9. The Q-factor was 

calculated for the first seven modes of an uncoated SICON beam. Note this beam was soaked in 

acetone in order to remove it from the mounting disk. When retested the Q-factor was drastically 

reduced. Investigation revealed a layer of glue had beam deposited on the surface of the beam as 

the acetone evaporated resulting in increased damping. Although additional damping is present 

in this beam, the results of this study on the effect of mode on the Q-factor can still be considered 

reliable. The mean value of Q-factor was calculated to be 13,706 with a standard deviation of 

3,265. This is a relatively high value, however note the extremely low Q-value for the seventh 

mode. The frequency is getting closer to the characteristic damping frequency at this point, the 

relative frequency for the seventh mode is 0.02, which explains the higher TED in this mode. 

When the seventh mode data point is ignored, the standard deviation is 1,277, a much more 

reasonable value. Considering this, it was decided to conduct the remaining tests in the first 

bending mode.  

Table 9. Results of mode study. 
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The results for the resonant frequency obtained from LDV were also compared to the 

results obtained from Michelson interferometry. The results are shown in Table 10. The 

correlation was excellent, not the small percentage difference between the two methods.  

Table 10. Resonant frequencies obtained from Michelson Interferometry and LDV. 

 

The results of the mode study for the SICON beam obtained from Michelson 

interferometry are shown in Fig. 38. In the image of the first mode, the relative size of the 

distance between the fringes coincides with a displacement from the reference plane. In this case, 

the distance between fringes decreases steadily from the base towards the tip of the beam, 

indicating the first bending mode. In the remaining images, the fringes correlate to areas of the 

beam displaced from the reference plane. The white areas indicates areas on the reference plane 

and are the nodes. Note the third mode has a combination of bending and torsion. This is 

assumed to arise due to a slight non-symmetry in the beam, causing a torsional mode and a 

bending mode to fall within close proximity to each other in the frequency range. 
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Figure 38. Images of fringe patterns obtained from Michelson Interferometry. 

 

The results of the air pressure study are shown below in Table 11. Note the large effect 

air damping has on the Q-factor at atmospheric pressure. The effect of air damping gradually 

decreases until it becomes negligible at 6.3 x 10-6 mbar. 
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Table 11. Results of air damping study. 

 

The results are displayed graphically in Fig. 39. The three regions of air damping are 

noticeable in this plot, the viscous damping region from to 10 mbar to 1 bar, the molecular 

damping region, from 10-4 mbar to 10 mbar, and the intrinsic region below 10-4 mbar. These data 

illustrate that air damping is negligible as long as the air pressure is below 10-5 mbar.  
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Figure 39. Q-factor plotted as a function of air pressure. 

 
 

The resonant frequency is also affected by the air pressure. The resonant frequency as a 

function of air pressure is shown in Fig. 40. Note that there is a large effect above 10 mbar, 

however below 10 mbar there is little effect on the resonant frequency. 
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Figure 40. Resonant frequency as a function of air pressure. 

 

 

IV.2. Analytical results 

The results of the analytical calculations for individual contributions to Q-factor are listed 

in Table 12 along with measured values of width, length, and resonant frequency. Note the 

thickness was calculated with Eq. 37 using the resonant frequency along with the dimensions in 

Table 12 and the properties of Silicon listed in Table 4.  

 

 

 

 

 



 
 

77 
 

Table 12. Analytical results. 

 

The Q-factor related to TED was calculated utilyzing both Eqs 18 and 20, respectivly. 

The results are very similar, with the Zener equation slightly underpredicting the value of Q-

factor slightly in most instances. The difference however was only 1.3 %. 

The effect of TED appears to decrease with decreasing dimensions of the beams. The Q-

factor related to TED was plotted as a function of the surface area to volume ratio in Fig. 41. The 

data was plotted in two groups based on length, the first with a length of about 450 µm and the 

second with a length of around 225 µm. Note the strong relationship between the surface area to 

volume ratio and Ted. As the ratio increases, the effect of TED becomes insignificant. Notice the 

excellent fit of the trendline and the nonlinear behavior of the TED with a change in the surface 
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area to volume ratio. Also, as the length of the cantilever beam becomes longer the data points 

are shifted to the left. This suggests that increasing the length of the cantilever causes the effect 

of increasing the surface area to volume ratio to become more pronounced.  

 
Figure 41. Q-factor related to TED vs. surface area to volume ratio. 

  

Also note there is a size effect on the anchor damping of the samples. In order to see the 

effect the geometry has on anchor damping, the Q-factor related to anchor damping was plotted 

as a function of the thickness to length ratio in Fig. 42. Note the strong nonlinear relationship 

between the anchor damping and the thickness to length ratio. As the thickness to length ratio 

increases, the anchor damping becomes significant. This indicates that a longer, thinner beam 

will have less damping due to anchor losses.  
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Figure 42. Q-factor related to anchor damping vs. thickness to length ratio. 

IV.3. Computational results 

Thermoelastic damping and resonate frequencies for different beams are simulated with 

COMSOL. The thickness of each beam is obtained from Eq. 37  using experimental resonant 

frequency. The other dimensions for each beam are from measurements using optical 

microscopy.  Figure 44 shows displacement of  SICON vibrating at different modes. The black 

and white images are from experimentation while the color images are from simulations. As Fig. 

43 shows, the red area represents the maximum displacement while the blue area represents the 

minimum displacement within each beam.  

 

Figure 43. Correspondence of color to displacement in COMSOL results. 
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Figure 44. Vibrating SICON at different modes along with computational results. 
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Experimental result match computational result at each mode expect at the 3rd mode, 

where there is torsion in the experimental result. This torsion may be caused by non-symmetry 

over the width in the beam. However, it is assumed to be symmetric in computational modeling.  

 

 
Figure 45. Computational results for samples at their first mode. 

 

 

Table 13. Results of computational study. 
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Table 14. Comparison of analytical to computational results for SICON sample. 

 

Table 13 compares resonant frequencies from computational and experimental methods, 

and Q-factors in terms of TED from computational and analytical methods. The computational 

results for displacements along the beams are pictured in Fig. 45. For SHOCON and the 2 µm x 

40 µm x 450 µm beam, Q-factors are very close for both methods. However, Q-factors are quite 

different for the other beams. It is because these beams are not rectangular in shape as assumed 

in the analytical analysis, but have different widths at the top and at the bottom. In analytical 

method, beams are assumed to be prismatic beams, therefore, the Q-factors are overestimated. 

This also explains the difference of Q-factor from both methods in Table 14. In Table 14, 

resonant frequencies for each beam from computational and experimental methods are not very 

close to each other. This difference may be explained by the assumptions made in computational 

method, for example, symmetry of the beam over its width. 

IV.4. Experimental results 

The measured Q-factors for the uncoated beams ordered from AppNano are listed in 

Table 15 together with the results for other beams. Again, the uncoated beams are SICON, 

SHOCON, FORT and ACL. It should be noted that, although the beams are labeled uncoated, 

the surfaces of these beams are covered by a layer of Silicon oxide whenever they are exposed to 

the air. This Silicon oxide layer, having an amorphous structure, also has a detrimental effect on 

the Q-factor of the beam similar to the metal coating layers. 

 From Table 15, we can see that the measured Q-factors for the beams SICON, SHOCON 

are fairly consistent. The variation in the Q-factors is partially due to the inevitable variation in 
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the beams dimensions and surface conditions. The FORT type has an outlier, with a value for Q-

factor of 31,680, but we could not come up with a reasonable explanation for this variation. 

Unfortunately, 3 out of 4 ACL beams were damaged, the thickest among the uncoated beams, so 

we only have one data point for this type of beam. 

Table 15. Experimental results. 

 

 

Ignoring these data points, the experimental data agrees with the theoretical calculations 

mentioned previously. To illustrate this, the Q-factor as a function of thickness was plotted for 

the experimental values along with the theoretical values in Fig. 46. In this figure, the black dots 

are the theoretical values and the red X’s represent the experimental results. Note the SICON, 

FORT, and ACL beams are all shifted to the right. This is due to the difference between the 

actual thickness and the nominal thickness for these beams. Additionally, the theoretical data 
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points are all lower than the experimental. This is due to the estimation used for the value of 

δEds in Eq. 25. 

 
Figure 46. Predicted analytical results plotted with experimental results based on original 

assumptions. 

 

The theoretical values were recalculated with the actual dimensions of the beam along 

with the value of δEds in Table 15. The Q-factor as a function of thickness was plotted for the 

experimental values along with the newly calculated theoretical values in Fig. 47. As in Fig. 46, 

the black dots are the theoretical values and the red X’s represent the experimental results. Note 

there is a better agreement between the theoretical and the experimental results. 
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Figure 47. Predicted analytical results plotted with experimental results utilizing actual beam 

dimensions and δEds from Table 15.based on original assumptions. 

 

In order to better understand the effect geometry has on surface damping, the Q-factor 

related to surface damping is plotted in Fig. 48 as a function of surface area to volume ratio. The 

surface damping increases linearly with the surface area to volume ratio. 
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Figure 48. Q-factor related to surface damping plotted vs. surface to volume ratio. 

 

The results for the calculation of the dissipation term for surface damping are listed in 

Table 16. For the uncoated beams, the dissipation term, Eds, could not be calculated because it is 

a function of the absorbate layer thickness layer. The thickness of this layer is unknown, 

however a value can be calculated with the thickness of this layer included in this term. This 

term is δEds and it has units of kg/s2. There were two data points that were considered outliers 

and eliminated, these were the FORT 2 sample and the ACL 1 sample. Ignoring these data points 

the mean value of  δEds is 0.488 kg/s2. The standard deviation of these data is 0.066 kg/s2, or 

14%.  
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Table 16. Mean and standard deviation for Eds . 

 

 For the coated samples, Eds could be calculated because the coating thickness was known. 

The mean value of Eds for the Al coated beams was 150.2 MPa. The standard deviation in these 

data is 21.3 MPa, 14 % of the mean. The value of Eds for the Au/Pd coated beams was 

significantly higher than that for the Al coated beams, with a mean value of 291.7 MPa. The 

standard deviation of these data is 99.3. At 34% of the mean, this is a relatively large standard 

deviation. This large standard deviation is due to the large level of uncertainty in the coating 

thickness. 

Refering to Table 6, note that the Young’s modulus of AL is similar to the Young’s 

modulus of the AuPd mixture. In contrast the density of the AuPd is over seven times greater 

than the density of the Al. Eds for the AuPd mixture was twice as large as for the Al coating, 

qualitatively it can be seen that the mass properties of the coating have a large effect on damping 

in this case.  

IV.5. Effect of geometry on total Q-factor 

 With the value of δEds known for uncoated single-crystal Silicon and the analytical 

models verified, a further investigation into the effect of geometry on the Q-factor can be carried 
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out. In respect to geometry alone Q-factor is a function of three variable, thickness, width , and 

length. It is difficult to graphically illustrate a function of three variables. In order to graphically 

illistrate the relationship between geometry and Q-factor, the following is substituted into Eq. 10 

ܮ ൌ  (60)                                                                   ,	ݓ݊
 
where ݊ is the length to width aspect ratio. With this substitution, Q-factor can be plotted as a  
 
function of thickness and width for:  

݊ ൌ 1,2,3,… 

 Using the properties for single-crystal Silicon from Table 4, the experimentally derived 

value of δEds from Table 16, and ݊ ൌ 5, Q-factor as a function of width and thickness is plotted 

in Fig.49. Note there is a maximum Q-factor of around 250,000 on this plot. 

 

Figure 49. Q-factor as a function of thickness and width for n = 5 for a 4.5 µm x 100 µm x 500 
µm beam. 
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In order to further investigate the effect of length, Q-factor as a function of thickness and 

width, with n = 10, is plotted in Fig. 50. Note the maximum values have shifted to the left, 

indicating a thicker beam is required for maximum Q-factor. Note the maximum value of Q-

factor is about 400,000 on this plot, which corresponds to a beam 7 µm x 100 µm x 1000 µm.   

 
Figure 50. Q-factor as a function of thickness and width for n = 10. 

 

Q-factor as a function of thickness and width, with n = 20,  was plotted in Fig. 51 Note 

the maximum values have shifted even farther to the left, indicating an even thicker beam is 

required for maximum Q-factor. Note the maximum value of Q-factor about 700,000 on this 
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plot, which corresponds to a beam 10 µm x 100 µm x 2000 µm.  This beam is into the millimeter 

level for length and there will come a point where the length to thickness ratio is so large the 

beam can no longer support its own weight. 

 
Figure 51. Q-factor as a function of thickness and width for n = 20. 

 

IV.6. Uncertainty 

A detailed uncertainty analysis was performed using the values listed in Table 17. The 

results of the uncertainty analysis are listed as a percentage of the parameter value in Table 18, 

the actual values are listed in Appendix I. The technique of calculating thickness using the 

measured resonant frequency of beam proved to be quite effective. The uncertainty of the 
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thickness using this technique was only about 2.3%. The uncertainty in the anchor damping was 

reasonable at about 7%.  

Table 17. Values used for uncertainty calculations. 

 

The TED damping uncertainty was relatively high at about 13%. Comparing the Lifshitz 

equation to Zener’s equation, the results obtained using the Lifshitz equation suffered slightly 

less uncertainty. Upon further inspection, the largest contributor to this uncertainty is the value 

for coefficient of thermal expansion which accounts for 33.4% of the uncertainty. The next 

largest contributor was thickness, which accounted for 25.3% of the overall uncertainty. This is 

despite the fact that the uncertainty in the thickness was only 2.3%. This illustrates the large 

effect thickness has on TED.  The other large contributors were thermal conductivity and 

Young’s modulus, accounting for 22.1 % and 18.4% of the overall uncertainty, respectively. 
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Table 18. Results of uncertainty analysis. 

 

There was a large amount of uncertainty in calculations involving the coatings. The 

uncertainty in the calculation of the dissipation term for Aluminum was 20.9%. This was due to 

the uncertainty in the coating thickness, which accounted for 91.3% of the overall uncertainty of 

the calculation. This corresponds well with the standard deviation in the calculation of 

dissipation term for Aluminum which was around 15%. 

There was a larger amount of uncertainty in the calculation of the dissipation term for the 

Gold and Palladium mixture, which had an uncertainty of between 36.2% and 41.3%. The 

uncertainty in coating thickness accounted for 97.1% of the overall uncertainty. This was due to 
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an even larger uncertainty in the coating thickness due to the application process of the Gold and 

Palladium mixture.  This uncertainty explains the standard deviation in the experimental results 

for the calculation of the dissipation term for the Gold and Palladium mixture which was around 

34%. 

V. Conclusions 

In conclusion, the importance of geometry has been clearly illustrated. There is a 

geometry which minimizes the contributions of all forms of damping in combination and thus 

leads to maximum Q-factor. For maximum Q-factor, Fig. 50 clearly illustrates the optimum 

geometry which should be used. Additionally, at this point TED becomes much more 

pronounced and a material should be chosen which would minimize TED based on Fig. 17. In 

the case of the nanoscale sensor, surface damping becomes the dominant loss mechanism and 

therefore must be minimized. In this size range, absorbates on the surface must be minimized. 

Additionally, if a coating is required, one with minimum density and stiffness should be chosen.
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Appendix II. Matlab code 
 

%% Calculate damping 
% 10/21/2011 
%% 
% Get date from excel file 
clear; clc;close all; 
[decay]=xlsread(''); 
[rdecay,cdecay]=size(decay); 
volt=decay(3:rdecay,2);time=decay(3:rdecay,1);f=decay(3,3); 
volt_avg=mean(volt); 
volt=volt-volt_avg;%shift the curve to center about x axis 
figure(1) 
plot(time,volt);xlabel('time');ylabel('volt');title('decaying curve'); 
hold on; 
%% Find peaks and calculate Q 
%% find peaks  
peaks=[0];ptime=[0]; 
for i=2:(size(decay)-4) %check with rdecay 
    if volt(i-1,1)<=volt(i,1)&&volt(i,1)>=volt(i+1,1)&&volt(i,1)>0 
        peaks=[peaks; volt(i,1)]; 
        ptime=[ptime; time(i,1)]; 
    end 
end 
peaks(1)=[];ptime(1)=[]; 
plot(ptime, peaks,'r');hold on 
%% refine peak (execute this cell until rpeaks stops decreasing) 
clear j 
[rpeaks, cpeaks]=size(peaks); 
iteration=0; 
%while iteration<1000; 
for j=2:rpeaks-1 
    [rpeaks, cpeaks]=size(peaks); 
    if j<rpeaks 
        if peaks(j-1)>peaks(j)&&peaks(j)<=peaks(j+1) 
            peaks(j)=[]; 
            ptime(j)=[]; 
        end 
    end 
%end 
iteration=iteration+1; 
end 
%% 
 plot(ptime, peaks,'g'); hold on 
  
  
 % [f, spectrum, peakFreq]=fftVib(volt, time); 
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 %% 
 %frequency  
 %determine time between peaks 
 P=zeros(P); 
 for k=1:numel(ptime)-1; 
     P(k)=ptime(k,1)-ptime(k+1,1); 
 end 
f0=abs(1/mean(P)); 
 
  
%% calculate Q 
peaks_ln=log(peaks); 
p=polyfit(ptime,peaks_ln,1); 
fit=exp(p(2))*exp(p(1)*ptime); 
plot(ptime,fit,'black'); 
%damping ratio 
w1=f*2*pi;%Hz, first mode 
z1=-p(1)/w1; 
Q1=1/(2*z1) 
 
 

Appendix III. MathCad calculations 
 

The following analysis is done based the assumption that the resonance frequency = frequency of 

oscillation  
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 Input 

 mode coefficients for rectangular cantilever free-fixed 

1 1.875  2 4.694  3 7.855  4 10.996  5 14.137  6 17.279  

Nominal Dimensions 

30nm Al Coated SHOCUN SICON FORT 

L0 450m  L1 225m  L2 450m  L3 225m  

t0 2 m  t1 1 m  t2 2.5 m  t3 3 m  

w0 40m  w1 43m  w2 40m  w3 30m  

ACT ACL ACST SiN SiN 

L4 125m  L5 225m  L6 150m  L7 50m  L8 200m  

t4 4.5 m  t5 8.5 m  t6 2.5 m  t7 0.2 m  t8 0.6 m  

w4 35m  w5 40m  w6 25m  w7 35m  w8 40m  

Material Properties 

Properties for Si Properties for SiN Uncertainties for Properties for Si 

E0 165.6GPa  EN 290GPa  T0 273 25( )K  
 0.1

m

m K
  

L 1m  
0 2330kg m

3
  N 3200kg m

3
  

 0.03  
t 0.025m  

0 2.6
m

m K
  N 2.8

m

m K
  

w 1m  cp 23
J

kg K
  

 0.27   0.27  E 6.3GPa  
k 10

W

m K
  

cp.0 691
J

kg K
  cp.N 691

J

kg K
   50 kg m

3
  

T 1K  
 0.0005  

k0 160
W

m K
  kN 26

W

m K
  

f 0.5 Hz  

M 28.97 10
3

 kg  molecular mass of air 

R 8.314 10
3


J

K
  Gas constant 

Measured Values 

Air pressure in Pascals for air damping calculations 

P1 1 10
5

 Pa  P4 1.2 10
2

 Pa  P7 1.4 Pa  P10 2.5 10
3

 Pa  

P2 8.6 10
3

 Pa  P5 1 10
1

 Pa  P8 1.6 10
2

 Pa  P11 6.3 10
4

 Pa  

P3 1 10
3

 Pa  P6 4 Pa  P9 5.4 10
3

 Pa  
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Dimensions 
Beam 1A SICON Beam 1B SHOCON Beam 1C FORT 

L10 446 m  measured (avg) L11 231 m  measured (avg) L12 213.5 m  measured (avg) 

w10 45.8m  measured (avg) w11 43.4m  measured  w12 29.5m  measured (avg) 

f10 11049.8 Hz  fn measured  f11 25730 Hz  fn measured  f12 77967 Hz  fn measured  

Q10 103690  Q11 55000  Q12 105170  

QAu10 7354  QAu11 2733  QAu12 7455  

Beam 1E 5 nm Al coating Beam 2A SICON Beam 2B SHOCON 

L13 447 m  measured (avg) L14 447 m  measured (avg) L15 229 m  measured (avg) 

w13 45m  measured (avg) w14 45m  measured (avg) w15 44.5m  measured  

f13 13469.21 Hz  fn measured  f14 10778.3 Hz  fn measured  f15 23987 Hz  fn measured  

Q13 63857  Q14 111850  Q15 57627  

QAu13 7758  

Beam 2C FORT Beam 2E 10 nm Al coating Beam 3A SICON 

L16 213 m  measured (avg) L9 451.5 m  measured (avg) L17 446 m  measured (avg) 

w16 28.5m  measured (avg) w9 46m  measured (avg) w17 44.5m  measured (avg) 

f16 67085.2 Hz  fn measured  f9 14210 Hz  fn measured  f17 10609.7 Hz  fn measured  

Q16 31680  Q9 39704  Q17 99550  

Beam 3B SHOCON Beam 3D ACL Beam 3E 20 nm Al coating 

L18 233.3 m  measured (avg) L19 232 m  measured (avg) L20 448 m  measured (avg) 

w18 42.5m  measured  w19 40.5m  measured (avg) w20 46m  measured (avg) 

f18 25912 Hz  fn measured  f19 169209.5 Hz  fn measured  f20 14713.5 Hz  fn measured  

Q18 50706  Q19 32540  Q20 21735  

Beam 4A 5 nm x 2 Al coating Beam 4B SHOCON Beam 4C FORT 

L21 449.5 m  measured (avg) L22 231.5 m  measured (avg) L23 214.3 m  measured (avg) 

w21 48.3m  measured (avg) w22 43.5m  measured (avg) w23 30m  measured (avg) 

f21 15428.6 Hz  fn measured  f22 24010.35 Hz  fn measured  f23 77235.3 Hz  fn measured  

Q21 43235  Q22 44154  Q23 108340  

QAu21 7216  QAu22 2185  QAu23 5196  
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Beam 4E 30 nm x 2 Al coating Beam 3C FORT  5 nm  Al coating 02-1 

L24 450.8 m  measured (avg) L25 214.5 m  measured (avg) L26 449.8 m  measured (avg) 

w24 45.8m  measured (avg) w25 30.5m  measured (avg) w26 47m  measured (avg) 

f24 11056.5 Hz  fn measured  f25 78785.1 Hz  fn measured  f26 13931 Hz  fn measured  

Q24 3686  Q25 120270  Q26 78000  

QAu24 2755  

 5 nm x 2  Al coating 01-2 10 nm  Al coating 02-3 10 nm  Al coating 01-3 

L27 451 m  measured (avg) L28 449.5 m  measured (avg) L29 449 m  measured (avg) 

w27 47.5m  measured (avg) w28 47.5m  measured (avg) w29 48m  measured (avg) 

f27 13736 Hz  fn measured  f28 14452 Hz  fn measured  f29 14730 Hz  fn measured  

Q27 40000  Q28 39000  Q29 38600  

20 nm  Al coating 02-4 20 nm  Al coating 01-4 30 nm x 2  Al coating 01-5 

L30 449.5 m  measured (avg) L31 448.5 m  measured (avg) L32 450.75 m  measured (avg) 

w30 46.25m  measured (avg) w31 46.25m  measured (avg) w32 46.75m  measured (avg) 

f30 14450 Hz  fn measured  f31 13596 Hz  fn measured  f32 11675 Hz  fn measured  

Q30 24500  Q31 22000  Q32 4800  

30 nm x 2  Al coating 02-5 

L33 451.5 m  measured (avg) 

w33 46m  measured (avg) 

f33 11628 Hz  fn measured  

Q33 4680  
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Preliminary Calculations 

I w t( )
1

12
w t

3
  A w t( ) w t  Rectangular Cantilever Beam 

Thickness Calculation 

rectangular  
t E I  w L  f( )


f 2  L

2



2









2













E

12















1

2

  

w119 24.5 m  
t f L  E w1 w2 ( ) f

2 L
2


2 E w1

2
4 w1 w2 w2

2
 

18  w1 w2( )
2




  trapezoid 
w219 56.5m  

t19 t f19 L19 1 E0 w119 w219 0  6.869 10
6

 m  ACL assuming trapezoidal shape 

t9 t E0 I 0 w9 L9 1 f9  2.127 10
6

 m  Beam 2E 10 nm Al coating 

t10 t E0 I 0 w10 L10 1 f10  1.614 10
6

 m  Beam 1A SICON 

t11 t E0 I 0 w11 L11 1 f11  1.008 10
6

 m  Beam 1B SHOCON 

t12 t E0 I 0 w12 L12 1 f12  2.61 10
6

 m  Beam 1C FORT 

t13 t E0 I 0 w13 L13 1 f13  1.976 10
6

 m  Beam 1E 5 nm Al coating 

t14 t E0 I 0 w14 L14 1 f14  1.582 10
6

 m  Beam 2A SICON 

t15 t E0 I 0 w15 L15 1 f15  9.238 10
7

 m  Beam 2B SHOCON 

t16 t E0 I 0 w16 L16 1 f16  2.235 10
6

 m  Beam 2C FORT 

t17 t E0 I 0 w17 L17 1 f17  1.55 10
6

 m  Beam 3A SICON 

t18 t E0 I 0 w18 L18 1 f18  1.036 10
6

 m  Beam 3B SHOCON 

t19 t E0 I 0 w19 L19 1 f19  6.688 10
6

 m  Beam 3D ACL 

t20 t E0 I 0 w20 L20 1 f20  2.169 10
6

 m  Beam 3E 20 nm Al coating 
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t21 t E0 I 0 w21 L21 1 f21  2.289 10

6
 m  Beam 4A 5 nm x 2 Al coating 

t22 t E0 I 0 w22 L22 1 f22  9.45 10
7

 m  Beam 4B SHOCON 

t23 t E0 I 0 w23 L23 1 f23  2.605 10
6

 m  Beam 4C FORT 

t24 t E0 I 0 w24 L24 1 f24  1.65 10
6

 m  Beam 4E 30 nm x 2 Al coating 

t25 t E0 I 0 w25 L25 1 f25  2.662 10
6

 m  Beam 3C FORT 

t26 t E0 I 0 w26 L26 1 f26  2.07 10
6

 m   5 nm  Al coating 26 

t27 t E0 I 0 w27 L27 1 f27  2.052 10
6

 m   5 nm x 2  Al coating 27 

t28 t E0 I 0 w28 L28 1 f28  2.144 10
6

 m  10 nm  Al coating 28 

t29 t E0 I 0 w29 L29 1 f29  2.181 10
6

 m  10 nm  Al coating 29 

t30 t E0 I 0 w30 L30 1 f30  2.144 10
6

 m  20 nm  Al coating 30 

t31 t E0 I 0 w31 L31 1 f31  2.008 10
6

 m  20 nm  Al coating 31 

t32 t E0 I 0 w32 L32 1 f32  1.742 10
6

 m  
30 nm x 2  Al coating 32 

t33 t E0 I 0 w33 L33 1 f33  1.741 10
6

 m  30 nm x 2  Al coating 33 

Uncertainty in thickness 

t E  w L  f E  w L  f( )
E

t E I  w L  f( )d

d









E







2


t E I  w L  f( )d

d

















2





w
t E I  w L  f( )d

d









w







2





L
t E I  w L  f( )d

d









L







2






t E I  w L  f( )d

d

















2





f
t E I  w L  f( )d

d









f







2









































1

2

  
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t9 t E0 0 w9 L9 1 f9 E  w L  f  4.742 10
8

 m  Beam 2E 10 nm Al coating 

t10 t E0 0 w10 L10 1 f10 E  w L  f  3.6 10
8

 m  Beam 1A SICON 

t11 t E0 0 w11 L11 1 f11 E  w L  f  2.369 10
8

 m  Beam 1B SHOCON 

t12 t E0 0 w12 L12 1 f12 E  w L  f  6.204 10
8

 m  Beam 1C FORT 

t13 t E0 0 w13 L13 1 f13 E  w L  f  4.407 10
8

 m  Beam 1E 5 nm Al coating 

t14 t E0 0 w14 L14 1 f14 E  w L  f  3.527 10
8

 m  Beam 2A SICON 

t15 t E0 0 w15 L15 1 f15 E  w L  f  2.173 10
8

 m  Beam 2B SHOCON 

t16 t E0 0 w16 L16 1 f16 E  w L  f  5.315 10
8

 m  Beam 2C FORT 

t17 t E0 0 w17 L17 1 f17 E  w L  f  3.456 10
8

 m  Beam 3A SICON 

t18 t E0 0 w18 L18 1 f18 E  w L  f  2.431 10
8

 m  Beam 3B SHOCON 

t19 t E0 0 w19 L19 1 f19 E  w L  f  1.571 10
7

 m  Beam 3D ACL 

t20 t E0 0 w20 L20 1 f20 E  w L  f  4.835 10
8

 m  Beam 3E 20 nm Al coating 

t21 t E0 0 w21 L21 1 f21 E  w L  f  5.104 10
8

 m  Beam 4A 5 nm x 2 Al coating 

t22 t E0 0 w22 L22 1 f22 E  w L  f  2.22 10
8

 m  Beam 4B SHOCON 

t23 t E0 0 w23 L23 1 f23 E  w L  f  6.188 10
8

 m  Beam 4C FORT 

t24 t E0 0 w24 L24 1 f24 E  w L  f  3.678 10
8

 m  Beam 4E 30 nm x 2 Al coating 

t25 t E0 0 w25 L25 1 f25 E  w L  f  6.323 10
8

 m  Beam 3C FORT 

t26 t E0 0 w26 L26 1 f26 E  w L  f  4.614 10
8

 m   5 nm  Al coating 26 

t27 t E0 0 w27 L27 1 f27 E  w L  f  4.574 10
8

 m   5 nm x 2  Al coating 27 

t28 t E0 0 w28 L28 1 f28 E  w L  f  4.781 10
8

 m  10 nm  Al coating 28 

t29 t E0 0 w29 L29 1 f29 E  w L  f  4.862 10
8

 m  10 nm  Al coating 29 

t30 t E0 0 w30 L30 1 f30 E  w L  f  4.78 10
8

 m  20 nm  Al coating 30 

t31 t E0 0 w31 L31 1 f31 E  w L  f  4.478 10
8

 m  20 nm  Al coating 31 

t32 t E0 0 w32 L32 1 f32 E  w L  f  3.883 10
8

 m  30 nm x 2  Al coating 32 

t33 t E0 0 w33 L33 1 f33 E  w L  f  3.88 10
8

 m  30 nm x 2  Al coating 33 



112 
 

 
Calculated Resonant Frequencies 

fn1 E  w t L( )
1

2

2  L
2

E I w t( )

 A w t( )
  fn1 E0 0 w0 t0 L0  13.44898 KHz

fn2 E  w t L( )
2

2

2  L
2

E I w t( )

 A w t( )
  fn2 E0 0 w0 t0 L0  84.28938 KHz

fn3 E  w t L( )
3

2

2  L
2

E I w t( )

 A w t( )
  fn3 E0 0 w0 t0 L0  236.03644 KHz

fn4 E  w t L( )
4

2

2  L
2

E I w t( )

 A w t( )
  fn4 E0 0 w0 t0 L0  462.54729 KHz

fn5 E  w t L( )
5

2

2  L
2

E I w t( )

 A w t( )
  fn5 E0 0 w0 t0 L0  764.54174 KHz

fn6 E  w t L( )
6

2

2  L
2

E I w t( )

 A w t( )
  fn6 E0 0 w0 t0 L0  1142.15197 KHz

Air Damping 

Km
32 M

R T0
6.117 10

4


s

m
  note, only valid in molecular region  

Qair fn t  Km P 
2  fn t 

Km P
  

Qair f9 t9 0 Km P1  7.235  

Qair f9 t9 0 Km P2  84.124  

Qair f9 t9 0 Km P3  723.468  

Qair f9 t9 0 Km P4  6.029 10
3

  
Qexp

47

148

198

593

5187

11334

21782

32787

34803

37154

39704

































  
Qairtheory

7.234

84.113

723.371

6.028 10
3



7.234 10
4



1.808 10
5



5.167 10
5



4.521 10
7



1.34 10
8



2.893 10
8



1.148 10
9











































  P

1 10
5

8.6 10
3



1 10
3



1.2 10
2



1 10
1



4

1.4

1.6 10
2



5.4 10
3



2.5 10
3



6.3 10
4











































  

Qair f9 t9 0 Km P5  7.235 10
4

  

Qair f9 t9 0 Km P6  1.809 10
5

  

Qair f9 t9 0 Km P7  5.168 10
5

  

Qair f9 t9 0 Km P8  4.522 10
7

  
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Qair f9 t9 0 Km P9  1.34 10
8

  

Qair f9 t9 0 Km P10  2.894 10
8

  

Qair f9 t9 0 Km P11  1.148 10
9

  

Qairexp1 Qexp0






1
Qexp10






1






1
47.056  

Qairexp2 Qexp1






1
Qexp10






1






1
148.554  

Qairexp3 Qexp2






1
Qexp10






1






1
198.992  

Qairexp4 Qexp3






1
Qexp10






1






1
601.991  

Qairexp5 Qexp4






1
Qexp10






1






1
5.966 10

3
  

Qairexp6 Qexp5






1
Qexp10






1






1
1.586 10

4
  

Qairexp7 Qexp6






1
Qexp10






1






1
4.826 10

4
  

Qairexp8 Qexp7






1
Qexp10






1






1
1.882 10

5
  

Qairexp9 Qexp8






1
Qexp10






1






1
2.819 10

5
  

Qairexp

47.056

148.554

198.992

601.991

5.966 10
3



1.586 10
4



4.826 10
4



1.882 10
5



2.819 10
5



5.785 10
5



0







































  
Qairexp10 Qexp9







1
Qexp10






1






1
5.785 10

5
  
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1 10
4 0.01 1 100 1 10

4
1

10

100

1 10
3

1 10
4

1 10
5

1 10
6

1 10
7

1 10
8

1 10
9

1 10
10

theoretical air damping
total Q experimental
air damping experimental

Pressure [Pa]

Q
-f

ac
to

r

Qairtheory

Qexp

Qairexp

P P P 0.1

TED 

F0 k  cp t   k

2  cp t
2


  characteristic damping frequency 

 k cp   k

cp 
  

 E  w t L( ) fn1 E  w t L( ) 2   

z t k cp   t
2


2

 k cp  
  

 E  k cp w t L  t
 E  w t L( )

2 k cp    

QZ E  k cp  T w t L  E 
2

 T

cp 

 E  w t L( ) z t k cp  

1  E  w t L( ) z t k cp   2












1

  Zener Equation 
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QL E  k cp  T w t L  1

E 
2

 T

cp 

6

 E  k cp w t L 2
6

 E  k cp w t L 3

sinh  E  k cp w t L  
sin  E  k cp w t L  



cosh  E  k cp w t L  
cos  E  k cp w t L  
































  

Lifshitz Equation 

prospective samples 

QZ E0 0 k0 cp.0 0 T0 w0 t0 L0  1.4 10
7

  

QZ E0 0 k0 cp.0 0 T0 w1 t1 L1  2.801 10
7

  QZ E0 0 k0 cp.0 0 T0 w5 t5 L5  4.612 10
4

  

QZ E0 0 k0 cp.0 0 T0 w2 t2 L2  7.17 10
6

  QZ E0 0 k0 cp.0 0 T0 w6 t6 L6  7.967 10
5

  

QZ E0 0 k0 cp.0 0 T0 w3 t3 L3  1.037 10
6

  QZ EN N kN cp.N N T0 w7 t7 L7  1.225 10
7

  

QZ E0 0 k0 cp.0 0 T0 w4 t4 L4  9.511 10
4

  QZ EN N kN cp.N N T0 w8 t8 L8  7.26 10
6

  

Actual Beams 

QZ9 QZ E0 0 k0 cp.0 0 T0 w9 t9 L9  1.172 10
7

  Beam 2E 10 nm Al coating 

QZ10 QZ E0 0 k0 cp.0 0 T0 w10 t10 L10  2.617 10
7

  Beam 1A SICON 

QZ11 QZ E0 0 k0 cp.0 0 T0 w11 t11 L11  2.88 10
7

  Beam 1B SHOCON 

QZ12 QZ E0 0 k0 cp.0 0 T0 w12 t12 L12  1.419 10
6

  Beam 1C FORT 

QZ13 QZ E0 0 k0 cp.0 0 T0 w13 t13 L13  1.432 10
7

  Beam 1E 5 nm Al coating 

QZ14 QZ E0 0 k0 cp.0 0 T0 w14 t14 L14  2.795 10
7

  Beam 2A SICON 

QZ15 QZ E0 0 k0 cp.0 0 T0 w15 t15 L15  3.681 10
7

  Beam 2B SHOCON 

QZ16 QZ E0 0 k0 cp.0 0 T0 w16 t16 L16  2.248 10
6

  Beam 2C FORT 

QZ17 QZ E0 0 k0 cp.0 0 T0 w17 t17 L17  2.956 10
7

  Beam 3A SICON 

QZ18 QZ E0 0 k0 cp.0 0 T0 w18 t18 L18  2.71 10
7

  Beam 3B SHOCON 

QZ19 QZ E0 0 k0 cp.0 0 T0 w19 t19 L19  9.977 10
4

  Beam 3D ACL 

QZ20 QZ E0 0 k0 cp.0 0 T0 w20 t20 L20  1.089 10
7

  Beam 3E 20 nm Al coating 

QZ21 9.317 10
6

  Beam 4A 5 nm x 2 Al coating 

QZ22 QZ E0 0 k0 cp.0 0 T0 w22 t22 L22  3.514 10
7

  Beam 4B SHOCON 
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QZ23 QZ E0 0 k0 cp.0 0 T0 w23 t23 L23  1.438 10
6

  Beam 4C FORT 

QZ24 QZ E0 0 k0 cp.0 0 T0 w24 t24 L24  2.503 10
7

  Beam 4E 30 nm x 2 Al coating 

QZ25 QZ E0 0 k0 cp.0 0 T0 w25 t25 L25  1.349 10
6

  Beam 3C FORT 

QZ26 1.262 10
6

   5 nm  Al coating 26 

QZ27 QZ E0 0 k0 cp.0 0 T0 w27 t27 L27  1.303 10
7

   5 nm x 2  Al coating 27 

QZ28 QZ E0 0 k0 cp.0 0 T0 w28 t28 L28  1.134 10
7

  10 nm  Al coating 28 

QZ29 QZ E0 0 k0 cp.0 0 T0 w29 t29 L29  1.075 10
7

  10 nm  Al coating 29 

QZ30 QZ E0 0 k0 cp.0 0 T0 w30 t30 L30  1.134 10
7

  20 nm  Al coating 30 

QZ31 1.374 10
6

  20 nm  Al coating 31 

QZ32 QZ E0 0 k0 cp.0 0 T0 w32 t32 L32  2.127 10
7

  30 nm x 2  Al coating 32 

QZ33 QZ E0 0 k0 cp.0 0 T0 w33 t33 L33  2.138 10
7

  30 nm x 2  Al coating 33 

TED Lifshitz 

QL9 QL E0 0 k0 cp.0 0 T0 w9 t9 L9  1.187 10
7

  
Beam 2E 10 nm Al coating 

QL10 QL E0 0 k0 cp.0 0 T0 w10 t10 L10  2.651 10
7

  
Beam 1A SICON 

QL11 QL E0 0 k0 cp.0 0 T0 w11 t11 L11  2.918 10
7

  
Beam 1B SHOCON 

QL12 QL E0 0 k0 cp.0 0 T0 w12 t12 L12  1.437 10
6

  
Beam 1C FORT 

QL13 QL E0 0 k0 cp.0 0 T0 w13 t13 L13  1.451 10
7

  
Beam 1E 5 nm Al coating 

QL14 QL E0 0 k0 cp.0 0 T0 w14 t14 L14  2.831 10
7

  
Beam 2A SICON 

QL15 QL E0 0 k0 cp.0 0 T0 w15 t15 L15  3.729 10
7

  
Beam 2B SHOCON 

QL16 QL E0 0 k0 cp.0 0 T0 w16 t16 L16  2.278 10
6

  
Beam 2C FORT 

QL17 QL E0 0 k0 cp.0 0 T0 w17 t17 L17  2.995 10
7

  
Beam 3A SICON 

QL18 QL E0 0 k0 cp.0 0 T0 w18 t18 L18  2.746 10
7

  
Beam 3B SHOCON 

QL19 QL E0 0 k0 cp.0 0 T0 w19 t19 L19  1.011 10
5

  
Beam 3D ACL 

QL20 QL E0 0 k0 cp.0 0 T0 w20 t20 L20  1.103 10
7

  
Beam 3E 20 nm Al coating 

QL21 QL E0 0 k0 cp.0 0 T0 w21 t21 L21  9.44 10
6

  
Beam 4A 5 nm x 2 Al coating 

QL22 QL E0 0 k0 cp.0 0 T0 w22 t22 L22  3.56 10
7

  Beam 4B SHOCON 
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QL23 QL E0 0 k0 cp.0 0 T0 w23 t23 L23  1.457 10
6

  Beam 4C FORT 

QL24 QL E0 0 k0 cp.0 0 T0 w24 t24 L24  2.536 10
7

  Beam 4E 30 nm x 2 Al coating 

QL25 QL E0 0 k0 cp.0 0 T0 w25 t25 L25  1.367 10
6

  Beam 3C FORT 

QL26 QL E0 0 k0 cp.0 0 T0 w26 t26 L26  1.279 10
7

   5 nm  Al coating 26 

QL27 QL E0 0 k0 cp.0 0 T0 w27 t27 L27  1.32 10
7

   5 nm x 2  Al coating 27 

QL28 QL E0 0 k0 cp.0 0 T0 w28 t28 L28  1.149 10
7

  10 nm  Al coating 28 

QL29 QL E0 0 k0 cp.0 0 T0 w29 t29 L29  1.09 10
7

  10 nm  Al coating 29 

QL30 QL E0 0 k0 cp.0 0 T0 w30 t30 L30  1.149 10
7

  20 nm  Al coating 30 

QL31 QL E0 0 k0 cp.0 0 T0 w31 t31 L31  1.392 10
7

  20 nm  Al coating 31 

QL32 QL E0 0 k0 cp.0 0 T0 w32 t32 L32  2.155 10
7

  30 nm x 2  Al coating 32 

30 nm x 2  Al coating 33 
QL33 2.166 10

7
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QZ9 QZ E0 0 k0 cp.0 0 T0 w9 t9 L9 E  k cp  T w t9 L  1.559 10
6

  2E 10 nm Al  

QZ10 QZ E0 0 k0 cp.0 0 T0 w10 t10 L10 E  k cp  T w t10 L  3.482 10
6

   1A SICON  

QZ11 QZ E0 0 k0 cp.0 0 T0 w11 t11 L11 E  k cp  T w t11 L  3.891 10
6

  1B SHOCON  

QZ12 QZ E0 0 k0 cp.0 0 T0 w12 t12 L12 E  k cp  T w t12 L  1.923 10
5

   1C FORT  

QZ13 QZ E0 0 k0 cp.0 0 T0 w13 t13 L13 E  k cp  T w t13 L  1.905 10
6

   1E 5 nm Al  

QZ14 QZ E0 0 k0 cp.0 0 T0 w14 t14 L14 E  k cp  T w t14 L  3.718 10
6

   2A SICON  

QZ15 QZ E0 0 k0 cp.0 0 T0 w15 t15 L15 E  k cp  T w t15 L  4.974 10
6

   2B SHOCON  

QZ16 QZ E0 0 k0 cp.0 0 T0 w16 t16 L16 E  k cp  T w t16 L  3.048 10
5

   2C FORT  

QZ17 QZ E0 0 k0 cp.0 0 T0 w17 t17 L17 E  k cp  T w t17 L  3.933 10
6

   3A SICON  

QZ18 QZ E0 0 k0 cp.0 0 T0 w18 t18 L18 E  k cp  T w t18 L  3.66 10
6

   3B SHOCON  

QZ19 QZ E0 0 k0 cp.0 0 T0 w19 t19 L19 E  k cp  T w t19 L  1.344 10
4

   3D ACL  

QZ20 QZ E0 0 k0 cp.0 0 T0 w20 t20 L20 E  k cp  T w t20 L  1.449 10
6

  3E 20 nm Al  

QZ21 QZ E0 0 k0 cp.0 0 T0 w21 t21 L21 E  k cp  T w t21 L  1.24 10
6

   4A 5 nm x 2 Al  

QZ22 QZ E0 0 k0 cp.0 0 T0 w22 t22 L22 E  k cp  T w t22 L  4.747 10
6

   4B SHOCON  

QZ23 QZ E0 0 k0 cp.0 0 T0 w23 t23 L23 E  k cp  T w t23 L  1.949 10
5

   4C FORT  

QZ24 QZ E0 0 k0 cp.0 0 T0 w24 t24 L24 E  k cp  T w t24 L  3.329 10
6

   4E 30 nm x 2 Al   

QZ25 QZ E0 0 k0 cp.0 0 T0 w25 t25 L25 E  k cp  T w t25 L  1.829 10
5

   3C FORT  

QZ26 QZ E0 0 k0 cp.0 0 T0 w26 t26 L26 E  k cp  T w t26 L  1.679 10
6

   5 nm  Al  

QZ27 QZ E0 0 k0 cp.0 0 T0 w27 t27 L27 E  k cp  T w t27 L  1.733 10
6

   5 nm x 2  Al  

QZ28 QZ E0 0 k0 cp.0 0 T0 w28 t28 L28 E  k cp  T w t28 L  1.508 10
6

  10 nm  Al 

QZ29 QZ E0 0 k0 cp.0 0 T0 w29 t29 L29 E  k cp  T w t29 L  1.431 10
6

  10 nm  Al  

QZ30 QZ E0 0 k0 cp.0 0 T0 w30 t30 L30 E  k cp  T w t30 L  1.509 10
6

  20 nm  Al  

QZ31 QZ E0 0 k0 cp.0 0 T0 w31 t31 L31 E  k cp  T w t31 L  1.828 10
6

  20 nm  Al  

QZ32 QZ E0 0 k0 cp.0 0 T0 w32 t32 L32 E  k cp  T w t32 L  2.829 10
6

  30 nm x 2  Al   

QZ33 QZ E0 0 k0 cp.0 0 T0 w33 t33 L33 E  k cp  T w t33 L  2.844 10
6

  30 nm x 2  Al  
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%QzE E  k cp  T w t L E  k cp  T w t L  E
QZ E  k cp  T w t L d

d









E







2

QZ E  k cp  T w t L E  k cp  T w t L 2
  

%QzE9 0.184  

%Qz E  k cp  T w t L E  k cp  T w t L  
QZ E  k cp  T w t L d

d

















2

QZ E  k cp  T w t L E  k cp  T w t L 2
  

%Qz9 %Qz E0 0 k0 cp.0 0 T0 w9 t9 L9 E  k cp  T w t9 L  0.007  

%Qzk E  k cp  T w t L E  k cp  T w t L  k
QZ E  k cp  T w t L d

d









k







2

QZ E  k cp  T w t L E  k cp  T w t L 2
  

%Qzk9 %Qzk E0 0 k0 cp.0 0 T0 w9 t9 L9 E  k cp  T w t9 L  0.221  

%Qzc p E  k cp  T w t L E  k cp  T w t L 
cp

QZ E  k cp  T w t L d

d









cp







2

QZ E  k cp  T w t L E  k cp  T w t L 2
  

%Qzc p.9 %Qzc p E0 0 k0 cp.0 0 T0 w9 t9 L9 E  k cp  T w t9 L  0  

%Qz E  k cp  T w t L E  k cp  T w t L  
QZ E  k cp  T w t L d

d

















2

QZ E  k cp  T w t L E  k cp  T w t L 2
  

%Qz9 %Qz E0 0 k0 cp.0 0 T0 w9 t9 L9 E  k cp  T w t9 L  0.334  
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%QzT E  k cp  T w t L E  k cp  T w t L  T
QZ E  k cp  T w t L d

d









T







2

QZ E  k cp  T w t L E  k cp  T w t L 2
  

%QzT 9 %QzT E0 0 k0 cp.0 0 T0 w9 t9 L9 E  k cp  T w t9 L  0.001  

%Qzw E  k cp  T w t L E  k cp  T w t L  w
QZ E  k cp  T w t L d

d









w







2

QZ E  k cp  T w t L E  k cp  T w t L 2
  

%Qzw9 %Qzw E0 0 k0 cp.0 0 T0 w9 t9 L9 E  k cp  T w t9 L  0  

%QzL E  k cp  T w t L E  k cp  T w t L  L
QZ E  k cp  T w t L d

d









L







2

QZ E  k cp  T w t L E  k cp  T w t L 2
  

%QzL9 %QzL E0 0 k0 cp.0 0 T0 w9 t9 L9 E  k cp  T w t9 L  0.001  

%Qzt E  k cp  T w t L E  k cp  T w t L  t
QZ E  k cp  T w t L d

d









t







2

QZ E  k cp  T w t L E  k cp  T w t L 2
  

%Qzt 9 %Qzt E0 0 k0 cp.0 0 T0 w9 t9 L9 E  k cp  T w t9 L  0.253  
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QL E  k cp  T w t L E  k cp  T w t L 
E

QL E  k cp  T w t L d

d









E







2


QL E  k cp  T w t L d

d

















2





k
QL E  k cp  T w t L d

d









k







2





cp
QL E  k cp  T w t L d

d









cp







2






QL E  k cp  T w t L d

d

















2





T
QL E  k cp  T w t L d

d









T







2





w
QL E  k cp  T w t L d

d









w







2





t
QL E  k cp  T w t L d

d









t







2





L
QL E  k cp  T w t L d

d









L







2



























































1

2

  

Beam 2E 10 nm Al  
coating QL9 QL E0 0 k0 cp.0 0 T0 w9 t9 L9 E  k cp  T w t9 L  1.579 10

6
  

QL10 QL E0 0 k0 cp.0 0 T0 w10 t10 L10 E  k cp  T w t10 L  3.343 10
6

  Beam 1A SICON 

QL11 QL E0 0 k0 cp.0 0 T0 w11 t11 L11 E  k cp  T w t11 L  3.573 10
6

  Beam 1B SHOCON 

QL12 QL E0 0 k0 cp.0 0 T0 w12 t12 L12 E  k cp  T w t12 L  1.949 10
5

  Beam 1C FORT 

Beam 1E 5 nm Al  
coating QL13 1.742 10

6
  

QL14 QL E0 0 k0 cp.0 0 T0 w14 t14 L14 E  k cp  T w t14 L  3.403 10
6

  Beam 2A SICON 

QL15 4.984 10
6

  Beam 2B SHOCON 

QL16 QL E0 0 k0 cp.0 0 T0 w16 t16 L16 E  k cp  T w t16 L  3.088 10
5

  Beam 2C FORT 

QL17 QL E0 0 k0 cp.0 0 T0 w17 t17 L17 E  k cp  T w t17 L  3.776 10
6

  Beam 3A SICON 

QL18 QL E0 0 k0 cp.0 0 T0 w18 t18 L18 E  k cp  T w t18 L  3.483 10
6

  Beam 3B SHOCON 



122 
 

 

QL19 QL E0 0 k0 cp.0 0 T0 w19 t19 L19 E  k cp  T w t19 L  1.362 10
4

  Beam 3D ACL 

Beam 3E 20 nm Al  
coating QL20 QL E0 0 k0 cp.0 0 T0 w20 t20 L20 E  k cp  T w t20 L  1.326 10

6
  

Beam 4A 5 nm x 2 Al  
coating QL21 QL E0 0 k0 cp.0 0 T0 w21 t21 L21 E  k cp  T w t21 L  1.19 10

6
  

QL22 QL E0 0 k0 cp.0 0 T0 w22 t22 L22 E  k cp  T w t22 L  4.409 10
6

  Beam 4B SHOCON 

QL23 QL E0 0 k0 cp.0 0 T0 w23 t23 L23 E  k cp  T w t23 L  1.974 10
5

  Beam 4C FORT 

Beam 4E 30 nm x 2 Al 
coating QL24 QL E0 0 k0 cp.0 0 T0 w24 t24 L24 E  k cp  T w t24 L  3.196 10

6
  

QL25 QL E0 0 k0 cp.0 0 T0 w25 t25 L25 E  k cp  T w t25 L  1.853 10
5

  Beam 3C FORT 

QL26 QL E0 0 k0 cp.0 0 T0 w26 t26 L26 E  k cp  T w t26 L  1.702 10
6

   5 nm  Al coating  

 5 nm x 2  Al coating 
QL27 1.591 10

6
  

QL28 1.74 10
6

  10 nm  Al coating 

QL29 QL E0 0 k0 cp.0 0 T0 w29 t29 L29 E  k cp  T w t29 L  1.31 10
6

  10 nm  Al coating 

QL30 QL E0 0 k0 cp.0 0 T0 w30 t30 L30 E  k cp  T w t30 L  1.544 10
6

  20 nm  Al coating 

QL31 1.853 10
6

  20 nm  Al coating 

QL32 QL E0 0 k0 cp.0 0 T0 w32 t32 L32 E  k cp  T w t32 L  2.589 10
6

  30 nm x 2  Al coating  

QL33 QL E0 0 k0 cp.0 0 T0 w33 t33 L33 E  k cp  T w t33 L  2.701 10
6

  30 nm x 2  Al coating  

Characteristic damping frequency 

F9 F0 k0 0 cp.0 t9  3.449 10
7


1

s
  Beam 2E 10 nm Al coating 

F10 F0 k0 0 cp.0 t10  59.914 MHz  Beam 1A SICON 

F11 F0 k0 0 cp.0 t11  1.535 10
8


1

s
  Beam 1B SHOCON 

F12 F0 k0 0 cp.0 t12  2.292 10
7


1

s
  Beam 1C FORT 

F19 F0 k0 0 cp.0 t19  3.49 10
6


1

s
  Beam 3D ACL 
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Anchor Losses 

QA2 L t( )
1

2 .23
t
3

L
3











  

QA2 L0 t0  2.476 10
7

  Prospective samples 

QA2 L1 t1  2.476 10
7

  

QA2 L2 t2  1.268 10
7

  

QA2 L3 t3  9.171 10
5

  

QA2 L4 t4  4.659 10
4

  

QA2 L5 t5  4.032 10
4

  

QA2 L6 t6  4.696 10
5

  

QA2 L7 t7  3.397 10
7

  

QA2 L8 t8  8.052 10
7

  

QA9 QA2 L9 t9  2.078 10
7

  Beam 2E 10 nm Al coating 

QA10 QA2 L10 t10  4.586 10
7

  Beam 1A SICON 

QA11 QA2 L11 t11  2.614 10
7

  Beam 1B SHOCON 

QA12 QA2 L12 t12  1.19 10
6

  Beam 1C FORT 

QA13 QA2 L13 t13  2.515 10
7

  Beam 1E 5 nm Al coating 

QA14 QA2 L14 t14  4.908 10
7

  Beam 2A SICON 

QA15 QA2 L15 t15  3.312 10
7

  Beam 2B SHOCON 

QA16 QA2 L16 t16  1.881 10
6

  Beam 2C FORT 

QA17 QA2 L17 t17  5.181 10
7

  Beam 3A SICON 

QA18 QA2 L18 t18  2.485 10
7

  Beam 3B SHOCON 

QA19 QA2 L19 t19  9.073 10
4

  Beam 3D ACL 

QA20 QA2 L20 t20  1.917 10
7

  Beam 3E 20 nm Al coating 

QA21 QA2 L21 t21  1.646 10
7

  Beam 4A 5 nm x 2 Al coating 
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QA22 QA2 L22 t22  3.196 10

7
  Beam 4B SHOCON 

QA23 QA2 L23 t23  1.211 10
6

  Beam 4C FORT 

QA24 QA2 L24 t24  4.433 10
7

  Beam 4E 30 nm x 2 Al coating 

QA25 QA2 L25 t25  1.137 10
6

  Beam 3C FORT 

QA26 QA2 L26 t26  2.231 10
7

   5 nm  Al coating 26 

QA27 QA2 L27 t27  2.309 10
7

   5 nm x 2  Al coating 27 

QA28 QA2 L28 t28  2.002 10
7

  10 nm  Al coating 28 

QA29 QA2 L29 t29  1.897 10
7

  10 nm  Al coating 29 

QA30 QA2 L30 t30  2.003 10
7

  20 nm  Al coating 30 

QA31 QA2 L31 t31  2.421 10
7

  20 nm  Al coating 31 

QA32 QA2 L32 t32  3.766 10
7

  30 nm x 2  Al coating 32 

QA33 QA2 L33 t33  3.793 10
7

  30 nm x 2  Al coating 33 

Uncertainty in Anchor loss 

QA2 L t L t( )
L

QA2 L t( )d

d









L







2

t
QA2 L t( )d

d









t







2










1

2

  

QA9 QA2 L9 t9 L t9  1.397 10
6

  Beam 2E 10 nm Al coating 

QA10 QA2 L10 t10 L t10  3.084 10
6

  Beam 1A SICON 

QA11 QA2 L11 t11 L t11  1.874 10
6

  Beam 1B SHOCON 

QA12 QA2 L12 t12 L t12  8.649 10
4

  Beam 1C FORT 

QA13 QA2 L13 t13 L t13  1.691 10
6

  Beam 1E 5 nm Al coating 

QA14 QA2 L14 t14 L t14  3.3 10
6

  Beam 2A SICON 

QA15 QA2 L15 t15 L t15  2.377 10
6

  Beam 2B SHOCON 

QA16 QA2 L16 t16 L t16  1.368 10
5

  Beam 2C FORT 

QA17 QA2 L17 t17 L t17  3.484 10
6

  Beam 3A SICON 
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QA18 QA2 L18 t18 L t18  1.778 10
6

  Beam 3B SHOCON 

QA19 QA2 L19 t19 L t19  6.499 10
3

  Beam 3D ACL 

QA20 QA2 L20 t20 L t20  1.288 10
6

  Beam 3E 20 nm Al coating 

QA21 QA2 L21 t21 L t21  1.106 10
6

  Beam 4A 5 nm x 2 Al coating 

QA22 QA2 L22 t22 L t22  2.29 10
6

  Beam 4B SHOCON 

QA23 QA2 L23 t23 L t23  8.792 10
4

  Beam 4C FORT 

QA24 QA2 L24 t24 L t24  2.979 10
6

  Beam 4E 30 nm x 2 Al coating 

QA25 QA2 L25 t25 L t25  8.259 10
4

  Beam 3C FORT 

QA26 QA2 L26 t26 L t26  1.499 10
6

   5 nm  Al coating 26 

QA27 QA2 L27 t27 L t27  1.552 10
6

   5 nm x 2  Al coating 27 

QA28 QA2 L28 t28 L t28  1.346 10
6

  10 nm  Al coating 28 

QA29 QA2 L29 t29 L t29  1.275 10
6

  10 nm  Al coating 29 

QA30 QA2 L30 t30 L t30  1.346 10
6

  20 nm  Al coating 30 

QA31 QA2 L31 t31 L t31  1.627 10
6

  20 nm  Al coating 31 

QA32 QA2 L32 t32 L t32  2.531 10
6

  30 nm x 2  Al coating 32 

QA33 QA2 L33 t33 L t33  2.549 10
6

  
30 nm x 2  Al coating 33 

Surface Losses 

ED_Hao 0.81
kg

s
2

  from Hao where ED = δ Eds 

QS w t E( )
w t

2 3 w t( )

E

ED_Hao
  

QS w0 t0 E0  6.703 10
4

  Prospective samples 

QS w1 t1 E0  3.381 10
4

  

QS w2 t2 E0  8.345 10
4

  

QS w3 t3 E0  9.892 10
4

  

QS w4 t4 E0  1.47 10
5

  
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QS w5 t5 E0  2.705 10
5

  

QS w6 t6 E0  8.244 10
4

  

QS w7 t7 EN  1.191 10
4

  

QS w8 t8 EN  3.562 10
4

  

QSD Q QA QTED  1

Q

1

QA


1

QTED









1
  

ED w t E QSD  w t E

2 3 w t( ) QSD
  

ED ED  
ED


  

QSD9 QSD Q9 QA9 QL9  3.991 10
4

  Beam 2E 10 nm Al coating 

ED9 ED w9 t9 E0 QSD9  1.449
kg

s
2

  

9 10 nm  ED9

ED9

9
1.449 10

8
 Pa  

QSD10
1

Q10

1

QA10


1

QL10









1
1.043 10

5
  Beam 1A SICON 

ED10 ED w10 t10 E0 QSD10  0.422
kg

s
2

  

QSD11
1

Q11

1

QA11


1

QL11









1
5.522 10

4
  

Beam 1B SHOCON 

ED11 ED w11 t11 E0 QSD11  0.5
kg

s
2

  

QSD12
1

Q12

1

QA12


1

QL12









1
1.254 10

5
  

Beam 1C FORT 

ED12 ED w12 t12 E0 QSD12  0.558
kg

s
2

  

QSD13
1

Q13

1

QA13


1

QL13









1
6.43 10

4
  

Beam 1E 5 nm Al coating 
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ED13 ED w13 t13 E0 QSD13  0.836
kg

s
2

  

13 5 nm  ED13

ED13

13
1.672 10

8
 Pa  

QSD14
1

Q14

1

QA14


1

QL14









1
1.126 10

5
  

Beam 2A SICON 

ED14 ED w14 t14 E0 QSD14  0.383
kg

s
2

  

QSD15
1

Q15

1

QA15


1

QL15









1
5.782 10

4
  

Beam 2B SHOCON 

ED15 ED w15 t15 E0 QSD15  0.438
kg

s
2

  

QSD16
1

Q16

1

QA16


1

QL16









1
3.268 10

4
  

Beam 2C FORT 

ED16 ED w16 t16 E0 QSD16  1.839
kg

s
2

  

QSD17
1

Q17

1

QA17


1

QL17









1
1.001 10

5
  

Beam 3A SICON 

ED17 ED w17 t17 E0 QSD17  0.423
kg

s
2

  

QSD18
1

Q18

1

QA18


1

QL18









1
5.09 10

4
  

Beam 3B SHOCON 

ED18 ED w18 t18 E0 QSD18  0.557
kg

s
2

  

QSD19
1

Q19

1

QA19


1

QL19









1
1.019 10

5
  Beam 3D ACL 

ED19 ED w19 t19 E0 QSD19  1.718
kg

s
2

  

QSD20
1

Q20

1

QA20


1

QL20









1
2.18 10

4
  Beam 3E 20 nm Al coating 
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ED20 ED w20 t20 E0 QSD20  2.703
kg

s
2

  

20 20 nm  ED20

ED20

20
1.351 10

8
 Pa  

QSD21
1

Q21

1

QA21


1

QL21









1
4.355 10

4
  Beam 4A 5 nm x 2 Al coating 

ED21 ED w21 t21 E0 QSD21  1.428
kg

s
2

  

21 10 nm  ED21

ED21

21
1.428 10

8
 Pa  

QSD22
1

Q22

1

QA22


1

QL22









1
4.427 10

4
  Beam 4B SHOCON 

ED22 ED w22 t22 E0 QSD22  0.585
kg

s
2

  

QSD23
1

Q23

1

QA23


1

QL23









1
1.296 10

5
  Beam 4C FORT 

ED23 ED w23 t23 E0 QSD23  0.539
kg

s
2

  

QSD24
1

Q24

1

QA24


1

QL24









1
3.687 10

3
  Beam 4E 30 nm x 2 Al coating 

ED24 ED w24 t24 E0 QSD24  12.206
kg

s
2

  

24 60 nm  ED24

ED24

24
2.034 10

8
 Pa  

QSD25
1

Q25

1

QA25


1

QL25









1
1.492 10

5
  Beam 3C FORT 

ED25 ED w25 t25 E0 QSD25  0.479
kg

s
2

  



129 
 

 

QSD26
1

Q26

1

QA26


1

QL26









1
7.876 10

4
   5 nm  Al coating 26 

ED26 ED w26 t26 E0 QSD26  0.715
kg

s
2

  

26 5 nm  ED26

ED26

26
1.43 10

8
 Pa  

QSD27
1

Q27

1

QA27


1

QL27









1
4.019 10

4
   5 nm x 2  Al coating 27 

ED27 ED w27 t27 E0 QSD27  1.389
kg

s
2

  

27 10 nm  ED27

ED27

27
1.389 10

8
 Pa  

QSD28
1

Q28

1

QA28


1

QL28









1
3.921 10

4
  10 nm  Al coating 28 

ED28 ED w28 t28 E0 QSD28  1.487
kg

s
2

  

28 10 nm  ED28

ED28

28
1.487 10

8
 Pa  

QSD29
1

Q29

1

QA29


1

QL29









1
3.882 10

4
  

10 nm  Al coating 29 

ED29 ED w29 t29 E0 QSD29  1.527
kg

s
2

  

29 10 nm  ED29

ED29

29
1.527 10

8
 Pa  

QSD30
1

Q30

1

QA30


1

QL30









1
2.458 10

4
  20 nm  Al coating 30 

ED30 ED w30 t30 E0 QSD30  2.371
kg

s
2

  

30 20 nm  ED30

ED30

30
1.185 10

8
 Pa  
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QSD31
1

Q31

1

QA31


1

QL31









1
2.205 10

4
  20 nm  Al coating 31 

ED31 ED w31 t31 E0 QSD31  2.478
kg

s
2

  

31 20 nm  ED31

ED31

31
1.239 10

8
 Pa  

QSD32
1

Q32

1

QA32


1

QL32









1
4.802 10

3
  30 nm x 2  Al coating 32 

ED32 ED w32 t32 E0 QSD32  9.89
kg

s
2

  

32 60 nm  ED32

ED32

32
1.648 10

8
 Pa  

QSD33
1

Q33

1

QA33


1

QL33









1
4.682 10

3
  30 nm x 2  Al coating 33 

ED33 ED w33 t33 E0 QSD33  10.135
kg

s
2

  

33 60 nm  ED33

ED33

33
1.689 10

8
 Pa  

uncertainty in surface losses 

%Q 0.043  

QSD Q QA QL QA QL 
Q

QSD Q QA QL d

d









%Q Q







2

QA
QSD Q QA QL d

d









QA







2





QL
QSD Q QA QL d

d









QL







2























1

2

  

QSD9 QSD Q9 QA9 QL9 QA9 QL9  1.725 10
3

  Beam 2E 10 nm Al coating 

QSD10 QSD Q10 QA10 QL10 QA10 QL10  4.515 10
3

  
Beam 1A SICON 
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QSD11 QSD Q11 QA11 QL11 QA11 QL11  2.384 10

3
  

Beam 1B SHOCON 

QSD12 QSD Q12 QA12 QL12 QA12 QL12  6.671 10
3

  
Beam 1C FORT 

QSD13 QSD Q13 QA13 QL13 QA13 QL13  2.785 10
3

  
Beam 1E 5 nm Al coating 

QSD14 QSD Q14 QA14 QL14 QA14 QL14  4.87 10
3

  
Beam 2A SICON 

QSD15 QSD Q15 QA15 QL15 QA15 QL15  2.494 10
3

  
Beam 2B SHOCON 

QSD16 QSD Q16 QA16 QL16 QA16 QL16  1.452 10
3

  
Beam 2C FORT 

QSD17 QSD Q17 QA17 QL17 QA17 QL17  4.326 10
3

  
Beam 3A SICON 

QSD18 QSD Q18 QA18 QL18 QA18 QL18  2.197 10
3

  
Beam 3B SHOCON 

QSD19 QSD Q19 QA19 QL19 QA19 QL19  2.113 10
4

  
Beam 3D ACL 

QSD20 QSD Q20 QA20 QL20 QA20 QL20  940.451  
Beam 3E 20 nm Al coating 

QSD21 QSD Q21 QA21 QL21 QA21 QL21  1.886 10
3

  
Beam 4A 5 nm x 2 Al coating 

QSD22 QSD Q22 QA22 QL22 QA22 QL22  1.909 10
3

  
Beam 4B SHOCON 

QSD23 QSD Q23 QA23 QL23 QA23 QL23  6.918 10
3

  
Beam 4C FORT 

QSD24 QSD Q24 QA24 QL24 QA24 QL24  158.57  
Beam 4E 30 nm x 2 Al coating 

QSD25 QSD Q25 QA25 QL25 QA25 QL25  8.377 10
3

  Beam 3C FORT 

QSD26 QSD Q26 QA26 QL26 QA26 QL26  3.42 10
3

   5 nm  Al coating  

QSD27 QSD Q27 QA27 QL27 QA27 QL27  1.737 10
3

   5 nm x 2  Al coating  

QSD28 QSD Q28 QA28 QL28 QA28 QL28  1.695 10
3

  10 nm  Al coating  

QSD29 QSD Q29 QA29 QL29 QA29 QL29  1.679 10
3

  10 nm  Al coating  

QSD30 QSD Q30 QA30 QL30 QA30 QL30  1.061 10
3

  20 nm  Al coating  

QSD31 QSD Q31 QA31 QL31 QA31 QL31  950.74  20 nm  Al coating  

QSD32 QSD Q32 QA32 QL32 QA32 QL32  206.545  30 nm x 2  Al coating  

QSD33 QSD Q33 QA33 QL33 QA33 QL33  201.377  
30 nm x 2  Al coating  
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Uncertainty in δ ED 

ED w t E QSD w t E QSD 
w
ED w t E QSD d

d









w







2

t
ED w t E QSD d

d









t







2



E
ED w t E QSD d

d









E







2





QSD
ED w t E QSD d

d









QSD







2

























1

2

  

ED9 ED w9 t9 E0 QSD9 w t9 E QSD9  0.089
kg

s
2

  
Beam 2E 10 nm Al coating 

ED10 ED w10 t10 E0 QSD10 w t10 E QSD10  0.026
kg

s
2

  Beam 1A SICON 

ED11 ED w11 t11 E0 QSD11 w t11 E QSD11  0.031
kg

s
2

  Beam 1B SHOCON 

ED12 ED w12 t12 E0 QSD12 w t12 E QSD12  0.039
kg

s
2

  
Beam 1C FORT 

ED13 ED w13 t13 E0 QSD13 w t13 E QSD13  0.052
kg

s
2

  
Beam 1E 5 nm Al coating 

ED14 ED w14 t14 E0 QSD14 w t14 E QSD14  0.024
kg

s
2

  
Beam 2A SICON 

ED15 ED w15 t15 E0 QSD15 w t15 E QSD15  0.027
kg

s
2

  
Beam 2B SHOCON 

ED16 ED w16 t16 E0 QSD16 w t16 E QSD16  0.116
kg

s
2

  
Beam 2C FORT 

ED17 ED w17 t17 E0 QSD17 w t17 E QSD17  0.026
kg

s
2

  
Beam 3A SICON 

ED18 ED w18 t18 E0 QSD18 w t18 E QSD18  0.035
kg

s
2

  
Beam 3B SHOCON 

ED19 ED w19 t19 E0 QSD19 w t19 E QSD19  0.364
kg

s
2

  
Beam 3D ACL 

ED20 ED w20 t20 E0 QSD20 w t20 E QSD20  0.166
kg

s
2

  
Beam 3E 20 nm Al coating 



133 
 

 
ED21 ED w21 t21 E0 QSD21 w t21 E QSD21  0.088

kg

s
2

  Beam 4A 5 nm x 2 Al coating 

ED22 ED w22 t22 E0 QSD22 w t22 E QSD22  0.036
kg

s
2

  Beam 4B SHOCON 

ED23 ED w23 t23 E0 QSD23 w t23 E QSD23  0.037
kg

s
2

  
Beam 4C FORT 

ED24 ED w24 t24 E0 QSD24 w t24 E QSD24  0.751
kg

s
2

  
Beam 4E 30 nm x 2 Al coating 

ED25 ED w25 t25 E0 QSD25 w t25 E QSD25  0.034
kg

s
2

  
Beam 3C FORT 

ED26 ED w26 t26 E0 QSD26 w t26 E QSD26  0.044
kg

s
2

   5 nm  Al coating 26 

ED27 ED w27 t27 E0 QSD27 w t27 E QSD27  0.086
kg

s
2

   5 nm x 2  Al coating 27 

ED28 ED w28 t28 E0 QSD28 w t28 E QSD28  0.092
kg

s
2

  
10 nm  Al coating 28 

ED29 ED w29 t29 E0 QSD29 w t29 E QSD29  0.094
kg

s
2

  
10 nm  Al coating 29 

ED30 ED w30 t30 E0 QSD30 w t30 E QSD30  0.146
kg

s
2

  
20 nm  Al coating 30 

ED31 ED w31 t31 E0 QSD31 w t31 E QSD31  0.152
kg

s
2

  20 nm  Al coating 31 

ED32 ED w32 t32 E0 QSD32 w t32 E QSD32  0.608
kg

s
2

  
30 nm x 2  Al coating 32 

ED33 ED w33 t33 E0 QSD33 w t33 E QSD33  0.623
kg

s
2

  30 nm x 2  Al coating 33 

Uncertainty in ED 

E D ED  ED  
ED

ED ED  d

d









ED







2


ED ED  d

d

















2










1

2

  

1 1 nm  
2 2 nm  uncertainty in coating thickness 
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3 4 nm  

4 12 nm  

E D9 E D ED9 9 ED9 2  3.032 10
7

 Pa  Beam 2E 10 nm Al coating  

E D13 E D ED13 13 ED13 1  3.5 10
7

 Pa  Beam 1E 5 nm Al coating  

E D20 E D ED20 20 ED20 3  2.828 10
7

 Pa  Beam 3E 20 nm Al coating  

E D21 E D ED21 21 ED21 2  2.989 10
7

 Pa  Beam 4A 5 nm x 2 Al coating  

E D24 E D ED24 24 ED24 4  4.257 10
7

 Pa  Beam 4E 30 nm x 2 Al coating  

E D26 E D ED26 26 ED26 1  2.993 10
7

 Pa   5 nm  Al coating  

E D27 E D ED27 27 ED27 2  2.907 10
7

 Pa   5 nm x 2  Al coating  

E D28 E D ED28 28 ED28 2  3.112 10
7

 Pa  10 nm  Al coating  

E D29 E D ED29 29 ED29 2  3.197 10
7

 Pa  10 nm  Al coating  

E D30 E D ED30 30 ED30 3  2.48 10
7

 Pa  20 nm  Al coating  

E D31 E D ED31 31 ED31 3  2.592 10
7

 Pa  20 nm  Al coating  

E D32 E D ED32 32 ED32 4  3.449 10
7

 Pa  30 nm x 2  Al coating 32 

E D33 E D ED33 33 ED33 4  3.534 10
7

 Pa  30 nm x 2  Al coating 33 

J ED  ED   
ED ED  d

d

















2

E D ED  ED  2
  % contributions for coating thickness 

J9 J ED9 9 ED9 2  0.913  

Damping due to AuPd coating 

Qcoating QAu Q  1

QAu

1

Q









1
  

Qcoating10 Qcoating QAu10 Q10  7.915 10
3

  Beam 1A SICON with 28 nm AuPd  
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EDAu10 ED w10 t10 E0 Qcoating10  5.563

kg

s
2

  

Au10 28 nm  EDAu10

EDAu10

Au10
1.987 10

8
 Pa  

Beam 1B SHOCON with 28 nm AuPd  
Qcoating11 Qcoating QAu11 Q11  2.876 10

3
  

EDAu11 ED w11 t11 E0 Qcoating11  9.602
kg

s
2

  

Au11 28 nm  EDAu11

EDAu11

Au11
3.429 10

8
 Pa  

Qcoating12 Qcoating QAu12 Q12  8.024 10
3

  Beam 1C FORT with 28 nm AuPd  

EDAu12 ED w12 t12 E0 Qcoating12  8.72
kg

s
2

  

Au12 28 nm  EDAu12

EDAu12

Au12
3.114 10

8
 Pa  

Qcoating13 Qcoating QAu13 Q13  8.831 10
3

  Beam 1E 5 nm Al coating with 28 nm AuPd  

EDAu13 ED w13 t13 E0 Qcoating13  6.088
kg

s
2

  

Au13 28 nm  EDAu13

EDAu13

Au13
2.174 10

8
 Pa  

Beam 4A 5 nm x 2 Al coating with 28 nm AuPd  
Qcoating21 Qcoating QAu21 Q21  8.662 10

3
  

EDAu21 ED w21 t21 E0 Qcoating21  7.181
kg

s
2

  

Au21 28 nm  EDAu21

EDAu21

Au21
2.565 10

8
 Pa  

Qcoating22 Qcoating QAu22 Q22  2.299 10
3

  Beam 4B SHOCON with 28 nm AuPd  

EDAu22 ED w22 t22 E0 Qcoating22  11.264
kg

s
2

  

Au22 28 nm  EDAu22

EDAu22

Au22
4.023 10

8
 Pa  
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Beam 4C FORT with 28 nm AuPd  

Qcoating23 Qcoating QAu23 Q23  5.458 10
3

  

EDAu23 ED w23 t23 E0 Qcoating23  12.802
kg

s
2

  

Au23 28 nm  EDAu23

EDAu23

Au23
4.572 10

8
 Pa  

Qcoating24 Qcoating QAu24 Q24  1.091 10
4

  Beam 4E 30 nm x 2 Al coating with 28 nm AuPd 

EDAu24 ED w24 t24 E0 Qcoating24  4.126
kg

s
2

  

Au24 28 nm  EDAu24

EDAu24

Au24
1.473 10

8
 Pa  

Uncertainty in coated samples 

%QAu 0.04  
Au 10 nm  

Qcoating QAu Q 
Q

Qcoating QAu Q d

d









%Q Q







2

QAu
Qcoating QAu Q d

d









%QAu QAu







2
















1

2

  

Qcoating10 Qcoating QAu10 Q10  341.774 Beam 1A SICON with 28 nm AuPd  

EDAu10 ED w10 t10 E0 Qcoating10 w t10 E Qcoating10  0.343
kg

s
2

  

E DAu10 E D EDAu10 Au10 EDAu10 Au  7.2 10
7

 Pa  

Qcoating11 Qcoating QAu11 Q11  121.224  Beam 1B SHOCON with 28 nm AuPd  

EDAu11 ED w11 t11 E0 Qcoating11 w t11 E Qcoating11  0.589
kg

s
2

  

E DAu11 E D EDAu11 Au11 EDAu11 Au  1.243 10
8

 Pa  EDAu12 0.541
kg

s
2

  

Qcoating12 Qcoating QAu12 Q12  346.439  Beam 1C FORT with 28 nm AuPd  
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E DAu12 E D EDAu12 Au12 EDAu12 Au  1.129 10

8
 Pa  

Qcoating13 Qcoating QAu13 Q13  405.498  Beam 1E 5 nm Al coating with 28 nm AuPd  

EDAu13 ED w13 t13 E0 Qcoating13 w t13 E Qcoating13  0.387
kg

s
2

  

E DAu13 E D EDAu13 Au13 EDAu13 Au  7.887 10
7

 Pa  

Qcoating21 Qcoating QAu21 Q21  422.517  Beam 4A 5 nm x 2 Al coating with 28 nm AuPd  

EDAu21 ED w21 t21 E0 Qcoating21 w t21 E Qcoating21  0.471
kg

s
2

  

E DAu21 E D EDAu21 Au21 EDAu21 Au  9.313 10
7

 Pa  

Qcoating22 Qcoating QAu22 Q22  96.874  Beam 4B SHOCON with 28 nm AuPd  

EDAu22 ED w22 t22 E0 Qcoating22 w t22 E Qcoating22  0.691
kg

s
2

  

E DAu22 E D EDAu22 Au22 EDAu22 Au  1.458 10
8

 Pa  

Qcoating23 Qcoating QAu23 Q23  229.612  Beam 4C FORT with 28 nm AuPd  

EDAu23 ED w23 t23 E0 Qcoating23 w t23 E Qcoating23  0.784
kg

s
2

  

E DAu23 E D EDAu23 Au23 EDAu23 Au  1.657 10
8

 Pa  

Qcoating24 Qcoating QAu24 Q24  2.216 10
3

  Beam 4E 30 nm x 2 Al coating with 28 nm AuPd  

EDAu24 ED w24 t24 E0 Qcoating24 w t24 E Qcoating24  0.858
kg

s
2

  

E DAu24 E D EDAu24 Au24 EDAu24 Au  6.089 10
7

 Pa  

J ED  ED   
ED ED  d

d

















2

E D ED  ED  2
  % contributions for coating thickness 

J9 J EDAu10 Au10 EDAu10 Au  0.971  

Total Q 

Q1
1

1

QZ E0 0 k0 cp.0 0 T0 w1 t1 L1 
1

QA2 L1 t1 
1

QS w1 t1 E0 

3.373 10
4

  
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Q2

1

1

QZ E0 0 k0 cp.0 0 T0 w2 t2 L2 
1

QA2 L2 t2 
1

QS w2 t2 E0 

8.195 10
4

  

Q3
1

1

QZ E0 0 k0 cp.0 0 T0 w3 t3 L3 
1

QA2 L3 t3 
1

QS w3 t3 E0 

8.222 10
4

  

Q4
1

1

QZ E0 0 k0 cp.0 0 T0 w4 t4 L4 
1

QA2 L4 t4 
1

QS w4 t4 E0 

2.579 10
4

  

Q5
1

1

QZ E0 0 k0 cp.0 0 T0 w5 t5 L5 
1

QA2 L5 t5 
1

QS w5 t5 E0 

1.993 10
4

  

Q6
1

1

QZ E0 0 k0 cp.0 0 T0 w6 t6 L6 
1

QA2 L6 t6 
1

QS w6 t6 E0 

6.445 10
4

  

Aspect Ratio 
A1 L t( )

L

t
  A2 w t( )

w

t
  

A1 L0 t0  225  A2 w0 t0  20  

A1 L1 t1  225  A2 w1 t1  43  t1 1 10
6

 m  SHOCUN 

A1 L2 t2  180  A2 w2 t2  16  t2 2.5 10
6

 m  SICON 

A1 L3 t3  75  A2 w3 t3  10  t3 3 10
6

 m  
FORT 

A1 L4 t4  27.778  A2 w4 t4  7.778  t4 4.5 10
6

 m  
ACT 

A1 L5 t5  26.471  A2 w5 t5  4.706  t5 8.5 10
6

 m  ACL 

A1 L6 t6  60  A2 w6 t6  10  t6 2.5 10
6

 m  ACST 
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SHOCUN 

SICON 

FORT 
th

t1

t2

t3

t4

t5

t6























1 10
6



2.5 10
6



3 10
6



4.5 10
6



8.5 10
6



2.5 10
6



























m  ARL

A1 L1 t1 
A1 L2 t2 
A1 L3 t3 
A1 L4 t4 
A1 L5 t5 
A1 L6 t6 























225

180

75

27.778

26.471

60



















  
ACT 

ACL 

ACST 

SHOCUN 

SICON 

ARw

A2 w1 t1 
A2 w2 t2 
A2 w3 t3 
A2 w4 t4 
A2 w5 t5 
A2 w6 t6 























43

16

10

7.778

4.706

10



















  FORT 
Qtotal

Q1

Q2

Q3

Q4

Q5

Q6























3.373 10
4



8.195 10
4



8.222 10
4



2.579 10
4



1.993 10
4



6.445 10
4



























  
ACT 

ACL 

ACST 

SHOCUN 

SICON 

FORT 
QTED

QZ E0 0 k0 cp.0 0 T0 w1 t1 L1 
QZ E0 0 k0 cp.0 0 T0 w2 t2 L2 
QZ E0 0 k0 cp.0 0 T0 w3 t3 L3 
QZ E0 0 k0 cp.0 0 T0 w4 t4 L4 
QZ E0 0 k0 cp.0 0 T0 w5 t5 L5 
QZ E0 0 k0 cp.0 0 T0 w6 t6 L6 























2.801 10
7



7.17 10
6



1.037 10
6



9.511 10
4



4.612 10
4



7.967 10
5



























  
ACT 

ACL 

ACST 

SHOCUN 

SICON 

FORT 
QSurface

QS w1 t1 E0 
QS w2 t2 E0 
QS w3 t3 E0 
QS w4 t4 E0 
QS w5 t5 E0 
QS w6 t6 E0 























3.381 10
4



8.345 10
4



9.892 10
4



1.47 10
5



2.705 10
5



8.244 10
4



























  
ACT 

ACL 

ACST 
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SHOCUN 
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L ARL t  
w ARw  ARw t  

QZ E  k cp  T ARw  E 
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Zener Equation 
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