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Abstract

This project gives two new proofs of the Bell-Kochen-Specker (BKS) Theorem for a

system of four qubits: A proof based on 11 observables for a four-qubit system and

a second proof based on 80 states and 265 orthogonal bases in a 16-dimensional state

space derived from the previous observables. These proofs can be converted into proofs

of Bell’s Theorem by introducing four more qubits that are entangled with the previous

qubits in a suitable fashion.
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1 Introduction

1.1 Goal of the Project

The goal of the project is to give several related proofs of the Bell-Kochen-Specker

(BKS) Theorem and Bell’s Theorem using a system of four qubits. A qubit is any

two-state quantum system such as the spin degrees of freedom of an electron or the

polarization degrees of freedom of a photon. The BKS Theorem and Bell’s Theorem

are two basic theorems concerning the interpretation of quantum mechanics. This

introduction will begin with a brief explanation, in qualitative terms, of these two

important theorems. Then past proofs of the theorems that serve as precursors to the

present work will be discussed before an overview of this project, and the motivations

behind it, are presented.

1.2 The BKS Theorem and Bell’s Theorem

Both the BKS Theorem and Bell’s Theorem were proved by John Bell in the years 1964

to 1966 [1, 2, 3]. The BKS Theorem was also proved independently by Kochen and

Specker in 1967 [4] and so is currently known by the initials of all of its three authors.

The motivation for these theorems came from a paper written by Einstein, Podolsky,

and Rosen in 1935 bearing the title, “Is the Quantum Mechanical Description of Reality

Complete” [5]? Quantum mechanics holds that the most complete description of a phys-

ical system is given by its wavefunction but that even knowledge of the wavefunction

does not allow one to make definite predictions about the results of all measurements

that can be made on the system. Instead, according to quantum mechanics, one can

only predict the probabilities of the various outcomes of a measurement. Einstein found

this absence of certainty galling (hence his famous remark, “God does not play dice”)

and so believed that quantum mechanics could be replaced by a more complete theory.
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A more complete theory would supplement the description given by the wavefunction

by introducing a set of “hidden variables” that would allow definite predictions to be

made in situations where quantum mechanics could only predict probabilities.

The BKS Theorem and Bell’s Theorem conclusively demonstrate that the complete

theories of the sort that Einstein had hoped for do not actually exist. They do this

by presenting physical situations in which a complete theory (interchangeably called

a hidden variable theory) and the quantum mechanical theory make very different

predictions. In Bell’s original scheme, for example, a decaying atom emits a pair of

photons (in a singlet state) that fly off in opposite directions. The polarization of each

photon is measured along one of several directions and the correlation between the two

measurements is observed over a long sequence of runs. Any hidden variable theory, it

turns out, predicts that the observed correlations obey a certain inequality, now known

as Bell’s inequality. The inequality emerges due to the assumption of local realism that

lies at the heart of hidden variable theories: Locality asserts that two distant objects

cannot have a direct effect upon each other (or, equivalently, that signals cannot travel

faster than the speed of light); realism, that particles have a definite character, in this

case polarization, prior to measurement and that the act of measurement passively

discovers that character. Experimental measurements show that Bell’s inequality is

violated and, moreover, that it is violated in precisely the manner predicted by quantum

mechanics. The experimental proof of Bell’s Theorem via this observed violation of

Bell’s inequality decisively shatters the hope of finding more complete theories.

Experimental work on the proof of Bell’s Theorem was carried out by A. Aspect and

his collaborators during the 1970s and 1980s [6]. Other groups over the years worked

on experimentally verifying Bell’s Theorem with increased precision and sophistication,

reducing the possibility of experimental loopholes that could make room for new hidden

variable theories. This experimental work led to a better understanding of a magical and
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puzzling phenomenon in the quantum world, one without analog in the macroscopic

world. This phenomenon is known as entanglement. Entanglement manifests itself

through miraculous correlations between particles in the microscopic world that lead

to the observed violation of Bell’s inequality. Einstein famously described the idea of

entanglement as “spooky actions at a distance.”

As recently as 1990, Greenberger, Horne, and Zeilinger (GHZ) [7] exposed a much

more stark conflict between local realism and quantum mechanics. They devised an

experiment in which local realism predicted one outcome and quantum mechanics pre-

dicted the diametrically opposite one. An experiment demonstrating this conflict was

subsequently performed. In the long term, the GHZ paper inspired a search for stronger

proofs of Bell’s Theorem that would avoid the statistical arguments characteristic of

earlier proofs. Many stronger inequality-free proofs of Bell’s Theorem have subsequently

been found. Mermin, for one, has clearly and concisely shown the shocking nature of

these inequality-free proofs in the case of two- and three-qubit systems [8]. The proofs

presented in this project belong to this class.

Up until now in this discussion Bell’s Theorem has been the topic of interest. The

difference between this theorem and the related BKS Theorem has not yet been elab-

orated. The difference between them, in a word, is that they rule out different sorts

of hidden variable theories. Suffice it to say that the BKS Theorem rules out so-called

noncontextual hidden variable theories while Bell’s Theorem rules out local hidden

variable theories. What this difference actually means will not be discussed here; the

discussion will be postponed until Chapter 2 when the proofs of these theorems using

four qubits are presented.
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1.3 Precursors to the Project

The original proof of Bell’s Theorem, as well as many later proofs, were given using a

system of two qubits. A particularly interesting variation of this proof was given by

Aravind [9, 10], building on earlier work by Mermin, Peres, and others. This variation

was interesting because it provided closely related proofs of the BKS Theorem and Bell’s

Theorem. Like Bell’s original proof the variation used a two-qubit system. Kernaghan

and Peres proved the BKS Theorem for a three-qubit system [11]. This project proves

both theorems using four qubits. The five-qubit case still awaits future work. Table 1

summarizes the relevant information concerning these n-qubit proofs, starting at n = 2

and continuing to n = 5.

Qubits Dimension Observables States (Bases) Reference
2 22 = 4 9 24 (24) Mermin, Peres, Aravind
3 23 = 8 10 40 (25) Kernaghan, Peres
4 24 = 16 11 80 (265) Present report
5 25 = 32 — — Future work

Table 1: Relevant information concerning n-qubit proofs

The first column of the table lists the number of qubits and the second the dimension

of the state space created by those qubits. (In general, the state space of a system of n

qubits has dimension 2n. In this way, an n-qubit proof can just as well be called, from

a different perspective, a 2n-dimensional proof.) The third column lists the number of

observables involved in the BKS proof and the fourth the number of states (and bases

formed by those states) involved in the state version of the BKS proof. Each of the

above BKS proofs can be converted into a proof of Bell’s Theorem by simply doubling

the number of qubits (and the dimension of the state space), dividing them into two

sets, and exploiting entanglement between the sets. The details apropos observables,

states, and bases will be explained in the body of the report.
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The last row of the table lists work that is expected to be undertaken in the future.

There are certain common trends that have been noticed in the cases that have been

studied so far. To what extent the observed trends persist in higher dimensions and to

what extent they do not has yet to be studied.

1.4 Motivations Behind the Project

Work on proofs of the BKS Theorem and Bell’s Theorem has proceeded for almost

half a century, yet it seems that it has not come close to exhausting their content or

fully taking advantage of all the riches contained in them. The proofs are interesting

at the philosophical and conceptual level because they help illuminate the nature of

entanglement, the fundamental mystery at the heart of quantum mechanics, to use the

words of Schrödinger.

From a practical point of view, ideas and techniques that first arose in connection

with proofs of Bell’s Theorem later played a key role in many quantum information

protocols such as quantum computation, quantum cryptography, and teleportation, to

name a few [12]. The quantum states and bases that arise in the proof of Bell’s Theorem

in this project have a rich geometric structure, being similar in many respects to the

balanced incomplete block designs studied in combinatorics and in statistical decision

theory, but with novel features not encountered earlier. It is certainly possible that a

study of these geometric structures could lead to applications in fields far removed from

quantum mechanics.

More immediately, however, it is hoped that the states and bases that arise here

can prove useful in quantum cryptography or other quantum information processing

protocols.
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1.5 Outline of the Report

The outline of the report is as follows: Chapter 2 gives an observable-based proof of

the BKS Theorem for a four-qubit system; then the number of qubits is doubled and

entanglement is exploited to prove Bell’s Theorem. Prior to both, a “magic” trick is

performed demonstrating the truth of the theorems. Chapter 3 gives a state version

of the proof of the BKS Theorem by deriving a set of states from the observables of

Chapter 2 and showing that they cannot be colored according to a simple set of rules.

Chapter 4 ends with some brief concluding remarks concerning the present work and

looks ahead to prospective future work. Chapter 5 is an appendix containing a survey

of quantum mechanical concepts, mathematical formulae, computer programming code,

and any other relevant information that was not included in the main body as it would

have been too distracting.
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2 Observable-Based Proofs of the BKS Theorem

and Bell’s Theorem

In this chapter, the Bell-Kochen-Specker (BKS) Theorem will be proved for a four-

qubit system and then Bell’s Theorem will be proved using an eight-qubit entangled

system with two distant observers. The proofs are state-independent in the sense that

they hold irrespective of the quantum states of the systems. The BKS Theorem, which

asserts that noncontextual hidden variable theories cannot exist in Hilbert spaces of

dimension d > 2, is first proved by means of a no-coloring argument. Then the related

Bell’s Theorem is proved in a “double play” that invalidates the existence of local

hidden variable theories in quantum mechanics. The truths of these proofs are first

communicated by means of a clever “magic” trick before the quantum mechanics of the

trick is thoroughly explained to the reader.

2.1 The Trick

Consider an experiment in which a source S emits eight particles, four of which fly off

to the left toward an observer, named Alice (A), and the other four to the right toward

another observer, Bob (B). Each quartet of particles enters a detector which performs

a measurement on them. Figure 1 is a representation of the present source-detectors

scheme.

Each detector has a screen that displays the results of the measurement. Each

screen is segmented into twenty panels in the form of a five-by-four array, with each

panel bearing a number from 1 to 11. There are five switch settings for each detector,

with each setting activating the panels in one of the columns of the detector or in its

last row. The panels corresponding to each of the switch settings are linked by lines in

order to bring out the switch settings more clearly. (The first four unconnected rows
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Figure 1: The source-detectors scheme

do not correspond to any switch settings.) When Alice or Bob sets his/her detector’s

switch to one of these five positions, all the panels of the corresponding column or row

light up upon receiving the incoming particles, with each panel lighting up either green

or red.

In any run of the experiment, the source emits the particles and Alice and Bob

independently and randomly set their switches at any time prior to the particles reaching

their detectors and then record the light flashings. It is important to note that the switch

selections and detector responses at the two ends take place within a very short time

of each other, so short that it would be impossible for a light signal to travel between

them in that time. This guarantees that neither Alice’s choice of switch setting nor the

pattern of flashings she observes on her detector can influence Bob’s switch setting or

detector flashings in any way (with Bob’s choice similarly having no effect at Alice’s

end). This is done in order to rule out a possible explanation for the magic trick about

to be demonstrated.

The magic trick consists of repeating the above experiment a large number of times.
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Alice and Bob then find that in each run of the experiment the following two rules are

invariably obeyed:

(1) Parity. An odd number of panels lights up red for any of the switch settings.

(2) Correlation. For any switch setting the similarly-numbered panels that light up

at the opposite ends always light up the same color.

What is so magical about the above phenomenon? Since the switch settings and

light flashings at Alice’s end cannot influence those at Bob’s and vice versa, the only

explanation for the correlation rule would seem to be that the particles from the source

carry instructions to their detectors telling them how to flash when any setting on

them is chosen. Moreover, the instructions given to similarly-numbered panels at the

two ends must be identical if the panels are always to flash the same colors irrespective

of the switch setting used to light them up. In other words, in each run the instructions

carried to each detector must make each panel on it flash a perfectly definite color, and

the instructions to the two detectors must also be identical.

Now that the correlation rule has been satisfied, one can see how the instructions

to a particular detector can be chosen so that the observed parity rule is also satisfied.

But it is here that one encounters a problem. Let ni denote the number of red panels

for the ith switch setting (i = 1, . . . , 5) and let N =
∑5
i=1 ni, the total number of red

panels over all switch settings. Then, on the one hand, N must be odd because each of

the ni’s must be odd according to the parity rule; on the other hand, N must also be

even because each panel occurs in an even number (either twice or four times) of the

ni’s. This contradiction shows that instruction sets are impossible and seems to rule

out any rational explanation of both the parity and correlation rules. This, in short,

constitutes the nature of the magic trick.
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2.2 How the Trick is Done

The particles used in the demonstration are actually spin-1/2 particles (or “qubits”).

Each panel on the detector represents a particular four-qubit observable. Figure 2 shows

the 11 distinct observables represented by the 20 panels.1 The five switch settings are

labeled S1 to S5. X and Z are the Pauli spin operators in the x and z directions,

respectively: X ≡ σx and Z ≡ σz. The subscripted numbers indicate the qubits upon

which the operators are acting. Thus, Z1 performs Z on the first qubit entering the

detector and leaves the other three unchanged. That is, Z1 = Z1⊗ I2⊗ I3⊗ I4, where I

is of course the identity operator. Similarly, observables such as ZXZX are shorthand

for the tensor product Z1X2Z3X4.

It can be shown that the observabes in each column (S1 to S4) form a mutually

commuting set. Additionally, the observables in the last row S5 also form a mutually

commuting set. Each observable has eigenvalues of only ±1. Furthermore, the product

of the observables in any column is +I, whereas the product of the observables in the

last row is −I.

When any of the settings S1, . . . , S5 is chosen on the detector, the detector carries

out a measurement of the commuting observables in that column or row on its qubits.

For example, if S1 is chosen, the eigenvalues of the observables Z1, X2, Z3, X4, and

ZXZX are measured simultaneously and exactly because the observables are mutually

commuting. After measurement, the panels of the switch settings S1 to S4 light up

either red or green according to the eigenvalues of the observables: If the eigenvalue is

−1, the panel lights up red; if +1, it lights up green. An opposite convention exists

for switch setting S5: An eigenvalue of −1 corresponds to a green-flashing panel; an

eigenvalue of +1 to a red one.

1Call a detector with a suitable set of observables on it a “magic rectangle” because it provides for
a proof of the BKS Theorem.
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Figure 2: The “magic rectangle” in which each entry is a four-qubit observable

The parity rule summarized in the previous section can now be explained by means

of observables and eigenvalues. Because all the observables in any column multiply

to give the identity operator, which only has an eigenvalue of +1, it follows that the

eigenvalues of the observables individually multiply to give +1. If the only possible

values for the eigenvalues are +1 or −1, there must be an even number of eigenvalues

of value −1. If the eigenvalue of the last observable in any column is −1 (green), there

must be an odd number of −1 eigenvalues (red) among the first four observables in

17



order to have an even number of −1 eigenvalues in total. If, on the other hand, the

eigenvalue of the last observable in any column is +1 (red), there must be an even

number of −1 eigenvalues (red) among the first four observables in order to have an

even number of −1 eigenvalues in total. In either case, there ends up being an odd

number of red flashes in any column, as the parity rule states.

Alternatively, because the observables in the last row multiply to give minus the

identity operator (−1 eigenvalue), there must be an odd number of −1 eigenvalues

among these observables. This is the same as saying that there must be an odd number

of green flashes in the last row. An odd number of green flashes in turn implies an odd

number of red flashes because there are only four panels in the last row. So the parity

rule holds in its entirety.

To prove the BKS Theorem, one undertakes the realist’s task of assigning definite

instruction sets to the qubits telling the detector how to flash and shows that this leads

to a contradiction. The task of assigning instruction sets reduces, as already argued,

to the task of assigning a definite color to each panel (observable) on the detector.

However, this task is seen to be impossible by the argument given in the preceding

section, which is reproduced here for convenience. Let ni denote the number of red

panels for the ith switch setting (i = 1, . . . , 5) and let N =
∑5
i=1 ni, the total number

of red panels over all switch settings. Then, on the one hand, N must be odd because

each of the ni’s must be odd according to the parity rule; on the other hand, N must

also be even because each panel occurs in an even number (either twice or four times)

of the ni’s. This contradiction serves to show, as before, that the realist assumption of

preexisting definite properties for the qubits is simply untenable.

The principle of noncontextuality was assumed in the above argument because each

observable was assigned a definite eigenvalue (color) irrespective of which commuting

set of observables it was measured as a part of. Thus the above argument serves to rule

18



out noncontextual hidden variable theories, and so proves the BKS Theorem.

The proof of the BKS Theorem falls short of proving the stronger Bell’s Theorem

because of this assumption of noncontextuality that went into it. To prove Bell’s The-

orem one doubles the number of qubits to eight and divides them into two sets. Four

qubits fly off toward Alice and four toward Bob. The qubits are entangled in the sense

that they are all described by a single wavefunction |ψ〉, the tensor product of four

Bell states. One member of each Bell state goes to Alice, the other member to Bob.2

Because of this entanglement, if Alice measures an observable using one switch setting

and Bob measures the same observable using another switch setting, experimentally

they always get the same color for that observable. This is the correlation rule of the

previous section and is a little more complicated to explain theoretically than the par-

ity rule.3 The correlation rule, then, truly demonstrates the spookiness of quantum

entanglement. It also provides, interestingly enough, the necessary empirical basis for

the assumption of noncontextuality present in the BKS Theorem.

If one makes the assumption of locality, which says that distant objects can have no

direct effect upon each other, and also subscribes to realism, the belief that observables

possess definite eigenvalues even before measurement, then one is forced to explain

the puzzling correlation by saying that the particles carry definite instruction sets to

their respective detectors telling them how to flash. As already mentioned, designing

instruction sets reduces to assigning a definite color to each detector panel in such a

way that the parity rule is always satisfied. However, the detector cannot be properly

colored in this way, as previously proved. This contradiction leads one to believe that

the initial assumption of local realism is false. This is precisely the conclusion of Bell’s

Theorem. In other words, the theorem, which seems simple but is in fact very deep,

2For a more detailed treatment of the entangled wavefunction, see Appendix 5.1.
3In brief, the total wavefunction must be rewritten as a linear combination of tensor products

between the orthonormal states of Alice and Bob’s qubits. For more information, see Appendix 5.1.
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serves to show that the classical position of local realism is an untenable one.

The existence of local hidden variable theories is thus ruled out by exploiting the

features of an entangled system. Because of this, Bell’s Theorem is sometimes spoken

of as establishing nonlocality, or “spooky actions at a distance,” as a fact of nature.
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3 State Proof of the BKS Theorem in 16 Dimen-

sions

In the preceding chapter, a proof of the BKS Theorem for a system of four qubits was

given by exploiting suitable sets of commuting observables for that system. A different

albeit related proof of the BKS Theorem is given in this chapter by deriving a set of 80

states from those sets of observables and showing that they cannot be colored according

to a simple set of rules.

3.1 Introductory Remarks

Before proceeding with the proof, it is worthwhile to say something in general about

how the BKS Theorem can be proved using a set of quantum states in a Hilbert space.

Consider a finite set of states in a Hilbert space of dimension d > 2. To each state one

wishes to assign a value, either 0 or 1, in such a way that the following two rules always

hold:

(1) No two orthogonal states can both be assigned the value 1 and

(2) Every member of a set of mutually orthogonal states that span the space cannot

be assigned the value 0.

The BKS Theorem asserts that it is always possible to find a finite number of states

such that all of the states cannot be properly assigned either a 0 or a 1 according to

the preceding rules. Kochen and Specker originally proved the theorem using 117 state

vectors in a three-dimensional space. Since then, a number of proofs of the theorem

have been given in other dimensions [13]. This chapter will give a proof in dimension

16 using 80 suitably chosen states.
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In many cases, the states form a certain number of complete bases in such a way

that each state occurs in at least one basis with every other state orthogonal to it. One

can characterize this situation by saying that one is dealing with a “saturated” config-

uration.4 The present 16-dimensional 80-state case is indeed a saturated configuration

with each basis, or 16-ad, consisting of 16 members. The occurrence of a saturated con-

figuration is accompanied by a high degree of symmetry in the states which considerably

simplifies the BKS proof. Namely, for a saturated configuration, one can combine rules

(1) and (2) above in order to restate the BKS Theorem in the following way:

(BKS Theorem for Saturated Configurations) It is impossible to as-

sign a 0 or a 1 to all the states in such a way that each basis formed by the

states contains exactly one state with the value 1 and all the others with

the value 0.

If one adopts more colorful language, speaking of assigning the value 1 to a state

as coloring it green and of assigning the value 0 to it as coloring it red, then a proof of

the BKS Theorem in a Hilbert space of d dimensions can be given if one can identify

in that space a saturated set of states, each of which cannot be colored green or red in

such a way that each basis formed by the states contains exactly one green state and

(d− 1) red states. This is the way the BKS Theorem will be proved in a Hilbert space

of 16 dimensions in this chapter.

The no-coloring proof of the BKS Theorem rules out the existence of hidden variable

theories of a particular kind. This can be seen by considering a system in which one

wishes to measure the commuting projection operators corresponding to all the states

in a given basis. Each measurement returns either a 0 or a 1, the eigenvalues of the

projection operator. Because the projection operators in a given basis all commute, it

4The 117 vectors used by Kochen and Specker, as well as different sets of vectors used to give other
proofs in three dimensions, do not involve saturated configurations of states.
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is indeed possible to carry out a precise measurement of all of them in a single experi-

ment without running into the problems posed by the uncertainty principle. Moreover,

because the projection operators all sum to unity (as a consequence of the completeness

relation), the sum of their measured eigenvalues in any experiment must be 1. This

means that only one of the projection operators can return the value 1 and that all of

the others must return the value 0.

If one is a realist, like Einstein, and believes that the values returned in an experi-

ment existed before the experiment was carried out, then one is forced to come up with

a successful solution to the coloring problem above. An inability to do so therefore

demolishes one’s position that definite values existed prior to measurement, the major

tenet of hidden variable theories.

Note, however, that in the above coloring problem one assigns the same color to

a state in every basis in which it occurs. One assumes that the projection operator

corresponding to a state will return the same eigenvalue no matter which basis the state

is in. Unfortunately, the measurements corresponding to two different bases cannot be

carried out at the same time because the projection operators in two different bases

do not necessarily commute. If a hidden variable theory assigns the same value to

a projection operator irrespective of the basis in which it is measured it is said to be

noncontextual. The BKS Theorem thus rules out the existence of noncontextual hidden

variable theories. The task of ruling out hidden variable theories that do not rely on

the assumption of noncontextuality is the principal task of Bell’s Theorem.

3.2 Construction of the 80 States

The “magic rectangle” used to prove the BKS Theorem in the preceding chapter is

reproduced in Figure 3. Recall that each entry is a four-qubit observable that acts on

the set of either Alice or Bob’s qubits. The 80 states presently needed to prove the
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BKS Theorem are actually just the eigenstates of the five sets of mutually commuting

observables present in the rectangle in the form of the four columns plus the last row.

Each set of observables S1, . . . , S5 has 16 different mutual eigenstates for a net total of

80 states. For each set, the 16 eigenstates that span the space are linear combinations

of the 16 (= 24) vectors of the computational basis:

|0000〉, |0001〉, |0010〉, |0011〉, |0100〉, |0101〉, |0110〉, |0111〉,

|1000〉, |1001〉, |1010〉, |1011〉, |1100〉, |1101〉, |1110〉, |1111〉,
(1)

where |0〉 is the “spin up” (eigenvalue +1) eigenstate of the Pauli operator Z and |1〉 is,

alternatively, the “spin down” (eigenvalue −1) eigenstate of the operator. As a matter

of notation, |0000〉 is of course equivalent to |0〉|0〉|0〉|0〉 = |0〉1 ⊗ |0〉2 ⊗ |0〉3 ⊗ |0〉4.

3.2.1 Eigenvalue Signatures and State Labels

The 16 eigenstates for each set S1, . . . , S4 (the four columns) are uniquely determined by

the eigenvalues of the observables for each set. All of these 64 eigenstates can be labeled,

therefore, by appropriate eigenvalue signatures. For example, one eigenstate of S1 might

be labeled (+ + + + +) to indicate that all the observables of S1 have an eigenvalue

of +1. These eigenvalues uniquely determine the eigenstate (up to a multiplicative

factor). However, because the eigenvalues of the observables in any column individually

multiply to give +1, it is not necessary to list all five eigenvalue signatures. Without any

loss of specificity, only four need to be reported because the last one is automatically

determined by the previous four, being simply their product. Hence, in the previous

example, (+ + ++) would be sufficient, designating the eigenvalues of the first four

mutually commuting observables of S1 respectively.

The remaining 16 eigenstates of set S5 are exceptional, as expected. They too can be

labeled by eigenvalue signatures. Now each label consists of four eigenvalue signatures
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Figure 3: The “magic rectangle” used in the observable-based proof

corresponding to all the observables in the last row. However, because the eigenvalues

of the observables in the last row individually multiply to give −1, only eight out of 16

signature combinations are possible. So a degeneracy exists in which two eigenstates

are described by one set of eigenvalue signatures.

The 80 eigenstates can be labeled simply by the two-digit numbers 01, 02, . . . , 79, 80.

Table 2 shows the correspondence between these state labels and the eigenvalue sig-

natures. The 80 eigenstates are divided into five groups: 01–16, 17–32, 33–48, 49–64,
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and 65–80. Starting from the first set of eigenvalue signatures in each group, the re-

maining sets of eigenvalue signatures are obtained by means of binary counting with

+ corresponding to a 0 and − to a 1. Additionally, it is clear that the 80 states are

of two types: Type I states (01–64) and Type II states (64–80). This asymmetry has

consequences that must be handled later on in proving the theorem.5

01 (+ + ++) 17 (+ + ++) 33 (+ + ++) 49 (+ + ++) 65 (+ + +−)
02 (+ + +−) 18 (+ + +−) 34 (+ + +−) 50 (+ + +−) 66 (+ + +−)
03 (+ +−+) 19 (+ +−+) 35 (+ +−+) 51 (+ +−+) 67 (+ +−+)
04 (+ +−−) 20 (+ +−−) 36 (+ +−−) 52 (+ +−−) 68 (+ +−+)
05 (+−++) 21 (+−++) 37 (+−++) 53 (+−++) 69 (+−++)
06 (+−+−) 22 (+−+−) 38 (+−+−) 54 (+−+−) 70 (+−++)
07 (+−−+) 23 (+−−+) 39 (+−−+) 55 (+−−+) 71 (+−−−)
08 (+−−−) 24 (+−−−) 40 (+−−−) 56 (+−−−) 72 (+−−−)
09 (−+ ++) 25 (−+ ++) 41 (−+ ++) 57 (−+ ++) 73 (−+ ++)
10 (−+ +−) 26 (−+ +−) 42 (−+ +−) 58 (−+ +−) 74 (−+ ++)
11 (−+−+) 27 (−+−+) 43 (−+−+) 59 (−+−+) 75 (−+−−)
12 (−+−−) 28 (−+−−) 44 (−+−−) 60 (−+−−) 76 (−+−−)
13 (−−++) 29 (−−++) 45 (−−++) 61 (−−++) 77 (−−+−)
14 (−−+−) 30 (−−+−) 46 (−−+−) 62 (−−+−) 78 (−−+−)
15 (−−−+) 31 (−−−+) 47 (−−−+) 63 (−−−+) 79 (−−−+)
16 (−−−−) 32 (−−−−) 48 (−−−−) 64 (−−−−) 80 (−−−+)

Table 2: State labels 01–80 and their corresponding eigenvalue signatures

3.2.2 16-Vector Representation of the States

Any Type I state is trivial to calculate if one knows its set of eigenvalue signatures,

the observables to which the eigenvalue signatures refer, and, morever, the spin up and

spin down eigenstates of the Z and X operators. The eigenstates of Z are |0〉 and |1〉
5The 80 states can actually be understood in terms of 64 rank-1 and 8 rank-2 projectors. For more

about projectors, see Appendix 5.2.
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with eigenvalues +1 and −1, respectively:


Z|0〉 = +|0〉,

Z|1〉 = −|1〉.
(2)

The unnormalized eigenstates of X are |0〉+ |1〉 and |0〉 − |1〉 with eigenvalues +1 and

−1, respectively:6


X(|0〉+ |1〉) = +(|0〉+ |1〉),

X(|0〉 − |1〉) = −(|0〉 − |1〉).
(3)

Again consider the (++++) eigenstate of S1, state 01 according to Table 2. Because

the first four observables of S1 are Z1, X2, Z3, and X4, state 01 is given by, using

Equations 2 and 3,

01 = |0〉1 ⊗ (|0〉+ |1〉)2 ⊗ |0〉3 ⊗ (|0〉+ |1〉)4, (4)

which, when expanded, simplifies to

01 = |0000〉+ |0001〉+ |0100〉+ |0101〉, (5)

where the subscript 1234 was dropped from each term on the righthand side for conve-

nience. Furthermore, Equation (5) can be rewritten in a more compact way as a string

of 16 numbers representing the coefficients multiplying the computational basis states

of Expression (1). Because state 01 is a linear combination of the first, second, fifth,

and sixth computational bases with coefficients of one for each, the eigenstate can be

6The X operator is analogous to the “bit flip” operator: X|0〉 = |1〉 and X|1〉 = |0〉.
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rewritten as

01 = 11001100 00000000. (6)

All of the Type I states can easily be obtained in this simple fashion.

As expected, calculating the Type II states takes a little more work. The observables

in the last row, of which the Type II states are eigenstates, are ZXZX, ZXXZ,

XXZZ, and XXXX, the only possible eigenvalues of which are ±1. One must first

examine how these observables act on an arbitrary 16-vector given by, say, abcdefgh

ijklmnop = a · · · p according to the previously introduced notation. For example,

ZXZX[a · · · p] = feh̄ḡbad̄c̄ n̄m̄poj̄īlk = ±[abcdefgh ijklmnop], where h̄ is shorthand

for −h and so on. If the eigenvalue of ZXZX is +1, it must be that, by matching

coefficients, a = f, b = e, c = h̄, d = ḡ, i = n̄, j = m̄, k = p, and l = o. If the eigenvalue

is −1, eight similar constraints are generated. Now, each Type II state is given by a

set of four eigenvalue signatures, each of which imposes constraints that the state must

satisfy. For (+ + +−) signatures, for example, the state must satisfy

|+ + +−〉 = abbābaab̄ bāāb̄ab̄b̄ā, (7)

where a and b are two free parameters, or degrees of freedom. If one lets (a, b) = (1, 0)

and (a, b) = (0, 1), two Type II states are generated, states 65 and 66 respectively:


65 = 1001̄0110 01̄1̄01001̄,

65 = 01101001̄ 1001̄01̄1̄0.
(8)

3.2.3 Block Notation

Each of the 80 states can be written in terms of 16 coordinates by performing the

calculations of the previous section. To display the results in a neat and compact form,
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block notation can be employed in which a block of four coordinates of the 16-vectors is

abbreviated by a symbol. Forty-one such symbols need to be defined. Table 3 lists 20

of them. The other 21 are just the negation of those 20 plus the zero block 0 = 0000.

(Generally, the negation ā1 of a1 is the block of a1 coordinates multipled by minus one:

ā1 = 1̄1̄00.)

a1 = 1100 a2 = 11̄00 a3 = 0011 a4 = 0011̄
b1 = 1010 b2 = 0101 b3 = 101̄0 b4 = 0101̄
c1 = 1000 c2 = 0100 c3 = 0010 c4 = 0001
d1 = 1111 d2 = 11̄11̄ d3 = 111̄1̄ d4 = 11̄1̄1
e1 = 1001̄ e2 = 0110 e3 = 1001 e4 = 011̄0

Table 3: Notation for four-coordinate blocks

This block notation allows the 80 states to be conveniently summarized per Table

4. These states are of course unnormalized.

01 a1a100 17 b1b100 33 c1c1c1c1 49 d1d1d1d1 65 e1e2ē2e1
02 a2a200 18 b2b200 34 c2c2c2c2 50 d2d2d2d2 66 e2e1e1ē2
03 a3a300 19 b3b300 35 c3c3c3c3 51 d3d3d3d3 67 e1e2e2ē1
04 a4a400 20 b4b400 36 c4c4c4c4 52 d4d4d4d4 68 e2e1ē1e2
05 a1ā100 21 b1b̄100 37 c1c̄1c1c̄1 53 d1d̄1d1d̄1 69 e3e4ē4e3
06 a2ā200 22 b2b̄200 38 c2c̄2c2c̄2 54 d2d̄2d2d̄2 70 e4e3e3ē4
07 a3ā300 23 b3b̄300 39 c3c̄3c3c̄3 55 d3d̄3d3d̄3 71 e3e4e4ē3
08 a4ā400 24 b4b̄400 40 c4c̄4c4c̄4 56 d4d̄4d4d̄4 72 e4e3ē3e4
09 00a1a1 25 00b1b1 41 c1c1c̄1c̄1 57 d1d1d̄1d̄1 73 e3ē4e4e3
10 00a2a2 26 00b2b2 42 c2c2c̄2c̄2 58 d2d2d̄2d̄2 74 e4ē3ē3ē4
11 00a3a3 27 00b3b3 43 c3c3c̄3c̄3 59 d3d3d̄3d̄3 75 e3ē4ē4ē3
12 00a4a4 28 00b4b4 44 c4c4c̄4c̄4 60 d4d4d̄4d̄4 76 e4ē3e3e4
13 00a1ā1 29 00b1b̄1 45 c1c̄1c̄1c1 61 d1d̄1d̄1d1 77 e1ē2e2e1
14 00a2ā2 30 00b2b̄2 46 c2c̄2c̄2c2 62 d2d̄2d̄2d2 78 e2ē1ē1ē2
15 00a3ā3 31 00b3b̄3 47 c3c̄3c̄3c3 63 d3d̄3d̄3d3 79 e1ē2ē2ē1
16 00a4ā4 32 00b4b̄4 48 c4c̄4c̄4c4 64 d4d̄4d̄4d4 80 e2ē1e1e2

Table 4: Block notation for the 80 states
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3.3 Construction of the 265 Bases (16-ads)

A basis for this 16-dimensional 80-state configuration is a group of 16 mutually orthogo-

nal states called a 16-ad. In order to determine these 16-ads, a few remarks are in order.

First, there are three possible values for the magnitude of the inner product between

any normalized Type I state and any other normalized state: 1/2,
√

2/4, and 0. Table

5 is a histogram showing how many states (of either type) have those inner product

magnitudes between themselves and any Type I state. It is immediately evident that

there are 59 states (51 Type I + 8 Type II) orthogonal to any Type I state.

Inner Product Magnitude 1/2
√

2/4 0
Number of States 12 8 59

Type I 12 0 51
Type II 0 8 8

Table 5: Inner product histogram for any Type I state

Table 6 presents the same data, this time for any normalized Type II state. Thirty-

two Type I states have an inner product magnitude of
√

2/4 between themselves and

any Type II state, while 47 states (32 Type I + 15 Type II) are orthogonal to any Type

II state.7

Inner Product Magnitude
√

2/4 0
Number of States 32 47

Type I 32 32
Type II 0 15

Table 6: Inner product histogram for any Type II state

Knowing the orthogonalities for any Type I and Type II state, one can work out all

7The data in Tables 5 and 6 were obtained by the Maple program innerproducts.mw in Appendix
5.3. However, it is possible to determine the orthogonalities for any Type I and Type II state simply
by inspection.
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the bases formed by the 80 states. There turns out to be 265 bases in total. In Appendix

5.4 can be found a list of all the bases in lexicographic order, meaning the state numbers

in each basis increase from left to right and the bases are ordered sequentially according

to their leading entries. Each basis is on a separate line preceded by a three-digit number

(basis label) 001, 002, . . . , 264, 265. Like the 80 states, the 265 bases formed by them

can also be divided into two groups: A group of 256 Type A bases involving only Type

I states and a group of 9 Type B bases involving, either partially or wholly, Type II

states.

3.4 Quantum Block Design (QBD)

A compact way of characterizing the 256 Type A bases is through the notion of a

Quantum Block Design (QBD). It is unnecessary to characterize the remaining 9 Type

B bases by a QBD since there is a small number of them. For the Type A bases which

are comprised of only Type I states, however, a QBD is a good way of conveying a sense

of the structure of the bases without having to look directly at them. It does this by

defining several parameters:8

(1) Let v be the total number of Type I states. That is, v = 64.

(2) Suppose each Type I state occurs in r of the Type A bases. If b is the total

number of Type A bases and k is the maximum number of mutually orthogonal

states in the space, it follows that vr = bk. In the present case, r = 64, b = 256,

and k = 16.

(3) Consider the companions of any Type I state in all the Type A bases in which it

occurs. Suppose that, among the companions, n1 states each occur once in those

8Several of the parameters of the QBD were determined by the Maple program
quantumblockdesign.mw in Appendix 5.5.
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bases, n2 states each occur twice, and so on. In general, then, nk states each

occur k times in those bases in which the Type I state occurs. Then it must be

true that 1 · n1 + 2 · n2 + · · · + k · nk = (k − 1)r. In the present case, n16 = 45,

n32 = 3, n48 = 3, and all the other nk’s are zero. That is, 45 states each occur 16

times, 3 states each occur 32 times, and 3 states each occur 48 times.

The parameters of the QBD can be written neatly in one line as

[ v, r; b, k | (1, n1), . . . , (k, nk) ], (9)

which in the present case becomes

[ 64, 64; 256, 16 | (16, 45), (32, 3), (48, 3) ]. (10)

The remaining 9 Type B bases are bases 065, 066, 205, 206, 253, 254, 263, 264, and

265, the elements of which are shown in Table 7. (Interestingly, they all come in pairs

except basis 265.) They play a key role in the no-coloring proof that follows.

065: [01, 04, 06, 07, 10, 11, 13, 16, 73, 74, 75, 76, 77, 78, 79, 80]
066: [02, 03, 05, 08, 09, 12, 14, 15, 65, 66, 67, 68, 69, 70, 71, 72]
205: [17, 20, 22, 23, 26, 27, 29, 32, 69, 70, 71, 72, 77, 78, 79, 80]
206: [18, 19, 21, 24, 25, 28, 30, 31, 65, 66, 67, 68, 73, 74, 75, 76]
253: [33, 36, 38, 39, 42, 43, 45, 48, 67, 68, 71, 72, 75, 76, 79, 80]
254: [34, 35, 37, 40, 41, 44, 46, 47, 65, 66, 69, 70, 73, 74, 77, 78]
263: [49, 52 ,54, 55, 58, 59, 61, 64, 65, 66, 71, 72, 75, 76, 77, 78]
264: [50, 51, 53, 56, 57, 60, 62, 63, 67, 68, 69, 70, 73, 74, 79, 80]
265: [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80]

Table 7: The 9 Type B bases formed by the 80 states
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3.5 The No-Coloring Proof of the BKS Theorem

The stage has now been set for a no-coloring proof of the BKS Theorem in 16 dimensions

using the 80 states as the saturated set. It must be shown that it is impossible to color

each of the states either green or red in such a way that each basis (or 16-ad) contains

exactly one green state and 15 red states. The proof can be given using the technique

of reductio ad absurdum (proof by contradiction): One assumes that a coloring is

possible and then proceeds to show that this leads to a contradiction; hence the initial

assumption must be false and the BKS Theorem is thereby proved.

Assume, then, that a satisfactory coloring of the 80 states exists. Let the four

“defining” 16-ads be those 16-ads consisting solely of Type I states 01–16, 17–32, 33–

48, and 49–64, respectively. These are the Type A 16-ads 001, 178, 245, and 262. It

must be the case that if a satisfactory coloring exists each of these defining 16-ads is

comprised of exactly one green state and 15 red states. Then it follows that among all

the 64 Type I states only four are colored green while the remaining 60 are colored red.

With the Type I states colored in this way, assume that all the Type A 16-ads formed

by them are satisfactorily colored. Inspection of the 9 Type B 16-ads of Table 7 shows

that the states 01–16 are distributed among the first two Type B 16-ads 065 and 066,

17–32 among the next two 16-ads 205 and 206, 33–48 among 253 and 254, and 49–64

among 263 and 264. The four green states present in the defining 16-ads can fall, then,

within these eight Type B 16-ads in 24 = 16 ways. That is, one green state can be in

either 16-ad 065 or 066, another green state in either 205 or 206, and so on.

Each of these 16 possibilities can be identified by listing the Type B 16-ads in which

the green states occur in terms of a string of four numbers, each of which can be either

1 or 2. The first number in the string is 1 if the first green state is in 16-ad 065; it is

2 if the first green state is in 16-ad 066. The second number in the string is 1 or 2 if

the second green state is in 205 or 206, respectively. The same is true for the other two
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numbers in the string. For each possibility one must investigate to see if the coloring

of the Type I states given by the possibility leads to a satisfactory coloring of the 16

Type II states and, consequently, to a satisfactory coloring of the 9 Type B 16-ads. One

quick way to see that a satisfactory coloring of the Type II states and Type B 16-ads is

impossible is to see if the coloring of the Type I states ultimately forces all the states

in the last 16-ad 265 to be colored red. If 16-ad 265 can be satisfactorily colored, on

the other hand, then all the 265 16-ads can be satisfactorily colored. Table 8 lists all

the 16 possibilities as four-number strings and indicates whether or not each possibility

enables satisfactory coloring of the 265 16-ads.9

Green States Satisfactory Coloring? Green States Satisfactory Coloring?
1111 NO 2111 YES
1112 YES 2112 NO
1121 YES 2121 NO
1122 NO 2122 YES
1211 YES 2211 NO
1212 NO 2212 YES
1221 NO 2221 YES
1222 YES 2222 NO

Table 8: The 16 possibilities satisfactorily coloring the 265 16-ads

As an example, consider possibility 1111, which is shorthand for saying that the

green Type I states are in 16-ads 065, 205, 253, and 263. According to Table 7, coloring

one Type I state green in each of these 16-ads forces, if a satisfactory coloring exists, all

Type II states to be colored red. This in turn causes 16-ad 265 to be colored entirely

red, making a satisfactory coloring impossible. Similarly, possibility 1112 only forces

states 67–80 to be colored red. This leaves 65 and 66 free to be colored differently,

either red or green, in 16-ad 265. Hence, 1112 leads to a satisfactory coloring of all the

9The yes-no answers of Table 8 were determined by the Maple program satisfactorycolorings.mw
in Appendix 5.6.
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16-ads.

To complete the proof, then, it is sufficient to show that all satisfactory colorings

of the Type I states 01–64 and their associated Type A 16-ads involve coloring states

green in one of the possibilities that lead to an unsatisfactory coloring of all the 16-ads.

In other words, it must be shown that all satisfactory colorings of the Type I states are

of the kind of possibilities that answered “NO” in Table 8.

One can carry out a systematic computer search of all possible satisfactory colorings

of the Type I states to arrive at 128 different possibilities, as shown in Table 9. In the

table, each possibility is expressed in terms of the four Type I states which are colored

green. Of course, all the other Type I states are colored red. It can be shown, moreover,

that each possibility, or quartet, is exactly of the kind of possibilities that lead to an

unsatisfactory coloring. Each quartet of green Type I states falls among the Type B

16-ads in such a way that its four-number string always contains an even number of

1’s and an even number of 2’s. There are eight of these kinds of strings: 1111, 1122,

1212, 1221, 2112, 2121, 2211, and 2222.10 According to Table 8, these possibilities are

precisely the ones that do not lead to a satisfactory coloring of the 16-ads! No matter

what satisfactory coloring of the Type I states one makes it always turns out that

the 265 16-ads cannot be colored according to the rule that in each 16-ad one state is

colored green and the other 15 red. Hence the no-coloring proof of the BKS Theorem

in 16 dimensions using a saturated set of 80 states is complete.

10The systematic computer search to determine the 128 quartets and their corresponding four-
number strings was performed in the Maple program quartets.mw in Appendix 5.7.
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1 1, 17, 33, 49 33 5, 21, 37, 53 65 9, 25, 33, 49 97 13, 29, 37, 53
2 1, 17, 41, 57 34 5, 21, 45, 61 66 9, 25, 41, 57 98 13, 29, 45, 61
3 1, 18, 34, 49 35 5, 22, 38, 53 67 9, 26, 34, 49 99 13, 30, 38, 53
4 1, 18, 42, 57 36 5, 22, 46, 61 68 9, 26, 42, 57 100 13, 30, 46, 61
5 1, 19, 33, 51 37 5, 23, 37, 55 69 9, 27, 33, 51 101 13, 31, 37, 55
6 1, 19, 41, 59 38 5, 23, 45, 63 70 9, 27, 41, 59 102 13, 31, 45, 63
7 1, 20, 34, 51 39 5, 24, 38, 55 71 9, 28, 34, 51 103 13, 32, 38, 55
8 1, 20, 42, 59 40 5, 24, 46, 63 72 9, 28, 42, 59 104 13, 32, 46, 63
9 2, 17, 33, 50 41 6, 21, 37, 54 73 10, 25, 33, 50 105 14, 29, 37, 54

10 2, 17, 41, 58 42 6, 21, 45, 62 74 10, 25, 41, 58 106 14, 29, 45, 62
11 2, 18, 34, 50 43 6, 22, 38, 54 75 10, 26, 34, 50 107 14, 30, 38, 54
12 2, 18, 42, 58 44 6, 22, 46, 62 76 10, 26, 42, 58 108 14, 30, 46, 62
13 2, 19, 33, 52 45 6, 23, 37, 56 77 10, 27, 33, 52 109 14, 31, 37, 56
14 2, 19, 41, 60 46 6, 23, 45, 64 78 10, 27, 41, 60 110 14, 31, 45, 64
15 2, 20, 34, 52 47 6, 24, 38, 56 79 10, 28, 34, 52 111 14, 32, 38, 56
16 2, 20, 42, 60 48 6, 24, 46, 64 80 10, 28, 42, 60 112 14, 32, 46, 64
17 3, 17, 35, 49 49 7, 21, 39, 53 81 11, 25, 35, 49 113 15, 29, 39, 53
18 3, 17, 43, 57 50 7, 21, 47, 61 82 11, 25, 43, 57 114 15, 29, 47, 61
19 3, 18, 36, 49 51 7, 22, 40, 53 83 11, 26, 36, 49 115 15, 30, 40, 53
20 3, 18, 44, 57 52 7, 22, 48, 61 84 11, 26, 44, 57 116 15, 30, 48, 61
21 3, 19, 35, 51 53 7, 23, 39, 55 85 11, 27, 35, 51 117 15, 31, 39, 55
22 3, 19, 43, 59 54 7, 23, 47, 63 86 11, 27, 43, 59 118 15, 31, 47, 63
23 3, 20, 36, 51 55 7, 24, 40, 55 87 11, 28, 36, 51 119 15, 32, 40, 55
24 3, 20, 44, 59 56 7, 24, 48, 63 88 11, 28, 44, 59 120 15, 32, 48, 63
25 4, 17, 35, 50 57 8, 21, 39, 54 89 12, 25, 35, 50 121 16, 29, 39, 54
26 4, 17, 43, 58 58 8, 21, 47, 62 90 12, 25, 43, 58 122 16, 29, 47, 62
27 4, 18, 36, 50 59 8, 22, 40, 54 91 12, 26, 36, 50 123 16, 30, 40, 54
28 4, 18, 44, 58 60 8, 22, 48, 62 92 12, 26, 44, 58 124 16, 30, 48, 62
29 4, 19, 35, 52 61 8, 23, 39, 56 93 12, 27, 35, 52 125 16, 31, 39, 56
30 4, 19, 43, 60 62 8, 23, 47, 64 94 12, 27, 43, 60 126 16, 31, 47, 64
31 4, 20, 36, 52 63 8, 24, 40, 56 95 12, 28, 36, 52 127 16, 32, 40, 56
32 4, 20, 44, 60 64 8, 24, 48, 64 96 12, 28, 44, 60 128 16, 32, 48, 64

Table 9: 128 quartets of green Type I states
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4 Conclusion

4.1 Looking Back

Building upon earlier work by Mermin, Kernaghan, Peres, Aravind, and others, this

project investigated proofs of the BKS Theorem and Bell’s Theorem using a system of

four qubits in a 16-dimensional Hilbert space.

A magic trick, new in a line of tricks given by Mermin and Aravind in smaller di-

mensions in the past, demonstrated to a general audience the spookiness of quantum

mechanics that the theorems quite dramatically expose. There were 11 unique observ-

ables that were required to perform the trick, which interestingly matched well with

previous results that showed a total of 9 and 10 observables were necessary in the two-

and three-qubit systems, respectively. An experiment which exploits the technology

of quantum gates and circuits can actually be performed to verify the theoretical re-

sults presented in the trick, the only difficulty being the fabrication of the last row

of the detector which consists of all non-trivial four-qubit observables. The fact that

the proofs presented in Chapter 2 were state-independent gives more flexibility to a

potential experiment.

In the states-based proof of the BKS Theorem, the 80 eigenstates (or, alternatively,

the 72 rank-1 and rank-2 projectors) of the observables, along with their 265 bases,

were computed. The set of 80 states was in fact a saturated set of states that could not

be properly colored: It was shown, via a lengthly yet sound argument, that each state

could not be colored green or red in such a way that each basis formed by the states

contained exactly one green state and 15 red states. This was a global proof of the

theorem because every basis formed by the states was used to establish the proof. The

search to reduce the number of states needed ended fruitlessly, although previous work

had indeed discovered so-called quantum kaleidoscopes, or different subsets of states

37



that provide for proofs of the BKS Theorem. Previous two- and three-qubits proofs,

instead of using the total number of bases possible, used only 9 and 11 bases with 18

and 36 projectors, respectively. On the other hand, similar to prior research, the ratio

of the number of projectors to the dimension of the space (n/d) was found to be 4.5.

4.2 Looking Forward

Research investigating the relationship between the states and bases obtained here and

applications to quantum cryptography was beyond the scope of this project but could

be examined in the future. The advantage of quantum cryptography is that the presence

of an eavesdropper, Eve, is easily detectable because a measurement on a transmitted

state alters the state. One of the entangled states obtained in this project can be sent

to both Alice and Bob and they can individually measure the state using one of the

bases. The basis Alice uses can be different from the basis Bob uses. After a large

number of runs Alice and Bob can compare their results and keep those in which they

used bases that had states in common. In this way they can build quantum code words

(keys).

Usually in science one tackles a simpler case of a particular problem before looking

at a more advanced case. Having learned much from the four-qubit proofs, it is hoped

that the five-qubit two-observer system can be studied in the near future. (It has a

state space of 32 dimensions!) It should be both interesting and illuminating.
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5 Appendices

5.1 Details of the Wavefunction

In the four-qubit two-detector scheme, a possible normalized wavefunction is a pair of

Bell states:

|ψ〉 =
1√
2
(|00〉12 + |11〉12)⊗

1√
2
(|00〉34 + |11〉34), (11)

where |0〉i and |1〉i are “spin up” and “spin down” eigenstates, respectively, of the Pauli

operator σz for qubits i = 1, . . . , 4. Qubits 1 and 3 would go to Alice, qubits 2 and 4

to Bob.

In general, the so-called Bell basis consists of the following four states:



|φ+〉 = |00〉+ |11〉,

|φ−〉 = |00〉 − |11〉,

|ψ+〉 = |01〉+ |10〉,

|ψ−〉 = |01〉 − |10〉.

(12)

The orthonormal basis in the joint space of qubits 1 and 3 can be written as

|ψi〉 = ai|00〉13 + bi|01〉13 + ci|10〉13 + di|11〉13, (13)

where i = 1, . . . , 4 and ai, . . . , di are complex numbers. The orthonormal basis for

qubits 2 and 4 is then given by

|φi〉 = a∗i |00〉24 + b∗i |01〉24 + c∗i |10〉24 + d∗i |11〉24, (14)
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where, again, i = 1, . . . , 4. It follows that the total wavefunction can be rewritten as

|ψ〉 =
1

2

4∑
i=1

|ψi〉|φi〉. (15)

Generalization of the preceding formulae to six- and eight-qubit systems is achieved in

a natural way.

5.2 The Projection Operator

Suppose one has a system prepared as a superposition of n orthonormal quantum states.

The total wavefunction is then

|ψtotal〉 = c1|ψ1〉+ c2|ψ2〉+ · · ·+ cn|ψn〉. (16)

If one wanted to know the projection of the system onto a certain state |ψm〉 (one of

the n orthonormal states), one can define the projection operator as

P1 = |ψm〉〈ψm|, (17)

the outer product of |ψm〉 with itself. The operator P1 is called a rank-1 projection

operator, or projector, because it determines the projection onto only one state (hence

the subscript 1 in P1). It follows that

P1|ψtotal〉 = |ψm〉〈ψm|[c1|ψ1〉+ c2|ψ2〉+ · · ·+ cm|ψm〉+ · · ·+ cn|ψn〉] = cm|ψm〉 (18)

because 〈ψl|ψl′ 〉 = δll′ . In other words, after the measurement P1 on the system, |ψtotal〉

will collapse into cm|ψm〉 with 〈P1〉 = |cm|2.
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If, however, the system is prepared as a single (pure) quantum state, say |ψn〉, then

P1|ψn〉 =


1 · |ψn〉 if n = m,

0 · |ψn〉 if n 6= m.
(19)

These are just two eigenvalue equations. Either the system is in state m, in whice case

the eigenvalue of P1 is one, or the system is not in state m (perhaps in some state

orthogonal to m), in which case the eigenvalue is zero. In other words, one is asking the

system a yes-no question: The system answers “yes” if it is in the state about which

one is inquiring; it answers “no” if it is not.

The projection operator is also Hermitian (P1
† = P1) and idempotent (P1

2 = P1).

Moreover, any P1i and P1j commute ([P1i, P1j] = 0). One can also define higher-order

projectors: The rank-n projector would be given by

Pn =
n∑
i=1

|ψi〉〈ψi|. (20)

For example, a rank-2 projector might be written as P2 = |ψ1〉〈ψ1|+ |ψ2〉〈ψ2|.

According to quantum mechanics, one can measure operators simultaneously and

exactly if all the operators commute with each other. If, for example, Pψ1 and Pψ2

are two projection operators corresponding to states |ψ1〉 and |ψ2〉, respectively, then

simultaneous and exact measurements of these two operators can be performed if

[Pψ1 , Pψ2 ] = Pψ1Pψ2 − Pψ2Pψ1 = |ψ1〉〈ψ1|ψ2〉〈ψ2| − |ψ2〉〈ψ2|ψ1〉〈ψ1| = 0. This is true

if and only if 〈ψ1|ψ2〉 = 〈ψ2|ψ1〉 = 0, that is, if and only if |ψ1〉 and |ψ2〉 are orthogonal.

A particular nth-dimensional basis consists of n orthogonal states {ψi}, i = 1, . . . , n.

Therefore all the projection operators {Pψi
}, i = 1, . . . , n, corresponding to the orthog-

onal states of the basis commute. If one prepares a system in one of the n orthogonal

states in the basis, say |φ〉, then simultaneously measuring the set {Pψi
} on the state
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|φ〉 yields one and only one eigenvalue of value one and (n−1) eigenvalues of value zero.

The system answers “yes” to one state, “no” to the others. This is true in particular

because of the completeness relation

n∑
i=1

|ψi〉〈ψi| = I, (21)

where I is the identity operator. Because I only has an eigenvalue of one, the sum of

the eigenvalues of the projection operators must be one. If all the projection operators

only have eigenvalues of zero and one, one of them must return a one, the others zero.

Both hidden variable theories and quantum mechanics are consistent with the above

rules concerning simultaneous measurements. Hidden variable theories make the claim

that one can actually know ahead of time what set of eigenvalues will be returned

following the {Pψi
} measurements on |φ〉. Quantum mechanics does not make that

claim. Showing that assigning definite eigenvalues to every state leads to a violation of

the above rules is how the BKS Theorem is proved in the body of the report.

5.3 Inner Product Magnitudes

What follows is the Maple program innerproducts.mw that calculates the inner prod-

uct magnitudes between any normalized Type I or Type II state and any other normal-

ized state and prints them to the screen.

// Initialization

restart:

with(linalg):

// List of the 80 states as vectors W(1) to W(80)

W(1):=([1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0]): ...

42



W(80):=([0,1,1,0,-1,0,0,1,1,0,0,-1,0,1,1,0]):

// Create a zero vector of 16 components for each state

for a from 1 by 1 to 80 do

A(a):=zerovector(16):od:

// Normalization of the 80 states

for a from 1 by 1 to 80 do

summ:=0:

for m from 1 by 1 to 16 do

summ:=summ+(W(a)[m])^2:od:

normconst:=sqrt(summ):

for n from 1 by 1 to 16 do

A(a)[n]:=(W(a)[n])/normconst:

od:od:

// Inner product magnitudes for state 1 (Type I) calculated and printed

a:=1:

for b from 1 by 1 to 80 do

if b <> a then z1:=evalm(A(a) &* A(b)):print(b,abs(z1)):fi:od:

// Inner product magnitudes for state 65 (Type II) calculated and printed

a:=65:

for b from 1 by 1 to 80 do

if b <> a then z2:=evalm(A(a) &* A(b)):print(b,abs(z2)):fi:od:
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5.4 List of the 265 Bases

The following is a list of all the 265 bases formed by the 80 states:

001: [01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16]

002: [01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 29, 30, 31, 32]

003: [01, 02, 03, 04, 05, 06, 07, 08, 13, 14, 15, 16, 25, 26, 27, 28]

004: [01, 02, 03, 04, 05, 06, 07, 08, 25, 26, 27, 28, 29, 30, 31, 32]

005: [01, 02, 03, 04, 05, 06, 09, 10, 11, 12, 13, 14, 39, 40, 47, 48]

006: [01, 02, 03, 04, 05, 06, 13, 14, 25, 26, 27, 28, 39, 40, 47, 48]

007: [01, 02, 03, 04, 05, 07, 09, 10, 11, 12, 13, 15, 54, 56, 62, 64]

008: [01, 02, 03, 04, 05, 07, 13, 15, 25, 26, 27, 28, 54, 56, 62, 64]

009: [01, 02, 03, 04, 06, 08, 09, 10, 11, 12, 14, 16, 53, 55, 61, 63]

010: [01, 02, 03, 04, 06, 08, 14, 16, 25, 26, 27, 28, 53, 55, 61, 63]

011: [01, 02, 03, 04, 07, 08, 09, 10, 11, 12, 15, 16, 37, 38, 45, 46]

012: [01, 02, 03, 04, 07, 08, 15, 16, 25, 26, 27, 28, 37, 38, 45, 46]

013: [01, 02, 03, 04, 09, 10, 11, 12, 13, 14, 15, 16, 21, 22, 23, 24]

014: [01, 02, 03, 04, 09, 10, 11, 12, 21, 22, 23, 24, 29, 30, 31, 32]

015: [01, 02, 03, 04, 09, 10, 11, 12, 21, 22, 29, 30, 55, 56, 63, 64]

016: [01, 02, 03, 04, 09, 10, 11, 12, 21, 23, 29, 31, 38, 40, 46, 48]

017: [01, 02, 03, 04, 09, 10, 11, 12, 22, 24, 30, 32, 37, 39, 45, 47]

018: [01, 02, 03, 04, 09, 10, 11, 12, 23, 24, 31, 32, 53, 54, 61, 62]

019: [01, 02, 03, 04, 09, 10, 11, 12, 37, 38, 39, 40, 45, 46, 47, 48]

020: [01, 02, 03, 04, 09, 10, 11, 12, 37, 38, 39, 40, 61, 62, 63, 64]

021: [01, 02, 03, 04, 09, 10, 11, 12, 45, 46, 47, 48, 53, 54, 55, 56]

022: [01, 02, 03, 04, 09, 10, 11, 12, 53, 54, 55, 56, 61, 62, 63, 64]

023: [01, 02, 03, 04, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 27, 28]
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024: [01, 02, 03, 04, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]

025: [01, 02, 03, 04, 21, 22, 25, 26, 27, 28, 29, 30, 55, 56, 63, 64]

026: [01, 02, 03, 04, 21, 23, 25, 26, 27, 28, 29, 31, 38, 40, 46, 48]

027: [01, 02, 03, 04, 22, 24, 25, 26, 27, 28, 30, 32, 37, 39, 45, 47]

028: [01, 02, 03, 04, 23, 24, 25, 26, 27, 28, 31, 32, 53, 54, 61, 62]

029: [01, 02, 03, 04, 25, 26, 27, 28, 37, 38, 39, 40, 45, 46, 47, 48]

030: [01, 02, 03, 04, 25, 26, 27, 28, 37, 38, 39, 40, 61, 62, 63, 64]

031: [01, 02, 03, 04, 25, 26, 27, 28, 45, 46, 47, 48, 53, 54, 55, 56]

032: [01, 02, 03, 04, 25, 26, 27, 28, 53, 54, 55, 56, 61, 62, 63, 64]

033: [01, 02, 05, 06, 07, 08, 09, 10, 13, 14, 15, 16, 35, 36, 43, 44]

034: [01, 02, 05, 06, 07, 08, 09, 10, 29, 30, 31, 32, 35, 36, 43, 44]

035: [01, 02, 05, 06, 09, 10, 13, 14, 35, 36, 39, 40, 43, 44, 47, 48]

036: [01, 02, 05, 07, 09, 10, 13, 15, 35, 36, 43, 44, 54, 56, 62, 64]

037: [01, 02, 06, 08, 09, 10, 14, 16, 35, 36, 43, 44, 53, 55, 61, 63]

038: [01, 02, 07, 08, 09, 10, 15, 16, 35, 36, 37, 38, 43, 44, 45, 46]

039: [01, 02, 09, 10, 13, 14, 15, 16, 21, 22, 23, 24, 35, 36, 43, 44]

040: [01, 02, 09, 10, 21, 22, 23, 24, 29, 30, 31, 32, 35, 36, 43, 44]

041: [01, 02, 09, 10, 21, 22, 29, 30, 35, 36, 43, 44, 55, 56, 63, 64]

042: [01, 02, 09, 10, 21, 23, 29, 31, 35, 36, 38, 40, 43, 44, 46, 48]

043: [01, 02, 09, 10, 22, 24, 30, 32, 35, 36, 37, 39, 43, 44, 45, 47]

044: [01, 02, 09, 10, 23, 24, 31, 32, 35, 36, 43, 44, 53, 54, 61, 62]

045: [01, 02, 09, 10, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48]

046: [01, 02, 09, 10, 35, 36, 37, 38, 39, 40, 43, 44, 61, 62, 63, 64]

047: [01, 02, 09, 10, 35, 36, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56]

048: [01, 02, 09, 10, 35, 36, 43, 44, 53, 54, 55, 56, 61, 62, 63, 64]

049: [01, 03, 05, 06, 07, 08, 09, 11, 13, 14, 15, 16, 50, 52, 58, 60]
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050: [01, 03, 05, 06, 07, 08, 09, 11, 29, 30, 31, 32, 50, 52, 58, 60]

051: [01, 03, 05, 06, 09, 11, 13, 14, 39, 40, 47, 48, 50, 52, 58, 60]

052: [01, 03, 05, 07, 09, 11, 13, 15, 50, 52, 54, 56, 58, 60, 62, 64]

053: [01, 03, 06, 08, 09, 11, 14, 16, 50, 52, 53, 55, 58, 60, 61, 63]

054: [01, 03, 07, 08, 09, 11, 15, 16, 37, 38, 45, 46, 50, 52, 58, 60]

055: [01, 03, 09, 11, 13, 14, 15, 16, 21, 22, 23, 24, 50, 52, 58, 60]

056: [01, 03, 09, 11, 21, 22, 23, 24, 29, 30, 31, 32, 50, 52, 58, 60]

057: [01, 03, 09, 11, 21, 22, 29, 30, 50, 52, 55, 56, 58, 60, 63, 64]

058: [01, 03, 09, 11, 21, 23, 29, 31, 38, 40, 46, 48, 50, 52, 58, 60]

059: [01, 03, 09, 11, 22, 24, 30, 32, 37, 39, 45, 47, 50, 52, 58, 60]

060: [01, 03, 09, 11, 23, 24, 31, 32, 50, 52, 53, 54, 58, 60, 61, 62]

061: [01, 03, 09, 11, 37, 38, 39, 40, 45, 46, 47, 48, 50, 52, 58, 60]

062: [01, 03, 09, 11, 37, 38, 39, 40, 50, 52, 58, 60, 61, 62, 63, 64]

063: [01, 03, 09, 11, 45, 46, 47, 48, 50, 52, 53, 54, 55, 56, 58, 60]

064: [01, 03, 09, 11, 50, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63, 64]

065: [01, 04, 06, 07, 10, 11, 13, 16, 73, 74, 75, 76, 77, 78, 79, 80]

066: [02, 03, 05, 08, 09, 12, 14, 15, 65, 66, 67, 68, 69, 70, 71, 72]

067: [02, 04, 05, 06, 07, 08, 10, 12, 13, 14, 15, 16, 49, 51, 57, 59]

068: [02, 04, 05, 06, 07, 08, 10, 12, 29, 30, 31, 32, 49, 51, 57, 59]

069: [02, 04, 05, 06, 10, 12, 13, 14, 39, 40, 47, 48, 49, 51, 57, 59]

070: [02, 04, 05, 07, 10, 12, 13, 15, 49, 51, 54, 56, 57, 59, 62, 64]

071: [02, 04, 06, 08, 10, 12, 14, 16, 49, 51, 53, 55, 57, 59, 61, 63]

072: [02, 04, 07, 08, 10, 12, 15, 16, 37, 38, 45, 46, 49, 51, 57, 59]

073: [02, 04, 10, 12, 13, 14, 15, 16, 21, 22, 23, 24, 49, 51, 57, 59]

074: [02, 04, 10, 12, 21, 22, 23, 24, 29, 30, 31, 32, 49, 51, 57, 59]

075: [02, 04, 10, 12, 21, 22, 29, 30, 49, 51, 55, 56, 57, 59, 63, 64]
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076: [02, 04, 10, 12, 21, 23, 29, 31, 38, 40, 46, 48, 49, 51, 57, 59]

077: [02, 04, 10, 12, 22, 24, 30, 32, 37, 39, 45, 47, 49, 51, 57, 59]

078: [02, 04, 10, 12, 23, 24, 31, 32, 49, 51, 53, 54, 57, 59, 61, 62]

079: [02, 04, 10, 12, 37, 38, 39, 40, 45, 46, 47, 48, 49, 51, 57, 59]

080: [02, 04, 10, 12, 37, 38, 39, 40, 49, 51, 57, 59, 61, 62, 63, 64]

081: [02, 04, 10, 12, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 59]

082: [02, 04, 10, 12, 49, 51, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64]

083: [03, 04, 05, 06, 07, 08, 11, 12, 13, 14, 15, 16, 33, 34, 41, 42]

084: [03, 04, 05, 06, 07, 08, 11, 12, 29, 30, 31, 32, 33, 34, 41, 42]

085: [03, 04, 05, 06, 11, 12, 13, 14, 33, 34, 39, 40, 41, 42, 47, 48]

086: [03, 04, 05, 07, 11, 12, 13, 15, 33, 34, 41, 42, 54, 56, 62, 64]

087: [03, 04, 06, 08, 11, 12, 14, 16, 33, 34, 41, 42, 53, 55, 61, 63]

088: [03, 04, 07, 08, 11, 12, 15, 16, 33, 34, 37, 38, 41, 42, 45, 46]

089: [03, 04, 11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 33, 34, 41, 42]

090: [03, 04, 11, 12, 21, 22, 23, 24, 29, 30, 31, 32, 33, 34, 41, 42]

091: [03, 04, 11, 12, 21, 22, 29, 30, 33, 34, 41, 42, 55, 56, 63, 64]

092: [03, 04, 11, 12, 21, 23, 29, 31, 33, 34, 38, 40, 41, 42, 46, 48]

093: [03, 04, 11, 12, 22, 24, 30, 32, 33, 34, 37, 39, 41, 42, 45, 47]

094: [03, 04, 11, 12, 23, 24, 31, 32, 33, 34, 41, 42, 53, 54, 61, 62]

095: [03, 04, 11, 12, 33, 34, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48]

096: [03, 04, 11, 12, 33, 34, 37, 38, 39, 40, 41, 42, 61, 62, 63, 64]

097: [03, 04, 11, 12, 33, 34, 41, 42, 45, 46, 47, 48, 53, 54, 55, 56]

098: [03, 04, 11, 12, 33, 34, 41, 42, 53, 54, 55, 56, 61, 62, 63, 64]

099: [05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

100: [05, 06, 07, 08, 09, 10, 11, 12, 17, 18, 19, 20, 29, 30, 31, 32]

101: [05, 06, 07, 08, 13, 14, 15, 16, 17, 18, 19, 20, 25, 26, 27, 28]
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102: [05, 06, 07, 08, 13, 14, 15, 16, 17, 18, 25, 26, 51, 52, 59, 60]

103: [05, 06, 07, 08, 13, 14, 15, 16, 17, 19, 25, 27, 34, 36, 42, 44]

104: [05, 06, 07, 08, 13, 14, 15, 16, 18, 20, 26, 28, 33, 35, 41, 43]

105: [05, 06, 07, 08, 13, 14, 15, 16, 19, 20, 27, 28, 49, 50, 57, 58]

106: [05, 06, 07, 08, 13, 14, 15, 16, 33, 34, 35, 36, 41, 42, 43, 44]

107: [05, 06, 07, 08, 13, 14, 15, 16, 33, 34, 35, 36, 57, 58, 59, 60]

108: [05, 06, 07, 08, 13, 14, 15, 16, 41, 42, 43, 44, 49, 50, 51, 52]

109: [05, 06, 07, 08, 13, 14, 15, 16, 49, 50, 51, 52, 57, 58, 59, 60]

110: [05, 06, 07, 08, 17, 18, 19, 20, 25, 26, 27, 28, 29, 30, 31, 32]

111: [05, 06, 07, 08, 17, 18, 25, 26, 29, 30, 31, 32, 51, 52, 59, 60]

112: [05, 06, 07, 08, 17, 19, 25, 27, 29, 30, 31, 32, 34, 36, 42, 44]

113: [05, 06, 07, 08, 18, 20, 26, 28, 29, 30, 31, 32, 33, 35, 41, 43]

114: [05, 06, 07, 08, 19, 20, 27, 28, 29, 30, 31, 32, 49, 50, 57, 58]

115: [05, 06, 07, 08, 29, 30, 31, 32, 33, 34, 35, 36, 41, 42, 43, 44]

116: [05, 06, 07, 08, 29, 30, 31, 32, 33, 34, 35, 36, 57, 58, 59, 60]

117: [05, 06, 07, 08, 29, 30, 31, 32, 41, 42, 43, 44, 49, 50, 51, 52]

118: [05, 06, 07, 08, 29, 30, 31, 32, 49, 50, 51, 52, 57, 58, 59, 60]

119: [05, 06, 09, 10, 11, 12, 13, 14, 17, 18, 19, 20, 39, 40, 47, 48]

120: [05, 06, 13, 14, 17, 18, 19, 20, 25, 26, 27, 28, 39, 40, 47, 48]

121: [05, 06, 13, 14, 17, 18, 25, 26, 39, 40, 47, 48, 51, 52, 59, 60]

122: [05, 06, 13, 14, 17, 19, 25, 27, 34, 36, 39, 40, 42, 44, 47, 48]

123: [05, 06, 13, 14, 18, 20, 26, 28, 33, 35, 39, 40, 41, 43, 47, 48]

124: [05, 06, 13, 14, 19, 20, 27, 28, 39, 40, 47, 48, 49, 50, 57, 58]

125: [05, 06, 13, 14, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 47, 48]

126: [05, 06, 13, 14, 33, 34, 35, 36, 39, 40, 47, 48, 57, 58, 59, 60]

127: [05, 06, 13, 14, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52]
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128: [05, 06, 13, 14, 39, 40, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60]

129: [05, 07, 09, 10, 11, 12, 13, 15, 17, 18, 19, 20, 54, 56, 62, 64]

130: [05, 07, 13, 15, 17, 18, 19, 20, 25, 26, 27, 28, 54, 56, 62, 64]

131: [05, 07, 13, 15, 17, 18, 25, 26, 51, 52, 54, 56, 59, 60, 62, 64]

132: [05, 07, 13, 15, 17, 19, 25, 27, 34, 36, 42, 44, 54, 56, 62, 64]

133: [05, 07, 13, 15, 18, 20, 26, 28, 33, 35, 41, 43, 54, 56, 62, 64]

134: [05, 07, 13, 15, 19, 20, 27, 28, 49, 50, 54, 56, 57, 58, 62, 64]

135: [05, 07, 13, 15, 33, 34, 35, 36, 41, 42, 43, 44, 54, 56, 62, 64]

136: [05, 07, 13, 15, 33, 34, 35, 36, 54, 56, 57, 58, 59, 60, 62, 64]

137: [05, 07, 13, 15, 41, 42, 43, 44, 49, 50, 51, 52, 54, 56, 62, 64]

138: [05, 07, 13, 15, 49, 50, 51, 52, 54, 56, 57, 58, 59, 60, 62, 64]

139: [06, 08, 09, 10, 11, 12, 14, 16, 17, 18, 19, 20, 53, 55, 61, 63]

140: [06, 08, 14, 16, 17, 18, 19, 20, 25, 26, 27, 28, 53, 55, 61, 63]

141: [06, 08, 14, 16, 17, 18, 25, 26, 51, 52, 53, 55, 59, 60, 61, 63]

142: [06, 08, 14, 16, 17, 19, 25, 27, 34, 36, 42, 44, 53, 55, 61, 63]

143: [06, 08, 14, 16, 18, 20, 26, 28, 33, 35, 41, 43, 53, 55, 61, 63]

144: [06, 08, 14, 16, 19, 20, 27, 28, 49, 50, 53, 55, 57, 58, 61, 63]

145: [06, 08, 14, 16, 33, 34, 35, 36, 41, 42, 43, 44, 53, 55, 61, 63]

146: [06, 08, 14, 16, 33, 34, 35, 36, 53, 55, 57, 58, 59, 60, 61, 63]

147: [06, 08, 14, 16, 41, 42, 43, 44, 49, 50, 51, 52, 53, 55, 61, 63]

148: [06, 08, 14, 16, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 63]

149: [07, 08, 09, 10, 11, 12, 15, 16, 17, 18, 19, 20, 37, 38, 45, 46]

150: [07, 08, 15, 16, 17, 18, 19, 20, 25, 26, 27, 28, 37, 38, 45, 46]

151: [07, 08, 15, 16, 17, 18, 25, 26, 37, 38, 45, 46, 51, 52, 59, 60]

152: [07, 08, 15, 16, 17, 19, 25, 27, 34, 36, 37, 38, 42, 44, 45, 46]

153: [07, 08, 15, 16, 18, 20, 26, 28, 33, 35, 37, 38, 41, 43, 45, 46]
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154: [07, 08, 15, 16, 19, 20, 27, 28, 37, 38, 45, 46, 49, 50, 57, 58]

155: [07, 08, 15, 16, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46]

156: [07, 08, 15, 16, 33, 34, 35, 36, 37, 38, 45, 46, 57, 58, 59, 60]

157: [07, 08, 15, 16, 37, 38, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52]

158: [07, 08, 15, 16, 37, 38, 45, 46, 49, 50, 51, 52, 57, 58, 59, 60]

159: [09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]

160: [09, 10, 11, 12, 17, 18, 19, 20, 21, 22, 23, 24, 29, 30, 31, 32]

161: [09, 10, 11, 12, 17, 18, 19, 20, 21, 22, 29, 30, 55, 56, 63, 64]

162: [09, 10, 11, 12, 17, 18, 19, 20, 21, 23, 29, 31, 38, 40, 46, 48]

163: [09, 10, 11, 12, 17, 18, 19, 20, 22, 24, 30, 32, 37, 39, 45, 47]

164: [09, 10, 11, 12, 17, 18, 19, 20, 23, 24, 31, 32, 53, 54, 61, 62]

165: [09, 10, 11, 12, 17, 18, 19, 20, 37, 38, 39, 40, 45, 46, 47, 48]

166: [09, 10, 11, 12, 17, 18, 19, 20, 37, 38, 39, 40, 61, 62, 63, 64]

167: [09, 10, 11, 12, 17, 18, 19, 20, 45, 46, 47, 48, 53, 54, 55, 56]

168: [09, 10, 11, 12, 17, 18, 19, 20, 53, 54, 55, 56, 61, 62, 63, 64]

169: [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]

170: [13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 51, 52, 59, 60]

171: [13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 34, 36, 42, 44]

172: [13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 28, 33, 35, 41, 43]

173: [13, 14, 15, 16, 19, 20, 21, 22, 23, 24, 27, 28, 49, 50, 57, 58]

174: [13, 14, 15, 16, 21, 22, 23, 24, 33, 34, 35, 36, 41, 42, 43, 44]

175: [13, 14, 15, 16, 21, 22, 23, 24, 33, 34, 35, 36, 57, 58, 59, 60]

176: [13, 14, 15, 16, 21, 22, 23, 24, 41, 42, 43, 44, 49, 50, 51, 52]

177: [13, 14, 15, 16, 21, 22, 23, 24, 49, 50, 51, 52, 57, 58, 59, 60]

178: [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]

179: [17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 55, 56, 63, 64]
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180: [17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 31, 38, 40, 46, 48]

181: [17, 18, 19, 20, 22, 24, 25, 26, 27, 28, 30, 32, 37, 39, 45, 47]

182: [17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 31, 32, 53, 54, 61, 62]

183: [17, 18, 19, 20, 25, 26, 27, 28, 37, 38, 39, 40, 45, 46, 47, 48]

184: [17, 18, 19, 20, 25, 26, 27, 28, 37, 38, 39, 40, 61, 62, 63, 64]

185: [17, 18, 19, 20, 25, 26, 27, 28, 45, 46, 47, 48, 53, 54, 55, 56]

186: [17, 18, 19, 20, 25, 26, 27, 28, 53, 54, 55, 56, 61, 62, 63, 64]

187: [17, 18, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 51, 52, 59, 60]

188: [17, 18, 21, 22, 25, 26, 29, 30, 51, 52, 55, 56, 59, 60, 63, 64]

189: [17, 18, 21, 23, 25, 26, 29, 31, 38, 40, 46, 48, 51, 52, 59, 60]

190: [17, 18, 22, 24, 25, 26, 30, 32, 37, 39, 45, 47, 51, 52, 59, 60]

191: [17, 18, 23, 24, 25, 26, 31, 32, 51, 52, 53, 54, 59, 60, 61, 62]

192: [17, 18, 25, 26, 37, 38, 39, 40, 45, 46, 47, 48, 51, 52, 59, 60]

193: [17, 18, 25, 26, 37, 38, 39, 40, 51, 52, 59, 60, 61, 62, 63, 64]

194: [17, 18, 25, 26, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 59, 60]

195: [17, 18, 25, 26, 51, 52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 64]

196: [17, 19, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 34, 36, 42, 44]

197: [17, 19, 21, 22, 25, 27, 29, 30, 34, 36, 42, 44, 55, 56, 63, 64]

198: [17, 19, 21, 23, 25, 27, 29, 31, 34, 36, 38, 40, 42, 44, 46, 48]

199: [17, 19, 22, 24, 25, 27, 30, 32, 34, 36, 37, 39, 42, 44, 45, 47]

200: [17, 19, 23, 24, 25, 27, 31, 32, 34, 36, 42, 44, 53, 54, 61, 62]

201: [17, 19, 25, 27, 34, 36, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48]

202: [17, 19, 25, 27, 34, 36, 37, 38, 39, 40, 42, 44, 61, 62, 63, 64]

203: [17, 19, 25, 27, 34, 36, 42, 44, 45, 46, 47, 48, 53, 54, 55, 56]

204: [17, 19, 25, 27, 34, 36, 42, 44, 53, 54, 55, 56, 61, 62, 63, 64]

205: [17, 20, 22, 23, 26, 27, 29, 32, 69, 70, 71, 72, 77, 78, 79, 80]
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206: [18, 19, 21, 24, 25, 28, 30, 31, 65, 66, 67, 68, 73, 74, 75, 76]

207: [18, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 35, 41, 43]

208: [18, 20, 21, 22, 26, 28, 29, 30, 33, 35, 41, 43, 55, 56, 63, 64]

209: [18, 20, 21, 23, 26, 28, 29, 31, 33, 35, 38, 40, 41, 43, 46, 48]

210: [18, 20, 22, 24, 26, 28, 30, 32, 33, 35, 37, 39, 41, 43, 45, 47]

211: [18, 20, 23, 24, 26, 28, 31, 32, 33, 35, 41, 43, 53, 54, 61, 62]

212: [18, 20, 26, 28, 33, 35, 37, 38, 39, 40, 41, 43, 45, 46, 47, 48]

213: [18, 20, 26, 28, 33, 35, 37, 38, 39, 40, 41, 43, 61, 62, 63, 64]

214: [18, 20, 26, 28, 33, 35, 41, 43, 45, 46, 47, 48, 53, 54, 55, 56]

215: [18, 20, 26, 28, 33, 35, 41, 43, 53, 54, 55, 56, 61, 62, 63, 64]

216: [19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 49, 50, 57, 58]

217: [19, 20, 21, 22, 27, 28, 29, 30, 49, 50, 55, 56, 57, 58, 63, 64]

218: [19, 20, 21, 23, 27, 28, 29, 31, 38, 40, 46, 48, 49, 50, 57, 58]

219: [19, 20, 22, 24, 27, 28, 30, 32, 37, 39, 45, 47, 49, 50, 57, 58]

220: [19, 20, 23, 24, 27, 28, 31, 32, 49, 50, 53, 54, 57, 58, 61, 62]

221: [19, 20, 27, 28, 37, 38, 39, 40, 45, 46, 47, 48, 49, 50, 57, 58]

222: [19, 20, 27, 28, 37, 38, 39, 40, 49, 50, 57, 58, 61, 62, 63, 64]

223: [19, 20, 27, 28, 45, 46, 47, 48, 49, 50, 53, 54, 55, 56, 57, 58]

224: [19, 20, 27, 28, 49, 50, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64]

225: [21, 22, 23, 24, 29, 30, 31, 32, 33, 34, 35, 36, 41, 42, 43, 44]

226: [21, 22, 23, 24, 29, 30, 31, 32, 33, 34, 35, 36, 57, 58, 59, 60]

227: [21, 22, 23, 24, 29, 30, 31, 32, 41, 42, 43, 44, 49, 50, 51, 52]

228: [21, 22, 23, 24, 29, 30, 31, 32, 49, 50, 51, 52, 57, 58, 59, 60]

229: [21, 22, 29, 30, 33, 34, 35, 36, 41, 42, 43, 44, 55, 56, 63, 64]

230: [21, 22, 29, 30, 33, 34, 35, 36, 55, 56, 57, 58, 59, 60, 63, 64]

231: [21, 22, 29, 30, 41, 42, 43, 44, 49, 50, 51, 52, 55, 56, 63, 64]
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232: [21, 22, 29, 30, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 63, 64]

233: [21, 23, 29, 31, 33, 34, 35, 36, 38, 40, 41, 42, 43, 44, 46, 48]

234: [21, 23, 29, 31, 33, 34, 35, 36, 38, 40, 46, 48, 57, 58, 59, 60]

235: [21, 23, 29, 31, 38, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52]

236: [21, 23, 29, 31, 38, 40, 46, 48, 49, 50, 51, 52, 57, 58, 59, 60]

237: [22, 24, 30, 32, 33, 34, 35, 36, 37, 39, 41, 42, 43, 44, 45, 47]

238: [22, 24, 30, 32, 33, 34, 35, 36, 37, 39, 45, 47, 57, 58, 59, 60]

239: [22, 24, 30, 32, 37, 39, 41, 42, 43, 44, 45, 47, 49, 50, 51, 52]

240: [22, 24, 30, 32, 37, 39, 45, 47, 49, 50, 51, 52, 57, 58, 59, 60]

241: [23, 24, 31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 53, 54, 61, 62]

242: [23, 24, 31, 32, 33, 34, 35, 36, 53, 54, 57, 58, 59, 60, 61, 62]

243: [23, 24, 31, 32, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 61, 62]

244: [23, 24, 31, 32, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 61, 62]

245: [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]

246: [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 61, 62, 63, 64]

247: [33, 34, 35, 36, 37, 38, 39, 40, 45, 46, 47, 48, 57, 58, 59, 60]

248: [33, 34, 35, 36, 37, 38, 39, 40, 57, 58, 59, 60, 61, 62, 63, 64]

249: [33, 34, 35, 36, 41, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56]

250: [33, 34, 35, 36, 41, 42, 43, 44, 53, 54, 55, 56, 61, 62, 63, 64]

251: [33, 34, 35, 36, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 59, 60]

252: [33, 34, 35, 36, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64]

253: [33, 36, 38, 39, 42, 43, 45, 48, 67, 68, 71, 72, 75, 76, 79, 80]

254: [34, 35, 37, 40, 41, 44, 46, 47, 65, 66, 69, 70, 73, 74, 77, 78]

255: [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]

256: [37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 61, 62, 63, 64]

257: [37, 38, 39, 40, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60]
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258: [37, 38, 39, 40, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 63, 64]

259: [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56]

260: [41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64]

261: [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]

262: [49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64]

263: [49, 52, 54, 55, 58, 59, 61, 64, 65, 66, 71, 72, 75, 76, 77, 78]

264: [50, 51, 53, 56, 57, 60, 62, 63, 67, 68, 69, 70, 73, 74, 79, 80]

265: [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80]

5.5 Parameters of the Quantum Block Design (QBD)

What follows is the Maple program quantumblockdesign.mw that calculates the value

of r and of all the nk’s for the Type A bases and prints them to the screen.

// Initialization

restart:

with(linalg):

// List of the 265 bases as vectors W(1) to W(265)

W(1):=([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]): ...

W(265):=([65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80]):

// Calculation of r for the Type I states

for i from 1 by 1 to 64 do

num:=0:

for j from 1 by 1 to 265 do

if j <> 65 and j <> 66 and j <> 205 and j <> 206 and

j <> 253 and j <> 254 and j <> 263 and j <> 264 and j <> 265 then
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for k from 1 by 1 to 16 do

if (W(j)[k]) = i then num:=num+1:fi:od:

fi:od:

print(i,num):od:

// Create a vector with 64 elements of value zero

A:=zerovector(64):

// Determine the frequency of occurrence of the companions of any

Type I state in all the Type A bases in which it occurs

for j from 1 by 1 to 265 do

if j <> 65 and j <> 66 and j <> 205 and j <> 206 and

j <> 253 and j <> 254 and j <> 263 and j <> 264 and j <> 265 then

for k from 1 by 1 to 16 do

if (W(j)[k]) = 1 then

for l from 1 by 1 to 16 do

z:=W(j)[l] : if z <> 1 then A[z]:=A[z]+1:fi:od:

fi:od:fi:od:

// Determine the largest frequency of occurrence

z:=0:

for m from 1 by 1 to 64 do

if A[m] > z then z:=A[m]:fi:od:

// Print the n_k’s to the screen

for n from 1 by 1 to z do
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num:=0:

for o from 1 by 1 to 64 do

if A[o] = n then num:=num+1:fi:od:

if num <> 0 then print(num,"states occur",n,"times"):fi:od:

5.6 Satisfactory Colorings

What follows is the Maple program satisfactorycolorings.mw that finds out whether

or not each possibility of the green Type I states falling among the Type B 16-ads

enables satisfactory coloring of the 265 16-ads. It prints each possibility as a four-

number string alongside a “YES” for satisfactory coloring or a “NO” for unsatisfactory

coloring.

// Initialization

restart:

with(linalg):

// List of the 265 16-ads as vectors W(1) to W(265)

W(1):=([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]): ...

W(265):=([65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80]):

// Begin the loop to determine all 16 possibilities of strings abcd

for a from 1 by 1 to 2 do

for b from 1 by 1 to 2 do

for c from 1 by 1 to 2 do

for d from 1 by 1 to 2 do

// Assign a value of zero to each Type II state by default
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for n from 64 by 1 to 80 do

L(n):=0:od:

// Assign a value of one (red) to all Type II states in a 16-ad with a

green state already in it

if a = 1 then

for n from 9 by 1 to 16 do

L(W(65)[n]):=1:od:fi:

if a = 2 then

for n from 9 by 1 to 16 do

L(W(66)[n]):=1:od:fi:

if b = 1 then

for n from 9 by 1 to 16 do

L(W(205)[n]):=1:od:fi:

if b = 2 then

for n from 9 by 1 to 16 do

L(W(206)[n]):=1:od:fi:

if c = 1 then

for n from 9 by 1 to 16 do

L(W(253)[n]):=1:od:fi:

if c = 2 then

for n from 9 by 1 to 16 do

L(W(254)[n]):=1:od:fi:
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if d = 1 then

for n from 9 by 1 to 16 do

L(W(263)[n]):=1:od:fi:

if d = 2 then

for n from 9 by 1 to 16 do

L(W(264)[n]):=1:od:fi:

// Add all the values assigned to the Type II states in 16-ad 265

total:=0:

for n from 1 by 1 to 16 do

total:=total+L(W(265)[n]):od:

// If the total is 16, 265 is entirely red (unsatisfactory coloring);

otherwise a satisfactory coloring exists

if total = 16 then print (a,b,c,d,‘NO‘):fi:

if total <> 16 then print (a,b,c,d,‘YES‘):fi:

od:od:od:od:

5.7 Calculation of the 128 Quartets

What follows is the Maple program quartets.mw that calculates all the 128 different

ways of properly coloring the Type I states and their associated Type A 16-ads. It

displays each possibility on a single line in terms of the four Type I states that are

colored green. It also determines and prints the four-number string showing how each

quartet falls among the Type B 16-ads.
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// Initialization

restart:

with(linalg):

// List of the 265 16-ads as vectors W(1) to W(265)

W(1):=([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]): ...

W(265):=([65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80]):

// List of the 80 states as vectors X(1) to X(80)

X(1):=([1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0]): ...

X(80):=([0,1,1,0,-1,0,0,1,1,0,0,-1,0,1,1,0]):

// Counter for the number of quartets

num:=1:

// a, b, c, and d are the Type I states colored green

for a from 1 by 1 to 16 do

for b from 17 by 1 to 32 do

for c from 33 by 1 to 48 do

for d from 49 by 1 to 64 do

// Counter for the number of Type A 16-ads properly colored

state:=0:

// Coloring the Type I states: -1 is green; +1 is red

for e from 1 by 1 to 64 do
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if e <> a and e <> b and e <> c and e <> d then Z(e):=1 else Z(e):=-1:

fi:od:

// Count how many Type A 16-ads are properly colored by adding up the

values assigned to each state in a 16-ad and making sure the total

is 14 (15 red + 1 green)

for f from 1 by 1 to 265 do

if f <> 65 and f <> 66 and f <> 205 and f <> 206 and

f <> 253 and f <> 254 and f <> 263 and f <> 264 and f <> 265 then

addition:=0:

for g from 1 by 1 to 16 do

addition:=addition+Z(W(f)[g]):od:

if addition = 14 then state:=state+1:fi:

fi:od:

// If all the Type A 16-ads are properly colored, determine how each

of the Type I states falls among the Type B 16-ads in terms of a

four-number string and then print the quartet number, the four Type I

states colored green, and the four-number string

if state = 256 then

for l from 1 by 1 to 16 do

if W(65)[l] = a then o1:=1:fi:

if W(66)[l] = a then o1:=2:fi:

if W(205)[l] = b then o2:=1:fi:

if W(206)[l] = b then o2:=2:fi:
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if W(253)[l] = c then o3:=1:fi:

if W(254)[l] = c then o3:=2:fi:

if W(263)[l] = d then o4:=1:fi:

if W(264)[l] = d then o4:=2:fi:

od:

print(num,a,b,c,d,‘ ‘,o1,o2,o3,o4):num:=num+1:fi:

od:od:od:od:
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