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Abstract

While security protections continue to be developed for general-purpose computers,
real-time computing has remained unprotected against control-flow hijacking attacks.
Existing solutions rely on hardware unavailable to embedded systems due to the cost, or
impose excessive overhead, leaving real-time applications unable to operate within their
time constraints. We propose RECFISH++, a Control-Flow Integrity implementation fo-
cused on protecting real-time embedded systems. By modifying LLVM and FreeRTOS,
a popular compiler back-end and real-time operating system, we provide an end-to-end
solution for protecting any real-time application on the ARM Cortex-M microprocessor
against control-flow hijacking attacks.



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

1 Introduction 4

2 Background and Related Work 6
2.1 Control-Flow Hijacking . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Control-Flow Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Real-Time Embedded Systems . . . . . . . . . . . . . . . . . . . . . 9

3 Design and Implementation 11
3.1 Compile-time CFI Instrumentation . . . . . . . . . . . . . . . . . . . . 11
3.2 Forward-edge Protection . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Model Enforcement Pass . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Model Generation Pass . . . . . . . . . . . . . . . . . . . . . 14

3.3 Backward-edge Protection . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Memory Protection Unit (MPU) Permissions Setup . . . . . . 15
3.3.2 A Modified Interrupt Handler . . . . . . . . . . . . . . . . . 16
3.3.3 The Shadow Stack . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.4 Task Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.5 Secure Context Switching . . . . . . . . . . . . . . . . . . . 18
3.3.6 Secure-Spill Lowering Pass . . . . . . . . . . . . . . . . . . 18

3.4 Fine-Grained Protection . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 Instrumentation by Equivalence Class . . . . . . . . . . . . . 20
3.4.2 Generating Globally Unique Labels . . . . . . . . . . . . . . 22

3.5 Unnecessary Instrumentation Analysis . . . . . . . . . . . . . . . . . 24
3.5.1 Direct External Input . . . . . . . . . . . . . . . . . . . . . . 24
3.5.2 Sensitive Inter-task Communications . . . . . . . . . . . . . 24

3.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Evaluation 27
4.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Protection Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Conclusion 33
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1



List of Figures

2.1 Trivial Control-Flow Graph . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Label-based Control-Flow Integrity . . . . . . . . . . . . . . . . . . 9

3.1 System Component Overview . . . . . . . . . . . . . . . . . . . . . 12
3.2 Modified Memory Regions . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Indirect Branch Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Equivalence Class Scenarios . . . . . . . . . . . . . . . . . . . . . . . 21

2



List of Listings

1 Indirect Branch Protection . . . . . . . . . . . . . . . . . . . . . . . 14
2 Supervisor Exception Dispatching . . . . . . . . . . . . . . . . . . . . 17
3 Unprotected Register Spill . . . . . . . . . . . . . . . . . . . . . . . 19
4 Secure Register Spill . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Equivalence Class Instrumentation Algorithm . . . . . . . . . . . . . 22
6 Type Extraction Within LLVM . . . . . . . . . . . . . . . . . . . . . 25
7 Forward-edge evaluation . . . . . . . . . . . . . . . . . . . . . . . . 30
8 Backward-edge evaluation . . . . . . . . . . . . . . . . . . . . . . . . 31

3



Chapter 1

Introduction

As embedded systems are introduced into safety-critical roles such as flight-control
systems and medical equipment, preventing their exploitation is paramount. These
applications often use low-cost hardware with the ability to reliably meet tight real-time
deadlines, rendering existing solutions for general purpose systems useless. Faulty
devices released by uninformed manufacturers have the potential to cause physical
damage due to the actions of an intelligent attacker [5,20].

Though attacks take many shapes, the most dangerous allow for arbitrary code
execution on a target system. This class of exploit often leverages some form of control-
flow hijacking. This technique redirects the execution of a program to instructions
provided by the attacker or to pre-existing instruction sequences deemed useful [12,17].
Though full memory safety is the favorable defense for control-flow hijacking, high-
performance overhead makes it impossible for real-time applications [10,11].

Control-Flow Integrity (CFI) is a subclass of memory safety which aims to lower
overhead by protecting only a subset of memory, specifically pointers to executable
addresses containing program code [3]. At a high level, CFI enforces a predetermined
model of program execution at runtime. Should behavior stray from this model, an error
is thrown. This enforcement is accomplished by monitoring control-flow transitions and
detecting those which are not included in the execution model.

Few CFI implementations confront any of the challenges unique to real-time em-
bedded systems. First and foremost, a majority of existing implementations exclusively
target the x86 architecture used in general-purpose computers as opposed to the ARM
instruction set commonplace in embedded computers. Secondly, even systems support-
ing ARM are not often designed with the strict scheduling requirements of real-time
applications in mind [13]. Finally, the hardware used for real-time systems is often
limited, meaning that the responsibility of task isolation often falls onto the real-time
operating system (RTOS) and is often absent [1].

We propose a CFI scheme specifically targeting real-time embedded systems and
their associated challenges. Within, we detail modifications to LLVM, a popular com-
piler back-end, to insert runtime checks into a program at compile-time that enforce its
execution model. In addition, we detail modifications to FreeRTOS, a popular real-time
operating system, to provide task isolation and as-necessary memory safety. Finally, we
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propose a novel method of securely removing runtime enforcement of CFI from safe
tasks to increase the number of applications that will meet their real-time constraints
with security guarantees.

The remainder of this work is structured as follows. Chapter 2 provides background
information about control-flow hijacking, CFI, and real-time embedded systems neces-
sary to understand our design decisions. Chapter 3 outlines the design and implementa-
tion of our CFI system, referred to as RECFISH++. Chapter 4 discusses the performance
and memory overhead observed on a protected example application. Finally, Chapter 5
summarizes and concludes our work.
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Chapter 2

Background and Related Work

Before we present our work, we will describe control-flow hijacking and systems that
have been created to protect against this attack. We’ll consider the popular real-time
operating system FreeRTOS and the details of it. Lastly, we’ll discuss the constraints of
the hardware we will be using.

2.1 Control-Flow Hijacking
Control-flow hijacking is the most common major attack used to exploit programs [18].
This hijacking takes control of a program’s control-flow, the order of code execution,
to execute existing or injected code. Hijacking can often capture full control over the
program. For example, hijacking can be used to make an FTP server transfer a password
file or a web server execute arbitrary commands in a remote shell [19].

There are two methods used to subvert control-flow, both requiring memory cor-
ruption [18]. The first method exploits indirect branches, branches whose targets are
dynamically determined. Where direct calls use a statically determined target, indirect
branches use a code pointer, a pointer to executable code (e.g. function pointer). Direct
calls don’t need to be protected because their targets are statically encoded in the code
and cannot be changed. Indirect branches are susceptible because their target may be
modified by an attack if stored in writable memory. Attacks aim to redirect the control-
flow by changing these pointers using memory exploits, such as buffer overflows. We
consider this attack one to the forward-edge, as it targets the location of function calls.

Another common method used to subvert control-flow is manipulation of return
addresses. The transition that occurs when a function returns closely resembles indirect
calls, where its target is determined by an address stored on the stack. However, function
returns are often considered separately from indirect branches when designing defenses
due to the difference in how they are used and where they are located in memory. We
consider this attack one to the backward-edge, as it targets functions transitioning to
their return address.

There have been many methods for protecting against these two targets of attack,
each of which attempts to balance performance with protection. Generally, these
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methods attempt to protect against a powerful adversary able to modify any data in
writable memory. While this may seem extreme, it aims to accommodate new techniques
for memory corruption that will inevitably be found. Additionally, implementations for
embedded systems use a slightly more strict threat model where writable memory is
also executable.1

One way to protect both types of attacks is to provide full-memory safety by pro-
tecting all of program memory. Full-memory safety is the only protection that can
prevent all attacks; but, achieving it has proven very difficult and costly [18]. An
implementation which tries to approximate this protection is AddressSanitizer [16].
With research showing that most vulnerabilities occur when arrays overflow, Address-
Sanitizer adds unallocated padding bytes between all arrays and then uses a bitmask
system to check that before any memory write occurs, it is within allocated memory.
It can be used to protect any general-purpose program during a modified compilation
through LLVM, a widely-used compiler back-end. No similar approach has been taken
for embedded-systems, presumably due to the high overhead needed for its strong
guarantees.

While protecting all memory is the only way to guarantee a program’s integrity,
there are more practical measures that can be used which still provide strong measures
of defense against control-flow hijacking.

The first of these measures is Code-Pointer Integrity (CPI), a partial-memory safety
technique which prevents control-flow subversion by protecting code pointers [18].
Levee adds instrumentation to a source program during compilation to ensure that
code pointers are always stored in a protected memory region [6]. Levee has been
embedded in the commonly used Clang compiler, a C compiler front-end for LLVM,
and is a widely-used solution for general-purpose systems. However, it is not usable
by embedded architectures because it requires the advanced memory features of the
Memory Management Unit (MMU).2

Another measure of defense against hijacking attacks is a memory-randomization
technique called address space layout randomization (ASLR) [18]. ASLR doesn’t
prevent an attacker from subverting control but instead makes it difficult for it to be used
effectively. It randomizes the location of the stack and the code section in a large address
space to obfuscate the location of useful code segments (e.g. gadgets) [18] especially
used in Return-Oriented Programming (ROP). This is not possible on embedded systems
due to the requirement of virtual memory, again requiring the MMU.

It isn’t possible to implement any of these widely-used protections on embedded
systems due to the overhead and hardware capabilities required. We need some method
for protecting program integrity without all of the additional runtime overhead.

2.2 Control-Flow Integrity
Control-Flow Integrity (CFI) is a technique that ensures a program only branches to
valid locations at runtime, therefore ensuring that a program’s control-flow has not
been corrupted. CFI aims to catch the program when it behaves incorrectly, such as

1Due to the default memory permissions on these systems.
2The MMU is not available on most embedded systems.
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Figure 2.1: The execution model, or CFG, for a trivial program.

branching to the middle of an instruction or calling a function which wouldn’t otherwise
be possible, to verify its integrity.

The three steps that a CFI implementation must take to protect a program are as
follows.

1. Understand the normal execution behavior of the program
2. Enforce this behavior using runtime checks
3. Ensure that these checks cannot be removed

One technique for CFI uses unique labels and checks placed in a pre-compiled program,
as demonstrated by Abadi [3]. This approach first generates a control-flow graph (CFG),
a model outlining the normal execution behavior of a program, using a complex static
analysis, exemplified by Figure 2.1. The labels and checks are then added to each
indirect call in the non-writable code section to prevent corruption by an attacker, shown
in Figure 2.2. At runtime, these added checks compare labels to ensure that each
transition is valid according to the CFG.

One of the design decisions that must be made for a CFI implementation is its
precision. A precise fine-grained solution encodes information about all possible
transitions, requiring a label for each of those transitions and multiple checks. A less
precise course-grained approach will sacrifice precision for reduced overhead, often
only using one label to try to generalize multiple transitions. Where only transitions
outlined in the CFG are allowed in fine-grained protection, coarse-grained protections
will often not be able to detect every violation of the CFG and instead will greatly reduce
the number of vulnerable transitions at a lower performance cost.

Another decision required is the method for protecting against return-address corrup-
tion. The label-based approach used for indirect branches isn’t as powerful for returns,
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Figure 2.2: A psudeo CFI check using labels on a trivial indirect branch.

and while it can be used, its imprecision allows more possibilities for exploitation [3].
A more powerful approach is to protect return addresses, much like CPI protects code
pointers, using a secured area of memory called the shadow stack. This approach can be
used to very precisely protect backward-edges at a higher cost [18]. Epoxy demonstrates
that protecting a region of memory for a shadow stack is possible using only the Memory
Protection Unit (MPU) available on most ARM processors [4]. Specifically, it uses the
two privilege modes supported by the MPU on ARM devices. Epoxy also uses custom
LLVM compiler passes, one to add static code to configure the MPU and another to add
instrumentation that changes the privilege mode when sensitive memory is accessed.

2.3 Real-Time Embedded Systems
Real-time embedded systems are computers dedicated to specific time-sensitive pro-
grams, such as the gyroscope on a plane’s frame or the imaging device on an MRI.
These computers are typically far less powerful than any general-purpose computer and
are specialized to their purpose. As such, time and space efficiency of programs is a
major concern.

The time-sensitive nature of the programs carried out on these systems must be
specified through a set of real-time constraints, commonly referred to as deadlines.
Deadlines typically outline explicit error-handling behavior that would run if a section
of a program does not finish executing within a specific time frame.

A program’s ability to meet its real-time constraints is referred to as its schedulability.
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In a real-time context, any overhead added by external tools to guarantee security must
not introduce so much overhead so that the program is no longer schedulable.

Real-time embedded systems require direct access to data as it comes in (without the
buffer delays common in general-purpose operating systems) to meet deadlines. There
are real-time operating systems capable of scheduling multiple tasks on one system,
developed with these deadlines in mind. We’ll focus on a widely used event-driven
real-time operating system called FreeRTOS [1].

In FreeRTOS, programmer-defined tasks run pseudo-parallel, scheduled based on
their individual priority levels. Each task is typically designed to respond to some type
of input, whether from external sensors or network connections. Tasks can communicate
with one another via time-sensitive or buffer-enabled functions provided by the operating
system. Tasks are not typically isolated from each other and share the same address
space due to the lack of hardware support for virtual memory.

We’ll focus on the ARM Cortex-M processor, often used in these real-time embed-
ded applications. There are three constraints that are important to consider when work
working with this series of processor. First, performance overhead must be low enough
to maintain the real-time schedulability of tasks. Second, the overhead of any instru-
mentation must be low enough that a program can still operate normally in the small
memory space. Third, any region-specific memory permissions must be configured
manually using the MPU due to the lack of a MMU.
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Chapter 3

Design and Implementation

RECFISH is a Control-Flow Integrity (CFI) proof of concept for embedded systems
which instruments pre-compiled programs. It uses performance-heavy tricks to over-
come the limitations of working with a pre-built program binary. While able to success-
fully enforce protections, its focus was never on real-world usefulness. We want to take
the ideas that are demonstrated by RECFISH and implement them in a way that will
allow us to reduce its performance cost, improve its protections and make it easier to
use; we’ll call this next generation implementation RECFISH++. An overview of the
design of our final system can be found in Figure 3.1.

3.1 Compile-time CFI Instrumentation
The design for the original RECFISH system targeted pre-built binaries, meaning that it
could be applied to a program without its source code. There are a few limitations to this
approach. Adding to or removing bytes from a binary is simple in concept, but difficult
to implement due to hard-coded addresses being shifted by additional instructions [7].
This complexity results in less flexibility, making it difficult to improve the performance
or security of RECFISH.

To improve RECFISH, we consider moving its implementation to a modified com-
piler pass in LLVM. Being able to embed functionality into a program during compila-
tion could give us a few advantages over the original approach. First and foremost, with
the flexibility provided by a compile-time implementation, we can improve the perfor-
mance by removing the costly trampolines, branches to appended code sections, without
needing to rework hard-coded addresses. Along with this, we think the high-level
information provided by a compiler would allow RECFISH++ room for future optimiza-
tions. Finally, RECFISH made no attempt to tackle the generation of a control-flow
graph (CFG), a problem that may be solvable at compile-time.

We identify a few major challenges that must be considered to provide the forward-
edge and backward-edge protections of RECFISH at compile-time. To provide more
concrete descriptions of our challenges, we’ll mention that we decided to use the LLVM
compiler infrastructure to implement RECFISH++. While both LLVM and GCC would
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Figure 3.1: An overview of all RECFISH++ system components.

provide the necessary features for RECFISH++, we chose to use LLVM. LLVM’s plugin
structure is more mature than the equivalent in GCC; furthermore, the API appears
stable and better documented. Additionally, LLVM with the Clang front-end is able
to cross-compile C code using an existing toolchain, making it possible to compile
to our target architecture. A final benefit lies within the research community; many
existing memory safety projects have implementations within LLVM compiler passes
that can be used for reference throughout our own. The basic challenges are similar
when considering either GCC or LLVM, but we believe the details are easier to explain
when only considering the one that we chose. Accordingly, we’ll discuss our challenges
with respect to LLVM.

One of the first and most evident challenges that must be faced when moving from
modification of a pre-built program to modification at compile-time is the complete
change in how the program is read and how instrumentation is added. Instead of using
a disassembler to read the program and change the code directly, we would need to
conform to the specifics of LLVM to perform these two tasks. One accepted method
for extending LLVM is by adding a custom compiler pass to LLVM’s Intermediate
Representation (IR) stage of compilation. During this stage RECFISH++ would have
access to an IR representation of a target program that could be traversed and modi-
fied [15]. This IR is accessible through C++ data structures and is both a target and
language agnostic representation of a program. Learning how to work with this IR and
then replicating the functionality of RECFISH is the first challenge to overcome.

While modification of a program that operates on LLVM’s IR would be the most
accepted approach, one challenge we face is its target-agnostic quality. RECFISH
had access to the exact program, giving it the ability to search for particular ARM
instructions and embed functionality that would not be modified again before execution.
Using IR provides the benefit of being able to traverse the program more easily, but
the instructions that it exposes are not ARM instructions and often don’t even map
one-to-one with ARM instructions. In order to implement RECFISH++ at compile-time
and embed labels in the program, we need to understand how the code in the IR pass will
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be modified by optimizations and how it will be translated to ARM specific code. With
this understanding, we will be able to decide where to place the different components
(forward-edge and backward-edge) of RECFISH++ in the compilation process to modify
a target program as needed.

Another challenge is compiling to the specialized ARM processor, particularly the
Cortex M4. This consideration was a significant one in the implementation of RECFISH,
and a major reason for why it focused on pre-built programs. The ARM processor is
often used for proprietary applications, meaning that it is common for companies to
use a proprietary toolchain for compilation. Without access, we will need to find an
open-sourced toolchain in order to test demo applications.

One feature that RECFISH didn’t have was the ability to instrument a program
without any additional information about it, specifically its CFG. We don’t think that
a compile-time instrumentation should require a pre-generated CFG. Instead, we will
aim to generate a full CFG during compile-time, and ensure that this CFG properly
discovers indirect branches.

We were able to overcome these challenges in order to move the functionality
of RECFISH to compile-time, giving RECFISH++ additional flexibility and better
performance. We used a combination of libraries, documentation and trial and error to
arrive at a fully-featured solution. We’ll dive into both forward-edge and backward-edge
protection to explain how we faced the above challenges in both of these areas.

3.2 Forward-edge Protection
The first protection that RECFISH++ replicates at compile-time is protection against
forward-edge hijacking. Indirect branches within a program are transitions whose
target is determined dynamically while it is running. In a C++ application, a common
application of indirect branches is virtual functions, where the actual function that
is run is determined by the object that it is being called on. While this programming
construct is useful, it can be used to hijack an application by changing the address of
the dynamic target.

3.2.1 Model Enforcement Pass
RECFISH++ is able to accomplish the forward-edge protections demonstrated by
RECFISH at compile-time. We have implemented the protection which ensures that
all forward-edge branches, i.e. indirect calls and jumps, may only go to possible
indirect targets (i.e. the beginning of functions). Much like the original RECFISH
implementation, we have added labels to a program that are placed at the source and
destination of every indirect branch to allow for runtime checks of their validity. We
place this functionality in a custom IR pass that is run during compilation.

With access to a target program’s IR, the RECFISH++ forward edge pass is able
to traverse and modify the program without restriction. The pass inspects each branch
instruction in the program to determine whether it is direct or indirect. When an indirect
branch is found, called a call site in LLVM IR, we place a label just before the branch
and at the beginning of every function that the call site would be able to target in normal
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func:
...
bic.w lr, r0, 1 ; mask the last bit of the address
ldr.w lr, [lr, -4] ; load the label of the target function
movw r1, 0xdefd ; load half of the label
movt r1, 0xe7f2 ; load second half of the label
cmp lr, r1 ; compare the labels
str r0, [sp, 12]
beq.n normal ; continue to indirect call, normal case
b.n violation ; handle as a violation

violation:
mov.w r0, -1 ; pass -1 as argument to exit()
bl exit ; exit the program

normal:
ldr r0, [sp, 12]
blx r0 ; make the indirect call
...

.word 0xe7f2defd ; matching label on target
foo: ; indirectly targeted function

...

Listing 1: The assembly added to an indirect branch which validates the label of the dynamic
target.

execution, as determined by the control flow graph. The function labels are placed in the
bytes directly preceding each function using what LLVM calls the function’s prefix, a
storage primarily used for embedding metadata during compilation, as shown on foo()
in listing 1. We place the label in a comparison branch instruction right before the call
site. This comparison ensures that the runtime target of the call is preceded by the
correct label, aborting the program if a mismatch occurs. With these checks on every
indirect branch in place, we have verified that all indirect control-flow changes will be
valid according to a fine-grained CFG.

3.2.2 Model Generation Pass
One of the difficulties in this forward-edge protection is generating the control-flow
graph. Without one, we would not be able to determine where an indirect branch may
target in normal execution. LLVM’s plugin infrastructure does provide a control-flow
graph data structure that is available while traversing the target program. Unfortunately,
this graph only includes direct transitions and does not perform the analysis that is
needed to determine valid indirect transitions. In order to capture this additional
information, RECFISH++ uses LLVM’s DSA (data-structure analysis) library, which is
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part of the poolalloc project [8]. This project is no longer supported in the most recent
versions of LLVM, and so RECFISH++ uses LLVM 3.8, the last version compatible
with the DSA library. While this is not optimal, we have decided that it was the best
option to avoid diving into the complexities of data-structure analysis. Using this library,
we are able to fill in the gaps left by the default CFG and properly determine valid
indirect branch targets.

3.3 Backward-edge Protection
Return addresses are used during normal program execution to jump from a returning
function to its caller. These transitions closely resemble the indirect branches considered
in forward-edge protections, as the target is dynamically determined and is stored in
unprotected memory. A label-based approach is effective but coarser. As such, we use
the privilege-based shadow stack utilized by RECFISH, an approach originally outlined
by Abadi et. al [3] with additional consideration for the address-space sharing within
FreeRTOS.

Moving this backward-edge instrumentation to compile-time is not as straightfor-
ward as the forward-edge due to the hardware-specific nature of configuring the Memory
Protection Unit (MPU) and using the supervisor mode. Supervisor Call instructions
are not available in LLVM’s IR, as IR is target agnostic. Determining when the re-
turn address will need to be saved requires hardware-specific knowledge. Custom
hardware-specific context switching is required in order to securely store and restore
context between pseudo-parallel tasks running on a single core processor. We’ll break
up the steps for moving the shadow stack to compile-time into six steps: configuring the
MPU for proper protection, adding supervisor interrupt handlers to properly dispatch
shadow stack operations (push and pop), implementing the shadow stack, altering task
initialization to support the shadow stack, secure context switching, and instrumenting
functions that spill a return address.

3.3.1 MPU Permissions Setup
The MPU provides a coarser set of memory permissions than those available with a
full Memory Management Unit (MMU). With the MPU available on our development
board, we are able to maintain permissions on 8 regions of memory simultaneously.
We may split these permissions between two possible operating modes: user mode and
supervisor mode.

In the ARM Cortex M4 architecture, user and supervisor mode operate entirely
separately, even maintaining their own stacks and stack pointers. User mode is designed
for the execution of application-level code, whereas supervisor mode is privileged and
typically performs hardware configurations. Though the default mode of execution is
user mode, supervisor mode may be entered via the Cortex M4 supervisor call, or svc
instruction. Upon completion of the privileged supervisor call handler, the program
execution re-enters user mode via a simple function return.

We leverage supervisor mode as a means of restricting access to our shadow stack.
The MPU is configured with a region protecting the shadow stack, ensuring no read or

15



Figure 3.2: The modified memory region layout and permissions that RECFISH++ uses, enforced
by the MPU.

write access for user mode while allowing full access to supervisor mode. This means
data may only be pushed or popped from the shadow stack via supervisor mode, which
will only be accessible via predetermined locations in the binary - the locations of the
svc instructions.

In order to enforce the key CFI assumption that writeable memory is non-executable
(and vice versa), we configure three additional MPU regions, shown in Figure 3.2. These
regions are flash, heap, and stack such that the flash section may hold program code,
and the heap and stack may hold runtime data.

3.3.2 A Modified Interrupt Handler
In order to trigger the correct shadow stack operation indicated by the argument passed
to the supervisor call instruction, we must modify the program’s supervisor interrupt
handler. RECFISH++ is aimed at protecting programs running in FreeRTOS, therefore
we make these changes to the FreeRTOS source code rather than at compile-time. We
considered overwriting the FreeRTOS implementation with a custom handler during
compilation but decided against it as it as this behavior might confuse users that at-
tempt to edit the source code of FreeRTOS. We provide a modified port.c file within
FreeRTOS containing a custom handler. This handler uses the argument passed by a
supervisor instruction to choose the operation that should be performed, acting as a
jump table to the shadow stack operations. A portion of this handler may be seen in
Listing 2.

3.3.3 The Shadow Stack
The shadow stack is implemented by RECFISH++ in a similar way to RECFISH. This
shadow stack mirrors the normal stack but is dedicated to saving return addresses when
needed and retrieve them before return instructions. This area of memory is separate
from the normal stack, and unwriteable during normal program execution in order to
ensure that the return addresses are not tampered with. In addition to storing return
addresses, this secure storage method is also used to protect context switches that, by
default, store, sensitive context information in unprotected memory. As with RECFISH,
this means that the context switching functionality in FreeRTOS must be able to access
and use the shadow stack.
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SVC_Handler:
... ; load the SVC argument into r8
ldr.w sl, table ; load the table address
ldr.w r9, [sl, r8, lsl 2] ; load table entry
orr.w r9, r9, 1 ; set to thumb execution
bx r9 ; branch to selected table entry

table:
.word jump_table
...

jump_table:
.word shadow_stack_setup
.word ss_push
.word ss_pop
.word original_handler

ss_push:
...

ss_pop:
...

Listing 2: The jump table used to dispatch shadow stack operations from the Supervisor Exception
handler.

The shadow stack has similar traits to the traditional stack data structure: a stack
pointer and bounds to its available space. The memory space that the stack is able to
span must both be large enough that it accommodates the stored return addresses through
any normal program execution path, but small enough to avoid wasted memory space.
RECFISH++ uses the same limits that RECFISH does, 126 bytes per task. The shadow
stack pointer lies in a predefined location in memory. The push and pop operations on
this shadow stack operate much like any traditional stack, where the push checks for
bounds, stores the return address and decrements the stack pointer and the pop does the
opposite.

3.3.4 Task Initialization
In order to isolate the return addresses between tasks, RECFISH++ sets up an inde-
pendent shadow stack for each. We take this pattern from within the operating system;
FreeRTOS maintains a Task Control Block (TCB) for each task, storing the pointer
to the standard, unprotected stack within alongside other task metadata. Upon task
creation, we add the task’s independent shadow stack pointer within the TCB. The
pointer to the currently active shadow stack is updated during each FreeRTOS context
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switch, just as the stack pointer is updated. This ensures operations occur on the shadow
stack corresponding to the task calling the function.

3.3.5 Secure Context Switching
The context of tasks is the second piece of critical information stored on the shadow
stack. During a standard FreeRTOS context switch, the task’s state is saved to and
loaded from an unprotected stack in order to allow for pseudo-parallel execution on
single-core processors. This saving and loading are typically very lightweight thanks to
hardware support, only requiring a few instructions to push return address and registers,
and pop the return address and registers from the corresponding task’s stack.

In our backward-edge implementation of RECFISH, we must instrument FreeRTOS
to save and load this same state to a task’s shadow stack, rather than the unprotected
one. To do this, we use the shadow stack pointer as though it were the unprotected stack
pointer in the FreeRTOS context switch routine. For the save routine, we first save the
halting process’s status register and return address to the shadow stack, then all of the
user/system registers, and finally save extra context such as floating point registers if
applicable to a given task. For the load routine, we apply the same steps but in reverse,
first loading the extra context, then the user/system registers, and then the return address
and saved process status register.

We made the same considerations for the shadow stack operations as we did with the
supervisor handler. While it would be possible to embed this functionality at compile-
time, we chose to again modify our custom port.c file with the ss_push and ss_pop
operations. Additionally, we modify the FreeRTOS task.c file in order to allocate a
shadow stack for each newly created task and to switch the current shadow stack pointer
during a context switch.

3.3.6 Secure-Spill Lowering Pass
At the start of a function, the return address is stored in the Link Register (LR register), a
section of memory integrated into the Cortex M4 processor. Though the return address is
safe within, the LR register is often needed for other purposes during function execution,
such as entering new function calls. In this scenario, the return address is spilled onto
the unprotected stack for later use. It is this case that our backward-edge protection
is primarily concerned with. In order to protect return addresses when they must be
moved out of the LR register, RECFISH++ instruments affected functions with extra
instructions that will store the address to the protected shadow stack. By doing this, we
can ensure that the return addresses are not tampered with, and therefore protect the
control-flow from hijacking.

There are two challenges that must be solved in order to change how the LR register
is spilled. First, RECFISH++ must be able to determine when it must to be spilled to
make room for other uses. Second, we must add two calls to trigger shadows stack
operations for both saving and loading the LR register to replace the original spilling
functionality. Both of these challenges require target-specific information, meaning
that LLVM’s IR is not an option. Instead, RECFISH++ modifies a pass later in the
compilation process that translates a program’s IR to the target architecture, called
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func:
push r6, r7, lr ; spill LR with other needed registers
...
pop r6, r7, pc ; restore return address directly to PC

Listing 3: An typical LR register spill onto the unprotected stack.

func:
push r6, r7 ; spill other needed registers
svc 1 ; call ss_push to spill LR securely
...
svc 2 ; call ss_pop to return LR
pop r6, r7 ; restore return address directly to PC
bx lr ; branch to the return address

Listing 4: An instrumented function which uses svc calls to securely spill the LR register to the
shadow stack.

the lowering phase. During lowering, ARM-specific features are available, including
information on LR spills and the supervisor call instruction svc. RECFISH++ looks
for LR spills and replaces them with corresponding calls to shadow stack operations
via the svc instruction; any attempts by the compiler to save the LR register to the
stack are replaced by a supervisor call with an argument of 1 to indicate ss_push, and
similarly with 2 to indicate ss_pop. This way the LR register is spilled onto the shadow
stack instead of the unprotected stack, with the determination of whether to spill the LR
register still being made by the compiler. The effect of this instrumentation is shown by
the difference between Listing 3 and Listing 4.

For a complete visual of the modified compilation process, refer back to Figure 3.1.

3.4 Fine-Grained Protection
With an implementation of RECFISH at compile-time, along with the performance
benefits entailed, we now turn to consider how we can improve the protection offered
by RECFISH++. Backward-edge protection seems to be sound, with no obvious vectors
for hijacking being possible during normal execution. However, forward-edge does not
provide this same guarantee due to the coarse-grained protection that it uses, which can
be improved using a more fine-grained approach.

Though impossible guarantee only the correct indirect branch may occur at runtime
without securing all code-pointers [6], we may reduce the number of potential attack vec-
tors by generating unique labels for each equivalence class (discussed in Section 3.4.1).
By using unique labels, we think that RECFISH++ could often reduce the subset of
functions that a particular indirect branch may target, improving the forward-edge
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Figure 3.3: Left. Scenario A. Two isolated indirect callers. Right. Scenario B. Two indirect callers
with the same target.

protection with no runtime performance decrease. This involves a complex analysis at
compile-time to ensure that it does not inhibit normal program execution, but wouldn’t
involve any additional computation at runtime.

There are two major challenges that need to be addressed in order to create a more
fine-grained protection. In order to ensure that the program is able to operate normally
when it hasn’t been hijacked, there must be a method for determining when it is safe
to give an indirect jump a unique label [3]. Second, in order to start using additional
labels, we would need to ensure that the new labels don’t appear encoded anywhere
in the binary other than where we place them; otherwise, these conflicting encodings
would be a potential target for hijacking.

3.4.1 Instrumentation by Equivalence Class
Trying to limit where an indirect jump may target requires an understanding of how
indirect jumps affect each other. Consider Figure 3.3, which shows two scenarios. In
Scenario A, the two indirect jump instructions can potentially target two subsets of
functions which have no target in common. A unique label could be assigned to foo()
in Scenario A and all of its potential targets, which would ensure that foo() could never
target one of bar()’s targets, and vice versa. Now consider Scenario B, where there
is a single function that both foo() and bar() may target in normal execution. If we
apply the same logic as in Scenario A and give foo() and its targets a unique label,
then give bar() and its targets a unique label, a() would require two labels to fill these
constraints. We require a method that is able to detect this scenario, and scenarios like
it, in order to implement a more fine-grained approach.

We extend the functionality provided by the DSA library, previously discussed
in Section 3.2.2, to organize indirect jumps into equivalence classes, allowing us to
accurately determine when we can use a new label to separate the jump targets. These
classes are used to divide the call graph into groups that cannot be further distinguished
from each other with the label-based approach; functions with the same indirect caller
must have the same label prefix, and functions with the same indirect target must have
the same label check. Consider Figure 3.4, where each arrow represents an indirect call.
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Figure 3.4: Left. Scenario A. A simple scenario requiring an equivalence class. Right. Scenario
B. An equivalence class difficult to instrument with a special consideration.

The entirety of Scenario A is one equivalence class, and the entirety of Scenario B is
one equivalence class due to overlapping targets.

RECFISH++ uses a spanning technique to find equivalence classes; it inspects each
indirect jump, groups all of its potential targets, and then finds other jumps that share
a target until no more similar jumps are found. This group of all jumps that share
potential targets defines one equivalence class. For example, consider two indirect call
instructions which may target printf; all of the possible targets of either of those calls
would be combined and considered as one equivalence class, containing the same label
within their prefix.

Equivalence classes are used in order to minimize runtime overhead. With a fully
fine-grained CFI approach where each indirect jump is only able to jump to its own set of
valid targets, each of these jumps would need to be instrumented with a loop that checked
over multiple labels. This approach is unfavorable due to the increased performance
overhead. Using equivalence classes, we can reduce the number of comparisons to
one by losing some precision in what we consider a valid control flow. More precisely,
control flows that may be considered invalid in a fine-grained approach will be allowed
by RECFISH++ in order to reduce performance overhead.

The spanning approach is taken to avoid facing conflicting labels while discovering
equivalence classes. Consider Scenario B in Figure 3.4. Imagine foo() was instru-
mented first, bar() instrumented second, and bar() last; without spanning, qua()
would get a label and thud() would get a second unique label. This becomes a problem
when bar() is instrumented, as one of the two labels would need to be changed to
merge the equivalence classes. The spanning approach avoids this by visiting any of
these functions and discovering the other two before any unique label or instrumentation
is added. By spanning the entire equivalence class at once, we avoid ever facing a
conflicting label at a call site we are visiting for the first time.

LLVM’s call graph neither tracks indirect branches nor groups them into equivalence
classes. In order to obtain this behavior, we extend our model enforcement pass by
modifying our LLVM pass. This modified pass enumerates the indirect targets offered
by DSA and stores indirect branches in a manner that we could later easily traverse both
backward (from target to source) and forward (from source to targets). After a group
of branches has been identified as an equivalence class, a new label is generated and
all of the contained branches are instrumented with a CFI label check. The algorithm,
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Instrumented = []
def VisitCallSite(CallSite)

if Instrumented contains CallSite
return

ClassMembers = FindClassMembers(CallSite)
for each Member in ClassMembers

Instrument(Member)
append Member to Instrumented

def FindClassMembers(CallSite, Members = [])
append CallSite to Members
Targets = GetIndirectTargets(CallSite)
for each Target in Targets

Callers = GetIndirectCallers(Target)
for each Caller in Callers

FindClassMembers(Caller, Members)
return Members

Listing 5: The pseudo algorithm used to span equivalence classes and instrument indirect
branches, called CallSites.

provided in Listing 5, will continue this process until all of the indirect branches have
been explored and instrumented.

The GetIndirectCallers function is not provided by the DSA library. This is
implemented by mapping each call site to a call target using a searchable data-structure
before any equivalence classes are determined.

3.4.2 Generating Globally Unique Labels
Another challenge is ensuring that a particular label is unique throughout the executable
portion of the binary. Without this, we foresee the possibility of a label conflicting with
a commonly used instruction encoding and therefore providing potential targets for a
hijack. While this challenge was trivially overcome in RECFISH by inspecting and
searching the pre-built program, this becomes difficult when trying to solve at compile-
time. At compile-time, it is difficult to predict how the program being compiled will be
linked with other code that is not available to the compiler and therefore impossible to
do a simple search through all existing encodings. We would need to find a method at
compile-time for ensuring that the new labels introduced would be unique in order to
ensure that protections are not lost.

In order for our approach for forward-edge protection to guarantee that a given
call site may only call functions in its assigned equivalence class, the label chosen for
the class must be globally unique. That is, the label should not show up anywhere
else in the compiled program except within our instrumentation. If the label were to
exist somewhere else in the binary, an attacker could possibly subvert the control-flow
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to the location that the conflicting label appears. RECFISH++ must make one key
assumption about the typical Cortex M4 program in order to ensure global uniqueness
at compile-time: only defined instruction encodings show up in the executable portion
of the binary.

Choosing a four-byte label which contains no instruction encoding in the first or
third byte decreases the possibility that the label exists somewhere else in the binary.
The ARM Cortex M4 architecture supports the Thumb instruction set, consisting of
both two and four-byte instructions. Choosing a label which is four bytes but which
doesn’t encode any instruction should ensure that the label doesn’t exist anywhere in the
program’s normal operation, as long as this assumption holds. Within this assumption
are two smaller ones that require knowledge of typical program construction.

First, it would be possible for an undefined instruction to be executed, as this is
a method that is sometimes used to extend the hardware instruction set. Anytime an
undefined instruction is executed, an Undefined Instruction exception is created and
handled. This handler could be used to functionally add an intended side effect to
an undefined instruction. We think that we can make the assumption that undefined
instructions would not be used in this way because it would not be possible without
modification of LLVM. RECFISH++ requires its own modifications to LLVM, and so
we assume that any user that has custom modifications to LLVM will ensure that they
do not conflict with this aspect.

Second, that all lines in the executable section could be executed normally. While
this may seem obvious, it is possible for the compiler to embed information into the
program that is never intended to be executed (which is precisely what we are doing with
our labels). We assume that no such metadata exists outside of our own labels for similar
reasons to the absence of undefined instructions; these would require modification to
LLVM, and we don’t intend to support versions of LLVM that have been modified out
of our control.

These previous assumptions only consider the executable code sections of the binary.
We assume that the MPU is configured to ensure that writable memory is not executable.
Even if a label were to show up outside the code section, it would not be a useful tool
because branching to it would result in a memory violation. We are able to ensure that
this assumption is true by additional configuration of the MPU by RECFISH++.

In practice, it is difficult to ensure that these assumptions hold true for every applica-
tion. We choose to rely on them to ensure global uniqueness for one additional reason:
even if one of these assumptions failed, an attacker would have fewer options available
to hijack the program. Not only is the chance of a label conflict low, the low probability
that a useful gadget would be located directly after a conflict would make a vulnerability
even less likely.

One last consideration must be made; the Cortex M4 architecture can operate with
Thumb two or four-byte instructions. This means that the label must be interpreted as
both a two byte and four-byte undefined instruction. There are 128 different encodings
satisfying these requirements that RECFISH++ will choose from. In the case that more
than 128 different equivalence classes are found, RECFISH++ will sacrifice precision by
reusing encodings. In this way, unique labels can be systematically generated at compile-
time. Note that no aspect of these protections relies on the secrecy of labels; instead,
they rely on the difficulty of placing them in executable memory during execution.
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3.5 Unnecessary Instrumentation Analysis
In an attempt to further improve the performance of RECFISH++ over its predecessor,
we propose a system to filter out runtime checks that are unnecessary for providing
security guarantees. Our intuition is that those tasks which do not receive external input
are not vulnerable to control-flow hijacking so we may remove protections. In order
to accomplish this, we rely on two assumptions: FreeRTOS tasks communicate solely
through the operating system, utilizing one of several message-passing APIs [1], and
the hardware running FreeRTOS may reconfigure the MPU from within its supervisor
mode at any time.

We examine a program on a task by task level, searching for those which do not rely
on user input to function. Any task which remains untouched by RECFISH++ must
meet two criteria. Firstly, the task cannot directly receive external input via memory
mapped I/O or a network connection. Secondly, the task cannot receive inter-task
communications of sensitive types which may lead to exploitation. We will discuss each
of these in turn.

For the duration of this section, we will consider a safe task one which does not
receive external input, and therefore does not require runtime protection. Unsafe tasks,
however, are those which cannot be verified to be safe. We consider tasks unsafe by
default in order to over-approximate the vulnerability of a program.

3.5.1 Direct External Input
Marking tasks as unsafe due to the utilization of external input can be accomplished in
a number of ways, however, many rely on coupling RECFISH++ to a specific micro-
controller. A naive yet general approach would rely on a programmer-defined list of
functions which receive external input. Due to the potential for human error in this
approach, we propose a hardware specific alternative.

Embedded systems interface with the outside world via peripherals whose func-
tionality have been mapped to specific addresses — a process referred to as memory
mapped I/O. Extending the compile-time portion of RECFISH++, we may check each
read and write instruction for its target address, flagging those which appear to be for the
purpose of peripheral communication. This task may be non-trivial on certain embedded
systems, however, the approach was designed with the STM32L4 Discovery Board
in mind as the memory layout dedicates a specific range of addresses for peripheral
communication [2].

In order to readily identify network connections, we further couple ourselves to
FreeRTOS and act upon the assumption that applications will correctly leverage the tools
provided by it. As such, we search tasks for calls to the provided FreeRTOS_socket()
function and mark those tasks unsafe.

3.5.2 Sensitive Inter-task Communications
Throughout a typical FreeRTOS application, tasks communicate with one another to
delegate responsibilities asynchronously. Because of this, we cannot consider each task
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/* FreeRTOS APIs store the message

* as the second argument

*/
Value* pointed = callInst.getArgOperand(1);
pointed = pointed->stripPointerCasts();
Type* pointedType = pointed->getType();
processOperandType(pointedType);

Listing 6: A few lines of code operating on LLVM IR which can capture the function type of an
branch.

in a vacuum but must consider the potential vulnerabilities introduced via communica-
tions with other tasks. If one task receives malicious input and sends that to another,
both must be instrumented by RECFISH++ in order to provide control-flow guarantees.

One potential compile-time approach would be to build a communication graph
via static analysis. Each node in the graph would be a task, and each edge would be
a directed flow of information. The benefit of this approach would be a very precise
understanding of the target program, allowing for the maximum number of tasks filtered
out for instrumentation when combined with the methods of identifying external input
discussed in the previous section. Only those tasks which receive direct external input
or from which there is a path along the communications graph to direct external input
require runtime checks. The downside, however, is that an accurate communications
graph would be difficult to determine at compile-time due to the potential for control-
flow contingent communications.

In order to simplify the problem into a more manageable one, we take a coarser
approach. Instead, we simply examine each task in isolation, determining whether it
receives any sensitive communications from any task via one of the FreeRTOS provided
message-passing APIs. Despite the fact that the source of the information may be
benign, we treat it as though it could contain malicious information in order to maintain
our control-flow guarantees.

Now that we have established an approach to identifying communications between
tasks, we must classify communications as sensitive or insensitive. To do so, we draw
inspiration from Kuznetsov et al [6]. In classifying pointers as sensitive or insensitive in
order to isolate them, the code pointer integrity system Levee provides a list of potentially
dangerous data types. These data types include character pointers, void pointers, code
pointers, and pointers to complex data types containing any of the previous. We operate
under the same model for consistency among similar works.

Utilizing the rich type system available at compile-time from within the LLVM
Transform Pass, it is trivial to identify the type of the message being passed via any of
the FreeRTOS APIs. A rough snippet can be seen below.

The simplicity of this extraction highlights one of the major advantages of REC-
FISH++ over RECFISH. Access to higher level semantic information allows for rich
static analysis impossible on a precompiled binary.
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3.6 Limitations
A few additional challenges that we have considered, but have not solved. The first
challenge lays in the FreeRTOS initialization process, where we are not able to use a
protected region for return addresses of operating-system code. We set up shadow stacks
and configure the MPU just before tasks are created, but in the period between power-on
and task creation, backward-edges are not being protected. We’ll consider possible
solutions for this in the Section 5.1, but for now, we don’t prioritize this because we are
focused on protecting the user-defined tasks, not FreeRTOS.

Another challenge is the inability to merge equivalence classes across separate source
files. The compiler is only able to modify and traverse one source file at a time. While
this didn’t affect the demo programs we tested (due to the rarity of indirect branches), it
is possible that a normal program wouldn’t operate correctly due to mismatched labels
across files. Again, we’ll discuss potential solutions in the section 5.1 section.

Lastly, statically finding the targets of indirect branches is very difficult at compile-
time, both due to the complexity and the last of existing implementations. We chose to
use LLVM’s DSA tool, which has not been maintained since LLVM 3.6 or since early
2015. While this implementation seems to be fully capable of static analysis, it is not
being actively maintained and is therefore difficult to have a high confidence in. Our
CFI protection is only as precise as our generated CFG, so further consideration of this
library should be made.
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Chapter 4

Evaluation

To evaluate RECFISH++, we’ll perform an overhead and security evaluation. We’ll both
the memory and CPU overhead, as well as attempting to exhaust all possible scenarios
of the system to understand potential vulnerabilities.

4.1 Performance Evaluation
For each major component of RECFISH++, we’ll break it into small pieces of functional-
ity to consider overhead. We’ll start with inspecting forward-edge, then backward-edge,
and finally secure context switching. A summary of our overhead is available in Ta-
ble 4.1.

Protection Component Memory (bytes) CPU (cycles)

Forward-edge
Label comparisons 24 per ind. branch 33 per ind. branch

Labels 4 per ind. target N/A
Register space 0-8 per ind. branch N/A

Backward-edge

Secure spills 0 or 8 per function N/A
Supervisor except. N/A 86 per spill

Shadow stack 132 per task 28 per spill
Initialization 300 total not measured

Context switch Secure switching 160 total 88 per switch

Table 4.1: A summary of the overhead incurred by RECFISH++.

RECFISH++ adds checks to each branch in the program with a dynamic target.
These indirect branches seem relatively rare, with only two-hundred seventy indirect
branches of 6,361 total branches, or 4%, showing up in a demo program.1 We’ll
inspect the amount of overhead that our forward-edge protections add per indirect

1We used the AWS FreeRTOS demo program to evaluate our approach. More information available at
https://aws.amazon.com/documentation/freertos/.
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branch, considering the instrumentation on the branch and the labels placed on the target
functions.

There are three sources of memory overhead that our forward-edge instrumentation
adds, two of which require space in the code section and one of which indirectly requires
space on the stack. The first source of memory overhead that we’ll consider is the
runtime check that we add. Per indirect branch, RECFISH++ adds fifteen instructions
or twenty-four total bytes to the code to check the dynamic target for a label. The
second source of overhead are labels, which add four bytes to each function that can be
indirectly targeted. The last source of memory overhead is are the two registers required
for the compare, where it is possible that the function will need to spill the previous
contents of the registers onto the stack to allow us to use them.

There is only one source of runtime overhead where no CFI violation is detected,
which are the additional instructions added to load and compare labels.2 Of the thirteen
instructions added, only eight of them are executed in the normal case, typically taking
only about thirty-three CPU cycles to perform. We think that this overhead added per
indirect branch is satisfactory.

The backward-edge protections are a major factor in our total overhead. The
instrumentation for protecting return addresses is complex and frequently required. We
separate the backward-edge overhead into the modified secure LR spilling, the modified
Supervisor Exception handler and the shadow stack.

There are a few sources of memory overhead added by our backward-edge instru-
mentation. These sources include the possible added instruction for spilling LR onto
the shadow stack and the modifications to FreeRTOS (modified Supervisor Exception
handler jump table, shadow stack operations, shadow stack setup, Memory Protection
Unit (MPU) configuration, shadow stack pointer in each Task Control Block (TCB), and
shadow stack region). For each function that must spill LR, RECFISH++ directly adds
between zero and two instructions, between zero and eight bytes, depending on whether
there are other registers that must be spilled as well. The constant overhead added by
the FreeRTOS modifications, covering the exception handler, shadow stack setup and
operations, and the MPU configuration, total to about three-hundred bytes. For each
additional task, our modified operating system adds only one four-byte shadow stack
pointer to it’s TCB. We allocate 128 bytes for the shadow stack per task in addition to
the stack, but it may be possible to mitigate this overhead.3

As with memory overhead, there are a few sources of runtime overhead by backward-
edge protections. We’ll inspect the total runtime overhead on an instrumented function
and the total runtime overhead required to set up the task shadow stacks on startup.
Each access to the shadow stack consists of a Supervisor call, the Supervisor Exception
Handler, and an operation on the shadow stack, which in total adds about twenty-nine
instructions and fifty-seven CPU cycles. We think that this operation will be the most
significant overhead on a typical program because an access to the shadow stack is
made twice per each instrumented function, once to push and once to pop. Of the

2A failed check results in a hard fault and is thus hard to quantify the performance of; we leave this
analysis to future work in trying to recover from this violation.

3Return addresses are being stored on the task shadow stack instead of the normal task stack, so it may be
possible to solely reallocate space from the stack to the shadow stack without changing its functionality at
runtime.
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fifty-seven cycles needed to operate on the shadow stack, forty-three cycles are required
to transition in and out of the Supervisor exception and fourteen are needed for the
actual stack operation.

Most of the overhead associated with context switching overlaps with backward-
edge protection because the context-switching instrumentation adds to the shadow stack.
We’ll focus on the additional overhead required for our modified context switching to
ensure that control-flow is isolated completely between tasks.

The only source of memory overhead required for context switching is the additional
instructions added to the FreeRTOS context switch functionality. This functionality
only redirects the TCB saving and restoring to the shadow stack, and doesn’t require
any additional space for storing task state.4 In total there are forty-three instructions or
160 bytes added for this functionality, which is included in our modified FreeRTOS.

The runtime cost of RECFISH++ modified context switching is not very significant.
While our context switching needs to access the shadow stack and therefore needs to
run in supervisor mode, the original switching already ran in supervisor mode. In total,
all of the forty-three instructions that were added are executed during each task switch,
costing about eighty-eight additional CPU cycles per switch.

RECFISH++ is able to provide a reasonably precise protection against all methods
for control-hijacking using memory vulnerabilities, with full memory protection for
backward edges and a low-overhead label-based forward-edge protection. Combined,
these protections are powerful, able to protect a program with no requirement for
additional changes by developers to an embedded real-time software.

4.2 Protection Evaluation
There are many states that the added RECFISH++ instrumentation can be in during
execution. We’ll consider situations such as context switching interrupting any of our
instructions, situations where labels are found in writable memory, and situations where
critical registers are stored on the stack during elevated execution of the Supervisor
Exception handler. We’ll step through each of our protections individually and consider
whether there are measures that could bypass them and hijack the program.

Each indirect branch in the program is instrumented with a RECFISH++ label and
check. This check is simple, consisting of a read from memory, a comparison and a
branch depending on the result. We consider this simple flow alone, and then consider
each possible event that could interfere with it to attempt to exhaust all possible scenarios
and validate its protection.

In the typical execution of a forward-edge check, it will execute lines 3 through 9
of Listing 7, and then branch to the existing indirect call. The label loaded in by lines
3 and 4 will always read the two-byte aligned label directly before the loaded indirect
target, masking away the last bit of the address (which signifies instruction set of the
target function). When the target’s label matches the inner label loaded by lines 5 and 6,
the comparison will properly continue to make the indirect branch. If the labels don’t
match, the branch at line 9 will not be taken and the branch at 10 will, causing exit(-1)

4The shadow stack pointer is stored in the TCB, but we consider that to be backward-edge overhead.
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1 func:
2 ...
3 bic.w lr, r0, 1 ; mask the last bit of the address
4 ldr.w lr, [lr, -4] ; load the label of the target function
5 movw r1, 0xdefd ; load half of the label
6 movt r1, 0xe7f2 ; load second half of the label
7 cmp lr, r1 ; compare the labels
8 str r0, [sp, 12]
9 beq.n normal ; continue to indirect call, normal case

10 b.n violation ; handle as a violation
11 violation:
12 mov.w r0, -1 ; pass -1 as argument to exit()
13 bl exit ; exit the program
14 normal:
15 ldr r0, [sp, 12]
16 blx r0 ; make the indirect call
17 ...
18

19 .word 0xe7f2defd ; matching label on target
20 foo: ; indirectly targeted function
21 ...

Listing 7: Inspecting the flow of a forward-edge check to ensure it is safe

to be called. The protection is straightforward and operates properly in both possible
states (violation and normal).

We’ve shown that the check runs correctly when executed sequentially. It is possible
for a hardware interrupt to change this normal execution flow though, and any change to
the target between the time it is loaded (line 3) and the time the branch is made (line 16)
would pass the check. Most notably, the timer exception used by FreeRTOS to meet
real-time deadlines may interrupt a task at any instruction to schedule another task. The
two potential scenarios of a hardware interrupt are that the function resumes normally or
that the execution resumes in another scheduled task. We don’t consider these transitions
to expose any vulnerability. If the function resumes, the only modifications to the target
could be made by FreeRTOS exception handler, which we consider to be safe. If another
task is scheduled, our secure context switch will protect all registers on the shadow
stack, so the function can eventually resume normally with a guarantee that the target
was not corrupted. RECFISH++ forward-edge checks are correct even in the presence
of hardware interrupts.

The labels that forward-edge protections rely on are as precise as the control-flow
graph (CFG). When indirect branches must be merged into an equivalence class to avoid
using multiple labels, our protection becomes less precise (fig. 3.4). This imprecision
means that the CFG is not protected perfectly, possibly creating a vector for exploitation.
The rarity of indirect branches makes this merging very infrequent, but ultimately this is
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1 func:
2 push r6, r7 ; spill other needed registers
3 svc 1 ; call ss_push to spill LR securely
4 ...
5 svc 2 ; call ss_pop to return LR
6 pop r6, r7 ; restore return address directly to PC
7 bx lr ; branch to the return address

Listing 8: Inspecting backward-edge secure spilling to ensure it is safe

a security trade-off for performance.
Along with the precision of forward-edge, we’ll also consider the accuracy. REC-

FISH++ and Control-Flow Integrity (CFI), in general, are not a direct form of memory
safety, meaning that they do not protect the code pointers but instead ensure the integrity
of their use in indirect branches. In most cases, our protection cannot be exactly accurate
because we are not protecting the memory directly. For example, where a CFG finds
that an indirect branch has three valid targets, an attack could still subvert the program
but would only be able to target these three targets. We don’t consider this to be a
vulnerability because RECFISH++ is able to significantly reduces the potential targets,
from every addressable byte to three targets in this example. This is another example of
a security trade-off for performance, as current techniques for memory safety are too
expensive.

Our protection also relies on the uniqueness of labels, a guarantee difficult to make
at compile-time. By our assumptions that LLVM has not been modified to embed data
in the code or utilize the UNDEFINED for functionality, we can ensure that conflicting
labels are not encoded anywhere in the code section of the program besides directly
before instrumented indirect targets. The only other scenario in which a conflicting label
may occur is if written to writable memory. Branching to any place in writable memory,
even if there is a matching label, will result in a hard fault due to the non-executable
flag set on the MPU. Therefore, we are able to ensure that the control flow cannot be
hijacked anywhere besides instrumented indirect targets.

We’ll evaluate the safety of backward-edges as well in both the typical scenario, and
each possible edge case from there.

For each instrumented function, our secure register spilling will execute lines 3 and
5 of Listing 8 to push and pop the return address on the shadow stack. This modified
spilling replicates the functionality of normal LR spilling, saving it from the register
before the function body is executed and restoring it to the register just before the
function returns. Return addresses are never stored in unprotected memory, and this
typical scenario seems safe.

Return addresses are only ever modified using a single Supervisor Call instruction.
Interruptions are not a concern for this single instruction, as the exception handler and
shadow stack operation both occur within the Supervisor Call exception while interrupts
are disabled.

The backward-edge protection is precise. It protects return addresses directly and
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therefore is not constrained by the precision of a CFG. With the shadow stack, we can
guarantee that each backward-edge has not been corrupted in any manner.

When the Supervisor Exception is triggered, the hardware moves all current registers
to the stack, which is not protected. This means that during the exception, the return
address for the calling function is stored in vulnerable memory. This is the most
vulnerable that a return address ever can be with RECFISH++; yet, it is still safe because
the processor only runs our handler, no user-defined code.

The last aspect of our backward-edge protections that we’ll consider is the unin-
strumented FreeRTOS initialization functions. Shadow stacks are set up per task, and
so any code that is executed outside of a task is not able to be protected. We currently
cannot provide any backward-edge guarantees during initialization. We focus on the
user-defined code instead and assume that the lack of any input and the well-tested code
of FreeRTOS initialization will protect it.

The last component to evaluate is the modified context switching that RECFISH++
uses to isolate tasks. This context switching works similarly to backward-edge instru-
mentation, redirecting critical information to the shadow stack instead of the normal
stack.

The goal of our secure context switching is to make sure that information stored
in registers and the shadow stack pointer are not modifiable outside of their owning
task. During a switch, this critical information is transferred to the shadow stack in
Supervisor mode and is restored from the shadow stack before returning to a task. The
critical information is briefly stored on the stack, as with backward-edge, but again this
is only accessible from the handler.
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Chapter 5

Conclusion

Throughout this work, we describe a CFI scheme specifically designed to meet the
unique challenges of real-time embedded systems. We show the modifications to
both the LLVM compiler back-end and the FreeRTOS real-time operating system that
are required for protection from control-flow hijacking. Our system required us to
implement multiple compiler passes at varying compilation stages. We insert labels
and runtime label checks during an LLVM transform pass, and we insert supervisor
calls during the frame lowering for the ARM Cortex-M architecture designed to protect
spilled return addresses by storing and restoring them from the shadow stack rather than
an unprotected one. To complement this, we alter the SVC handler within the FreeRTOS
Cortex-M port to implement pushes and pops to the shadow stack. To prevent time-of-
check to time-of-use vulnerabilities, we modified the FreeRTOS operating system to
isolate saved context from running threads. These modifications allow us to protect
real-time applications using the FreeRTOS real-time operating system at compile time.

To the best of our knowledge, the implementations described throughout this work
are secure from exploitation given that no privileged-mode code within FreeRTOS
contains memory vulnerabilities. The shadow stack implementation within our modified
FreeRTOS provides a subset of the guarantees provided by isolation, and as such is
valuable independent of the rest of RECFISH++.

The overhead of RECFISH++ is reasonable for real-time applications. With the
reasonably low microbenchmarks observed for both memory and performance overhead
in testing, we believe our system is viable for many currently insecure applications.

5.1 Future Work
To further improve the performance of RECFISH++, we believe an integration of the
reference system for removing unnecessary instrumentation is paramount. Though
our system design maintains security guarantees, we have no way of estimating what
percentage of instrumentation would remain in an application. We remain hopeful that
only a small subset of the program would require runtime checks, but concrete data is
needed to confirm the usefulness of this approach.
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The second area of future performance optimizations could lie in shifting the shadow
stack operations to require fewer supervisor calls. The high overhead of simply entering
and exiting this interrupt discussed in Section 4.1 makes it the single largest bottleneck
of performance. We believe reducing the number of supervisor calls may be possible,
however, we propose no possible directions to do so.

Finally, the robustness of RECFISH++ may be improved via adding support for
unique label generation across files. This major limitation of the compile-time approach
may be solved through modifications to the linking process, merging equivalence classes
and sanity-checking global uniqueness prior to producing an executable binary. Though
the LLVM Linker, known as LLD [14], may be a suitable place for these modifications,
it is possible this tool is incompatible with the version of LLVM in which RECFISH++
is implemented. Alternatively, these modifications may be made directly to the linker
within the GNU ARM embedded toolchain utilized throughout this project [9].
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