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Abstract

In response to growing academic dishonesty in undergraduate computer science and
electrical and computer engineering courses, we present Checksims, a similarity detector
designed to highlight suspicious assignments for instructor review. We report the design
rationale for the software, and describe our detection of dozens of previously undetected
cases of academic dishonesty in such classes.
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1 Introduction

Some members of the Computer Science and Electrical and Computer Engineering depart-
ments at Worcester Polytechnic Institute have perceived a recent increase in academic dis-
honesty. Most have concerned the unauthorized and unacknowledged copying of program
source code. The first reports came from Nicholas DeMarinis, a Teaching Assistant in an
ECE department embedded systems programming course, who noticed several instances of
source code that he considered to be suspiciously similar in an embedded systems program-
ming course. He identified several cases of academic dishonesty, including one where students
had extensively obfuscated the copied code.

Meanwhile, Professor Hugh C. Lauer of the Computer Science department encountered
several instances of academic dishonesty in his own courses. A member of the course staff of
his second-year programming class noticed a pair of students who submitted near-identical
assignments, which he brought to Professor Lauer’s attention. Several assignments later,
another member of the course staff identified another set of students with very similar as-
signment — this time, by noticing that both students had submitted assignments that had
identical, incorrect output.

In both cases, the unauthorized copying was caught by coincidence. Both courses had
more than one teaching assistant; if the copied assignments had been graded by different
teaching assistants, the copying would almost certainly not have been detected. It is statisti-
cally unlikely that copied assignments happen to be graded by the same course staff members
every time, which leads us to believe that many cases of unauthorized copying have gone
undetected.

The copying does not slip through because the course staff cannot recognize dishonesty
when they see it. Instead, dishonest students escape because there are so many assignments
that the staff does not have time to properly check them all for copying. In short, the
problem is caused by data overload, which computers are well equipped to manage. So,
Professor Lauer commissioned us to construct a system for automatically detecting suspicious
assignments, with the intent of integrating it into his freshman and sophomore-level courses
to help identify assignments that require manual review.

1.1 Defining Academic Dishonesty

Different professors have different definitions of what constitutes illegal copying. In one class,
two different students submitting similar algorithms might be considered to have engaged in
unauthorized copying, while in another class their submissions might be considered accept-
able. We used the definition below when building our tool. A wider discussion of varying
definitions of academic dishonesty is contained in Section [3.1]

In Professor Lauer’s courses, students are encouraged to collaborate on a whiteboard
and design pseudocode solutions, but they must type in and debug their own programs
from there. The direct copying of source code is prohibited. This way, the code must pass
“through the brain”. The hope is that students will gain more understanding by typing
independently than by copying code directly. In Professor Lauer’s view, direct copying does
constitute academic dishonesty. Such rules are described in the course syllabus, and are
clearly explained during the first lecture as well.



Using source code from the web follows the same rules as collaborating with other stu-
dents. The use of pre-existing pseudocode as inspiration is considered acceptable, so long
as the student types his or her own solution, and does not directly copy his or her entire
solution from the Internet.

1.2 Project Goals

The goal of this project is to produce a software tool to provide easy flagging of unusually
similar source code submissions for followup by course staff. The tool must be an easy-to-
use desktop application. Future work would focus on streamlining the grading workflow by
integrating the similarity detection tool with existing software tools (for example, for project
submission). To facilitate future modifications and expansion, the tool must be open-source
and modular.

2 Definitions

Several fundamental similarity detection terms are not in common use. For clarity, we
provide their definitions here.

e The terms academic dishonesty and unauthorized copying are used throughout this pa-
per to refer to the use of another’s work without attribution and without the permission
of the instructor. Such behavior is often referred to as “cheating” or “plagiarism,” but
we deliberately avoid those terms where possible, as they can be perceived to be con-
troversial or judgmental.

e A corpus (plural corpora) is a body of work. A corpus may contain many documents
written by many people. An example of a corpus in the world of academic dishonesty
detection might be all the student submissions for a specific assignment.

o A Token is a piece of a larger input. Tokens are usually generated by an algorithm
called a Tokenizer, which breaks an input string up in a consistent manner (for example,
at each newline). Tokens are formed from the broken-up chunks of the input.

e A Fulse Positive is a result that is reported, but should not have been. In the context
of a similarity detection system, it would be two or more submissions that are flagged
as unusually similar, but are not considered to be illegally copied.

e A Fulse Negative is a result that is not reported by the tool, but should have been.
In the context of a similarity detection system, it would be two results that are not
flagged as unusually similar in spite of having been created by unauthorized copying.

3 Literature Review

This section summarizes our review of existing literature in the area of similarity detection.
It is focused on three areas: what is academic dishonesty (Section [3.1]), what algorithms



exist for detecting academic dishonesty (Section [3.3), and what preexisting solutions might
also solve the specific problems that inspired our solution (Section 3.4).

3.1 Academic Dishonesty

There have been a number of scholarly attempts to provide a definition for the term “academic
dishonesty.” Thomas Lancaster, in a 2005 survey of similarity detection systems, defines
academic dishonesty as “The process by which students submit work for academic credit
which contains other people’s unacknowledged words or ideas” [23|. Lancaster provides
a solid foundation, but there is still a question of what specific acts constitute academic
dishonesty.

The definition of academic dishonesty has been complicated by the emergence of code-
hosting websites such as GitHub and Bitbucket, and Q&A sites such as StackOverflow. On
StackQOverflow, students may ask questions on how to complete an assignment. The answers
they receive might include example source code, and most would agree that copying this
example code without attribution constitutes academic dishonesty. However, some professors
feel that the use of any information, even hints as to algorithms or pseudocode versions of a
solution, obtained from such a source constitutes academic dishonesty.

Students may also host code they wrote for a class on GitHub, where classmates or future
students may copy the code without permission or attribution. In such cases, almost anyone
familiar with academia would agree that the student who copied the given code was guilty
of unauthorized copying. However, many go further, arguing that the student who originally
hosted the code is guilty of academic dishonesty for enabling copying to take place — even
if that student is unaware that the copying occurred [13].

In all cases, different instructors have different definitions of which offenses constitute
unauthorized copying, complicating the creation of tools to assist in detecting the practice.
There is no consensus among academics as to what degree of copying constitutes academic
dishonesty, but most professors insist that they “know it when they see it.” Mike Joy and
Michael Luck provide some example behaviors that they would consider dishonest [19]:

e “A weak student produces work in close collaboration with a colleage/sic./ in the belief
that it is acceptable.”

e “A weak student copies, then edits, a colleage’s program, with or without the colleage’s
permission, hoping that this will go unnoticed.”

e “A poorly motivated (but not necessarily weak) student copies, and then edits, a col-
league’s program, with the intention of minimizing the work needed.”

A 2006 survey of UK professors produced a broad spectrum of results for what professors
perceive is (and is not) academic dishonesty [13]. The sharing of source code, comments,
overall design, documentation, and user interface were all near-universally perceived to be
unauthorized copying. Specifically, use of code from other sources without acknowledgment



(even if the source code was adapted to the student’s specific application, or rewritten from
another language) was considered to be academic dishonesty.

However, many respondents noted that the degree of adaptation was an important factor,
indicating that while 100% similarity was almost certainly indicative of unauthorized copying,
sufficient changes to the code would render it “original”; respondents disagreed as to what,
exactly, constitutes “sufficient changes.”

A majority of respondents indicated that almost every offense involving the unauthorized
duplication of source code could indeed be considered academic dishonesty given the right
circumstances, except in cases where the copied code was written by the submitting student.
In such cases (for example, the submission of an assignment written previously for a different
class, with slight modifications), most respondents answered that it was a violation of course
policy, but not a matter of academic dishonesty.

3.1.1 Detection of Academic Dishonesty

There has been a great deal of research focused on the detection of academic dishonesty. The
detection of unauthorized copying draws heavily on the fields of Natural Language Processing
and Information Retrieval to process student submissions and efficiently store and retrieve
information about similarities [5]. Thomas Lancaster presents a thorough overview of existing
work in his 2005 paper, including a comparison of all existing academic dishonesty detection
solutions available at time of publication [23].

Academic dishonesty detection is often broken into two broad fields: detection of unau-
thorized copying in source code, and detection of unauthorized copying in natural language
[23, [12]. The source code detection problem is generally considered the easier of the two,
because programming languages follow fixed grammars; the explicit, unambiguous syntax of
programming languages eliminates the need for advanced natural language processing. We
focus on source code similarity detection.

3.1.1.1 Obfuscation When engaging in academic dishonesty, violators have an interest
in preventing the detection of similarities in their programs. Consequently, they often take
steps to obfuscate code in an attempt to hide or remove similarities. Programs and algo-
rithms that attempt to detect academic dishonesty must be resistant to common obfuscation
techniques to be successful.

Geoffrey Whale listed 12 methods of defeating similarity detection in a 1990 paper [31].
Whale’s widely cited list is reproduced below. It is typically presented in order of sophisti-
cation, least to greatest.

1. Changing comments or formatting (for example, adding whitespace)
2. Changing identifiers
3. Changing the order of operands in expressions (for example, 1 + 2 into 2 + 1)

4. Changing data types (substituting floats for integers, or exploding structures into sep-
arate variables)



5. Replacing expressions with semantically identical equivalents (for example, !x with x
== false)

6. Adding redundant statements or variables

7. Changing the order of independent statements

8. Changing the structure of iteration statements

9. Changing the structure of conditional statements
10. Replacing procedure calls with procedure bodies
11. Introducing non-structured statements such as GOTOs
12. Combining original and copied program fragments

Similarities are not only useful as indicators of academic dishonesty; the next section
describes similarity detection techniques that are designed for other applications.

3.2 Other Applications of Similarity Detection

There are a number of fields with an interest in detecting similarities between input docu-
ments, most for purposes completely different than ours. These inputs are not necessarily
source code, but the fields in question may have developed general-purpose algorithms or
techniques that could be useful in the construction of our application.

3.2.1 Code Clone Detection

Most professional software engineers agree that source code should not be duplicated in a
large programming project, yet it often is. Naturally, a number of tools have been developed
to search for code clones, or instances of duplicated source code. An early code clone detector,
dup, was developed at AT&T. Dup searches C source files line-by-line and can be used to
detect parameterized matches — files that match when eliminating certain differences such
as variable names. In 1993, dup found parameterized matches for 19% of the complete source
code of a version of the X Window System, and 23% of a large (1.1 million line of code)
proprietary AT&T system |[3].

3.2.2 Bioinformatics

The comparison of similar sequences is common practice in Bioinformatics. Strands of DNA,
RNA, or proteins are often sequenced and compared for a variety of reasons. A well-known
example is the use of DNA testing in the criminal justice system, where DNA comparisons
are used to identify the perpetrators of crimes from trace evidence. A number of commonly-
used similarity detection algorithms were originally developed for bioinformatics use — for
example, the Smith- Waterman algorithm described in Section [30].



3.2.3 Copyright Infringement Detection

Some people have tried to use similarity detection techniques to detect copyright infringe-
ment. The earliest copyright infringement detection tool we found was COPS (COpyright
Protection System), by Sergey Brin, James Davis, and Hector Garcia-Molina, in 1995 [7].
Copyright infringement detection is a very similar problem to academic dishonesty detection,
but there is much more research explicitly focused on academic dishonesty than on copyright
infringement.

3.3 Algorithms

Previous research into similarity detection largely falls into two categories: feature compar-
isons and structural comparisons. Feature comparison algorithms build a profile of various
attributes of the input documents (for example, number of distinct tokens, overall word
count, average number of characters per line) and compares the profiles of submissions to
determine if they are unusually similar. Structural comparisons compare the content of sub-
missions — for example, comparing the specific tokens that form the inputs [2]. Within
structural comparisons, there are two broad subcategories: vector-distance algorithms and
fingerprinting algorithms.

3.3.1 Syntax Awareness in Comparison

Similarity detection on source code offers a number of advantages over working with nat-
ural language. Every programming language can be tokenized and parsed according to a
grammar defined by the language. Through this grammar, we can identify the purpose of
all input tokens — variable name, language keyword, function name, etc. This permits the
use of powerful normalization techniques that are not available when dealing with natural
languages.

The abstract syntax tree representation of a program highlights similarities that may be
harder to spot in plaintext. By parsing input submissions into such syntax trees, similarity
detection can be performed in a less ambiguous manner. As compilers and interpreters
normally perform this task when preparing to compile or execute code, performing this
parsing is not an undue burden when tokenizing submissions. By parsing input submissions
into an abstract syntax tree (as a compiler or interpreter normally would do to compile or
execute the code), similarity detection can be performed on a representation of the program
where similarities that might be ambiguous in plaintext become clear. For example, the
operations 1+ 2 and 2+ 1 are identical in purpose, but plaintext comparison would typically
not be able to identify their similarity beyond the shared + character. However, parsing
into a syntax tree would create identical + nodes with children 1 and 2 for both, identifying
that they are identical (as addition is commutative). Furthermore, it becomes possible to
apply a consistent normalization scheme to things like identifiers. By renaming identifiers in
a consistent manner, it becomes possible to remove the effectiveness of some approaches to
obfuscating similarities (namely, renaming functions and variables) [2].

The use of parsing and related normalizations can be a powerful tool to detect obfuscated
similarities. All 13 of the obfuscation techniques discussed in Section can be identified
and defeated by using normalized abstract syntax trees produced by a parser |2]. The obvious
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disadvantage of this approach is that the parsing phase is language-sensitive. This limits a
similarity detection system to a few languages and imposes a significant burden to support
additional languages. In addition, language-specific parsing entails information loss; some
features that may be used indicate similarity, such as comments or identifier misspellings,
are often lost during parsing and by similar normalizations. Despite its drawbacks, almost
every similarity detection system targeted at source code uses a syntax-aware parsing phase
to catch similarities that might otherwise be undetectable [31] [2] [23].

3.3.2 Greedy String Tiling

Greedy String Tiling is a popular algorithm that is most notably used by JPlag, described
in Section m [27]. First, the algorithm locates the longest string that is shared between
the two documents and designates that string as a “tile.” It replaces the tile with the empty
string, then tiles the next longest substring that is not already part of a tile. It continues
tiling the next largest shared string until the largest match falls below some threshold. The
algorithm is guaranteed to terminate because the length of the maximum match decreases
with each step. Greedy string tiling runs in O(n?) worst case time, but in O(n) best case
[27].

JPlag introduced several improvements on Greedy String Tiling. First, it searches for
matching strings using Karp-Rabin string matching, as described in Section [3.3.4.1} Second,
when searching for the longest common substring between documents, it skips a number of
comparisons equal to the longest common substring found so far. If the next character after
that jump is a match, then, and only then, does the algorithm step back to try to verify
the string. Finally, JPlag enforces that the shorter document is always treated as the query
document. Jplag’s optimizations reduce the average-case running time of GST to O(n) [27].

3.3.3 Vector-Distance Algorithms

Vector-distance algorithms compare two or more inputs and identify the number and se-
quence of edits that must be made to transform one of the inputs into the other(s). The
complement of this sequence of edits is the set of things that did not change — the similari-
ties between the two documents. Vector-Distance algorithms are typically the slowest of all
similarity detection algorithms, but fingerprinting and feature comparison may not identify
the best possible match.

3.3.3.1 Smith-Waterman Algorithm The Smith- Waterman algorithm was developed
by Temple Smith and Michael Waterman in 1981 for the comparison of DNA sequences [30).
It is a dynamic programming algorithm that seeks to find the optimal alignment of two
strings. Unlike algorithms that solve the traditional longest common substring problem, the
Smith-Waterman algorithm is tolerant of skipped or unmatched characters. Figure [1| shows
a sample alignment of two strings, “ABCDEFG” and “ABCDXG.” The longest common
substring of the two would be “ABCD,” but a local alignment also captures the matched “G”
character.

Smith-Waterman, like most vector-distance approaches, compares pairs of inputs. Each
input is placed on an axis of a 2-dimensional matrix, one token to a row or column, as is

11



Input 1 A B C D E F G

Match A B C D G

Input 2 A B C D X G

Figure 1: A local string alignment of the type generated by the Smith- Waterman Algorithm

shown in Figure 2 The array is initialized to 0, and is then filled top to bottom, left to
right. During filling, each cell is initially filled with the largest value of its predecessors
(directly-adjacent cells to the left, above, and to the upper left of the cell). If the characters
on the X and Y axis match, the cell is incremented by a fixed value; if the characters do not
match, the cell is decremented (unless it is 0, in which case no action is taken). The largest
value in the array represents the best alignment of the two inputs [30]. Due to the need to
hold and then fill this array, Smith-Waterman is an O(n*m) algorithm in time and memory,
where n and are the length of the two inputs.

In 2004, Robert Irving adapted the Smith-Waterman algorithm for program similarity
detection [16]. By repeatedly applying the algorithm to a pair of inputs, removing the
detected overlay afterwards, Irving was able to identify all the local alignments of the two
inputs over a given threshold. He presents a set of optimizations to the original Smith-
Waterman algorithm that improve its performance when applied repeatedly to the same
inputs by removing the need for recomputation of the unchanged parts of the array.

3.3.4 Fingerprinting Algorithms

Fingerprinting algorithms (also known as feature extraction algorithms) extract a number of
fingerprints (or features) that can be used to identify a document. These fingerprints are
then added to a database (with a list of references back to the inputs that contained them).
To identify similarities, an input’s fingerprints are computed, added to the database, and
then looked up to see whether any submissions other than the current one have the same
fingerprints [28].

Fingerprints are typically the hashes of one or more tokens of the input. Typically, before
being inserted into the database, a small subset of the tokens is selected, and the rest are
discarded; this is done to reduce the number of entries required in the database. A typical
solution might be to discard all hashes except those that are congruent to 0 modulo a certain
number p, but better fingerprint selectors exist [28|.
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3.3.4.1 Karp-Rabin String Matching The archetypal fingerprinting algorithm is Karp-
Rabin string matching. Karp-Rabin generates “rolling hashes” of the two input submissions
(the hash of characters N to M of the input, then the hash of characters N+1 to M +1, and
so on). The sets of hashes for the inputs are checked against each other, and the matches
are used to identify common substrings. [20]. Karp-Rabin string matching is a fundamental
technique used and built upon by many later string-matching papers |28} 9, 12, 2, 8} |17].

3.3.4.2 n-gram Fingerprinting By far the most common document fingerprinting ap-
proach is called n-gram fingerprinting. Figure [3| presents an overview of n-gram fingerprint-
ing. The document is tokenized and considered as sequences of n tokens, or n-grams. The
n-grams overlap, so that a document with L tokens is considered as L —n + 1 n-grams. The
hashes of these n-grams are stored in a database and checked against those from other docu-
ments. The hashes are usually stored with pointers to their occurrences to aid in detection.

Most corpora are far too large to store the the hashes of every n-gram from every docu-
ment in the database. Usually, a small subset of all hashes are selected through an algorithm;
these serve as the document’s fingerprints. This does entail some information loss; even word-
for-word identical documents only match if they both contain an n-gram that was selected
as a fingerprint. The fingerprint selection algorithm is consequently very important. A very
simple approach is to select n-grams whose hashes are divisible by some number p [28|, but
this technique can leave gaps of arbitrary length between fingerprints, so that a large chunk
of similar text might slip by.

Schleimer, Wilkerson, and Aiken [28] presented an alternative fingerprint selection algo-
rithm in 2003 called winnowing. After dividing the document’s tokens into n-grams, win-
nowing further divides the n-grams into windows of size t. Winnowing always selects exactly
one hash from each window, guaranteeing that a match of £ or more consecutive tokens is

13



Input: Document A

@ Tokenizer breaks document into tokens

a1 a,| as ‘e }aL_laL

@ Tokens are grouped into ovelapping n-grams

djdrdsz|drdszdy|= = x|d2d .19,

@ n-grams are hashed and some are selected as fingerprints

H(a,asa,) H(axaa,) "

@ fingerprints are stored in database
(usually with location information)

Figure 3: An overview of n-gram fingerprinting
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identified.
Winnowing has proven to be extremely powerful; it is used by the current industry
standard source code similarity detector, Measure of Software Similarity, or MOSS, described

in Section B.4.1]

3.3.5 Feature Comparison

Feature Comparison, also known as Attribute Counting, attempts to compare features of
inputs not related to their structure (comparing the actual tokens that form the inputs).
These comparisons are typically based on profiles of the input, representing a composite of a
number of defining features — for example, line count, word count, character count, average
word per line [2].

Feature comparison algorithms were common in the early days of similarity detection in
the 1980s and early 1990s [25, [12]. However, they have become less popular of late because
of the growing effectiveness of structural comparison algorithms such as Smith- Waterman
and fingerprinting. Feature comparison algorithms can be just as accurate as structural
comparison algorithms, but require a great deal of tuning as the differences in the profiles of
documents containing unauthorized copying and those that do not are typically very small
[2]. We found one reference to the creation of a similarity detection system using this class
of algorithm after 2000, but no others [18]. The paper describing this system provided no
evidence that the aforementioned criticisms were not valid, and did not provide any results
to substantiate its effectiveness. Given the lack of popularity of this approach and its noted
disadvantages, we did not pursue this line of inquiry.

3.3.6 Other Approaches

Burrows, Tahaghoghi, and Zobel [§] have developed a highly scalable approach to similar-
ity detection using advanced information retrieval techniques, which can handle checking
for similarity among tens of thousands of source code documents. The Burrows approach
requires users to select a function of two documents that outputs a “similarity score” for
them. Because the effectiveness of the Burrows approach requires using an intelligent simi-
larity scoring function, a number of such functions have been developed, including the Okapi
BM25 function and a family of functions developed by Ciesielski, Nelson, and Tahaghogi
using genetic programming [11].

Belkhouche, Nix, and Hassell [4] have contributed an elaborate academic dishonesty
detection approach that compares C programs by converting them to structures representing
control flow, data tables, and other high level concepts. Their implementation is highly
language-specific.

So many other detectors of unauthorized copying have been developed that describing all
of them here would be impractical. Lancaster and Culwin have constructed a detailed and
very helpful taxonomy of commonly known copy detection tools, and have described those
tools in terms of that taxonomy [23].
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3.4 Existing Solutions

A number of programs exist for finding similarities between source code. Some of these,
like MOSS, are intended for use in detecting academic dishonesty; but very few are publicly
available. Many solutions mentioned in literature were never released, or have not been
maintained for many years. The two noteworthy products, MOSS and JPlag, are described
below.

3.4.1 MOSS

MOSS, an acronym for Measure of Software Similarity, is a solution developed by Professor
Alex Aiken of Stanford in 1994 [6]. Today, two decades later, it is considered the gold
standard in software similarity detection [5]. MOSS is free for non-commercial use (though
it was previously restricted only for use in academia). It is an online service, not a software
tool that can be deployed. Its primary interface is a Perl script that provides a command-line
frontend to submit code for analysis. Results are provided via email, and can take several
hours to arrive [6]. MOSS is based on the n-gram Fingerprinting algorithm with winnowing
described in Section [3.3.4.2 Most of the details about the implementation are public, but
the tuning parameters of the algorithm are kept private.

Despite having used the same algorithm for over a decade, MOSS remains highly com-
petitive. In a battery of tests run in 2014 using several similarity detection algorithms,
MOSS posts detection results comparable every other algorithm tested [5]. In fact, when
new similarity detection systems are published, they often compare their results with those
of MOSS.

All academic dishonesty detectors suffer from the diversity of definitions of unauthorized
copying, and MOSS is no exception. MOSS often flags behavior that our advisor, our
primary customer, does not consider to be unauthorized copying. The secrecy of MOSS’s
tuning parameters and database also prevent researchers from independently evaluating its
performance or reproducing any of its results.

3.4.2 JPlag

JPlag is a web service developed by Guido Malpohl in 1996. JPlag compares closely with
the performance of MOSS, and some academic dishonesty detection tool developers choose
to forgo testing their own tools against MOSS in favor of JPlag [27, |[11].

JPlag allows users to submit an archive of programming files to its web service; the files
will then be compared pairwise against each other. Jplag first runs the programs through a
parser or scanner for the appropriate programming language, then uses the outputs from the
parser or scanner as the input strings to its backend algorithm; only the front-end parsing
step is language-dependent [27]. JPlag is advertised to support C, C++, Java, Scheme, C#,
and even natural language.

JPlag’s core algorithm is Greedy String Tiling, with a number of optimizations, as de-
scribed in Section [3.3.21
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4 Requirements

Our advisor, Professor Lauer, commissioned the Checksims similarity detection tool with
the following requirements:

e The program should be usable by course staff with very little or no training, and should
produce output in a form that can be easily interpreted.

e The output itself should not be a definitive accusation of academic wrongdoing; instead,
it should simply flag suspicious submissions for further review by course staff.

e The detector should to be complete and usable within seven weeks; this requirement
placed a severe time limit on implementation and encouraged the implementation of a
relatively small set of features.

e The detector should not attempt to perform language-specific analysis of the source
code, but instead only interpret submissions as plaintext. The language-agnosticism
requirement came from the time constraint and the potential that the detector would
be used for a number of classes using various languages.

e The algorithm should be run locally and preferably be easy to invoke once student
submissions are closed.

e Finally, the detector should be made to match Professor Lauer’s specific definition of
similarity and academic dishonesty, which is very permissive of relatively similar code
so long as it was typed separately.

Source code similarity detection tools almost always parse input submissions into syntax
trees, as it is very easy to disguise (intentionally or unintentionally) similar code through a
number of small tweaks (swapping argument or operand order, for example). It was apparent
to us that performing any kind of syntax tree analysis was incompatible with the requirement
that the system produced should operate on plaintext only. The plaintext requirement was
the overriding concern — syntax-based parsing limits the languages that can be used with
a detector, and it would also be difficult to implement given our time constraints.

The requirements seem to lead to a tool that is small in scope, implementing only a subset
of the functionality that might eventually be desirable. The solution should be modular and
easily extensible, so that new features can be added to the very basic initial feature set; the
intention is to pass the tool on to future project teams, or to the open source community. The
requirements emphasize an extensible architecture, proper documentation and unit testing,
and a useful, extensible test suite.

The requirements lead naturally to a client-based solution (as opposed to a hosted solution
such as MOSS). The short implementation time led to very simple frontend and user-interface
code, and ensured that as much implementation time as possible was spent working on the
actual similarity detection code. A client based solution does have the notable disadvantage
of complicating access to larger corpora of assignments, which have to be downloaded and
run locally. While a larger data set is certainly desirable, implementation simplicity was
more important. Furthermore, an open-source, client-based solution offers the ability for
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technically capable users to easily modify our solution to meet their own needs. Finally, a
client-based solution is transparent in its required operation — there is no magic occurring
“behind the curtain” on the server. The transparency of the design also makes it very easy
to independently verify results.

Instructors and teaching assistants at WPI use Windows, Mac OS X, and Linux. The tool
should be platform-independent and as easy to use as possible on all three major operating
systems. A graphical interface would improve usability, but due to implementation time
constraints it was not added as a requirement.

5 Approach

Our similarity detection tool, Checksims, was built to fulfill all requirements outlined above.
Checksims is a client-based Java application implementing a pair of similarity detection
algorithms and several output formats. It performs similarity detection on an arbitrary
number of student submissions within a single assignment, and it produces output that can
easily identify submissions that need to be checked by hand for unauthorized copying.

Checksims uses a simple, modular architecture designed for easy extensibility. It is de-
signed to be trivial to add new similarity detection algorithms or output strategies without
significant changes to the program, thus enabling future projects to expand on our work and
offer further features without requiring significant changes to the core program, increasing
productivity and decreasing the likelihood of introducing bugs.

5.1 Architecture

Checksims has a roughly linear architecture, composed of a number of discrete components,
most with one input and one output. The overall service accepts a set of student submissions
as input, and returns usable output. The overall architecture is shown in Figure 4| and is
described below.

1. Student submissions are first processed by the tokenizer. The tokenizer identifies all
files within the submission, applies a tokenizing algorithm on them, and yields the
resulting tokenized submissions.

2. The tokenized submissions are then passed into a common code remover, which re-
moves code designated as “common” from all tokenized submissions to ensure it is not
matched.

3. One or more preprocessors are applied to the tokenized submissions, transforming the
tokens to improve accuracy.

4. Submissions are then grouped into pairs. A user-selectable similarity detector, which
implements a simularity detection algorithm, is then run on all possible pairs of sub-
missions, and the results are recorded in a similarity matriz.

5. The similarity matrix is then passed to a user-selected output strategy, which produces
a human-readable form of the output for parsing.
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5.2 Submissions and Tokenization

Checksims accepts an input directory containing a number of student submissions and a
pattern to match files to be composed into a submission. It is assumed that each submission
is contained within a single subdirectory of the input directory — that is, all student code
is located in subdirectories of the input directory, and each subdirectory contains the code
of exactly one student. All files within a single subdirectory are considered to belong to
a single student, and are compared with a match pattern to determine whether they are
checked. This allows Checksims to only include source files; for example, a match pattern of
*.{c,h} would only match C source files, and would ignore README files.

Submissions are then split into tokens for comparison by a similarity detection algorithm.
Several tokenizers are included to perform this task, all resulting in a linked list of tokens
representing the original input. The same tokenization algorithm is used for all submissions
to ensure internal consistency. None of the provided tokenizing algorithms affect the order of
the input submission, though some may alter the original submission by removing whitespace.
The provided tokenizing algorithms operate on the plaintext of the submission only. No
attempt is made to parse the input into a syntax tree (or even use the grammar of the input
language at all), pursuant to our stated goal of performing plaintext only comparisons.
Parsing using a language-specific grammar could be added to Checksims, but as no provision
was made for it initially, would probably be more difficult than simply plugging in a new
similarity detection algorithm.

5.3 Preprocessing and Common Code Removal

Once submissions have been accepted and tokenized, Checksims performs common code
removal. Common code removal accepts a submission that contains code that is expected to
be present in all submissions — for instance, templates, copyright notices or helper functions
provided by the instructor. This code is tokenized using the same method used for all other
submissions, and similarity detection is performed between it and each submission. Any
code matching the common code is removed before the main similarity detection algorithm
is run. Common code removal can also improve the performance of more expensive similarity
detection algorithms by making submissions smaller.

Checksims offers the option of modifying submissions with one or more preprocessors after
performing common code removal but before performing similarity detection. Preprocessors
manipulate the token representations of submissions to normalize them prior to running
detection algorithms. The only preprocessor in the current release converts all letters to
lower case. Preprocessors are implemented modularly, and more are planned in the future.

5.4 Similarity Detection

After submissions have been tokenized and normalized, Checksims applies a pairwise similar-
ity detection algorithm to all unique unordered pairs of submissions, obtaining the similarity
of every submission in the input with every other input submission — a complete picture of
the similarities within the group. At present, two pairwise detection algorithms are included
with Checksims: Line Comparison, and Smith- Waterman.
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Comparisons are carried out pairwise in order to simplify the construction of Checksims
and enable easy multithreading. An alternative would be to create a database of features
(token sequences, for example) for all submissions encountered, and compare new submissions
against this database to check for matches (while adding their own unique features to it, so
future checks will include them). Pairwise detection is easy to run in parallel because of its
lack of shared state, and easy to represent in a similarity matrix.

Many similarity detectors, including MOSS, check submissions against a database instead
of running a pairwise comparison. Using a central database reduces the space complexity of
the framework from O(n?) to O(n) when running detection algorithms that can take advan-
tage of it. Checksims does not at present support this architecture, because it would com-
plicate implementation of multithreading by introducing a shared resource (the database).
It would probably be a good idea to add support for this architecture in the future.

The following subsections describe the two similarity detectors provided with the current
release of Checksims.

5.4.1 Line Comparison

The Line Comparison algorithm is a special case of n-gram fingerprinting, as described in
Section [3.3.4.2] Line Comparison is meant to work with line-sized tokens. It hashes each
input token and creates a map of each hash to each occurrence (the position and submission
where the token was found). Hash collisions are identified as hashes that map to more than
one occurrence, and collisions involving both submissions are tokens shared between the two.
The percentage of tokens involved in such collisions is tallied and reported as the final result.

It is worth noting that line comparison is actually a feature extraction algorithm, and
could be run with a central database of submissions if desired. However, since Checksims
only implements pairwise comparisons, the “database” used is a hash table that must be
rebuilt every time a submission is compared. The current architecture is not particularly
efficient, but because of the high speed of modern hashing algorithms, the loss of performance
does not have a noticeable impact on execution speed.

Line Comparison is a simple algorithm that was implemented as a proof of concept. It
runs extremely fast in linear time with the size of both submissions, but it misses a number
of similarities due to the nature of hash collisions. Even a trivial change (a single letter
added or removed, for example) results in a different hash, causing the changed token to
not be matched. Indeed, all of the obfuscation techniques in Section can defeat the
Line Comparison algorithm, unless preprocessors — which cannot easily thwart sophisti-
cated obfuscations such as arithmetic operand reordering — are applied to combat them.
Furthermore, almost all hashes enforce the property that any change in the input results
in major changes to the output. Therefore, it is impossible to tell the degree of similarity
between two tokens simply by comparing their hashes. Therefore, it is impossible to identify
similar lines just from their hashes, preventing Line Comparison from being used to identify
very similar hashes. Line Comparison remains in Checksims both as a proof of concept and
example of a simple algorithm, and to quickly identify extremely similar or identical submis-
sions (an initial check that can be run prior to a slower but more accurate algorithm such
as Smith- Waterman).

Line Comparison is designed to work with tokens that represent lines; its usefulness with
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significantly coarser or finer tokenizers is questionable. In the character tokenization case, for
example, almost every submission is presumably written using the same subset of characters
(capital and lowercase letters, numbers, and punctuation used as language-specific syntax).
These characters are shared between almost every submission; it is unusual to see a similarity
result of less than 99% when using Line Comparison with character tokenization.

5.4.2 Smith-Waterman Algorithm

The Smith- Waterman algorithm is the primary similarity detection algorithm included in
Checksims. 1t is described in Section [3.3.3.1] Smith- Waterman'’s first published use in aca-
demic dishonesty detection was by Robert Irving [16]. When run against our test corpus,
Smith-Waterman defeated multiple methods of obfuscation described in Section [3.1.1.1] in-
cluding changed identifier names. We believe Smith- Waterman caught most of the instances
of academic dishonesty in our test corpus. Smith-Waterman is described in Section [3.3.3.1]
Section [8] discusses its performance.

Smith- Waterman scales poorly. Its running time and memory usage both scale as O(m
n) where m and n are the size of the two submissions being compared (after tokenizing).
If both submissions are the same size, scaling is O(n?). Initially, the algorithm ran too
slowly to be useful, even on classes of 40-50 students. We made several optimization passes
to improve performance, including changing the default tokenization algorithm for Smith-
Waterman from character tokens to whitespace-separated tokens, reducing the number of
tokens by an estimated factor of four. After these optimizations, Smith- Waterman is fast
enough for typical use cases at WPI (classes of 60-70 students and submissions of 500 to
1000 tokens), though substantially larger class sizes or an increase in average size of the
submissions themselves greatly increases the time required for the algorithm to complete.
Larger class sizes are more manageable than larger submission sizes. Based on the results
described in Section [8.1.2] we estimate that a class of 100 to 110 students might finish in
around two hours while a large increase in token count could cause individual comparisons
to take days to run and require dozens, if not hundreds, of gigabytes of memory.

5.5 User-Friendly Output

After all possible similarities have been computed, Checksims formats the results into a
“similarity matrix” as described in Section [5.5.1], and then uses an output strategy to format
and print the resulting matrix. A variety of output strategies are available. The specific
strategy used is user-specified. All output strategies focus on presenting information in a
usable fashion, with an emphasis on identifying unusually large similarities easily.

Like preprocessors and algorithms, output strategies are pluggable modules, allowing new
output strategies to be written and inserted with ease, with the restriction that they can
only display information contained in the similarity matrix. Some information that might
be desirable to display (for example, the specific matching tokens) is not present in the
similarity matrix, placing limits on what output formats are possible. It may be desirable
to make additional information available to output strategies in the future.
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5.5.1 Similarity Matrix

Output strategies work from a “similarity matrix”. These matrices are built from the complete
results of the similarity detection algorithm, and contain the similarity of every submission
to every other. As the name would imply, a similarity matrix is a Nx/N matrix (with N being
the number of submissions), with each cell representing the similarity of one submission with
another.

In a similarity matrix, the submissions used in similarity detection are counted, and
a square matrix of that dimension is created. Submissions are each assigned a row and
column. Every cell is initialized as the similarity of the submissions that define its intersection
(specifically, column submission’s similarity to row submission). If the row and column
submissions are the same, the cell is ignored (declared as empty). An example is shown in
Figure 5] Each cell shows the similarity of the submission on the X axis with the submission
on the Y axis. In Figure [5] the bottom-right corner cell shows the percentage similarity
of submission A to submission C — that is, the percent of submission A’s tokens that are
shared with submission C.

Some output strategies print the similarity matrix itself, possibly with visual aids to “call
out” unusually large similarities. For example, the HTML output strategy produces a web
page containing a similarity matrix with cells color-coded to allow the eye to pick out the
most similar submissions by hand. A screenshot of sample output from this output strategy
is shown in Figure [0
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A B C
Similarity of B | Similarity of C
N/A to A to A
Similarity of A N/A Similarity of C
toB toB
Similarity of A | Similarity of B N/A
toC to C

Figure 5: A sample similarity matrix
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student_0 student_1 student_10 student_11 student_12 student_14 student_15 student_16 student_17 student_18 student_19

student_0 00 15 .15 .15 00 .15 31 .38 08 00
student_1 17 17 17 17 - 17 17 17
student_10 .06 25 14 .10 A1 .26 .28 19
student_11 .06 02 12 38 .58 .16 21 06
student_12 .08 01 25 .16 16 15 .28 04
student_14 .00 02 13 05

student_15 .08 02 17

student_16 .09 07 17

student_17 09 04 24

student_18 .01 01 32

student_19 .00 02 23

student_2 .00 01 27

Figure 6: Sample output from the HTML output strategy

6 Need for Evaluation

Once Checksims had been written, the next logical step was to test it to ensure functionality.
The program could not be considered complete unless it met the requirements identified in
Section [4| — for example, a low false negative rate. Given this, we sought to obtain suitable
test data for use in verifying our implementation.

6.1 Data Sources

Obtaining source code with known similarities is not an easy task, however. Given the in-
tended use of our program, the most relevant source code would be from student assignments
in computer science courses at WPI, and in particular from intro-level courses. Using this
as test data does, however, prove problematic for several reasons, detailed below.

Existing similarity detectors for textual works often use sets of procedurally generated
works, with known degrees of similarity, to assess the functioning of their programs. This
presents another potential source of data, though again not without issues.

6.1.1 Student Code

Source code from students in Computer Science classes is an attractive test data option
at first glance. This most closely matches the intended use case for Checksims — the
identification of similar code submissions for programming projects. A set of test data built
from submissions from previous offerings of the same classes that Checksims may be deployed
in will most closely mirror its use in the real world.

Using student code does, however, raise a number of important concerns. The first of
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these is a substantial privacy concern. Student submissions are typically only available to
the course staff (a professor and typically several teaching assistants). The students, when
submitting, were not notified that their programs might be used in an academic study.
Furthermore, it might be possible to obtain an approximation of a particular student’s grade
based on that student’s submission, compromising his or her academic privacy.

In addition to privacy concerns, student code presents another obstacle. Prior to this
project, there was no similarity detection system in common use in the WPI Computer
Science department. Consequently, aside from occasional submissions identified by course
staff as overly similar, there is no concrete record of which submissions within a group are
similar. Any results on such code will have no baseline to compare against.

Despite these obstacles, student code remained the most desirable source of test data.
The head of WPI’s Computer Science department was contacted for an opinion on the use
of anonymized student code, and stated that it could be used if all personally identifiable
information was removed prior to it being given to the authors for use in testing. Given this,
an anonymization script was written to remove such information and generate usable test
code.

6.1.1.1 Anonymization Script Student code has the potential to compromise the pri-
vacy of the submitting student, but such concerns can be alleviated if all personally identi-
fiable information can be removed. The head of WPI’s Computer Science department gave
permission for student code to be used if this could be done, which prompted the authors to
construct a script to strip such information.

An examination was made of student code that one of the authors (an undergraduate
teaching assistant for WPI’s CS department) had access to. From this, several common
forms of personally identifiable information were located. The first, and easiest to remove,
were the filenames of the students’ submission directories, which contained the usernames
of the submitters. Simply renaming the directories was enough to remove this as a concern.
Comments were the next concern, containing the vast majority of remaining personally
identifiable information. Identifying information like names and usernames almost never
occurred outside of comments. After consulting with the Computer Science department
head, it was decided that stripping comments and submission names was sufficient to satisfy
the requirement that personally identifying information was removed, with the caveat that a
professor manually review anonymized code to ensure that no obvious identifying information
remained. Professor Lauer graciously offered to perform this final vetting.

A script was constructed in Bash to accomplish this goal in a largely-automated fashion to
make it feasible to obtain large bodies of test code. The script’s use is limited to submissions
written in languages that use comments delineated with the “//” and “/* */” symbols. The
anonymization script uses a verbatim copy of the remcomms Sed script by Brian Hiles for
removing C comments [[] The full text of this script is included as Appendix

Using this script, a large volume of test code was obtained from several past offerings
of CS2301 (Systems Programming for Non-Majors, taught in C) and CS2303 (Systems Pro-
gramming Concepts, taught in C and C++). All programming assignments for 9 previous

lavailable at http://sed.sourceforge.net/grabbag/scripts/remccoms3.sed
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offerings of these courses were obtained, totaling to over 357 thousand lines of code ] Six
of the nine courses were taught by Professor Lauer, the rest by other instructors. Between
the 9 courses, there were a total of 43 student assignments, with an average of 73 students
per course and 147 lines of code per student submission.

6.1.1.1.1 Accuracy Without Comments Given that anonymized student code
tests were performed on submissions stripped of comments, the question is raised as to
whether this is a reasonable set of data to test our program. Actual source code will, in
all likelihood, have a sizable number of comments. The absence of comments has the po-
tential to substantially alter results — for example, two submissions that differed only by
comments would appear as 100% similar when, with comments, they might only be 70% to
80%. Indeed, there is the potential that removing comments might increase the accuracy
of a similarity detection program (though it could also decrease accuracy under other cir-
cumstances). Because it is trivial to strip comments from files before running Checksims,
we believe these results represent a lower bound on the tool’s effectiveness. The question of
whether Checksims might be even more effective on source code with comments is beyond
the scope of this analysis.

6.1.1.2 Baseline Output A baseline for comparison was necessary to truly use student
code as test data for Checksims. While the output of the program can be investigated to
verify that any reported similarities do exist and to eliminate false positives, it is impossible
to identify false negatives (submissions that contain unusual similarities but are not flagged
by our software) without baseline output identifying all similar submissions. We consider
false negatives a very undesirable characteristic, so we would prefer to verify that they are
not present.

A manual investigation of an assignment would certainly prove the most precise manner
of identifying similarities. However, since our obtained test data exceeds 357,000 lines of
code, a manual audit of all test data is impossible to complete in a reasonable timeframe.
Even auditing a single nontrivial assignment would prove extremely time consuming, given
class sizes of 40 to 60 students for most of the test data. It would be possible to audit only
a subset, but this greatly reduces the utility of having such a large volume of test data.

An alternative to manual auditing is to use an existing piece of similarity detection
software to provide baseline results. However, no existing piece of software truly matches the
definition of academic dishonesty and unauthorized copying used when building Checksims,
as was described in Section This could lead to a great number of false positives (for a
less permissive definition) or negatives (for a more permissive definition).

Given that it is possible to manually review results to identify false positives (and doing so
is far less time intensive than a manual audit), we chose to use a similarity detection program
with a less stringent definition of similarity to obtain baseline results, then manually remove
false positives. In doing so, we would also obtain a figure for the number of false positives
such a system would produce if used in place of Checksims, providing insight as to how
necessary the construction of a new system was.

2as computed by David A. Wheeler’s “SLOCCount” program, a free program for computing the number

of lines in a body of source code
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We chose to use MOSS to generate our baseline results. MOSS, described in Section[3.4.1],
is a freely available similarity detection service intended for identifying academic dishonesty.
Based on previous use, our advisor believes it uses a more sensitive definition of academic
dishonesty than that used to construct Checksims. Furthermore, MOSS is considered the
benchmark in similarity detection by most researchers. Many papers on new algorithms in
similarity detection compare their results against MOSS [4, |5|. By doing the same, we can
obtain a measure of our output quality compared against the gold standard in academic
dishonesty detection for source code [5].

It is noteworthy that using MOSS for baseline results does not completely eliminate false
negatives. If both MOSS and Checksims fail to detect an unusual similarity, our experiment
will fail to record a false negative. We believe this event will be uncommon because of the
quality and maturity of the algorithms used by MOSS (described in Section [3.4.1)). It is
unlikely that MOSS will miss similarities indicative of academic dishonesty [28]. Similarities
that manage to escape both MOSS and Checksims will continue to be a challenge, but we
are not aiming to produce a perfect solution, only one that is “good enough” — we do not
expect Checksims to catch cases that have eluded the industry benchmark solution.

6.1.2 Simulated Similarity

Most natural language similarity detectors are tested and tuned with procedurally generated
sets of work containing deliberately-inserted similarities. A number of such corpora are freely
available online. They offer the advantage of easy verifiability — unlike student submissions,
there is a well-defined set of similarities in the corpus, so output can easily be verified. There
are no privacy concerns, because the test data was “written” procedurally by a program.

These simulated corpora only exist for natural language, however, where our search is for
similarity in source code. We have no reason to be confident that results obtained by testing
Checksims against natural language will correspond to our tool’s performance against source
code. We did use them in the project as functional tests for individual algorithms, providing
a reproducible set of results to test for, but we do not infer anything about the tool’s quality
from their results.

7 Experimental Verification

After obtaining a large volume of test data, we executed several experiments to provide
full-scale functional testing of Checksims. Comparisons between the two shipped algorithms,
Line Comparison and Smith- Waterman, illustrate the benefits and disadvantages of both
algorithms. Comparisons against MOSS demonstrate a comparable false-negative rate and
a benchmark against a proven similarity detection program. Together, the experiments
provided data to allow us to draw conclusions on whether Checksims was ready for its
intended job — deployment for use by WPI course staff.

7.1 Algorithm Comparisons

Checksims presently provides two algorithms for similarity detection, Line Comparison and
Smith- Waterman (detailed in Section and Section [5.4.2]). The first set of tests on Check-
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# assignments description # similar pairs

16 Too few to use <= b pairs
8 Few similarities  6-15 pairs
6 Some similarities  16-29 pairs
8 Many similarities 30-75 pairs
) Too many to use 76+ pairs

Table 1: Assignment numbers by size

sims focused on comparing these two algorithms to measure their sensitivity and runtime.

From our research, we could form hypotheses on the behavior of both algorithms. Smith-
Waterman, guaranteed to find the most efficient local alignment of strings, should be more
accurate by far than Line Comparison, which will fail to identify lines that differ by even one
character. However, Smith-Waterman’s quadratic runtime and large memory requirements
should mean that it is slower by far than Line Comparison.

Smath- Waterman is hypothesized to trade speed for accuracy, and Line Comparison ac-
curacy for speed; if both hypotheses were correct, then each algorithm would have a use
case and should be included in the final release. If, however, one of the algorithms does not
provide its claimed advantage, there is no reason for its inclusion, and it can be removed
from the final release.

To perform this experiment, Checksims was run twice on every assignment in our test
data, once using each algorithm. The default tokenization strategy was used for both algo-
rithms. Output was saved to a unique file for each assignment, and program runtime saved
to another file. From these, results were computed. Results with similarities under 70% were
immediately discarded, to limit the number of manual checks that would have to be done.
Results over 70% were reported for both algorithms over all assignments. Subsequently,
we identified four assignments with a significant number of similarities, and compared the
results for the Smith- Waterman and Line Comparison algorithms — how many results were
shared between them, and how many were caught by only one algorithm. No false positive
testing was performed.

7.2 MOSS Comparison

We wanted to learn several things by comparing the output of Checksims and MOSS on
several assignments. By comparing the number of false positives produced by both programs,
we hoped to determine whether MOSS (and its more strict definition of what constitutes
academic dishonesty) produces more false positives than Checksims. Furthermore, we hoped
to verify that Checksims contained few (or no) false negatives.

Because MOSS is a free service, and not particularly fast, we did not wish to place undue
demands on it by asking it to process every single student submission from our entire set of 43
assignments over nine course offerings. We grouped our assignments into the bins described
in Table [1 according to the amount of similarity detected in the experiment described in
Section [7.1]

Assignments with very few similarities were discarded because there was insufficient sim-
ilarity to differentiate MOSS from Checksims, while very large assignments were discarded
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Assignment 1 50 student submissions
Assignment 2 42 student submissions
Assignment 3 41 student submissions
Assignment 4 55 student submissions
Assignment 5 55 student submissions
Assignment 6 43 student submissions

Table 2: Number of submissions in assignments selected for MOSS comparison

because manual review would take too long. We chose two assignments uniformly at ran-
dom from each of the three remaining categories for our MOSS comparison. Our tested
assignments contained a total of 286 submissions, distributed according to Table [2]

The MOSS results for the chosen assignments were compared to the results generated with
the Checksims in the previous experiment. We chose to compare the results only to the more
sensitive of the two algorithms (as identified using the methods in Section [7.1). Significant
results identified by both MOSS and Checksims were overlayed to identify commonalities.
The remaining similarities — those found by MOSS but not Checksims, or by Checksims
but not MOSS — were used to find the false negative rate of Checksims relative to MOSS.

8 Results

The experiments described in Section [7] were performed on the anonymized student data
described in Section This section summarizes their results, and attempts to draw
conclusions about the state of Checksims and its algorithms from them.

8.1 Algorithm Comparison

Our algorithm comparison tests, described in Section [7.1], were split into three overall tests.
The first compared the overall number of results detected by each algorithm across all our
test data. The second compared the running times of both algorithms across all test data.
The third and final test compared the results returned by the two algorithms for a subset
of all the assignments, to determine what matches were identified by one algorithm but not
another.

8.1.1 Overall Results Detected

Figure [7| shows all results from applying both algorithms to every assignment in the test
data. Results under 70% are not shown, as they are less interesting (a far lower proportion
will be cases of unauthorized copying) and they are orders of magnitude more than the
significant results. It is clear that Smith- Waterman is a far more sensitive algorithm than
Line Comparison, detecting a great many more instances in every range save 100% similarity
(which both algorithms should be able to detect easily). This sensitivity is not necessarily
an indicator of accuracy, however; it is possible that all of the results reported by Smith-
Waterman are simply false positives.
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Figure 7: Results detected by Line Comparison and Smith Waterman across all assignments

Because of the obvious limitations of the Line Comparison algorithm (detailed in Sec-
tion , we do not believe this to be the case. A large number of the additional results
found by Smith- Waterman are almost certainly real instances of unauthorized copying (or,
at the least, cases that should have been brought to the attention of course staff for manual
review). This matches our hypothesis that Smith- Waterman is the more accurate of the two
algorithms (though, again, we cannot prove this with only these results).

All known occurrences of common code were removed from our test data. In several cases,
we were unable to obtain the common code from the instructors who gave the assignment.
In each of these cases, we identified one student who had 100% similarity to all others.
On further examination, such students typically had submitted no code save the common
starter code. Consequently, we were able to use their submissions as common code for these
assignments.

8.1.1.1 Previous Undiscovered Academic Dishonesty As Figure[]shows, the Smith-
Waterman algorithm identified 17 cases of 100% similarity, and a further 35 cases over 90%.
All of our test data is taken from the courses described in Section [6.1.1.1]— previous offering
of sophomore-level Computer Science classes. Given this, we can assume that the results
in Figure [7] represent a large number of cases of academic dishonesty, and Professor Lauer
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has confirmed that we detected far more instances than he and other faculty members were
previously aware of.

The 100% results are almost certainly cases of academic dishonesty. The notion that two
students could have typed in 100% identical code independently is completely implausible.
We investigated several of these pairs, and all we found were what we consider to be academic
dishonesty. Results from the 90% to 99% range are also nearly-certain cases of academic
dishonesty. We reviewed 6 of these pairs of submissions, and found that all of them match
our definition of academic dishonesty.

The 70% to 89% range, however, contains a number of similarities that may not be caused
by academic dishonesty. In some cases, students implemented the same algorithm in very
similar ways. Given that there are not many ways to write a simple algorithm (for example,
Bubblesort), especially if typical loop counter conventions (i for outermost loop, j for next
innermost, etc) are followed. Six of the nine courses we obtained code from were offerings of
(CS2301, an intro-level course targeted at non-Computer Science majors. Most assignments
for CS2301 are very simple, requiring only trivial algorithms (without much variation in
algorithm choice or implementation). Furthermore, Professor Lauer permits the copying of
algorithms out of the textbook, so students may end up with completely identical versions
of simple functions (like binary tree insertion). Given this, many similarities in the 70% to
89% range may have produced their code independently, but using very similar algorithms
and pseudocode — acceptable behavior, according to Professor Lauer.

The potential difference between the two assignments that form our test data is empha-
sized by the graph in Figure [§] Almost all similarities identified are from CS2301, despite
it only containing approximately 70% of our test code. Given this, the smaller similarities
seen may well be due to the reasons identified in the previous paragraph.

Even discounting a large number of the similarities present as potentially not cases of
academic dishonesty, our results do paint a concerning picture of undetected past incidences
of academic dishonesty within CS2301. Professor Lauer has confirmed that to his knowledge,
almost none of the near certain cases we identified (90% and higher) were caught. We hope
that the deployment of Checksims may be able to reduce these numbers as word of its use
spreads.

8.1.2 Runtime Comparison

Figure [9 shows the runtime of the Smith- Waterman algorithm for every assignment in our
dataset. No assignment took over 2400 seconds (40 minutes) to complete, and the vast
majority finished in under 360 seconds (6 minutes). We originally intended to produce a
comparative graph also showing results from Line Comparison, but the results from that
algorithm were sufficiently similar that we did not deem it necessary to graph them. No
assignment took longer than one second to complete using Line Comparison; the graph,
compared to the results from Smith-Waterman, would be a flat line slightly above zero.
This supports our hypothesis that Line Comparison is the faster of the two algorithms, and
confirms its usefulness as a fast initial pass to identify highly similar submissions.

It is noteworthy that, while no assignment shown completed in over 2400 seconds (40
minutes), we were forced to manually intervene on one occasion. The algorithm hung for
four hours performing similarity detection on one pair of students on one assignment in our
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Figure 9: Runtime of the Smith-Waterman algorithm on our sample data. Each data point
is one anonymized assignment.

sample data (and likely would have run much longer, had we not ended it prematurely). We
investigated the assignment more closely, and found that two students had submitted an
unorthodox solution using large sets of lookup tables. The two assignments were sufficiently
different to remove unauthorized copying as a factor; we believe they both came upon the so-
lution independently. The pair of assignments using these lookup tables were approximately
3000 and 3500 lines each, and were approximately 13000 and 15000 tokens after being run
through the default tokenizer of the Smith- Waterman algorithm. In comparison, typical stu-
dent submissions for this assignment were perhaps 100 lines of code, and 300 to 400 tokens
in size. By removing these two assignments from the comparison, we were able to reduce
the runtime of Smith-Waterman to around one minute.

8.1.3 Algorithm Comparison

Figure [10] shows the results from six randomly-selected assignments from the overall dataset.
The results are grouped by assignment, and show how many results were detected by each
algorithm for each of the assignments. It is immediately clear that, for two of the six assign-
ments, the results for Line Comparison are strict subsets of those from Smith- Waterman.
However, the trend is somewhat reversed for assignments three and five, where a majority
of results were detected by Line Comparison and not by Smith- Waterman. Manual review
of these results indicates that most of these results are cases of one student submitting very
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Figure 10: Detection Algorithm Results for 6 Selected Assignments

little to no code (typically in the dozens of lines, with many being trivially simple — for
example, } or return;). Many of these lines are also contained in larger assignments, so the
trivial assignment appears to be very similar to larger assignments to Line Comparison (the
larger assignments typically display inverse similarities that are very small — 5 to 20% being
common). Smith-Waterman has awareness of the ordering of tokens within a document, and
consequently will ignore trivial sequences like { return; } if they are not present in the sub-
mission being compared to in an almost-identical form. Through this, we can conclude that
almost all results detected by Line Comparison but not Smith- Waterman are false positives,
providing further evidence for the accuracy of the Smith- Waterman algorithm.

8.2 MOSS Comparison

We identified six assignments, containing 286 individual student submissions, from our over-
all dataset to run through MOSS using the methodology explained in Section These
submissions were run through MOSS, and the results were compared to those obtained using
Checksims using the Smith-Waterman algorithm.

For the purposes of this comparison, we must clarify our definition of “significant results.”
In Checksims and throughout this paper, we have generally defined this as any result with
a similarity percentage of over 70%. MOSS, however, does not have such a definition, and
instead presents results ordered by number of similar tokens, with nothing to signify which
results are worthy of being inspected and which are not. For each comparison, we were able
to identify a point in the results where results after had many fewer similar tokens than
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results before; we used these points to define significant results in MOSS, with any results
coming before being considered significant. We acknowledge that this is not an optimal
method of selecting significant results, but could not find a better solution. We suggest
further study of the usability consequences of Checksims’s output as compared to MOSS.

Overall, we found that every significant similarity identified by MOSS was
also identified by Checksims. The reverse, however, was not true. Several small sub-
missions (of 75 lines and under) were identified as being very similar to other submissions
by Checksims, but were not found similar by MOSS. We found eight such submissions, and
visually examined each to make a final determination of which piece of similarity detection
software was correct. We sided with Checksims in all cases, as the assignments were very
similar on visual examination. We suggest further study of MOSS’s performance with very
small submissions.

It is worth noting that the definition of similar matches differs between Checksims and
MOSS. Checksims ranks similarities based on the percent of tokens in an assignment that
match another assignment. MOSS, on the other hand, ranks similarities based on the overall
number of tokens matching another assignment. Because of this, some matches considered
significant by Checksims are not considered significant to MOSS, which we observed several
times in the results. Small submissions containing a high percentage of matched tokens were
ranked far higher by Checksims than MOSS, though MOSS did identify the similar tokens
(and high percentage similarity). We consider such submissions to be identified by both
Checksims and MOSS, even though they were ranked highly by one and not the other. We
did not observe any matches ranked highly by MOSS but not Checksims, though this could
theoretically occur in very large submissions with a large number of matching tokens, but a
low percentage of matching tokens. While labor-intensive, a thorough examination of very
large assignments such as the ones listed in the last row of Table [1| may shed some light on
MOSS’s potential advantage here.

Our comparison does not test another potential strength of MOSS over Checksims. MOSS
performs syntax-aware comparisons, which lets it perform much more powerful normaliza-
tions than Checksims is capable of at present. These normalizations are described in Sec-
tion [3.3.1] and should allow MOSS to defeat deliberate attempts to obfuscate similar code
that would otherwise go unnoticed. Comparing data including such submissions might high-
light the advantages of MOSS over Checksims, but we could not find any submissions in our
dataset that contained any significant attempt to obfuscate similarities. Because of this, our
comparisons are more favorable to Checksims in our sample than it might be in an envi-
ronment with more sophisticated copying. It is possible that the prevalence of deliberately
obfuscated similarities may rise if knowledge that a similarity detection system is in use
becomes widespread, which would make the performance of Checksims in such cases more
important, and we would like to perform further experiments in this direction.

9 Real-World Usage

During this project, Checksims was used in real-world situations on two occasions. Course
staff (including one of the authors) made use of development versions of the program to
attempt to identify academic dishonesty in student submissions in ongoing courses. Though
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results from these real-world uses cannot be published for privacy reasons, they provide
valuable insight into how Checksims would be used in typical class.

9.1 Embedded Computing in Engineering Design

The first usage of Checksims was in an Electrical and Computer Engineering department
course, Embedded Computing in Engineering Design. A teaching assistant in that course,
Nicholas DeMarinis, became concerned that some of his students may have been collaborating
on their microcontroller code beyond was was allowed by course rules. He was provided an
early version of Checksims to verify his suspicions. Though he was not permitted to share
his results, he provided valuable feedback on improving the usability of the program. He
requested the ability to remove common code from a submission and an output format
suitable for import into a spreadsheet program for performing statistics calculations, both
of which are present in Checksims as of the time of this writing.

9.2 Machine Organization and Assembly Language

A nearly-complete version of Checksims was applied to the first assignment in a course for
which one of the authors, Matthew Heon, was a teaching assistant. This assignment was
an excercise in optimization and bitwise operations and was composed of a relatively small
C project with a great deal of common code. In a class of 68, Checksims detected three
students with extremely similar submissions. The grading system for that assignment was
highly automated and involved very little human interaction. Without Checksims, It is
unlikely that the similarity would have been detected.

10 Future Work

Checksims was built to be extensible and easily support new features, as described in Sec-
tion [l While this is generally considered to be a good design philosophy, it was especially
important because we did not have time to add so many features that we felt might be
valuable. There is much work that can be done in the future to add these missing features.

We feel that one of the most important features that can be added to Checksims is
the ability to use fingerprinting algorithms with a persistent database of student submis-
sions; such an improvement would allow fast checking not only within a single assignment
(as Checksims does today), but also against every assignment previously run through the
detector — detecting students who, for example, used another student’s assignment from a
previous term. Furthermore, advanced fingerprinting algorithms offer most of the accuracy of
Vector Distance approaches (like Smith- Waterman) while being substantially faster; for de-
tails, see Section . The addition of a fast comparison algorithm based on MOSS would
alleviate the speed disadvantages of Smith- Waterman on large classes and assignments.

To add some of the benefits of fingerprinting algorithms to the Smith- Waterman algo-
rithm, it would be useful to add the ability to specify an “archive” directory, which would
contain a number of student submissions from previous years. The archived submissions
would be compared against all student submissions from the current year, but not against
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each other, greatly reducing the number of comparisons that must be made and removing
extraneous results about previous years. Adding such a feature would be a relatively small
set of changes that would make the Smith-Waterman algorithm much more usable when
comparing with past assignments.

Additional output strategies would be greatly beneficial to the use of Checksims. While
we feel that our HTML and Threshold output strategies are adequate for everyday use, they
fall short of being ideal for usability. For example, an output strategy that would offer the
option to view the similarities detected between two assignments would potentially be very
valuable to course staff, as it could speed their investigation of suspected cases of similarity
substantially.

Usability improvements for Checksims could also come from tools to make it easier to
apply to assignments. Professor Lauer has suggested integration with Turnin, an in-house
project submission platform used at WPI, which could run a Checksims scan automatically
after submissions for each assignment are closed. Another option would be a GUI wrapper
for Checksims to automate common tasks (for example, placing student submissions into
separate folders, or decompressing submissions given as .zip or .tar files).

It was suggested to the authors that the comparison of programs at runtime could provide
useful metrics for similarity detection — for example, Valgrind profiling of memory use and
execution time. We did not find significant investigation into such techniques in our literature
review, and they could certainly be investigated using Checksims.

11 Conclusion

Checksims provides instructors with a simple, cross-platform interface that allows program-
ming instructors to rapidly check large numbers of assignments for academic dishonesty. It
has been very successful in tests on old assignments, and shows accuracy equivelant to the
industry-standard solution in initial testing. Moreover, its limited real-world deployment
has already revealed a dramatic amount of unauthorized copying — 37 cases of near-certain
academic dishonesty were found in 43 total assignments from 9 previous offerings of courses.
Additional work and expanded deployment will likely increase its success.
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Ol WN
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4. An extensible approach is needed to consolidate these diverse approaches into a
unified framework

They closed with a discussion of how they integrated their tool into SQL/DS, which is
not relevant to this project.

Xin Chen et al. “Shared information and program plagiarism detection.” In: Informa-
tion Theory, IEEE Transactions on 50.7 (2004), pp. 1545-1551.

Attempts to “take a step back” and develop a universal measure for the amount of
information shared between two sequences, be they DNA, text, or source code, which
can then be used to make a determination on plagiarism. However, to make use of
this algorithm, the program must be parsed into tokens to remove whitespace issues
(amongst other reasons). Solution is named SID — Software Integrity Diagnosis.

Vic Ciesielski, Nelson Wu, and Seyed Tahaghoghi. “Evolving similarity functions for
code plagiarism detection.” In: Proceedings of the 10th annual conference on Genetic
and evolutionary computation. ACM. 2008, pp. 1453—-1460.

Discusses the use of genetic algorithms to tune an existing algorithm for similarity
evaluation (Okapi) for optimum accuracy, and furthermore uses particle swarm genetic
optimization to devise novel formulas for plagiarism detection.

Paul Clough et al. “Old and new challenges in automatic plagiarism detection.” In:
National Plagiarism Advisory Service, 2003. Citeseer. 2003. URL: http://ir.shef.
ac.uk/cloughie/index.html.

Clough defines text reuse as “the activity whereby pre-existing written material is reused
during the creation of a new text, either intentionally or unintentionally.” The paper is
mostly focused on detecting the reuse of natural language text. It begins with a lengthy
discussion of the forms and causes of plagiarism, touching on its use by dishonest
students, ghost writers, and journalists working with stories from news agencies like
the Associated Press. It follows with a discussion of prevailing methods of manual
plagiarism detection, and ends with a list of four problems that Clough feels are most
important:

42


http://ir.shef.ac.uk/cloughie/index.html
http://ir.shef.ac.uk/cloughie/index.html

[13]

[14]

[15]

[16]

[17]

Identify suspicious inconsistencies
Find likely sources of inconsistent text

Identify collusion between texts

Ll

Identify unauthorized copying from a source text
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Maxime Crochemore et al. “A fast and practical bit-vector algorithm for the longest
common subsequence problem.” In: Information Processing Letters 80.6 (2001), pp. 279—
285.

Efficient solution to Longest Common Subsequence problem, which has important im-
plications for plagiarism detection (though it cannot cope with comments, whitespace,
etc on its own).

Mark Gabel, Lingxiao Jiang, and Zhendong Su. “Scalable detection of semantic clones.”
In: Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International Conference
on. IEEE. 2008, pp. 321-330.

This presents a scalable approach to identifying “semantic codes”™ — semantically equiv-
alent source code blocks (here presented in the context of the detection of dead/re-
dundant code, but plagiarism applications are obvious). Reports that fingerprinting is
not as good as some other methods — the conclusion mentions the existing “identity
algorithm” is more accurate in their testing.

Robert W. Irving. “Plagiarism and Collusion Detection using the Smith-Waterman
Algorithm.” In: University of Glasgow (2004).
A similarity detection algorithm for plaintexts intended for plagiarism detection. Very

accurate, but slow — perhaps too slow for anything but very small batches of files.

J. Howard Johnson. “Substring Matching for Clone Detection and Change Track-
ing.” In: Software Maintenance, 199/. Proceedings, International Conference on. IEEE.
1994, pp. 120-126.

Presents a tool for locating similarities in text, including source code. The tool works
in six steps:

1. Perform text-to-text transformations on each file

2. Break the text into potentially overlapping substrings
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18]

[19]

Generate a database of “raw matches” by finding the substrings that match
Iterate to describe the matches more concisely

Perform task-specific data reduction

AR

Summarize high-level matches

Steps and [f] work only on exact matches, so any partial matching must be done
via normalization in step [l Common transformations include white space removal,
comment removal, and identifier renaming. Steps have the advantage of being
language-agnostic. Note that this approach is reminiscent of the document fingerprint-
ing approaches to plagiarism detection. Step B]is done by Karp-Rabin string matching
[20]. In step |4} they perform tasks such as merging consecutive matches and other “loss-
less” compression strategies. Step [f] is where one might perform “lossy” compression,
such as eliminating certain text (like, for instance, a copyright notice) that is expected
to be cloned.

The authors tested their prototype on gcc, versions 2.5.8 and 2.3.3; both releases to-
gether total 1440 files with a combined size of 40 megabytes. They found a total of 988
“clusters,” or matched substrings. 315 of these clusters were of type “abx” (contained
in one file from each release) or type “ab=" (contained in one file from each release
with the same name). These represent code that was not changed between releases, or
that was moved to a different location. There were a very large number of abx clusters
as a result of a large naming convention change done by the gcc team between the
two releases. They identified some software cloning, and areas of massive changes. The
authors reported very few nonsense matches.

Edward L. Jones. “Metrics Based Plagarism Monitoring.” In: Journal of Computing
Sciences in colleges. Vol. 16. 4. Consortium for Computing Sciences in Colleges. 2001,
pp. 253-261.

A developed example of “feature comparison” — creates and examines “profiles” of
program features (line count, number of unique tokens, average line length, number of
spaces, that sort of thing). No evidence is presented that it is actually effective, and
indeed they do not test on real-world data (only note that they intend to use it in their
own courses).

Mike Joy and Michael Luck. “Plagiarism in Programming Assignments.” In: Education,
IEEE transactions on 42.2 (1999), pp. 129-133.

Joy and Luck provide a definition of plagiarism, “unacknowledged copying of documents
or programs,’ and name several potential causes of plagiarism.

Joy and Luck describe two obfuscation techniques: lexical changes (comment changes,
formatting, changing identifier names, etc.) and structural changes (loop replacement,
ifs to cases, statement ordering, refactoring, etc.)

They describe two pair comparison techniques: comparing attribute counts, and com-
paring structure.

They present an algorithm called sherlock, with the following requirements:

e Must be reliable
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e Must be simple to change for a new language
e Must have an “efficient interface”

e Output must be clear to someone unfamiliar with the programs

Incremental comparison compares five times: in original form, with whitespace removed,
with comments removed, with both removed, and tokenized. It looks for “runs” with a
maximum allowed size and density of “anomalies,” reporting the longest ones.

Joy and Luck also present a very interesting visualization with a point for each sub-
mission and similarities connected by lines; shorter lines correspond to closer matches.

[20] Richard M. Karp and Michael O. Rabin. “Efficient Randomized Pattern-Matching
Algorithms.” In: IBM journal of research and development 31.2 (1987), pp. 249-260.

This is a seminal paper that is cited by almost every article in this bibliography. It
seems that almost all program similarity detection tools use karp-rabin string matching
to search for and verify matches.

Presents a generalized string-matching algorithm that works in “real time” (each bit
of input can be processed as soon as it comes in and requires constant time) and in a
constant number of registers. It requires keeping a substring in memory of the same
length as the one you are searching for. Authors claim that it seems to be competitive
on classical strings only for larger substring sizes, but it has a huge advantage in being
able to search two-dimensional arrays, higher dimensional arrays, and even irregular
shapes with the same mathematical background.

“The idea of using fingerprinting techniques for string-matching problems is not new.
Many such techniques based on check sums and hash functions can be found in the
literature. What is new is the particular way of choosing the fingerprinting functions at
run time. This randomization technique permits us to establish very strong properties
of our algorithms, even if the input data are chosen by an intelligent adversary who
knows the nature of the algorithm.”

First presents a generalization of all string matching problems, and explains how the
simple pattern-matching problem fits that framework.

Karp and Rabin present three algorithms for deciding whether there is a match given
an input string X of length n, an output string Y, a finite set of fingerprinting functions
S, and a set of valid indices R. Brief descriptions follow:

e Computes k fingerprinting functions on each substring of length n in Y. If they all
report a match, halts immediately. This algorithm can report a false match, but
only if all k£ fingerprint functions collide.

e Computes only one fingerprint function on each substring of length n in Y, but goes
back and verifies the string after a match; false matches are caught and discarded.

e Same as above, but changes to a different fingerprinting function after a false
match.

The rest of the paper introduces and thoroughly explores the properties of several
fingerprinting functions. The details are outside the scope of this project.
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21]

22]

23]

[24]

[25]

[26]

Sanjeev Khanna, Keshav Kunal, and Benjamin C. Pierce. “A Formal Investigation of
diff3” In: FSTTCS 2007: Foundations of Software Technology and Theoretical Com-
puter Science. Springer, 2007, pp. 485—496.

A discussion of diff3, a three-way version of the conventional diff algorithm. This could
be used for plagiarism detection (detect similarities between two files that are not shared
by a third, given reference code shared by all students).

Jens Krinke et al. “Distinguishing Copies from Originals in Software Clones.” In: Pro-
ceedings of the 4th international workshop on software clones. ACM. 2010, pp. 41—
48.

Another paper that doesn’t really solve the plagiarism problem, and instead attempts to
find duplicate/dead code. This one is interesting because of its categorization metrics,
though — it attempts to classify code as either a straight duplicate, close copy, or
unclassifiable (some duplicated code, but not enough to conclusively classify).

Thomas Lancaster and Fintan Culwin. “Classifications of Plagiarism Detection En-

gines.” In: Innovation in Teaching and Learning in Information and Computer Sciences
4.2 (2005).

Lancaster provides a detailed taxonomy of plagiarism detection tools, and describes all
(then) commonly-known examples in terms of that taxonomy.

Mummoorthy Murugesan et al. “Efficient Privacy-Preserving Similar Document Detec-
tion.” In: The VLDB Journal;, The International Journal on Very Large Data Bases
19.4 (2010), pp. 457-475.

Attempts to detect similar documents when the text of the document is not available, for
instance, when checking for plagiarism between conferences with confidential systems.

A. Parker and J.O. Hamblen. “Computer algorithms for plagiarism detection.” In:
Education, IEEE Transactions on 32.2 (May 1989), pp. 94-99. 1SSN: 0018-9359.

Defines a five-level plagiarism “spectrum” to categorize the different types of obfus-
cations that are commonly used in duplicated student assignments, then provides an
overview of some then-advanced similarity detection algorithms. All seven algorithms
examined are feature-extraction algorithms that analyze similarities in software metrics.

Martin Potthast et al. “An Evaluation Framework for Plagiarism Detection.” In: Pro-
ceedings of the 23rd International Conference on Computational Linguistics: Posters.
COLING ’10. Beijing, China: Association for Computational Linguistics, 2010, pp. 997—
1005. URL: http://dl.acm.org/citation.cfm?id=1944566.1944681.

Potthast et al. formalize a plagiarism as a 4-tuple consisting of the plagiarizing doc-
ument, the copied document, and the plagiarized and original passages within each.
They then explain that it is impossible to find an adequate source of “true” plagiarized
material for a number of valid reasons, and describe three ways of generating a cor-
pus: pay humans to plagiarize, use sources of legitimately copied material such as wire
stories, or use an algorithm to mutate the document.
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27]

28]

They present PAN-PC-10, a plagiarism corpus created with Mechanical Turk and an
algorithmic approach. They compare the corpus with existing corpora Clough09 and
METER, but stop short of claiming that any one database is the best.

Lutz Prechelt, Guido Malpohl, and Michael Philippsen. JPlag: Finding plagiarism
among a set of programs. Tech. rep. Technical Report 2000-1, Fakultat fur Informatik,
Universitat Karlsruhe, D-76128 Karlsruhe, Germany, 2000.

Presents JPlag, a similarity detection tool based on greedy string tiling, but with opti-
mizations to decrease the average runtime from O(n?) to O(n). Jplag achieves results
comparable to MOSS, but provides a web interface rather than an email-based one.

Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. “Winnowing: local algorithms
for document fingerprinting.” In: Proceedings of the 2003 ACM SIGMOD international
conference on Management of data. ACM. 2003, pp. 76-85.

Schleimer et al. present a document fingerprinting algorithm called winnowing, and
describe its use in Stanford’s MOSS service. They describe the concept of “k-gram
filtering,” where a document of n tokens is described as a sequence of (n — k + 1)
overlapping k-grams, with a k-gram being a sequence of k tokens. In k-gram filtering,
each k-gram is hashed, and stored, with its document ID and location, in a lookup
table. The k-grams are reduced to a smaller list using a filtering algorithm, and future
documents can be checked against this corpus of document “fingerprints.”

Our current LineCompare code, described in [5.4.1] is an implementation of k-gram
filtering; in LineCompare, each line is a token, a document is represented as a sequence
of 1-grams, and the 1-grams are filtered using the identity function.

According to the paper, current (at publication) k-gram filters suffer from a number
of disadvantages. The biggest one is that the filter used is typically a mod-p filter; a
mod-p filter accepts a k-gram x if H(x) is congruent to zero mod p. Mod-p filters are
weak because the fingerprints selected from the document are uneven — there could
be huge runs of n-grams that do not hash to zero mod p. In principle, the maximum
“gap width” in a document is unbounded, and in practice it is often longer than most
web pages. Mod-p especially chokes on low-entropy data — a long string of zeroes, for
instance, will either go completely unfingerprinted, or fingerprinted every single time.

The paper’s contribution is winnowing, a k-gram filter that guarantees an upper bound
on the distance between fingerprints in a document. That means that a copy that is
longer than the maximum gap width is guaranteed to be detected. Winnowing has
achieved widespread adoption, including by MOSS, and its merit has caused this paper
to accumulate 711 citations on Google Scholar.

Schleimer, et al. introduce the concept of a “local algorithm,” an algorithm that selects
a document fingerprint from a “window” of consecutive k-grams with length w. An
algorithm is local if it meets two conditions:

1. For each possible window, the algorithm selects at least one fingerprint from within
that window, and

2. The choice depends only on the contents of that window, not on any other.
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29]

[30]

[31]

The authors demonstrate that if two documents are compared with a k-gram filter using
a local algorithm with window size w, the comparison will detect at least one k-gram
from each shared substring of length w + k& — 1. The minimum density (asymptotic
proportion of fingerprinted k-grams to total k-grams) of a local fingerprint selection
algorithm is 1.5(w + 1). Winnowing has an asymptotic density of 2/(w + 1), leading
the authors to claim it is “within 33% of optimal.”

The related work describes the Karp-Rabin algorithm, which finds occurrences of a
substring in a larger string [20]. SCAM [29] uses vector distance between documents
to find copies. Baker |3| presents a concept called “parameterized matches,” which can
rename parameters to be equal and more easily detect copies that way.

They ran winnowing (w = 100) and mod-50, an implementation of mod-p with p = 50,
on random data and found that both selected approximately the same number of fin-
gerprints per unit of data. Against a corpus of a half million web pages, they found that
both came close to their expected fingerprint density, but that mod-50 was highly non-
uniform: mod-50 scanned a run of 29900 non-whitespace, non-tag characters without
selecting a fingerprint. Any duplication within those characters would be completely
undetected by mod-50.

Winnowing ended up fingerprinting extremely densely in low-entropy data, so the au-
thors presented a very minor adjustment called “robust winnowing” to correct.

N. Shivakumar and H. Garcia-Molina. “SCAM: A Copy Detection Mechanism for Dig-
ital Documents.” In: 2nd International Conference in Theory and Practice of Digital
Libraries (DL 1995). 1995. URL: http://ilpubs.stanford.edu:8090/95/.

Presents SCAM, a vector distance approach to copy detection. Like previous work,
SCAM breaks documents into chunks and then compares the chunks for overlap; but
instead of chunking into sentences or paragraphs like previous work, SCAM chunks by
words. Most previous work in this area simply compared the size of the overlap against
the size of the document, but that doesn’t work if you are chunking by words; so the
authors propose a new similarity approach based on vector distances between word
counts.

Temple F. Smith and Michael S. Waterman. “Identification of common molecular sub-
sequences.” In: Journal of molecular biology 147.1 (1981), pp. 195-197.

Describes the Smith-Waterman algorithm for comparing genetic sequences. This algo-
rithm produces an optimal global overlay between two strings drawn from any alphabet.
This original paper is very focused on genetics research but the algorithm itself is a
crucial part of Irving’s paper [16]on similarity detection.

Geoff Whale. “Identification of program similarity in large populations.” In: The Com-
puter Journal 33.2 (1990), pp. 140-146.

Whale provides an overview of the state of similarity detection in the year 1990. The
document contains a discussion of the prevalence and motivation for students to copy
others’ assignments, common techniques for obscuring unauthorized copying, the var-
ious metrics to evaluate similarity detectors and the poor state of evaluation method-

48


http://ilpubs.stanford.edu:8090/95/

ologies, and a broad overview of the most common approaches at the time. The paper
closes with a comparison of the effectiveness of the most popular approaches.

49



Appendices

A User Guide

Checksims is a tool for detecting source code similarities in an arbitrary number of user-
provided programming projects. Its primary purpose is to flag potential cases of academic
dishonesty in programming assignments. Checksims is not intended to detect academic
dishonesty on its own, but rather to act as a tool to identify suspicious assignments for
review by course staff.

Checksims accepts a number of submissions (programming assignments) as input, ap-
plies a tokenizer to transform each submission into a series of tokens, and then applies a
pairwise similarity detection algorithm to all possible pairs of submissions. The results of
the algorithm are then printed via an output strategy.

A.1 Installing Checksims

Checksims is distributed as an executable Java package (. jar file). As a Java application,
Checksims is cross-platform and should run on any system capable of running a Java virtual
machine (JVM). The provided Jar file is completely self-contained and requires no installa-
tion, and should be named as follows:

checksims-1.1.1-jar-with-dependencies. jar

Note that 1.1.1 represents the current version of Checksims at the time of this writing,
and may be different for the version you receive.

Note that Checksims requires a Java 8 virtual machine. The latest version of the Oracle
JVM is recommended, and can be found at the following URL:

https://www.java.com/en/download/index. jsp

A 64-bit processor and JVM are strongly recommended. Some Checksims detectors can
consume a substantial amount of memory, potentially more than the 4GB maximum available
to a 32-bit JVM. A 64-bit JVM can prevent a number of memory-related program crashes.

A.2 Running Checksims

Checksims is a command-line application, and is typically invoked from the operating sys-
tem’s shell or command prompt. The .jar file given can be run using Java as follows:

java -jar PATH/TO/CHECKSIMS_JAR.jar <ARGUMENTS>

It may be desirable to rename the provided . jar file or write a wrapping shell script to
reduce the amount of typing required for this basic invocation.
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A.2.1 Arguments

Checksims has two mandatory arguments: a single glob match pattern, and at least one
directory to scan for submissions.

The glob match pattern is a shell-style match pattern used to identify files to include in
submissions. Wildcard characters accepted by a shell are permitted; for example, providing
a * does match every file in a submission, while *.c includes all C files. To ensure that
these are not parsed by your shell, it is recommended to escape this pattern (typically using
double quotes — "*.c" for example).

After the glob match pattern, one or more directories to search for submissions must be
provided. Checksims assumes each subdirectory of these search directories is a submission.
It identifies any files matching the given glob pattern within a submission directory, append
all matching files together, and tokenize the collection. By default, it is not recursive and will
only identify files in the submission directory, but not in any subdirectories. An argument
is provided to enable recursion through subdirectories to generate submissions (see section
for details). File names are discarded during this process, but the contents of all
matching files will be present. Each submission is named for its root directory (that is, the
subdirectory of a submissions directory); if a directory containing two subdirectories named
“A” and “B” is provided as a search directory for submissions, two submissions named “A”
and “B” will be created.

After creation, any empty submissions (no files found matching given pattern, or only
empty files found) are removed prior to running the detection algorithm.

At present, there is no way of differentiating submissions beyond placing them within
separate directories.

A.2.1.1 Optional Arguments Before the glob matcher, you may place a number of
arguments to control the operation of Checksims. These are detailed below:

e -a -algorithm: Specify algorithm to use for similarity detection. Available options
are linecompare and smithwaterman at present, and can be listed with the -h option.
If no algorithm is given, the default is used.

e —c, -common: Perform common code removal. Specify a directory containing common
code (files within this directory will be identified using the same glob matcher as normal
submissions).

e -f -file: Output to a file. Must provide filename of output file as argument. The
name of the output strategy used will be appended to the given filename as an ex-
tension. If more than one output strategy is given, more than one output file will be
produced, each with the given filename but with differing extensions.

e -h -help: Print usage information and available algorithms, preprocessors, and output
strategies.

e -j, -jobs: Specify number of threads to use. Defaults to number of CPUs available
on your system.
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e -0, -output: Specify output format(s) to use. More than one can be provided; if
so, separate them with commas. Available options are html, csv, and threshold at
present, and can be listed with the -h option. If no output format is given, the default
is used.

e -p, -preprocess: Specify preprocessors to apply. More than one can be provided; if
so, separate them with commas. At present, the only available option is lowercase.
Available options can be listed with the -h option. If this argument is not provided,
no preprocessors are applied.

e -r -recursive: Recursively traverse subdirectories when generating submissions.

e -t, -token: Specify tokenization to use. Available options are 1line, whitespace, and
character at present, and can be listed with the -h option. If the -t option is not
given, the default tokenization for the algorithm is used.

e -v, -verbose: Verbose debugging output.
e -vv, -veryverbose: Very verbose debugging output. Overrides -v if both are specified.

e —version: Print current version of Checksims.

Checksims contains built-in usage information and descriptions of its arguments, which
can be printed by supplying the -h or -help flag. The output mirrors the information
provided above, though it may be more up-to-date.

A.2.1.2 JVM Arguments A number of arguments can also be passed to the Java
virtual machine. These are usually placed in the command line as follows:

java <JVM_ARGS> -jar PATH/TO/CHECKSIMS_JAR.jar <ARGS>

These arguments are well-documented and can be used on all Java virtual machines.
Several commonly-used flags are detailed below.

e -d64, -d32: Specify a 64 or 32 bit JVM, respectively. Some JVMs will only support
32 or 64 bit, but not both. Using a 64-bit JVM where available is preferred to enable
the VM to use more than 4GB of memory.

e -Xmx: Specify a maximum amount of memory for the JVM to use. The number can
be formatted as [Amount][Unit] where [Unit| is M for megabyte or G for gigabyte.
Note that the number is specified immediately after the flag, with no = character. For
example, to set the JVM to use at most 4GB of ram, specify -Xmx4G at the command
line.
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A.2.1.3 Sample Command Line A typical command line invocation of Checksims is
shown below.

java -d64 -jar PATH/TO/CHECKSIMS_JAR.jar -a smithwaterman -o html,csv -v -r
-f ./out "*x.c" SUBMISSION_DIR_ONE SUBMISSION_DIR_TWO

This instructs Checksims to do the following:
e Use a 64-bit JVM to prevent memory issues (-d64).
e Use an algorithm named smithwaterman to perform similarity detection (-a).

e Generate output using two strategies, html and csv (-o), and save this output in two
files names out.html and out.csv (-f).

e Perform similarity detection on all files with extension ".c" in directories SUBMISSION_DIR_ONE
and SUBMISSION_DIR_TWO.

A.2.2 Common Errors and Solutions

This section contains a number of common errors that can occur while using Checksims, and
suggests potential fixes.

A.2.2.1 Out of Memory Errors A Java Out of Memory exception occurs when Check-
sims uses all the memory available to the Java virtual machine. This is usually caused by
running a complex comparison algorithm (for example, Smith- Waterman) on large submis-
sions.

The first potential fix is to increase the amount of memory available to the JVM. This
can be done by installing 64-bit Java and passing the -d64 flag to use a 64-bit JVM (enabling
the use of more than 4GB of memory). If a 64-bit JVM is already installed, a larger amount
of memory can be provided using the -Xmx flag.

If more memory cannot be allocated to the JVM, it is also possible to reduce the amount
of memory used by Checksims. This can be done in a number of ways. Firstly, reducing the
number of threads used with the -j flag will cause a substantial decrease in the amount of
memory used. Each thread uses roughly the same amount of memory, so a reduction from 4
to 2 threads should cause Checksims to use half as much memory. Furthermore, changing the
tokenization used can impact the number of tokens stored, which has substantial implications
for algorithm memory use. Changing from Character to Whitespace tokenization for Smith-
Waterman, for example, will usually result in a 4-fold reduction in memory use.

A.2.2.2 No Submissions Detected In the case that Checksims cannot build any stu-
dent submissions to compare, the first step is usually to check the glob match pattern used.
Ensure that any characters that might be interpreted by your shell (for example, *) are
properly escaped (single or double quoted on Linux or OS X, double quoted on Windows).
Furthermore, check that the glob match pattern is syntactically valid for your platform.
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Verify that you are passing Checksims a directory containing a number of student sub-
missions, each of which is contained in a single subdirectory of the directory passed to Check-
sims. Even if each student submission is a single file, it must be contained in a subdirectory.
Student submission directories may contain subdirectories themselves without issue.

A.3 Description of Tokenizations

Checksims breaks submissions into a sequence of tokens as they are read in. Several options
are provided, each providing a tradeoff of speed for performance. Each similarity detection
algorithm provides a default tokenization that has been chosen to optimize its performance
for typical usage, but this default can be overridden at runtime if desired. This may be
desirable, as tokenization has strong implications for algorithm accuracy and performance.

Only one tokenization is supported at any given time; it is impossible to request that
Checksims tokenize one submission using character tokenization, and another using whites-
pace tokenizations. This is done to ensure a uniform basis for token comparison.

Three tokenization options are provided by default: Character, Whitespace, and Line.
Their advantages and disadvantages are listed below.

A.3.1 Character Tokenization

The simplest tokenization method, Character tokenization, breaks a submission into the
characters that compose it and builds a token for each character. Whitespace characters
(spaces and newlines) are treated as tokens. No deduplication of whitespace is done — if a
submission contains three consecutive spaces, all will be treated as independent tokens.
Character tokenization has the slowest performance of all the tokenization schemes as
it generates far more tokens for the algorithm to process. However, for most algorithms,
Character tokenization will be the most conducive to accuracy, as it can identify largely
similar words and lines that would otherwise be ignored. Character tokenization also uses
slightly more memory to store compared to the other tokenization schemes — usually not
enough more to cause problems. However, Character tokenization may have a more serious
impact on the amount of memory used by certain algorithms (such as Smith-Waterman).

A.3.2 Whitespace Tokenization

Whitespace tokenization breaks a submission apart at whitespace characters (spaces, tabs,
newlines) to create tokens. Whitespace characters are removed as part of the splitting
process, and are not included as tokens.

Whitespace tokenization represents a balance between performance and accuracy. With
preprocessing (lowercasing to remove case ambiguity, etc), it can retain much of the ac-
curacy of Character tokenization while substantially improving performance (assuming
Whitespace tokens are on average four characters, a fourfold reduction in token count can
be expected, even ignoring the deletion of whitespace).
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A.3.3 Line Tokenization

Line tokenization splits the submission at line boundaries, creating a token from each line
in the original. Non-newline whitespace characters (spaces and tabs) are retained.

Line tokenization represents the fastest but least precise tokenization option. It is capa-
ble of identifying exact duplication, but even trivial attempts to obfuscate similarities will
prevent detection.

A.4 Description of Preprocessors

After a submission is converted into tokens, these tokens can then be manipulated to im-
prove detection accuracy. This is accomplished by the use of predefined preprocessors. Two
preprocessors are presently available. The lowercase preprocessor converts all letters to
lowercase. The deduplicate preprocessors remove duplicated whitespace (spaces, tabs, and
newlines).

A.5 Description of Algorithms

Checksims provides two detection algorithms at present. The first is Smith- Waterman. It
offers accurate detection but slow performance. The second is Line Comparison. It is very
fast, but not very accurate and easily fooled by obfuscation.

A.5.1 Smith-Waterman

The Smith- Waterman algorithm for string overlaying was originally developed to find op-
timal local alignments between DNA sequences for bioinformatics problems. Adapted to
handle arbitrary alphabets, it proves a valuable tool for identifying similar token sequences.
As a local alignment algorithm, it is capable of detecting sequences even when they are
not completely identical. A small number of missing or unmatched tokens are tolerated,
identifying more similarities than simply finding the longest common sequence. Further-
more, Smith- Waterman is guaranteed to identify the optimal local alignment — if common
sequences exist, they will be found.

However, Smith-Waterman’s accuracy comes at a substantial performance cost. The al-
gorithm itself is O(nxm) where n and m are the lengths of the two sequences being compared;
assuming equal and even growth of both sequences, the algorithm scales as roughly O(n?)
(both for runtime and memory). For smaller submissions, Smith-Waterman can complete
an entire class in a few minutes; for larger submissions, however, hours (or even days) may
be required.

Because of the performance penalty of Smith- Waterman, it is recommended to use it
with the Whitespace tokenization scheme, which it defaults to. This reduces the number of
tokens present, greatly improving performance.

A.5.2 Line Comparison

The Line Comparison algorithm identifies identical tokens in both submissions. It is a trivial
algorithm unique to Checksims, and notable for its speed. Line comparison hashes each input
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token, and identifies hash collisions (identical tokens). Similarity is reported on the number
of collisions detected between the two submissions.

Line comparison makes one pass through each submission, and thus is O(m + n). It is
thus far faster than Smith- Waterman.

As the name of the algorithm indicates, it is only intended to be used with (and defaults
to) the Line tokenization scheme. Whitespace tokenization results in a percent of shared
words contained in submissions that is almost always very high and does not mean much
about the actual similarity of two submissions. Character tokenization tends to result in
greater than 99% similarity for all submissions, given that most all will be using the same
basic alphabet (capital and lowercase letters, numbers, and language-appropriate syntax
such as { or |).

Given the restriction to the use of Line tokenization, even small changes (for example, a
single missing character) can result in otherwise extremely similar lines not being recorded as
similar. It is possible that preprocessors could remove some trivial differences (for example,
changes to whitespace or addition of comments). However, other alterations, like reordering
statements or changes to identifier names, are very difficult to catch with preprocessors. Line
Comparison is thus very limited in terms of accuracy.

A.6 Description of Output Strategies

Once an algorithm has been applied to the submissions, the results must be printed in a
usable format so they may be used and interpreted. Output strategies determine how this
is done.

Results will often be presented as a square matrix, henceforth referred to as a Similarity
Matriz. These matrices are built from the complete results of the similarity detection algo-
rithm, and contain the similarity of every submission to every other. As the name would
imply, a similarity matrix is a N x N matrix (with N being the number of submissions),
with each cell containing a number representing the degree of similarity of one submission
to another.

In a similarity matrix, the submissions used in similarity detection are counted, and
a square matrix of that dimension is created. Submissions are each assigned a row and
column. Every cell is initialized as the degree of similarity of the submissions that define its
intersection (specifically, column submission’s similarity to row submission). If the row and
column submissions are the same, the cell is ignored (declared as empty). An example is
shown in Figure[A.T] Each cell shows the similarity of the submission on the X axis with the
submission on the Y axis. In Figure the bottom-left corner cell shows the percentage
similarity of submission A to submission C — that is, the proportion of submission A’s
tokens that are shared with submission C.

A.6.1 CSV

The CSV output strategy records output as a similarity matrix in comma-separated value
format. This output format is computer-readable, not human-readable. It can be imported
into Microsoft Excel or a number of other software statistics packages to generate statistics
about detected similarities
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A B C
Similarity of B | Similarity of C
N/A to A to A
Similarity of A N/A Similarity of C
toB toB
Similarity of A | Similarity of B N/A
toC to C

Figure A.1: A sample similarity matrix
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A.6.2 HTML

The HTML output strategy produces a web page that can be opened in a typical web
browser, presenting a colorized version of a similarity matrix. A color range (yellow to red)
shows how similar each cell is, allowing easy visual identification of similar students and
clusters of similarities.

A.6.3 Threshold

The threshold output strategy produces an ordered list of submission pairs that are suffi-
ciently similar (by default, 60% or greater). The list is ordered from most to least similar, and
omits all information about similarities below the threshold. This output strategy produces
quickly actionable information about the most-similar submissions.
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B Developer Guide

This guide is intended to serve as an introduction to Checksims to introduce new developers
to the codebase. It is hoped that this will make contributing to the codebase easier and
more accessible.

B.1 Obtaining the Source
The source code for Checksims is available on Github, at the following URL:

https://github.com/mheon/checksims/.

The source can be checked out using Git via the instructions located on the Github
webpage, which are duplicated here for convenience:

git clone https://github.com/mheon/checksims.git

B.2 Building Checksims

Building Checksims has two requirements: a Java 8 JDK, and version 3 of the Apache
Maven build system. The following assumes familiarity with Maven and its capabilities.
The commands below must be run in the root of the cloned repository. All paths are relative
to this directory.

https://maven.apache.org/download.cgi

Maven itself is written in Java, and the provided Jar files should be cross-platform.

Note that JDK 8 or later is a buildtime and runtime requirement. Earlier versions of
the JDK will not be able to build and run Checksims.

Most testing was performed using the Oracle JDK across Linux and OS X, but other
configurations (Linux/OS X + OpenJDK 8, Windows) should be supported without issue.

Checksims uses the typical Maven lifecycle commands for building. Again, a full review
of Maven’s capabilities is outside the scope of this document, but critical commands for
building and testing will be briefly reviewed. Please note that all commands shown below
are assumed to be run in the root of the cloned repository, and all paths given are relative
to this directory.

To run unit tests:

mvn clean test

To build an executable . jar file:
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mvn clean compile package

Build artifacts (executable . jar files) will be placed in the target/ directory. By default,
two . jar files will be produced: one with, and one without, library dependencies. They are
easily differentiated — the . jar with dependencies included will be named as follows:

checksims-VERSION-with-dependencies. jar

Where VERSION is the current version number (1.1.1 at time of this writing).

B.3 Contributing: Modifying the Source

Checksims is fairly well documented and ships with unit tests, to enable ease of modifi-
cations. Furthermore, measures have been taken to make the addition of new algorithms,
preprocessors, and output strategies especially easy. This section details the project struc-
ture to ease understanding of the source code and provide the location of critical project
components.

B.3.1 Directory Structure

Checksims is structured as a typical Maven project; again, full description of this format is
beyond the scope of the document, but important locations will be summarized.

All source code (production and test) is contained in the src/ directory. Test-only code is
found in src/test/java/, while main code is located in src/main/java. Runtime resources
(non-Java source files, for example the template for generating HTML output) are located
in the src/main/resources/ directory.

Source files are contained in package-appropriate subdirectories of these main directories.
In the case of a source file named ChecksimRunner. java in package edu.wpi.checksims,
the location of this file would be:

src/main/java/edu/wpi/checksims/ChecksimRunner. java

Most Java IDEs should have the ability to import a Maven project; this should pick up
all source directories automatically.

B.3.2 Source Structure

This section contains a description of the package and source structure of the project.

B.3.2.1 Package Structure The root package for Checksims is edu.wpi.checksims,
with a number of subpackages, described below.

The algorithm subpackage contains core similarity detection functionality. All simi-
larity detection algorithms (and the root interface SimilarityDetector, which all detec-
tion algorithms implement) are contained within algorithm. Algorithms at time of writing
(Line Similarity and Smith- Waterman) are contained within appropriately-named subpack-
ages (for example, algorithm/smithwaterman for the Smith-Waterman algorithm). It is
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intended that the same scheme will be used for future algorithms. The overall algorithm
package also contains the output subpackage, containing all valid output strategies and the
SimilarityMatrixPrinter interface, which all output strategies implement. Finally, the
algorithm package also contains the preprocessor subpackage, containing all supporting
preprocessor algorithms for token lists.

The submission subpackage contains code relating to the creation of submissions from
directories and files on disk. All concrete classes within are final; this part of the interface
is considered stable, and should not require much modification or extension.

The token subpackage contains code relating to tokenization of files and tokens generated.
Several data structures for tokens, including TokenList (implementing List<Token>) and
trees of arbitrary arity (contained in the tree subpackage), are included here. Concrete
implementations of tokens themselves are final; again, this is considered a stable part of
the interface.

The util subpackage contains general utility code.

B.3.2.2 Code Structure The entry point of Checksims is ChecksimRunner in the root
package. This class contains both argument parsing and the runChecksims method, which
controls the core functionality of the program.

runChecksims begins by initializing a list of submissions from the given directory, gen-
erating one submission per subdirectory of the given assignment directory(s). After the
list of all submissions has been built, common code detection and removal is performed (if
requested by the user). Preprocessors are then applied, sequentially, on each submission.
Finally, SimilarityMatrix.generate() is called, creating a results matrix.

SimilarityMatrix.generate() generates a list of all unique unordered pairs of student
submissions, then applies a given pairwise similarity detection algorithm to each submission.
The results are then collated to produce the similarity matriz: a square array of floats,
representing the similarity of each assignment when compared with each other assignment.

The generated similarity matrix is then passed to an output strategy to generate human-
readable results. These are then printed (to STDOUT or, if requested, to a file), and the
program exits.

Checksims includes a number of library dependencies. The most important of these
are the Apache Commons and Google Guava libraries. These do overlap to an extent, but
utilities from both are used throughout. In cases where both libraries provide overlapping
functionality, the version provided by Apache Commons was preferred, though this is not a
hard rule — if the API offered by Guava was felt to be superior, it was used instead. Finally,
the Apache Velocity templating library is including to make the creation of complex output
possible (for example, the included HTML output strategy). As in all Maven projects,
the build process and dependencies are controlled by the pom.xml file in the root of the
repository.

B.3.3 Adding an Algorithm

This section details the process of adding a similarity detection algorithm, though the process
is very similar for a preprocessor or output strategy.
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All similarity detection algorithms must be contained in package algorithm or a sub-
package thereof. The core interface is SimilarityDetector, requiring three methods:

e getName ()
e getDefaultTokenType ()

o detectSimilarity

The getName () method returns the name of the algorithm, as the user will type it in
on the command line. This must be a unique string (no two algorithms may have the same
name), and it is highly recommended that it not contain spaces.

The getDefaultTokenType () method returns the default tokenization used by the al-
gorithm. There are three supported tokenizations in Checksims at the time of this writing:
Line, Whitespace, and Character. Fach breaks submitted files up differently (by newline,
by whitespace character, and into individual characters) to produce tokens. The returned
token type from this method is the default for this algorithm (this can be overridden by the
user at runtime, however).

The detectSimilarity() method accepts a pair of student submissions, performs sim-
ilarity detection, and returns an AlgorithmResults object representing the results of the
detection. Exceptions are permitted to be thrown on internal algorithm errors.

Algorithms must also implement a static getInstance() method taking no arguments
and returning an instance (preferably a singleton) of the algorithm. All detection algorithms
are automatically loaded at runtime using reflection using this method. As a result of this,
no work is required to make an algorithm available outside of writing it and placing it in the
algorithm package; all implementors of SimilarityDetector will be scanned via reflection
and loaded automatically.

Similarity detection is multithreaded by default, and is performed using a single instance
of the similarity detector. Consequently, it is not advised to have class-level mutable state
or synchronized methods within a similarity detector. Instead, mutable state should be
confined to the detectSimilarity() method and any helpers. The overall implementation
of a similarity detector must be thread-safe.
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C Anonymization Script

Listing 1: Anonymization Script Source

#1/bin/bash
# This script has ABSOLUTELY NO ERROR CHECKING
# But it shouldn 't overwrite anything in typical case

student=0
srcdir="§1"
dstdir="3$2"

mkdir —p "$dstdir"

find "$srcdir/students" "$srcdir/groups" —mindepth 1 —maxdepth 1 —
type d —not —path "$srcdir/students" —not —path "$srcdir/groups
" —print0 | while read —d $’\0’ dir

do
studentName—=‘basename "$dir"*
echo "Anonymizing_student_$studentName"
curDstDir="$dstdir /student $student"
# Make output directory
mkdir —p "$curDstDir"
# Increment student number
student=$ ((student+1))

curDir="pwd°

# Unzip anything we find. Ignore errors that might occur because
there are no zip files.
find "$dir" —type f —mame ’x.zip’ —print0 | while read —d $’\0’
Zip
do
dirName=‘dirname "$zip"*
echo "Unzipping_$zip_to_S$dirName"
unzip —o —d "$dirName" "$zip"
done

# Untar any tars

find "$dir" —type f —name ’x.tar
tar

do

dirName=‘dirname "$tar"®

9

—print0 | while read —d $’\0’
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cd "$dirName"
echo "Untarring_$tar_to_3$dirName"
tar —xf "$tar"

done

cd "ScurDir"

# Loop through all .c and .h files in that directory and
anonymize them
find "$dir" \( \( —type f —mname ’x.c’ \) —or \( —type f —mame
"x.h’ \) —or \( —type f —mame ’x.cpp’ \) —or \( —type f —mame
"s.hpp’ \) \) —print0 | while read —d $’\0’ file
do
# Run strip _comments script from GNU folks. Pipe output into
output file .
fileBasename=*‘basename "$file"®
echo "Stripping_comments_from_$file ,_outputting_to_
$fileBasename"
./strip_comments.sed "$file" > "§curDstDir/$fileBasename"
done
done

echo "Done!"
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