
Rapid Prototyping Interface for Software
Defined Radio Experimentation

by

Michael Joseph Leferman

A Thesis
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the
Degree of Master of Science

in

Electrical and Computer Engineering
by

February 2010

APPROVED:

Dr. Alexander Wyglinski, Major Advisor

Dr. Donald Orofino

Dr. Xinming Huang

i

Abstract

This thesis focuses on a user-friendly software-defined radio (SDR) development work-

flow for prototyping, research and education in wireless communications and networks.

Specifically, a SimulinkTMinterface to the Universal Software Radio Peripheral 2 (USRP2)

SDR platform is devised in order to enable over-the-air data transmission and reception

using a Simulink signal source and sink, in addition to controlling a subset of the hardware

resources of the USRP2 platform. Using the USRP2 as the RF front end, this interface will

use Simulink for software radio development and signal processing libraries of the digital

baseband component of the communication transceiver design. This combination of hard-

ware and software will enable the rapid design, implementation, and verification of digital

communications systems in simulation, while allowing the user to easily test the system

with near real time over-the-air transmission. The use of Simulink and MATLAB for com-

munication transceiver development will provide streaming access to the USRP2 without

the steep learning curve associated with current workflows. These widely available software

packages and the USRP2 will make digital communication system prototyping both afford-

able yet highly versatile, enabling researchers and industry engineers to conduct studies

into new wireless communications and networking architectures including cognitive radio.

Furthermore, the interface will allow users to become familiar with tools used in industry

while learning communications and networking concepts.

ii

Acknowledgements

I would like to thank my advisor Dr. Alexander Wyglinski and Ric Losada of the

MathWorks. Without their guidence and expertise this project would not have become a

reality.

I would like to thank The MathWorks for their financial support and all of the individuals

who helped with the project, including Alec Rogers, Mike McLernon and Chandresh Vora.

I would like to especially thank Don Orofino, whose vision and technical expertise made

this project a reality.

I would also like to thank the members of my defense committee, Dr. Donald Orofino

and Dr. Xinming Huang for the comments and suggestions with respect to my thesis.

I would like to thank all of my friends for all of their support, help and encouragement.

There are too many of you to name here, but you know who you are and how much your

support means to me.

I would like to thank WILAB members, Srikanth Pagadarai, Di Pu, Si Chen, Jingkai

Su, Kevin Bobrowski, Zhou Yuan and especially Devin Kelly and Michael Calabro for their

direct involvement in this project. I would also like to thank all of the members of the WPI

community for six wonderful years.

I would like to thank my entire family Mom, Dad, Stephen, Amanda, Uncle Norman,

Aunt Merrill and Nana for their continuos love, support and encouragement.

iii

Contents

List of Figures v

1 Introduction 1
1.1 Research Motivation . 1
1.2 Current State-of-the-Art . 3
1.3 Thesis Contributions . 4
1.4 Thesis Organization . 5

2 Software Defined Radio Technology 6
2.1 History of Software Defined Radio . 6

2.1.1 SPEAKeasy Military Software Radio 7
2.1.2 Modular Multifunctional Information Transfer System Task Group . 8
2.1.3 Joint Tactical Radio Systems . 8
2.1.4 Anywave R©Base Station . 9
2.1.5 IEEE 802.22 - Wireless Regional Area Networks 9

2.2 Software-Defined Radio Basics . 11
2.3 Comparison of Existing Software Defined Radio Platforms 12
2.4 The Universal Software-Defined Radio Peripheral Platform 16

2.4.1 The Universal Sofwater-Defined Radio Peripheral 16
2.4.2 The Universal Software-Defined Radio Peripheral 2 18
2.4.3 USRP and USRP2 Comparison . 21
2.4.4 USRP and USRP2 RF Functionality 22

2.5 Chapter Summary . 24

3 Initial Prototyping Interfaces 25
3.1 Connecting MATLAB to the USRP using Sockets 25

3.1.1 Overview . 26
3.1.2 Test Cases . 27
3.1.3 Results and Discussion . 29

3.2 Direct USRP Interface using a MATLAB MEX Function 30
3.2.1 Overview . 30
3.2.2 Results and Discussion . 33

3.3 Chapter Summary . 33

iv

4 Proposed Graphical Interface for Wireless Design and Innovation 35
4.1 Introduction . 35
4.2 User Interface to Control Simulink USRP2 Block 38

4.2.1 USRP2 Transmit Mask . 38
4.2.2 USRP2 Receive Mask . 42

4.3 S-Function Development . 43
4.4 Interface Evaluation and Verification . 44

4.4.1 Multiple Waveform Generation . 45
4.4.2 Digital Transmission using Minimum-Sift Keying 51

4.5 Implementation Pitfalls . 53
4.6 Chapter Summary . 55

5 Conclusion 56
5.1 Overview . 56
5.2 Future Work . 57

Bibliography 59

A Sine Wave Generator 62

B Socket to USRP Interface 64

C USRP to Socket Interface 70

D MATLAB Sockets Receiver 76

E USRP Sockets Interface with FFT 79

F MATLAB On-Off Keying Server 88

G MEX Interface to USRP Rx Daughterboard 91

H MEX Interface to USRP Tx 100

I USRP2 Transmitter Mask Helper Function 119

J USRP2 Receiver Mask Helper Function 123

v

List of Figures

1.1 RF Front End Comparison . 4

2.1 Software Defined Radio Block Diagram . 12
2.2 USRP Block Diagram . 17
2.3 Block Diagram Showing Data Paths Through the USRP2 19
2.4 USRP2 Filters Block Diagram . 20
2.5 USRP Daughterboards . 23

3.1 MATLAB and GNU Radio Flow Graph . 26
3.2 GNU Radio Sockets to USRP Flow Graph 27
3.3 FFT of Received Data . 29
3.4 Received On-Off Data in MATLAB . 30

4.1 Simulink Block: Mask and S-Function Relationship 36
4.2 How the USRP2 Simulink Library Fits into the Larger Research Project . . 37
4.3 USRP2 Simulink Library . 38
4.4 USRP2 Transmitter Mask . 39
4.5 USRP2 Identification Parameters Automatic Detection 39
4.6 USRP2 Identification Parameters Specifying the MAC Address 40
4.7 USRP2 Radio Parameters set on Mask . 41
4.8 USRP2 Radio Parameters set by Port . 41
4.9 USRP2 Receiver Simulation Parameters . 42
4.10 USRP2 Receiver Threads . 43
4.11 USRP2 Transmitter Threads . 44
4.12 Test Transmitter Model . 45
4.13 FFT Receive Model . 46
4.14 Transmitting a Constant Value . 48
4.15 Transmitting a Real Sinusoid . 49
4.16 Transmitting a Complex Sinusoid . 50
4.17 Transmitting a Pulse-shaped QPSK Signal 52
4.18 MSK Transmitter . 53
4.19 MSK Receiver with Synchronization . 54

1

Chapter 1

Introduction

1.1 Research Motivation

Until recently, many communications systems implemented much of their functionality

in dedicated hardware. Dedicated modulators, demodulators detectors and encoders made

these systems static and difficult to upgrade. As general purpose processor (GPP) and

digital signal processor (DSP) technology improved, a growing number of signal processing

steps could be achieved purely in software. While it is common for modern communications

systems to include some software, a system is not considered a software-defined radio (SDR)

until its baseband operations can be completely defined by software[36]. A SDR moves

the transition from the digital to the analog domain close to the radio frequency (RF)

front end (antenna, power amplifiers, mixers, oscillators, etc.) while representing the rest

of the communications system operations entirely in software. SDR platforms provide

communications engineers with an unprecedented amount of flexibility, reducing the amount

of time it takes to develop or update communications systems. As a result, an arbitrary

number of communications systems can be achieved via a software update. Furthermore,

communication system design testing can be performed on known hardware, eliminating

the variables associated with testing new software on new hardware. Consequently, SDR

2

platforms will be able to fundamentally change the way communications systems are used.

One of the applications for this technology is cognitive radio (CR)[35]. Wireless spectrum

is a scarce natural resource and the demand for it increases with each new wireless device.

The current model of selling sections of spectrum to one user has left much of this precious

resource underutilized. CRs sense the environment they are in and adapt to allow secondary

users access to spectrum that is already allocated to a primary user without interfering

with the primary users. Currently, much of the work conducted by the cognitive radio

research community are in the areas of spectrum sensing [35], dynamic spectrum access

[29], and agile transmission [37]. However, these research fields are often theoretical in

nature. Implementing these new ideas and designs on inexpensive hardware will allow for

practical testing. Rapid reconfiguration allows radios to implement multiple standards thus

making a single device more versatile.

SDR technology provides communications engineers with an unprecedented amount of

versatility. Multiple communications systems can be implemented in software and then

loaded on demand. The public-safety community, equipped with SDR devices, can load

the same system to their radios as they get onto a scene and have complete communica-

tions interoperability between policemen, firemen, EMTs and SWAT team members [28].

Existing systems can be re-implimented to be compatible with systems already deployed.

Military communications use the same interoperability to interface systems between Army,

Air Force and Navy communications systems. Military radios also employ frequency hop-

ping techniques as a eavesdropping and jamming countermeasure.

Developing and prototyping a conventional hardware radio would be difficult to fit into

a single course and be very expensive, but with SDR technology, a basic system can be

running in a matter of minutes. Inexpensive hardware and readily available software would

make a rapid prototyping platform ideal for communications systems engineering education.

3

Entire labs can be outfitted with SDR devices and students would be able to build and test

fully functional systems during the first lab session.

1.2 Current State-of-the-Art

SDR devices provide the dials and knobs necessary for agile radio transmissions. The

first versions of SDR hardware were developed for the military, then research inceptions

would develop custom solutions and now commercial options are becoming available. The

cost of SDR hardware is driven by features, such as maximum RF bandwidth. The analog

to digital converters (ADC) and digital to analog converters (DAC) are a large component

of the cost of SDR hardware and are typically the bottleneck dictating the maximum RF

bandwidth of the system. Software radios can cost as much as the Lyrtech’s SDR Devel-

opment Platform at $9900. Other research universities have commercially available, such

as Rice University’s Wireless Open-Access Research Platform (WARP)[14]. This platform

is available at an academic price of $6500[6]. In order to keep costs affordable, this thesis

focuses on the Universal Software Defined Radio Peripheral (USRP) and USRP2 developed

by Ettus Research LLC which possesses a base cost of $750 and $1400[21]. Figure 1.1 plots

of the cost of these systems by their maximum RF bandwidth. The ideal system would

have the most bandwidth (furthest to the right of the graph) at the least cost (lower on the

graph). The figure clearly shows the USRP2 is the best balance of cost and RF bandwidth.

Communications systems for the USRP2 can be developed in one of a few environments.

The typical development environment is the GNU Radio (GR) platform [21]. GR is an open

source project that uses Python to connect signal processing blocks written in C++ in a

custom framework. These blocks being connected form a flow graph, which implements

a communications system. Multiple languages and custom solutions makes it difficult for

developers new to the platform to get started. GR is strongly tied to the Linux platform,

4

Figure 1.1: RF Front End Comparison

which requires familiarity with this family of operating systems to install the software and

start development. GR uses a custom framework to create flow graphs, which the developer

has to become familiar with, in addition to Linux, C++ and Python.

Due to the di?culties encountered developing with the GR framework, alternate in-

terfaces to the USRP2 from commercial software were investigated. Other groups have

developed interfaces to this hardware, such as the OSSIE pro ject at Virginia Tech [7].

The OSSIE project is largely built upon GR and after a short trial seems to have similar

installation and usability issues as GR.

1.3 Thesis Contributions

This thesis provides the following novel contributions:

• An interface in an development environment providing users the ability to leverage

existing signal processing libraries to implement modern digital communications sys-

5

tems. Existing affordable development platforms require the user to learn a new

proprietary framework or develop the system from scratch. The interface presented

in this thesis will connect low-cost SDR hardware with a development environment

that is a common part of communications curriculums and often used in industry for

test and verification of communications systems.

• An interface to SDR hardware capable of full reconfigurability by providing full control

of the radio front-end to the development environment. Access to each of the dials on

the hardware is important to fully realize the reconfigurability of SDRs.

• An interface that is platform agnostic. The current interface to the SDR hardware

that is the focus of this thesis is for Linux only. This interface must be compatible

across platforms, so after the library supports other operating systems, this interface

will get that capability without any further development.

1.4 Thesis Organization

The rest of this thesis is organized as follows: Several SDR platforms that are currently

available to the communications systems research and development community are pre-

sented in Chapter 2. Chapter 3 consists of the investigation of two alternate interfaces to

the USRP hardware. The Simulink interface for the USRP2 is introduced and explained in

Chapter 4. Chapter 5 contains conclusions drawn from the project and future work.

6

Chapter 2

Software Defined Radio Technology

2.1 History of Software Defined Radio

The term software defined radio (SDR) first appeared in Joseph Mitola’s 1991 paper

“Software Radios: Survey, Critical Evaluation and Future Directions”[27]. Mitola intro-

duces the concept of applying digital signal processing (DSP) on general purpose hardware

and using digital to analog converters (DAC) to build digital communications systems. In

this paper, Mitola goes on to describe the ideal development environment or computer aided

design (CAD) environment[27]:

Consider the process of designing and developing large scale software radio sys-
tems. The transitions from (1) service concept to (2) system definition to (3)
simulation and validation to (4) delivery invariably require a mix of radio engi-
neering disciplines. In one vision of the future, an ideal radio CAD environment
would facilitate such transitions.

The concepts developed in this paper have laid the foundations for the modern SDR

field. Processing power of general purpose hardware is the major technical hurtle to imple-

menting SDR systems. Powerful processors require large amounts of power, making them

less ideal for mobile communications systems. Moore’s Law predicted the number of tran-

sistors that could fit onto a fixed amount of silicon would double every eighteen months

[23]. Developments in general purpose processor technology have kept up with the Moore’s

7

Law prediction, resulting in continuing processing capabilities and lower power consump-

tion. Each improvement in silicon wafer technology makes SDR systems more viable. The

ability to implement systems capable of rapidly changing communications protocols and

dynamically accessing spectrum attracted interest from the United States Military.

2.1.1 SPEAKeasy Military Software Radio

Hazeltine Corporation, now part of BAE Systems Incorporated, was awarded a contract

by the Department of Defense to develop a software defined digital communications system.

The project, called SPEAKeasy, was divided into two phases. The first phase ran from 1992

to 1996 and involved the creating of a proof-of-concept that software defined radios could

fulfill military applications. In 1996, the project went into phase two, implementing existing

radios in the SDR framework[24]. A description the the rapid prototyping capabilities of

SDR are outlined in Raymond Lackey and Donald Upmal’s 1995 paper on the project[24]:

In the past, a military radio was developed for a 30-year lifetime. It performed
a single function, and was optimized for a particular field application. This was
primarily caused by the slowly evolving technology and the difficulty of fitting
the military users needs into the package space available. Today, commercial
applications are driving technology so that the half-life of a component is down
to 19 months, that is. the time from product release to the use of its next
generation replacement in new designs.

Phase two of the project utilizes SDR’s ability to change the communcations systems

they implement with an easy change in software. This feature would allow these radios

to become compatible with any of the 15 existing military radios re-implimented for this

project or quickly become compatible with any radio system used by U.S. Allies. The ability

to bridge incompatible communications systems make SDRs ideal for emergency response.

As each services responds to a scene, they would be able to download the radio system ideal

for the current situation. These capabilities could not be realized without some framework

for standardization of SDR technology.

8

2.1.2 Modular Multifunctional Information Transfer System Task Group

An offshoot of phase one of the SPEAKeasy project was a need to organize a standards

committee for the emerging SDR field. The Modular Multifunctional Information Transfer

System (MMITS) Task Group held its first meeting March 13th 1996 [1]. Approximately

100 attendees representing the Department of Defense, defense contractors and other com-

mercial companies came together to organize the VMEbus International Trade Association

(VITA)[1]. MMITS became the SDR Forum for their twelfth meeting in December of 1998

and still exists today[2]. The forum provides regular meetings for individuals working in

the field to get together and discuss current topics.

2.1.3 Joint Tactical Radio Systems

In 1997 the US Military put out a Mission Needs Statement outlining the requirements

for a communications system that would be interoperable across all branches of the military

[22]. The proposed system would include handheld radios, vehicular (planes, helicopters,

cars and trucks) radios, ship based radios and fixed station radios. The project became

known as the Join Tactical Radio System [22]. The project has been going over budget

since 2005, but Boeing’s Cluster 1 program for vehicle-mounted radios has reached $21.6

billion. General Dynamic’s Cluster 5 program, consisting of the handheld, manpack and

embedded radios has reached $11 billion. These two programs are over budget by $8.9

billion and only represent part of the JTRS program[3]. The project is leveraging SDRs

rapid reconfigurability to be compatible with 25 to 30 families of radios currently used by

the different branches of the US military. New waveforms are being develop for the project

that will ensure secure communications into the future.

Interoperability for this large project comes from the use of the Software Communica-

tions Architecture (SCA)[11]. The specification defines the interfaces between hardware

9

and software. With the interface defined, multiple venders can develop either hardware or

software and all of the components would work together. The SDR Forum and the Software

Based Communications Domain Task Force are developing on a commercial standard from

the SCA[10].

2.1.4 Anywave R©Base Station

Vanu R©, Inc. developed the Anywave Base station, the first software radio to be certified

by the U.S. Federal Communications Commission (FCC)[12]. Cellular base stations were

an ideal application for early SDRs. Cell towers are widely distributed, stationary and

require frequent updates. Telecommunications providers would have to send a crew to each

cellular tower and update the hardware to roll out a new communications standard on the

network. SDR technology enables the providers to rollout a new standard by downloading

new software to servers located either at the tower, or at a centralized data center. Providers

could launch instances of radios as they were needed, instantly responding to the demands

of their users. This base station did not include any custom hardware, running entirely on

standard servers. Cellular towers do not have the same stringent power requirements that

handheld mobile devices must adhere to, working around one of the drawbacks of using

general purpose hardware for signal processing. The company was founded in 1998 and is

located in Cambridge, Massachusetts. The company was founded by Vanu Bose, an MIT

graduate who worked on the SpectrumWare project at the MIT lab for Computer Science

as a graduate student[13]. The experience from the SpectumWare project would lay the

foundations for Vanu Inc.

2.1.5 IEEE 802.22 - Wireless Regional Area Networks

In 2004 the IEEE identified a need for a wireless standard to provide broadband internet

access to remote and rural areas. The 802.22 Working Group was started to develop this

10

standard[4]. The FCC has reserved large parts of the wireless spectrum for television

broadcast. In comparison to unlicensed bands such as the ISM band, spectrum usage in

the bands reserved for television broadcasts is very low. An FCC report cites 70% of radio

spectrum is underused in different locations at different times[35]. To deal with spectrum

congestion this standard will allow unlicensed devices to operate in frequencies designated

for television. The television broadcasters and receivers are referred to as the incumbent

users or devices. In order to prevent interference with incumbent users, cognitive radios

(CRs) will be used. This is the first IEEE wireless standard to use CR, a technology enabled

by SDR. Using both radio and software agility, the radios can adapt to changing channel

conditions and provide consistent service without interfering with incumbent users.

The standard aims to provide broadband wireless access to remote areas. The services

will be of similar speeds to cable and DSL, but will have a much greater range than other

wireless standards to reach users who cannot access these technologies. The standard is

centered with this use in mind, but will be versatile enough to be used in suburban and

urban settings as well (such as college campuses, housing developments etc.) The 802.22

network will ”provide services such as data, voice, as well as audio and video traffic with

appropriate Quality-of-Sercice (QoS) support.” [20] In order to provide QoS support, the

network will have to support different classes of traffic, similar to ATM networks.

The frequencies reserved for TV broadcasting were chosen because they are ideal for

long range radio communications. That same fact makes them deal for 802.22 networks.

“In the US, TV stations operate from channels 2 to 69 in the VHF and UHF portion of

the radio spectrum. All these channels are 6 MHz wide, and span from 54-72 MHz, 76 -

88 MHz, 174 - 216 MHz and 470 - 806 MHz.” [20] The 6 MHz bandwidth per channel will

have important impacts on the standard, since the smallest and most common unoccupied

sections of spectrum will fall into 6 MHz units. The Working group is still debating how to

11

include international standards, which would increase the range of frequencies to 41 to 910

MHz and channel bandwidths of 6, 7 and 8 MHz. The ability to dynamically access these

spectral ranges would not be possible without SDR technology.

2.2 Software-Defined Radio Basics

SDRs move the transition between hardware and software as close to the antenna as

possible, as shown in Figure 2.1. The figure shows the generic signal processing steps

performed by an SDR, from the generation of raw data to the modulation of the signal,

and from transmission across the channel to recovering raw data. The vertical dashed line

indicates the transition from hardware to software [34] . The data can come from a variety

of sources, where it is then compressed and error correction encoding is performed. This

compressed and encoded data is then modulated and sent to the RF front end. The RF

front ends used for this thesis are the USRP and USRP2. The USRPs are designed to

upconvert baseband signals to passband frequencies, then amplifies and sends the signals

over the air. The receiving USRP then receives the signal and downconverts the signal

from passband to baseband frequencies. This data is sent to a host where timing recovery,

synchronization and equalization are performed. The signal can then be demodulated, error

checked, and corrected if possible. The data is uncompressed and sent to whatever kind

of sink is appropriate. Doing the majority of signal processing in the software domain

allows for rapid prototyping and reconfigurability[34] . Costs associated with the software

are relatively low, with the software either being offered for free under the GNU Public

License (GPL) or being licensed by the research institution for other applications. Analog

components located at the RF front end are the primary cost of SDR platforms.

12

Figure 2.1: Software Defined Radio Block Diagram

2.3 Comparison of Existing Software Defined Radio Plat-

forms

RF front ends used by other research groups were studied to aid in the section of the

one used for this project. The University of Kansas developed their own agile radio called

the Kansas University Agile Radio(KUAR) [25], requiring a large team of students with a

wide variety of technical backgrounds and five years to develop a hardware platform spon-

sored by the NSF and DARPA. The Centre for Telecommunications Value-Chain Research

(CTVR) at the University of Dublin, Trinity College also uses a homemade solution, the

Plastic Project [29]. The Center for Wireless Telecommunications (CWT) at Virginia Tech

has a homemade solution that includes genetic algorithms to optimize the radio’s configu-

ration [29]. The University of California at Berkeley uses the Berkeley Emulation Engine 2

(BEE2) complete with five Xilinx Virtex 2 Pro FPGA units the entire radio is designed in

Simulink. The Simulink model is then converted into HDL and combined with the Xilinx

System Generator to put the entire radio onto FPGAs [26]. This allows for low latency

communications while providing reconfigurability and lots of processing power. Custom

solutions require more resources than the average research group can acquire. For a more

13

accessible hardware solution, the USRP family of products were selected.

Table 2.1 compares some commercially available RF front ends. The table compares the

maximum RF bandwidth of each of the systems, indicates where the processing is done and

on what, now the device connects to the computer and cost. The processing partition refers

to the location of the processing of the baseband signals, either on the device itself, on a

host system, or a mix of the two. The processing is done using General Purpose Processors

(GPP), commonly the x86 architecture, or using Field Programable Gate Arrays (FPGAs).

The cost does not include the cost of the host system or the daughterboards required by

each of the systems.

14

Table 2.1: SDR RF Frontend Comparison Chart
USRP USRP2 BEE2 LYRTECH FLEX 3000 WARP

Year of release 2005 2008 2007 2006 2005 2008
RF bandwidth (MHz) 8 25 25 5, 7, 20 or 22 1 0.048 24
Processing partition Off-board Mixed On-board On-board Off-board On-board

Processing architecture GPP GPP FPGA FPGA GPP FPGA GPP FPGA
Connectivity USB2 GigEthernet USB Ethernet Firewire SATA

Ethernet HSSDC2
No. of antennas or RF paths 4 2 16 2 2 4

Cost $700.00 $1400.00 $20,000.00 2 $9900.00 $1599.00 $6500.00 3

1Depends on RF module
2Estimated by [18], processing only
3Academic Price, $9500.00 for commercial users

15

The USRP and USRP2 were developed by Ettus Research and offer the lowest cost

options. These units are connected to a PC, with the majority of the signal processing

done on this host system. Using USB to connect the USRP to the host severely limited

the maximum bandwidth it can achieve and a smaller FPGA forces all of the signal pro-

cessing outside of upconversion to the host. The USRP2 has a much higher maximum RF

bandwidth and a larger FPGA enables some processing to be done on the device itself.

The BEE2 is the Berkley Emulation Engine 2. This board has 5 Virtex 2 Pro Xilinx

FPGAs and all of the signal processing is done on board in the FPGAs. The entire radio is

implemented in Simulink, compiled into HDL and downloaded onto the FPGAs [18]. The

price, as estimated in a research paper, indicates the cost is around $20,000 [18]. This price

is out of the range for many research institutions new to the field of software defined radio,

and is too high to deploy these units to an entire lab in a classroom setting.

LYRTECH also has a single unit SDR solution. This board includes a general purpose

processor and FPGA on-baord to do all of the signal processing. This system also includes

the processing on the board, increasing costs while improving the ability to achieving the

full range of sample rates. While less expensive than the BEE2, this board is significantly

more expensive than the USRP2 [15].

Flex Radio systems offers a line of SDR hardware for Ham radio applications. These

units include the RF front ends, unlike the other units being compared. These front ends

are optimized for the Ham radio bands, with a frequency range or 10 kHz to 60 MHz and

a maximum RF bandwidth of only 48 kHz [5].

Rice University has developed the Wireless Open-Access Research Platform (WARP).

WARP has similar capabilities to other SDR hardware but costs more than the USRP2. A

Virtex-4 FPGA allows for significant processing to be done onboard. The Radio Board can

be tuned to frequencies in the 2.4 and 5.8 ISM bands[14].

16

The LYRTECH unit and BEE2 are good options for all-in-one applications, but are

significantly more expensive than the USRP family of products. The FLEX 3000 is in the

same price range as the USRP products, but are not nearly as versatile, being focused on

Ham radio applications and frequencies. The USRP2 products offer the most versatility for

the lowest cost.

2.4 The Universal Software-Defined Radio Peripheral Plat-

form

The USRP product family has been developed by Ettus Research LLC [21]. The com-

pany started with the USRP and released the USRP2 to a limited number of developers in

2008. The USRP2 officially went on sale in May of 2009.

2.4.1 The Universal Sofwater-Defined Radio Peripheral

The USRP is an inexpensive and versatile SDR platform, consisting of a motherboard

with a variety of daughterboards. The motherboard interfaces with a host system using a

USB2 interface. Up to 4 channels, consisting of 2 send and 2 receive channels, are multi-

plexed and demultiplexed using a FPGA located on the motherboard. While 4 channels are

possible, the USB2 link is commonly the bottleneck of this system and all 4 channels are

not commonly used at the same time. The FPGA also upconverts and downconverts signals

to and from an intermediate frequency (IF) stage using a cascaded integrator-comb (CIC)

filter. From the FPGA, the signal at IF is sent and received to and from the daughterboards

using analog-to-digital converters (ADCs) and digital-to-analog converts (DACs). A block

diagram of the motherboard can be found in Figure 2.2.

17

Figure 2.2: USRP Block Diagram

18

2.4.2 The Universal Software-Defined Radio Peripheral 2

The USRP2 motherboards provide the interpolation and decimation filters on an FPGA

and a DAC / ADC outputting an analog signal at an intermediate frequency (IF). To

transmit data, a daughterboard containing analog circuitry to up convert this signal to

the passband frequency set by the software. The motherboard also has a gigabit Ethernet

interface to the host system and a CPLD for loading the FPGA Bitfile from the SD card

to the FPGA. Figure 2.3 shows the block diagram of the USRP2 motherboard.

19

Figure 2.3: Block Diagram Showing Data Paths Through the USRP2

20

Samples created on the host are sent to the USRP2 over an Ethernet interface. The I

and Q data sent over the interface are scaled interleaved 16 bit shorts. A demultiplexer on

the FPGA then sends the samples down two different filter chains, one for the in phase and

one for the quadrature. There are three interpolation filters in each chain, a low rate half

band filter, a cascaded integrating comb filter and a high rate half band filter, as shown

in Figure 2.4. At least one of of the half band filters must be enabled, so the minimum

interpolation rate is 2. The CIC filter can be set between 1 and 128, and the second HBF

also has a factor of 2, so the maximum interpolation rate is 512. This data is then sent to the

DAC, which always receives data at 100 mega-samples per second. The data rate between

the DAC and the FPGA does not change, so the data rate over the Ethernet interface is

dependant on the interpolation rate.

Figure 2.4: USRP2 Filters Block Diagram

A high interpolation rate also means the host has to generate fewer samples. Table

2.2 shows the host sample rate and related maximum RF bandwidth by interpolation /

decimation factor. The receive chain is the same, data is sent from the ADC to the FPGA

at 100 mega-samples per second, goes through decimation filters and multiplexed to be sent

over the Ethernet interface.

21

Host Sample Rate =
ADC Rate

Decimation Rate
(2.1)

Maximum Bandwidth =
Host Sample Rate

2
(2.2)

Equation (2.1) was used to calculate the host sample times. The ADC rate remained

constant and is divided by the decimation rate selected by the user. The Nyquist rate [30]

was then used to calculate the maximum RF bandwidth as seen in Equation (2.2).

Table 2.2: USRP2 Data Rate Table
Interpolation Rate or Host Sample Maximum RF

Decimation Rate Rate Bandwidth
512 195 kS/s 97.6 kHz
256 390 kS/s 195 kHz
128 781 kS/s 390.5 kHz
64 1562.5 kS/s 781 kHz
2 50 MS/s 25 MHz

When the USRP2 is powered on, an onboard CPLD (complex programmable logic de-

vice) reads the first megabyte of the attached SD card. This megabyte is the bit file for

the FPGA. After the bit file is loaded into the FPGA, the CPLD goes into a pass-through

mode so the FPGA can access data on the SD card.

2.4.3 USRP and USRP2 Comparison

Table 2.3 compares the two versions of USRPs. The USRP2 uses a Gigabit Ethernet

connection to the computer, alleviating the USB2 bottleneck. The ADCs and DACs are

faster with more bits, making them more accurate, and there will be 1 Megabyte of onboard

SRAM on the USRP2 if the user wants to write custom FPGA code. The FPGA has been

changed to a Spartan 3 and is larger than the Cyclone on the USRP. The USRP2 has

only one transmit and one receive channel, simplifying the multiplexing circuitry on the

22

FPGA and freeing up more resources of the FPGA. The USRP and USRP2 are affordable

off-the-shelf hardware solutions, making them ideal solutions for organizations uninterested

or unable to develop in-house SDR hardware.

Table 2.3: USRP Comparison Chart
USRP USRP Version 2

Daughterboards 2 1
Connection USB Gigabit Ethernet

Max RF Bandwidth 8 MHz 25 MHz
FPGA Cyclone 1, EP1c12 Spartan 3, XC3S2000

Logic Elements 12,060 46,080
ADC dual 64MHz, 12-bit dual 100 MHz, 14-bit
DAC dual 128 MHz, 14-bit dual 400 MHz, 16-bit
RAM None 1 Meg SDRAM
Cost $700.00 $1400.00

While the number of simultaneous daughterboards is reduced with the USRP2, the

increase in connection speed with the host greatly increased the maximum RF bandwidth.

The larger FPGA enables advanced users to move some of the signal processing steps

directly onto the device itself by developing a custom bitfile. The improvements do come

and a relatively substantial cost, but compared to other systems the USRP2 is still very

affordable.

2.4.4 USRP and USRP2 RF Functionality

The daughterboards are RF front ends that plug into one of four sockets on the mother-

board and are each designed to support a wide range of different radio frequency bands. The

Basic Tx and Basic Rx boards come individually, while the RFX2400 board comes with the

transmit and receive circuitry on a single board as seen in Figure 2.5. Analog components

on these boards upconvert, downconvert and amplify the IF signals to the desired RF and

broadcasts the signal.

Table 2.4 shows the daughterboards used at WPI. The variety of daughterboards enable

23

Figure 2.5: USRP Daughterboards

the use of a wide range of frequency ranges. A larger selection of daughterboards are

available from Ettus Research [21].

Table 2.4: Daughterboard Comparison
Daughterboard Frequency Range Transmit Power

Basic Tx / BasicRx 1 MHz to 250MHz none
RFX2400 2.3 GHz to 250MHz 50 mW / 17 dBm

XCVR 2.4 GHz to 2.9 GHz 100 mW / 20 dBm
4.9GHz to 5.9 GHz

TVRX 50 MHz to 250 MHz Receive only

The interface for developing daughterboards is open, so research groups can develop

custom daughterboards to fulfill specific design requirements. This daughterboard was

designed to maximize the range of center frequencies that could be set in software without

having to change daughterboards[17].

24

2.5 Chapter Summary

SDR technology has roots in the military sector but is growing rapidly in the commercial

sector as the market requires more spectrum for high bandwidth communications devices.

While there are a fair number of Radio front end available for SDR development, the USRP2

offers the best balance of versatility and low cost. The gigabit Ethernet interface with the

host system enables a max RF bandwidth of 25 MHz and a wide range of daughterboards

can enable transmit center frequencies of up to 5.9 GHz.

25

Chapter 3

Initial Prototyping Interfaces

The difficulties developing with the GR framework led to a search for alternate ways to

interface to the USRP and eventually the USRP2. Two interfaces were developed, the first

using the socket interface on the computer to locally connect MATLAB with GR and the

second developed a MATLAB function to directly connect to the USRP. These interfaces

were investigated for the original USRP, which has slightly different design considerations

than the USRP2. While these interfaces were being developed, a research group at the

University of Karlsruhe, Germany developed a Simulink interface to the USRP[9].

3.1 Connecting MATLAB to the USRP using Sockets

An alternate approach for interfacing between MATLAB and GR used sockets. MAT-

LAB and GR both have add-ons to enable communication over this computer network

interface. A signal processing block was written by Jamie Cooley providing both TCP/IP

and UDP sockets for GR [19]. While MATLAB can connect to open sockets, the built-

in functions cannot open a socket for another program in order to be connected. Peter

Rydester developed a TCP/IP MEX file to provide both host and client functionality to

MATLAB [32]. With these two interfaces, data can be easily sent from one software package

26

to the other.

3.1.1 Overview

Figure 3.1 shows the flow of data generated in MATLAB then sent to a GR flow graph

using the sockets interface. This flow graph maintains the connection to the USRP where

the data is up-converted and broadcast. The receive chain is simply the reverse.

Figure 3.1: MATLAB and GNU Radio Flow Graph

Figure 3.2 shows the simple GR flow graph required to pass data from MATLAB to

the USRP. This simple flow graph consists of three blocks, one to maintain the socket

interface, another to convert the floating point data necessary for the network connection

to the complex data and the third configures the USRP and maintains the connection to

it. When run by the user, this flow graph opens a socket on the local host for MATLAB

to connect to. I and Q data from the USRP is converted to floating point data and the

samples can be sent to the host system.

Appendices A through D have the corresponding code for each of the blocks shown

in Figure 3.1. To run the system, the user initiates the GR flow graphs, runs the MAT-

LAB transmitter and then the MATLAB receiver. Configuring the USRP has to be done

27

Figure 3.2: GNU Radio Sockets to USRP Flow Graph

when starting the GR flow graphs and the device cannot be reconfigured by the MATLAB

transmitter or receiver.

3.1.2 Test Cases

This interfaced was tested using two simple systems to verify the samples being generated

in MATLAB are being sent using the USRP hardware. The first test is a simple sine wave

and the second a basic digital communication system.

Continuous Sine Wave

While developing this system, a number of minor issues came up. The easiest problem

to overlook would be the code that enables, or turns on, the transmitter. The user wouldn’t

know to include this line and the radio would not error. After enabling transmission on

the daughterboard using the command ’subdev.set enable(True) ’, a sine wave created in

MATLAB was sent to GR, up converted to 2.4GHz and wirelessly transmitted to the receive

side using the system in Figure 3.1.

A sine wave, being sent at 48,000 samples per second, was correctly received and the

data collected in MATLAB. The sample rate of 48 kHz was chosen for the audio based

testing of the system, 48 kHz being the minimum Nyquist frequency to sample 24 kHz

audio samples[30]. To process the signals broadcast on a regular PC, the RF signal must

28

be down-converted from some center frequency, set by the USRP. The receiver did not

realize it was receiving the transmitted data because the USRP was tuned to the wrong

center frequency. One of the outputs from GR was misinterpreted as indicating the radio

was broadcasting at 2.40401 GHz. A sine wave was being detected here, causing a false

belief that the receiver was working. This issue was not discovered until another digital

modulation type was implemented and tested.

On-Off Keying

The most basic modulation scheme is On-Off Keying [33]. This modulation scheme

sends any signal to represent a “1”, and nothing to represent a “0”. To simplify the design,

the transmitter will keep a counter of the number of symbols sent, all odd symbols will be

treated as a “1”, and even symbols a zero, making it easy to figure out what is expected

from the receiver and verify the functionality of the interface. The receiver will receive the

data and display it through a MATLAB plot. To aid in tuning the USRP, a GR GUI has

been developed with an Fast Fourier Transform (FFT) of the incoming signal. This display

will allow fine tuning of the system, and aid in debugging problems.

At first, almost identical code was used from the continuous sine wave transmitter and

receiver, just modifying the transmitter to include either a sine wave or zeros. The trans-

mitter was being displayed on a spectrum analyzer, but it could not be decoded. A sockets

interface was then added to an existing USRP receiver that provided GUI configuration of

the USRP and a FFT of the data being received. The FFT in this GUI enabled tuning of

the USRP to verify the signal was received, as seen in Figure 3.3. The receiver was then

tested using the DBPSK transmitter introduced earlier. The code for this receiver can be

found in Appendix E. With confirmation of a working receiver, the transmitter could then

be developed.

The transmitter sends one of two waveforms, either a sine wave of one kilohertz, or zeros,

29

Figure 3.3: FFT of Received Data

thus creating on off keying. The transmitter keeps a counter of the number of packets sent,

each packet containing 48,000 samples, or one second of information. Odd packets are

treated as 1’s and the sine wave is sent, even packets are treated as a zero. This MATLAB

code can be found in Appendix F and is very similar to the code used for the sine wave

receiver in the previous section. The received data can be seen in Figure 3.4.

The flow graph for the transmitter was also modified. A gain stage was inserted between

the socket block and the block that converts floating point data to complex I and Q data.

A gain of 100 is applied, so the USRP broadcasts a stronger signal. If too large of a gain is

applied the transmission becomes distorted.

3.1.3 Results and Discussion

While this interface is functional, it still involved a flow graph created by GR and running

both a GR program and then the MATLAB program. Removing the flow graph framework

would allow for more direct debugging, simpler systems and fewer wasted clock cycles. The

network layer removes direct control of the USRP from MATLAB, the program doing all of

the signal processing. Enabling this control would require a second connection between the

two programs to send messages to GNU radio changing the radio’s parameters and a more

30

Figure 3.4: Received On-Off Data in MATLAB

complex GR program. This work lead to an interface that directly controlled the USRP

hardware without a GR flow graph.

3.2 Direct USRP Interface using a MATLAB MEX Function

Creating a MEX function to configure the USRP would allow direct control of the

hardware from MATLAB and remove the majority of the GR code from development. The

function would still use the libraries that communicate with the hardware, but would remove

the rest of the code, including the use of sockets.

3.2.1 Overview

Removing the flow graph framework and having MATLAB directly control the USRPs

would require a direct interface to the GR libraries that control the USRP. The main C++

library to be used is the “usrp standard” as used by some test programs and a program

31

called “USRPER.” These libraries provide the controls necessary to configure the USRP.

These files are written in C++ enabling the creating of a MEX function. The current MEX

function can be found in in Appendix G; which can instantiate a USRP object, set it up

and send data to the USRP. The M code in Listing 3.1 displays the user interface for the

MEX function.

Listing 3.1: User Interface for USRP MEX funtion
1 USRP Tx(’ setup ’ , CenterFreq , SigPower , In t e rpo l a t i onRate)

2 USRP Tx(’ setFrequency ’ , NewFrequency)

3 USRP Tx(’ setPower ’ , NewPower)

4 USRP Tx(’ s e t I n t e rpo l a t i onRa t e ’ , NewRate)

5 USRP Tx(’ sendData ’ , data)

Line 1 of Listing 3.1 sets up a USRP transmitter with a specified center frequency, signal

power and interpolation rate. Lines 2 through 4 allow the user to change these parameters

of the radio, even after the transmission has been started. Line 5 would be used repeatedly

to send data using the configured USRP. The M function remains the same, USRP Tx, and

the first parameter passed to the function specifies the desired command. The remaining

parameters depend on the specified command.

MEX functions in MATLAB create objects that are not cleaned up between repeated

calls, enabling multiple calls on the same USRP object. The first command initializes the

USRP and allows the user to setup the USRP. The following three lines show examples of

setting properties individually and are not needed if the values are static and set in the first

command. The second to last command prepares the USRP to receive streaming data and

the last command actually sends the data to the device.

This interface is not fully implemented, but a switch statement in the MEX function will

read the first argument, the command, and act appropriately. Currently the MEX function

calls each of these functions during initialization and sends data the MEX function creates

to the FPGA. This interface is difficult to test because configuring the daughterboards

32

without GR has not been accomplished yet.

The C++ code in Listing 3.2 shows the initialization function of the MEX function.

Each step of the setup has been broken out into individual funtions. The function calls in

this code listing use the default values set in the functions by not passing in any parameters.

If the interface was fully implemented, the associated parameters would be passed to these

functions. The full code listing of these functions are in Appendix H.

Listing 3.2: MEX Interface Initialization Function
1 void mexFunction (

2 int numOutArgs , /∗ number o f expec ted output s ∗/
3 mxArray ∗outputArgs [] , /∗ array o f po in t e r s to output arguments ∗/
4 int numInArgs , /∗ number o f inpu t s ∗/
5 const mxArray ∗ inputArgs [] /∗ array o f po in t e r s to input arguments ∗/
6)

7 {
8 i f (numInArgs < 1 | | ! mxIsChar (inputArgs [0])) {
9 mexErrMsgTxt (” Inva l i d mex Input ” , ” F i r s t input must be a char array ”

10 ” i nd i c a t i n g a va l i d USRP command , s ee USRP Tx(’ he lp ’) ”

11 ” f o r l i s t o f commands”) ;

12 }
13 mexPrintf (”Begin USRP program\n”) ;

14 setupUSRP () ;

15 setDBFrequency (1000) ;

16 startUSRP () ;

17 sendRandDataTest () ;

18 cleanUSRP () ;

19 mexPrintf (”End USRP programr\n”) ;

20 }

When this code is compiled, G++, the GNU C++ complier, successfully finds the

libraries required, but the MEX complier returned an ”undefined reference” error. This

problem was discovered to be a linking error. The makefile was referencing the source code

and not the complied C++ library. This issue was addressed, a receiver object was created

and received data through a loopback interface. The loopback interface is a configuration

for the FPGA on the USRP, where the FPGA simply loops the data it receives to be

transmitted back to the host, simulating receiving data. Interfacing to the daughterboards

33

from this interface has not been implemented, such that no over the air testing could be

done with this interface.

The USRP and USRP2 configure daughterboards differently. The USRP requires daugh-

terboard configurations to be read from Python files, where the firmware on the USRP2

holds the configuration. The GR community has not converted the USRP configurations to

be compatible with C++ only implementations . In addition to the technical improvements

of the USRP2, the way USRP2 handles the daughterboard configuration makes it easier to

develop for and firmware updates will enable support for new daughterboards without any

further development of the host API’s.

3.2.2 Results and Discussion

The release of the USRP2 ended further development of this interface. While a MEX

function is a viable option for direct control of the USRP hardware from MATLAB, long

term complications from custom daughterboard configurations make the USRP2 a clear

choice for easy interface development and long term support. The conversion to the USRP2

also provided an opportunity to change the environment the interface would be developed

for, moving from MATLAB to Simulink.

3.3 Chapter Summary

A solution using a sockets interface between MATLAB and GR was easy to implement,

but did not provide control of the radio parameters of the USRP. Conversely, a direct

MATLAB interface using MEX functions will give the most control over the USRP while

keeping as much code as possible in MATLAB, the familiar, easily debuggable software

framework. Full implementation of the MEX functions would require the re-implimentation

of daughterboard configuration files, which are updated regularly and would require lots of

support to maintain.

34

Hardware improvements of the USRP2 over the USRP make it the clear choice for

further development. The transition in hardware also provided an opportunity to change

the environment the interface would be used in. MATLAB is its focus on batch processing,

ideal for some situation, but not for real time applications. Simulink is a time aware, stream

based program, making it better suited for streaming applications such as SDR. The choice

of the USRP2 also alleviates the daughterboard configuration issue, simplifying development

and enabling the interface to use all the daughterboards supported by the USRP2 firmware.

The research group at the University of Karlsruhe, Germany has released a blockset for

the USRP. The blockset provides an interface to the hardware from Simulink models. The

masks configure the daughterboards, but do not provide a way to reconfigure the hardware

from the model[9].

35

Chapter 4

Proposed Graphical Interface for

Wireless Design and Innovation

4.1 Introduction

Hardware improvements of the USRP2 over the USRP make it the clear choice for future

communication systems experimentation and development. The transition in hardware also

provides an opportunity to change the environment that the interface would be used in.

MATLAB is focused on batch processing, which is ideal for several situations, but not for

real time applications. On the other hand, Simulink is a time aware, stream based program,

making it better suited for streaming applications such as SDR. Simulink is also the product

of choice for code generation of models. Code generation can turn Simulink models into

ANSI Portable C or HDL code, providing a better framework for real time processing.

The blocks that were created for this interface are based on C++ S-Functions. S-

Functions provide Simulink with a set of functions to call to preform the operations of the

block. These S-Functions use a mask to provide the user an interface for configuring the

block. Figure 4.1 shows how S-Functions, masks and subsystems are used to create Simulink

models. Each block in the model has a mask, the parameters set in the mask are then sent

36

to the S-Function, which is called during the simulation. S-Functions can be made using

a variety of programming languages, but C++ was chosen for this blockset to match the

USRP2 library.

Figure 4.1: Simulink Block: Mask and S-Function Relationship

This project is part of a larger research effort at WPI, as seen in Figure 4.2. This

project is focused on creating a blockset to communicate with the USRP2 libraries. By

creating a Simulink interface to this hardware, existing signal processing libraries provided

by the MathWorks can be leveraged to create communications systems. Other students are

working on the proprietary C++ library and Simulink models including higher layers of the

TCP/IP model.

37

Figure 4.2: How the USRP2 Simulink Library Fits into the Larger Research Project

38

4.2 User Interface to Control Simulink USRP2 Block

Simulink blocks are published as sets in libraries. The USRP2 Library is in Figure

4.3 with separate transmit and receive blocks. Additional input ports are made available

through the mask to enable the model to calculate and adjust the parameters of the radio.

Depending on the mask settings, the USRP2s are identified by either the Ethernet interface

or the MAC address and this information is displayed on the block.

Figure 4.3: USRP2 Simulink Library

4.2.1 USRP2 Transmit Mask

The mask of the transmitter can be seen in Figure 4.4. The mask has some help text

and all of the parameters needed to configure the USRP2.

A dedicated gigabit Ethernet interface is commonly used to communicate with the

USRP2, so by default the block automatically detects the MAC address of the USRP2

on the specified interface. If more than one USRP2 is on the Ethernet interface, the MAC

address can be specified. The exact way to specify the Ethernet interface varies by operating

system. Figure 4.5 shows the way to specify the interface on Linux. Figure 4.6 shows how

to specify the USRP2 hardware using both the Ethernet Interface and the MAC address.

Connecting more than one USRP2 to an ethernet interface could saturate the Gigabit

39

Figure 4.4: USRP2 Transmitter Mask

Figure 4.5: USRP2 Identification Parameters Automatic Detection

40

Figure 4.6: USRP2 Identification Parameters Specifying the MAC Address

Ethernet connection if both USRP2 require enough bandwidth. Having more than one

USRP2 share a connection could also result in corrupt packets, leading to data loss. The

currently library connects to the USRP2 using raw ethernet sockets[16]. These sockets

provide error detection, but not error correction, so corrupted packets would not be resent

and the packet dropped. Introducing error correction would increase the latency in the

system.

The USRP2 has three parameters for the user to control: center frequency, power and

interpolation factor. The range for the center frequency and the power are dependant on

the attached daughterboard. The Interpolation factor configures filters on the USRP2 as

covered in Chapter 2. Figure 4.7 shows the default settings of these parameters.

By default, the parameters of the USRP2 will be statically set in the mask of the block.

The blocks will be able to input these parameters from a port, so the parameter can be

calculated in the simulation and be changed on the device. Controlling which parameters

are visible to the user is done with mask helper functions. The functions are written in M,

and the mask helper for the transmitter is in Appendix I and for the receiver is in Appendix

J. Figure 4.8 show the mask with the radio parameters hidden.

The interpolation and decimation rates change the sample rate coming from the USRP2

41

Figure 4.7: USRP2 Radio Parameters set on Mask

Figure 4.8: USRP2 Radio Parameters set by Port

42

block in simulink. Simulink currently doesn’t support variable rate blocks, so this parameter

is no tunable while the model is running.

4.2.2 USRP2 Receive Mask

The majority of the parameters for the receiver are similar to the transmitte. The

parameters used to identify the USRP2 are the same, as is the center frequency. The power

and interpolation factor in the transmitter has direct parallels in the receiver in the gain

and decimation factor parameters.

Sample Time =
1

Sample Rate
=

1
ADC Rate

Decimation Rate

=
1

100×106

512

(4.1)

Simulink requires source blocks to specify sample time and frame size. The two settings

in Figure 4.9 are for the receiver only. The sample time, or sample step, must use Equation(

4.1), this setting reflects the time step between this block being run. The ADC operates at

100 megasamples per second and that sample rate is then downconverted by the decimation

factor, the result is the same rate at the host. The sample time is simply 1 over the sample

rate. Getting the sample time correct is pivotal to other blocks in the model operating

correctly. The frame size sets the number of samples per frame the block outputs.

Figure 4.9: USRP2 Receiver Simulation Parameters

43

4.3 S-Function Development

Simulink calls functions implemented by the S-Function at different parts of the simula-

tion. While the simulation is initializing it calls mdlStart. In this function, a data handler

object and FIFO are created and a USRP2 object is instantiated. After the USRP2 object

is created, parameters set in the mask are set on the USRP2 hardware while the model is

initializing. The data handler object loads data into the FIFO as seen in Figure 4.10. While

the simulation is running, Simulink repeatedly calls mdlOutputs, where a frame of data is

read from the FIFO, converted to a Simulink data type and sent to the output port to be

received in the simulation. When the simulation has finished, the FIFO and data handler

are deallocated.

Figure 4.10: USRP2 Receiver Threads

The transmitter is similar, creating a send thread and FIFO during mdlStart as seen in

Figure 4.11. In mdlOutputs, the size of the FIFO is checked. If the size is greater than 2

44

frames of data, the simulation thread is paused to wait for the USRP2 to send waiting data.

This ensures there the FIFO will not grow arbitrarily large if the simulation is running

faster than the USRP2 can send data. When mdlTerminate is called, the Simulation waits

for the remaining data to be sent before deallocating the FIFO and thread.

Figure 4.11: USRP2 Transmitter Threads

4.4 Interface Evaluation and Verification

Two sets of models were developed to test this interface. The first set of models is

capable of transmitting four different signals and displaying the received spectrum. The

second set uses Minimum-Sift Keying (MSK) to transmit arbitrary streams of data.

45

4.4.1 Multiple Waveform Generation

Sending and receiving a simple sinusoid was ambiguous due to sample time errors and

a lack of synchronization and carrier frequency recovery. These errors were corrected and

testing was done that did not require synchronization. The transmitter in Figure 4.12 was

used to run this testing. The model could send one of four signals over the air.

Figure 4.12: Test Transmitter Model

The first signal to be transmitted is a frame of 1000 samples of a complex 1. The data

must be complex so the data type is correct for the block, but in this instance the complex

component is zero. The second signal generates a frame of 1000 samples of a real sine wave

at 30 kHz and adds a zero complex component. The third signal generates 1000 samples of

a complex sinusoid. The fourth signal generates frames of random binary data, modulates

this data using QPSK and then pulse shapes the impulses using a root raised cosine (RRC)

filter.

46

The model in Figure 4.13 was used to display the data captured using the receive in-

terface. The model simply contains the receive block and a FFT display block. The FFT

block uses the sample time to determine the frequency and displays the double-sided FFT

of the received signal.

Figure 4.13: FFT Receive Model

Constant complex data would be sent from the transmitter to a receiver. This signal

would be sent at 2.45 GHz using the XCVR 2450 boards. By sending a constant, a pulse

centered around the carrier frequency would be expected. These testing steps showed the

basic functionality of the interface and can be used in the future to ensure a setup is working

correctly before attempting to debug more complex systems.

Constant Data

First, constant complex data would be sent from the transmitter to a receiver. By

sending a constant, a pulse centered around the carrier frequency would be expected. Figure

4.14(a) shows the output of the spectrum analyzer. Figure 4.14(b) shows the FFT of the

data captured by the receiver. The spectrum analyzer shows the transmitter correctly

transmitting a pulse centered around the center frequency of 2.45 GHz. The receiver shows

a slightly offset pulse centered around the baseband. The offset seen by the receiver is due

47

to frequency carrier offset in the RF hardware.

Real Sinusoid

A real sinusoid was transmitted with the same settings on the transmitter and receiver.

This 30 kHz sinusoid was generated in Simulink. With a real sinusoid, symmetric peaks are

expected at 30 kHz above and below the center frequency. This test confirms a changing in-

phase signal is being correctly transmitted. Figure 4.15(a) shows this symmetry at passband

and Figure 4.15(b) shows the data captured by the receiver after being downconverted

back to baseband. Again, no carrier frequency recovery is done, causing an offset. The

harmonic spurs seen by the spectrum analyzer and receiver are created by the direct digital

synthesizers on the daughterboards[31].

Complex Sinusoid

To ensure both the in phase and quadrature components of a varying signal are being

handled by the interface correctly, a complex sinusoid was transmitted. The complex sinu-

soid to be transmitted is also a 30 kHz signal. One pulse is expected at 30 kHz above the

center frequency is expected. This pulse can be seen at passband in Figure 4.16(a) and at

baseband by the receive block in Figure 4.16(b). As the USRP2 hardware is the same as

previous tests, the offset and spurs are still seen.

Random QPSK Pulse Shaped Data

The fourth step in the transmitter creates random binary bits, modulates the data using

QPSK and shapes the impulses using a root raised cosine filter. In this test, a wider pulse

at the center frequency of the transmitter is expected. Figure 4.17(a) shows this pulse at

passband and Figure 4.17(b) shows the correct downconverted signal. The shaped pulse is

seen both at the carrier frequency and at baseband, confirming basic digital communication.

48

(a) Spectrum Analyzer

(b) Receiver in Simulink

Figure 4.14: Transmitting a Constant Value

49

(a) Spectrum Analyzer

(b) Receiver in Simulink

Figure 4.15: Transmitting a Real Sinusoid

50

(a) Spectrum Analyzer

(b) Receiver in Simulink

Figure 4.16: Transmitting a Complex Sinusoid

51

The signal was not decoded further due to the lack of synchronization. As synchronization

techniques are developed, more testing of the digital interface can be done.

4.4.2 Digital Transmission using Minimum-Shift Keying

Many communications systems use Simulink to simulate theoretical systems and verify

the functionality of implemented systems. The ability to convert simulated systems to

fully functional broadcasting systems would add live testing capabilities to Simulink with

a minimum about of work by designers. To test the ability of this interface to fulfill that

role, an existing Simulink example was converted and tested[8]. The original model is the

’MSK Signal Recovery’ model is the Communications Blockset.

The transmitter, shown in Figure 4.18, was taken from the demo model from Simulink.

The USRP2 block replaced the simulated channel and the random binary generator was

replaced with a repeating sequence of predefined bits. Using this known sequence would

enable simple verification of the received data stream.

Figure 4.19 shows the receiver, based on the demo model in Simulink. Here the transmit-

ter and channel were replaced with the USRP2 receiver block. Each of the synchronization

steps could be turned on and off during runtime to show the effects of timing recovery, car-

rier frequency recovery and phase recovery. More details about the receiver can be found

in the MATLAB documentation. The transmitter and receiver were suturing when their

gain and power were set too high. These settings were turned down and the constellation

correctly formed four distinct clusters.

Initial testing showed an incorrect sequence of bits being received. The problem was in

the source block of the transmitter, the sequences of bits were not set to repeat and would

transmit constant 0’s after the sequence ended. The problem was corrected and the correct

pattern of alternating 0’s and 1’s was seen on the receiver. This demonstrates an existing

Simulink model being easily converted to a near real-time broadcasting system.

52

(a) Spectrum Analyzer

(b) Receiver in Simulink

Figure 4.17: Transmitting a Pulse-shaped QPSK Signal

53

Figure 4.18: MSK Transmitter

4.5 Implementation Pitfalls

The blockset has some control over the sample rate going to and from the USRP2, but

the configuration of the USRP2 can cause overflows and underflows. The transmitter block

slows down the simulation if the simulation is generating samples faster then the USRP2

can transmit them. If the simulation is generating samples too slowly, the output of the

block to the transmitter is zero filled, manifesting as an intermittent transmitter as seen

in this figure. Optimizing the simulation, reducing the complexity of the transmitter and

increasing the interpolation rate will reduce the intermittency. Simulink has a 3 different

optimization modes to makes the simulation run more quickly, and the blocks work with the

first optimization mode. Closing data plots and not writing data to workspace also makes

the simulation run faster.

54

Figure 4.19: MSK Receiver with Synchronization

55

Similarly, the receiver can pause the simulation to wait for more samples to be received.

As samples are received, they are placed in a FIFO buffer to be used by the simulation as

is needed. If the data is not placed into this FIFO fast enough, sequence errors of the raw

Ethernet frames occur. The library currently writes a S to the Linux command prompt.

Adjusting the decimation rate on the USRP2 is the best way to prevent these errors from

happening.

4.6 Chapter Summary

The blockset introduced in this thesis fulfills its design goals by providing an interface

to the USRP2 hardware that is simple to use and can leverage an existing DSP framework.

The user has access to the controls needed to make use of the hardware. Testing showed

basic RF functionality with some expected spurs. The MSK demo showed the ease of

converting an existing model to a fully functional communications system. This interface

will make SDR development more accessible to new users and make development easier for

both student and industry professionals.

56

Chapter 5

Conclusion

5.1 Overview

This thesis explored a variety of RF front ends for radio development and a variety of

ways to interface to the hardware. The USRP2 balances versatility with low cost and pro-

vides an strong prototyping platform. Analog and digital radios were developed using the

GR framework. Difficulties with GR were made evident in this process, with its steep learn-

ing cure and underdeveloped documentation. Alternative interfaces were then investigated,

including the use of sockets and MEX functions. A complex control channel prevented

further development of of the sockets interface, and complications with the USRP library

stalled the MEX function. The release of the USRP2 offered the opportunity to start a new

interface in the time aware, stream based Simulink.

The interfaced developed for Simulink provides the fundamental configuration of the

USRP2 needed for rapid prototyping of SDRs. The user interface has been designed to

provide the user with as much control of the USRP2 as possible, while being clean and

clear. Novice users should not have a hard time trying out simple radios and be able to get

started relatively quickly. Testing of the interface proved it can transmit signals generated

in Simulink and receive data from over the air transmission.

57

Future users will have to focus on balancing the processing power of the host system

with the complexities of the communications system. Complex transmitters will result in an

intermittent signal and complex receivers will have to buffer data and diminish the realtime

aspects of these systems.

The interface developed leverages the commercially supported blocks of Simulink, a

software package common engineering curriculums. By using commonly used software to

develop the radios, most users will be able to build on past Simulink experience and have

less to learn when being introduced to SDR. The blockset includes controls for the core

USRP2 functionality and nothing in the S-Function is platform specific enabling advanced

functionality and laying the groundwork for future cross-platform support. This interface

has met its design goals and will enable future development of radios in the Simulink

environment.

5.2 Future Work

There are a number of areas that require more development.

• A proprietary USRP2 communications library will be an important part of this project

going forward. To make installation easier, this proprietary library will enable cross

platform support and eliminate the need to install the GR framework. The custom

library will throw errors inline with other Simulink errors and aid the user in resolving

the problems at hand. The current library also causes some of the bugs in the system

now, and will have to be addressed with the re-implimentation of this library. This

library will also have to provide access to the MIMO capability of the USRP2.

• Block optimizations will continue the effort towards more complex real-time capabil-

ities. The current block buffers memory and changes data types a sample at a time,

making these operations work by the frame will make the block run faster. The blocks

58

currently do not support the Rapid Accelerator mode in Simulink. Support will enable

code generation and ensure this interface will run as quickly as other solutions.

• The USRP2 has MIMO capabilities that the current interface does not support. In-

cluding access to the remaining MIMO configuration function will provide the user

will the full capabilities the USRP2 has to offer.

• Implementing a full network stack will make developing more realistic communications

systems easier. Cross layer optimization techniques will also be able to be tested based

on these robust models.

• The interface currently targets low data rate designs. Profiling the capability of

Simulink against different host hardware configurations would provide a guide to users

as to how complex their communications system can be on the hardware they have.

This profiling could include testing at video data rates and implementing identical

systems in GR for a side by side comparison.

59

Bibliography

[1] SDR Forum Meeting - Modular Multifunctional Information Transfer System Task
Group. Retreived from http://www.sdrforum.org/pages/forumMeetingArchive/
forumMeeting001.asp, March 1996.

[2] SDR Forum Meeting - Software Defined Radio Forum December 8-9-10, 1998. Retreived
from http://www.sdrforum.org/pages/forumMeetingArchive/forumMeeting012.
asp, December 1998.

[3] JTRS Radio Costs Rising Rapidly, 2005.

[4] IEEE 802.22 Working Group, 2007.

[5] FLEXRadio Systems - Software Defined Radios. Retreived from http://www.
flex-radio.com/OnlineOrdering.aspx?cid=5, October 2009.

[6] Mango Communications WARP Price List. Retreived from http://mangocomm.com/
price-list, 2009.

[7] Ossie development site for software-defined radio. Retreived from http://ossie.
wireless.vt.edu/trac/, 2009.

[8] Simulink Communcations Blockset 4.3. Retreived from http://www.mathworks.com/
products/commblockset/, 2009.

[9] Simulink-USRP: Universal Software Radio Peripheral Blockset. Retreived from http:
//www.cel.kit.edu/usrp.php, 2009.

[10] Software Based Communications Domain Task Force. Retreived from http://sbc.
omg.org/, 2009.

[11] Software Communications Architecture: Home Page. Retreived from http://sca.
jpeojtrs.mil/, 2009.

[12] Vanu - About - History. Retreived from http://www.vanu.com/about/history.html,
2009.

[13] Vanu - About - Leadership Team. Retreived from http://www.vanu.com/about/
leadershipteam.html, 2009.

[14] WARP - Wireless Open-Access Research Platform. Retreived from http://warp.
rice.edu/getting_hardware.php, 2009.

http://www.sdrforum.org/pages/forumMeetingArchive/forumMeeting001.asp
http://www.sdrforum.org/pages/forumMeetingArchive/forumMeeting001.asp
http://www.sdrforum.org/pages/forumMeetingArchive/forumMeeting012.asp
http://www.sdrforum.org/pages/forumMeetingArchive/forumMeeting012.asp
http://www.flex-radio.com/OnlineOrdering.aspx?cid=5
http://www.flex-radio.com/OnlineOrdering.aspx?cid=5
http://mangocomm.com/price-list
http://mangocomm.com/price-list
http://ossie.wireless.vt.edu/trac/
http://ossie.wireless.vt.edu/trac/
http://www.mathworks.com/products/commblockset/
http://www.mathworks.com/products/commblockset/
http://www.cel.kit.edu/usrp.php
http://www.cel.kit.edu/usrp.php
http://sbc.omg.org/
http://sbc.omg.org/
http://sca.jpeojtrs.mil/
http://sca.jpeojtrs.mil/
http://www.vanu.com/about/history.html
http://www.vanu.com/about/leadershipteam.html
http://www.vanu.com/about/leadershipteam.html
http://warp.rice.edu/getting_hardware.php
http://warp.rice.edu/getting_hardware.php

60

[15] Mark Alden. XILINX Delivers Small Form Factor SDR Development Platform in
Collaboration with LYRTECH and Texas Instruments. Retreived from http://www.
xilinx.com/prs_rls/2006/embedded/06109sffsdr.htm, November 2006.

[16] Josh Blum. Kludge Summary of gnuradio/usrp2/host/lib. Retreived from http://www.
joshknows.com/gr_kludge_tracker/gnuradio/usrp2/host/lib/index.html, 2009.

[17] Michael Bruno, Peter Perreault, Matthew Murdy, John A. McNeill, and Alexander M.
Wyglinski. Widely tunable rf transceiver front end for software-defined radio. Military
Communications Conference, 2009.

[18] Chen Chang, John Wawrzynek, and Robert W. Brodersen. Bee2: A high-end recon-
figurable computing system. IEEE Design & Test, 22:114 – 125, March 2005.

[19] Jamie Cooley. GR Socket. Retreived from http://alumni.media.mit.edu/~jcooley/
gr_experiments/experiments/gr_socket.htm, 2008.

[20] Carlos Cordeiro, Kiran Challapali, and Dagnachew Birru. IEEE 802.22: An Introdu-
cation to the First Wireless Standard based on Cognitive Radios. Journal of Commu-
nications, 1(1):38 to 47, April 2006.

[21] Matt Ettus. Ettus Research LLC. Retreived from http://www.ettus.com/, 2008.

[22] Andrew Feickert. The Joint Tactical Radio System (JTRS) and the Army’s Future
Combat System (FCS): Issues for Congress. Technical Report RL33161, Congressional
Research Service, November 2005.

[23] Michael Kanellos. Moore’s law to roll on for another decade, 2003.

[24] R.I. Lackey and D.W. Upmal. Speakeasy: the military software radio. IEEE Commu-
nications Magazine, 33(5):56–61, May 1995.

[25] G. J. Minden, J. B. Evans, L. Searl, D. DePardo, V. R. Petty, R. Rajbanshi, T. New-
man, Q. Chen, F. Weidling, J. Guffey, D. Datla, B. Barker, M. Peck, B. Cordill, A. M.
Wyglinski, and A. Agah. KUAR: A Flexible Software-Defined Radio Development
Platform. IEEE Dynamic Specturm Access Networks symposium, 2007.

[26] Shridhar Mubaraq Mishra, Danijela Cabric, Chen Chang, Daniel Willkomm, Barbara
van Schewick, Adam Wolisz, and Robert W. Brodersen. A Real Time Cognitive Radio
Testbed for Physical and Link Layer Experiments. IEEE Dynamic Specturm Access
Networks symposium, 2005.

[27] III Mitola, J. Software radios-survey, critical evaluation and future directions. In
National Telesystems Conference, pages 13/15–13/23, May 1992.

[28] Doug Mohney. Software Communications Architecture: Home Page. Retreived from
http://urgentcomm.com/mag/radio_sdr_improve_publicsafety/, October 2005.

[29] K.E. Nolan, P.D. Sutton, L.E. Doyle, T.W. Rondeau, B. Le, and C.W. Bostian. Dy-
namic Spectrum Access and Coexistence Experiences Involving Two Independently
Developed Cognitive Radio Testbeds. IEEE Dynamic Specturm Access Networks sym-
posium, 2007.

[30] H. Nyquist. Certain topics in telegraph transmission theory. In Transactions of the
A.I.E.E., pages 617–644, 1928.

http://www.xilinx.com/prs_rls/2006/embedded/06109sffsdr.htm
http://www.xilinx.com/prs_rls/2006/embedded/06109sffsdr.htm
http://www.joshknows.com/gr_kludge_tracker/gnuradio/usrp2/host/lib/index.html
http://www.joshknows.com/gr_kludge_tracker/gnuradio/usrp2/host/lib/index.html
http://alumni.media.mit.edu/~jcooley/gr_experiments/experiments/gr_socket.htm
http://alumni.media.mit.edu/~jcooley/gr_experiments/experiments/gr_socket.htm
http://www.ettus.com/
http://urgentcomm.com/mag/radio_sdr_improve_publicsafety/

61

[31] V.S. Reinhardt. Spur reduction techniques in direct digital synthesizers. In Proceedings
of the 1993 IEEE International Frequency Control Symposium, pages 230–241, Jun
1993.

[32] Peter Rydesäter. TCP/UDP/IP Toolbox 2.0.6. Retreived from http:
//www.mathworks.nl/matlabcentral/fileexchange/loadFile.do?objectId=
345&objectType=file, 2008.

[33] Berbard Sklar. Digital Communications. Prentice Hall, second edition edition, 2001.

[34] A. M. Wyglinski, M. Nekovee, and Y. T. Hou. Cognitive Radio Communications
Networks: Principals and Practice. Elsevier, 2009.

[35] Youngwoo Youn, Hyoungsuk Jeon, Ji Hwan Choi, and Hyuckjae Lee. Fast spectrum
sensing algorithm for 802.22 WRAN Systems. IEEE, 2006.

[36] Gerald Youngblood. A software-defined radio for the masses, part 1, 2002.

[37] Zhou Yuan. Sidelobe supression and agile transmission techniques for fulticarrier-based
cognitive radio systems. Master’s thesis, Worcester Polytechnic Institute, May 2009.

http://www.mathworks.nl/matlabcentral/fileexchange/loadFile.do?objectId=345&objectType=file
http://www.mathworks.nl/matlabcentral/fileexchange/loadFile.do?objectId=345&objectType=file
http://www.mathworks.nl/matlabcentral/fileexchange/loadFile.do?objectId=345&objectType=file

62

Appendix A

Sine Wave Generator

1 func t i on SinewaveServer (ip , port)

2 % s i n eS e rv e r − gene ra t e s a s i n e wave and sends i t to the connected host

3 %

4 % Syntax :

5 % s inewaveServer

6 % or

7 % sinewaveServer (ip address , port number)

8 %

9 % Vers ion : 2002−02−01 for the t cp ip too lbox 2 . x API

10 %

11 i f (narg in==0),

12 ip=’ 1 2 7 . 0 . 0 . 1 ’ ;

13 port=’ 5000 ’ ;

14 end

15

16

17 %determines l ength o f s i n e wave data , should be done in f u l l p e ro id s

63

18 samplesPerSecond =48000;

19 numberOfSeconds=1;

20 time =(0:1/ samplesPerSecond : numberOfSeconds) ;

21 f requency =1000;

22 sineWave=s i n g l e (s i n (2∗ pi ∗ f r equency ∗ time)) ;

23 s ineCounter =0;

24

25 try ,

26 while 1 ,

27 con=pnet (’ tcpconnect ’ , ip , port) ;

28 i f con==−1, e r r o r ’Bad u r l or s e r v e r down ’ ; end

29 d i sp ([’ Connected to : ’ ip]) ;

30 i f (1) ,

31 try ,

32 while 1 ,

33 pnet (con , ’ wr i t e ’ , sineWave , ’ i n t e l ’) ;

34 s ineCounter= sineCounter +1;

35 d i sp (s p r i n t f (’%d SineWave Sent to host :%s port :%s \n ’ , s ineCounter , ip , port))

36 pause (numberOfSeconds)

37 end

38 end

39 pnet (con , ’ c l o s e ’) ;

40 drawnow ;

41 end

42 end

43 end

44

45 end

64

Appendix B

Socket to USRP Interface

1 #!/ usr / bin /env python

2 #

3 # Copyright 2005 Free Software Foundation , Inc .

4 #

5 # This f i l e i s par t o f GNU Radio

6 #

7 # GNU Radio i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

8 # i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by

9 # the Free Software Foundation ; e i t h e r ver s ion 2 , or (at your opt ion)

10 # any l a t e r ver s ion .

11 #

12 # GNU Radio i s d i s t r i b u t e d in the hope t ha t i t w i l l be use fu l ,

13 # but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f

14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

15 # GNU General Pub l i c License f o r more d e t a i l s .

16 #

17 # You shou ld have rece i v ed a copy o f the GNU General Pub l i c License

65

18 # along with GNU Radio ; see the f i l e COPYING. I f not , wr i t e to

19 # the Free Software Foundation , Inc . , 59 Temple Place − Su i t e 330 ,

20 # Boston , MA 02111−1307, USA.

21 #

22

23 from gnuradio import gr

24 from gnuradio import audio

25 from gnuradio import b lks

26 from gnuradio . eng opt ion import eng opt ion

27 from optparse import OptionParser

28

29 from g r s o ck e t import ∗
30

31 #for USRP

32 from gnuradio import usrp

33 from gnuradio import eng notat i on

34

35 #i f no daughter board i s s e l e c t e d , p i ck one

36 def p i ck subdev i c e (u) :

37 ”””

38 The user didn ’ t s p e c i f y a subdev i ce on the command l i n e .

39 I f t he re ’ s a daughterboard on A, s e l e c t A.

40 I f t he re ’ s a daughterboard on B, s e l e c t B.

41 Otherwise , s e l e c t A.

42 ”””

43 #dbid i s daugher board ID

44 i f u . db [0] [0] . dbid () >= 0 : # dbid i s < 0 i f t he re ’ s no d ’ board or a problem

45 return (0 , 0)

46 i f u . db [1] [0] . dbid () >= 0 :

47 return (1 , 0)

48 return (0 , 0)

49

50 #se t TX frequency

66

51 def s e t f r e q (USRP, subdev , t a r g e t f r e q) :

52 ”””

53 Set the center f requency we ’ re i n t e r e s t e d in .

54

55 @param t a r g e t f r e q : f requency in Hz

56 @rypte : boo l

57

58 Tuning i s a two s t ep process . F i r s t we ask the front−end to

59 tune as c l o s e to the de s i r ed frequency as i t can . Then we use

60 the r e s u l t o f t ha t operat ion and our t a r g e t f r e qu ency to

61 determine the va lue f o r the d i g i t a l up conver ter .

62 ”””

63 #r = USRP. tune (t x su bde v sp e c . which , t x subdev spec , t a r g e t f r e q)

64 r = USRP. tune (subdev . which , subdev , t a r g e t f r e q)

65 i f r :

66 print ” r . baseband f req =” , eng notat i on . num to str (r . baseband f req)

67 print ” r . dxc f r eq =” , eng notat i on . num to str (r . dxc f r eq)

68 print ” r . r e s i d u a l f r e q =” , eng notat i on . num to str (r . r e s i d u a l f r e q)

69 print ” r . i nve r t ed =” , r . i nve r t ed

70 return True

71

72 return False

73

74

75 #

76 # return a gr . f l ow graph

77 #

78 def bu i ld graph (opt ions) :

79 fg = gr . f l ow graph ()

80 aud i o r a t e =48000

81

82 # crea te socke t c l i e n t

83 (src , fd , conn) = make socket source (opt ions . port ,

67

84 gr . s i z e o f f l o a t)

85

86 #use a s ine source f o r t e s t i n g

87 #src=gr . s i g s o u r c e f (48000 ,

88 #gr .GR SIN WAVE,

89 #1000 ,

90 #1)

91

92

93 # sound card as f i n a l s ink

94 aud io s i nk = audio . s ink (i n t (aud i o r a t e))

95

96 # now wire i t a l l t o g e t h e r

97 fg . connect (src , aud i o s i nk)

98

99 #USRP as f i n a l s ink

100 #setup convers ion from f l o a t to complex

101 f loat To Complex=gr . f l o a t t o c omp l ex ()

102

103 #crea te USRP

104 #Usage usrp . s ink x (which=0, i n t e r p r a t e =128, nchan=1, mux=0x98 ,

105 #f u s b b l o c k s i z e =0, f u s b n b l o c k s =0,

106 #fpga f i l ename =””, f i rmware f i l ename=””)

107

108 USRP = usrp . s i n k c (i n t e r p r a t e =256)

109

110 #f i g u r e out which subdev i ce (s i d e) to use

111 tx subdev spec=opt ions . tx subdev spec

112 i f tx subdev spec i s None :

113 tx subdev spec = p i ck subdev i c e (USRP)

114 subdev = usrp . s e l e c t ed subdev (USRP, tx subdev spec)

115 print subdev

116

68

117 #se t the mux from the USRP

118 #might be unnessary

119 #USRP. set mux (usrp . de termine tx mux va lue (USRP, subdev))

120 m = usrp . determine tx mux value (USRP, tx subdev spec)

121 #pr in t ”mux = %#04x” % (m,)

122 USRP. set mux (m)

123

124 i f opt ions . ga in i s None :

125 subdev . s e t g a i n (subdev . ga in range () [1]) # se t max Tx gain

126 else :

127 subdev . s e t g a i n (opt ions . ga in) # se t max Tx gain

128

129

130 # Set center f requency o f USRP

131 #eng f l o a t t x f r e q =’100M’

132 ok = s e t f r e q (USRP, subdev , opt ions . f r e q)

133 print ok

134 ok = s e t f r e q (USRP, subdev , opt ions . f r e q)

135 i f not ok :

136 print ” Fa i l ed to s e t Tx frequency to %s” % (eng notat i on . num to str (opt ions . f r e q))

137 raise ValueError

138

139

140 subdev . s e t e n ab l e (True)

141

142 #connect USRP

143 fg . connect (src , f loat To Complex , USRP)

144

145 return (fg , fd , conn)

146 #return f g

147

148 def main () :

149 usage = ”usage : %prog [opt ions] ”

69

150 par s e r = OptionParser (o p t i o n c l a s s=eng opt ion , usage=usage)

151 par s e r . add opt ion (”−d” , ”−−dummy” , ac t i on=” s t o r e t r u e ” , d e f au l t=False ,

152 help=”when s e t true , uses a s i n e wave as a source in s t ead o f s e t t i n g up the socke t ”)

153 par s e r . add opt ion (”−T” , ”−−tx−subdev−spec ” , type=”subdev” , d e f au l t =(0 , 0) ,

154 help=” s e l e c t USRP Tx s i d e A or B”)

155 par s e r . add opt ion (”−p” , ”−−port ” , type=” in t ” ,

156 help=” s p e c t i f y the port to accept connec t i ons from” , d e f au l t =5000)

157 par s e r . add opt ion (”−f ” , ”−−f r e q ” , type=” en g f l o a t ” , d e f au l t=’ 2 . 4G’ ,

158 help=” s e t f requency to FREQ” , metavar=”FREQ”)

159 par s e r . add opt ion (”−g” , ”−−gain ” , type=” en g f l o a t ” , d e f au l t=None ,

160 help=” s e t output gain to GAIN [d e f au l t=%de f au l t] ”)

161 (opt ions , a rgs) = par s e r . p a r s e a r g s ()

162

163 (fg , fd , conn) = bui ld graph (opt ions)

164 #fg = bu i l d g raph (op t ions)

165

166 fg . s t a r t () # fork thread (s) and return

167 raw input (’ Press Enter to qu i t : ’)

168 fg . stop ()

169

170 i f name == ’ ma in ’ :

171 main ()

70

Appendix C

USRP to Socket Interface

1 #!/ usr / bin /env python

2 #

3 # Copyright 2004 ,2005 ,2007 Free Software Foundation , Inc .

4 #

5 # This f i l e i s par t o f GNU Radio

6 #

7 # GNU Radio i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

8 # i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by

9 # the Free Software Foundation ; e i t h e r ver s ion 3 , or (at your opt ion)

10 # any l a t e r ver s ion .

11 #

12 # GNU Radio i s d i s t r i b u t e d in the hope t ha t i t w i l l be use fu l ,

13 # but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f

14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

15 # GNU General Pub l i c License f o r more d e t a i l s .

16 #

17 # You shou ld have rece i v ed a copy o f the GNU General Pub l i c License

71

18 # along with GNU Radio ; see the f i l e COPYING. I f not , wr i t e to

19 # the Free Software Foundation , Inc . , 51 Frank l in Stree t ,

20 # Boston , MA 02110−1301, USA.

21 #

22

23 #3/31/08

24 #t h i s f i l e cu r r en t l y reads from a f i l e , and sends t ha t f l o a t i n g po in t data

25 #to both the sound card and a socke t at a s p e c i f i e d address and por t

26 #for t h i s f i l e to make a connection , the r e c e i v e socke t must a l ready be running

27

28

29 from gnuradio import gr

30 from gnuradio import audio

31 from gnuradio . eng opt ion import eng opt ion

32 from optparse import OptionParser

33

34 #imported from l o c a l f o l d e r

35 from g r s o ck e t import ∗
36

37 #for USRP

38 from gnuradio import usrp

39 from gnuradio import eng notat i on

40

41

42 class my top block (gr . top b lock) :

43 def i n i t (s e l f) :

44 gr . top b lock . i n i t (s e l f)

45

46 par s e r = OptionParser (o p t i o n c l a s s=eng opt ion)

47 par s e r . add opt ion (”−F” , ”−−f i l ename ” , type=” s t r i n g ” , d e f au l t=”computer . dat” ,

48 help=” read input from FILE”)

49 par s e r . add opt ion (”−r ” , ”−−sample−r a t e ” , type=” en g f l o a t ” , d e f au l t =48000 ,

50 help=” s e t sample ra t e to RATE (48000) ”)

72

51 par s e r . add opt ion (”−o” , ”−−r epeat ” , a c t i on=” s t o r e t r u e ” , d e f au l t=True)

52 par s e r . add opt ion (”−O” , ”−−audio−output” , type=” s t r i n g ” , d e f au l t=”” ,

53 help=”pcm output dev i ce name . E. g . , hw: 0 , 0 or /dev/dsp”)

54 par s e r . add opt ion (”− i ” , ”−−address ” , type=” s t r i n g ” ,

55 help=” s p e c t i f y the ip address to connect to ” , d e f au l t=” l o c a l h o s t ”)

56 par s e r . add opt ion (”−p” , ”−−port ” , type=” in t ” ,

57 help=” s p e c t i f y the port to connect to ” , d e f au l t =5000)

58 #USRP opt ions

59 par s e r . add opt ion (”−w” , ”−−which” , type=” in t ” , d e f au l t =0,

60 help=” s e l e c t which USRP (0 , 1 , . . .) d e f au l t i s %de f au l t ” ,

61 metavar=”NUM”)

62 par s e r . add opt ion (”−R” , ”−−rx−subdev−spec ” , type=”subdev” , d e f au l t=’B ’ ,

63 help=” s e l e c t USRP Rx s i d e A or B (d e f au l t=f i r s t one with a daughterboard) ”)

64 par s e r . add opt ion (”−A” , ”−−antenna” , d e f au l t=None ,

65 help=” s e l e c t Rx Antenna (only on RFX−s e r i e s boards) ”)

66 par s e r . add opt ion (”−d” , ”−−decim” , type=” in t ” , d e f au l t =128 ,

67 help=” s e t fgpa decimation ra t e to DECIM [d e f au l t=%de f au l t] ”)

68 par s e r . add opt ion (”−f ” , ”−−f r e q ” , type=” en g f l o a t ” , d e f au l t=’ 2 .40401G’ ,

69 help=” s e t f requency to FREQ” , metavar=”FREQ”)

70

71 (opt ions , args) = par s e r . pa r s e a r g s ()

72

73 i f l en (args) != 0 :

74 par s e r . p r i n t h e l p ()

75 raise SystemExit , 1

76

77 #loads the audio sample ra t e

78 sample rate = in t (opt ions . sample rate)

79

80 #se t s up reading from a f i l e , e xpec t ing f l o a t i n g po in t va lue s

81 #f i l e S r c = gr . f i l e s o u r c e (gr . s i z e o f f l o a t , op t ions . f i lename , op t ions . repea t)

82 #f i l e S r c=gr . s i g s o u r c e f (48000 , gr .GR SIN WAVE, 1000 , 1)

83

73

84 #setup a USRP as the soruce o f the data

85 USRP = usrp . s ou r c e c (which=opt ions . which ,

86 #fpga f i l ename=”RBF1Tx1Rx . r b f ” ,

87 dec im rate=opt ions . decim)

88 i f opt ions . rx subdev spec i s None :

89 opt ions . rx subdev spec = p i ck subdev i c e (USRP)

90 USRP. set mux (usrp . determine rx mux value (USRP, opt ions . rx subdev spec))

91

92 # determine the daughterboard subdev i ce we ’ re us ing

93 subdev = usrp . s e l e c t ed subdev (USRP, opt ions . rx subdev spec)

94

95 #se t USRP center Frequency

96 ok = s e l f . s e t f r e q (USRP, subdev , opt ions . f r e q)

97

98 print ”Using RX d ’ board %s” % (subdev . s ide and name () ,)

99 #pr in t ” b i t r a t e : %sb/s” % (eng nota t ion . num to str (s e l f . b i t r a t e))

100 #pr in t ” samples/symbol : %3d” % (s e l f . samples per symbo l)

101 #pr in t ”decim : %3d” % (subdev . decim)

102 #pr in t ”Rx Frequency : %s” % (s e l f . myform [’ f r e q ’])

103

104

105 #inpu t r a t e = s e l f . u . adc f r e q () / s e l f . u . dec im rate ()

106

107

108 #se t s up the sound card as the s ink (and loads the sample ra t e)

109 #ds t = audio . s ink (sample rate , op t ions . aud io output)

110

111 #connects the f l ow graph

112 #s e l f . connect (f i l e S r c , d s t)

113

114 # crea te socke t s e r ve r

115 global f i l e D e s c r i p t o r

116 (socketS ink , f i l e D e s c r i p t o r) = make socket s ink (opt ions . address ,

74

117 opt ions . port ,

118 gr . s i z e o f f l o a t)

119 #gr . s i z e o f g r c omp l e x)

120

121 #connect the scoke t c l i e n t

122 #s e l f . connect (f i l e S r c , socke tS ink)

123 conve r t e r=gr . c omp l ex t o f l o a t ()

124 s e l f . connect (USRP, converter , socketS ink)

125

126 def p i ck subdev i c e (u) :

127 ”””

128 The user didn ’ t s p e c i f y a subdev i ce on the command l i n e .

129 I f t he re ’ s a daughterboard on A, s e l e c t A.

130 I f t he re ’ s a daughterboard on B, s e l e c t B.

131 Otherwise , s e l e c t A.

132 ”””

133 i f u . db [0] [0] . dbid () >= 0 : # dbid i s < 0 i f t he re ’ s no d ’ board or a problem

134 return (0 , 0)

135 i f u . db [1] [0] . dbid () >= 0 :

136 return (1 , 0)

137 return (0 , 0)

138

139 def s e t f r e q (s e l f , USRP, subdev , t a r g e t f r e q) :

140 ”””

141 Set the center f requency we ’ re i n t e r e s t e d in .

142

143 @param t a r g e t f r e q : f requency in Hz

144 @rypte : boo l

145

146 Tuning i s a two s t ep process . F i r s t we ask the front−end to

147 tune as c l o s e to the de s i r ed frequency as i t can . Then we use

148 the r e s u l t o f t ha t operat ion and our t a r g e t f r e qu ency to

149 determine the va lue f o r the d i g i t a l down conver ter .

75

150 ”””

151 r = USRP. tune (0 , subdev , t a r g e t f r e q)

152

153 i f r :

154 #s e l f . myform [’ f r e q ’] . s e t v a l u e (t a r g e t f r e q) # update d i s p l a y ed va lue

155 #i f s e l f . show debug in fo :

156 # s e l f . myform [’ baseband ’] . s e t v a l u e (r . baseband f req)

157 # s e l f . myform [’ ddc ’] . s e t v a l u e (r . d x c f r e q)

158 return True

159

160 return False

161

162

163 i f name == ’ ma in ’ :

164 try :

165 my top block () . run ()

166 except KeyboardInterrupt :

167 pass

76

Appendix D

MATLAB Sockets Receiver

1 func t i on a l lData=dataRece iver (port)

2 % s i n eS e rv e r − gene ra t e s a s i n e wave and sends i t to the connected host

3 %

4 % Syntax :

5 % dataRece iver

6 % or

7 % dataRece iver port

8 %

9 % Vers ion : 2002−02−01 for the t cp ip too lbox 2 . x API

10 %

11 i f (narg in==0), port =5000; end

12 i f (i s c h a r (port)) , port=str2num (port) ; end

13 sock=pnet (’ t cp socke t ’ , port) ;

14 i f (sock==−1), e r r o r (’ S p e c i f i e d TCP port i s not p o s s i b l e to use now . ’) ; end

15 pnet (sock , ’ s e t r eadt imeout ’ , 1) ;

16 connected =0;

17 counter =0;

77

18 dataS ize =1000;

19

20 try ,

21 d i sp (s p r i n t f ([’Get a webpage with your browser at adre s s : http :// l o c a l h o s t :%d\n ’ . . .

22 ’Or use proper hostname from an other computer .\n ’] , port)) ;

23 while (connected==0),

24 con=pnet (sock , ’ t c p l i s t e n ’) ;

25 i f (con˜=−1) ,

26 try ,

27 [ip , port]=pnet (con , ’ ge thos t ’) ;

28 d i sp (s p r i n t f (’ Connection from host :%d.%d.%d.%d port :%d\n ’ , ip , port)) ;

29 connected =1;

30 %while (pnet (con , ’ s t a tu s ’)) ,

31 while (1) ,

32 %data=pnet (con , ’ read ’ [, s i z e] [, datatype] [, swapping] [, ’ view ’] [, ’ noblock ’])

33 %i get data in , but i have no idea what type i t i s . I t

34 %should be audio data , between −1 and 1 , but i am ge t t i n g

35 %a l l s o r t s o f va lue s . a s i n g l e in matlab i s supposed to be

36 %equa l i vant to f l o a t i n g po int (on 32 b i t systems though)

37 %and the re are opt ions for the swaping o f bytes

38

39 %th i s now seems to work with the ’ i n t e l ’ swapping

40 %data=[data pnet (con , ’ read ’ ,100 , ’ s i n g l e ’ , ’ i n t e l ’)] ;

41 data=pnet (con , ’ read ’ , dataSize , ’ s i n g l e ’ , ’ i n t e l ’) ;

42 counter=counter +1;

43

44 %th i s guy works , stop changing him

45 a l lData (counter ∗ dataS ize : ((counter+1)∗dataSize −1))=data ;

46

47 %myPlay (data) ;

48 %s l e ep (1)

49

50 end

78

51 end

52 pnet (con , ’ c l o s e ’) ;

53 drawnow ;

54 return

55 end

56 end

57 end

58 pnet (sock , ’ c l o s e ’) ;

59 end

60

61 func t i on myPlay (data)

62 audio = double (data) ;

63 sound (audio , 4 8 0 0 0) ;

64 end

79

Appendix E

USRP Sockets Interface with FFT

1 #!/ usr / bin /env python

2 #

3 # Copyright 2004 ,2005 ,2007 Free Software Foundation , Inc .

4 #

5 # This f i l e i s par t o f GNU Radio

6 #

7 # GNU Radio i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

8 # i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by

9 # the Free Software Foundation ; e i t h e r ver s ion 3 , or (at your opt ion)

10 # any l a t e r ver s ion .

11 #

12 # GNU Radio i s d i s t r i b u t e d in the hope t ha t i t w i l l be use fu l ,

13 # but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f

14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

15 # GNU General Pub l i c License f o r more d e t a i l s .

16 #

17 # You shou ld have rece i v ed a copy o f the GNU General Pub l i c License

80

18 # along with GNU Radio ; see the f i l e COPYING. I f not , wr i t e to

19 # the Free Software Foundation , Inc . , 51 Frank l in Stree t ,

20 # Boston , MA 02110−1301, USA.

21 #

22

23 from gnuradio import gr , gru

24 from gnuradio import usrp

25 from gnuradio import eng notat i on

26 from gnuradio . eng opt ion import eng opt ion

27 from gnuradio . wxgui import stdgui2 , f f t s i n k 2 , wa t e r f a l l s i n k2 , scopes ink2 , form , s l i d e r

28 from optparse import OptionParser

29 import wx

30 import sys

31

32 #imported from l o c a l f o l d e r

33 from g r s o ck e t import ∗
34

35

36 def p i ck subdev i c e (u) :

37 ”””

38 The user didn ’ t s p e c i f y a subdev i ce on the command l i n e .

39 I f t he re ’ s a daughterboard on A, s e l e c t A.

40 I f t he re ’ s a daughterboard on B, s e l e c t B.

41 Otherwise , s e l e c t A.

42 ”””

43 i f u . db [0] [0] . dbid () >= 0 : # dbid i s < 0 i f t he re ’ s no d ’ board or a problem

44 return (0 , 0)

45 i f u . db [1] [0] . dbid () >= 0 :

46 return (1 , 0)

47 return (0 , 0)

48

49

50 class app top b lock (s tdgu i2 . s t d t op b l o ck) :

81

51 def i n i t (s e l f , frame , panel , vbox , argv) :

52 s tdgu i2 . s t d t op b l o ck . i n i t (s e l f , frame , panel , vbox , argv)

53

54 s e l f . frame = frame

55 s e l f . panel = panel

56

57 par s e r = OptionParser (o p t i o n c l a s s=eng opt ion)

58 par s e r . add opt ion (”−w” , ”−−which” , type=” in t ” , d e f au l t =0,

59 he lp=” s e l e c t which USRP (0 , 1 , . . .) d e f au l t i s %de f au l t ” ,

60 metavar=”NUM”)

61 par s e r . add opt ion (”−R” , ”−−rx−subdev−spec ” , type=”subdev” , d e f au l t=’B ’ ,

62 he lp=” s e l e c t USRP Rx s i d e A or B (d e f au l t=f i r s t one with a daughterboard) ”)

63 par s e r . add opt ion (”−A” , ”−−antenna” , d e f au l t=None ,

64 he lp=” s e l e c t Rx Antenna (only on RFX−s e r i e s boards) ”)

65 par s e r . add opt ion (”−d” , ”−−decim” , type=” in t ” , d e f au l t =64,

66 he lp=” s e t fgpa decimation ra t e to DECIM [d e f au l t=%de f au l t] ”)

67 par s e r . add opt ion (”−f ” , ”−−f r e q ” , type=” en g f l o a t ” , d e f au l t=’ 2 . 4G’ ,

68 he lp=” s e t f requency to FREQ” , metavar=”FREQ”)

69 par s e r . add opt ion (”−g” , ”−−gain ” , type=” en g f l o a t ” , d e f au l t=None ,

70 he lp=” s e t ga in in dB (d e f au l t i s midpoint) ”)

71 par s e r . add opt ion (”−W” , ”−−wa t e r f a l l ” , a c t i on=” s t o r e t r u e ” , d e f au l t=False ,

72 he lp=”Enable wa t e r f a l l d i sp l ay ”)

73 par s e r . add opt ion (”−8” , ”−−width−8” , a c t i on=” s t o r e t r u e ” , d e f au l t=False ,

74 he lp=”Enable 8−b i t samples a c r o s s USB”)

75 par s e r . add opt ion (”−S” , ”−−o s c i l l o s c o p e ” , ac t i on=” s t o r e t r u e ” , d e f au l t=False ,

76 he lp=”Enable o s c i l l o s c o p e d i sp l ay ”)

77 #socke t s op t ions

78 par s e r . add opt ion (”− i ” , ”−−address ” , type=” s t r i n g ” ,

79 he lp=” s p e c t i f y the ip address to connect to ” , d e f au l t=” l o c a l h o s t ”)

80 par s e r . add opt ion (”−p” , ”−−port ” , type=” in t ” ,

81 he lp=” s p e c t i f y the port to connect to ” , d e f au l t =5000)

82

83 (opt ions , a rgs) = par s e r . p a r s e a r g s ()

82

84 i f l en (args) != 0 :

85 par s e r . p r i n t h e l p ()

86 sys . e x i t (1)

87

88 s e l f . show debug info = True

89

90 # bu i l d the graph

91

92 s e l f . u = usrp . s ou r c e c (which=opt ions . which , dec im rate=opt ions . decim)

93 i f opt ions . rx subdev spec i s None :

94 opt ions . rx subdev spec = p i ck subdev i c e (s e l f . u)

95 s e l f . u . set mux (usrp . determine rx mux value (s e l f . u , opt i ons . rx subdev spec))

96

97 i f opt ions . width 8 :

98 width = 8

99 s h i f t = 8

100 format = s e l f . u . make format (width , s h i f t)

101 print ” format =” , hex (format)

102 r = s e l f . u . s e t f o rmat (format)

103 print ” s e t f o rmat =” , r

104

105 # determine the daughterboard subdev i ce we ’ re us ing

106 s e l f . subdev = usrp . s e l e c t ed subdev (s e l f . u , opt i ons . rx subdev spec)

107

108 i npu t r a t e = s e l f . u . ad c f r e q () / s e l f . u . dec im rate ()

109

110 i f opt ions . w a t e r f a l l :

111 s e l f . scope = \
112 wa t e r f a l l s i n k 2 . w a t e r f a l l s i n k c (panel , f f t s i z e =1024 , sample rate=inpu t r a t e)

113 e l i f opt ions . o s c i l l o s c o p e :

114 s e l f . scope = scopes ink2 . s c op e s i n k c (panel , sample rate=inpu t r a t e)

115 else :

116 s e l f . scope = f f t s i n k 2 . f f t s i n k c (panel , f f t s i z e =8192 , sample rate=inpu t r a t e)

83

117

118 s e l f . connect (s e l f . u , s e l f . scope)

119

120 #al so send data to so ck e t s

121 #conver t complex data to f l o a t

122 conver t e r=gr . c omp l ex t o f l o a t ()

123

124 # crea te socke t s e r ve r

125 global f i l e D e s c r i p t o r

126 (socketSink , f i l e D e s c r i p t o r) = make socket s ink (opt ions . address ,

127 opt ions . port ,

128 gr . s i z e o f f l o a t)

129

130 s e l f . connect (s e l f . u , converter , socketS ink)

131

132 s e l f . b u i l d g u i (vbox)

133

134 # se t i n i t i a l va lue s

135

136 i f opt ions . ga in i s None :

137 # i f no gain was s p e c i f i e d , use the mid−po in t in dB

138 g = s e l f . subdev . ga in range ()

139 opt ions . ga in = f l o a t (g [0]+ g [1]) / 2

140

141 i f opt ions . f r e q i s None :

142 # i f no f r e q was s p e c i f i e d , use the mid−po in t

143 r = s e l f . subdev . f r e q r ang e ()

144 opt ions . f r e q = f l o a t (r [0]+ r [1]) / 2

145

146 s e l f . s e t g a i n (opt ions . ga in)

147

148 i f opt ions . antenna i s not None :

149 print ” S e l e c t i n g antenna %s” % (opt ions . antenna ,)

84

150 s e l f . subdev . s e l e c t r x an t enna (opt ions . antenna)

151

152 i f s e l f . show debug info :

153 s e l f . myform [’ decim ’] . s e t v a l u e (s e l f . u . dec im rate ())

154 s e l f . myform [’ fs@usb ’] . s e t v a l u e (s e l f . u . ad c f r e q () / s e l f . u . dec im rate ())

155 s e l f . myform [’dbname ’] . s e t v a l u e (s e l f . subdev . name ())

156 s e l f . myform [’ baseband ’] . s e t v a l u e (0)

157 s e l f . myform [’ ddc ’] . s e t v a l u e (0)

158

159 i f not (s e l f . s e t f r e q (opt ions . f r e q)) :

160 s e l f . s e t s t a tu s msg (” Fa i l ed to s e t i n i t i a l f r equency ”)

161

162 def s e t s t a tu s msg (s e l f , msg) :

163 s e l f . frame . GetStatusBar () . SetStatusText (msg , 0)

164

165 def bu i l d g u i (s e l f , vbox) :

166

167 def f o rm s e t f r e q (kv) :

168 return s e l f . s e t f r e q (kv [’ f r e q ’])

169

170 vbox .Add(s e l f . scope . win , 10 , wx .EXPAND)

171

172 # add con t ro l area at the bottom

173 s e l f . myform = myform = form . form ()

174 hbox = wx . BoxSizer (wx .HORIZONTAL)

175 hbox .Add((5 , 0) , 0 , 0)

176 myform [’ f r e q ’] = form . f l o a t f i e l d (

177 parent=s e l f . panel , s i z e r=hbox , l a b e l=”Center f r e q ” , weight=1,

178 ca l l ba ck=myform . ch e ck i npu t and ca l l (f o rm s e t f r e q , s e l f . s e t s t a tu s msg))

179

180 hbox .Add((5 , 0) , 0 , 0)

181 g = s e l f . subdev . ga in range ()

182 myform [’ ga in ’] = form . s l i d e r f i e l d (parent=s e l f . panel , s i z e r=hbox , l a b e l=”Gain” ,

85

183 weight=3,

184 min=in t (g [0]) , max=in t (g [1]) ,

185 ca l l ba ck=s e l f . s e t g a i n)

186

187 hbox .Add((5 , 0) , 0 , 0)

188 vbox .Add(hbox , 0 , wx .EXPAND)

189

190 s e l f . bu i l d subpane l (vbox)

191

192 def bu i l d subpane l (s e l f , vbox arg) :

193 # bu i l d a secondary informat ion panel (sometimes hidden)

194

195 # FIXME f i g u r e out how to have t h i s be a subpane l t ha t i s always

196 # created , but has i t s v i s i b i l i t y c on t r o l l e d by foo . Show(True/False)

197

198 def f o rm se t dec im (kv) :

199 return s e l f . s e t dec im (kv [’ decim ’])

200

201 i f not (s e l f . show debug info) :

202 return

203

204 panel = s e l f . panel

205 vbox = vbox arg

206 myform = s e l f . myform

207

208 #panel = wx . Panel (s e l f . panel , −1)

209 #vbox = wx . BoxSizer (wx .VERTICAL)

210

211 hbox = wx . BoxSizer (wx .HORIZONTAL)

212 hbox .Add((5 , 0) , 0)

213

214 myform [’ decim ’] = form . i n t f i e l d (

215 parent=panel , s i z e r=hbox , l a b e l=”Decim” ,

86

216 ca l l ba ck=myform . ch e ck i npu t and ca l l (fo rm set dec im , s e l f . s e t s t a tu s msg))

217

218 hbox .Add((5 , 0) , 1)

219 myform [’ fs@usb ’] = form . s t a t i c f l o a t f i e l d (

220 parent=panel , s i z e r=hbox , l a b e l=”Fs@USB”)

221

222 hbox .Add((5 , 0) , 1)

223 myform [’dbname ’] = form . s t a t i c t e x t f i e l d (

224 parent=panel , s i z e r=hbox)

225

226 hbox .Add((5 , 0) , 1)

227 myform [’ baseband ’] = form . s t a t i c f l o a t f i e l d (

228 parent=panel , s i z e r=hbox , l a b e l=”Analog BB”)

229

230 hbox .Add((5 , 0) , 1)

231 myform [’ ddc ’] = form . s t a t i c f l o a t f i e l d (

232 parent=panel , s i z e r=hbox , l a b e l=”DDC”)

233

234 hbox .Add((5 , 0) , 0)

235 vbox .Add(hbox , 0 , wx .EXPAND)

236

237

238 def s e t f r e q (s e l f , t a r g e t f r e q) :

239 ”””

240 Set the center f requency we ’ re i n t e r e s t e d in .

241

242 @param t a r g e t f r e q : f requency in Hz

243 @rypte : boo l

244

245 Tuning i s a two s t ep process . F i r s t we ask the front−end to

246 tune as c l o s e to the de s i r ed frequency as i t can . Then we use

247 the r e s u l t o f t ha t operat ion and our t a r g e t f r e qu ency to

248 determine the va lue f o r the d i g i t a l down conver ter .

87

249 ”””

250 r = s e l f . u . tune (0 , s e l f . subdev , t a r g e t f r e q)

251

252 i f r :

253 s e l f . myform [’ f r e q ’] . s e t v a l u e (t a r g e t f r e q) # update d i s p l a yed va lue

254 i f s e l f . show debug info :

255 s e l f . myform [’ baseband ’] . s e t v a l u e (r . baseband f req)

256 s e l f . myform [’ ddc ’] . s e t v a l u e (r . dxc f r eq)

257 return True

258

259 return False

260

261 def s e t g a i n (s e l f , ga in) :

262 s e l f . myform [’ ga in ’] . s e t v a l u e (gain) # update d i s p l a yed va lue

263 s e l f . subdev . s e t g a i n (gain)

264

265 def se t dec im (s e l f , decim) :

266 ok = s e l f . u . s e t d e c im ra t e (decim)

267 i f not ok :

268 print ” se t dec im f a i l e d ”

269 i npu t r a t e = s e l f . u . ad c f r e q () / s e l f . u . dec im rate ()

270 s e l f . scope . s e t s amp l e r a t e (i npu t r a t e)

271 i f s e l f . show debug info : # update d i s p l a yed va lue s

272 s e l f . myform [’ decim ’] . s e t v a l u e (s e l f . u . dec im rate ())

273 s e l f . myform [’ fs@usb ’] . s e t v a l u e (s e l f . u . ad c f r e q () / s e l f . u . dec im rate ())

274 return ok

275

276 def main () :

277 app = stdgu i2 . stdapp (app top block , ”USRP FFT” , ns ta tus=1)

278 app . MainLoop ()

279

280 i f name == ’ ma in ’ :

281 main ()

88

Appendix F

MATLAB On-Off Keying Server

1 func t i on OnOffServer (ip , port)

2 % s i n eS e rv e r − gene ra t e s a s i n e wave and sends i t to the connected host

3 %

4 % Syntax :

5 % s inewaveServer

6 % or

7 % sinewaveServer (ip address , port number)

8 %

9 % Vers ion : 2002−02−01 for the t cp ip too lbox 2 . x API

10 %

11 i f (narg in==0),

12 ip=’ 1 2 7 . 0 . 0 . 1 ’ ;

13 port=’ 5000 ’ ;

14 end

15

16

17 %determines l ength o f s i n e wave data , should be done in f u l l p e ro id s

89

18 samplesPerSecond =48000;

19 numberOfSeconds=1;

20 time =(0:1/ samplesPerSecond : numberOfSeconds) ;

21 f requency =1000;

22 sineWave=s i n g l e (s i n (2∗ pi ∗ f r equency ∗ time)) ;

23 o f f=s i n g l e (z e r o s (s i z e (time))) ;

24 %o f f=s i n g l e (cos (2∗ pi ∗ f r equency ∗ time)) ;

25 s ineCounter =0;

26

27 p l o t ([sineWave o f f sineWave o f f])

28

29 try ,

30 while 1 ,

31 con=pnet (’ tcpconnect ’ , ip , port) ;

32 i f con==−1, e r r o r ’Bad u r l or s e r v e r down ’ ; end

33 d i sp ([’ Connected to : ’ ip]) ;

34 i f (1) ,

35 try ,

36 while 1 ,

37 i f mod(sineCounter , 2)

38 pnet (con , ’ wr i t e ’ , sineWave , ’ i n t e l ’) ;

39 d i sp (s p r i n t f (’%d SineWave Sent to host :%s port :%s \n ’ , s ineCounter , ip , port))

40 else

41 pnet (con , ’ wr i t e ’ , o f f , ’ i n t e l ’) ;

42 d i sp (s p r i n t f (’%d Off Sent to host :%s port :%s \n ’ , s ineCounter , ip , port))

43 end

44

45 s ineCounter= sineCounter +1;

46

47 %pause (numberOfSeconds−0.2)

48 end

49 catch

50 ’ Send Sine Wave Error ’

90

51 end

52 pnet (con , ’ c l o s e ’) ;

53 drawnow ;

54 end

55 end

56 catch

57 ’TCP/IP Error ’

58 end

59

60 end

91

Appendix G

MEX Interface to USRP Rx Daughterboard

1 /∗∗/
2 /∗
3 these notes are from Peter R y d e s t e r tcp /IP too lbox

4 i l e f t i t here for notes on syntax us ing mex

5

6 Notes for Unix implementation

7 Compile t h i s with :

8

9 mex −O pnet . c

10 the o i s for optomize

11

12 Notes for Windows implementation

13

14 When us ing LCC, compi le t h i s with :

15 mex −O pnet . c {MATLAB INSTALL DIR}\ sys \ l c c \ l i b \wsock32 . l i b −DWIN32

16

17 When us ing Visua l C++, compi le t h i s with :

92

18 mex −O pnet . c ws2 32 . l i b −DWIN32

19 ∗/
20

21 /∗∗∗∗∗∗∗ GENERAL DEFINES ∗∗∗∗∗∗∗∗∗/
22 #i f d e f HAVE CONFIG H

23 #inc lude ” con f i g . h”

24 #end i f

25

26 #inc lude <s t d i o . h>

27 #inc lude < s t d l i b . h>

28 #inc lude <s t r i n g . h>

29 #inc lude <un i s td . h>

30 #inc lude <usb . h> /∗ needed fo r usb func t i ons ∗/
31 #inc lude <ge t op t . h>

32 #inc lude <a s s e r t . h>

33 #inc lude <math . h>

34

35 #inc lude ” t im e s t u f f . h”

36 #inc lude ” usrp s tandard . h”

37 //#inc lude ” usrp s tandard . cc”

38 #inc lude ” u s rp by t e s e x . h”

39 #inc lude <us rp ba s i c . h>

40 #inc lude ” fpga regs common . h”

41 #inc lude ” f p ga r e g s s t anda rd . h”

42

43 #i f d e f HAVE SCHED H

44 #inc lude <sched . h>

45 #end i f

46

47 char ∗prog name ;

48

49 /∗ Inc lude header f i l e for matlab mex f i l e f u n c t i o n a l i t y ∗/
50 #inc lude ”mex . h”

93

51

52 /∗Make the USRP a global var i ab l e , maybe put in to an array l i k e the so cke t s program did with connect i ons ∗/
53 s t a t i c bool t e s t i n pu t (us rp s tandard rx ∗urx , i n t max bytes , FILE ∗ fp) ;

54

55

56 s t a t i c void

57 set progname (char ∗path)

58 {
59 char ∗p = s t r r c h r (path , ’ / ’) ;

60 i f (p != 0)

61 prog name = p+1;

62 else

63 prog name = path ;

64 }
65

66 s t a t i c void

67 d i e (const char ∗msg)

68 {
69 f p r i n t f (s tde r r , ” d i e : %s : %s \n” , prog name , msg) ;

70 e x i t (1) ;

71 }
72

73 s t a t i c bool t e s t i n pu t (us rp s tandard rx ∗urx , i n t max bytes , FILE ∗ fp)

74 {
75 i n t fd = −1;

76 s t a t i c const i n t BUFSIZE = urx−>b l o c k s i z e () ;

77 s t a t i c const i n t N = BUFSIZE/ s i z e o f (shor t) ;

78 shor t buf [N] ;

79 i n t nbytes = 0 ;

80

81 // double s t a r t wa l l t im e = ge t e l ap s ed t ime () ;

82 // double s t a r t cpu t ime = get cpu usage () ;

83

94

84 double s t a r t wa l l t im e = 0 ;

85 double s t a r t cpu t ime = 0 ;

86

87

88 i f (fp)

89 fd = f i l e n o (fp) ;

90

91 bool overrun ;

92 i n t noverruns = 0 ;

93

94 for (nbytes = 0 ; max bytes == 0 | | nbytes < max bytes ; nbytes += BUFSIZE){
95

96 unsigned i n t r e t = urx−>read (buf , s i z e o f (buf) , &overrun) ;

97 i f (r e t != s i z e o f (buf)){
98 f p r i n t f (s tde r r , ” t e s t i n pu t : e r ro r , r e t = %d\n” , r e t) ;

99 }
100

101 i f (overrun){
102 mexPrintf (” rx overrun \n”) ;

103 noverruns++;

104 }
105

106 i f (fd != −1){
107

108 for (unsigned i n t i = 0 ; i < s i z e o f (buf) / s i z e o f (shor t) ; i++)

109 buf [i] = u s r p t o ho s t s h o r t (buf [i]) ;

110

111 i f (wr i t e (fd , buf , s i z e o f (buf)) == −1){
112 mexPrintf (” wr i t e e r r o r ”) ;

113 fd = −1;

114 }
115 }
116 }

95

117

118 // double s t op wa l l t ime = ge t e l ap s ed t ime () ;

119 // double s top cpu t ime = get cpu usage () ;

120 double s t op wa l l t ime = 1 ;

121 double s top cpu t ime = 1 ;

122

123 double d e l t a wa l l = s t op wa l l t ime − s t a r t wa l l t im e ;

124 double de l ta cpu = stop cpu t ime − s t a r t cpu t ime ;

125

126 mexPrintf (” x f e r ed %.3g bytes in %.3g seconds . %.4g bytes / sec . cpu time = %.4g\n” ,

127 (double) max bytes , d e l t a wa l l , max bytes / de l t a wa l l , d e l t a cpu) ;

128 mexPrintf (” noverruns = %d\n” , noverruns) ;

129

130 return t rue ;

131 }
132

133 void i n i t i a l i z e (i n t argc , mxArray ∗∗ argv)

134 {
135 bool verbose p = f a l s e ;

136 bool loopback p = true ;

137 bool count ing p = f a l s e ;

138 bool width 8 p = f a l s e ;

139 i n t max bytes = 128 ∗ (1L << 20) ;

140 i n t ch ;

141 char ∗ output f i l ename = 0 ;

142 i n t which board = 0 ;

143 i n t decim = 8 ; // 32 MB/ sec

144 double c e n t e r f r e q = 100000000;

145 i n t f u s b b l o c k s i z e = 0 ;

146 i n t fu sb nb l o ck s = 0 ;

147 bool r e a l t ime p = f a l s e ;

148

149

96

150 // set progname (argv [0]) ;

151

152 #i f d e f HAVE SCHED SETSCHEDULER

153 i f (r e a l t ime p){
154 i n t po l i c y = SCHED FIFO;

155 i n t p r i = (s ched ge t p r i o r i t y max (po l i c y) − s c h ed g e t p r i o r i t y m in (po l i c y)) / 2 ;

156 i n t pid = 0 ; // t h i s p roce s s

157

158 s t r u c t sched param param ;

159 memset(¶m , 0 , s i z e o f (param)) ;

160 param . s c h e d p r i o r i t y = pr i ;

161 i n t r e s u l t = s ch ed s e t s ch edu l e r (pid , po l i cy , ¶m) ;

162 i f (r e s u l t != 0){
163 pe r ro r (” s ch ed s e t s ch edu l e r : f a i l e d to s e t r e a l time p r i o r i t y ”) ;

164 }
165 else

166 p r i n t f (”SCHED FIFO enabled with p r i o r i t y = %d\n” , p r i) ;

167 }
168 #end i f

169

170 FILE ∗ fp = 0 ;

171

172 i f (output f i l ename){
173 fp = fopen (output f i l ename , ”wb”) ;

174 i f (fp == 0)

175 pe r ro r (output f i l ename) ;

176 }
177

178 i n t mode = 0 ;

179 i f (loopback p)

180 mode |= usrp s tandard rx : :FPGA MODE LOOPBACK;

181 i f (count ing p)

182 mode |= usrp s tandard rx : :FPGA MODE COUNTING;

97

183 mexPrintf (”Mode : %d\n” ,mode) ;

184

185 // us rp s tandard rx usage

186 // i n t which board ,

187 // unsigned i n t dec im rate ,

188 i n t nchan = 1 ;

189 i n t mux = −1;

190 // i n t mode = 0 ,

191 // i n t f u s b b l o c k s i z e = 0 ,

192 // i n t fu sb nb l o ck s = 0 ,

193 const std : : s t r i n g fpga f i l ename=”” ;

194 const std : : s t r i n g f i rmware f i l ename = ”” ;

195

196

197 //try{
198 /∗
199 USRP Rx = usrp s tandard rx : : make(

200 which board ,

201 decim ,

202 nchan ,

203 mux,

204 mode ,

205 f u s b b l o c k s i z e ,

206 fusb nb locks ,

207 fpga f i l ename ,

208 f i rmware f i l ename) ;

209 ∗/
210 us rp s tandard rx ∗urx = usrp s tandard rx : : make(which board ,

211 decim ,

212 nchan ,

213 mux,

214 mode ,

215 f u s b b l o c k s i z e ,

98

216 fu sb nb l o ck s) ;

217 // fpga f i l ename ,

218 // f i rmware f i l ename) ;

219 //}
220 // catch (. . .) {
221 // i f (urx == 0){
222 // mexPrintf (”USRP I n i t i a l i z a t i o n Error \n”) ;

223 //}
224

225 //}
226

227 // i f (urx == 0)

228 // d i e (” us rp s tandard rx : : make”) ;

229

230 i f (! urx−>s e t r x f r e q (0 , c e n t e r f r e q))

231 d i e (”urx−>s e t r x f r e q ”) ;

232

233 i f (width 8 p){
234 i n t width = 8 ;

235 i n t s h i f t = 8 ;

236 bool want q = true ;

237 i f (! urx−>s e t f o rmat (us rp s tandard rx : : make format (width , s h i f t , want q)))

238 d i e (”urx−>s e t f o rmat ”) ;

239 }
240

241 urx−>s t a r t () ; // s t a r t data x f e r s

242

243 t e s t i n pu t (urx , max bytes , fp) ;

244

245 i f (fp)

246 f c l o s e (fp) ;

247

248 d e l e t e urx ;

99

249

250 //return 0 ;

251

252 mexPrintf (” He l lo i n i t i a l i z e d \n”) ;

253 }
254

255 /∗ t h i s i s my main funct ion , i t w i l l do grea t th ing s one day∗/
256 void mexFunction (

257 i n t nlhs , /∗ number o f expected outputs ∗/
258 mxArray ∗ plhs [] , /∗ array o f po i n t e r s to output arguments ∗/
259 i n t nrhs , /∗ number o f inputs ∗/
260 const mxArray ∗prhs [] /∗ array o f po i n t e r s to input arguments ∗/
261)

262 {
263 mexPrintf (” He l lo world\n”) ;

264 i n i t i a l i z e (nlhs , p lhs) ;

265 }

100

Appendix H

MEX Interface to USRP Tx

1 l /∗∗/
2 /∗
3 these notes are from Peter R y d e s t e r tcp /IP too lbox

4 i l e f t i t here for notes on syntax us ing mex

5

6 Notes for Unix implementation

7 Compile t h i s with :

8

9 mex −O pnet . c

10 the o i s for optomize

11

12 Notes for Windows implementation

13

14 When us ing LCC, compi le t h i s with :

15 mex −O pnet . c {MATLAB INSTALL DIR}\ sys \ l c c \ l i b \wsock32 . l i b −DWIN32

16

17 When us ing Visua l C++, compi le t h i s with :

101

18 mex −O pnet . c ws2 32 . l i b −DWIN32

19 ∗/
20

21 /∗∗∗∗∗∗∗ GENERAL DEFINES ∗∗∗∗∗∗∗∗∗/
22 #i f d e f HAVE CONFIG H

23 #inc lude ” con f i g . h”

24 #end i f

25

26

27 #inc lude <s t d i o . h>

28 #inc lude < s t d l i b . h>

29 #inc lude <s t r i n g . h>

30 #inc lude <un i s td . h>

31 #inc lude <usb . h> /∗ needed fo r usb func t i ons ∗/
32 #inc lude <ge t op t . h>

33 #inc lude <a s s e r t . h>

34 #inc lude <math . h>

35

36 #inc lude ” t im e s t u f f . h”

37 #inc lude ” usrp s tandard . h”

38 #inc lude ” usrp s tandard . cc”

39 #inc lude ” u s rp by t e s e x . h”

40 #inc lude <us rp ba s i c . h>

41 #inc lude ” fpga regs common . h”

42 #inc lude ” f p ga r e g s s t anda rd . h”

43

44 #i f d e f HAVE SCHED H

45 #inc lude <sched . h>

46 #end i f

47

48 char ∗prog name ;

49

50 /∗ Inc lude header f i l e for matlab mex f i l e f u n c t i o n a l i t y ∗/

102

51 #inc lude ”mex . h”

52 #inc lude ”matrix . h”

53

54 /∗Make the USRP a global var i ab l e , maybe put in to an array l i k e

55 the so cke t s program did with connec t i ons ∗/
56 us rp s tandard tx ∗utx ;

57 // count number o f c a l l s

58 i n t numCalls = 0 ;

59

60 // Debugging − a l low for a verbose mode

61 bool verbose = true ;

62

63 s t a t i c bool t e s t i n pu t (us rp s tandard rx ∗urx , i n t max bytes , FILE ∗ fp) ;

64 void d i s p l a y s ub s c r i p t (const mxArray ∗ ar ray pt r , mwSize index) ;

65

66 s t a t i c void

67 set progname (char ∗path)

68 {
69 char ∗p = s t r r c h r (path , ’ / ’) ;

70 i f (p != 0)

71 prog name = p+1;

72 else

73 prog name = path ;

74 }
75

76 s t a t i c void

77 d i e (const char ∗msg)

78 {
79 f p r i n t f (s tde r r , ” d i e : %s : %s \n” , prog name , msg) ;

80 e x i t (1) ;

81 }
82

83

103

84 s t a t i c bool

85 t e s t ou tpu t (us rp s tandard tx ∗utx , unsigned long max bytes , double ampl ,

86 bool dc p , bool count ing p)

87 {
88 s t a t i c const i n t BUFSIZE = utx−>b l o c k s i z e () ;

89 s t a t i c const i n t N = BUFSIZE/ s i z e o f (shor t) ;

90

91 shor t buf [N] ;

92 unsigned long nbytes = 0 ;

93 i n t counter = 0 ;

94

95 s t a t i c const i n t PERIOD = 65 ; // any value i s va l i d

96 s t a t i c const i n t PATLEN = 2 ∗ PERIOD;

97 shor t pattern [PATLEN] ;

98

99 for (i n t i = 0 ; i < PERIOD; i++){
100 i f (dc p){
101 pattern [2∗ i +0] = ho s t t o u s r p s h o r t ((shor t) ampl) ;

102 pattern [2∗ i +1] = ho s t t o u s r p s h o r t ((shor t) 0) ;

103 }
104 else {
105 pattern [2∗ i +0] = ho s t t o u s r p s h o r t

106 ((shor t) (ampl ∗ cos (2∗M PI ∗ i / PERIOD))) ;

107 pattern [2∗ i +1] = ho s t t o u s r p s h o r t

108 ((shor t) (ampl ∗ s i n (2∗M PI ∗ i / PERIOD))) ;

109 }
110 }
111

112 double s t a r t wa l l t im e = 0 ;

113 double s t a r t cpu t ime = 0 ;

114

115 bool underrun ;

116 i n t nunderruns = 0 ;

104

117 i n t p i = 0 ;

118

119 for (nbytes = 0 ; max bytes == 0 | | nbytes < max bytes ; nbytes += BUFSIZE){
120

121 i f (count ing p){
122 for (i n t i = 0 ; i < N; i++)

123 buf [i] = ho s t t o u s r p s h o r t (counter++ & 0 x f f f f) ;

124 }
125 else {
126 for (i n t i = 0 ; i < N; i++){
127 buf [i] = pattern [p i] ;

128 p i++;

129 i f (p i >= PATLEN)

130 p i = 0 ;

131 }
132 }
133

134 i n t r e t = utx−>wr i t e (buf , s i z e o f (buf) , &underrun) ;

135 i f ((unsigned) r e t != s i z e o f (buf)){
136 mexPrintf (” t e s t ou tpu t : e r ro r , r e t = %d\n” , r e t) ;

137 }
138

139 i f (underrun){
140 nunderruns++;

141 mexPrintf (” tx underrun \n”) ;

142 // p r i n t f (” tx underrun %9d %6d\n” , nbytes , nbytes /BUFSIZE) ;

143 }
144 }
145

146 utx−>wa i t f o r c omp l e t i on () ;

147

148 double s t op wa l l t ime = 1 ;

149 double s top cpu t ime = 1 ;

105

150

151 double d e l t a wa l l = s t op wa l l t ime − s t a r t wa l l t im e ;

152 double de l ta cpu = stop cpu t ime − s t a r t cpu t ime ;

153

154 mexPrintf (” x f e r ed %.3g bytes in %.3g seconds . %.4g bytes / sec . cpu time = %.3g\n” ,

155 (double) max bytes , d e l t a wa l l , max bytes / de l t a wa l l , d e l t a cpu) ;

156

157 mexPrintf (”%d underruns \n” , nunderruns) ;

158

159 return t rue ;

160 }
161

162

163 s t a t i c bool t e s t i n pu t (us rp s tandard rx ∗urx , unsigned long max bytes ,

164 FILE ∗ fp)

165 {
166 i n t fd = −1;

167 s t a t i c const i n t BUFSIZE = urx−>b l o c k s i z e () ;

168 s t a t i c const i n t N = BUFSIZE/ s i z e o f (shor t) ;

169 shor t buf [N] ;

170 unsigned long nbytes = 0 ;

171

172 // double s t a r t wa l l t im e = ge t e l ap s ed t ime () ;

173 // double s t a r t cpu t ime = get cpu usage () ;

174

175 //used when timing i s broken

176 double s t a r t wa l l t im e = 0 ;

177 double s t a r t cpu t ime = 0 ;

178

179

180 i f (fp)

181 fd = f i l e n o (fp) ;

182

106

183 bool overrun ;

184 i n t noverruns = 0 ;

185

186 for (nbytes = 0 ; max bytes == 0 | | nbytes < max bytes ; nbytes += BUFSIZE){
187

188 unsigned i n t r e t = urx−>read (buf , s i z e o f (buf) , &overrun) ;

189 i f (r e t != s i z e o f (buf)){
190 mexPrintf (” t e s t i n pu t : e r ro r , r e t = %d\n” , r e t) ;

191 }
192

193 i f (overrun){
194 mexPrintf (” rx overrun \n”) ;

195 noverruns++;

196 }
197

198 i f (fd != −1){
199

200 for (unsigned i n t i = 0 ; i < s i z e o f (buf) / s i z e o f (shor t) ; i++)

201 buf [i] = u s r p t o ho s t s h o r t (buf [i]) ;

202

203 i f (wr i t e (fd , buf , s i z e o f (buf)) == −1){
204 mexPrintf (” wr i t e e r r o r ”) ;

205 fd = −1;

206 }
207 }
208 }
209

210 // double s t op wa l l t ime = ge t e l ap s ed t ime () ;

211 // double s top cpu t ime = get cpu usage () ;

212 double s t op wa l l t ime = 1 ;

213 double s top cpu t ime = 1 ;

214

215 double d e l t a wa l l = s t op wa l l t ime − s t a r t wa l l t im e ;

107

216 double de l ta cpu = stop cpu t ime − s t a r t cpu t ime ;

217

218 mexPrintf (” x f e r ed %.3g bytes in %.3g seconds . %.4g bytes / sec . cpu time = %.4g\n” ,

219 (double) max bytes , d e l t a wa l l , max bytes / de l t a wa l l , d e l t a cpu) ;

220 mexPrintf (” noverruns = %d\n” , noverruns) ;

221

222 return t rue ;

223 }
224

225

226 void setupUSRP(

227 i n t daughterBoardSe lect = 0 ,

228 unsigned i n t interpRate = 16 ,

229 i n t numChan = 1 ,

230 i n t mux = −1,

231 i n t f u s b b l o c k s i z e = 0 ,

232 i n t fu sb nb l o ck s = 0 ,

233 const std : : s t r i n g fpga f i l ename=”” ,

234 const std : : s t r i n g f i rmware f i l ename = ”” ,

235 bool verbose p = f a l s e , //not used

236 bool loopback p = true ,

237 bool count ing p = f a l s e ,

238 bool width 8 p = f a l s e //not used

239

240){
241 // setup r e a l time schedu l ing i f r eques ted and po s s i b l e

242 #i f d e f HAVE SCHED SETSCHEDULER

243 i f (r e a l t ime p){
244 i n t po l i c y = SCHED FIFO;

245 i n t p r i = (s ched ge t p r i o r i t y max (po l i c y) − s c h ed g e t p r i o r i t y m in (po l i c y)) / 2 ;

246 i n t pid = 0 ; // t h i s p roce s s

247

248 s t r u c t sched param param ;

108

249 memset(¶m , 0 , s i z e o f (param)) ;

250 param . s c h e d p r i o r i t y = pr i ;

251 i n t r e s u l t = s ch ed s e t s ch edu l e r (pid , po l i cy , ¶m) ;

252 i f (r e s u l t != 0){
253 pe r ro r (” s ch ed s e t s ch edu l e r : f a i l e d to s e t r e a l time p r i o r i t y \n”) ;

254 }
255 else

256 p r i n t f (”SCHED FIFO enabled with p r i o r i t y = %d\n” , p r i) ;

257 }
258 #end i f

259

260 // determine mode for USRP, may not be needed for Tx

261 i n t mode = 0 ;

262 i f (loopback p){
263 mode |= usrp s tandard rx : :FPGA MODE LOOPBACK;

264 mexPrintf (”Using Loopback mode\n”) ;

265 }
266 i f (count ing p){
267 mode |= usrp s tandard rx : :FPGA MODE COUNTING;

268 mexPrintf (”Using count ing mode\n”) ;

269 }
270

271

272 utx = usrp s tandard tx : : make (daughterBoardSelect ,

273 interpRate ,

274 numChan ,

275 mux,

276 f u s b b l o c k s i z e ,

277 fusb nb locks ,

278 fpga f i l ename ,

279 f i rmware f i l ename) ;

280

281 i f (utx == 0){

109

282 d i e (” us rp s tandard tx : : make”) ;

283 mexPrintf (”USRP i n i t i a l i z a t i o n f a i l e d \n”) ;

284 }
285

286 }
287

288 void setDBFrequency (// s e t s the f requency on the daughterboard , won ’ t work un t i l

289 // code i s added to con f i gu r e daughterboard

290 i n t frequency ,

291 i n t s i d e = 1){
292

293 i f (! utx−>s e t t x f r e q (1 , f requency)){
294 mexPrintf (” Expected s e t f requency e r r o r \n ”) ;

295 i f (” utx−>s e t t x f r e q”==NULL){
296 d i e (” utx−>s e t t x f r e q ”) ;

297 }
298 }
299 // i thought t h i s was c a l l e d in the i f statement

300 utx−>s e t t x f r e q (1 , 100000) ;

301

302 mexPrintf (”%d\n” , utx−>nchannels ()) ;

303 mexPrintf (”%d\n” , utx−>t x f r e q (1)) ;

304

305 }
306

307 void startUSRP (){
308 utx−>s t a r t () ; // s t a r t data x f e r s (l o ck the USRP f o r data t r a n s f e r s ?)

309 mexPrintf (”USRP s ta r t ed \n ”) ;

310 }
311

312 void sendData (

313 shor t ∗data){
314

110

315 mexPrintf (” Sending data to USRP\n ”) ;

316

317 // these va lue s should be cached , but r e ca l cua t ed on changes

318 s t a t i c const i n t USRPBufferSize = utx−>b l o c k s i z e () ;

319 s t a t i c const i n t maxNumShortsInBuffer = USRPBufferSize/ s i z e o f (shor t) ;

320 // shor t bu f f e r [maxNumShortsInBuffer] ;

321 shor t ∗ bu f f e r ;

322 // cache the s i z e o f the bu f f e r with r e sp e c t to the s i z e o f type char

323 // f o r the usrp wr i t e func t i on

324 s t a t i c const i n t bu f f e r S i z e = s i z e o f (bu f f e r) ;

325 s t a t i c const i n t dataS i ze = s i z e o f (data) ;

326

327 // unsigned long nbytes = 0 ;

328 i n t counter = 0 ;

329 bool underrun ;

330

331 f o r (i n t bu f f e rCntr= 0 ; bu f f e rCntr < dataS ize ; bu f f e rCntr++){
332 // read one bu f f e r ’ s worth o f data in to the bu f f e r ∗∗FIX ME∗∗
333 bu f f e r = data ;

334

335 i n t r e t = utx−>wr i t e (bu f f e r , bu f f e r S i z e , &underrun) ;

336

337 i f ((unsigned) r e t != s i z e o f (bu f f e r)){
338 mexPrintf (” t e s t ou tpu t : e r ro r , r e t = %d\n” , r e t) ;

339 }
340

341 i f (underrun){
342 // nunderruns++;

343 mexPrintf (” tx underrun \n”) ;

344 // p r i n t f (” tx underrun %9d %6d\n” , nbytes , nbytes /BUFSIZE) ;

345 }
346

347 utx−>wa i t f o r c omp l e t i on () ;

111

348 }
349 mexPrintf (”Data sent to USRP\n”) ;

350 }
351

352 shor t genRandData (

353 i n t PERIOD = 65 , // any value i s va l i d

354 i n t PATLEN = 130 , // must be an i n t e g e r mul t ipa l o f pero id

355 i n t ampl = 1 ,

356 bool dc p = f a l s e){
357

358 shor t pattern [PATLEN] ;

359

360 for (i n t i = 0 ; i < PERIOD; i++){
361 i f (dc p){
362 pattern [2∗ i +0] = ho s t t o u s r p s h o r t ((shor t) ampl) ;

363 pattern [2∗ i +1] = ho s t t o u s r p s h o r t ((shor t) 0) ;

364 }
365 else {
366 pattern [2∗ i +0] = ho s t t o u s r p s h o r t

367 ((shor t) (ampl ∗ cos (2∗M PI ∗ i / PERIOD))) ;

368 pattern [2∗ i +1] = ho s t t o u s r p s h o r t

369 ((shor t) (ampl ∗ s i n (2∗M PI ∗ i / PERIOD))) ;

370 }
371 }
372

373 s t a t i c const i n t BUFSIZE = utx−>b l o c k s i z e () ;

374 s t a t i c const i n t N = BUFSIZE/ s i z e o f (shor t) ;

375 shor t bu f f e r [N] ;

376 unsigned long nbytes = 0 ;

377 i n t counter = 0 ;

378 i n t p i = 0 ;

379 for (i n t i = 0 ; i < N; i++){
380 bu f f e r [i] = pattern [p i] ;

112

381 p i++;

382 i f (p i >= PATLEN)

383 p i = 0 ;

384 }
385 return ∗ bu f f e r ;

386

387 }
388

389

390 void cleanUSRP (){
391 d e l e t e utx ;

392 mexPrintf (”USRP cleaned up\n”) ;

393 }
394

395 void sendRandDataTest (

396 unsigned long max bytes = 40000 ,

397 double ampl = 1 ,

398 bool dc p = f a l s e ,

399 bool count ing p = f a l s e){
400

401 s t a t i c const i n t BUFSIZE = utx−>b l o c k s i z e () ;

402 s t a t i c const i n t N = BUFSIZE/ s i z e o f (shor t) ;

403

404 shor t buf [N] ;

405 unsigned long nbytes = 0 ;

406 i n t counter = 0 ;

407

408 s t a t i c const i n t PERIOD = 65 ; // any value i s va l i d

409 s t a t i c const i n t PATLEN = 2 ∗ PERIOD;

410 shor t pattern [PATLEN] ;

411

412 for (i n t i = 0 ; i < PERIOD; i++){
413 i f (dc p){

113

414 pattern [2∗ i +0] = ho s t t o u s r p s h o r t ((shor t) ampl) ;

415 pattern [2∗ i +1] = ho s t t o u s r p s h o r t ((shor t) 0) ;

416 }
417 else {
418 pattern [2∗ i +0] = ho s t t o u s r p s h o r t

419 ((shor t) (ampl ∗ cos (2∗M PI ∗ i / PERIOD))) ;

420 pattern [2∗ i +1] = ho s t t o u s r p s h o r t

421 ((shor t) (ampl ∗ s i n (2∗M PI ∗ i / PERIOD))) ;

422 }
423 }
424

425 double s t a r t wa l l t im e = 0 ;

426 double s t a r t cpu t ime = 0 ;

427

428 bool underrun ;

429 i n t nunderruns = 0 ;

430 i n t p i = 0 ;

431

432 for (nbytes = 0 ; max bytes == 0 | | nbytes < max bytes ; nbytes += BUFSIZE){
433

434 i f (count ing p){
435 for (i n t i = 0 ; i < N; i++)

436 buf [i] = ho s t t o u s r p s h o r t (counter++ & 0 x f f f f) ;

437 }
438 else {
439 for (i n t i = 0 ; i < N; i++){
440 buf [i] = pattern [p i] ;

441 p i++;

442 i f (p i >= PATLEN)

443 p i = 0 ;

444 }
445 }
446

114

447 i n t r e t = utx−>wr i t e (buf , s i z e o f (buf) , &underrun) ;

448 i f ((unsigned) r e t != s i z e o f (buf)){
449 mexPrintf (” t e s t ou tpu t : e r ro r , r e t = %d\n” , r e t) ;

450 }
451

452 i f (underrun){
453 nunderruns++;

454 mexPrintf (” tx underrun \n”) ;

455 // p r i n t f (” tx underrun %9d %6d\n” , nbytes , nbytes /BUFSIZE) ;

456 }
457 }
458

459 utx−>wa i t f o r c omp l e t i on () ;

460

461 mexPrintf (” x f e r ed %.3g bytes \n” ,

462 (double) max bytes) ;

463

464 mexPrintf (”%d underruns \n” , nunderruns) ;

465

466 }
467

468 void d i sp l aySt r ingArray (const mxArray ∗ s t r i n g a r r a y p t r){
469 char ∗buf ;

470 mwSize number of dimensions , bu f l en ;

471 const mwSize ∗dims ;

472 mwSize d , page , to ta l number o f pages , e l ements per page ;

473

474 /∗ Al l o ca t e enough memory to hold the converted s t r i n g . ∗/
475 bu f l en = mxGetNumberOfElements (s t r i n g a r r a y p t r) + 1 ;

476 mexPrintf (”Num elements in command : %d\n” , bu f l en) ;

477 buf = (char ∗) mxCalloc (buf len , s i z e o f (char)) ;

478

479 /∗ Copy the s t r i n g data from s t r i n g a r r a y p t r and p lace i t i n to buf . ∗/

115

480 i f (mxGetString (s t r i n g a r r a y p t r , buf , bu f l en) != 0)

481 mexErrMsgTxt (”Could not convert s t r i n g data . ”) ;

482

483 /∗ Get the shape o f the input mxArray . ∗/
484 dims = mxGetDimensions (s t r i n g a r r a y p t r) ;

485 number of dimens ions = mxGetNumberOfDimensions (s t r i n g a r r a y p t r) ;

486

487 e l ements per page = dims [0] ∗ dims [1] ;

488 /∗ t o ta l number o f page s = dims [2] x dims [3] x . . . x dims [N−1] ∗/
489 to ta l number o f page s = 1 ;

490 for (d=2; d<number of dimens ions ; d++) {
491 to ta l number o f page s ∗= dims [d] ;

492 }
493

494 for (page=0; page < t o ta l number o f page s ; page++) {
495 mwSize row ;

496 /∗ On each page , walk through each row . ∗/
497 for (row=0; row<dims [0] ; row++) {
498 mwSize column ;

499 mwSize index = (page ∗ e l ements per page) + row ;

500 mexPrintf (”\ t ”) ;

501 d i s p l a y s ub s c r i p t (s t r i n g a r r a y p t r , index) ;

502 mexPrintf (” ”) ;

503

504 /∗ Walk along each column in the cur rent row . ∗/
505 for (column=0; column<dims [1] ; column++) {
506 mexPrintf (”%c” , buf [index]) ;

507 index += dims [0] ;

508 }
509 mexPrintf (”\n”) ;

510 }
511 }
512 }

116

513

514 char getCommand(

515 const mxArray ∗ inputPtrToStr ing

516){
517 char ∗command ;

518 mwSize numElements ;

519

520 numElements = mxGetNumberOfElements (inputPtrToStr ing) + 1 ;

521 i f (verbose)

522 mexPrintf (”Num elements in command : %d\n” , numElements) ;

523 // i f number o f e lements o f command i s g r e a t e r than 1 , e r r o r

524

525 // Al l o ca t e enough memory for s t r i n g

526 command = (char ∗) mxCalloc (numElements , s i z e o f (char)) ;

527

528 /∗ Copy the s t r i n g data from s t r i n g a r r a y p t r and p lace i t i n to buf . ∗/
529 i f (mxGetString (inputPtrToStr ing , command , numElements) != 0)

530 mexErrMsgTxt (”Could not convert s t r i n g data . ”) ;

531

532 return ∗command ;

533 }
534

535 /∗ Display the sub s c r i p t a s s o c i a t ed with the g iven index . ∗/
536 void

537 d i s p l a y s ub s c r i p t (const mxArray ∗ ar ray pt r , mwSize index)

538 {
539 mwSize inner , subindex , t o ta l , d , q , number of dimens ions ;

540 mwSize ∗ s ub s c r i p t ;

541 const mwSize ∗dims ;

542

543 number of dimens ions = mxGetNumberOfDimensions (a r r ay p t r) ;

544 sub s c r i p t = (mwSize∗) mxCalloc (number of dimensions , s i z e o f (mwSize)) ;

545 dims = mxGetDimensions (a r r ay p t r) ;

117

546

547 mexPrintf (” (”) ;

548 subindex = index ;

549 for (d = number of dimensions −1; ; d−−) { /∗ loop terminat ion i s at the end ∗/
550

551 for (t o t a l =1, inne r =0; inner<d ; inne r++)

552 t o t a l ∗= dims [inne r] ;

553

554 sub s c r i p t [d] = subindex / t o t a l ;

555 subindex = subindex % t o t a l ;

556 i f (d == 0) {
557 break ;

558 }
559 }
560

561 for (q=0; q<number of dimensions −1; q++) {
562 mexPrintf (”%d , ” , s ub s c r i p t [q] + 1) ;

563 }
564 mexPrintf (”%d) ” , s ub s c r i p t [number of dimensions −1] + 1) ;

565

566 mxFree (sub s c r i p t) ;

567 }
568

569

570 /∗ t h i s i s my main funct ion , i t w i l l do grea t th ing s one day∗/
571 void mexFunction (

572 i n t numOutArgs , /∗ number o f expected outputs ∗/
573 mxArray ∗outputArgs [] , /∗ array o f po i n t e r s to output arguments ∗/
574 i n t numInArgs , /∗ number o f inputs ∗/
575 const mxArray ∗ inputArgs [] /∗ array o f po i n t e r s to input arguments ∗/
576)

577 {
578 i f (numInArgs < 1 | | ! mxIsChar (inputArgs [0])) {

118

579 mexErrMsgTxt (” Inva l i d mex Input ” , ” F i r s t input must be a char array i nd i c a t i n g ”

580 ”a va l i d USRP command , s ee he lp f o r l i s t o f commands”) ;

581 }
582 numCalls++;

583 mexPrintf (” Ca l l number : %d \n” , numCalls) ;

584 shor t data ;

585 mexPrintf (”Begin USRP program\n”) ;

586 mexPrintf (”Show Command: ”) ;

587 d i sp laySt r ingArray (inputArgs [0]) ;

588 // getCharArray (inputArgs [0]) ;

589 char ∗commandPtr ;

590 char command ;

591 commandPtr = (char ∗) getCommand(inputArgs [0]) ;

592 //command = &commandPtr ;

593 // i n i t i a l i z e (numOutArgs , outputArgs) ;

594 // i f (numInArgs > 0){
595 mexPrintf (”command : %s \n” , ∗commandPtr) ;

596 // i f (strcmp (command , ”Hi mom”) == 0)

597 //mexPrintf (”Command was Hi mom”) ;

598 //}
599 setupUSRP () ;

600 setDBFrequency (1000) ;

601 startUSRP () ;

602 // data = genRandData () ;

603 // sendData(&data) ;

604 sendRandDataTest () ;

605 cleanUSRP () ;

606 mexPrintf (”End USRP program so f a r \n”) ;

607 }

119

Appendix I

USRP2 Transmitter Mask Helper Function

1 func t i on usrp2tx (block , a c t i on)

2 %

3

4

5 Vals = get param (block , ’ maskvalues ’) ;

6 Vis = get param (block , ’ m a s k v i s i b i l i t i e s ’) ;

7 En = get param (block , ’ maskenables ’) ;

8

9 % −−− Fie ld numbers

10 Eth In t e r f a c e = 1 ;

11 IDMode = 2 ;

12 MACAddress = 3 ;

13 FreqMode = 4 ;

14 CenterFrequency = 5 ;

15 PowerMode = 6 ;

16 Power = 7 ;

17 Interpo lat ionMode = 8 ;

120

18 In t e rpo l a t i onFac t o r = 9 ;

19

20

21 % Display the t i t l e o f the block with some i d e n t i f i c a t i o n o f the hardware

22 % The i n t e r f a c e IDs on windows w i l l have to be shortened

23 t i t l e = [’ t ex t (0 . 5 , 0 . 85 , ’ ’USRP2 Tx\n on ’ ’ ’ . . .

24 Vals{EthInt e r f a c e } ’ ’ ’ ’ ’ , ’ . . .

25 ’ ’ ’ hor izonta lAl ignment ’ ’ , ’ ’ c en t e r ’ ’) ; ’ . . .

26 ’ p o r t l a b e l (’ ’ input ’ ’ , 1 , ’ ’Data ’ ’) ; ’] ;

27

28

29 USRPFigure = [’ p l o t ([0 . 6 5 0 .65 0 .9 0 .9 0 . 6 5] , [0 . 2 0 . 4 0 .4 0 .2 0 . 2] , ’ . . .

30 ’ [0 . 6 5 0 . 7] , [0 . 4 0 . 5 5] , ’ . . .

31 ’ [0 . 9 0 . 9 5] , [0 . 4 0 . 5 5] , ’ . . .

32 ’ [0 . 9 0 . 9 5] , [0 . 2 0 . 3 5] , ’ . . .

33 ’ [0 . 7 0 .95 0 . 9 5] , [0 . 5 5 0 .55 0 . 3 5] , ’ . . .

34 ’ [0 . 8 5 0 .85 0 .8 0 .9 0 . 8 5] , [0 . 3 0 .65 0 .75 0 .75 0 . 6 5]) ; ’] ;

35

36 switch (ac t i on)

37 case ’ i n i t ’

38 %f e v a l (mfilename , block , ’ IDMode ’) ;

39 %f e v a l (mfilename , block , ’ CenterFreqMode ’) ;

40 %f e v a l (mfilename , block , ’PowerMode ’) ;

41 %f e v a l (mfilename , block , ’ Interpo lat ionFactorMode ’) ;

42 %[varargout {1 : 1}] = f e v a l (mfilename , block , ’ PortLabe l ing ’) ;

43

44

45 case ’ PortLabe l ing ’

46

47

48

49 case ’ IDMode ’

50 i f (strcmp (Vals{IDMode} , ’ Automatic d e t e c t i on ’))

121

51 i f (strcmp (Vis{MACAddress} , ’ on ’))

52 En{MACAddress} = ’ o f f ’ ;

53 Vis{MACAddress} = ’ o f f ’ ;

54 end ;

55 e l s e i f (strcmp (Vis{MACAddress} , ’ o f f ’))

56 En{MACAddress} = ’ on ’ ;

57 Vis{MACAddress} = ’ on ’ ;

58 end

59 set param (block , ’ Ma s kV i s i b i l i t i e s ’ , Vis , ’ MaskEnables ’ ,En) ;

60

61 case ’ CenterFreqMode ’

62 i f (strcmp (Vals{FreqMode} , ’ S e l e c t f requency from port ’))

63 i f (strcmp (Vis{CenterFrequency } , ’ on ’))

64 En{CenterFrequency} = ’ o f f ’ ;

65 Vis{CenterFrequency} = ’ o f f ’ ;

66 end ;

67 e l s e i f (strcmp (Vis{CenterFrequency } , ’ o f f ’))

68 En{CenterFrequency} = ’ on ’ ;

69 Vis{CenterFrequency} = ’ on ’ ;

70 end

71 set param (block , ’ Ma s kV i s i b i l i t i e s ’ , Vis , ’ MaskEnables ’ ,En) ;

72

73 case ’PowerMode ’

74 i f (strcmp (Vals{PowerMode} , ’ S e l e c t power from port ’))

75 i f (strcmp (Vis{Power} , ’ on ’))

76 En{Power} = ’ o f f ’ ;

77 Vis{Power} = ’ o f f ’ ;

78 end ;

79 e l s e i f (strcmp (Vis{Power} , ’ o f f ’))

80 En{Power} = ’ on ’ ;

81 Vis{Power} = ’ on ’ ;

82 end

83 set param (block , ’ Ma s kV i s i b i l i t i e s ’ , Vis , ’ MaskEnables ’ ,En) ;

122

84

85 case ’ Interpo lat ionFactorMode ’

86 i f (strcmp (Vals{ Interpo lat ionMode } , . . .

87 ’ S e l e c t i n t e r p o l a t i o n f a c t o r from port ’))

88 i f (strcmp (Vis{ I n t e rpo l a t i onFac t o r } , ’ on ’))

89 En{ I n t e rpo l a t i onFac t o r } = ’ o f f ’ ;

90 Vis{ I n t e rpo l a t i onFac t o r } = ’ o f f ’ ;

91 end ;

92 e l s e i f (strcmp (Vis{ I n t e rpo l a t i onFac t o r } , ’ o f f ’))

93 En{ I n t e rpo l a t i onFac t o r } = ’ on ’ ;

94 Vis{ I n t e rpo l a t i onFac t o r } = ’ on ’ ;

95 end

96 set param (block , ’ Ma s kV i s i b i l i t i e s ’ , Vis , ’ MaskEnables ’ ,En) ;

97

98 d i sp l ay = [t i t l e USRPFigure] ;

99 set param (block , ’ maskdisplay ’ , d i sp l ay) ;

100

101 end

123

Appendix J

USRP2 Receiver Mask Helper Function

1 func t i on usrp2rx (block , ac t i on)

2 %

3

4

5 Vals = get param (block , ’ maskvalues ’) ;

6 Vis = get param (block , ’ m a s k v i s i b i l i t i e s ’) ;

7 En = get param (block , ’ maskenables ’) ;

8

9 % −−− Fie ld numbers

10 Eth In t e r f a c e = 1 ;

11 IDMode = 2 ;

12 MACAddress = 3 ;

13 FreqMode = 4 ;

14 CenterFrequency = 5 ;

15 PowerMode = 6 ;

16 Power = 7 ;

17 Interpo lat ionMode = 8 ;

124

18 In t e rpo l a t i onFac t o r = 9 ;

19

20

21 % Display the t i t l e o f the block with some i d e n t i f i c a t i o n o f the hardware

22 % The i n t e r f a c e IDs on windows w i l l have to be shortened

23 t i t l e = [’ t ex t (0 . 5 , 0 . 85 , ’ ’USRP2 Rx\n on ’ ’ ’ . . .

24 Vals{EthInt e r f a c e } ’ ’ ’ ’ ’ , ’ . . .

25 ’ ’ ’ hor izonta lAl ignment ’ ’ , ’ ’ c en t e r ’ ’) ; ’ . . .

26 ’ p o r t l a b e l (’ ’ output ’ ’ , 1 , ’ ’Data ’ ’) ; ’] ;

27

28

29 USRPFigure = [’ p l o t ([0 . 1 0 . 1 0 .35 0 .35 0 . 1] , [0 . 2 0 . 4 0 .4 0 .2 0 . 2] , ’ . . .

30 ’ [0 . 3 5 0 . 4] , [0 . 4 0 . 5 5] , ’ . . .

31 ’ [0 . 1 0 . 1 5] , [0 . 4 0 . 5 5] , ’ . . .

32 ’ [0 . 3 5 0 . 4] , [0 . 2 0 . 3 5] , ’ . . .

33 ’ [0 . 1 5 0 .4 0 . 4] , [0 . 5 5 0 .55 0 . 3 5] , ’ . . .

34 ’ [0 . 2 0 . 2 0 .15 0 .25 0 . 2] , [0 . 3 0 .65 0 .75 0 .75 0 . 6 5]) ; ’] ;

35

36 switch (ac t i on)

37 case ’ i n i t ’

38 f e v a l (mfilename , block , ’ IDMode ’) ;

39 f e v a l (mfilename , block , ’ CenterFreqMode ’) ;

40 f e v a l (mfilename , block , ’PowerMode ’) ;

41 f e v a l (mfilename , block , ’ Interpo lat ionFactorMode ’) ;

42 %[varargout {1 : 1}] = f e v a l (mfilename , block , ’ PortLabe l ing ’) ;

43

44

45 case ’ PortLabe l ing ’

46

47

48

49 case ’ IDMode ’

50 i f (strcmp (Vals{IDMode} , ’ Automatic d e t e c t i on ’))

125

51 i f (strcmp (Vis{MACAddress} , ’ on ’))

52 En{MACAddress} = ’ o f f ’ ;

53 Vis{MACAddress} = ’ o f f ’ ;

54 end ;

55 e l s e i f (strcmp (Vis{MACAddress} , ’ o f f ’))

56 En{MACAddress} = ’ on ’ ;

57 Vis{MACAddress} = ’ on ’ ;

58 end

59 set param (block , ’ Ma s kV i s i b i l i t i e s ’ , Vis , ’ MaskEnables ’ ,En) ;

60

61 case ’ CenterFreqMode ’

62 i f (strcmp (Vals{FreqMode} , ’ S e l e c t f requency from port ’))

63 i f (strcmp (Vis{CenterFrequency } , ’ on ’))

64 En{CenterFrequency} = ’ o f f ’ ;

65 Vis{CenterFrequency} = ’ o f f ’ ;

66 end ;

67 e l s e i f (strcmp (Vis{CenterFrequency } , ’ o f f ’))

68 En{CenterFrequency} = ’ on ’ ;

69 Vis{CenterFrequency} = ’ on ’ ;

70 end

71 set param (block , ’ Ma s kV i s i b i l i t i e s ’ , Vis , ’ MaskEnables ’ ,En) ;

72

73 case ’PowerMode ’

74 i f (strcmp (Vals{PowerMode} , ’ S e l e c t power from port ’))

75 i f (strcmp (Vis{Power} , ’ on ’))

76 En{Power} = ’ o f f ’ ;

77 Vis{Power} = ’ o f f ’ ;

78 end ;

79 e l s e i f (strcmp (Vis{Power} , ’ o f f ’))

80 En{Power} = ’ on ’ ;

81 Vis{Power} = ’ on ’ ;

82 end

83 set param (block , ’ Ma s kV i s i b i l i t i e s ’ , Vis , ’ MaskEnables ’ ,En) ;

126

84

85 case ’ Interpo lat ionFactorMode ’

86 i f (strcmp (Vals{ Interpo lat ionMode } , . . .

87 ’ S e l e c t i n t e r p o l a t i o n f a c t o r from port ’))

88 i f (strcmp (Vis{ I n t e rpo l a t i onFac t o r } , ’ on ’))

89 En{ I n t e rpo l a t i onFac t o r } = ’ o f f ’ ;

90 Vis{ I n t e rpo l a t i onFac t o r } = ’ o f f ’ ;

91 end ;

92 e l s e i f (strcmp (Vis{ I n t e rpo l a t i onFac t o r } , ’ o f f ’))

93 En{ I n t e rpo l a t i onFac t o r } = ’ on ’ ;

94 Vis{ I n t e rpo l a t i onFac t o r } = ’ on ’ ;

95 end

96 set param (block , ’ Ma s kV i s i b i l i t i e s ’ , Vis , ’ MaskEnables ’ ,En) ;

97

98 d i sp l ay = [t i t l e USRPFigure] ;

99 set param (block , ’ maskdisplay ’ , d i sp l ay) ;

100

101 end

	List of Figures
	Introduction
	Research Motivation
	Current State-of-the-Art
	Thesis Contributions
	Thesis Organization

	Software Defined Radio Technology
	History of Software Defined Radio
	SPEAKeasy Military Software Radio
	Modular Multifunctional Information Transfer System Task Group
	Joint Tactical Radio Systems
	Anywave®Base Station
	IEEE 802.22 - Wireless Regional Area Networks

	Software-Defined Radio Basics
	Comparison of Existing Software Defined Radio Platforms
	The Universal Software-Defined Radio Peripheral Platform
	The Universal Sofwater-Defined Radio Peripheral
	The Universal Software-Defined Radio Peripheral 2
	USRP and USRP2 Comparison
	USRP and USRP2 RF Functionality

	Chapter Summary

	Initial Prototyping Interfaces
	Connecting MATLAB to the USRP using Sockets
	Overview
	Test Cases
	Results and Discussion

	Direct USRP Interface using a MATLAB MEX Function
	Overview
	Results and Discussion

	Chapter Summary

	Proposed Graphical Interface for Wireless Design and Innovation
	Introduction
	User Interface to Control Simulink USRP2 Block
	USRP2 Transmit Mask
	USRP2 Receive Mask

	S-Function Development
	Interface Evaluation and Verification
	Multiple Waveform Generation
	Digital Transmission using Minimum-Sift Keying

	Implementation Pitfalls
	Chapter Summary

	Conclusion
	Overview
	Future Work

	Bibliography
	Sine Wave Generator
	Socket to USRP Interface
	USRP to Socket Interface
	MATLAB Sockets Receiver
	USRP Sockets Interface with FFT
	MATLAB On-Off Keying Server
	MEX Interface to USRP Rx Daughterboard
	MEX Interface to USRP Tx
	USRP2 Transmitter Mask Helper Function
	USRP2 Receiver Mask Helper Function

