
Smart Net, Kicking into the Future
Patent Pending

No.: 63/460,826 ‘Automated Kicking Evaluator for Sports Media’

A Major Qualifying Project Report Submitted to the Faculty of
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

degree of Bachelor of Science

by
Joseph Durocher
Noah Litzinger
Aidan Lynn
Noah Skinner

Michael Sposato

Advisor:
Alireza Ebadi

Date
April 27, 2023

This report represents the work of four WPI undergraduate students submitted to the faculty as evidence of

completion of a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review.

For more information about the projects program at WPI, please see: http://www.wpi.edu/Academics/Projects

1

http://www.wpi.edu/Academics/Projects

Acknowledgements
The authors would like to recognize Professor Alireza Ebadi, who served as the project

advisor for his guidance and mentorship. The authors would also like to thank the faculty and our

student peers from the Mechanical Engineering, Robotic Engineering, Computer Science

departments and the WPI Football team for their support.

The efforts of the authors and Professor Ebadi have culminated into a rewarding ending.

We are happy to acknowledge that the current project has resulted in the provisional patent

application No.: 63/460,826 ‘Automated Kicking Evaluator for Sports Media’. Throughout the

next year, the team plans to work towards attaining the official patent.

2

Abstract

The average National Football League (NFL) game features about four field goal

attempts. Since 2001, around 20% of NFL games have been decided by three points or fewer, a

margin that can be achieved by a successful field goal. These statistics suggest that kicks in

American football can be crucial in determining the outcome of games.

Currently, the kickers practice by kicking into a net on the sidelines with no feedback.

The goal of this project is to develop a setup to collect data, run analysis and display the

trajectory of the kick, so the kickers could adjust their kicks while practicing on the sidelines.

The project was divided into four academic terms, with background research done in A

term, data acquisition and analysis in B term, and setup development in C and D term. The

design, execution, analysis, simulation results are presented and the recommendations for future

improvements are provided.

3

Table of Contents

Acknowledgements 2
Abstract 3
Table of Contents 4
List of Figures 6
List of Tables 7
1. Introduction 8
2. Background 9

2.1 Trajectory Simulators 9
2.1.1 TrackMan Technology 9
2.1.2 Gaining an Understanding of the Common Golf Simulator 10

2.2 Trajectory Calculations within Different Scenarios 11
2.2.1 Analyzing the forces on an American Football and its Flight Path 11
2.2.2 Effects of Lift and Drag on an American Football 12

2.3 MATLAB and Its Capabilities 12
2.3.1 Image Processing and Segmentation 13

3. Methodology 14
3.1 Mission Statement 14
3.2 Objectives 14
3.3 Objective 1: Define the general formulas for the flight path of an American football in a
real world scenario 14

3.3.1. Identifying Variables Used in Trajectory Equations 15
3.3.2 Formulation of Excel Sheets for Drag, Lift, and Surface Area 16
3.3.3 Finding Components of Trajectory Equations 19

3.4 Objective 2: Gain understanding of MATLAB image processing in order to more
accurately predict ball trajectory 21

3.4.1 Image Recognition and MATLAB Color Thresholds 21
3.4.2 MATLAB Video Processing 25
3.4.3 Locating and Graphing the Centroid of the Ball 26
3.4.4 Calculating Initial Conditions: Velocity, Launch Angle, & Spin Rate 30

3.5 Objective 3: Analyze the data collected through image processing and implement general
formulas previously defined to predict the trajectory of the kick 31

3.5.1 Combining Calculated Variables Through Image Processing With Trajectory
Calculations 32
3.5.2 Experimental Setup 32

4. Results and Discussion 34
4.1 Plotting Trajectory Equation and Final Messaging 34
4.2 Test Kick Results 36

4

4.3 Broader Impacts 37
4.3.1 Engineering Ethics 37
4.3.2 Societal and Global Impact 37
4.3.3 Environmental Impact 38
4.3.4 Codes and Standards 38
4.3.5 Economic factors 38

4.4 Future Additions 39
5. Conclusion 40
Bibliography 41
Appendix A: Trajectory Equations 43
Appendix B: Gantt Chart 44
Appendix C: Decision Matrices 45
Appendix D: Final MATLAB Code 46

5

List of Figures

Figure 1: Angle of the Football 16

Figure 2: Lift Coefficient Graph from Excel
(0°-360°)

17

Figure 3: Drag Coefficient Graph from Excel
(0°-360°)

17

Figure 4: SolidWorks Model of Football 18

Figure 5: Surface Areas for Each Full Degree 18

Figure 6: Force Diagram on the Football 19

Figure 7: Matlab Code for Components of
Trajectory

20

Figure 8: MATLAB Script to Identify the American
Football and its Centroid

22

Figure 9: The Result of the First Image
Processing Script which Isolates the Football and Locates the Centroid
with a Blue Indicator

22

Figure 10: The Labspace of the Color Thresholder
within MATLAB Displaying the Four Different Filters Available

24

Figure 11: Workspace of the HSV Intensity
Filter, Featuring the Color Wheel and Intensity Scales

24

Figure 12: Script where the Three Dimensional
HSV Matrix is Transformed to Two Dimensional Black and White

25

Figure 13: MATLAB Video Processing Code Sourced
from Previous Classes with Few Modifications

26

Figure 14: Second Iteration of the Centroid Code
used to Plot Data Afterwards Featuring both Filters

28

Figure 15: Both Function Calculated (Blue) and
Mathematically Calculated (Red) Centroids on the Identified Ball Area

29

6

Figure 16: Graph Plotting the Centroid and
PostFilt Matrices. Centroid is Denoted by the Blue Circles and PostFilt
in the Orange Asterisks. X-Axis is the X-Position and Y-Axis is
the Y-Position.

29

Figure 17: Lines 28 and 29 Featuring the
Conversion Factor Calculations

31

Figure 18: The Initial Condition Calculation
Section

31

Figure 19: Experimental Setup on a Sideline 33

Figure 20: Code for Messaging 35

Figure 21: Final Result 35

Figure 22: Absolute Difference Between Measured
and Calculated Distance of Each Kick in Yards

36

Figure 23: RMSE Equation 37

List of Tables

Table 1: List of Variables 15

Table 2: Bill of Materials for Experimental Setup 33

7

1. Introduction

American football features many different components that contribute to the score of the

game. These components can be grouped into two major categories: touchdowns and field goals.

Each team spends the week before a game crafting ways and training in order to either score or

prevent touchdowns. The 32 teams of the NFL currently have many training techniques,

facilities, and simulators to help increase performance for touchdown production, but lack such

access to field goal production. One of the technologies being used today in the NFL is the

TrackMan radar. The purpose of this technology is to use its sonar capabilities to track the ball’s

flight path; this is mainly used for field goals in the NFL in order to collect data afterwards on

the kick attempt. Using this technology from a training stand point presents itself as reactive

rather than proactive. It presents the data and analytics after the kick is over.

A current method of warming up for kickers in the NFL and across the United States is to

kick into a free standing net on the sidelines. The kickers do this in order to warm-up their

muscles and gain an understanding of how their body feels before going out onto the field and

attempting a field goal. Although helpful for warm-up, this practice provides no feedback to the

kicker about the attempt they are trying to simulate. Essentially, the kickers are going into the

situation blind and possibly less confident than would be expected about their ability to make the

field goal.

This project aimed to create a simulation technology that would be able to give the

kickers data in real time. Inspired by the way golf simulators work, the team has created a setup

that will capture the initial flight of the ball as it is being kicked and later predict the trajectory

of the kick. The team has used knowledge of MATLAB and trajectory physics to innovate the

kicking setup that is commonly seen on the sidelines. Kickers using this simulator are able to

receive data directly following the practice kick informing them of how far their kick would have

been good from. Knowing this information – along with the initial velocity, launch angle, and

spin rate – kickers can be confident in themselves and their ability to have a successful attempt

during the game.

8

2. Background

Before beginning work on this project the team did extensive research on the current

technology that is available today. To begin, this project first acknowledges the existence of other

trajectory simulators that the project will be based upon. Golf simulators are a popular product in

the United States and provide a great example of what the team aims to accomplish in the sport

of American Football. Most golf simulators utilize a series of cameras or radars setup around a

room which track the initial velocity and angle of the golf ball. Aside from golf simulators, an

example of a powerful trajectory simulator is the TrackMan. TrackMan is a tracking software

that was developed using a radar system in 2003 and has grown into a widely used tool for

professional sports teams. Both simulations require a fundamental understanding of projectile

physics in order to calculate an accurate trajectory.

When considering the trajectory of an American football, many fundamental physics

equations are insufficient. Many physics examples involving trajectory often assume the object

has a uniform surface area, such as with a sphere or particle. In other cases, these examples may

neglect drag and lift forces to create a simpler problem as well. The scenarios progress and

become more complicated as the shape of the projectile changes and drag and lift forces are

added. Our project, which uses an American football with a more ovular shape, will require an

alternating surface with each point in time. As a result, the lift and drag forces acting on the

football will also become variable with each instance in time. Understanding these factors

contributed to the research the team needed to conduct.

2.1 Trajectory Simulators

2.1.1 TrackMan Technology

TrackMan is a current technology that utilizes radar systems in order to gather and

analyze a multitude of information for swing mechanics and trajectory. The company was started

in 2003 when Dr. Klaus Eldrup-Jorgensen developed the idea of using radar to track golf balls

(TrackMan, n.d.). Dr. Klaus’ idea blossomed from noticing the unchanged techniques of teaching

golf throughout his years of play. TrackMan takes advantage of the radar technology that was

available, allowing the game of golf to progress at a faster rate. According to Johansson (2015),

9

TrackMan records nine values related to club head movement and 14 values for ball flight. These

metrics are each used as variables to help trace the flight path of the golf ball through contact.

Once gathered, they are processed through a series of formulas that will then show the predictive

trajectory of the golf ball. The ability of the software has developed to reach across multiple

platforms including stationary simulators and any portable systems.

Recently the software has been adapted into other sports such as baseball and football.

The software maintains the same core purpose - to trace the trajectory of a sports ball, while

using slightly modified formulas to account for the different ball sizes and shapes. Major League

Baseball (MLB) started testing TrackMan as a “robot ump” in 2019 through a loose relationship

with the Atlantic League (Acquavella, 2019). The tracking system is placed behind the backstop

and analyzes the different pitches thrown during the game. They have also developed the radar

system to generate a strike zone that is unique to each batter as they are in the batter’s box; this

allows for proportional strike zones (Acquavella, 2019). The system reads the pitches and relays

the information to the umpire which can then make the call.

In addition to the MLB, The National Broadcasting Company (NBC) plans to work with

the NFL in order to continue using TrackMan. The software is only used for replays as of 2018,

however the broadcasting company hopes to expand the use of the system to live punts, kickoffs,

and passes (Lemire, 2018). This software will be able to help NBC and other companies gather

data throughout the season in order to show more meaningful statistics.

2.1.2 Gaining an Understanding of the Common Golf Simulator

The purpose of a golf simulator is to capture, evaluate, and predict the trajectory of a golf

ball from the first few seconds of flight. There are multiple ways to capture movement such as

infrared detection, sonar (radar) detection, and stereo detection (cameras). Both infrared and

radar detection present their abilities well but fall short in the application of capturing the

varying speed and rotation of a golf ball (Wang et al., 2019) Infrared and Radar are both more

indirect ways of measurement which introduce the possibility of a higher percent error. The

stereo system provides a more direct approach through high speed cameras that are able to relay

the proper information to a written algorithm. From the high speed or high frame-rate cameras,

10

the system is able to capture and process a greater amount of points in flight and rotation that

make the trajectory more precise.

The systems are first triggered by a hitting detection; simulators can be triggered by

noise, line scan cameras, or coded image recognition within the algorithm (Wang et al., 2019).

These triggers are what start the capture and analysis of the hitting instance. From there, the

cameras (usually one to two) capture the flight of the golf ball until it hits a screen. Golf balls

used for simulators normally feature a set of perpendicular lines on them which help the system

capture and factor in the rotation. These lines along with the multitude of frames capturing the

upward flight of the ball provide the necessary information for the system to then produce initial

conditions. The computer processes the information captured by the cameras and runs it through

an algorithm that is able to produce a three dimensional reconstruction of the flight path (Wang

et al., 2019). Afterwards, the algorithm inserts the gathered information into predetermined

equations which produce the predicted trajectory and display it upon the screen.

2.2 Trajectory Calculations within Different Scenarios

2.2.1 Analyzing the forces on an American Football and its Flight Path

When accurately calculating the trajectory of a football, many forces must be accounted

for. These forces include the gravitational force on the ball, the drag force which is opposite of

the velocity of the ball, and the lift force also known as a Magnus force, which is perpendicular

to the drag force and acts at a right angle to the direction of motion through the air.

A Magnus force helps describe the curvature of trajectory on a spinning ball and is

created by differences in air pressure (National Air and Space Museum, n.d.). This effect is

common in many sports including soccer, baseball, golf, tennis, and American football. The

Magnus effect is responsible for golf hooks, tennis slices, and baseball curveballs. The equation

to calculate the lift force of trajectory can be written as , where is the lift𝐹
𝐿

= 𝐶
𝐿

1
2 ρ𝐴𝑉2 𝐶

𝐿

coefficient, ρ is the density of the fluid the object is traveling through, in this case is air, A is the

cross-sectional surface area of the object, and V is the total velocity of the ball (Guzman et al.,

2015).

11

Drag is the aerodynamic force that limits an object's motion through the air (NASA, n.d.).

Similar to the lift force, the drag force an be written as (Guzman et al., 2015).𝐹
𝐷

= 𝐶
𝐷

1
2 ρ𝐴𝑉2

Each variable is the same as in the lift force equation, however in this case the drag coefficient is

identified in the equation by . Due to the shape and features of a football the team must also𝐶
𝐷

consider the spin rate of the ball as it comes off of the kicker's foot. Calculating the spin rate will

allow the team to accurately determine the lift and drag forces acting on the ball throughout its

predicted trajectory.

2.2.2 Effects of Lift and Drag on an American Football

The effects of lift and drag largely affect the trajectory of the football. When analyzing

the football through flight, the lift and drag are constantly changing as the ball rotates. The

article, Aerodynamics effect on the accuracy of an end-over-end kick of an American football

(Lee et. al, 2013), performed a case study to analyze their effects in an end-over-end manner in a

dynamic simulation. The authors developed a set of equations using Euler's method and a

MATLAB code to compile a correlation between angle, lift, and drag from 0º to 360º. From

there, they showed their data in graphs showing the change from angle to angle.

In addition to finding the lift and drag coefficients, the case study also analyzes two

kicks, one from Super Bowl XXV and the 2009 Big XII Championship (indoor closed stadiums).

Using these specific kicks, they were able to prove their simulated data for the trend of a football

in a real game situation.

2.3 MATLAB and Its Capabilities

MATLAB is a programming software created for engineers and scientists that allows for

the processing of natural mathematics through matrix based programming (MathWorks, n.d).

The software has been developed to be compatible with many instruments; most of which only

require installing a toolbox to be properly used. Since the purpose of the software is to be

universal and easy to use, there are many forums on the MathWorks website that provide help to

those in need. MathWorks also provides miniature crash courses for their MATLAB software

which lays down a basic understanding of simple functions along with what the software is

capable of doing.

12

2.3.1 Image Processing and Segmentation

The Image Processing toolbox within MATLAB provides users with a variety of

comprehensive algorithms and applications which allow the user to complete a number of tasks

such as segmentation, enhancement, noise reduction, geometric transformations, and registration

amongst both two and three dimensional figures (MathWorks, n.d.). The specific toolbox

featured in MATLAB also helps process videos by separating each frame into its own figure.

MATLAB’s image processing robustness is justified by the sheer quantity and

capabilities of its individual algorithms and applications. Image segmentation itself comes with

three applications within the software as well as over 20 different functions. The purpose of

image segmentation is to identify boundaries within the image using thresholds, edges, and

morphology (MathWorks, n.d.). This means that the user is able to identify and analyze certain

features within an image by silencing any features in the surrounding area. Applications that

allow for the user to segment an image include the Color Thresholder, Image Segmenter, and

Volume Segmenter. The Volume Segmenter is used mainly for three dimensional images which

can be useful for medical scans or analysis. Image Segmenter is used on two dimensional images

and creates a mask over certain regions of interest. This specific application allows for saving

and recalling binary masks according to what the user wants. The Image Segmenter application

features functions that provide options from manual to automatic analysis which makes it

versatile for scientific usage (MathWorks Support, n.d.). Color Thresholder is best used with

color two dimensional images. This application filters the color intensity of an image using one

of four intensity labs and produces a binary segmentation mask (MathWorks Support, n.d.). The

four intensity labs include RGB, HSV, YCbCr, and L*a*b*. Each lab space can be utilized by the

user for different images; meaning some spaces are better to use than others in order to isolate

the desired regions. Lab spaces feature a series of three sliders representing the corresponding

intensity filter. For example, RGB has one slider that represents the red values, one slider for

green values, and one slider for blue values. Moving the corresponding sliders will filter the

same values found in the image being segmented; those values which are within the sliders will

remain apparent. The image processing capabilities that the team utilized, specifically Color

Thresholder, will be further explained in the methodology section.

13

3. Methodology

3.1 Mission Statement

The objective of this project is to design and build a kicking cage that simulates the

trajectory of a football once it is kicked into the cage. The prototype will gather data such as

initial velocity and angle of the kick, then perform trajectory calculations and inform the kicker

of how far away the kick was good from.

3.2 Objectives

The goal of this project is to accurately calculate and predict the trajectory of a football

within two dimensions and relay a message back to the kicker, informing them of the total

distance of their kick, and how far away they would have made a field goal. To accomplish this

goal our team has developed the following objectives:

1. Formulate an equation capable of calculating the trajectory of an American football.

2. Use MATLAB image processing in order to analyze a video of a football kick and

calculate the initial velocity, launch angle, and spin rate.

3. Analyze the data collected through image processing and implement trajectory equations

previously defined to predict the trajectory of the kick.

3.3 Objective 1: Define the general formulas for the flight path of an American

football in a real world scenario

The purpose of this objective is to provide the necessary trajectory calculations which

will help describe the movement of the football. Our team began by using trajectory examples of

a perfectly spherical object with no air resistance or drag. This allowed us to get a general

understanding of an object's trajectory. The next step was to use these examples of spherical

objects and apply air resistance to them. Once these calculations were finished the team began

using examples of non spherical objects such as a rugby ball and football. The equations used in

these final examples were then inserted into our MATLAB code.

14

3.3.1. Identifying Variables Used in Trajectory Equations

The first step of finding the trajectory of the ball is understanding the necessary variables

that need to be included. The team examined several place kicks that could occur in a football

game to give us initial data to start calculations before the MATLAB code was able to produce

the initial conditions. In this scenario, the ball is set at the 10 yard line making the total distance

to the uprights 20 yards. Based on the field position, the angle for this kick is about 45° from the

ground. The average velocity of an NFL kicker is 30 m/s. There was no height as the ball was

kicked from the ground. From here, the team looked into the parameters of the football and other

variables used in calculating trajectory. A comprehensive list of variables used can be found in

Table 1.

Table 1: List of Variables

Variable Name Number or Source

DragCo Drag coefficient Excel Sheet Reference

LiftCo Lift coefficient Excel Sheet Reference

SA Surface area Excel Sheet Reference

theta (θ) Launch angle Calculated through image processing

v0 Initial velocity Calculated through image processing

vx0 Initial velocity x direction v0*cos(theta) (meters/second)

vy0 Initial velocity y direction v0*sin(theta) (meters/second)

m Mass 0.4 (kilogram)

rho (ρ) Density of air 1.2 (kilogram/meter^3)

g Gravity 9.81 (meter/second)

t_tot Total time of kick 10 (seconds)

t Range of time [0,dt,t_tot] (seconds)

GPH Goal post height 3 * 1.09361

TD Kick distance [0,80]

15

3.3.2 Formulation of Excel Sheets for Drag, Lift, and Surface Area

In the article, Aerodynamic Effect of the end-over-end kick of an American Football, the

drag and lift coefficients were found for one rotation from 0° to 360° (Lee et. al, 2013). Where

the angle is defined as the relationship between the football’s long diameter and the ground as

seen in Figure 1.

Figure 1: Angle of the Football

This data was shown in a chart in the article with no data tables to reference. The team

took the data from the graphs by importing them into PlotDigitializer.com and then adding points

to their slopes. PlotDigitalizer then exported the data of individual points into Excel sheets, one

for lift and one for drag. Once in excel, the points were connected and the team ensured that they

matched the table from the article. These excel sheets were imported into MATLAB using the

‘xlsread’ function. The matrices pair lift and drag coefficients to an angle in degrees from 0° to

360° as seen in Figure 2 and Figure 3 respectively. We then used the ‘interp1’ function to

estimate the values of lift and drag for each angle not covered in the excel sheet.

16

Figure 2: Lift Coefficient Graph from Excel (0°-360°)

Figure 3: Drag Coefficient Graph from Excel (0°-360°)

Due to the unique shape of an American football, the surface area of the ball is constantly

changing as the ball rotates in flight. To solve this problem the team used a three dimensional

model of a football created in solidworks to help us calculate the surface area of a football at

every degree of an angle from zero to 180 degrees. This solidworks model can be seen below in

Figure 4. The ball dimensions were sized to accurately reflect the dimensions of a professional

football, and then section viewed to show the total surface area of the ball at a certain degree. An

angle of zero degrees can be reflected by the surface area of the short axis of the football, and an

17

angle of ninety degrees is reflected by the long axis of the football. The angle of the ball was

adjusted using a reference plane which rotated around the short axis of the ball. Our team

calculated a minimum surface area of approximately 0.02234 m² at zero degrees and a maximum

surface area of approximately 0.03446 m² meters squared at ninety two degrees as seen below in

Figure 1. .

Figure 4: SolidWorks Model of Football

Figure 5: Surface Areas for Each Full Degree

18

3.3.3 Finding Components of Trajectory Equations

In order to simplify the equation of the trajectory, our team decided to separate the

equation into the x and y components. First, the initial velocities in the x and y directions must be

found by multiplying the total initial velocity by the cosine and sine of the initial launch angle of

the ball as seen in Appendix A. The initial velocities of each component are applied to their

respective component velocity equation. Each equation for the x and y velocities has been

derived from existing trajectory equations, and has been slightly modified to include the

necessary conditions and variables of a rotating football. The various forces acting on the

football that our team considered in the velocity equations can be seen in Figure 6 shown below.

A 2D X-Y plane is placed on the ball in an upright position where Y is perpendicular to the

normal (ground) and X is parallel to the ground. ‘θ’ (theta) is the initial launch angle from the

ground. ‘V’ represents the initial launch angle. For the forces acting on the ball, gravity is

labeled as ‘mg’, ‘FD’ is the drag force and ‘FL’ is the lift force acting on the ball.

Figure 6: Force Diagram on the Football

Within MATLAB, the ‘numel’ function allows our team to take a defined total amount of

time and a desired change in time, and count by that change in time starting at zero until the total

19

time is achieved (Matlab, n.d.). As a result of the team defining the forces on the ball in Figure 6,

we were able to develop the following equation for the velocity of the ball in the X direction (1).

The team was able to approximate (acceleration) using Euler’s method shown in equation
𝑑𝑉

𝑥

𝑑𝑡

(2) below, where ‘i’ is the iteration index. We then arrived at the final trajectory equation for the

X direction (3). Similarly, the equation for the velocity in the Y direction is shown in equation

(4), where the dt remains constant at 0.001 seconds (5).

(1)
𝑑𝑉

𝑥

𝑑𝑡 = −1
2𝑚 · ρ · 𝐴 · (𝐶

𝐷
· 𝑉

𝑥
+ 𝐶

𝐿
· 𝑉

𝑦
) · 𝑉

𝑥
2 + 𝑉

𝑦
2

(2)
𝑑𝑉

𝑥𝑖

𝑑𝑡 =
(𝑉

𝑥𝑖+1
−𝑉

𝑥𝑖
)

(𝑡
𝑖+1

−𝑡
𝑖
)

(3)𝑉
𝑥𝑖+1

= 𝑉
𝑥𝑖

+ 𝑑𝑡 · (−1
2𝑚 · ρ · 𝐴

𝑖
· (𝐶

𝐷𝑖
· 𝑉

𝑥𝑖
+ 𝐶

𝐿𝑖
· 𝑉

𝑦𝑖
))

(4)𝑉
𝑦𝑖+1

= 𝑉
𝑦𝑖

+ 𝑑𝑡 · (−1
2𝑚 · ρ · 𝐴

𝑖
· (𝐶

𝐷𝑖
· 𝑉

𝑥𝑖
− 𝐶

𝐿𝑖
· 𝑉

𝑦𝑖
) − 𝑔)

(5)𝑑𝑡 = 𝑡
𝑖+1

− 𝑡
𝑖

The initial components of the ball are captured at launch by the camera, and are

represented by . The remaining flight is calculated using the equation above. and(𝑉
𝑥𝑖

, 𝑉
𝑦𝑖

) 𝐶
𝐷𝑖

𝐶
𝐿𝑖

are the drag and lift forces, and is the cross sectional area at each iteration, which are𝐴
𝑖

calculated based on the orientation of the ball. The ball orientation is calculated assuming a

constant spin rate is detected at launch.

Figure 7: MATLAB Code for Components of Trajectory

20

3.4 Objective 2: Gain understanding of MATLAB image processing in order to more

accurately predict ball trajectory

This project is based on the team’s capability to use MATLAB and utilize the versatility it

has as an information processor. Before the project began, the team possessed only basic skills

when it came to the MATLAB coding language. This is why the team followed a guided

step-by-step approach to building the image processing script that is in use today. Resources such

as the MATLAB forums, online instructional videos, the Robotics Department, the Mechanical

and Materials Department, and fellow students were utilized to gather crucial information that

would aid the team in completing the step-by-step approach.

3.4.1 Image Recognition and MATLAB Color Thresholds

The first step was to understand how to process a still image within MATLAB. During

the football season, members of the team were able to capture still pictures of american footballs

setup for kicking. The goal of such a step was to be able to upload, isolate, and calculate a

centroid on a still frame within the MATLAB script. Forums were utilized for this first step as

the team had little to no experience creating such a script that could do what was needed. Figures

8 and 9 show the first iteration of the image processing script and results that would become the

basis for the final iteration.

The script begins on line seven which is where the software searches for the file specified

(here it is “Ball.png”) and is instructed to read it as an RGB matrix. This matrix is then stored in

the workspace to be referenced later in the script. Next, the matrix is processed through

MATLAB’s Color Threshold Lab which can be seen in Figure 10. Each pixel within the image is

assigned a certain value based on the RGB values and their intensities that the software can

identify. The Color Threshold Lab allows for the user to isolate certain values and intensities;

meaning, certain pixels maintain their values while others are assigned the value of zero. Since

the current image is being processed as a three dimensional matrix, the team then shifts it into a

two dimensional matrix using the command in line seventeen. This means that all the values that

were above zero have now been assigned the value of one which creates the two dimensional

matrix. Line twenty-one calls for the software to calculate the properties of the region made up

of the pixels with the value of one; the properties specifically called for are the centroid and the

21

area. The last of the script (lines 25 to 31) opens and displays the processed image seen in Figure

9.

Figure 8: MATLAB Script to Identify the American Football and its Centroid

Figure 9: The Result of the First Image Processing Script which Isolates the Football and

Locates the Centroid with a Blue Indicator

22

Once this first iteration was completed, the next step was to experiment with other

still frames in order to verify if the script could be repeated. The team found that the current

thresholds would not work for filtering other still frames of the football. Knowing this, the team

started to investigate the complete capabilities of the MATLAB Color Thresholder (Figure 10).

Each set of intensity filters can be utilized in different situations based on what someone is trying

to isolate within an image. While using the still frames with an unmodified football, the team

was unable to successfully isolate the ball which led us to look into other options. Options that

were reviewed by the team were placing neon electric tape along the seams of the ball and

painting the entirety of the ball. Both options would allow the team to place a distinctive color

that could be easily isolated using the Color Threshold Lab. Using the decision matrix featured in

Appendix C, the team decided to use the neon electric tape along the seams of the ball. This

would allow for minimum modification and negligible changes to properties of the ball.

Through experimentation and recommendations by peers, the team found that the HSV

intensity filter would work best for isolating the neon yellow electric tape. The HSV intensity

filter features a color wheel and two intensity scalers that allow for specific color isolation which

can be seen in Figure 11. The team has acknowledged that isolating the tape does not mean that

the entire ball will be identified, but due to the specific placement along the seams, the critical

dimensions of the football are able to be recorded. Thresholds produced by the HSV filter were

then tested with multiple still frames to ensure their use in the next iteration of the MATLAB

script. After verifying the new thresholds, the team decided to convert the three dimensional

matrix into a two dimensional matrix. This would shift the frame from color to just black and

white which makes later processing much simpler. Instead of trying to process three different

numbers, now the software could process just ones and zeroes. The script lines in which this

occurs can be seen in Figure 12.

23

Figure 10: The Labspace of the Color Thresholder within MATLAB Displaying the Four

Different Filters Available

Figure 11: Workspace of the HSV Intensity Filter, Featuring the Color Wheel and

Intensity Scales

24

Figure 12: Script where the Three Dimensional HSV Matrix is Transformed to Two

Dimensional Black and White

3.4.2 MATLAB Video Processing

Video processing deals with breaking down the uploaded video into individual frames.

These individual frames are what the team uses to evaluate the ball’s location during the kick.

Fortunately, the team was able to source a video processing code from a team member’s previous

class. The code – seen in Figure 13 – is an original creation along with lines 30 and 31 which

were added by the team. These lines allow MATLAB to save each figure created to a certain

folder with an assigned name on the user’s device which the team was able to recall later. The

script is unable to run if lines 8 through 12 do not have the correct pathway; meaning the file

path must be defined correctly so MATLAB knows which folder to access and what individual

file to extract. Through the use of this script, the team found that it works best when recalling an

MP4 or an MOV file.

This script also allows for the user to specify the amount of frames they want to capture.

Lines 16 and 19 include a frame skip and frame count respectively. Utilizing these lines, the team

was able to shorten the time of processing by skipping any specified amount of frames

throughout the video. Skipping amounts used by the team were often 1, 3, 5, or 10 frames at a

time; one at a time is best for accurate data points while ten is best for troubleshooting scripts

where processing comes before the problem. Later, the script follows a for-loop which is where

each frame is actually processed. Each frame that is created is then transformed into a figure that

can be saved and named for recall afterwards using the “saveas” function.

25

The final iteration follows the basis founded by the first iteration. The video is broken

down into each individual frame and then stored in the workspace under the variable,

TotalFrames. Storing the information as a variable allows for the team to avoid saving multiple

hundreds of frames to the computer for each video. This in turn cuts down on processing time

and makes the code much more efficient. Once stored, the team is able to recall the variable and

analyze each frame for the centroid in the following for-loop.

Figure 13: MATLAB Video Processing Code Sourced from Previous Classes with Few

Modifications

3.4.3 Locating and Graphing the Centroid of the Ball

Tracking the centroid of the ball allows for the team to calculate initial velocity, launch

angle, and spin rate which are needed in predicting the trajectory. Many iterations of the centroid

defining portion were tried until deciding on the final iteration seen in Figure 14. The accuracy

of the centroid is dependent upon the range provided by the color thresholds. Through

experimentation, the team was able to determine that tighter thresholds would produce less

varying numbers for each of the specified variables: initial velocity, launch angle, and spin rate.

26

Tightening the thresholds ensures that the program will not experience rogue pixels that would

inevitably distort the centroid calculations. MATLAB already has an embedded centroid

calculating function which was used in the team’s earliest iterations. Although more convenient,

the centroid function proved to be inaccurate for a larger portion of the recorded frames than was

desired. This is when the team decided to move to another option that utilizes basic functions and

mathematics within MATLAB. Lines 93 to 98 record the boundaries presented by the recognition

of the color thresholds. These lines allow for MATLAB to search the binary matrix for the first

change in value in each direction. For example, “leftColumn” measures the first change in value

from 0 to 1 and records this column number as the left side of the boundary. Once the boundaries

are set, lines 108 to 114 use rudimentary mathematics in order to produce a synthetic centroid. In

order to verify the legitimacy of the synthetic centroid, the team plotted both the MATLAB

computed centroid and the synthetic centroid on its corresponding frames that were known to be

the correct computed centroid (Figure 15). From experimentation, the team found that the

synthetic centroid was consistently within a sufficient deviation of about five pixels. The

centroid’s x- and y-position is then recorded into the Centroid matrix.

Looking deeper into lines 108 to 114, the team decided to create their own matrix – [j,k]

– for the synthetic centroid of the same size as the BW matrix. Originally when the centroid

would be calculated and graphed, it was shown that the ball was consistently moving negatively

in the y-direction as it moved positively in the x-direction. This was due to MATLAB placing the

origin at which the matrix was based to the top-left of the frame. Therefore lines 109 and 111

were created to counteract the effects. Line 109 creates the new matrix, the size of the BW

matrix and line 111 essentially flips the matrix so that the centroid is calculated from the

bottom-left as the origin. Flipping the matrix allowed for the team to produce positive changes in

both the x- and y-directions which in turn made calculations easier and more accurate afterwards.

Following the calculation of the synthetic centroid, the team added two filters, lines 120

to 122 and lines 127 to 132. Through the first iterations, the team still experienced the occasional

outliers from the centroid calculations and plotting. These outliers would ultimately interrupt

calculations of the initial velocity and launch angle. The median filter – lines 127 to 132 – is able

to filter out these outliers and create a more accurate matrix of the centroid named PostFilt. The

filter seen in lines 120 to 122 has been implemented in the latest iteration in order to address the

issue of the ball not moving in the beginning frames. The videos are recorded in 240 fps which

27

means the beginning frames produce no real change in the centroid position; this can interrupt

calculations the same as the outliers. Eliminating the frames that produce no change in position

allows for the team to more accurately compute the initial velocity and launch angle. The filtered

graph of the centroids is shown below in figure 16

Figure 14: Final Iteration of the Centroid Code used to Plot Data Afterwards Featuring

both Filters

28

Figure 15: Both Function Calculated (Blue) and Synthetically Calculated (Red) Centroids

on the Identified Ball Area

Figure 16: Graph Plotting the Centroid and PostFilt Matrices. Centroid is Denoted by the

Blue Circles and PostFilt in the Orange Asterisks. X-Axis is the X-Position and Y-Axis is the

Y-Position.

29

3.4.4 Calculating Initial Conditions: Velocity, Launch Angle, & Spin Rate

In order for the team to accurately predict the trajectory of the football the initial

conditions – velocity, launch angle, and spin rate – need to be calculated. The first step of the

process was to create an accurate conversion factor for pixels to meters. Creating this conversion

(Figure 17, lines 28 and 29) factor ensures that each result of each condition is realistic to what

was measured. The equation was derived from the known distance between the camera and the

ball, as well as the portrayed yard lines in each frame of reference. On average, each frame

would portray five yards when the camera was ten feet away from the ball; this average can

change as the distance between the camera and ball changes.

Once the conversion factor was defined, the team was able to move on to calculating the

initial conditions starting with velocity. Calculating velocity was based on the PostFilt matrix.

The difference between each recorded point through flight is taken, divided by the frame rate,

and then multiplied by the conversion factor (lines 136 and 137); this gives us the velocity in

both x- and y-directions at each point of the ball’s flight. Afterwards, the pythagoras theorem is

utilized to attain the instantaneous velocity of the football (lines 144 to 148, and 158). The

matrix, “V”, of x- and y-direction velocities was used in the calculation of the initial launch

angle. The matrix “Angle” was created by taking the arc-tangent of each column within the

velocity matrix. Afterwards the mean of “Angle” is calculated to produce a singular number in

degrees; this number is then converted to radians for accurate calculations and saved as a new

variable, theta.

Spin rate is crucial when calculating the experimental trajectory of a football as it affects

the corresponding lift and drag coefficients. As the ball spins, the surface area changes and in

turn changes the lift and drag coefficients. First the angle of the ball itself is calculated for each

frame and stored in the matrix AngleinFlight (lines 101 to 106). This matrix features the time of

the frame in column one and the angle of the ball at that time in column two. In lines 150 to 154

the difference between each angle in column two of the AngleinFlight matrix is taken. This delta

angle is then used to find the angular velocity of the football during flight which translates to the

spin rate found in line 154.

Converting each of these initial conditions – velocity, launch angle, and spin rate – into

their magnitudes, rather than their components, allowed for the team to simplify the later

30

calculations. This conversation also allows for a simpler user interface in future iterations of the

project. Our list of initial conditions are shown below in figure 18.

Figure 17: Lines 28 and 29 Featuring the Conversion Factor Calculations

Figure 18: The Initial Condition Calculation Section

3.5 Objective 3: Analyze the data collected through image processing and implement

general formulas previously defined to predict the trajectory of the kick

A large step to complete this project is using MATLAB and the code from Objective 2 to

then give values to the motion of the ball. These values are crucial to then plug into the equations

that the team found earlier to map the flight of the ball through the air. These equations are still

being refined and will ultimately be revised enough and then typed into MATLAB so that the

program can interpret and calculate all in one script. Overall, this objective is very important to

tie the entire project together and have the program run seamlessly.

31

3.5.1 Combining Calculated Variables Through Image Processing With Trajectory Calculations

The final step to get the team’s code to work fluidly and efficiently is to combine the

image processing code results with the trajectory calculation code. The integration of both of

these codes requires the image processing code to provide the three main metrics discussed

above; initial velocity, launch angle, and spin rate. Once these three variables are successfully

calculated, the trajectory code receives the information as the initial conditions and predicts the

flight of the ball. The combination of these two codes is a crucial step in the success of the smart

kicking net.

The initial velocity of the kick is identified in the code by the variable V0. This velocity

is then multiplied by the cosine of the launch angle and the sine of the launch angle to get the

initial components of each velocity in the x-direction and the y-direction. The components of

each initial velocity are represented by the variables Vx(ii-1) and Vy(ii-1) at the beginning of

each velocity equation.

Lastly, the team inserts the average spin rate of the ball in the air into an equation which

calculates the angle in degrees at each instant of time. That angle is then associated with a

surface area in the spreadsheet created from the SolidWorks model of a football.

3.5.2 Experimental Setup

Shown below in Figure 19 is the experimental setup. Within Table 2 all of the

components are listed. The one component that is not pictured is the laptop running MATLAB

off to the side.

32

Figure 19: Experimental Setup on a Sideline

Table 2: Bill of Materials for Experimental Setup

Item Number Name

1 Modified Football

2 Kicking Net

3 Laser for Distance Reference

4 iPhone for Video Capture

5 Tripod

6 3D Printed Plate to Hold iPhone and Laser

Not Pictured Laptop Running MATLAB Code

33

This experimental setup allows data to be collected and then for the video to be manually

edited (editing is optional). Once the video is captured the video is uploaded to OneDrive so that

the video can be referenced and analyzed by MATLAB. The purpose of the laser is to give the

user a reference point to place the football exactly 10ft away from the camera as mentioned

above.

4. Results and Discussion

4.1 Plotting Trajectory Equation and Final Messaging

To create the final trajectory, the team first plotted the positions of the x and y

components of the football for each instance of time. This allowed us to create a final trajectory

arc which includes the initial launch angle of the ball, the spin rate, lift coefficient, drag

coefficient, and surface area at each instance of time.

A horizontal line was then created on the same plot, 3.28 yards above the axis to

represent the height of an American football goal post crossbar. The height of this line is

represented by the variable GPH. The variable TD creates a sufficient range for the trajectory arc

created by the kick to fall within. As a result, an intersection point is created between the

calculated trajectory arc, and the height of the average american goal post. For the purposes of

the project, the team allowed this intersection point to represent the first distance the kick would

have entered the field goal post.

Downloaded from the MATLAB file exchange, the team installed the MATLAB

intersections function as seen below in Figure 20. The intersections function allowed the team to

locate the point of intersection between two lines, and plot that point on the same plot as the

trajectory line and the cross bar line. The intersection point can be identified by a small green

asterisk on the plot. The x component of the intersection point is inserted into a message string

which will display the message: “Kick is good from X yards away!” The distance of the

intersection point will change according to the variables calculated through the image processing

of a video recording of a kick. This will allow American football kickers to identify how far

away they could have made a field goal, as well as the total distance their kicks travel before

hitting the ground. Figure 21 shows an example of the final message and trajectory prediction.

34

Figure 20: Code for Messaging

Figure 21: Final Result

35

4.2 Test Kick Results

Our team conducted a confidence test of the code by recording sixty different kicks on a

football field, and recording which yard line the kick started on, and which yard line the kick

ended on. Each video would then be processed in MATLAB and the initial velocity, launch

angle, and spin rate calculated from the first half of the code, would produce the final trajectory

plot relayed back to the kicker. Our team decided that the accuracy of the code would be best

determined by recording the difference in distances of each kick recorded.

The observed distances, calculated distances, and differences were then used to create a

histogram to better observe how accurate the code could predict the trajectory. The absolute

differences are shown in Figure 22. As shown below, fifty percent of kicks were within four

yards of the observed kick distance, and eighty eight percent of kicks were within ten yards of

the observed kick distance.

Figure 22: Absolute Difference Between Measured and Calculated Distance of Each Kick

in Yards

In addition to this test, the team also found the RSME (Root-Mean-Square Error) of the

sixty kicks. The RMSE is a statistical measure to determine the difference between predicted and

36

actual values. The equation to find can be seen below in Figure 23. In this test, the team

evaluated the difference between the recorded values and the values from the MATLAB code.

The RMSE for these data sets was 6.53 yards. On average, the predicted kicks were 6.53 yards

from the actual kicks.

Figure 23: RMSE Equation

4.3 Broader Impacts

4.3.1 Engineering Ethics

Throughout the project we wanted to create a product that can better human life. Some

people kick field goals for fun and some kick for a job. The team worked to produce a project

that would be as accurate as possible inorder to leave out any doubt of its capabilities. We want

everyone to be able to use the product as they see fit which is the reasoning behind our price

point. This product should be affordable for all parties instead of major corporations.

4.3.2 Societal and Global Impact

This project was completed in the mindset that it would be available to anyone that took

interest in the product. SmartNet can be advertised to anyone from an individual level to the

corporate level. Those who would like to use this as an at-home simulator and NFL teams alike

would be able to afford this product all the same. Having a lower price point allows for everyone

to be included in the venture to be a better athlete and to just have fun. Looking at a global scale,

many countries have an american football league that would also be able to afford this product.

The product mostly impacts the athlete culture and society which can be participated in by

anyone of any ethnicity and culture.

Considering health impacts, there are also little to none. Those who choose to use this

product are using it at their own discretion. Our intentions are not to create a product that may

37

cause an injury most likely to the leg or foot. There is a risk that when training one may find

themselves in the midst of an injury as a result of their bodily mechanics, but this result is not

from the product.

4.3.3 Environmental Impact

This project is mainly a MATLAB code based with few physical components. The code

component does not impact the environment in any manner. The only possible environmental

impact of this project is where the kicking net is set up. If the kicking net is placed on grass, it

may slightly impact the grass it sits on. But overall, the core of this project, the MATLAB code,

does not make any environmental impacts.

4.3.4 Codes and Standards

Within this project there are no codes or standards that we have to abide by. There is no

impact to the environment or the users body so there would be no regulations around our

product. The only standard that the team strives for is accuracy and reliability. The team aimed to

make this product reliable and accurate so that the end user is getting factual information not just

a number that may be incorrect. Overall, the team did not conform to any codes or standards

since the project did not require them.

4.3.5 Economic factors

This product in its current state would be sold for 120 to 150 dollars per unit. This

includes a tripod, a specialized phone holder (for video acquisition), a laser, a ball holder, and a

kicking net. Currently, there are no other competitors with our type of system except for

TrackMan, which could develop a product that has the same capabilities. The cost of all the

materials is around 100 dollars making it easily marketable even with our price increase to allow

a profit. The software would be distributed through a subscription with our basic package costing

around 10 dollars a month, there are future plans to add more packages for a higher price. This

product can be sold to professional, college, and high school teams but has the ability to be

purchased by a single user for practice in their own space.

This product could also affect the sports gambling arena. Using our product can allow for

the kickers and coaches of a team to be more confident in their decisions to make a field goal

38

attempt. The messages from the product have the capability to be passed on to sports reporting

networks and sports books which would impact the odds that are set for the current bets. People

may be more or less enticed to make a bet when the odds change based on the new information

provided by our product. In turn, our product has the capability to add an entirely new dimension

to the sports betting scene.

4.4 Future Additions

Although the team is extremely proud of the progress that has been made, there is still

much that needs to be accomplished in order for this project to be complete. The current

prototype uses one camera which is directed at the kicker from a side angle. However, the team

would like to add an additional elevated camera behind the kicker. This would allow the team to

capture an additional angle and would allow the creation of a three-dimensional plot rather than a

two-dimensional plot which could alert the kicker if their kick was too far left or too far right.

Similarly, the addition of a wind sensor would assist in the accuracy of how far left or right the

kick would go within this additional dimension.

In addition, adjusting the way the football is processed in the video would result in more

consistent trajectory plots. The color thresholds within MATLAB have granted the team a great

understanding of the variables that need to be calculated from the video, as well as what aspects

of the ball must be identified. Unfortunately, these color threshold sliders must be adjusted for

each video to properly account for changes in lighting. If a threshold is found for one video, and

used for another, it is highly probable that MATLAB will recognize additional colors within the

new video that may not have been present in the previous video. These additional colors may

cause errors in the calculations such as a negative launch angle, or a high initial velocity.

Ultimately, the team would like to use a higher powered camera, capable of object tracking with

minimum motion blur. This would allow the team to eliminate the need to consistently adjust the

color threshold sliders, and would allow us to create a more efficient system.

Following the addition of a second camera, wind sensor, and an improved camera, the

team would like to conduct further field tests to increase the sample size of the data collection,

and refine the histogram results. With the improved features and capabilities the team expects the

results to be much more accurate, with approximately eighty percent of kicks falling within four

yards of the observed distance.

39

5. Conclusion

The National Football League has taken tremendous strides in developing new

technologies to improve player safety and increase viewership. Many companies have worked on

developing new helmets and padding for players. The league has also created many ways to keep

viewers interested and engaged at all points throughout the games. The work that has been done

around the sport has inspired many people, including this team, to create new and better

technologies to help athletes and fans.

Although the project is in an early development stage, the team has made great strides in

creating a strong foundation for creating a smart kicking net to help improve the performance of

kickers. This idea has been filed and accepted for a provisional patent. In the future the team will

aim to develop the first full prototype with some of the proposed future additions. The net will

utilize the MATLAB code the team has created, and a camera video recording of a kick going

into a net to supply the initial angle and velocity for the code. Our hope is that the team will take

that next step in developing a new technology to help the National Football League and the sport

in general.

40

Bibliography

Acquavella Aug 27, K. (2019, August 30). Robot umpires: How it works and its effect on players

and managers in the Atlantic League, plus what's to come. CBSSports.com. Retrieved

April 26, 2023, from

https://www.cbssports.com/mlb/news/robot-umpires-how-it-works-and-its-effect-on-player

s-and-managers-in-the-atlantic-league-plus-whats-to-come/

Connor, N. (2019, May 22). What is Lift Force - Definition. Thermal Engineering.

https://www.thermal-engineering.org/what-is-lift-force-definition/

GeeksforGeeks (20 Jul. 2020.). Root-Mean-Square Error in R Programming - GeeksforGeeks.

GeeksforGeeks. Retrieved from

https://www.geeksforgeeks.org/root-mean-square-error-in-r-programming/

Guzman, C., Brownell, C., & Kommer, E. (2015, September 25). The Magnus Effect and the

American Football. Springer.

https://www.usna.edu/MechEngDept/_files/documents/brownell_files/JSE%2016.pdf

Matlab. (n.d.). Cumtrapz. Cumulative trapezoidal numerical integration - MATLAB.

Retrieved December 12, 2022, from

https://www.mathworks.com/help/matlab/ref/cumtrapz.html#d124e285436

Matlab. MathWorks. (n.d.). Retrieved December 13, 2022, from

https://www.mathworks.com/products/matlab.html

Matlab. (n.d.). Numel. Number of array elements - MATLAB. Retrieved December 12,

2022, from https://www.mathworks.com/help/matlab/ref/double.numel.html

Lee, W. M., Mazzoleni, A. P., & Zikry, M. A. (2013). Aerodynamic effects on the accuracy of an

end-over-end kick of an American football. Sports Engineering, 16(2), 99–113.

https://doi.org/10.1007/s12283-012-0110-y

National Air and Space Museum. (n.d.). The Four Forces. How Things Fly. Retrieved December

13, 2022, from

41

https://howthingsfly.si.edu/forces-flight/four-forces#:~:text=Lift%20is%20the%20force%

20that,Engines%20produce%20thrust.

Price, R., Moss, W., & Gay, T. J. (2020, August 19). The Paradox of the Tight Spiral Pass In

American Football: A Simple Resolution. American Journal of Physics.

https://aapt-scitation-org.ezpv7-web-p-u01.wpi.edu/doi/full/10.1119/10.000138

Profile, My Community (n.d.). Image Processing Toolbox. Mathworks.com. Retrieved from

https://www.mathworks.com/products/image.html8

The Physics Of Football. (n.d.). Real World Physics Problems. Retrieved October 16, 2022, from

https://www.real-world-physics-problems.com/physics-of-football.html

Wang, S., Xu, Y., Zheng, Y., Zhu, M., Yao, H., & Xiao, Z. (2019, August). Tracking a Golf Ball

With High-Speed Stereo Vision System. IEEE Transactions on Instrumentation and

Measurement.

42

https://www.real-world-physics-problems.com/physics-of-football.html

Appendix A: Trajectory Equations

Initial velocity in the x direction

𝑣𝑥0 = 𝑣0 · 𝑐𝑜𝑠(θ)

Initial velocity in the y direction

𝑣𝑦0 = 𝑣0 · 𝑠𝑖𝑛(θ)

Velocity function x direction (matlab code)

𝑉𝑥 = − 1
2𝑚 ρ𝐴(𝐶

𝐿
𝑉

𝑦
+ 𝐶

𝐷
𝑉

𝑥
) 𝑉

𝑥
2 + 𝑉

𝑦
2

Velocity function y direction (matlab code)

𝑉𝑦 = − 1
2𝑚 ρ𝐴(𝐶

𝐿
𝑉

𝑦
− 𝐶

𝐷
𝑉

𝑥
) 𝑉

𝑥
2 + 𝑉

𝑦
2 − 𝑔

Theoretical Match Equation

𝑥 = [0: 1: 100]

𝑦 = 𝑡𝑎𝑛(θ)·𝑥−𝑔·𝑥2

2·𝑣𝑥02

*Trajectory of the ball for graphing:

𝑦 = 𝑥 · 𝑡𝑎𝑛θ − 𝑔 · 𝑥2

2·𝑉𝑜2·𝑐𝑜𝑠2θ

43

Appendix B: Gantt Chart

44

Appendix C: Decision Matrices

Softwar

e Arduino Python Matlab

Time to

learn (4) 8 2 7

Ease of

use (3) 9 5 9

Compati

bility (5) 8 3 8

CPU (2) 7 4 10

Final

score: 113 46 115

Hardware

Camera

(Singular Side)

UltraS

onic

Laser

Gate

Stereo

Cameras

Force

Sensors

Ease of

use (3) 8 9 4 5 2

Cost (3) 8 9 3 4 8

Compatibi

lity (5) 9 3 3 7 3

Capability

(3) 10 2 5 10 2

Processing

speed (4) 7 2 8 10 7

Final

Score: 151 83 83 132 79

45

Appendix D: Final MATLAB Code

% Produced by Aidan Lynn ME'23, Joseph Durocher ME'23, Michael Sposato ME'23,

% Noah Litzinger ME'23, and Noah Skinner ME'23 for the completion of their

% undergraduate requirements at Worcester Polytechnic Institute

% MQP 2022-2023: Smart Kicking Net

% Advisor: Alireza Ebadi

%===

Clear Workspace, Command Window, and Figures

clear

clc

close all

Constants and predefined variables to be used throughout the code

% Video File Upload

vid_file_path = 'C:\Users\bunks\OneDrive - Worcester Polytechnic Institute

(wpi.edu)\Desktop\MQP\22_23_Kicking_Cage\01 Presentation day';

video_file = 'IMG_9489 1.mov';

Vr = VideoReader(strcat([vid_file_path,'\',video_file]));

FrameSkip = 1; %frame skip (should stay at 1)

ToatalFrames = round(Vr.NumFrames/FrameSkip)-1; %amount of frames

% Centroid, Ball Spin, and Ball Angle Matrices

Centroid = zeros(ToatalFrames,2);

AngleinFlight = zeros(ToatalFrames,2);

ballAngle = zeros(ToatalFrames,1);

frame_time = zeros(ToatalFrames,1);

CameraDistanceFromBall = 10;

MtoP=0.2875/(1303*((CameraDistanceFromBall)^-1.03));

46

DragCo = xlsread('SimDrag.xlsx');

LiftCo = xlsread('SimLift.xlsm');

SurfaceArea = xlsread('SurfaceArea.xlsx');

% Constants for Trajectory Calculations

fps = 240;

framerate = 1/fps;

dt = 0.0001; %Change in time in seconds

t_tot = 10; %Total time of flight in seconds

t = [0:dt:t_tot]'; %Array of time in seconds

m = 0.4; %Average mass of a football in kg

rho = 1.2; %Density of air in kg/m^3

g = 9.81; %Force of gravity in m/s

d = 0.285; %Length of long axis of football in meters

l = 0.17; %Length of short axis of football in meters

% Drag with Respect to Changing Surface Area

angle = zeros(numel(t), 1);

mydrag = zeros(numel(t), 1);

mylift = zeros(numel(t), 1);

SA = zeros(numel(t),1);

%Goal Post Measurements

GPH = 3 * 1.09361; %Goal post height meters

KD = [0,80];%Target kick distance yards

Frame by Frame Analysis of Interpreted Video File

for i = 1:ToatalFrames

n_frame = 1+(i-1)*FrameSkip;

RGB = read(Vr,n_frame);

47

% Convert RGB image to chosen color space

I = rgb2hsv(RGB);

% Define thresholds for channel 1 based on histogram settings

channel1Min = 0.149;

channel1Max = 0.172;

% Define thresholds for channel 2 based on histogram settings

channel2Min = 0.429;

channel2Max = 1.000;

% Define thresholds for channel 3 based on histogram settings

channel3Min = 0.672;

channel3Max = 1.000;

% Create mask based on chosen histogram thresholds

% Creates binary matrix for masked values

sliderBW = (I(:,:,1) >= channel1Min) & (I(:,:,1) <= channel1Max) & ...

(I(:,:,2) >= channel2Min) & (I(:,:,2) <= channel2Max) & ...

(I(:,:,3) >= channel3Min) & (I(:,:,3) <= channel3Max);

BW =(sliderBW);

% Initialize output masked image based on input image.

maskedRGBImage = RGB;

% Set background pixels where BW is false to zero.

maskedRGBImage(repmat(~BW,[1 1 3])) = 0;

% Whole ball color value identification for centroid calculation

[rows, columns] = find(BW);

48

topRow = min(rows);

bottomRow = max(rows);

leftColumn = min(columns);

rightColumn = max(columns);

% Capturing the angles using the recorded edges of the football

anglex = rightColumn-leftColumn;

angley = bottomRow-topRow;

ballAngle(i,1) = (atan2d(angley,anglex));

frame_time(i,1) = (n_frame*framerate)+((n_frame-1)*framerate);

AngleinFlight(i,1) = frame_time(i,1);

AngleinFlight(i,2) = ballAngle(i,1);

% Plotting theoretical centroid and writing Centroid matrix

[j,k]=size(BW);

ypos=(topRow+bottomRow)/2;

ypos1=j-ypos;

xpos=(leftColumn+rightColumn)/2;

Centroid(i,1) = xpos;

Centroid(i,2) = ypos1;

end

Plotting and calculating Spin Rate of ball

dc = diff (Centroid,1);

RowsToDelete = [0;any(dc >= 0 & dc <7,2)];

Centroid = Centroid (~RowsToDelete, :);

H=size(Centroid,1);

AngleinFlight = AngleinFlight(end-H+1:end, :);

49

Median Filter for Flight Path

Q=3;

PostFiltX = medfilt1(Centroid(1:H,1),Q);

PostFiltY = medfilt1(Centroid(1:H,2),Q);

PostFilt = [PostFiltX, PostFiltY];

Calculating Initial Velocity and Angle of Ball

change = diff(PostFilt);

V=((change)/framerate)*MtoP;

Angle=atan2d(V(:,2),V(:,1));

rows_with_0 = any(Angle == 0, 2);

Angle(rows_with_0, :) = [];

LaunchAngle = mean(Angle);

v_squared = V.^2;

V2 = [v_squared(:,1) + v_squared(:,2)];

rows_to_delete = V2(:,1) < 5;

V2(rows_to_delete, :) = [];

DeltaAngle = abs(diff(AngleinFlight(:,2)));

DeltaAngle0 = DeltaAngle(:, 1) ~= 0;

DeltaAngle_Nonzero = DeltaAngle(DeltaAngle0, :);

AngularVelo = mean(DeltaAngle_Nonzero)/(60/fps); %Spin rate of football in air

SR = ((AngularVelo)/(2*pi));

Theta = (pi/180)*LaunchAngle; %Launch Angle in Radians

V0 = mean(sqrt(V2)); %Initial velocity in m/s

50

Vx0 = V0*cos(Theta); %X component of initial velocity in m/s

Vy0= V0*sin(Theta); %Y component of initial velocity in m/s

Vx = zeros(size(t));

Vx(1) = Vx0;

Vy = zeros(size(t));

Vy(1) = Vy0;

Angle0 = 90; %Initial angle of football

Trajectory with changing Drag

Vx = zeros(size(t));

Vx(1) = Vx0;

Vy = zeros(size(t));

Vy(1) = Vy0;

angle = zeros(numel(t), 1);

mydrag = zeros(numel(t), 1);

mylift = zeros(numel(t), 1);

SA = zeros(numel(t), 1);

for ii = 2:numel(t)

angle(ii) = mod((SR*dt*ii+Angle0), 360);

mydrag(ii) = interp1(DragCo(:,1), DragCo(:,3), angle(ii));

mylift(ii) = interp1(LiftCo(:,1), LiftCo(:,3), angle(ii));

SA(ii) = interp1(SurfaceArea(:,1), SurfaceArea(:,3), angle(ii));

Vx(ii) = Vx(ii-1) +

dt*(-0.5/m*rho*SA(ii))*(mylift(ii)*Vy(ii-1)+mydrag(ii)*Vx(ii-1))*sqrt(Vx(ii-1)^2+Vy(ii-1)^2);

Vy(ii) = Vy(ii-1) +

dt*((0.5/m*rho*SA(ii))*(mylift(ii)*Vx(ii-1)-mydrag(ii)*Vy(ii-1))*sqrt(Vx(ii-1)^2+Vy(ii-1)^2)-g

);

51

end

X = cumtrapz(t, Vx);

Y = cumtrapz(t, Vy);

% Trajectory Plot

%close all;

figure Name Trajectory

plot(X,Y,'b');

yline(3.3);

xlim ([1 100]);

ylim([0 30]);

hold on

Message After Kick

[xi,yi] = intersections(X,Y,KD, [GPH GPH]); % Download the intercepts function from

https://www.mathworks.com/matlabcentral/fileexchange/11837-fast-and-robust-curve-intersectio

ns

% Save 1 intersection only (the one on the way down, not the one on the way up)

plot(X, Y, 'b-', [10 40], [GPH GPH], 'r-', xi(2), yi(2), 'g*'); % Intersection point between height

of field goal and trajectory arc of kick

distance = round(xi(2)*10)/10; % X distance of intersection point

msg_str = sprintf('Kick is good from %1.0f yards away!', distance); % Creates the message

based on the result of the intersection point

msg = msgbox(msg_str, 'Kick Distance'); % Creates the message in a new text box

set(msg,'position',[375 125 400 100]);

set(findall(msg,'Type','text'), 'FontSize',20);

52

