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ABSTRACT 

 

This study explored the role of hypermethylation of DNA in transformed hairy 

roots of Artemisia annua in diminishing production of artemisinin when maintained in 

culture for long periods.  Two weeks following treatment with 5-azacytidine roots 

showed inhibited growth, but no change in artemisinin production.  HPLC was used to 

analyze artemisinin content.  DNA in treated showed reduced methylation compared to 

controls when compared through TLC and quantitated using spectroscopy.  Analysis of 

the mitotic figures in the root tips indicated that 5-azacytidine inhibits growth by 

arresting cell division in metaphase, preventing elongation of the roots. 
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INTRODUCTION 

1.1 SIGNIFICANCE OF ARTEMISININ 

Malaria is a disease that causes over 1 million deaths each year, putting 40% of 

the world population at risk of infection (WHO, 2004).  There are four parasites that 

cause malaria, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and 

Plasmodium falciparum.  Of these four, only Plasmodium falciparum  causes severe, 

potentially fatal malaria (CDC, 2004).  Recently some strains of Plasmodium falciparum 

have shown resistance to many of the current affordable treatments include chloroquine, 

quinine, mefloquine, and primaquine (Balint, 2001), making the need for new effective 

treatments even more urgent.  

An antimalarial drug that has been used as a folk remedy since 168 B.C. in China, 

was named qinghaosu, but is now better know as artemisinin, a sesquiterpene from the 

plant Artemisia annua L. (Meshnick et al, 1996).  Artemisinin was first purified and its 

molecular structure determined in 1972.  Artemisinin and its derivatives have been found 

to be effective against all stages of resistant strains of P. falciparum (Balint, 2001). 

Although artemisinin has been found to be a useful medicine, its production is 

very low in comparison with what is actually needed to treat the worldwide threat of 

malaria.  The World Health Organization, WHO, estimated that at least 130 million 

treatments would be needed in 2006, requiring 330 tons of artemisinin (WHO, 2004).  

This presents a problem because of the very low production levels of artemisinin in the 

native plant.  One ton of dry A. annua leaves produce only 6 kg of artemisinin (Van 

Geldre et al., 1997).  The complex biosynthetic pathway for artemisinin has prevented it 



8 

 

from being produced by organic synthesis (Abdin et al., 2003) and research has mainly 

focused on increasing artemisinin production in A. annua plants.  However, recent work 

has also included engineering pathways in both yeast and E. coli to produce precursors to 

artemisinin (Ro et al., 2006 and Martin et al., 2003). 

 

1.2 CHEMISTRY AND SOURCE OF ARTEMISININ 

 

Artemisinin is an endoperoxide sesquinterpene lactone in the terpenoid family of 

secondary metabolites (Figure 1).  Its molecular formula is C15H22O5.  The key structural 

part of its antimalarial function is its endoperoxide bridge.  It has been proposed that the 

endoperoxide bridge is cleaved by a heme group to form a free radical that causes 

selective alkylation of parasite proteins, leading to parasite death (Pandey et al.1999).  

Pandey et al. (1999) also proposed that artemisinin forms a complex with heme that 

possibly interrupts the parasite’s hemoglobin catabolism.  

 

Figure 1. The chemical structure of artemisinin. 
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The attempts that have been made to synthetically produce artemisinin have 

proven to be both inefficient and costly (Abdin et al., 2003).  Although these attempts 

were impractical at a large enough scale to be useful, it should be noted that artemisinic 

acid was a major intermediate.  This is interesting because A. annua produces eight to ten 

times more artemisinic acid than artemisinin in some chemotypes (Abdin et al., 2003).  A 

method for converting artemisinic acid to artemisinin would be invaluable for increasing 

production efficiency. 

In A. annua artemisinin is found mainly in the shoots of the plant, however, in this 

study we will be focusing specifically on hairy root cultures which produce less 

artemisinin than the shoots, but more than in normal roots.  Hairy roots are actually a type 

of tumorous growth in plants caused by infection of the bacterium, Agrobacterium 

rhizogenes (Hu and Du, 2006).  The hairy roots are a byproduct of the infection and 

usually produce extensive amounts of secondary metabolites.  Unlike normal plant tissue 

cultures, secondary metabolite production by hairy roots is relatively stable and at a level 

equivalent to or greater than the parent plant (Giri and Narasu, 2000).  Indeed, Weathers 

et al. (1994) showed that transformed roots of A. annua also produce artemisinin. 

 

1.3 PRODUCTION OF ARTEMISININ 

 

1.3.1 BIOCHEMICAL PATHWAY 

Artemisinin is a sequiterpenoid synthesized from five units of isopentyl 

diphosphate (IPP).  IPP is produced in the cytoplasm, mitochondria, and plastid.  The 
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pathways for the synthesis of terpenoids include the mevalonate pathways located in the 

cytosol, and the non-mevalonate pathway localized to the plastid (Figure 2) (Croteau et 

al. 2000).   

 

Figure 2. Terpenoid biosynthesis pathways. 

 

In the chloroplast IPP is derived from pyruvate and in the cytosol IPP is derived 

from acetyl CoA.  IPP is a precursor to a number of compounds, including farnesyl 

diphosphate (FPP), which is then converted into sesquiterpenes, including artemisinin.  

FPP is also a branch point for several other terpenoid pathways, including sterols, 

prenylated proteins and brassinosteroids (Figure 2) (Croteau et al., 2000).  There have 

been several studies on the manipulation of these pathways in attempts to shift production 
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away from some of these other products with the hope that more FPP will be directed 

toward sesquiterpene production (Rodríguez-Concepción et al., 2004).  For example, the 

sterol inhibitor, miconazole, inhibits squalene synthase, which is the first regulatory step 

leading to sterols which in turn coordinately up regulates production of sesquiterpenes 

(Abdin et al., 2003).  However, there is much about the regulation of these pathways that 

is still unknown and being studied. 

 

1.4 INCREASING PRODUCTION OF ARTEMISININ 

Although it has proven effective in curing malaria, there are several factors that 

have prevented the commercial production and widespread use of artemisinin.  Many 

factors can affect production of artemisinin and many attempts have been made to 

improve production yields.  Research has focused mainly on increasing the production of 

artemisinin in A. annua as the yield of artemisinin is only in the range of 0.01 - 0.8 %  of 

plant biomass with the highest yield in any particular clone reaching only 1.1% (Abdin et 

al., 2003).  Several approaches have been taken to optimize artemisinin yield including 

selective breeding, hormone treatment, infection with Agrobacterium rhizogenes, and 

genetic engineering to alter the expression of genes associated with the biosynthetic 

pathway of artemisinin (Delabays, 1993, Weathers et al., 1997, 1994, and Abdin et al., 

2003).  Recent work has also been done on engineering a mevalonate pathway to 

synthesize terpenoids in E. coli and yeast (Martin et al., 2003 and Ro et al., 2006). 
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1.4.1 TRANSFORMED HAIRY ROOTS LOSE PRODUCTIVITY OVER TIME 

Further complicating the commercial production of artemisinin, it has been shown 

that transformed hairy roots of A. annua that are maintained in culture for greater than 10 

years may lose their ability to produce artemisinin (Kim, 2001).  This loss of productivity 

is not uncommon for in vitro cultures, many of which have been shown to slowly lose 

phenotypic characteristics as they are maintained in culture for many generations (Street 

et al., 1977).  Determining the cause of this loss of productivity, although challenging, is 

crucial for understanding and stabilizing artemisinin synthesis.   

 One possible reason for loss of artemisinin production is that the genes for 

artemisinin production are slowly being silenced by the accumulation of methylated 

DNA.  Paszkowski and Whitham (2001) have reported that methylation is responsible for 

some gene silencing in a variety of plant cultures.  For instance, this was found to be the 

case with sorghum, a significant commercial crop.  Genetic engineering to improve 

sorghum cultivars was most successful when the plant was transformed with 

Agrobacterium rhizogenes.  In sorghum, transgene silencing resulted in reduced 

transformation efficiency while treatment with the demethylating agent, 5-azacytidine, 

resulted in reactivation of the silenced gene (Emani et al., 2002).   

 

1.4.2 DNA METHYLATION IN PLANTS 

DNA methylation is the addition of a methyl group, for example, to the number 5 

carbon of cytosine to form 5-methylcytosine (Figure 3).  Usually this occurs in cytosines 
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that are part of CpG, CpNpG, or CpNpNp sequences, where p denotes the phosphate 

backbone of the DNA and N is any nucleotide.   

 

 

Figure 3.  A cytosine residue is modified by the 

addition of a methyl group at the number 5 carbon to 

form 5-methylcytosine.  Met, methyltransferase, 

catalyzes this reaction. 

 

 Methyl groups are transferred from S-adenosyl-methionine to the cytosine 

residues by methyltransferases in newly replicated DNA (Bird, 1978).  The genes for 2 

types of methyltransferases have been identified in Arabidopsis.  The first class includes 

METI and METII, a third proposed methyltransferase, METIII, belongs to the second 

class (Finnegan et al, 1998).  METIII has a chromodomain, a short motif that is found in 

chromatin associated proteins.  Methyltransferases preferentially bind to CpG, CpNpG, 

and CpNpNp sites in repeat sequences which offer a possible mechanism for allowing the 

methylation pattern to be conserved during replication.  Unlike animals, plant DNA does 

not undergo universal demethylation during embryo development (Finnegan et al., 1996, 

Kakutani et al., 1995).  This is demonstrated in Arabidopsis plants with mutations that 

result in reduced methylation that subsequently generate progeny that also show reduced 
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methylation even if they do not have the mutation (Finnegan et al., 1996).  Methylation 

has been shown to also change during gametogenesis, as young tomato and Arabidopsis 

seedlings show methylation levels that are about 20% lower than in mature plants 

(Messeguer et al., 1991; Finnegan et al., 1998).  It is thus reasonable to hypothesize that 

DNA methylation may result in the accumulation of methylation errors in hairy roots 

leading to decreased artemisinin production. 

 

 

1.4.3 EFFECTS OF METHYLATION OF GENE FUNCTION 

 Methylation is necessary for normal plant development.  Altered methylation 

results in a variety of abnormalities in most species of plants.  Reduced methylation in 

Arabidopsis, for example, results in loss of apical dominance, reduced stature, altered leaf 

size and shape, reduced root length, homeotic transformation of floral organs and reduced 

fertility (Finnegan et al., 1996; Kakutani et al., 1995; Ronemus et al., 1996).  It has even 

been suggested that in animal males, female sex suppression is the result of methylation 

of a specific sequence on the Y chromosome or autosomes (Janousek et al., 1996).   

Methylation of plant DNA has been shown to have two roles, regulation of gene 

expression and protection of the genome.  DNA methylation affects transcription by 

interfering with transcription factor binding and altering chromatin formation resulting in 

a repression of transcription of the methylated regions (Kass et al., 1997).  Mobile 

elements of the genome as well as repeated sequences are methylated in plants, possibly 

as a way to recognize and then silence foreign DNA. (Finnegan et al., 1998). 
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1.4.4 DEMETHYLATION 

Methylation patterns change during normal plant development, so demethylation 

of plant DNA is probably a natural occurrence.  Although the usual trend in plants is to 

increase methylation as the plant ages, there is evidence that plants have the ability to 

demethylate certain parts of the genome.  The best example of this is that plants with 

vernalization-dependent flowering, flower early when treated with the demethylating 

agent, 5-azacytidine, indicating that in these plants vernalization is mediated by 

demethylation in the promoter regions of genes necessary for the initiation of flowering 

(Burn et al., 1993).   

A common demethylating agent, 5-azacytidine (Figure 4) was used in this study.   

It functions by displacing cytidine residues in the DNA (Doerfler, 1983) and in mice has 

been shown to covalently bind to methyltransferases causing them to become inactivated 

(Jutterman et al., 1994).   

 

Figure 4. The chemical structure of 5-

azacytidine, a cytidine analog that results 

in demethylation. 
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 In sorghum 5-azacytidine was shown to be successful in the reactivation of a 

transgene that was silenced due to methylation (Emani, et al., 2002).  However, because 

5-azacytidine is a nonspecific demethylating agent it also has been shown to cause a 

number of undesirable morphological characteristics similar to those found in plants with 

mutations resulting in reduced methylation.  For example, methylation inhibitor studies 

with rice, flax, tobacco and Triticale showed similar but variable effects including 

dwarfing and reduced fertility (Richards, 1997). 

 In a previous study by Woerdenbag et al. (1993) the use of 5-azacytidine to 

increase artemisinin production in A. annua shoots was unsuccessful.  In that study initial 

5-azacytidine concentrations of 4 and 8 μM were gradually increased to 12 and 24 μM, 

respectively.  These concentrations were concluded to be toxic to the cultures 

(Woerdenbag et al., 1993).  However, later work treating transformed hairy root cultures 

of A. annua with 5-azacytidine at concentrations of 10, 20, and 50 μM inhibited root 

growth, but were not toxic; when 5-azacytidine was removed from the cultures, the roots 

grew normally (Fuller, 2004).  Treatment with 5-azacytidine significantly reduced root 

growth, and furthermore appeared to decrease artemisinin production by greater than 

50% even in 10 μM concentrations of 5-azacytidine, although these results were not 

statistically significant (Fuller, 2004). 

Although the initial results of the Fuller (2004) study were not promising, he also 

found that after the removal of 5-azacytidine and subsequent inoculation into B5 medium 

the hairy root cultures of A. annua grown in 20 and 50 μM grew at rates of 0.41 and 

0.43g FW/day which is similar to the normal growth rate of the YUT16 clone, 0.45g 
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FW/day, as reported by Towler and Weathers (2003).  On the other hand, roots grown in 

10 μM 5-azacytidine showed accelerated growth, 1.4 times the normal rate, at 0.64g 

FW/day; possibly indicating that at that concentration 5-azacytidine had inhibited root 

cell elongation, but had not affected cell division (Fuller, 2004).  Unfortunately, these 

rapidly growing cultures were not assayed for artemisinin.  These observations suggested 

that growing hairy roots on normal medium following treatment with 5-azacytidine may 

also affect the artemisinin yield. 

 Interestingly, a comparison of the methylation levels of A. Annua shoots, roots, 

and transformed roots showed that the shoots are the least methylated portion of the 

plant, and the roots are the most heavily methylated. Transformed roots of A. annua 

showed slightly less methylation than normal roots.  This pattern corresponds to the 

established levels of artemisinin production in the plant, as the shoots produce a large 

amount of artemisinin, while the roots produce almost none and transformed roots have 

been shown to produce amounts between these two (Ferreira and Janick, 1996).  Further 

experimentation was deemed necessary to determine the relationship between 

methylation and artemisinin production.  If transformed roots grown in medium 

containing 5-azacytidine then grown out on normal medium show decreased methylation 

and increased artemisinin production it would be reasonable to conclude that methylation 

probably plays a role in artemisinin production.  Furthermore, if transformed root cultures 

showing decreased artemisinin production were also found to have higher levels of 

methylation over time corresponding to this decrease it would provide evidence that 

methylation also plays a role in the habituation of these cultures over time. 
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2.  HYPOTHESIS AND OBJECTIVES 

2.1 HYPOTHESIS 

Based on the earlier study by Fuller, it is proposed that addition of 5-azacytidine 

to Artemisia annua first will result in increased growth and artemisinin production, but 

only after subsequent grow out of the roots in 5-azacytidine media.   

 

2.2 OBJECTIVES 

This project has two main objectives: 

 To determine if treatment of A. annua hairy root cultures with 5-azacytidine results in 

demethylation of their DNA by comparing the level of methylation in treated roots 

with untreated roots and correlating this with the production of artemisinin after 

subsequent growth on 5-azacytidine-free medium. 

 To determine the level of mitosis in roots treated with 5-azacytidine and untreated 

controls by measuring the number of mitotic figures in root tips.  
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3. METHODS 

3.1 CULTURE CONDITIONS 

 Clones of Artemisia annua L. (clone YUT16) (Weathers et al. 1994) hairy roots 

were used in the experiments.  The cultures were maintained in 125mL Erlenmeyer flasks 

containing 50 mL autoclaved Gamborg’s B5 basal medium (Gamborg et al., 1968) pH 

5.7 with 3% (w/v) sucrose. They were kept at 25°C under continuous fluorescent white 

light on an orbital shaker at 100 rpm. Flasks were subcultured every 14 days. 

Fourteen-day-old cultures were aseptically blotted dry on a pre-sterilized maxi-

pad and 0.4g of fresh weight was weighed in a sterile Petri dish, and put into a 125mL 

flask with 50mL of autoclaved Gamborg’s B5 basal medium with 3% (w/v) sucrose, at a 

pH of 5.7. A solution of filter sterilized (0.22µm) 5-azacytidine (12.21mg in 5mL dH2O) 

was prepared. To six experimental flasks of roots, 0.10mL of the 5-azacytidine solution 

was added to make a 20µM solution. Control cultures contained no 5-azacytidine. The 

cultures were kept at 25ºC under continuous fluorescent white light on orbital shaker at 

100 rpm. After 14 days all the cultures were provided fresh medium. If there was a lot of 

growth, e.g. the controls, then the biomass was also reduced to the level of the initial 

inoculum. If no growth occurred, the medium was just replaced. After 28 days the 

cultures were rinsed with fresh medium to remove any remaining 5-azacytidine, 

subcultured again and all were fed media without 5-azacytidine. After an additional 14 
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days (42 days total) the roots were harvested, weighed, and extracted with toluene for 

analysis of artemisinin and level of DNA methylation. 

 

3.2. EXTRACTION AND ANALYSIS OF ARTEMISININ 

 

Roots were rinsed with diH2O, blotted dry and fresh weight obtained. Each 

sample (2 g FW if available) was placed in a test tube with 1mL of toluene per gram of 

root and extracted by sonication in an ice bath for 30 minutes.  Samples were centrifuged 

for 1-2 minutes at about 5000xg and the supernatant was removed and placed in new test 

tubes. Tubes were re-extracted twice using this same procedure and each sample’s pooled 

extracts were dried under nitrogen at 30°C. Samples were stored at -20ºC until HPLC 

analysis. 

 HPLC analysis of the Q260 derivatized artemisinin was performed according to 

Smith et al. (1997). Samples were re-suspended in 100µL of methanol. A 400µL aliquot 

of 0.2% (v/w) NaOH was added and the tubes were capped and heated at 50°C for 35 

minutes. Then the tubes were placed in ice water and 400µL of 0.2 M acetic acid was 

added followed by another 100µL of methanol. Samples were vortexed and then syringe 

filtered though a 0.22µm membrane (FP-200 Vericel) directly into a HPLC sample vial.  

HPLC parameters: 

- UV detector set at 260 nm 
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- 15 cm Microsorb-MV C18 column, 4.6 mm i.d., 5μm beads with 100A 

pore   size 

- mobile phase of 55% 0.22µm filtered 0.01M phosphate buffer pH 7, 45% 

methanol, final pH adjusted to 7.0 

- 1.0mL/min mobile phase flow rate 

- A 10µg/mL artemisinin standard was injected for quantitative comparison.  

 

3.3 METHYLATION STUDIES 

 

3.3.1 DNA EXTRACTION 

To determine the overall methylation levels of both treated and untreated roots 

DNA was extracted using a modification of the method described by Schuler (1989).   

After two weeks growth on regular Gamborg's B5 medium without 5-azacytidine, 10g of 

roots from both the control and the experimental group treated with 5-azacytidine were 

analyzed. The root tissue was wrapped in aluminum foil, dipped in liquid nitrogen and 

crushed using a mortar and pestle to yield a fine powder. This powder was placed in a 

graduated cylinder with 10 volumes of grinding buffer. The grinding buffer was prepared 

according to Lilly et al. (2001): 0.45M sorbitol, 50mM Tris buffer, pH 7.6 (prepared as 

described by Romangnano (2003)), 5mM EDTA, 0.2% BSA, 1.0% polyvinylprrolidone-

360, 0.025% spermidine, 0.025% spermine, and 1mL of ß-mercaptoethanol. 

 Diethyldithiocarbonate was then added to a concentration of 0.1M and the solution was 

iced for 10 minutes, transferred to a blender and pulsed on the highest setting for 5 
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seconds, allowed to settle, and pulsed again at the same speed for another 5 minutes.  The 

homogenate was then washed through two layers of cheese cloth with grinding buffer 

into 50mL conical tubes then transferred to centrifuge tubes. 

            The resulting homogenate was pelleted at 350 x g for 10 minutes, and the 

supernatant was discarded.  The pellet was then resuspended by gently shaking in 5 mL 

ice cold lysis buffer.   The lysis buffer was prepared as described by Ross et al. (1999) 

using 10mM NaCl, 1 mM EDTA, 10% glycerol, and 10 mM  β-mercaptoethanol, in 50 

mM of Tris-HCl buffer, pH 8.0.  DNA was then extracted by adding 2.5 mL of 

chloroform and 2 .5 mL of phenol, gently shaking for 30 min and allowing to settle.  The 

top (aqueous) layer was removed using a transfer pipette and the volume measured.   

Next, 2 volumes of TE buffer (10 mM Tris-Cl, pH 7.5; 1 mM EDTA (Sosnick Group 

University of Chicago, 2005)), 2 volumes ethanol, and 0.1 volume of 2 M NaCl were 

added, the solution was gently mixed and then chilled at −80 °C for 30 min to precipitate 

the DNA.    

  The solution was then centrifuged at 4,000 x g for 10 min and the supernatant was 

discarded.  The resulting pellet was resuspended in 900 μL dH2O, mixed gently, and then 

reprecipitated by adding 100μL 2M NaCl and 2 mL ethanol and chilling at − 80°C for a 

minimum of 15 min. The solution was then centrifuged again at 43,000 x g for 10 min 

and the supernatant discarded.  

 The purity of the DNA sample was ensured by measuring the OD280 of the 

supernatant and comparing against a blank of 100 μL 2M NaCl, 900 μL water, and 2 mL 

ethanol.  If an absorbance was seen the resuspension process was repeated.  To quantify 
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the amount of DNA present in the sample, the concentration and the OD260 of a water 

blank and solutions containing 0 .1mg/mL and 0 .02mg/mL DNA were plotted.   A best-

fit line was found and the equation of this line, y = 0.082051x + b, with y being the 

concentration, b=0, and x being the OD260, was used to relate the concentration of DNA 

in each sample to their OD260.  The purified pellet was dissolved in 2 mL water and the 

concentration (mg/mL) of DNA in the sample was quantified using this equation.  All 

DNA samples were held at −20 °C between testing periods.  

 

3.3.2 TLC METHYLATION ANALYSIS 

A TLC method was used to analyze the methylation levels of the DNA extracted 

from the roots grown in medium containing 5-azacytidine as compared to the control 

group (Fuller, 2004).  The separation of the DNA bases was detectable with UV light to a 

sensitivity of 5 μg for each base (Table 1).   

Table 1. TLC parameters and TLC sensitivity under short and long wave ultraviolet 

light (fuller, 2004). 

Base TLC Sensitivity RF (x100) Visibility Preferred 

Solvent SUV LUV 

Adenine 5 μg 67 x  Methanol 

Thymine 5 μg 76 x  Hot Methanol 

Guanine 5 μg 18  x 
Weak Acid & Hot 

Ethanol 

Cytosine 5 μg 24/47 x x Hot Methanol 

5-methylcytosine 5 μg 36/47 x x Methanol 

SUV = Short wave UV 260nm; LUV = long wave UV 280nm. 
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Known quantities of DNA in 1 mL were hydrolyzed in 80% formic acid at 145°C 

for 45 minutes and dried under nitrogen.  These samples were later resuspended in a 

solution of 80μL H2O and 20μL formic acid before being loaded onto a glass backed 

silica gel 60 TLC plate.  For identification of the methylated bases 0.05 mg of the 

standards cytosine and 5-methylcytosine were also spotted.  TLC analysis was performed 

using a chloroform:methanol:ammonium hydroxide (90:30:1) mobile phase.  Long and 

short wave UV was used to analyze the plates according to their known visibilities (Table 

1).   

The resulting bands corresponding to 5-methylcytosine were identified, and 

resuspended in 1.2 mL of H2O after being individually scraped from the plate, vortexed, 

sonicated, and finally microfuged for 3 min.  The concentration of 5-methylcytosine in 

each supernatant was determined in the same way as the DNA concentration, by 

comparing the OD260 against an H2O blank and the supernatant eluted from scraping the 

5-methylcytosine standard.  The percent of DNA methylation in each sample was 

obtained by dividing this concentration by the original concentration of the DNA sample. 

 

3.3.3 DATA ANALYSIS 

 

Eight replicates were used in all experiments and matched against at least three 

controls.  Non-parametric tests were used to analyze all root growth and artemisinin 

production data due to the small sample sizes.  The Mann-Whitney Wilcoxon (Petruccelli 
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et al., 1999a) and Friedman (Petruccelli et al., 1999b) tests were used to calculate 

statistical significances.  TLC RF’s were calculated based on the center of observed spots 

and relative to the distance the solvent front traveled from the origin. 

 

3.4 ANALYSIS OF CHROMOSOME FORMATION 

 

 To stain mitotic figures in root cells, samples of root tips from all cultures were 

transferred to cold Carnoy’s solution (3:1, 100% ethanol: glacial acetic acid) and fixed 

overnight.  They were rinsed twice diH2O, blotted to remove excess water, and stained in 

aceto orcein solution and heated on a hot plate until the solution began to fume. Stained 

root tip meristems were removed and rinsed with Carnoy’s solution then placed on a 

clean slide, and squashed. Cells were observed using light microscopy and at least ten 

fields of root tips cells per experimental treatment were counted. At least 100 cells per 

condition were counted. 

 

 

4. RESULTS AND DISCUSSION 

4.1 GROWTH AND ARTEMISININ CONTENT 

 Addition of 5-azacytidine to A. annua hairy root cultures resulted in decreased 

growth (Figure 5), which contrary to the study done by Fuller (2004), did not return to 
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near the normal rate of 0.45g FW/day (Towler and Weathers, 2003) when switched into 

normal B5 medium (Figure 6).   

 

Figure 5. A. annua hairy root cultures grown in normal B5 medium (A); and cultures two weeks after 

being grown in medium containing 5-azacytidine (B). Roots in bottom row are the same as each 

culture in the row above, but viewed form a different perspective. 

 

Fuller (2004) only observed accelerated growth after the removal of 5-azacytidine 

in cultures containing 10µM 5-azacytidine, half the concentration used in this 

experiment.  The cultures grown in 20µM 5-azacytidine were observed to grow at a rate 

of 0.41g FW/day, similar to the normal growth rate.  However, in this study the average 

growth rate of cultures removed from 20µM 5-azacytidine for 14 days was 0.075g 

FW/day.   

A B 
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Figure 6. Root growth is slowed after treatment with 5-azacytidine, even after removal from culture 

medium. 

 

 Although root growth was inhibited, the concentration of artemisinin found in 

roots two weeks after treatment with 5-azacytidine was approximately the same as in 

control roots (Figure 7). These data are not statistically significant however, as 5-

azacytidine roots needed to be pooled to obtain enough plant mass for HPLC analysis of 

artemisinin.  There was no evidence of increased artemisinin concentrations in roots two 

weeks after removal from 5-azacytidine medium. 

 

Figure 7. The 5-azacytidine roots and controls had similar concentrations of artemisinin. 
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4.2 TLC METHYLATION ANALYSIS 

 

 TLC of formic acid hydrolyzed DNA effectively separated the four primary bases, 

adenine, thymine, guanine, and cytosine. Although previous work showed that formic 

acid is also effective in separating cytosine from 5-methylcytosine, it is possible that 

there is some demethylation of methylated cytosines during hydrolysis, as this has been 

shown to be the case with stronger acids.  The amount of demethylation if any, due to 

chemical hydrolysis should be determined.   

 The TLC showed only a spot corresponding to thymine for the control roots; it is 

possible that the concentration of DNA was too low to visualize the other spots (Figure 

8).   

 

Figure 8.  TLC comparison of hydrolyzed bases from 5-aza and control roots with DNA standards 

using a chloroform:methanol:ammonium hydroxide (90:30:1) mobile phase. 
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Nevertheless, the relative percent methylation for both the 5-azacytidine roots and 

controls was approximately determined from scrapings of the spots on the plate in the 

horizontal positions corresponding to 5-methylcytosine as determined from the DNA 

standards.  The data suggested that the relative percent of 5-methylcytosine in the 5-

azacytidine roots was lower than the control roots (Figure 9). 

 

Figure 9. Percent 5-methylcytosine in hydrolyzed 5-aza and control roots. 

 

4.3 CHROMOSOME FORMATION 

 

 To determine if 5-azacytidine roots contained more cells undergoing mitosis than 

the cells in untreated roots, the cells in both 5-azacytidine and control root tip meristems 

were counted along with the number of cells whose chromosomes are visibly in some 

stage of mitosis.  Several stages of mitosis were visible (Figure 10).    
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Figure 10.  Cells of a 5-azacytidine 

treated root after staining with 

aceto orcein. 

 

The percentage of the total number of cells counted for each the 5-aza and the 

control roots is summarized in Table 2. The percent of cells undergoing some phase of 

mitosis was significantly higher than in control cells (p=0.01).  These results are 

consistent with my hypothesis that in 5-azacytidine the cells are undergoing active 

mitosis, but are arrested in their ability to elongate. 

 

Table 2.  Percent of total cells counted 

undergoing mitosis for 5-aza roots and control 

roots. 

 

 

 

 

 

 # of Cells % Mitosis 

5-aza 123 14.6% 

Control 194 2.6% 
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5. CONCLUSIONS 

 

Although after two weeks in normal B5 medium roots grown in 5-azacytidine did 

not show rapid growth as seen in the study done by Fuller (2004) a 20µM concentration 

of 5-azacytidine did not prove toxic to A. annua hairy root cultures.  The roots did show 

some regeneration after removal of 5-azacytidine and a visualization of the cells in the 

root tips showed that cells were still dividing, and at a rate significantly higher than 

normal roots.  This supports the idea that 5-azacytidine inhibits growth of transformed 

roots by preventing cell elongation, but does not hinder cell division. 

Treatment with 5-azacytidine was not shown to have increased artemisinin 

production, but unlike what was observed by Fuller (2004) they did not show that the 

concentration of artemisinin had decreased from that found in control roots.  This may 

indicate that the roots recover their ability to produce artemisinin after treatment with 5-

azacytidine.  

The concentration of 5-methylcytosine from the genomic DNA of 5-azacytidine 

roots was less than control roots.  Although this data is not statistically significant, it does 

support the hypothesis that 5-azacytidine effects the root cultures by decreasing the 

overall methylation of the DNA.   

Future work should contain more replicates of 5-aza treated roots to allow a more 

detailed and statistically significant analysis of the effects of demethylation on 

artemisinin production.  A lower concentration of 5-azacytidine should also be used, as 

Fuller (2004) showed that 10µM concentrations showed the best recovery and increased 
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growth after removal of 5-azacytidine from the medium.  It should also be determined if 

hydrolysis of DNA into individual bases results in some demethylation of 5-

methylcytosine.  Finally, the 5-azacytidine roots should be allowed to undergo 2-3 

subculturing cycles after 5-azacytidine is removed to determine if they are able to return 

to a normal growth rate and if artemisinin production increases after roots have 

recovered. 

 

 

 

 

 

 

 

 

 

 

 

 



33 

 

REFERENCES 

 

Abdin, M. Z., Israr, M., Rehman, R. U., Jain, S. K. (2003). Artemisinin, a novel 

antimalarial drug: biochemical and molecular approaches for enhanced 

production. Planta med. 69:289-299 

Balint, G. (2001). Artemisinin and its derivatives an important new class of antimalarial 

agents. Pharmacology & Therapeutics. 90:261-265. 

Bird, A.P. (1978). Use of restriction enzymes to study eukaryote DNA methylation. II. 

The symmetry of methylated sites supports semi-conservative copying of the 

methylation pattern. J. Mol. Biol. 118:49-60. 

Burn, J.E., Bagnall, D.J., Metzer, J.D., Dennis, E.S., and Peacock, W.J. (1993). DNA 

methylation, vernalization, and the initiation of flowering. Proc. Natl. Acad. Sci. 

USA. 90:287-291.  

Centers for Disease Control and Prevention (CDC). (2004) Malaria. Division of Parasitic 

Diseases. http://www.cdc.gov/malaria/faq.htm#transmission. 

Croteau, R., Kutchan, T., Lewis, N. (2000) Natural products (secondary metabolites). In: 

Buchanan, B., Gruissem, W., Jones. R., eds. Biochemistry and molecular 

biology of plants. Rockville, M.D: American Society of Plant Physiologists; pp. 

1250–1318. 

Delabays, N., A. Benakis, and G. Collet. (1993). Selection and breeding for high 

artemisinin (qinghaosu) yielding strains of Artemisia annua. Acta. Hort. 

330:203-206. 

Doerfler, W. (1983). DNA methylation and gene activity. Biochemistry Annual Reviews. 

52:93-124. 

Emani, C., Sunilkumar, G., Rathore, K. S. (2002). Transgene silencing and reactivation in 

sorghum. Plant Science. 162:181–192. 

Ferriera, J.F., Janick, J. (1996). Distribution of artemisinin in Artemisia annua.  In Janick, 

J., editor, Progress in new crops. 579-584. ASHS Press, Arlington, VA. 

 

Finnegan, E.J., Genger, R.K., Peacock, W.J., Dennis, E.S. (1998). DNA methylation in 

plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:223-247. 



34 

 

Finnegan, E.J., Peacock, W.J., Dennis, E.S. (1996). Reduced DNA methylation in 

Arabidopsis thaliana results in abnormal plant development. Proc. Natl. 

Acad.Sci. USA. 93:8449–54. 

Fuller, J. (2004). The effects of 5-azacytidine on transformed hairy root cultures of 

rtemisia annua. MQP, Biology and Biotech. Worcester Polytechnic Institute. 

Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures 

of soybean root cells.     Experimental Cell Research 50:151-158. 

Giri, A., Narasu, M.L. (200). Transgenic hairy roots: recent trends and applications. 

Biotechnol. Adv. 18(1):1-22. 

Hu, Z., Du, M. (2006). Hairy root and its application in plant genetic engineering. 

Journal of Integrative Plant Biology. 48(2):121-127. 

Janousek, B,, Siroky, J,, Vyskot, B. (1996). Epigenetic control of sexual phenotype in a 

dioecious plant, Melandrium album. Mol. Gen. Genet. 250:483–90. 

Juttermann, R., Li, E., Jaenisch, R. (1994). Toxicity of 5-aza-29-deoxycytidine to 

mammalian cells is mediated primarily by covalent trapping of DNA 

methyltransferase rather than DNA methylation. Proc. Natl. Acad. Sci. 

91:11797-11801. 

Kass, S.U., Pruss, D., Wolffe, A.P. (1997). How does DNA methylation repress 

transcription? Trends Genet.. 13:444-449. 

Kakutani, T., Jeddeloh, J., Richards, E.J. (1995). Characterization of an Arabidopsis 

thaliana DNA hypomethylation mutant. Nucleic Acids Res. 23:130–37. 

Kim, Y. (2001). Assesment of bioreactors for transformed root cultures. PhD Thesis. 

Biology and Biotech. Worcester Polytechnic Institute. 

Lilly, J. W., Havey, M. J., Jackson, S. A., Jiang, J. (2001). Cytogenomic analysis reveal 

the structural plasticity of the chloroplast genome in higher plants. The Plant 

Cell. 13:245–254. 

Martin, V. J., Pitera, D. J., Withers, S. T., Newman, J. D., Keasling, J. D. (2003). 

Engineering a mevalonate pathway in Escherichia coli for production of 

terpenoids. Nature Biotech. 21:796–802. 

 



35 

 

Meshnick, S., Taylor, T., Kamchonwongpaisian, S. (1996). Artemisinin and the 

antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. 

Microbio. Rev. 60(2):301-315. 

Messeguer, R., Ganal, M.W., Steffens, J.C., Tanksley, S.D. (1991). Characterization of 

the level, target sites and inheritance of cytosine methylation in tomato nuclear 

DNA. Plant Mol. Biol. 16:753–70. 

Pandey, A., Tekwani, B., Singh, R., Chauhan, V. (1999). Artemisinin, an endoperoxide 

antimalarial, disrupts the hemoglobin catabolism and heme detoxification system 

in malarial parasite. J. Bio. Chem., 274(27):19383-19388. 

Paszkowski, J., Whitham, S. A. (2001). Gene silencing and DNA methylation processes. 

Curr. Opin. Plant Biol. 4:123–129. 

Petruccelli, J.D., Nandram, B., and Chen, M. (1999a).  Applied Statistics for Engineers 

and Scientists.  Prentice Hall. pp 657-662. 

Petruccelli, J.D., Nandram, B., and Chen, M. (1999b).  Applied Statistics for Engineers 

and Scientists.  Prentice Hall. pp 687-692. 

Richards, E.J. (1997). DNA methylation and plant development. Trends in Genetics. 

13(8):319-323. 

Ro, D.K., Paradise, E.M, Ouellet, M., Fisher, K.J., Newman, K.L., Ndungu, J.M., Ho, 

K.A., Eachus, R.A., Ham, T.S., Kirby, J., Chang, M.C.Y., Withers, S.T., Shiba, 

Y., Sarpong, R., Keasling, J.D. (2006). Production of the antimalarial drug 

precursor artemisinic acid in engineered yeast. Nature. 440:940-943. 

Rodríguez-Concepción, M., Forés, O., Martínez-García, J.F., González, V., Phillips, 

M.A., Ferrer, A., Boronat, A. (2004). Distinct light-mediated pathways regulate 

the biosynthesis and exchange of isoprenoid precursors during Arabidopsis 

seedling development. The Plant Cell. 16:144-156. 

Romangnano, J. F. (2003). Aeration & mode of nutrient delivery affects growth of peas 

in a controlled environment. Master’s thesis, Worcester Polytechnic Institute. pp 

67. 

Ronemus, M.J., Galbiati, M., Ticknor, C., Chen, J.C., Dellaporta, S.L. (1996). 

Demethylation-induced developmental pleiotropy in Arabidopsis. Science. 

273:654-657. 

Ross, J. R., Nam, K. H., D’Auria, J. C., and Pichersky, E. (1999). S-adenosyll-

methionine:salicylic acid carboxyl methyltransferase, an enzyme involved in 



36 

 

floral scent production and plant defense represents a new class of plant 

methyltransferases. Archives of Biochemistry and Biophysics. 367(1):9–16. 

Schuler, M. A. (1989). Plant Molecular Biology - Experiments. Academic Press, Inc. pp 

148-151. 

Sosnick Group University of Chicago. (2005). Te buffer recipe. 

http://sosnick.uchicago.edu/TE.html. 

Smith T, Weathers PJ, Cheetham RD (1997) Effects of gibberellic acid on hairy root 

cultures of Artemisia annua: growth and artemisinin production. In Vitro 

Cellular and Developmental Biology-Plant 33:75–79. 

Street, H. E., Burnett, J. H., Baker, H. G., Beevers, H., Whatley, F., editors. (1977). Plant 

tissue and cell culture. University of California Press Berkely and Blackwell 

Scientific Publications, second edition. pp 458-460. 

Towler, M.J., Weathers, P.J. (2003). Adhesion of plant roots to poly-l-lysine coated with 

polypropylene substrates. J. Biotech. 101:147-155. 

Van Geldre, E., A. Vergauwe and E. Van den Eeckhout, E. (1997). State of the art of the 

production of the antimalarial compound artemisinin in plants. Plant Mol. Biol. 

33: 199–209. 

Weathers, P. J., Cheetham, R. D., Teoh, K. (1994). Artemisinin production by 

transformed roots of Artemisia annua. Biotech. Letters. 16(12):1281–1286. 

Weathers, P. J., Hemmavanh, D. D., Walcerz, D. B., Cheetham, R. D., Smith, T. C. 

(1997). Interactive effects of nitrate and phosphate salts, sucrose, and inoculum 

culture age on growth and sesquiterpene production in Artemisia annua hairy 

root cultures. In Vitro Cell. & Devel. Biol. – Plant. 33:306–312. 

Woerdenbag, H., Luers, J., Uden, W., Pras, N., Malingre, T., Alferman, W. (1993). 

Production of new antimalarial drug artemisinin in shoot cultures of Artemisia 

annua L. Plant Cell, Tissue and Organ Culture. 32(2): 247-257 

World Health Organization (WHO). (2004). Malaria Medicines and Supplies Service 

(MMSS). Retrieved September 21, 2006, from http://www.rollbackmalaria.org. 

 

http://sosnick.uchicago.edu/TE.html
http://www.rollbackmalaria.org/

