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Abstract

The ability to look outward from your vehicle and assess dangerous peer behavior is

typically a trivial task for humans, but not always. Distracted driving is an issue that

has been seen on our roadways ever since cars have been invented, but even more so after

the wide spread use of cell phones. This thesis introduces a new system for monitoring

the surrounding vehicles with outside facing cameras that detect in real time if the vehicle

being followed is engaging in distracted behavior. This system uses techniques from image

processing, signal processing, and machine learning. Its ability to pick out drivers with

dangerous behavior is shown to be accurate with a hit count of 87.5%, and with few false

positives. It aims to help make either the human driver or the machine driver more aware

and assist with better decision making.
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Chapter 1

Introduction

1.1 Motivation

Distracted driving is to blame for 3,166 deaths in 2017, accounting for 9% of all crashes [1].

A large part of the increase is due to how users interact with their phones. Cell phone use

has moved from talking on the phone and looking at the road to looking at the phone and

interacting with the screen [2]. Distraction related crashes have always been a problem, but

the reason for these crashes has been increasingly caused by cell phones [1, 3–5].

Figure 1.1: The information in this figure is obtained from [2]. Note that there was insuf-

ficient data to fill in all points for each age group. Cell phones continue to be the culprit

behind distracted driving, and it is becoming increasingly responsible for distraction related

crashes.
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The problem is exacerbated among teen drivers and is the cause of more than 58% of

crashes involving them [6]. These accidents cause harm not just to the distracted driver, but

to others as well. Cell phones are not the only cause for distracted behavior and we look to

address all type of distraction in this work. Technology that detects distracted driving has

potential to reach 272 million drivers that are on the road today in the United States [7].

Traffic flow studies have shown that distracted drivers exhibit an increase in certain

road behaviors that include lane deviations and speed fluctuations. They will also exhibit a

decrease in lane changes [8]. These behaviors create dangerous road conditions, inefficient

traffic flow patterns, unease among road users, and raises the likelihood for traffic and

slowdowns.

The primary motivations of this thesis are to add new abilities to cars existing today,

legacy vehicles, and to bring this technology to self-driving cars in order to help make

better planning decisions, as well as impact the users through increased safety and traffic

throughput. Finally, this work will help create awareness for this issue by highlighting the

dangers and advantages; hoping to eliminate this hazardous social norm.

1.2 Similar and Influential Work

Most distracted driver detection techniques use an inward facing camera [9] and internal

sensors [10] to determine if the person driving is paying attention. The goal of these tech-

niques is mostly to complement internal driver assistance tools, such as distracted vehicle

takeover [11], drowse vehicle takeover [12] and distracted lane keeping [13].

The goal of this work is a combination of research that exists today. However, we aim to

solve the problem by looking outward at peer vehicles. The following contributions have laid

the groundwork, and each give a different perspective on solving the problem of distracted

driving. Specifically, the following work categorizes the type of distracted behavior, behavior

prediction, creates a driver behavior model framework, covers learning algorithms for driver

style, patterns, and ability, and finally covers types of inputs that have been used to make

these classifications.

Vaitkus [14] categorized the behavior of the driver as normal or aggressive using only
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accelerometer data. This paper is operating along a similar line of thought as the proposed

solution, albeit, viewing the driver in the vehicle equipped with sensors and not its peers.

The method used signal feature extraction to look at total of 39 features from each axis of

a three-axis accelerometer. The features range from the minimum and maximum value of

the signal to Kendalls tau rank correlation coefficient (for the full list see paper). These

features were used with k-nearest neighbors classification algorithm and they were able to

achieve a classification accuracy of 100%. Kuge [15] also did something similar with steering

angle data, but instead trained a Hidden Markov Model and used data exclusively from a

simulation environment. This hidden Markov Model was trained to recognize emergency

lane changing, normal lane changing and lane keeping.

Fridman [9] approaches the problem with image processing and deep learning. The paper

focuses on trying to detect where the driver is looking with an on-board camera viewing

the driver. The method takes the video input, performs face detection, extracts features,

and uses a random forest classifier to categorize their attention into several categories in

order to determine if the driver’s attention is on the road or not. The system created is

capable of achieving 91.4% accuracy operating at 11 Hz. Companies have already begun

using similar technology to manage business operated vehicles and monitor employees while

they drive [16].

The data set introduced by the Honda Research institute [17] labels not just the actions

the driver took, but also the reasons and gave contextual understanding behind those actions

of the driver. For example, labels exist that describe what the other vehicles and pedestrians

are doing in the scene. The data was then used to train a CNN (convolutional neural

network), using image date, and an LSTM network (long short-term memory), using sensor

data, to understand the context of the situation along with the driver actions. This context

helped to give reasoning for predicting the driver’s future behavior. Deo [18] also used an

LSTM network except for trajectory estimation. This is somewhat like behavior prediction,

except you are getting straight to the root of what you really need. The vehicles position in

the future. They used a simulation environment with pre-recorded data and were able to

obtain perfect location information from the surrounding vehicles. The network was able

to achieve its goal with a low error.
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Martinezs [10] survey paper is a great reference to see what methods where used on

what driving related tasks. It helps to break down definitions for driving style, pattern and

ability, as well as provide guidance on a driver behavior model framework. It explicitly lists

all sensors commonly used and all driving style recognition class types that have been defined

across a variety of other papers. It then proceeds to present results on the use of rule or

model-based classification as well and supervised and unsupervised learning methods. The

analysis shows that rule and model-based methods are the least effective and it is sometimes

difficult to justify their accuracy. Learning based methods prove to work the best with little

difference between supervised and unsupervised.

Ricci [19] has a patent which assesses the performance and ability of the driver and rates

them. This is done with a suite of onboard sensors which attempts to figure out if laws have

been broken, if the vehicle was stolen and if the driver if following proper road etiquette.

These features are then used to score the driver and store this score in a database, where

the driver will be given a reputation based on how well they drive. The aim here is to add

accountability for the driver’s actions and to keep a history of the types of choices they

make.

1.3 Current Issues

Much of the technical difficulty in the field such as detection [20] and tracking [21] has

been solved in a well-tested and accurate manner. In addition, many different methods

using signal processing and machine learning on their works collected features have been

explored. The difficulty for this work comes in three main places.

First, to have a real time system able to detect and track in easily accessible hardware.

This will allow the system to be easily deployed on legacy vehicles. Second, the information

gained through image processing has not yet been used to attempt distraction classification

of peer vehicles. As shown above, the information for doing so is typically on the vehicle

itself. Third, gathering an adequate dataset is always a difficult task. As mentioned in

many places [22], the difficulty in any driving related task is that the interesting edge cases

happen infrequently.
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1.4 Thesis Contributions

This work will look to solve some of the issues above and add the following contributions:

1) A hardware test bed with adequate on-board processing to take in video, detect

and track vehicles, and preform general processing. An inexpensive mix of COTS

components helps to make this research accessible and portable allowing for easy data

collection and in car mounting.

2) An image and signal processing expert solution for detecting distracted driving arti-

facts. Data collection for machine learning is difficult. This work allows us two ad-

vantages. First, it assists in training by providing an accurate, but not fully trustable,

source of automated labeling. Second, it allows us to easily go back to our collected

data and find events of interest which are used to both tune and train.

3) An online machine learning framework to learn from and complement the expert

system. The proposed work looks to take advantage of machine learnings ability to

understand subtleties in data and increase the overall effectiveness of the system.

1.5 Thesis Organization

The goals of each chapter are as follow:

Chapter 2 will break down the different processing methods used in the analysis of the

video which are used to extract features. The next sections will look at the signal processing

and machine learning methods used to turn those features into classifications.

Chapter 3 will go over the hardware system and how the different processing tasks are

split up among the acceleration components. It will also address the difficulties of running

the system in real time.

Chapter 4 will give an overview of the entire processing pipeline and explain the decision

process in full detail. Next, it will talk about the types of driving scenarios the system

hopes to detect along with some real-world examples. Finally, results will be presented and

discussed.
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Chapter 5 will conclude the work, its effectiveness and needed improvements and exten-

sions.
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Chapter 2

Processing Methods

The processing methods described below are used to create a pipeline from video input

to an annotated video output. These annotations highlight the vehicles considered to be

distracted to aid the driver or self-driving system. The methods where chosen to function

within performance criteria as described in Chapter 3. A block diagram of the pipeline is

shown below, and its components will be described in the following sections.

Figure 2.1: The flow of information moves left to right in the block diagram. Starting with

the camera and ending with the display. The code architecture will be described later, but

this will be a good guide for this chapter.
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2.1 Image Processing

2.1.1 Detection

The last decade has been full of advancements in image processing, the most notable of

which was with the use of the convolutional neural network (CNN) to solve problems with

object recognition [23]. This deep learning revolution in the image processing space had

kick-started the high-performance detection algorithm that made this work more accessible.

Detection, not to be confused with image classification, is the act of finding a certain

object within an image. To perform detection, both image classification and object discovery

need to take place.

The MobileNet V2 SSD [24] was created to have the highest accuracy possible while

running on embedded processors such as the ones used on mobile phones. The MobileNet

has opened the door for object detection to be deployed on many existing devices and

at a low cost. Let us break down what the MobileNet V2 SSD is. MobileNet [25] is a

CNN based neural network created specifically for mobile and embedded computer vision

tasks. The main contribution here is the use of depthwise separable convolutions to replace

the standard convolution layer. This replacement is made to reduce the computational

complexity of said layer. A brief example of how it works follows. With a typical image

we have a matrix of width by height by color, where color is a red, green, blue numerical

representation (RGB). A typical CNN layer will convolve the image with a kernel over the

entire 3D space with one operation such as reducing a 3x3x3 space into a 1x1 space. A

depthwise separable convolution uses a kernel whose depth is equivalent to the image depth

and therefore would reduce a 3x3x3 space into a 1x3 space. This keeps the convolution

separate for each channel and provides separate weights for each channel to learn during

training. After this layer, a point wise convolution is performed combining the 1x3 space

into a 1x1 space giving another layer for weight training.
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Figure 2.2: This depicts the MobileNet Main Network Element. The data flows from

top to bottom reducing the 3x3x3 feature into a 1x1 feature using the ReLU6 activation

function [26].

V2 is a rework of the original architecture [24]. The main contribution in version two is

the introduction of the inverted residual with linear bottleneck. The goal here is to reduce

the amount of channel information being stored and passed around between layers, which

trims the amount of memory and multiply add operations needed. To do this, the depthwise

convolution from version one is surrounded by first an expansion layer and then a projection

layer. The expansion layer expands the features coming in by an expansion factor, essentially

a multiplier of the input size. Then the projection layers acts as a bottleneck and reduces

the feature space as expanded by the expansion layer. This means the features being learned

from the depthwise convolution are of a higher dimension than the information being passed

in between layers, essentially compressing the information between layers and saving space.
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Figure 2.3: MobileNet V2 Main Network Element is a residual block. This block is used

iteratively throughout its design and allows the network to understand pixel neighbor rela-

tions [26].

SSD [27] is a single shot detector that picks out where in an image a certain recognizable

object is. The MobileNet V2 is used as a feature extractor and placed in front of the SSD

network which uses these features, tied to locations in the image, to output bounding boxes

around identified objects. It works by first creating a set of default boxes setup throughout

the image. It then uses the object classifier to score the information within a box and if its

recognizable, an object we are training to detect, it adjusts the box size to fit the object.

Returned from the SSD is a bounding box, a label, and a confidence value from 0 (low) to

1 (high). Figure 2.4 presents example of this algorithm running on a sample image. The

bounding boxes are drawn around the objects and in the top left you can see its label and
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confidence.

Figure 2.4: Objects being detected are annotated by bounding boxes. This image shows

two different objects being detected. One a car with a 58% confidence and the other a truck

with the same level.

The main reasons for choosing this architecture is that the tradeoffs between accuracy,

speed, and portability fit perfectly with the requirements of this work. To operate on

hardware, in real time, we need speed and to keep the cost reasonable we need portability.

In addition to performance, there are pre-trained models offered for this architecture. One

of which already contains the object classes required for this work. This leveraged model

has been trained on the Common Objects in Context (COCO) dataset [28], which includes

the classes of car, truck, and pedestrian among many others. These pre-trained models are

provided by Google [29].

The performance goals are described in Chapter 3 and plenty of examples were found

using this network to operate well within those requirements [30]. There was no real com-

petition in this area for a detection architecture on an embedded platform. For more

information about performance, see Chapter 3.
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2.1.2 Tracking

The trackers used here are to understand the movement of an item between consecutive

frames in a video stream. This is more formally known as object tracking. There are many

different model types that can be used to solve this problem [31]. One type is a motion

model, by using either a Kalman filter or an equivalent predictor to keep track of the motion

one can use the objects momentum to predict where it should be in the next frame [32].

Another would be to use an appearance model, using something like a correlation filter, one

can build a representation of the objects features (shape, color and size) and filter the image

for this representation [33]. Alternatively, for an appearance model, you can use an online

classifier which is continuously trained on the object’s appearance and used to locate the

object in the next frame. In this work, we will be focusing on correlation trackers as they

offer a good performance and accuracy trade-off. Although it could be true that a hybrid

of these models could work better in both categories, this is outside the scope of this work.

The tracker used is the Correlation Tracker implemented in the dlib library from the

following work [34] [35]. This tracker works as follows. It starts with an image containing

the desired object to track and a bounding box surrounding the objects location. The

tracker uses this to create a feature representation of the object and builds a scale and

translation model in a latent feature space (different feature dimensions than the image).

This can robustly track changes in the objects scale, which occur often in the self-driving

vehicle space as the camera is typically in motion. When the next frame in the video

stream comes in, the tracker is called to update the initial bounding box with the object’s

new location. This is done in three steps. The algorithm first extracts a scale sample from

the image and uses a correlation filter to sweep its previous model over the current sample

and calculates the correlation across the entire image. It then finds a position in the image

which maximizes the correlation. It does the same with the translation model. Finally

it updates the translation and scale models with the new positions feature representation.

This process is repeated for every new image. An example of an object being tracked

between images is shown in Figure 2.5.

The tracker has a few parameters which allow you to adjust the performance and accu-
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(a) Track Example 1 (b) Track Example 2

(c) Track Example 3

Figure 2.5: The image sequence highlights the trackers ability to track, not just the objects

location, but also its scale from frame to frame. The white vehicle on the left is moving

quickly past the camera and this movement is reflected in the area of the objects bounding

box.

racy tradeoff. These parameters are for the size of the filter and the number of scale levels.

The filter size refers to the pixel by pixel matrix used for the correlation filter. When the

filter is large it is more accurate but has a longer computation time. The scale levels are the
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levels of detail in the scale model of the feature representation. The same trade off applies

here. It also outputs the peak to side-lobe ratio after every update allowing you to know

how well it thinks it is tracking the object. The higher the value to more confident it is.

This tracker is used out of the box to help bring the project up quickly.

2.2 Signal Processing

2.2.1 Smoothing

Signal smoothing, as typically accomplished through moving windows, averaging filters,

and resampling, helps to highlight trends and anomalies in data by reducing the outliers

or dampening the noise. It is often the first step in exploratory data analysis or a signal

processing pipeline when looking at real world data.

The goal for smoothing our signals is to find clean oscillations and sudden anomalies.

To highlight these trends in our data we want to eliminate higher frequency noise without

dampening sudden changes. The proposed system uses a Hanning weighted moving average

filter with a small window size relative to the systems target operating rate. This helps to

only filter out high frequency noise and retain the subtle trends. The Hann window is a

variant of a raised cosine window [36]:

w[n] =
1

2

[
1− cos

(
2πn

N

)]
(2.1)

w[n] = sin2
(πn
N

)
(2.2)

where n is the current index and N is the window size. It weights the samples within the

window by giving the largest weight to the current value and tapering off the involvement

for the surrounding samples as you move away from the center. This helps to retain any

anomalies by heavily weighting the current value and smooths out high frequency noise

with the tapering slope to zero, resulting in a window which looks like those in Figure 2.6.
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Figure 2.6: Hann Window and Fourier Transform showing how the weights are distributed

in the time domain on the left and frequency domain on the right [37].

Figure 2.7 is an example of the Hann window smoothing out a noisy signal with a couple

of anomalies. This outlines that our goals as described above are achieved.

Figure 2.7: This Hann window example illustrates how high frequency noise is smoothed

out while dampening outliers, but not completely removing them.
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2.2.2 Anomaly Detection

The anomaly detector‘s goal in this work will be to highlight unusual behavior in the incom-

ing environmental signals. In particular, the output of this detection will be true when the

signal deviates from its typical path within a moving window. Many methods for anomaly

detection exist and have different goals. Some look for peaks by curve fitting and calcu-

lation of residuals. While others look to match patters like wavelet transformations [38].

Others will leverage forecasting or classification methods to track features [39, 40]. When

the features fail to be predicted, fall outside of a common cluster or into new classifications

then that point is considered an anomaly.

These techniques also fall into two main categories of execution: real time or whole signal

processing. Real time gives an output based only on current and past states providing a

value as it moves though the time-series as its being generated. While whole signal looks

at the entire signal at once, after the signal is generated, and will mark areas of interest at

every point using both past, current and future signal values. For this work we are only

focusing on real time methods.

The method chosen for this work is simple, but effective for the scope of data we will be

looking at. It is known as Robust peak detection algorithm using z-scores [41]. It functions

by calculating a mean and flagging anything outside of X amount of standard deviations,

but with a few extra features which make it more robust. This algorithm is used in similar

related work [42,43].

It works by first creating a moving window, known as the lag. The lag specifies how many

samples are used to calculate a filtered mean and standard deviation. A threshold is then

set to choose the amount of standard deviations the signal needs to be away from the filtered

mean before the detector is tripped. In addition to the threshold an influence parameter is

also set. This lets the threshold know what percentage of the incoming signal can influence

the detection conditional. In other words, an influence of one means it disregards the filtered

values when calculating the threshold and a zero means it only used the filtered values. The

influence parameter assists with sensitivity to trends in the data. A value of zero assumes

that the signal is non-stationary and would respond erratically if the trend, relative to the
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window size, change quickly.

Figure 2.8 is an example of the algorithm in action on a section of collected data with

various changes to the parameters:

(a) Threshold of 1.0, influence of 0.9 and lag of 37 frames

(b) Threshold of 1.0, influence of 0.9 and lag of 120 frames

(c) Threshold of 2.0, influence of 0.9 and lag of 37 frames

Figure 2.8: The parameter changes above help to highlight the algorithms ability to select

certain parts of a peak. However, the more of the peak selected the more susceptible it is

to noise.

This helps to highlight the many ways that this algorithm can be used depending on

the part of the signal you are interested in detecting. For this work we would like to know

when the large hump starts to occur and ignore small fluctuations in the signal.
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2.2.3 Oscillation Detection

The purpose of the oscillation detector is to find movement in the signal represented by low

frequency fluctuations relative to the high frequency noise. These fluctuations of interest

can be detected using a fast Fourier transform. An FFT is a common technique in signal

processing which will transform the signal from a time-based representation to a frequency

based one. Instead of a signal which is represented by amplitude verses time it will be

represented by amplitude verses frequency. The frequencies of interest are known and to

detect these fluctuations one can simply view the energy level of that frequency in its

frequency representation [44]. Figure 2.9 is an example of an FFT.

For this work the oscillations that we are interested are in the last two images and can

be detected by looking at the energy in bins 2 though 5.

2.3 Machine Learning

2.3.1 Feature Engineering

In between data collection and algorithm application there is an important step which

helps fit the data to the problem being solved and to the algorithm being used. Feature

engineering is not used only to make the dataset compatible with the machine learning

algorithm, in syntax and variable typing, but it helps to give the algorithm a hint as to

what it is trying to learn. Whether it is removing irrelevant information or applying post

processing techniques the point is to increase the accuracy of the task.

The task is to group similar movement from time series signals. One option when

attempting this is to use the signal directly as the only feature, but it is typical to derive

sub-feature from this signal which aim to describe the types of behavior that you wish to

group. Time series sub-feature decomposition is a large field often explored by economists

for the purpose of stock market prediction. The signal movement to be grouped is like

that of the stock market and ”catch22: CAnonical Time-series CHaracteristics” covers an

extensive exploration of feature extraction for that purpose [45].

The objective is to find the most representative sub-features of a time series signal such
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(a) FFT of a flat sigal (b) FFT of an upward trend

(c) FFT of an oscillation

Figure 2.9: Various movement can be seen in the time series signals above. This image

sequence highlights the changes that the systems aims to detect. A progression from flat to

an oscillation

that they contain no redundant information and work well over many types of applications

and datasets. Specifically, the work targets 93 classification datasets for analysis. The



20

Figure 2.10: This is an example signal used to show what each of the features look like in

the catch22 set.

features to be tested are from a common feature engineering toolbox known as ”hctsa”

which contains 4791 features [46]. To find this ”catch22” subset, the authors apply all these

features to the classification tasks for each dataset and filter by performance and within

the top features they reduce redundancy by ordering the cluster feature correlation matrix.

This last step is similar to how principal component analysis works [47]. An image below

from the paper clearly illustrates the process:

For this work, the catch22 subset of features is leveraged as the basis of our time-series

feature decomposition. In Chapter 4, we will be exploring and adjusting this base feature

set. Figure 2.10 is an example of the features being used on a time series signal.

2.3.2 High Dimension Visualization

When working with a dataset whose feature size is outside of the visual domain, with sizes

larger than three, it can be difficult to understand how the data points are related. When

dealing with data inside this range, you can plot the various features on a 2D or 3D plot

and see relationships in the data. The only way to find these relationships visually with

higher order data is by using dimensionality reduction techniques. In this work, t-distributed

stochastic neighbor embedding (t-SNE) will be used [48]. Unlike another common technique,

principal component analysis (PCA), which relies on linear relationships in the features, t-

SNE aims to find nonlinear relationships [47].

t-SNE’s aim is to take high dimensional data and create a mapping for it in a lower
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Figure 2.11: Each of the 22 features is created by moving a window through the signal and

calculating each feature on the windowed portion data.
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dimensional space though probabilistic relations. It first looks at the input features and

calculates, for each point, its relationship to every other point. This relation is then fit

to a normal distribution curve that is created based on each input features group density.

It then projects the input feature points randomly onto a lower dimensional space and

calculates the relations again between points using a t distribution. The final step is to

iterate along a gradient that minimizes the difference between the similarities calculated

in the input space to the ones calculated after the projection to the lower dimensional

space. The result is a representation of the input features which are grouped attempting to

retain the neighborhood relations of the original space. This allows you to visualize higher

dimensional relations. For an example of how this is used, see the next section as it is best

understood in its relation to clustering.

These tools are used in this work to help us understand the relationships of the different

data points in our high feature space. They are not used during runtime, but rather for

analysis.

2.3.3 Clustering

Clustering is a powerful technique that can group together datapoints which share similar

features without any labeled data. Four main paradigms exist for clustering. Hierarchical

methods break down the relationship between points though an ordered structure where

all points belong to a top tier and a subset of those belong to a lower tier and so on. One

example would be agglomerative clustering [49]. Partition based clustering create borders

between groups either with line fitting or by assigning them to a modeled distribution

type. One example would be k-means clustering [50]. Density based clustering find groups

according to the closeness of data points and separates them by either differences in density

or differences in group location. One example would be ordering points to identify the

clustering structure (OPTICS) [51]. Grid techniques break up the space into pre-defined

grids and assign groups to each one making use only of the grid boarders for separation.

One example would be statistical information grid-based method (STING) [52].

The result of clustering is when each data point is assigned directly to one group or to

multiple groups each with an assigned probability. This is known as hard or soft clustering
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respectfully. For this work, the clustering algorithm will be used to classify sub-features of

a time-series stream of information into hard clusters. The feature count will be larger than

three and not directly plottable. Also, due to its streaming nature it is likely that points in

time could be close together and the border between groups may be difficult to distinguish.

In addition, it would be helpful to avoid re-clustering all previous datapoints seen for each

new datapoint added as the signal continues through time.

OPTICS would be a good choice in this case as it is a density-based algorithm which

expects each cluster to be able to vary in size, density and location. It also does not require

every point to be in a group and can have the tight border points remain unlabeled. How-

ever, OPTICS is significantly slower than the algorithm is it derived from [53]. DBSCAN

works well when clusters are similar in density, which in this case is seen as a disadvantage

compared to OPTICS. Both algorithms do not require the number of clusters beforehand,

the only parameters have to do with density and separation which help choose the cluster

borders. The automated nature of these clustering techniques can be helpful in this work.

However, when it comes to performance and accuracy trade off it is hard to beat mini-

batch k-means [54]. K-Means iterates along a gradient set to minimize the error as calculated

by the squared distance between every point and its nearest cluster center. The mini batch

variant allows points to be brought into the clustering space iteratively by splitting the

incoming data into batches. This allows it to run in real time and prevents the need to

re-cluster previously seen points.

Exploration was done for many different algorithms. Please refer to the appendix B.1

for the accuracy and performance comparison. Figure 2.13 is an example of the clustering

algorithm applied to the time series subfeatures as shown above and the dimensionality

reduction technique used to display the results on the 2D plane.
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Figure 2.13: The top plot is the signal used in the feature engineering section except it

is now colored by the time steps corresponding cluster. The bottom plot are the features

plotted on the 2D plane using t-SNE and also colored corresponding to thier cluster.

2.4 Summary

This chapter reviewed the processing methods used to help solve the problem of identifying

distracted drivers. This work is borrowing techniques from three different disciplines namely,

image processing, signal processing, and machine learning. The goal is to use expertly

defined algorithms like those often found in signal and image processing to preprocess data

and to help frame the problem such that an unsupervised clustering systems results can be

interpreted and immediately useful during runtime. The age of the topics here varies, but

all have been heavily used in practice and would be considered robust.

Chapter 3, will review the hardware and software and how these methods will fit into

each part.
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Figure 2.12: This workflow was used for the creation of the ”catch22” set of sub features.

The first step was to test each one out on several datasets. Then rank them and eliminate

the ones which hold redundant information [45].
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Chapter 3

Hardware and Code Architecture

3.1 Hardware

The goal of the hardware is to execute the processing pipelines described in Chapter 2

while meeting certain performance criteria. The goal for this work is to be able to process

live video at a resolution of 800 pixels wide by 600 pixels high at 30 frames per second

(FPS). The hardware was selected to meet these goals while also optimizing for cost. The

processing modules chosen could be purchased at bulk and at a reduced cost, where all

parts could be combined onto a standalone circuit board.

Aside from processing constraints, the hardware module must function standalone while

working with a standard vehicle power supply, handling the video input and informing the

driver of the distracted vehicles. A detailed diagram of the hardware is shown in figure 3.1,

and its components will be described in the following sections.
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Figure 3.1: This block diagram represents, by location, the hardware components that have

been mounted for the in-car unit.

3.1.1 Main Control Board

The main performance bottleneck for this project is the image processing section. Here we

must detect the vehicles, track their movement, and mark the lines on the road. Many em-

bedded boards can run these algorithms, but with poor FPS and/or resolution. Some higher

cost board also exist with the processing power but would make this work less accessible.

The two boards who stood out as potential candidates after the previous considerations

were the Google Coral TPU development board and the Nvidia Jeston Nano. These both

have hardware acceleration for the detection task, however, the TPU would only be able

to accelerate methods based on deep learning with a limited set of neural network building

blocks. The Jetson Nano has a 126-core graphics processing unit (GPU) which could be

used for the acceleration of all image processing tasks this work requires, but not at the

same time. Table 3.1 describes the boards considered and their processing power [55–60].
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Table 3.1: Development board comparison between the top contenders in the affordable

edge AI space.

Board CPU Acceleration Performance (MobileNet v2) Cost

Coral Edge TPU ARM A53 (4x 1.8 GHz) Edge TPU 100+ FPS $149.99

Nvidia Jetson Nano ARM A57 (4x 1.43 GHz) 128-core Maxwell 64 FPS $99.00

Nvidia Jetson TX2 ARM A57 + NVIDIA Denver 256-core Pascal 17 FPS $399.99

Raspberry Pi 3 (4x 1.2GHz) N/A 2.5 FPS $35.00

Intel Neural CS2 N/A Myriad X VPU 30 FPS $90.00

Considering the options for a development board and other acceleration hardware avail-

able on the market, a hybrid approach is the best way to go. Aside from the Coral devel-

opment board, Google also offers the TPU acceleration as a USB 3.0 module allowing it

to be used on any development board capable of running Linux. After this consideration

the choice of the Jetson Nano became clear as we could leverage the GPU to accelerate

many of the image processing tasks and have the Coral TPU USB version dedicated to the

detection task. More information about TPU and GPU acceleration is described in the

following sections.

The Edge TPU was developed to help bring machine learning to embedded devices with

excellent power efficiency. It is targeted towards image and audio processing projects, but

it can be used for a variety of tasks. It does not provide acceleration for training a network,

but only for inference, as it has no acceleration hardware for backpropagation. It can,

however, provide acceleration for retraining pre-trained models.

The Edge TPUs architecture is not released at the moment, but it is an application-

specific integrated circuit (ASIC) that has been created to optimize the inference of deep

feed-forward neural networks (DNN). It can perform the necessary feed-forward operations,

quantized to 8-bits, at 4 trillion operations per second (TOPS). Typical DNN operations

include rectifier (ReLU), tanh, add, multiply, 2D normal, and depthwise convolution, Max

Pooling, Softmax and Mean among many others [61]. With function specific hardware, and

when massively parallelized, large performance gains and computational efficiency takes

place as seen from the examples. Not to mention that when offloading such complex tasks
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to the TPU you free up the GPU and CPU for other work. For this work, the object

detection task will be handled entirely on the TPU. See Chapter 2 for more details.

GPUs are versatile in the tasks they can accelerate. Any task that can be performed

in parallel is well suited for GPU acceleration. Figure 3.2 is a comparison image of the

CPU and the GPU architecture we are using. You can see that GPUs are built for parallel

computations and many tasks in image and signal processing can take advantage of that.

Unlike the TPU, the GPU is not restricted by operation type or direction and can be used

to accelerate learning as well as inference in a DNN.

(a) Cortex A57 CPU [62] (b) Maxwell GPU [63]

Figure 3.2: The image on the left shows the core components of the A57 CPU, which has 4

processing cores sharing one L2 cache. The image on the right shows the many GPU cores

of the Maxwell GPU. These are split into 4 sections each with its own cache.

For this work, we are looking to accelerate an image feature tracker, a lane segmentation
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network and our custom distracted driver network. For more details, see Chapter 2.

A USB 2.0 webcam will be used for our video stream input. Any webcam that can

meet the performance requirements will do, as it can be meet for a relatively low cost with

the webcams available today. The main parameters to look at when considering a webcam

for self-driving car work is resolution, FPS, and viewing angle. The viewing angle and the

resolution interplay are important to understand as when the viewing angle of the camera

increases the pixel per area decreases and view distance is lost. For this work we are only

considering cars in front of us on the road and dont need to see sidewalks or cars approaching

from adjacent roads so a smaller angle will work. The FPS is equivalent to the sampling

frequency in hertz. To detect distracted driving, we must capture at a rate which retains

any side-to-side and acceleration movement that a car can make. For an average car we

can safely capture and view this at 30 FPS as the typical lane change time of a car is 1.5

seconds at highway speed [64] and the recommended FPS to capture traffic movement is

10 [65].

The webcam of choice for this work is the Logitech C920 [66]. This was chosen for two

main reasons. First, the webcam has onboard H.264 video encoding for up to 1080p at 30

fps, which offloads some of the work from the main board for video capture. Second, this

webcam has been used in other self-driving car image processing work. Part of that work

included heat endurance testing to prove that this camera can hold up in a car on a hot day

and not degrade performance or melt. In addition, the viewing angle of 90 degrees proves

to offer a good width to distance trade off.

3.1.2 Power and Heat Managment

The power supply from a vehicle is at 12 volts and typically capable of supporting up to

180 Watts (15 Amps). The total power requirements for our hardware module is shown in

the table 3.2.

A voltage regulator was chosen to support the maximum power requirements with some

overhead. This voltage regulator is created by Pololu part number D24V90F5 and can

convert 12v to 5v with 90% efficiency and a 45W (9A) output.

The major sources of heat in our hardware module are from, in decreasing order, the
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Table 3.2: Total power broken down for each component in the hardware system.

Part Volts / Amps Power (Watts)

Jetson Nano 5 / 2.2 11

Coral TPU 5 / 0.5 2.5

Webcam 5 / 0.5 2.5

Display 5 / 1.2 6

Fan 5 / 0.5 2.5

Sum 5 / 4.9 24.5

TPU, Jetson Nano, and the power supply. This order was found through performance

load testing of all components and manually measuring the heat differences between the

components by hand. The Jetson Nano and the TPU come with heatsinks, but as we are

sandwiching them between a poly-carbonate backing and a display a fan must be added for

proper airflow.

The Jetson Nano has temperature monitoring and has a pulse width modulation (PWM)

output to support common computer fans. The fan selected came from the development

guide recommendation. It is manufactured by Noctua part number NF-A4x20 and runs at

5000 rotations per minute (RPM). The fan improved heat buildup dramatically, as shown by

running the same performance load test as before and comparing the temperature difference.

Several test runs have also been performed while running the system in a car to ensure

the heat is kept low and that the power supply is enough at its maximum load.

3.1.3 Integration

Two components for the hardware portion must be assembled before operation. The first is

the wire harness to supply power to all the components. The second is the support structure

which encases the hardware and supports mounting to the vehicle.

The wire harness must make three connections. One from the cars power outlet to the

voltage regulator board. Then two, from the regulator to the development board and the
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display. The board is capable of drawing 6 amps and the display is capable of drawing 2

amps. To support the current loads going to the dev board and display, 22-gauge wire was

chosen and multiple wires were ran to the connectors to support the maximum current draw.

A car power outlet pre-assembled wire harness was purchased to handle the connection

between the car and the regulator. This is already at the proper wire gauge and has a

built-in fuse and power indicator. Figure 3.3 is an image of the assembly setup and the

completed wire harness.

(a) Assembly Setup (b) Completed Harness

Figure 3.3: The setup for this project required a soldering iron, heat shrink, solder, and

wire strippers. Once assembled the power harness can split the power coming from the

power converter to the display and Nvidia board.

The support structure for the hardware must compactly fit into a car and be able to be

secured against movement and vibration. The display should also be visible. The camera

and power cords must be able to reach the unit as well, but this is dependent on the vehicle’s

setup. The simplest design, and the most efficient, is to sandwich the hardware components

in between the display and a polycarbonate backing. Polycarbonate was chosen as it is far

stronger than Acrylic and could be thinner to support the weight needed to mount of the

components. There is no need for the clearness of Acrylic. All components are secured with
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appropriately sized machine screws and nuts as required for each part. The only drilling

required is in the backing to thread through the screws. The placement of the components

can be seen in figure 3.1 at the beginning of this chapter and are in order of heat production

and considerations of air dispersion. The order looked to optimize laminar flow before the air

hits the dev board heatsink and becomes turbulent. Starting with the fan, the components

were mounted left to right including the TPU, Jetson Nano, and voltage regulator. Long

brass standoffs are used to secure the display to the backing after the mounting of the

components. The result is a ridged rectangle encapsulating all components with adequate

air flow and vibration resilience. Figure 3.4 are images of the assembly and final product.

(a) Assembly Setup (b) Completed Front

Figure 3.4: The assembly processes mainly involved drilling holes and aligning the various

components. Three different screw sizes where used and the power drill made quick work

out of the polycarbonate.
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(a) Completed Bottom (b) Completed Back

Figure 3.5: The different angles provide a look at each component and show the completed

design.

The setup will be different for each car. The car used to support this work is a 2013

Honda Accord and the unit can be mounted right over the car’s info display system. The

in-car setup is pictured in figure 3.6 with the system up and running.
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Figure 3.7: Circled in red above are each of the connections needed for system operation.

From top to bottom the items shown include the webcam, assembled system, and the power

connector.
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Throughout testing and demonstrating the hardware it became apparent that the need

for a simple display was necessary. The live streamed video was too distracting and the

bounding boxes around the vehicles are moving around too much. This work acknowledges

the need for a simple display like this and has designed a prototype. However, it has been

deemed outside the scope of this thesis to integrate it into the system. The goal of such a

display is to quickly communicate information to the driver about the surrounding vehicles

just as a GPS would do.

Figure 3.8: This is a simplistic representation of the outside world which aims to delivered

the distracted vehicle information as fast as possible. Icons provided by [67].

The location of the cars will be set relative to their real location and the colored bounding

boxes will be drawn to indicate their distraction level. The hood of the vehicle with the

system installed is always displayed in the same location and this same style can be extended

to add side and rear-view cameras.

3.2 Software

The codebase for this project is entirely in Python and using only freely available libraries

(C.4). Its main objective will be to act as a catalyst for the projects processing pipeline.

Many different methods and functions are fused together to achieve the goal of this work

and the details are explained below.
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Figure 3.9: These are the main 4 files of the project. This structure allows for piecewise

execution of each component to reduce iteration time and ease debugging and tuning.

3.2.1 Organization

The codebase is comprised of two main components and two subcomponents, all of which

are executable. The separation allows for quick iteration of the contained method. After

each execution, intermediate data is saved off to allow for piecewise troubleshooting. Each

part is outlined below.

The main class Distracted Driver Detection (DDD) contains the initialization of all

major components including the detection, tracking, feature generation, signal processing,

machine learning and behavior estimation. When executed it will take in a video file and

output the annotated video file with the distracted vehicles highlighted. It will also output

a pickle file containing all tracker information and anomaly detection results as a time series

pandas dataframe. An alternative mode of execution allows it to take in that same pickle

file for plotting and behavior re-evaluation.

Real Time (RT) is the real time script that interacts with the camera and handles

threading of all input output (I/O) components. When executed it will pull images from

the attached webcam and run the entire pipeline from detection to behavior designation then

output the annotated video stream in real time. It contains a queue structure around the
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threaded components such that high I/O latencies wont slow down the processing pipeline.

Cluster Seres contains initialization of all major learning components and when executed

will take in the same pickle file as described above and execute the learning pipeline along

with extra visualizations of the process and result. Anomaly Score contains the main

signal processing pipeline and when executed will take in the same pickle files and output

visualizations of the process and a new re-evaluated pickle file with any updates to the

result.

3.2.2 Post-Processing Test Bench

The goal of the test bench is to provide an efficient way to test and tune the algorithms

without having to worry about real time performance. This process is governed by the

playback of a video file that will pause after each frame to ensure all functions complete

before continuing. In addition, there are extra graphs and process debugging steps that can

occur throughout the duration of the video playback. This allows playback to be paused

and the internal state to be visualized at any point. A typical troubleshooting scenario

follows.

Choose and playback a video file though the main class, DDD. This class will provide us

with the annotated video file, a saved dataframe of all features, and graphs of intermediate

variables and decisions. A bug is found where it looks like, in the annotated video, the vehicle

is being flagged as distracted when it is simply driving straight. We can look at the graphs

to see which feature it thinks is acting irregular. This is decided by the anomaly detectors

which reside in the AnomalyScore class. Then, we can make the code changes and replay

the dataframe file back through the anomaly scoring function to test the changes without

having to reprocess the video (processing the video is the slowest part of the pipeline). The

problem has been fixed and the main class can be executed again to re-annotate the video.

The same procedure can be done with issues both in the anomaly scoring and cluster

series sub-processes. This saves iteration time and allows testing of new ideas quickly.

In addition to piecewise function execution the main class, DDD, can take in labeling

information and output a confusion matrix and other metrics based on how DDDs decisions

differ from the label. The labeling in this case is subjective as in most cases we do not know
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Table 3.3: Overview of all files in the source directory of the project, how the are used and

how they can be configured.

File Class Purpose Parameters

AnomalyScore.py AnomalyScore Executes anomaly and oscilla-

tion detection for each feature

and calculates a score based

on distraction impact.

Window sizes, standard devi-

ation thresholds, score values,

FFT bin sizes and limits

BehaviorEst.py BehaviorEst Assess driver behavior based

on anomaly score and signal

classification.

Designation conditionals,

window times and state

delays

DisplayHelper.py DisplayHelper Threads camera and display

process; controls video saving

and streaming.

Video size, FPS

ObjectDetect.py
ObjectItem,

ObjectDetect
Helper class to store infor-

mation from object detector.

Sends out image to TPU for

object detection.

Detection confidence thresh-

old, model type, detection

amount

ObjectFeatures.py
HistArray,

ObjectFeatures
Array helper function to au-

tomatically buffer and remove

old information for running

live. Extracts features from

image and detection results.

Feature list, feature smooth-

ing window and weights

ObjectTrack.py ObjectTrack Spawns tracker to monitor ob-

jects if the detector has trou-

ble. Associates objects from

detector to tracker and creates

a unique identifier for each

one.

Max tracker amount, mini-

mum tracker error, frames to

forget an object

ClusterSeries.py ClusterSeries Runs clustering on time series

features to group similar vehi-

cle movement.

Cluster amount, Cluster

score, sub feature window

Zscore.py Zscore Filtered anomaly detection al-

gorithm which automatically

handled inputs from multiple

signals.

Window sizes, standard devi-

ation thresholds
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what the driver is really doing. It does still provide us with valuable results and give us a

baseline accuracy to compare against when any code changes are made.

The visualizations used for troubleshooting accuracy and performance of the system are

displayed and described below.

3.2.3 Realtime Processing

The real-time processing done for this project is handled by a separate class which favors

performance a little bit more than accuracy. As Python is the language of choice, extra

work is needed to stay within our performance goals as defined in the hardware section. The

sources of difficulty come from the correlation tracker, all IO interaction and the feature

clustering. Several different methods exist for tackling these issues. Some of which are

optimizations, and some are compromises.

For optimizations code can be parallelized with either multi-thread or multi-process.

In Python, these mean different things than in C++. Multithreading spawns a thread

within the same process, it shares memory and can execute code concurrently, but not in

parallel [68]. Multi-Processing spawns an independent process, it does not share memory

and it can execute code in parallel on separate CPU cores [69]. Optimizations also include

parameter tuning of the used algorithms. This would ideally yield the same or comparable

performance while decreasing run time or complexity. Algorithm changes can also be made

which could include vectorizing calculations or changing the order of operations to take

advantage of hardware or decisions. For example, one could place a conditional before a set

of calculations such that a decision is made and can abort the function before processing

time is wasted on the calculations.

For compromises one can choose to drop data or reduce calculation precision in favor

of execution time. These all come at the cost of reducing performance. Processing every

single frame will not always affect the result as much as one would think. Dropping a frame

here or there to keep up with real time might be more important. Other compromises could

include reducing bandwidth (sampling time or resolution), using less accurate models or

algorithms and skipping functions. There are tricks that you can play with order and time

multiplexing in constrained environments. For example, certain algorithms or functions can
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be executed interchangeably such that algorithm A would run on even frames and B would

run on odd frames. Thinking judiciously about where you spend you processing time will

help such tricks and compromises become more apparent. In this work almost all the above

methods are used to help meet the performance objectives. The following is a discussion of

a few optimizations and compromises made.

The first example covers how to deal with the IO interaction. A solution is needed that

can concurrently grab data from an external source such that the processing pipeline does

not have to wait for the IO latency time. Since threads share memory and this is a high

bandwidth operation, they are the best option. A queueing structure is setup between the

IO interaction of both the USB webcam and the Coral edge TPU. Doing this moves the

frames per seconds up from 35 to 60 (with no tracker running) which gives us significantly

more overhead to work with.

The correlation tracker is the most computationally expensive operation and does not

need to be ran every frame. Especially if our detector, which has no trouble running every

frame, makes a detection on an already tracked object. If this happens the system knows

where the object is in the frame and does not need to perform any additional steps to find

it. To solve this an algorithm optimization can be combined with a data-based compro-

mise. The correlation tracker will be setup in a separate process using Multiprocessing with

surrounding mutex queues. These queues will then only be filled with a frame if the object

association code is missing an object from the detector. When no objects are being tracked

the system runs at 45 FPS (with the detector running), detections or no detections. Once

the system has the need to run the correlation tracker the FPS will drop to around 15 to

35 FPS depending on the number of objects and the difficulty of any occlusions. This is an

improvement to the consistent 12 FPS drop previously.

The last example is about the feature clustering portion of the code. The best clustering

algorithm for the features would be OPTICS, although this algorithm is slow. A compromise

must be made for a different clustering algorithm. K-Means Mini Batch is less accurate but

allows the addition of new data points in real time without the need to re-cluster the past

points. The loss function is also simpler and less computationally intensive. The results are

also good enough to work on the basic cases that this work is restricted to and so the swap
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is made.

Countless hours can be spent looking for changes to increase performance. More have

been made in this work, but these have been the most significant. The focus of this work

will shift to improve the accuracy of the system, allowing it to work on more complex cases.

3.3 Summary

This chapter explained the hardware and software architecture of this work. The hardware

defines an inexpensive foundation for real world testing and the software can be adopted

to more advance hardware in the future. The software’s modularity allows for additional

information, from new sensors or forms of processing, to be added and considered in the

behavior estimation block. This modularity also allows for quick iteration with software

changes as each section can be encapsulated and ran separately.

Chapter 4 will present the main contributions and how all the reviewed matrial fits into

the system.
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Chapter 4

Distracted Driver Detection and

Methodology

4.1 Processing Overview

The processing pipeline follows the data from the input of video to the output of behavior in-

ference and vehicle location. The diagram in figure 4.1 highlights the steps involved. First,

the video passes though the image processing block, which detects vehicles and spawns’

trackers. The output are bounding box locations of vehicles of interest. Next, features are

extracted from the bounding boxes and sent into both the anomaly scoring and machine

learning block. The anomaly scoring block assigns, per frame and per track, a score com-

posed of a peak detector and an oscillation detector. The output of this block is a score

value representing how anomalous the signals current state is. The machine learning block

will cluster, per frame and per track, the features movement as a sub-feature decomposed

time series signal. The output of this block is the current cluster assignment, and that

clusters average score. The output of the previous two blocks is then feed into the behavior

estimator which infers the behavior of the vehicle and outputs, per track, the inferred be-

havior. The behavior is then used to annotate the video where the bounding box is drawn

around the vehicle and its color corresponds to its behavior.
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4.2 Image Processing

The details of the image processing block are shown in figure 4.2. Its objective is to take in

an image and output the features for each tracked vehicle in the frame. The frame first gets

downscaled and converted to a tensor for input into the convolutional neural network-based

classifier and single shot detector. The output of this is a bounding box, a classification

label, and the confidence level for each object. These detections are then filtered by label,

car and truck are the only things needed to track, and the detectors confidence level in

recognizing the object. It tends to output many low confidence detections. The detections

are then ordered by which one is closest to the center of the screen and tracks are created

in that order.

When no tracks exist, the first time a detection comes into the system one is created.

After that, the tracks and detections are combined in the tracker association block. The

typical reason for this association is to save computation time as the detector usually takes

more time to run than the tracker. Here, instead, the tracker is used to supplement the

detection difficulties for occlusions commonly encountered in the self-driving vehicle space.

These are typically caused by glare, rain, clutter, shadows and various other obstructions.

Figure 4.1: This is the processing pipeline which highlights the data flow though the entire

system. It starts from the input of a video file or stream and ends with an annotated video

file or stream.
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This pairing allows for a more robust track through each frame. It is important to keep

a continuous representation of the vehicle’s movement. To find the relation between an

existing track and a detection, a separation metric is calculated by the Euclidian distance

between the incoming detection and an already existing track [70].

A pair is made between each new detection and existing track by determining the mini-

mum distance of all detections against all the tracks. When this minimum distance is within

a set threshold the detection is associated with the track. This means that the tracker has

no need to run as the object’s location can be updated with the detector alone. When a

track fails to get an associated detector, the tracker is executed to find the object. When

that fails, the track is removed. If a detection fails to associate with a track a new track is

created. The most important reason for this is to create a unique identifier (UID) for each

object. The UID allows the system to correctly relate the behavior of a vehicle between

frames.

Once the final tracks are decided the resulting bounding boxes are converted into a time

series set of features comprised of the object’s width, height position in the frame and its

area.

Figure 4.2: This block is the most computationally intensive and has a complicated pipeline

which the entire system depends upon for proper operation. It starts with the video input

and ends with the bounding boxes of all tracked vehicles.
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Table 4.1: The table describes the parameters involved in the image processing block.

Parameter Description

Minimum detection confi-

dence

When a detection is returned by MobileNet SSD it has a

confidence value from 0 to 1 and this threshold sets the min-

imum confidence allowed into the system.

Maximum detection amount The MobileNET SSD allows a limit on the returned detec-

tion amount where the detections returned are sorted by

confidence and this threshold sets that limit.

Maximum bounding box size To further filter detections, only realistic sized vehicles are

passed on (It often mistook bridges for trains), and this sets

the max area for the bounding box.

Minimum confidence to track The detections above the previous minimum can be dis-

played, but a more aggressive threshold prevents them from

being tracked and used for behavior inference.

Maximum amount of tracks The maximum about of vehicles to track is set due to per-

formance constraints.

Maximum distance for object

association

This sets the max allowable Euclidian distance between an

incoming detection and a track for an association between

the two to be made.

Frame amount to forget track This sets the number of frames (failed correlations or failed

detections) allowed before a track is dropped completely.

Minimum track correlation The correlation tracker returns how well it thinks its result

correlates with its feature vector and if it’s below a certain

amount that track is considered a fail.
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4.3 Signal Processing

Figure 4.3 looks to take in features for each track and assign a score as to how anomalous

that features movement is at the current frame. The scoring is done in two parts. First

is the anomaly detector which, for each feature, flags the signals movement in the current

frame as anomalous or not. The features that get flagged are the smoothed width position

in the frame, the derivative of the tracks area and the derivative of its height position in

the frame. Each of these features are weighted differently and assigned a score based on,

through observed test runs, how representative each one is of the vehicle’s movement.

Second is the oscillation detector which uses a moving window over the features to take

an FFT. The bins of the FFT relating to low frequency components are used to create a

score for that feature’s oscillation. The score from the oscillation detector is applied to the

entire moving window. The final output is a total score for each track, per frame.

Figure 4.3: The signal processing block takes in the output from the image processing block

and assesses the vehicles movement and give it a score based on how anomalous it is.

4.4 Machine Learning

The objective of this block, figreu 4.5, is to group and label similar signal movement, per

track and per frame, such that when anomalous movement is detected it can be related to a

specific group of related signals. A moving window is used to calculate a set of sub features
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Table 4.2: The table describes the parameters involved in the signal processing block.

Parameter Description

Zscore - threshold This parameter sets the standard deviation amount from the

mean for a signal to be flagged as anomalous. (See descrip-

tion in Chapter 2 for more detail)

Zscore - lag The lag sets the moving window sample amount for which

the mean and standard deviation are calculated over. (See

description in Chapter 2 for more detail)

Zscore - influence The influence is a percentage of how much the current signal

value effects the detection threshold. (See description in

Chapter 2 for more detail)

Anomaly minimum frame

time

When a signal is flagged as anomalous it must remain flagged

for this minimum frame time before it can affect the score.

FFT - window This is the sample amount used for the FFTs moving win-

dow.

FFT - bins This sets the amount of frequency bins that the signals en-

ergy is divided between.

Feature score weights Each feature that is used in the anomaly detection and FFT

calculation is assigned a weight which is used to calculate

its score.
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(a) Height Feature Example

(b) Area Feature Example

(c) Width Feature Example

(d) Score Example

Figure 4.4: The output of the signal processing block is the final score image for each track.

The preceding images are an example of each of the features.
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for each signal, per frame. These sub features are representative of the signal movement

during the window and include statistics such as the longest period of time where the signal

values are above the mean, total power in the lowest five bins of an FFT, mean error from

a 3-sample mean forecaster, and the first minimum of an autocorrelation. The idea is

that these sub features will better represent the movements of the signal that highlight the

behaviors of a distracted driver.

Figure 4.5: The machine learning block illustrates its unsupervised nature and it allows for

learning from its environment in real time.

Next, these sub features are sent into a clustering algorithm, K-Means Mini Batch, for

grouping. At each frame-step a new sample is added to the clustered set, the centers are

recalculated, and the new sample is assigned a cluster label. Once assigned, the average

score per cluster is calculated, where the score for each sample is averaged for each cluster.

This provides a hint that the highest scoring cluster are likely associated with anomalous

movement.

The final outputs of the block are the tracks cluster label and the average scores of all

the clusters.

4.5 Behavior Estimation

The behavior estimator is the final step in the decision chain. It takes in the output from

the signal processing and machine learning blocks. This includes each tracks anomaly

score, cluster label, and cluster scores. It then makes an estimate about the behavior of
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(a) Width Feature Example

(b) Sub-Feature Extraction Example

Figure 4.6: The example above shows how the sub-features relate to the original signal.

The sub-features calculated are the longest period of time where the signal values are above

the mean, total power in the lowest five bins of an FFT, mean error from a 3-sample mean

forecaster, and the first minimum of an autocorrelation



53

(a) t-SNE Cluster Example

(b) Cluster Score Example

Figure 4.7: The score example plot shows the cluster score with time as it relates to the

clustered signal above. It shows how the score is averaged into the cluster for each sample

and that the cluster related to the sharp signal movements is associated with the highest

score.



54

Table 4.3: The table describes the parameters involved in the machine learning block.

Parameter Description

Maximum cluster Size The cluster will reset after the sample amount reaches this

maximum value.

Minimum cluster Size Before clustering occurs this minimum sample about must

be reached thus allowing the clusters to form around a batch

of samples before adding them individually.

Cluster label amount The number of clusters to create from the given sample

space.

Sub-feature window size This is the moving window used to calculate each of the

sub-features.

Sub-features The set of sub-features used.

the vehicle being tracked. This estimate is split into three parts, with each part being its

own state in a state machine, normal is when a vehicle is driving as expected, abnormal

is when its position is deviating from the intended path, distracted is when it continues to

deviate, and evidence from the vehicle’s movement history shows a strong irregularity. A

few expert-defined conditionals have been created to decide when to transition from one

state to another.

The conditionals set to transition from normal to abnormal are based primarily on the

anomaly score and partly on the current cluster and the history of its score. For the anomaly

score, it must be above a set threshold for a certain number of frames for the transition to

be made. The scoring function and threshold are tuned such that it will only be exceeded

with an obvious change in vehicle movement. The change could be sudden, a sharp swerve,

or slowly driving out of a lane. The cluster-based conditional will, if met, transition with a

set probability as the conditional is not always a sign of abnormal behavior. It is met when

the track is in a cluster for a certain number of frames and its score is above a threshold.

This implies that its current cluster label is assigned to a cluster that was previously known
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to be associated with erratic behavior.

The transition from abnormal to distracted occurs only if its current cluster assignments

score is above a threshold and is among the highest scoring clusters. This would allow

the clusters score to accumulate over repeated movement such that a revisit to a cluster

known to be related to distracted driving would trigger this transition quickly. If it fails to

transition to distracted after a window of time and the anomaly score is no longer above a

set threshold, then it de-escalates back to normal.

When in the distracted state, conditionals are set to transition to normal or to override

the de-escalation and keep it in the distracted state. To transition back to normal, the

anomaly score must be below a threshold for a window of time, the current clusters score

falls below a threshold, or if the clusters label changes into a low scoring cluster after a

window of time. The keep conditional will maintain its state if the label has not changed

for a certain number of frames. This is to provide the state transitions with a sticky property

such that an amount of time needs to be waited after a transition before making another

decision. The final output is the behavior estimate, per track, as Normal, Abnormal or

Figure 4.8: The state diagram shows the simplified transition conditionals between states

and highlights its ability to use lesser likely conditionals to tradeoff between missed maneu-

vers and false positives. The three behavior outputs of the system are Normal, Abnormal

and Distracted.
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Table 4.4: The table describes the parameters involved in the behavior estimation block.

Parameter Description

Minimum state transition

time

To prevent jumping around states too quickly each transi-

tion combination has a minimum amount of time required

before another transition may occur, specified in frames.

Anomaly moving window ma-

trix

The moving window matrix specifies the past window of

time, in frames, that each conditional use to make its deci-

sion. For anomaly this is the windowed score.

Anomaly score threshold A fixed value that the score must be higher than before any

decisions are made.

Anomaly conditional proba-

bility matrix

This is a matrix of probabilities which define how likely a

state transition is for each anomaly-based conditional. Set

from 0 to 1.

Clustering moving window

matrix

Same as above for all clustering related measurements.

Clustering minimum score A fixed value that the clusters score must be higher than

before any decisions are made.

Cluster conditional probabil-

ity matrix

Same as above for all cluster-based conditionals. Set from 0

to 1.

Distracted.

4.6 Base Assumptions and Driving Scenarios

The base assumptions for this work are that the vehicle the camera is mounted on, the tail

car, is driving straight and the vehicle being tracked, the lead car, is attempting to drive

straight. This is the case most of the time when traveling on a highway and for stretches of

a main road. These assumptions allow the work to focus on tuning and building the system

to first handle a basic case while allowing for expansion later.
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Scenarios can be crafted to still thwart these basic assumptions, which lead to false

positives, such as the existence of a pothole in the road. The lead car swerves to avoid it

such that the entire car is on the left side of the pothole. The tail car allows the pothole to

pass in between the tires, putting it beneath the car, and it would maintain a straight path.

This would cause a false positive as the lead car is not distracted and is a great example to

highlight the current limitations of this work. The behavior designation is inferred through

the lead vehicles movement.

To verify the system’s ability to function under the base assumptions, six datasets have

been gathered from various sources. These sources include driving and recording on the

systems hardware, simulation using CARLA [71], and videos from YouTube [72]. Four of the

datasets, each containing 20 videos, aim to test two specific maneuvers that are commonly

caused by distracted driving. For each of these maneuvers, a set of videos from hardware

and from simulation are used. The first maneuver is caused when a driver is attempting a

task on a cell phone, which takes their attention off the road. It is best described as a ’drift,’

where the vehicle begins to slowly deviate off its intended path followed by a correction back

to the path. The second maneuver would be best described as a ’swerve,’ where the driver

quickly changes direction and then back again. This would happen should the driver fumble

thier phone or drop a sandwich. In each of these videos only one maneuver is preformed,

but with variability in the strength and duration. Variability also comes from car type and

for the simulated videos, location.

The last two datasets are a mixed bag of various driving behaviors as seen in a parking

lot or on the road. Some videos contain many maneuvers from the same vehicle and of

various types. Others contain nothing at all or subtle movements. The goal of this dataset

is to test the system in a variety of scenarios. Each video in the mixed sets has a naming

convention to help outline the goals of each video. The naming convention for the videos

used is:

DX CY Date Location Vehicle Of Interest RVS(if camera is facing backwards)

Where Y = The level of clarity of the vehicle: 0 being perfect 5 being difficult

Where X = The level of distraction from 0 to 5 as described in the table below
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Table 4.5: The table describes the different actions a driver could take to cause distracted

maneuvers

Severity Title Impairment

Type

Description Observables

D1 Quick Check Visual A moment of averted gaze,

less than 1 second, looking

away, but not engaging with

other devices

Slight swerve

or delay

D2 Task Attempt Visual, Man-

ual

Frequent looking away, in

bursts of 0-1 second, engag-

ing device (changing song, re-

sponding to text)

Slight drifting

D3 Task Fixation Visual, Man-

ual, Cognitive

A full 1-5 seconds of not look-

ing (responding to a text, con-

fused by GPS)

A slow drift

and a correc-

tion

D4 Distracted Visual, Man-

ual, Cognitive

Combination of D2,3, but

persisting over long periods

(watching a movie, reading a

book)

Continuous

drifting, miss-

ing lights, no

blinker

D5 Erratic Visual, Man-

ual, Cognitive,

Emotional

Drunk driving, Angry driving Obvious

swerving and

dangerous

movement
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Figure 4.9: Screenshots from video file D0 C3 4-21-2019 84to90E None. Nothing of signifi-

cantes occurs in this video. Nothing of significates occurs in this video. It helps to highlight

the robust nature of the system by testing it when vehicles are behaving normally.

An extensive list of videos may be found in the appendix. To provide a few examples, in

the video D0 C3 4-21-2019 84to90E None no distracted driving occurs, but plenty of vehicle

movement happens around turns and with lane changes. D3 C2 6-27-2019 WPIpark BrSW

is a video, where the driver is acting as someone who is fixated on a task causing them

to drift and sharply correct. D5 C1 5-11-2019 BHS CCtruck is a video, where the driver

purposely swerves around an empty parking lot.

Every video in the datasets have been labeled with a zero when the vehicle is driving

normally and a one otherwise. Specifically, when the vehicle appears to be distracted as

subjectively decided by a human labeler. The labels look to reduce the problem to a binary

hypothesis testing problem where, at each frame, the system must output a one or a zero.

4.7 Summary

This chapter explained the methodology used to connect all the pieces together and the

reasoning for doing so. Many of the solutions presented came about through testing and

observation of the datasets. Each dataset has a purpose in performance evaluation from

robustness to simple maneuver detection and each provided insight to the systems design.

Chapter 5 will present the results, explore parameters, and application specific usage.
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Figure 4.10: Screenshots from video file D3 C2 6-27-2019 WPIpark BrSW. This video

shows a driver imitating a distracted driving maneuver known as a drift.

Figure 4.11: Screenshots from video file D5 C1 5-11-2019 BHS CCtruck. This video shows

a truck driving around a parking lot in an erratic manner.
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Chapter 5

Experimental Results

The experimental results which follow aim to highlight the performance of the system

under the base assumptions where both lead and follow vehicles are attempting to drive

straight. Standard binary hypothesis testing metrics are first summarized. Next, application

specific metrics are introduced, which highlight the systems performance when used in

an example application. The systems parameters are then explored, and key ones are

highlighted which effect performance the most. This helps to give insight on how the

system can be adjusted for certain needs.

5.1 Metrics

The proposed system will be assessed with a few different metrics which have been chosen

to measure performance in different areas. The end comparison between the system output

and truth will be a binary hypothesis testing problem, thus leading to a variety of existing

metrics to choose from. The goal of this system is to correctly identify a distracted driver,

given the base assumptions in Chapter 4. It is also important to be robust and minimize

the number of false positives. The metrics are chosen to highlight the relation and show

the tradeoffs made between the two.

Accuracy is the most common, but often fails to highlight performance in testing sets

with a large class imbalance [73]. It may not seem obvious at first, but the system makes a

call on a frame by frame basis. With typical driving situations a vehicle will be operating
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normally most of the time. This leads to a much larger frame count for the normal class

and thus more examples of a 0 than a 1. It is also important to note that decisions made

at each frame are temporal and rely on past information.

To give insight to the shortcomings of the accuracy metric two other numerical metrics

will be provided. The Matthews Correlation Coefficient (MCC) was designed to combat

class imbalance and is one of the better metrics to use when assessing binary classifiers [74].

The F beta score is used to allow an adjustable importance of precision verses recall [75].

Where precision is the ratio of true positives to all true guesses and recall is the ratio of

true positives to all positives. It is important to realize that the F score does not consider

the number of true negatives.

The final numerical metric used is one which focuses on the application of flagging a

distracted driver and does not penalize on the timeliness of its detection. This metric is

called the hit and miss count. A hit is when the prediction is correct anywhere within

the time window of the maneuver, multiple correct predictions within the window are only

counted once. A miss is any incorrect prediction outside of this window. When using them

over a set of videos the hit rate will be the ratio of the hit count to all maneuvers that have

occurred (true positives). The miss average will be the average of the miss count though all

videos. This will only be used to assess the dataset, which all contain only one maneuver.

For each video, the confusion matrix will be shown along with a plot showing the frame

by frame decisions made by the system compared against the truth labels. In addition,

each video will be plotted in the receiver operating characteristics (ROC) space so that the

trade of between the true positive rate and the false positive rate is obvious [73]. Specifics

for each of the metrics follows:

Accuracy is measured from 0 to 1, where 1 shows the best performance and 0 is the

worst (although as noted above the values in-between are not as telling). It is calculated

from [73]:

Accuracy =
TP + TN

TP + TN + FP + FN
, (5.1)

where TP is the true positive count, FP is the false positive count, TN is the true negative,

and FN is the false negative count.
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F beta score is measured from 0 to 1, where 1 shows the best performance and 0 is the

worst. It is calculated by [75]:

Fβ =
(1 + β2) ∗ TP

((1 + β2) ∗ TP ) + (β2 ∗ FN) + FP
, (5.2)

where β is the factor which selects the imporance of the recall where the higher the β the

more valued the recall. For this work β = 2.

The MCC is a value from 1 to 1, where 1 is when the predictions are completely reversed,

0 is random guessing and 1 is a perfect prediction. It is calculated by [74]:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
, (5.3)

The miss average is the mean of all misses that have occurred in the video and is

represented as a positive value from 0 to the sample size of the largest run. The best value

is a 0:

MissCount =
∑

ContinuousFP (5.4)

MissAverage =

∑
MissCount

V ideoCount
, (5.5)

where one continuousFP is a set of false positive rising and falling edges.

The hit rate is the ratio between the amount of hits made by the predictor and the

amount of hits in the truth data. The best value is 1 and the worst is 0:

HitCount =
∑
i

min(ContinuousTP ∈ Pi, 1) (5.6)

HitRate =

∑
HitCount

TotalContinuousP
, (5.7)

where TotalContinuousP is the count of all manuvers in the video dataset and one continuousTP

is a set of true positive rising and falling edges
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Figure 5.1: An example of an ideal point and the worst point are shown in the ROC space

and, the diagonal dashed line represents random guessing [73,76].

5.2 Adjustments

Initial results were taken from the mixed hardware dataset to highlight the performance

gains of certain changes. This set has the most variety in driving and environment. The

parameters chosen to get these results where decided on though observation and deduction

during the development of the code. This section provides an overview of how tuning

parameters trades off performance on certain metrics.
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Figure 5.2: This receiver operating characteristics space shows the initial performance of

the system after each block was optimized separately and put together. It shows from the

dot locations that the system does its best to be robust to false positives in all videos.

The initial metrics are objectively not bad if minimizing the false positive rate is our goal.

However, some critical maneuvers are missed completely. The tradeoff between missing

them and getting more false positives is something that needs to be balanced. The images

in figure 5.4 highlight the misses and why they are important.

After the initial tests it became apparent that additional conditionals where needed for

the state transitions. However, the conditionals added dont hold true in all cases. This

uncertainty is accounted for by using a stochastic state transition much like that used in a

Markov decision process (MDP) [77]. Here the probabilities of those conditionals, as defined

in Chapter 4, where adjusted.
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(a) t-SNE plot of the vehicles width position

(b) Clusters average score

Figure 5.5: The t-SNE plot above shows the clustering performance and score of the previous

run, D3 C3 08-26-19 2nd PrvRd Civic. These two graphs highlight that the system could

recognize the distracted behavior despite the anomaly score falling below the threshold.

The score for the cluster associated with the distracted behavior, cluster 3, is the highest

scoring cluster of the group and stands out.
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Figure 5.6: After the addition of new conditionals, the true positive rate for each video had

mostly increased and brought the group of points closer together at a higher true positive

rate while only adding a new false positives.

Figure 5.8: Shown is the same run from the initial results video, D4 C5 8-31-

2019 BHS Blk4DS, it shows addition false positives were created die to these changes.

The system contains many parameters as noted in Chapter 4. To fully explore the

space and forgo the logic used initially to set them it would be useful to sweep them using

sci-kit learns grid search CV technique [78]. The parameters that are difficult to set are
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the anomaly detection thresholds, the feature score weights and the behavior estimators’

conditional probabilities. All of which are critical in the tradeoff between the miss rate

and false positive tradeoff. Using the mixed hardware dataset these parameters where

exhaustively searched to find the best set optimized my the MCC.

Figure 5.9: The parameter sweeping performance increase is debatably useful. The grouping

for the videos had spread out and a larger number of false positives was let in.

As noted from figure 5.9, all our metrics have increased, and the cluster of points has

shifted up and to the right signifying that compromises have been made in exchange for

these better metrics.

In addition to a grid search, a one parameter at a time sweep was completed and plotted

in the ROC space to generate a ROC curve. The parameters swept are the behavior estima-

tors normal to abnormal cluster-based transition probability, the anomaly scores standard

deviation threshold for peak detection and the window time used for cluster feature decom-
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position. For simplicity, a subset of the videos was used. The four videos where chosen to

represent the span of difficulties for the system: carla drift 42 Town03 loc-0 is an easy drift

maneuver, swerve mini 6 is a difficult swerve maneuver, D3 C3 08-26-19 2nd PrvRd Civic

is a mix of swerve maneuvers and D2 C2 6-27-2019 WPIpark BrSW is a realistic drift ma-

neuver. Each one with a different vehicle and in a different environment.
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Figure 5.10: This ROC curve shows the parameter sweep of the behavior estimates tran-

sition probability from normal to abnormal. The sweep is 20 steps, linearly spaced from

0 to 1. As you can see from the plot, this parameter only effects the videos, which have

multiple maneuvers as it helps to detect maneuvers which the anomaly score misses. As

this parameter moves up from 0 (denoted by the empty circle) you can see the increase in

the true positive rate and note this is a probability which is why the dots seem so sporadic.



74

Figure 5.11: The ROC curve shows the parameter sweep of the anomaly score peak thresh-

old. The sweep is 20 steps, linearly spaced from 0.5 to 5.0. The curve above highlights the

importance of this parameter and its direct impact on the false positive rate. It starts at

a low value (denoted by the empty circle) and as the value increases the false positive rate

decreases as its more resilient to noise. Up until a point when nothing is detected.
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Figure 5.12: This ROC curve shows the parameter sweep of the window size used to create

the features sub-features for clustering. The sweep is 20 steps, linearly spaced from 0 to

100. The value starting at zero (denoted by the empty circle) doesnt detect anything and

as the value increases the features are better representative of the vehicle’s movement and

allows for better detections up until a point where is stops helping.

The ultimate choice of parameters is up to the application the system will be used for.

This will be discussed further in the following section. In addition, the desktop PC used

for this parameter sweep consistently ran out of memory and crashed causing the search
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through the parameter space to not be complete. Going forward, for simplicity, the MCC

metric performance will be favored.

5.3 Results

The system demonstrates its ability to recognize the drift maneuver in both datasets. The

ROC graph gives a good overview of performance and in both datasets, it favors minimizing

the false positive rate. The metric values and the overall true positive rate make it appear

that the system is only recognizing half of the true positives. However, the frame-by-frame

decision graph highlights the reason for these seemingly low values. Estimates are made for

each frame and when the driver is engaging in a distracted maneuver the truth label covers

the continuous block of frames for the maneuver as if a human would recognize it. While it

is true that the timeliness of the system does not line up with what a human would choose,

it is important for the system to detect it even if its late, as it does in all cases. This is

noted as having any true positives as each video in this set only has one maneuver. In an

application requiring a tag and not real time information, the driver is still flagged, and the

system still accurately marks the driver’s vehicle. This can be shown numerically with the

miss averate and hit rate metrics as seen in the ROC plots.
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Figure 5.13: The ROC space for the hardware drift data set shows its ability to successfully

mark every maneuver and have only a few false positives as the video dots are all to the

left of the space. In some cases, notably videos 18 and 17, does the system only detect a

small part of the maneuver. For the full performance figure see the Appendix A.
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Figure 5.14: The performance for the CARLA drift dataset is like the hardware. Due to the

vehicle’s movement being generated though randomness programmed in a script the overall

variance of movement is lower than having a human driver in the real world. This causes a

tight grouping and great performance. For the full performance figure see the Appendix A.

The swerve maneuver is not detected as well as the drift maneuver, or at least it isnt on

time. As you can see from the frame-by-frame breakdown it does detect that an irregularity

is occurring, except it makes the assessment after the maneuver is completed. When this

happens, the metric values dont reflect any positive performance. The swerve motion occurs

quicker and more time is needed to asses it. This could be accounted for by adjusting the

window times that are used to make the estimations as they are set such that at least a

second of data is needed. This brings up another tradeoff of quicker response time verses

more false positives.
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Figure 5.17: The ROC space for the hardware swerve dataset performs well and highlights an

important issue with the way the parameters are set up. The serve maneuver is significantly

quicker and although it does detect it 70% of the time it is typically late. For the full

performance figure see the Appendix A.
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Figure 5.18: The CARLA swerve set has the same issues as the hardware set, but still

performs well overall. For the full performance figure see the Appendix A.

The last two sets, being a mix, vary performance from video to video. However, it shows

that the system can perform moderately well despite the differences found in the videos. It

is important to note the largest difference between these sets and the previous is that more

than one maneuver can occur per video and the ability to work continually is incredibly

important.
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Figure 5.21: The ROC space for the hardware mix dataset contains a variety of videos and

the dots here are not expected to group up. The overall performance on this set is promising

and shows the system’s ability to tag many of the maneuvers occurring in each video. For

the full performance figure see the Appendix A.
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Figure 5.22: The YouTube dataset is small, and it was difficult to find videos which worked

well with the detector setup as it was designed for small resolution video streams. It was

however able to function in some cases even as the camera angle and setup varied between

video. Although, no impressive results can be shown with this set. For the full performance

figure see the Appendix A.

A notable highlight from this set is the system’s ability to recognize distracted behavior

without the anomaly score rising above the threshold. This occurs in the videos where a

driver is distracted multiple times, the first is recognized by the anomaly detector and when
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it happens a second time it remembers what distracted behavior looks like and can flag the

driver only using the cluster information as described in the previous section.

5.4 Summary

This chapter explored the effects of certain parameters and introduced the metrics used for

performance. There is a direct trade off with the true positive rate and the false positive

rate for some of the most important parameters. This trade of for any specific application

can be optimized with the NeymanPearson lemma [79]. Over the 102 videos in the dataset

the system was able to achieve an accuracy score of 65.5% an F2 score of 43.08% and an

MCC of 36.07%. The application specific metrics as tested on the swerve and drift data

sets have a total of a 87.5% hit rate and a 0.4375 miss average.

Chapter 6 will draw conclusions about the current system performance and future of

this work.
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Table 5.1: The table below provides an overview of the dataset performance.

Name Video

Count

Purpose Metrics

Hardware

Drift

20

Repetitive testing of the same drift ma-

neuver with variations in duration, sever-

ity and vehicle.

Hit Rate: 100.00%

Miss Average: 0.55

F2: 54.02%

MCC: 50.37%

Accuracy: 72.53%

CARLA

Drift

20

Same as above, except with simulated

videos as scripted with CARLA, provides

randomness in all above areas with the ad-

dition of environment.

Hit Rate: 100.00%

Miss Average: 0.40

F2: 59.83%

MCC: 55.32%

Accuracy: 75.28%

Hardware

Swerve

20

Repetitive testing of the same swerve ma-

neuver with variations in duration, sever-

ity and vehicle.

Hit Rate: 70.00%

Miss Average: 0.35

F2: 29.13%

MCC: 12.39%

Accuracy: 53.62%

CARLA

Swerve

20

Same as above, except with simulated

videos as scripted with CARLA, provides

randomness in all above areas with the ad-

dition of environment.

Hit Rate: 80.00%

Miss Average: 0.45

F2: 36.98%

MCC: 33.44%

Accuracy: 64.59%

Hardware

Mixed

15

Provides a variety of maneuvers and envi-

ronments, includes forward and rear fac-

ing videos.

F2: 42.01%

MCC: 34.92%

Accuracy: 62.64%

YouTube

Mixed

7
Shows extreme driving episodes with dif-

ferent cameras and perspectives.

F2: 40.85%

MCC: 30.00%

Accuracy: 64.44%
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Chapter 6

Conclusion

The first contribution for this work is to provide a hardware test bed with adequate on-

board processing to take in video, detect and track vehicles and preform general processing.

The testbed that was chosen comprised of a Nvidia Jetson Nano and a Coral Edge TPU.

The processing power proved adequate to track and estimate the behavior of one vehicle at

an average of 30 FPS with a resolution of 800 by 600. As mentioned previously in Chapter

3 the performance does dip down to 15 FPS under difficult tracking situations, but the

testbed succeeds in allowing the system to function in real world scenarios.

The second is to create an image and signal processing expert solution for detecting

distracted driving artifacts. The expert solution provided consists primarily of an CNN

based object detector a correlation-based tracker and an anomaly detection scoring system.

This expert system was able to provide insight into the behavior and driving style of the

vehicle in question when ran on videos. The output of the expert system is an anomaly

score per track and when viewed alongside the video aids in locating unusual behavior.

Finally, an online machine learning framework was added to learn from and complement

the expert system. The tracked vehicles features where decomposed into windowed sub-

features and clustered to group driving behavior. This helped to associate the groups to

erratic behavior by relating the score provided by the expert system and the label of the

current cluster. Over the 102 videos in the dataset the system was able to achieve an

accuracy score of 65.5% an F2 score of 43.08% and an MCC of 36.07%. The application
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specific metrics as tested on the swerve and drift data sets have a total of a 87.5% hit

rate and a 0.4375 miss average. As noted in the previous section these numbers aren’t the

exiting part of the contribution. Rather, providing a way to combine signal processing and

machine learning to help give unsupervised learning algorithms innate knowledge about the

problem they are trying to solve is.

6.1 Future Work

The system presented has laid the groundwork for many applications and further research.

The three applications which brought on the inspiration of this work follow. First, to build a

local vehicle communication network where the onboard behavior evaluation systems would

work together to identify distracted or dangerous driving and warn drivers in the area.

Next, to build a construction site monitoring system which looks out at oncoming cars

and watches for distracted drivers to then alert the construction workers. Lastly, to aid in

self-driving car planning decision making. The addition of behavior assessment could help

to make marginally safer planning decisions.

In terms of extensions to this work, robustness could be added in the form of additional

sensors and detectors to aid in preventing false positives. Lane marking could make the

system work during turns. Internal measurement unit (IMU) and steering angle could aid to

detect the path of the vehicle the system is mounted on and thus decorrelate its movement

with the tracked vehicle. Blinker and brake light detection would add other metrics to asses

behavior against. For example, a driver pauses an unusually long time at a stop sign or has

a low reaction time when a traffic changes. Further parameter tuning of the current system

could also bring forward better results.
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Performance Reports

Figure A.1: Hardware Drift Batch Part 1 of 3
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Figure A.2: Hardware Drift Batch Part 2 of 3
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Figure A.3: Hardware Drift Batch Part 3 of 3
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Figure A.4: CARLA Drift Batch Part 1 of 3
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Figure A.5: CARLA Drift Batch Part 2 of 3
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Figure A.6: CARLA Drift Batch Part 3 of 3
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Figure A.7: Hardware Swerve Batch Part 1 of 3
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Figure A.8: Hardware Swerve Batch Part 2 of 3



111

Figure A.9: Hardware Swerve Batch Part 3 of 3
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Figure A.10: CARLA Swerve Batch Part 1 of 3
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Figure A.11: CARLA Swerve Batch Part 2 of 3
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Figure A.12: CARLA Swerve Batch Part 3 of 3
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Figure A.13: Hardware Mix Batch Part 1 of 3
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Figure A.14: Hardware Mix Batch Part 2 of 3
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Figure A.15: Hardware Mix Batch Part 3 of 3
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Figure A.16: YouTube Mix
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Appendix B

ML Tests

Figure B.1: Scikit Learn Clustering Example [78]
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Appendix C

Source Code

C.1 Python Test and Functions

#!/usr/bin/env python3

# default

import os

import sys

import time

import argparse

import datetime

import csv

import multiprocessing

import operator

import queue

import json

import math

# from pip

import yaml

import numpy as np

import pandas as pd

import cv2 as cv

import matplotlib.pyplot as plt
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from termcolor import cprint

from pyfiglet import figlet_format

from moviepy.editor import VideoFileClip

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

from sklearn.utils.multiclass import unique_labels

# from this

from ObjectDetect import ObjectDetect, ObjectItem

from ObjectTrack import ObjectTrack

from AnomalyScore import AnomalyScore, ObjFeatures

from ClusterSeries import ClusterSeries

from BehaviorEst import BehaviorEst

#import pdb; pdb.set_trace() #DEBUG

class DDD():

def __init__(self, parameters, is_live=False, replay=False):

# target values

self.img_width = 800

self.img_height = 600

# ddd settings

self.tracker_limit = 2

self.frame_counter = 0

# debug settings

self.det_en = True

self.det_dbg = False

self.track_en = True

self.track_dbg = False

self.behv_en = True

self.tune = False
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# annotation settings

self.font = cv.FONT_HERSHEY_SIMPLEX

self.font_scale = 0.4

self.font_thick = 1

self.font_line = cv.LINE_AA

self.marker = cv.MARKER_DIAMOND

self.marker_size = 8

self.marker_thick = 1

self.main_color = (0, 255, 0) # green

self.second_color = (66, 134, 244) # blue

self.third_color = (102, 102, 153) # grey

self.text_color = (255, 255, 153) # light yellow

self.back_color = (0, 0, 0) # black

self.laneL_color = (255, 153, 51) # orange

self.laneR_color = (255, 102, 153) # pink

self.mark_color = (0, 255, 0) # green

self.warn_color = (255, 255, 0) # yellow

self.dist_color = (255, 0, 0) # red

# output

self.output_image_fpt = ('./', 'result', '.jpg')

# parameters

anomaly_params = parameters['AnomalyScore']

cluster_params = parameters['ClusterSeries']

behav_params = parameters['BehaviorEst']

# objects

if(replay):

# only import one track at a time during replay

self.tracker_limit = 1

self.detect_objects = None

self.tracker = None

else:
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self.detect_objects = ObjectDetect(self.img_width, self.img_height,

min_thresh=0.35, max_det=40,

debug=self.det_dbg)

self.tracker = ObjectTrack(frames_till_forget=27,

max_distance=50,

tracker_limit=self.tracker_limit,

min_track_corr=9,

debug=self.track_dbg)

self.features = ObjFeatures(max_track=self.tracker_limit,

is_live=is_live)

self.anomaly = AnomalyScore(anomaly_params,

feature_list=self.features.feature_list,

max_track=self.tracker_limit,

is_live=is_live)

self.cluster = []

self.behav = []

for i in range(self.tracker_limit):

self.cluster.append(ClusterSeries(cluster_params, track=i))

self.behav.append(BehaviorEst(behav_params, track=i))

def annotate_display(self, image, det_objs, trk_objs, related):

""" Create annotations for the image based on objects and behavior

"""

# combine lists if they exists

objs = None

if(trk_objs and det_objs):

objs = det_objs + trk_objs

elif(trk_objs):

objs = trk_objs

else:

objs = det_objs
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# run though all objects

if(objs):

for obj in objs:

anno_str = '{0}: {1:.2f}, {2}'.format(obj.label, obj.score, obj.uid)

if(self.det_dbg):

print('-----------------------------------------')

print(anno_str)

# bounding box color

if(obj.tracked and obj.focus):

box_color = self.main_color

elif(obj.tracked):

box_color = self.second_color

else:

box_color = self.third_color

# bounding box

if(obj.tracked and (obj.distracted or obj.abnormal)):

# double box

offset = 5

if(obj.distracted):

box_color = self.dist_color

elif(obj.abnormal):

box_color = self.warn_color

cv.rectangle(image,

(obj.bbox[0], obj.bbox[1]), (obj.bbox[2], obj.bbox[3]),

box_color, 2)

cv.rectangle(image,

(obj.bbox[0] - offset, obj.bbox[1] - offset),

(obj.bbox[2] + offset, obj.bbox[3] + offset),

box_color, 2)

else:

cv.rectangle(image,

(obj.bbox[0], obj.bbox[1]), (obj.bbox[2], obj.bbox[3]),
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box_color, 2)

# box annotation back

text_size, base = cv.getTextSize(anno_str, self.font,

self.font_scale,

self.font_thick)

text_point = (obj.bbox[0], obj.bbox[1])

text_off = (obj.bbox[0] + text_size[0],

obj.bbox[1] - text_size[1])

cv.rectangle(image,

text_point,

text_off,

self.back_color, cv.FILLED)

# box annotation

cv.putText(image, anno_str, text_point,

self.font, self.font_scale,

self.text_color, self.font_thick,

self.font_line)

# draw centroid if being tracked

if(obj.tracked):

marker_color = self.mark_color

if(obj.distracted):

marker_color = self.dist_color

elif(obj.abnormal):

marker_color = self.warn_color

cv.drawMarker(image, tuple(obj.centroid), marker_color,

self.marker, self.marker_size,

self.marker_thick, self.font_line)

else:

if(self.det_dbg):

print('No objects detected!')

# add frame counter
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frame_info = 'Frame: {0}'.format(int(self.frame_counter))

# outer box

text_start = (5, 15)

text_size, base = cv.getTextSize(frame_info, self.font,

self.font_scale,

self.font_thick)

text_end = (text_start[0] + text_size[0],

text_start[1] - text_size[1])

cv.rectangle(image,

text_start,

text_end,

self.back_color, cv.FILLED)

# frame counter

cv.putText(image, frame_info, text_start,

self.font, self.font_scale,

self.text_color, self.font_thick,

self.font_line)

return image

def contex_proc(self, objs):

""" Attempt to understand which detection is the most important

"""

# closest to the center along width only

objs = sorted(objs, key=lambda x: x.centroid[0], reverse=True)

return objs

def image_pipeline(self, img, related=True):

""" Run the full pipline of processing techniques on an image

"""

rgb = cv.cvtColor(img, cv.COLOR_BGR2RGB)

det_objs = None
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trk_objs = None

beh_infer = {}

# get detections

if(self.det_en):

det_objs = self.detect_objects.run(rgb)

det_objs = self.contex_proc(det_objs)

# setup trackers

if(related and self.track_en):

trk_objs = self.tracker.update_all(det_objs, rgb)

if(self.track_dbg):

print('frame: {0}, trackers: {1}'.format(self.frame_counter,

len(self.tracker.trackers)))

# understand behavior

if(self.behv_en):

if(trk_objs):

self.features.gen_features(trk_objs, self.frame_counter)

# detect anomolous behavior

self.anomaly.update(self.features, self.frame_counter, self.tune)

for i in range(self.tracker.tracker_limit):

# learn similar behavior

self.cluster[i].update(self.frame_counter, self.features, self.anomaly.

score)

# infer behavior

uid, beh = self.behav[i].update(self.cluster[i].hist_labels.array,

self.cluster[i].hist_score.array,

self.cluster[i].hist_size.array,

self.anomaly.score.array[i, :],

self.features.uid_key.array[i, :],

self.frame_counter)

if(uid is not None): beh_infer[uid] = beh
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# mark objects behavior

if(trk_objs):

for obj in trk_objs:

# check uids

if(obj.uid in beh_infer.keys()):

if(beh_infer[obj.uid] == self.behav[0].state['abnormal']):

obj.abnormal = True

obj.distracted = False

continue

if(beh_infer[obj.uid] == self.behav[0].state['distracted']):

obj.distracted = True

obj.abnormal = False

continue

else:

obj.abnormal = False

obj.distracted = False

# draw on image

if(not self.det_dbg):

det_objs = []

img = self.annotate_display(img, det_objs, trk_objs,

related)

if(related): self.frame_counter += 1

return img

def run(self, image_file_path=None, video_file_path=None, debug=False, tune=False):

# setup flags

self.track_dbg = debug

self.det_dbg = debug

#

self.tune = tune
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# start text

cprint(figlet_format('start', font='cybermedium'),

'green', 'on_grey', attrs=['bold'])

# find source type

if(image_file_path):

# run on a set of images

img = cv.imread(image_file_path)

img = self.image_pipeline(img, False)

# save output

time_str = '{:%Y-%b-%d_%H:%M:%S:%f}'.format(datetime.datetime.now())

output_fp = '{0}{1}_{2}{3}'.format(self.output_image_fpt[0],

self.output_image_fpt[1],

time_str, self.output_image_fpt[2])

cv.imwrite(output_fp, img)

elif(video_file_path):

# create results directory

results_path = os.path.splitext(video_file_path)[0]

# if it exists skip video

if(os.path.exists(results_path)):

print('NOTE: Video has an existing run in this location (remove if a re-run

is needed)')

return

os.mkdir(results_path)

# run on video file

clip = VideoFileClip(video_file_path).\

fl_image(self.image_pipeline)

clip.write_videofile('{0}/result.mp4'.format(results_path),

audio=False)

# plot some features

self.anomaly.plot(results_path, self.features,
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self.frame_counter)

self.anomaly.save(results_path, self.features,

self.frame_counter)

for i in range(self.tracker.tracker_limit):

self.cluster[i].plot(results_path, self.features,

self.frame_counter)

self.behav[i].plot(results_path, self.features,

self.frame_counter)

# end text

cprint(figlet_format('stop', font='cybermedium'),

'red', 'on_grey', attrs=['bold'])

def debug_run(self, prefix, pkl_filepath, truth_df=None, skip_plots=False):

df = pd.read_pickle(pkl_filepath)

ittr = len(df.index)

# act on features as if running live

for index, row in df.iterrows():

self.features.update(row['uid'], 0, index,

row['area'], (row['pos_w'], row['pos_h']))

# skip if there are no objects being tracked

if(~np.isnan(row['uid'])):

self.anomaly.update(self.features, index, False)

# learn similar behavior

self.cluster[0].update(index, self.features, self.anomaly.score)

# infer behavior

uid, beh = self.behav[0].update(self.cluster[0].hist_labels.array,

self.cluster[0].hist_score.array,

self.cluster[0].hist_size.array,

self.anomaly.score.array[0, :],

self.features.uid_key.array[0, :],

index)
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# generate plots

if(not skip_plots):

self.anomaly.plot(prefix, self.features, ittr)

self.cluster[0].plot(prefix, self.features, ittr)

self.behav[0].plot(prefix, self.features, ittr)

pred = None

if(self.behav[0].get_pred(ittr) is not None):

pred = self.behav[0].get_pred(ittr)

# if we have truth generate confusion matrix

cm = None

if((truth_df is not None) and (pred is not None)):

if(not skip_plots):

cm = self.debug_plot(prefix, pred, truth_df)

else:

truth = truth_df['truth'].to_numpy()

cm = confusion_matrix(truth, pred)

return cm, pred

def debug_plot(self, prefix, behav_pred, truth_df):

truth = truth_df['truth'].to_numpy()

# calculate truth

_, cm = plot_confusion_matrix(truth, behav_pred, ['normal', 'abnormal'])

plt.savefig('{0}/cm.png'.format(prefix), dpi=300)

plt.close()

return cm

# code from: https://scikit-learn.org/stable/auto_examples/model_selection/

plot_confusion_matrix.html#sphx-glr-auto-examples-model-selection-plot-confusion-matrix

-py

def plot_confusion_matrix(y_true, y_pred, classes,

normalize=True,
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title=None,

cmap=plt.cm.Blues):

"""

This function prints and plots the confusion matrix.

Normalization can be applied by setting `normalize=True`.

"""

if not title:

if normalize:

title = 'Normalized confusion matrix'

else:

title = 'Confusion matrix, without normalization'

# Compute confusion matrix

cm = confusion_matrix(y_true, y_pred)

# Only use the labels that appear in the data

#classes = classes[unique_labels(y_true, y_pred)]

if normalize:

cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

fig, ax = plt.subplots()

im = ax.imshow(cm, interpolation='nearest', cmap=cmap)

ax.figure.colorbar(im, ax=ax)

# We want to show all ticks...

ax.set(xticks=np.arange(cm.shape[1]),

yticks=np.arange(cm.shape[0]),

# ... and label them with the respective list entries

xticklabels=classes, yticklabels=classes,

title=title,

ylabel='True label',

xlabel='Predicted label')

# Rotate the tick labels and set their alignment.

plt.setp(ax.get_xticklabels(), rotation=45, ha="right",

rotation_mode="anchor")

# Loop over data dimensions and create text annotations.

fmt = '.2f' if normalize else 'd'
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thresh = cm.max() / 2.

for i in range(cm.shape[0]):

for j in range(cm.shape[1]):

ax.text(j, i, format(cm[i, j], fmt),

ha="center", va="center",

color="white" if cm[i, j] > thresh else "black")

fig.tight_layout()

return ax, cm

def auto_batch_test(parameters, prefix, run_folder_path,

truth_file, skip_plots=True, verbose=False):

# find folders which match standard video nameing format

sub_folder_list = [x for x in os.listdir(run_folder_path)

if os.path.isdir(os.path.join(run_folder_path, x))]

run_folder_list = [x for x in sub_folder_list

#if((x.startswith('D')) and ('_C' in x))]

if(not (x.startswith('_')))]

# load in json

with open(truth_file) as json_file:

truth_labels = json.load(json_file)

# loop through and run

report_info = {}

for dirs in run_folder_list:

info = truth_labels[dirs]

run_folder = os.path.join(run_folder_path, dirs)

sub_prefix = os.path.join(prefix, dirs)

os.mkdir(sub_prefix)

# find associated pickle file from provided directory

feat_fp = [x for x in os.listdir(run_folder)

if(x.startswith('trk') and x.endswith('feat.pkl'))]

if(len(feat_fp) != 0):

feat_fp.sort()

feat_fp = os.path.join(run_folder, feat_fp[info['trk']])
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else:

feat_fp = None

# skip if track file is not found

if(feat_fp is None):

print('NOTE: files not found for: {} - Track: {}'.format(dirs, feat_fp))

continue

# load file and generate truth

df = pd.read_pickle(feat_fp)

frame_end = len(df.index)

truth = np.zeros(frame_end, dtype=np.int)

# mark truth array

if(info['dis'] is not None):

for tup in info['dis']:

truth[tup[0]:tup[1]] = 1

truth_df = pd.DataFrame({'truth': truth})

# init and run

if(verbose): print('Re-run on: {}\n Track: {}'.format(dirs, feat_fp))

ddd = DDD(parameters, is_live=False, replay=True)

cm, pred = ddd.debug_run(sub_prefix, feat_fp, truth_df, skip_plots)

if(verbose): print(cm)

# metric calculation

if((cm is not None)

and (len(cm.ravel()) > 1)):

tn, fp, fn, tp = cm.ravel()

acc = (tp + tn) / (tp + tn + fp + fn)

# F2 score

beta = 2

f2 = ((1 + beta**2)*tp) / ((1 + beta**2)*tp + (beta**2 * fn) + fp)

# matthews correlation coefficient
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num = (tp*tn) - (fp*fn)

den = math.sqrt((tp + fp)*(tp + fn)*(tn + fp)*(tn + fn))

if(den == 0): den = 1

mcc = num / den

# true/false positive rates

false_positive_rate = fp / (fp + tn)

true_positive_rate = tp / (tp + fn)

else:

acc = 0

f2 = 0

mcc = -1

false_positive_rate = 1

true_positive_rate = 0

# aggregate all confusion matricies for final report

report_info[dirs] = {"cm": cm,

"truth": truth_df,

"pred": pred,

"order": info['odr'],

"tpr": true_positive_rate,

"fpr": false_positive_rate,

"accuracy": acc,

"F2": f2,

"MCC": mcc}

# reset class for each loop

ddd = None

return report_info

def hit_and_miss_counter(pred, truth):

# find truth falling and rising edges, should always be equal

truth_redge = np.flatnonzero((truth[:-1] < 0.5) & (truth[1:] > 0.5))+1

truth_fedge = np.flatnonzero((truth[:-1] > 0.5) & (truth[1:] < 0.5))+1

if(truth_redge.shape == truth_fedge.shape):
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truth_hits = np.vstack((truth_redge, truth_fedge))

else:

return np.nan, np.nan

# find predicted falling and rising edges, falling edge might be one short

pred_redge = np.flatnonzero((pred[:-1] < 0.5) & (pred[1:] > 0.5))+1

pred_fedge = np.flatnonzero((pred[:-1] > 0.5) & (pred[1:] < 0.5))+1

if(pred_redge.shape == pred_fedge.shape):

pred_hits = np.vstack((pred_redge, pred_fedge))

elif((pred_fedge.shape[0] + 1) == pred_redge.shape[0]):

pred_fedge = np.append(pred_fedge, pred.shape[0])

pred_hits = np.vstack((pred_redge, pred_fedge))

else:

return np.nan, np.nan

# loop through truth hits and count hits and remove from pred hits array

hit_count = 0

miss_count = 0

for t_col in truth_hits.T:

detected = False

hit_idx = []

for i, p_col in enumerate(pred_hits.T):

# does the positive predition occur when truth is positive

if((t_col[0] <= p_col[0] <= t_col[1])

or (t_col[0] <= p_col[1] <= t_col[1])):

detected = True

hit_idx.append(i)

if(detected):

hit_count += 1

pred_hits = np.delete(pred_hits, hit_idx, 1)
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miss_count = pred_hits.shape[1]

return hit_count, miss_count

def generate_final_report(prefix, report_info):

report_info = dict(sorted(report_info.items(),

key=lambda x:operator.getitem(x[1], 'order')))

###

# FIGURE 0 - one large figure

###

run_count = len(report_info.keys())

figure_size_tuple = (run_count+4, 4)

total_hit = 0

total_miss = []

# itterate through runs

fig = plt.figure(num=0, figsize=(12, 2*run_count))

for i, (key, value) in enumerate(report_info.items()):

truth = value['truth']['truth'].to_numpy()

pred = value['pred']

cm = value['cm']

row = value['order']

hit_cnt, miss_cnt = hit_and_miss_counter(pred, truth)

total_hit += np.nan_to_num(hit_cnt)

total_miss.append(miss_cnt)

# truth vs pred

axs = plt.subplot2grid(figure_size_tuple, (row, 0), colspan=3)

if(pred is not None): axs.plot(pred, color='red', label='Prediction')

axs.plot(truth, color='blue', label='Truth')

axs.set_title('{}: {}: hits: {}, miss: {}'.format(row, key, hit_cnt, miss_cnt))

axs.set_xlabel('Frames')

axs.set_ylim([-0.05, 1.05])

axs.set_yticks(np.arange(2))

axs.set_yticklabels(['normal', 'distracted'])
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axs.legend(loc='upper right')

# cm and metrics

axs = plt.subplot2grid(figure_size_tuple, (row, 3), colspan=1)

if(cm is not None):

im = axs.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)

axs.figure.colorbar(im, ax=axs)

axs.set_title('Accuracy: {:2.2f}%'.format(100 * value['accuracy']))

# Rotate the tick labels and set their alignment.

plt.setp(axs.get_xticklabels(), rotation=45, ha="right",

rotation_mode="anchor")

# Loop over data dimensions and create text annotations.

fmt = '.2f'

thresh = cm.max() / 2.

for i in range(cm.shape[0]):

for j in range(cm.shape[1]):

axs.text(j, i, format(cm[i, j], fmt),

ha="center", va="center",

color="white" if cm[i, j] > thresh else "black")

# ROC plot with a point per run

axs = plt.subplot2grid(figure_size_tuple, (run_count, 0), colspan=4, rowspan=4)

axs.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')

# add a point per run

for key, value in report_info.items():

if(pred is not None):

axs.plot(value['fpr'], value['tpr'],

marker='o', markersize=11)

text_offset = 0.01

axs.annotate(str(value['order']),

(value['fpr']+ text_offset,

value['tpr']+ text_offset))

# format

total_acc = np.mean(np.nan_to_num(np.asarray(
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[v['accuracy'] for k,v in report_info.items()]

)))

total_mcc = np.mean(np.nan_to_num(np.asarray(

[v['MCC'] for k,v in report_info.items()]

)))

total_f2 = np.mean(np.nan_to_num(np.asarray(

[v['F2'] for k,v in report_info.items()]

)))

start_y = 1.01

dec_y = 0.04

start_x = 0.50

nstart_x = 0.725

axs.text(start_x, start_y,

'Accuracy:',

color='black')

axs.text(nstart_x, start_y,

'{:2.2f}%'.format(100 * total_acc),

color='black')

axs.text(start_x, start_y - (1*dec_y),

'F2:',

color='black')

axs.text(nstart_x, start_y - (1*dec_y),

'{:2.2f}%'.format(100 * total_f2),

color='black')

axs.text(start_x, start_y - (2*dec_y),

'MCC:',

color='black')

axs.text(nstart_x, start_y - (2*dec_y),

'{:2.2f}%'.format(100 * total_mcc),

color='black')

axs.text(start_x, start_y - (3*dec_y),

'Hit Rate:',

color='black')
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axs.text(nstart_x, start_y - (3*dec_y),

'{:2.2f}%'.format(100 * (total_hit / run_count)),

color='black')

axs.text(start_x, start_y - (4*dec_y),

'Miss Average:',

color='black')

axs.text(nstart_x, start_y - (4*dec_y),

'{:2.2f}'.format(np.mean(np.nan_to_num(total_miss))),

color='black')

axs.set_aspect('equal')

axs.set_title('Receiver Operating Characteristic Space')

axs.set_xlabel('False Positive Rate')

axs.set_ylabel('True Positive Rate')

# save

fig.tight_layout()

plt.savefig('{0}/final_report.png'.format(prefix), dpi=400)

plt.close()

def parse_arguments():

# parse command line arguments

parser = argparse.ArgumentParser()

# arguments

parser.add_argument('-i', '--image',

help='Run on a single image (provide path)')

parser.add_argument('-v', '--video',

help='Run on a single video (provide path)')

parser.add_argument('-p', '--parameters',

default='./parameters.yaml',

help='YAML file used to store parameters (provide path)')

parser.add_argument('-d', '--debug', action='store_true',
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help='Print extra debug information')

parser.add_argument('-t', '--tune', action='store_true',

help='Pause playback for algorithm plotting')

parser.add_argument('-pp', '--pickle_playback',

help='Pickle file used to replay previous run (provide path)')

parser.add_argument('-pt', '--pickle_truth',

help='Pickle file used for truth comparison (provide path)')

parser.add_argument('-sp', '--skip_plots', action='store_true',

help='Skip individual run plot generation')

parser.add_argument('-bt', '--batch_test',

help='Loop over a folder consisting of videos and run each\

one (provide path)')

parser.add_argument('-abt', '--auto_batch_test',

help='Loop over pickle files found for previously\

ran videos and search for existing truth\

information for comparison (provide\

path to completed run folders and path\

to truth files with -tf)')

parser.add_argument('-tf', '--truth_file',

default='../data/truth/labels.json',

help='JSON file containing truth label information(provide path)')

return parser.parse_args()

def main():

args = parse_arguments()

# welcome text

cprint(figlet_format('DDD !!!', font='starwars'),
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'yellow', 'on_grey', attrs=['bold'])

# load parameters

with open(args.parameters) as f:

parameters = yaml.load(f, Loader=yaml.FullLoader)

if(args.batch_test):

# run for all files in provided folder

for filename in next(os.walk(args.batch_test))[2]:

# find images

if(filename.endswith('.png') and not ('.mp4' in filename)):

print(filename)

ddd = DDD(parameters)

ddd.run(os.path.join(args.batch_test, filename), None, args.debug, args.tune)

# find videos

if((filename.endswith('.mp4') or filename.endswith('.m4v')) and

not ("result" in filename)):

print('Video File: {}'.format(filename))

ddd = DDD(parameters)

ddd.run(None, os.path.join(args.batch_test, filename), args.debug, args.tune)

# reset class for each loop

ddd = None

elif(args.auto_batch_test):

if(args.truth_file is None):

print('NOTE: please specify truth filepath with -tf')

return

# rerun text

cprint(figlet_format('Re-Run BATCH!', font='cybermedium'),

'blue', 'on_grey', attrs=['bold'])
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# create a new directory to host all re-runs

og_prefix = './batch_rerun'

prefix = og_prefix

i = 0

while(os.path.exists(prefix)):

prefix = og_prefix + '_{0}'.format(i)

i = i + 1

os.mkdir(prefix)

# run auto batch

report_info = auto_batch_test(parameters, prefix,

args.auto_batch_test, args.truth_file,

args.skip_plots, True)

# save report

generate_final_report(prefix, report_info)

elif(args.pickle_playback):

# rerun text

cprint(figlet_format('Re-Run!', font='cybermedium'),

'blue', 'on_grey', attrs=['bold'])

# create a new folder for the re-run

og_prefix = './rerun_ddd'

prefix = og_prefix

i = 0

while(os.path.exists(prefix)):

prefix = og_prefix + '_{0}'.format(i)

i = i + 1

os.mkdir(prefix)

# load truth data frame

truth_df = None

if(args.pickle_truth):

truth_df = pd.read_pickle(args.pickle_truth)
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# init and run

ddd = DDD(parameters, is_live=False, replay=True)

cm, _ = ddd.debug_run(prefix, args.pickle_playback, truth_df)

print(cm)

else:

# init and run

ddd = DDD(parameters)

ddd.run(args.image, args.video, args.debug, args.tune)

if __name__ == '__main__':

main()

#!/usr/bin/env python3

'''

Anomaly score with signal processing

'''

#default

import copy

import os

import argparse

# from pip

import numpy as np

import pandas as pd

# only supports saving to a file

# otherwise we get GTK conflicts with openCV

import matplotlib

matplotlib.use('AGG')

import matplotlib.pyplot as plt

# from this
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from Zscore import Zscore

from ObjectFeatures import ObjFeatures, HistArray

class AnomalyScore():

def __init__(self, params, feature_list, max_track, is_live=False, simple=False):

self.is_live = is_live

self.simple = simple

# z-score

self.z_score = {}

self.z_score['norm'] = Zscore(lag = params['zscore']['norm']['lag'],

threshold = params['zscore']['norm']['threshold'],

influence = params['zscore']['norm']['influence'],

memory_size = max_track * len(feature_list))

self.z_score['diff'] = Zscore(lag = params['zscore']['diff']['lag'],

threshold = params['zscore']['diff']['threshold'],

influence = params['zscore']['diff']['influence'],

memory_size = max_track * len(feature_list))

# simple

self.s_window = 60

self.s_std = 1.8

# FFT

self.fft_win = params['fft']['window']

self.fft_bins = 20

self.fft_Fs = 1

self.fft_range = 0.2

self.fft_nan_max = 0.4

self.fft_lim = 10

# distraction scoring

self.score = HistArray(rows=max_track,

dtype=np.uint8)

self.score_feat = params['score']

# gate anything that adds a score with a min peak time
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self.anom_min_frame = params['peak']['min_frame']

self.peak_counter = np.zeros(shape=(max_track, len(self.score_feat.keys())))

# plotting help

self.peaks= {}

for fkey in feature_list:

self.peaks[fkey] = HistArray(rows=max_track,

keep=(not self.is_live))

def sig_detect(self, features, fcnt, tune=False):

""" Process signal and save off score

"""

score_total = np.zeros(features.max_track)

# look through all smooth features

for i, (key, ft) in enumerate(features.sfeat.items()):

if(ft.array is not None):

# rotate through track

for trk_idx in range(ft.array.shape[0]):

#TODO find a way to integrate this into the normal score

# this is sub-sampled attempting to find jumps in trends

if(self.simple and fcnt > self.s_window):

# anomaly detection

s = ft.array[trk_idx, fcnt-self.s_window:fcnt]

# resample

s = s[::10]

mean = np.mean(s)

std = np.std(s)

over = s[-1] > (mean + self.s_std*std)

under = s[-1] < (mean - self.s_std*std)

if(over or under):
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self.peaks[key].update(trk_idx, fcnt, 1)

score_total[trk_idx] = score_total[trk_idx] + self.score_feat[key]

# oscillation detection

# find FFT; only for pos_w

if(key == "pos_w"):

s = ft.array[trk_idx, :]

hist = self.an_fft(fcnt, s)

# score is a fraction of the displaced energy

if(hist is not None):

score_total[trk_idx] = score_total[trk_idx] + \

((np.sum(hist[2:5]) / np.sum(hist)) * \

self.score_feat['pos_w_fft'])

else:

# index calc for z_score

z_index = i

if(ft.array.shape[0] > 1):

z_index = (i + (trk_idx + i))

# find peaks

if(fcnt > np.max([self.z_score['norm'].lag, self.z_score['diff'].lag])

):

found = None

s = None

if(key == "pos_w"):

s = ft.array[trk_idx, fcnt-self.z_score['norm'].lag:fcnt]

found = self.z_score['norm'].run(s, z_index)

elif((key == "pos_h") or (key == "area")):

s = features.dfeat[key].array[trk_idx, fcnt-self.z_score['diff

'].lag:fcnt]

found = self.z_score['diff'].run(s, z_index)

if(found is not None):
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self.peak_counter[trk_idx, i] = self.peak_counter[trk_idx, i]

+ 1

if(self.peak_counter[trk_idx, i] >= self.anom_min_frame):

self.peaks[key].update(trk_idx, fcnt, 1)

score_total[trk_idx] = score_total[trk_idx] + self.

score_feat[key]

else:

self.peak_counter[trk_idx, i] = 0

# print tunning plots

if(tune and

(s is not None) and

(fcnt > self.fft_win) and

(fcnt % (self.fft_win // 4) == 0)):

title = '(f: {3}, key: {0}, trk: {1}) = {2}'.format(key,

trk_idx, found, fcnt)

if(key == "pos_w"):

self.z_score['norm'].plot(title, s, z_index)

elif((key == "pos_h") or (key == "area")):

self.z_score['diff'].plot(title, s, z_index)

# find FFT, only for pos_w

if(key == "pos_w"):

# only run fft every windown/4 frame

if((fcnt > self.fft_win) and

(fcnt % (self.fft_win // 2) == 0)):

s = ft.array[trk_idx, :]

hist = self.an_fft(fcnt, s, tune)

# score is based on fft small bin ratio

if(hist is not None):
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fft_score = (np.sum(hist[1:4]) / np.sum(hist)) * \

self.score_feat['{0}_fft'.format(key)]

score_total[trk_idx] = score_total[trk_idx] + fft_score

# allow the score to impact past values

score_window = (fcnt - (self.fft_win // 2))

self.score.array[trk_idx, score_window:(fcnt-1)] =

fft_score + \

self.score.array[trk_idx, score_window:(fcnt-1)]

# add up score and flag uids

if(features.uid_key.array is not None):

for i, score in enumerate(score_total):

self.score.update(i, fcnt, score)

return True

def an_fft(self, fcnt, signal, tune=False):

s = signal[fcnt-self.fft_win:fcnt]

# if we have over (nan_max)% NaNs don't run FFT

mask = np.isfinite(s)

if((np.sum(mask) / self.fft_win) > self.fft_nan_max):

# linear interpolate NaNs

si = np.arange(len(s))

s_interp = np.interp(si, si[mask], s[mask])

# shift mean to 0

s_interp = s_interp - np.mean(s_interp)

# FFT

fft = np.fft.hfft(s_interp)

# get positive half and normalize by sample amount
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hist, bin_edges = np.histogram(np.abs(fft)[:self.fft_win // 2] * 1 / self.

fft_win,

bins=self.fft_bins, range=(0,self.fft_range))

# print tunning plots

if(tune):

print(hist)

print(bin_edges)

fig, axs = plt.subplots(2, 1)

axs[0].set_ylabel("Amplitude")

axs[0].set_xlabel("Frequency [Hz]")

N = self.fft_win

f = np.linspace(0, self.fft_Fs, self.fft_win)

axs[0].bar(bin_edges[:-1], hist, color='c', edgecolor='b',

width=self.fft_range/self.fft_bins)

axs[0].axhline(y=self.fft_lim, color='r', linestyle='--')

axs[0].set_ylim([0, 70])

axs[1].set_xlabel("Frames")

axs[1].set_ylabel("Position [pixels]")

axs[1].set_ylim([-100, 100])

axs[1].plot(s_interp)

fig.tight_layout()

plt.savefig('fft_tune.png', dpi=300)

input("Press Enter...")

plt.show()

return hist

#TODO might want to remove this

def update(self, features, fcnt, tune=False):

self.sig_detect(features, fcnt, tune)

def plot(self, prefix, features, frame_end):
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###

# FIGURE 0

###

if(self.score.array is not None):

# score

trk_amt = self.score.array.shape[0]

fig, axs = plt.subplots(trk_amt, 1)

max_score = np.sum(list(self.score_feat.values()))

if(trk_amt > 1):

for i in range(trk_amt):

y = self.score.array[i, :frame_end]

axs[i].plot(y, color='b', label='score')

#

axs[i].set_ylim([0, max_score])

axs[i].set_xlim([0, frame_end])

axs[i].set_ylabel('Score')

axs[i].set_xlabel('Frames')

#

major_ticks = np.arange(0, y.shape[0]+1, 100)

minor_ticks = np.arange(0, y.shape[0]+1, 20)

axs[i].set_xticks(major_ticks)

axs[i].set_xticks(minor_ticks, minor=True)

major_ticks = np.arange(0, max_score+1, 1)

minor_ticks = np.arange(0, max_score+1, 0.2)

axs[i].set_yticks(major_ticks)

axs[i].set_yticks(minor_ticks, minor=True)

axs[i].grid(which='minor', alpha=0.2)

axs[i].grid(which='major', alpha=0.5)

#

axs[i].legend(loc="upper right")

else:

y = self.score.array[0, :frame_end]

axs.plot(y, color='b', label='score')

axs.set_ylim([0, max_score])

axs.set_xlim([0, frame_end])
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#

major_ticks = np.arange(0, y.shape[0]+1, 100)

minor_ticks = np.arange(0, y.shape[0]+1, 20)

axs.set_xticks(major_ticks)

axs.set_xticks(minor_ticks, minor=True)

major_ticks = np.arange(0, max_score+1, 1)

minor_ticks = np.arange(0, max_score+1, 0.2)

axs.set_yticks(major_ticks)

axs.set_yticks(minor_ticks, minor=True)

axs.grid(which='minor', alpha=0.2)

axs.grid(which='major', alpha=0.5)

#

axs.set_ylabel('Score')

axs.set_xlabel('Frames')

axs.legend(loc="upper right")

fig.tight_layout()

plt.savefig('{0}/score.png'.format(prefix), dpi=300)

plt.close()

# only plot score if live

# otherwise post processes for other plots

if(self.is_live):

return

# signal and peak information

for key, ft in features.feat.items():

if(ft.array is None):

continue

trk_amt = ft.array.shape[0]

###

# FIGURE 1

###

for i in range(trk_amt):

fig, axs = plt.subplots(2, 1)
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# plot raw and smooth data

# shift raw to match smooth delay

raw = np.append(np.zeros(features.smooth_win // 2), ft.array[i,:frame_end])

axs[0].plot(raw, c='b', label='raw',linewidth=1.0)

axs[0].plot(features.sfeat[key].array[i,:frame_end], c='r',

label='smooth',linewidth=1.0)

# plot peak information

if(self.peaks[key].array is not None):

peaks = self.peaks[key].array[i,:frame_end]

y_values = features.sfeat[key].array[i,:frame_end] * peaks

axs[0].plot(y_values, marker='+', markersize=5, c='g', label='peaks')

# settings

if(key == "area"):

axs[0].set_ylabel('Position [pixels$^2$]'.format(key))

else:

axs[0].set_ylabel('Position [pixels]'.format(key))

axs[0].set_xlabel('Frames')

axs[0].set_xlim([0, frame_end])

axs[0].grid(True)

axs[0].legend(loc="upper right")

# diff data

axs[1].plot(features.dfeat[key].array[i,:frame_end], c='c',

label='d/df',linewidth=1.0)

# peak diff data

if(self.peaks[key].array is not None):

peaks = self.peaks[key].array[i,:frame_end]

y_values = features.dfeat[key].array[i,:frame_end] * peaks

axs[1].plot(y_values, marker='+', markersize=5, c='g', label='peaks')

# settings

if(key == "area"):

axs[1].set_ylabel('Difference [pixels$^2$]'.format(key))

else:
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axs[1].set_ylabel('Difference [pixels]'.format(key))

axs[1].set_xlabel('Frames')

axs[1].set_xlim([0, frame_end])

axs[1].grid(True)

axs[1].legend(loc="upper right")

fig.tight_layout()

plt.savefig('{1}/{2}_trk_{0}_val.png'.format(key, prefix, i), dpi=500)

plt.close()

'''

Debug and extra functions

'''

def tune_plot(self, df):

sig = df.loc[:, 'pos_w'].values

means = np.zeros_like(sig)

stds = np.zeros_like(sig)

# loop

for i in range(sig.shape[0]):

if(i > self.s_window):

s = sig[i-self.s_window:i]

means[i] = np.mean(s)

stds[i] = np.std(s)

# plot

plt.figure(1)

plt.title('mean and std')

plt.plot(sig, c='g', label='signal')

plt.plot(means, c='b', label='mean')

plt.plot(means + (self.s_std * stds), c='r', label='upper')

plt.plot(means - (self.s_std * stds), c='r', label='lower')

plt.legend()

plt.savefig('./tune.png', dpi=500)

plt.close()
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def debug_run(self, pkl_filepath, tune_only=False):

df = pd.read_pickle(pkl_filepath)

ittr = len(df.index)

if(tune_only):

self.tune_plot(df)

return

# only import one track at a time

features = ObjFeatures(max_track=1,

is_live=False,

buffer_size=ittr)

# act on features as if running live

for index, row in df.iterrows():

features.update(row['uid'], 0, index,

row['area'], (row['pos_w'], row['pos_h']))

# run score

self.sig_detect(features, index)

# save off features with updated new score

prefix_og = './rerun_anom'

prefix = prefix_og

i = 0

while(os.path.exists(prefix)):

prefix = prefix_og + '_{0}'.format(i)

i = i + 1

os.mkdir(prefix)

self.plot(prefix, features, ittr)

self.save(prefix, features, ittr)

def save(self, prefix, features, frame_end):
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# convert all numpy arrays to pandas data frame per track

for i in range(features.max_track):

# setup initial dataframe info

df = pd.DataFrame({'uid': features.uid_key.array[i, :frame_end],

'score': self.score.array[i, :frame_end]})

# add features dynamically

for fkey in features.feature_list:

df[fkey] = features.feat[fkey].array[i, :frame_end]

# save

df.to_pickle('{0}/trk{1}_feat.pkl'.format(prefix, i))

def main():

# parse command line arguments

parser = argparse.ArgumentParser()

# arguments

parser.add_argument('-p', '--rerun',

help='Load feature data frame (provide path)')

args = parser.parse_args()

# setup objects

features = ObjFeatures(max_track=1) #TODO parameters

anomaly = AnomalyScore(None, feature_list=features.feature_list,

max_track=1)

# run

if(args.rerun is not None):

anomaly.debug_run(args.rerun)

if __name__ == '__main__':

main()
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'''

Behavior estimation from

signal processing and machine learning

'''

# default

import copy

import random

# from pip

import numpy as np

import pandas as pd

# only supports saving to a file

# otherwise we get GTK conflicts with openCV

import matplotlib

matplotlib.use('AGG')

import matplotlib.pyplot as plt

# from this

from ObjectFeatures import ObjFeatures, HistArray

class BehaviorEst():

""" This class makes an inference about the drivers behavior based on the other

processing blocks

"""

def __init__(self, params, track=0, debug=False):

self.state = {'normal' : 0,

'abnormal' : 1,

'distracted' : 2

}

self.current_state = self.state['normal']

self.next_state = self.state['normal']

self.trk = track

self.debug = debug

# wait time before state machine starts
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self.min_hist_frame = 30

self.state_counter = 0

# state machine settings

self.state_trans_frame = np.zeros(shape=(len(self.state.keys()), len(self.state.keys

())),

dtype=np.dtype(int))

# current state, next state = min frames for a transition

self.state_trans_frame[self.state['normal'], self.state['abnormal']] = 10

self.state_trans_frame[self.state['abnormal'], self.state['normal']] = 20

self.state_trans_frame[self.state['abnormal'], self.state['distracted']] = 10

self.state_trans_frame[self.state['distracted'], self.state['normal']] = 20

# anomaly settings

anom_conditionals = 2

self.anom_win = np.zeros(shape=(len(self.state.keys()), anom_conditionals),

dtype=np.dtype(int))

# 0 - up, 1 - down

spar = params['anomaly']['window']

self.anom_win[self.state['normal'], 0] = spar['normal_up']

self.anom_win[self.state['abnormal'], 0] = spar['abnormal_up']

self.anom_win[self.state['abnormal'], 1] = spar['abnormal_down']

self.anom_win[self.state['distracted'], 1] = spar['distracted_down']

self.anom_score_thresh = params['anomaly']['score_threshold']

# cluster settings

lrn_conditionals = 2

self.lrn_win = np.zeros(shape=(len(self.state.keys()), lrn_conditionals),

dtype=np.dtype(int))

spar = params['learn']['window']

self.lrn_win[self.state['normal'], 0] = spar['normal_up']

self.lrn_win[self.state['abnormal'], 0] = spar['abnormal_up']

self.lrn_win[self.state['abnormal'], 1] = spar['abnormal_down']

self.lrn_win[self.state['distracted'], 0] = spar['distracted_stay']



159

self.lrn_win[self.state['distracted'], 1] = spar['distracted_down']

self.lrn_score_min = self.anom_score_thresh * params['learn']['score_threshold_ratio

']

# conditional probabilities

self.anom_cond = np.zeros(shape=self.anom_win.shape)

self.lrn_cond = np.zeros(shape=self.lrn_win.shape)

spar = params['learn']['probability']

self.lrn_cond[self.state['normal'], 0] = spar['normal_up']

self.lrn_cond[self.state['distracted'], 1] = spar['distracted_stay']

self.lrn_cond[self.state['distracted'], 0] = spar['distracted_down']

# history

self.hist_infer = HistArray(rows=1, dtype=np.uint16)

def update(self, clu_label, clu_score, clu_size, anom_score, anom_uid, fcnt):

""" Evaluates, per frame, the anomolous behavior of the driver

Arguments

clu_label [ndarray (1, frames)] : label of the current frame

clu_score [ndarray (cluster_amt, frames)] : score of every cluster

clu_size [ndarray (cluster_amt, frames)] : size of every cluster

anom_score [ndarray (1, frames)] : score from anomaly detector

anom_uid [ndarray (1, frames)] : frames current UID

Returns

uid [int]: UID of object under evaluation, None if nothing to infer

infer [int]: objects behavior inference

"""

# must have a min history amount and valid arrays

if((fcnt < self.min_hist_frame)

or (clu_score is None)

or (clu_label is None)

or (anom_score is None)):
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return None, None

# do we have a label for this frame

if(not np.isnan(clu_label[0, fcnt])):

# get current label as index

current_label = int(clu_label[0, fcnt])

# order clusters by score

label_byscore_asc = clu_score[:,fcnt].argsort()

else:

current_label = None

# roll the dice

roll = random.uniform(0, 1)

# helpers

score_up = anom_score[(fcnt - self.anom_win[self.current_state, 0]): fcnt]

score_dn = anom_score[(fcnt - self.anom_win[self.current_state, 1]): fcnt]

label_up = clu_label[0, (fcnt - self.lrn_win[self.current_state, 0]):fcnt]

label_dn = clu_label[0, (fcnt - self.lrn_win[self.current_state, 1]):fcnt]

current_clu_score = None

if(current_label is not None):

current_clu_score = clu_score[current_label, fcnt]

# state machine

if(self.current_state == self.state['normal']):

'''

Normal

'''

uid = None

infer = self.state['normal']

# anom condition - up - windowed score above threshold

if(np.all(score_up > self.anom_score_thresh)):

if(self.debug): print('{0}: Norm->Abn, @anom'.format(fcnt))
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self.next_state = self.state['abnormal']

# are we in a cluster

if(current_label is not None):

# clu condition - up - windowed label the same and score above threshold

if(np.all(label_up == current_label)

and (self.state_counter > self.lrn_win[self.current_state, 0])

and (current_clu_score > self.lrn_score_min)

and (roll <= self.lrn_cond[self.current_state, 0])):

if(self.debug): print('{0}: Norm->Abn, @clu'.format(fcnt))

self.next_state = self.state['abnormal']

elif(self.current_state == self.state['abnormal']):

'''

Abnormal

'''

uid = anom_uid[fcnt]

infer = self.state['abnormal']

# anom condition - down - windowed score below threshold

if(np.all(score_dn < self.anom_score_thresh)):

if(self.debug): print('{0}: Abn->Norm, @anom'.format(fcnt))

self.next_state = self.state['normal']

# are we in a cluster

if(current_label is not None):

# clu condition - up -current score above threshold and highest label

if(current_clu_score > self.lrn_score_min

and np.any(current_label == label_byscore_asc[-2:])):

if(self.debug): print('{0}: Abn->Dis, @clu'.format(fcnt))

self.next_state = self.state['distracted']

elif(self.current_state == self.state['distracted']):

'''

Distracted
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'''

uid = anom_uid[fcnt]

infer = self.state['distracted']

# anom condition - down - windowed score below threshold

if(np.all(score_dn < self.anom_score_thresh)

and (self.state_counter > self.anom_win[self.current_state, 1])):

if(self.debug): print('{0}: Dis->Norm, @anom'.format(fcnt))

self.next_state = self.state['normal']

# are we in a cluster

if(current_label is not None):

# clu condition - down - score below threshold

if(current_clu_score < self.lrn_score_min):

if(self.debug): print('{0}: Dis->Norm, @clu'.format(fcnt))

self.next_state = self.state['normal']

# clu condition - down - label change after win and not in top

if(np.any(label_dn != current_label)

and not np.any(current_label == label_byscore_asc[-3:])

and (self.state_counter > self.lrn_win[self.current_state, 1])

and (roll <= self.lrn_cond[self.current_state, 1])):

if(self.debug): print('{0}: Dis->Norm, @clu'.format(fcnt))

self.next_state = self.state['normal']

# clu condition - stay - label is the same - will override above conditionals

if(np.all(label_up == current_label)

and (roll <= self.lrn_cond[self.current_state, 0])):

if(self.debug): print('{0}: Dis->Norm, @clu'.format(fcnt))

self.next_state = self.state['normal']

else:

uid = None

infer = None
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# on state change

self.state_counter = self.state_counter + 1

if(self.current_state != self.next_state):

# prevent state change if below min frame time

if(self.state_counter >= self.state_trans_frame[self.current_state, self.

next_state]):

self.state_counter = 0

else:

self.next_state = self.current_state

# create history

self.hist_infer.update(0, fcnt, infer)

# change state

self.current_state = self.next_state

return uid, infer

def get_pred(self, frame_end):

if(self.hist_infer.array is not None):

infer = self.hist_infer.array[0, :frame_end]

infer[np.isnan(infer)] = 0

infer[infer == self.state['abnormal']] = 1

infer[infer == self.state['distracted']] = 1

else:

infer = None

return infer

def plot(self, prefix, features, frame_end):

""" Plot important metrics ;) """

# create plots

y = features.feat['pos_w'].array[0, :frame_end]
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t = np.linspace(0, y.shape[0], y.shape[0])

# pull out simple arrays

# these arrays may not exist

if(self.hist_infer.array is not None):

hi = self.hist_infer.array[0, :frame_end]

else:

hi = np.zeros(y.shape[0])

###

# FIGURE 0

###

fig = plt.figure(0)

axs = plt.subplot2grid((1,1), (0,0), rowspan=1)

axs.plot(hi, linewidth=5)

axs.set_xlim([0, frame_end])

axs.set_ylim([-1, 3])

axs.set_yticks(np.arange(3))

axs.set_yticklabels(['normal', 'abnormal', 'distracted'])

axs.set_ylabel('Inference')

axs.set_xlabel('Frames')

axs.grid(True)

fig.tight_layout()

plt.savefig('{0}/{1}_behav_infer.png'.format(prefix, self.trk), dpi=300)

plt.close()

#!/usr/bin/env python3

# default

import os

import sys

import time

import argparse

import datetime
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import warnings

import csv

# from pip

import numpy as np

import pandas as pd

from sklearn.manifold import TSNE

from sklearn import cluster, datasets, mixture

from sklearn.neighbors import kneighbors_graph

from sklearn.preprocessing import StandardScaler

from itertools import cycle, islice

# only supports saving to a file

# otherwise we get GTK conflicts with openCV

import matplotlib as mpl

#mpl.use('AGG')

import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec

import matplotlib.cm as cm

# from git

sys.path.append('../utils/catch22/wrap_Python/catch22')

import catch22_C as c22

# from this

from ObjectFeatures import ObjFeatures, HistArray

class ClusterSeries():

def __init__(self, params, track, debug=False):

self.sub_features = self.gen_sub_feature_dict()

self.window_size = params['sub_features']['window']

self.trk = track

self.start_score = 1

# cluster information

self.clust_size_max = params['cluster']['size_max']

self.clust_size_min = params['cluster']['size_min']
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self.clust_amt = params['cluster']['amount']

self.cluster_reset()

# history

self.hist_labels = HistArray(rows=1, dtype=np.uint16)

self.hist_size = HistArray(rows=self.clust_amt)

self.hist_score = HistArray(rows=self.clust_amt)

# cluster metrics

self.hist_inertia = HistArray(rows=1)

# ploting

self.clust_cmap = plt.get_cmap('tab10')

self.clust_cmap.set_under('black')

self.clust_norm = mpl.colors.Normalize(vmin=0, vmax=10)

def cluster_reset(self):

# setup cluster

self.cluster = cluster.MiniBatchKMeans(n_clusters=self.clust_amt,

random_state=0,

reassignment_ratio=0.02)

self.clust_begin = False

self.clust_sf_index = []

# accumulated features

self.sf = pd.DataFrame(columns=list(self.sub_features.keys()))

self.labels = None

def gen_sub_feature_dict(self):

"""

"""

#TODO think about adding the time series vector itself as a sub feature

c22_sub_feature_list = [ 'DN_HistogramMode_5',

'DN_HistogramMode_10',

'CO_f1ecac',

'CO_FirstMin_ac',
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'CO_HistogramAMI_even_2_5',

'CO_trev_1_num',

'MD_hrv_classic_pnn40',

'SB_BinaryStats_mean_longstretch1',

'SB_TransitionMatrix_3ac_sumdiagcov',

'PD_PeriodicityWang_th0_01',

'CO_Embed2_Dist_tau_d_expfit_meandiff',

'IN_AutoMutualInfoStats_40_gaussian_fmmi',

'FC_LocalSimple_mean1_tauresrat',

'DN_OutlierInclude_p_001_mdrmd',

'DN_OutlierInclude_n_001_mdrmd',

'SP_Summaries_welch_rect_area_5_1',

'SB_BinaryStats_diff_longstretch0',

'SB_MotifThree_quantile_hh',

'SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1',

'SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1',

'SP_Summaries_welch_rect_centroid',

'FC_LocalSimple_mean3_stderr']

# generate dict of function calls

feat_dict = {}

for f in c22_sub_feature_list:

feat_dict['c22_' + f] = getattr(c22, f)

return feat_dict

def calc_sub_features(self, signal):

"""

Calculate sub features of a signal

"""

sf = pd.DataFrame(0, columns=list(self.sub_features.keys()), index=[0])

# interpolate missing information

# if all are nans return None

mask = np.isfinite(signal)

if(mask.any()):
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si = np.arange(len(signal))

signal = np.interp(si, si[mask], signal[mask])

# shift mean to 0

signal = signal - np.mean(signal)

# calculate

for key, value in self.sub_features.items():

try:

sf[key] = value(signal.tolist())

except:

print(signal)

else:

sf = None

return sf

'''

Limit the size of points for each prediction, but keep

cluster structure:

- remove outliers (high varrience)

- points from low scoreing clusters

'''

def prune_sub_features(self, labels):

#TODO

pass

def update(self, fcnt, features, score):

#TODO calculate for all features ...or not

#TODO lock down cluster for prediciton only at some point

if(fcnt < self.window_size):

return

f = features.feat['pos_w']

if(f.array is None):

return
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# get subfeatures from signal window

s = f.array[self.trk, (fcnt-self.window_size):fcnt]

sf = self.calc_sub_features(s)

# if a window is not valid (nans (no track))

# skip adding it to cluster

if(sf is None):

return

sf = sf.fillna(0)

self.sf = self.sf.append(sf, ignore_index=True)

self.clust_sf_index.append(fcnt)

# once some anomolous behavior is detected

# start to cluster

if(score.array[self.trk, fcnt] > self.start_score and

len(self.sf.index) > self.clust_size_min):

self.clust_begin = True

if(self.clust_begin):

if(self.labels is None):

# cluster all sub features

self.labels = self.cluster.fit_predict(self.sf)

else:

self.cluster.partial_fit(sf)

label = self.cluster.predict(sf)

self.labels = np.append(self.labels, label)

# find score from when clustering window starts

sscore = score.array[self.trk, self.clust_sf_index]

# loop through clusters and update size and score

for i in range(self.clust_amt):

label_score = np.mean(sscore[self.labels==i])

label_count = np.sum(self.labels==i)

self.hist_score.update(i, fcnt, label_score)

self.hist_size.update(i, fcnt, label_count)
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# save off information

self.hist_labels.update(0, fcnt, self.labels[-1])

self.hist_inertia.update(0, fcnt, self.cluster.inertia_)

def plot(self, prefix, features, frame_end):

# check is sf exisits (no object found)

if(self.sf.size < 2):

return

# create plots

y = features.feat['pos_w'].array[self.trk, :frame_end]

t = np.linspace(0, y.shape[0], y.shape[0])

tsne = TSNE(n_components=2, perplexity=15).fit_transform(self.sf)

# pull out simple arrays

# these arrays may not exist

if(self.hist_labels.array is not None):

cc = self.hist_labels.array[0, :frame_end]

else:

cc = np.zeros(y.shape[0])

if(self.hist_inertia.array is not None):

ci = self.hist_inertia.array[0, :frame_end]

else:

ci = np.zeros(y.shape[0])

if(self.hist_inertia.array is not None):

sl = self.hist_score.array[:, :frame_end]

else:

sl = np.zeros(shape=(self.clust_amt, y.shape[0]))

###

# FIGURE 0

###

fig = plt.figure(0)

axs = plt.subplot2grid((5,1), (0,0), rowspan=2)
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# plot signal by class and mark distraction

ccna = cc

ccna[np.isnan(ccna)] = -1

color = self.clust_cmap(self.clust_norm(ccna))

axs.scatter(t, y, c=color, s=10)

axs.set_xlim([0, frame_end])

axs.set_ylabel('Position [Pixels]')

axs.set_xlabel('Frames')

axs.grid(True)

# plot 2D cluster space

axs = plt.subplot2grid((5,1), (2,0), rowspan=3)

ccw = cc[self.clust_sf_index]

ccu = np.unique(ccw)

ccu = ccu[~np.isnan(ccu)]

for c in ccu:

idx = (c == ccw)

color = [self.clust_cmap(self.clust_norm(c))]*np.sum(idx)

axs.scatter(tsne[idx, 0], tsne[idx, 1], c=color,

label='{:1.0f}'.format(c), s=10)

axs.set_aspect('equal')

axs.set_ylabel('Reduced Y')

axs.set_xlabel('Reduced X')

axs.legend(loc='center left', bbox_to_anchor=(-1, 0.5), title='Cluster Label')

axs.grid(True)

fig.tight_layout()

plt.savefig('{0}/{1}_tsne_clust.png'.format(prefix, self.trk), dpi=300)

plt.close()

###

# FIGURE 1

###

fig = plt.figure(1)
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dfaxs = self.sf.plot(subplots=True, layout=(11,2), figsize=(16,22), xlim=([0,

frame_end]),

title='Sub Features')

for dfax in dfaxs:

dfax[0].legend(loc='upper right')

dfax[1].legend(loc='upper right')

plt.savefig('{0}/{1}_sub_feat.png'.format(prefix, self.trk), dpi=300)

plt.close()

###

# FIGURE 2

###

fig = plt.figure(2)

plt.bar(t, ci)

plt.xlim([0, frame_end])

axs.set_ylabel('Inertia')

axs.set_xlabel('Frames')

axs.grid(True)

plt.savefig('{0}/{1}_inertia.png'.format(prefix, self.trk), dpi=300)

plt.close()

###

# FIGURE 3

###

fig = plt.figure(3)

for i in range(sl.shape[0]):

plt.plot(t, sl[i], label='{:1.0f}'.format(i))

plt.xlim([0, frame_end])

plt.legend(loc='upper left', title='Cluster Label')

plt.ylabel('Score')

plt.xlabel('Frames')

axs.grid(True)

plt.savefig('{0}/{1}_cluster_score.png'.format(prefix, self.trk), dpi=300)
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plt.close()

def debug_run(self, pkl_filepath):

df = pd.read_pickle(pkl_filepath)

ittr = len(df.index)

# only import one track at a time

features = ObjFeatures(max_track=1,

is_live=False,

buffer_size=ittr)

score = HistArray(rows=1,

dtype=np.uint8)

# act on features as if running live

for index, row in df.iterrows():

features.update(row['uid'], self.trk, index,

row['area'], (row['pos_w'], row['pos_h']))

score.update(self.trk, index, row['score'])

# run cluter

self.update(index, features, score)

# save off features with updated new score

prefix_og = './rerun_lrn'

prefix = prefix_og

i = 0

while(os.path.exists(prefix)):

prefix = prefix_og + '_{0}'.format(i)

i = i + 1

os.mkdir(prefix)

self.plot(prefix, features, ittr)

'''

Modified from:

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
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'''

def cluster_test(self, X, tsne, signal):

params = {'quantile': .3,

'eps': .3,

'damping': .9,

'preference': -200,

'n_neighbors': 10,

'n_clusters': 3,

'min_samples': 20,

'xi': 0.05,

'min_cluster_size': 0.1}

# estimate bandwidth for mean shift

bandwidth = cluster.estimate_bandwidth(X, quantile=params['quantile'])

# connectivity matrix for structured Ward

connectivity = kneighbors_graph(

X, n_neighbors=params['n_neighbors'], include_self=False)

# make connectivity symmetric

connectivity = 0.5 * (connectivity + connectivity.T)

# ============

# Create cluster objects

# ============

ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)

two_means = cluster.MiniBatchKMeans(n_clusters=params['n_clusters'])

ward = cluster.AgglomerativeClustering(

n_clusters=params['n_clusters'], linkage='ward',

connectivity=connectivity)

spectral = cluster.SpectralClustering(

n_clusters=params['n_clusters'], eigen_solver='arpack',

affinity="nearest_neighbors")

dbscan = cluster.DBSCAN(eps=params['eps'])

optics = cluster.OPTICS(min_samples=params['min_samples'],

xi=params['xi'],

min_cluster_size=params['min_cluster_size'])

affinity_propagation = cluster.AffinityPropagation(
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damping=params['damping'], preference=params['preference'])

average_linkage = cluster.AgglomerativeClustering(

linkage="average", affinity="cityblock",

n_clusters=params['n_clusters'], connectivity=connectivity)

birch = cluster.Birch(n_clusters=params['n_clusters'])

gmm = mixture.GaussianMixture(

n_components=params['n_clusters'], covariance_type='full')

clustering_algorithms = (

('MiniBatchKMeans', two_means),

('AffinityPropagation', affinity_propagation),

('MeanShift', ms),

('SpectralClustering', spectral),

('Ward', ward),

('AgglomerativeClustering', average_linkage),

('DBSCAN', dbscan),

('OPTICS', optics),

('Birch', birch),

('GaussianMixture', gmm)

)

for name, algorithm in clustering_algorithms:

t0 = time.time()

# catch warnings related to kneighbors_graph

with warnings.catch_warnings():

warnings.filterwarnings(

"ignore",

message="the number of connected components of the " +

"connectivity matrix is [0-9]{1,2}" +

" > 1. Completing it to avoid stopping the tree early.",

category=UserWarning)

warnings.filterwarnings(

"ignore",

message="Graph is not fully connected, spectral embedding" +

" may not work as expected.",

category=UserWarning)
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algorithm.fit(X)

t1 = time.time()

if hasattr(algorithm, 'labels_'):

y_pred = algorithm.labels_.astype(np.int)

else:

y_pred = algorithm.predict(X)

colors = np.array(list(islice(cycle(['#377eb8', '#ff7f00', '#4daf4a',

'#f781bf', '#a65628', '#984ea3',

'#999999', '#e41a1c', '#dede00']),

int(max(y_pred) + 1))))

# add black color for outliers (if any)

colors = np.append(colors, ["#000000"])

#Class create plots

y = signal

cc = colors[y_pred]

t = np.linspace(0, y.shape[0], y.shape[0])

fig, axs = plt.subplots(2, 1)

fill = np.ones(y.shape[0] - cc.shape[0])

axs[0].scatter(t, y, c=cc)

axs[0].set_ylabel('Position [Pixels]')

axs[0].set_xlabel('Frames')

axs[0].grid(True)

ccu = np.unique(cc)

for i, color in enumerate(ccu):

idx = (color == cc)

axs[1].scatter(tsne[idx, 0], tsne[idx, 1], c=color, label='cluster {0}'.

format(i))

axs[1].set_ylabel('Reduced Y')

axs[1].set_xlabel('Reduced X')

axs[1].set_aspect('equal')

axs[1].grid(True)
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axs[1].legend(loc="upper right")

plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'),

transform=plt.gca().transAxes, size=15,

horizontalalignment='right')

fig.tight_layout()

plt.savefig('./plots/{0}_spec.png'.format(name), dpi=500)

def main():

# parse command line arguments

parser = argparse.ArgumentParser()

# arguments

parser.add_argument('-p', '--rerun',

help='Load feature data frame (provide path)')

parser.add_argument('-bp', '--book',

help='Load feature data frame and run a bunch\

of different algorithms (provide path)')

args = parser.parse_args()

lrn = ClusterSeries(None, track=0) #TODO parameters

if(args.rerun is not None):

lrn.debug_run(args.rerun)

elif(args.book is not None):

# loop through data frame as if we were running live

# when running live we will convert from features to a data frame

# of size window_size

test = pd.read_pickle(args.book)

test_window = lrn.window_size
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sub_features = pd.DataFrame(columns=list(lrn.sub_features.keys()))

# for book options lets pretend uid doesn't matter

for i in range(test.shape[0] - test_window):

sub_test = test.loc[(i-test_window):i, "pos_w"]

sf = lrn.calc_sub_features(sub_test)

sub_features = sub_features.append(sf, ignore_index=True)

# fill na and normalize

sub_features = sub_features.fillna(0)

sub_features_OG = sub_features

sub_features = StandardScaler().fit_transform(sub_features)

# t-SNE

XE = TSNE(n_components=2, perplexity=15).fit_transform(sub_features)

# thow the book at it

os.mkdir('./plots')

lrn.cluster_test(sub_features, XE, test.loc[test_window:, "pos_w"])

if __name__ == '__main__':

main()

'''

Wrapper for object detection

'''

import csv

import cv2

import time

import queue

import numpy as np

from edgetpu.detection.engine import DetectionEngine



179

from PIL import Image

from AnomalyScore import ObjFeatures

class ObjectItem():

def __init__(self, bounding_box, label, score):

self.bbox = bounding_box

self.label = label

self.score = score

# only track certain things

# with a certain confidence

if(((label == "car") or

(label == "truck") or

(label == "train")) and

(score > 0.40)):

self.track = True

else:

self.track = False

# calculate centroid

if(self.track):

sX = self.bbox[0]

sY = self.bbox[1]

eX = self.bbox[2]

eY = self.bbox[3]

cX = int((sX + eX) / 2.0)

cY = int((sY + eY) / 2.0)

self.centroid = (cX, cY)

else:

self.centroid = (0, 0)

# focus is True when this box is directly

# in front of us
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self.focus = False

# set true if being tracked

self.tracked = False

self.uid = 0

self.tid = 0

# behavior

self.abnormal = False

self.distracted = False

def update(self, uid, cent, tid):

self.tracked = True

self.uid = uid

self.tid = tid

self.centroid = cent

class ObjectDetect():

def __init__(self, w, h, min_thresh=0.45, max_det=30, debug=False):

self.labels_fp = '../models/coco_labels.txt'

self.network_fp = '../models/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite'

self.ids_to_keep_fp = '../models/coco_keep.csv'

self.debug = debug

self.bbox_max_w = 0.9 * w

self.bbox_max_h = 0.9 * h

self.min_thresh = min_thresh

self.max_det = max_det

# read in labels for detector

with open(self.labels_fp, 'r', encoding="utf-8") as f:

lines = f.readlines()

self.labels = {}

for line in lines:

pair = line.strip().split(maxsplit=1)
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self.labels[int(pair[0])] = pair[1].strip()

# read in labels to keep

self.ids_to_keep = []

with open(self.ids_to_keep_fp, 'r') as csvFile:

for row in csv.reader(csvFile):

self.ids_to_keep.append(int(row[0]))

# initialize engine

self.ssd_engine = DetectionEngine(self.network_fp)

'''

img is as an openCV image

returned filtered object box descriptions

'''

def run(self, rgb):

# convert to PIL format

im_pil = Image.fromarray(rgb)

# run pipeline

obj_raw = self.detect_objects(im_pil)

obj_det = self.object_processing(obj_raw)

return obj_det

def run_tr(self, in_q, out_q):

while(True):

# pull from queue

rgb = in_q.get()

if(rgb is not None):

# run detect

det_objs = self.run(rgb)

out_q.put(det_objs)

def detect_objects(self, image):

# run inference
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obj_det = self.ssd_engine.DetectWithImage(image,

threshold=self.min_thresh,

keep_aspect_ratio=False,

relative_coord=False,

top_k=self.max_det)

return obj_det

'''

Filter objects we don't care about both by

label and size

'''

def object_processing(self, obj_det):

obj_itm = []

# only want to loop once

if obj_det:

for obj in obj_det:

# filter by label

if not (obj.label_id in self.ids_to_keep):

continue

# filter by bbox size

box = obj.bounding_box.astype(int).flatten().tolist()

box_w = box[2] - box[0]

box_h = box[3] - box[1]

if((box_w > self.bbox_max_w)

or (box_h > self.bbox_max_h)):

continue

# add object to list

item = ObjectItem(box, self.labels[obj.label_id],

obj.score)

obj_itm.append(item)

return obj_itm
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'''

Keeping track of features thoughout run

and a helper class to handle array expansion

'''

import numpy as np

'''

automatically handle buffer expansion

'''

class HistArray():

def __init__(self, rows, dtype=np.float32, keep=True, buffer_size=(3*60*30)):

self.array = None

self.rows = rows

self.dtype = dtype

self.keep = keep

self.clip = 0

# default 3 minutes by 60 seconds by 30 fps

self.buffer_size = buffer_size

def update(self, row, idx, val):

# manage size

if(self.array is None):

self.array = np.zeros(shape=(self.rows, self.buffer_size),

dtype=self.dtype) * np.nan

else:

# do we need to expand in time

if(self.array.shape[1] < (idx+1)):

if(self.keep):

bf = np.zeros(shape=(self.rows, self.buffer_size),

dtype=self.dtype) * np.nan

self.array = np.append(self.array, bf, axis=1)

else:

self.clip = idx
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# keep the last half and add new buffer

bf = np.zeros(shape=(self.rows, (self.buffer_size // 2)),

dtype=self.dtype) * np.nan

self.array = np.append(self.array[:,:(self.array.shape[1] // 2)], bf,

axis=1)

# add value

if(self.keep):

self.array[row, idx] = val

else:

self.array[row, idx - self.clip] = val

'''

organize all features by frame

'''

class ObjFeatures():

def __init__(self, max_track, is_live=False, buffer_size=(3*60*30)):

# settings

self.max_track = max_track

self.is_live = is_live

# smoothing

self.smooth_win = 8

win = np.hanning(self.smooth_win)

self.norm_win = win/win.sum()

# values

self.feature_list = ["area", "pos_w", "pos_h"]

self.uid_key = HistArray(rows=max_track, keep=(not is_live), buffer_size=buffer_size

)

self.feat = {}

self.sfeat = {}

self.dfeat = {}

for fkey in self.feature_list:
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self.feat[fkey] = HistArray(rows=max_track, keep=(not is_live), buffer_size=

buffer_size)

self.sfeat[fkey] = HistArray(rows=max_track, keep=(not is_live), buffer_size=

buffer_size)

self.dfeat[fkey] = HistArray(rows=max_track, keep=(not is_live), buffer_size=

buffer_size)

def update(self, uid, tid, fcnt, area, dis):

# add values

self.uid_key.update(tid, fcnt, uid)

self.feat['area'].update(tid, fcnt, area)

self.feat['pos_w'].update(tid, fcnt, dis[0])

self.feat['pos_h'].update(tid, fcnt, dis[1])

for key, ft in self.feat.items():

for i in range(ft.array.shape[0]):

if(fcnt > self.smooth_win):

# smooth values

weights = self.norm_win * ft.array[i, (fcnt - self.smooth_win):fcnt]

smooth = np.sum(weights)

# note this is delayed by self.smooth_win // 2

self.sfeat[key].update(i, fcnt, smooth)

# take derivative

if(fcnt == self.smooth_win):

self.dfeat[key].update(i, fcnt, smooth)

else:

last = self.sfeat[key].array[i,fcnt-1]

self.dfeat[key].update(i, fcnt, smooth - last)

def gen_features(self, objs, frame_count):

for obj in objs:

if(obj.tracked):

# create features
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area = (obj.bbox[2] - obj.bbox[0]) * \

(obj.bbox[3] - obj.bbox[1])

self.update(obj.uid, obj.tid,

frame_count,

area, obj.centroid)

'''

Wrapper for object tracking

inspired from:

https://www.pyimagesearch.com/2018/10/29/multi-object-tracking-with-dlib/

https://www.pyimagesearch.com/2018/08/13/opencv-people-counter/

'''

import cv2

import time

import dlib

import numpy as np

import multiprocessing

from scipy.spatial import distance as dist

from collections import OrderedDict

from ObjectDetect import ObjectItem

class ObjectTrack():

def __init__(self, frames_till_forget=10, max_distance=50,

tracker_limit=4, min_track_corr=20, debug=False):

# params

self.debug = debug

self.tracker_limit = tracker_limit

self.frames_till_forget = frames_till_forget

self.max_distance = max_distance

self.min_corr = min_track_corr



187

# init

#TODO muliprocessing

#self.in_track_queues = []

#self.out_track_queues = []

# id and objects we are keeping track of

self.next_id = 0

self.trackers = OrderedDict()

self.objects = OrderedDict()

self.disappeared = OrderedDict()

'''

This section is where we update the tracks with the image

and update the object ids

'''

def update_objects(self, objs, rgb):

trk = []

# filter for relevant objects

for obj in objs:

if(obj.track):

trk.append(obj)

trk_ass = self.update(trk, rgb)

return list(self.objects.values()), trk_ass

def update_frame(self, rgb, alt=False):

objs = []

derid = []

# loop through trackers and objects then update position

for i, (track, obj) in self.trackers.items():

corr = track.update(rgb)

# deregister if we are not well corrilated

if(corr > self.min_corr):
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pos = track.get_position()

obj.bbox[0] = int(pos.left())

obj.bbox[1] = int(pos.top())

obj.bbox[2] = int(pos.right())

obj.bbox[3] = int(pos.bottom())

cX = int((obj.bbox[0] + obj.bbox[2]) / 2.0)

cY = int((obj.bbox[1] + obj.bbox[3]) / 2.0)

self.objects[obj.uid].bbox = obj.bbox

self.objects[obj.uid].centroid = (cX, cY)

else:

derid.append(obj.uid)

# deregister (can't remove during rotation)

for oid in derid:

self.deregister(oid)

return list(self.objects.values())

def update_all(self, objs, rgb):

# run object association

(u_objs, trk_ass) = self.update_objects(objs, rgb)

# if the ids of the associations equal the tracked

# object ids then there is no need to run the tracker update

trk_ids = list(self.objects.keys())

id_check = all(anid in trk_ids for anid in trk_ass)

if(id_check):

u_objs = self.update_frame(rgb, True)

return u_objs
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'''

This section of functions handles the association and

creation of ids

'''

def register(self, obj, cent, rgb):

# start up a tracker

amt_trks = len(self.trackers)

if(amt_trks < self.tracker_limit):

# find available trk ids

all_ids = np.arange(self.tracker_limit).tolist() #TODO probably a better way

trk_ids = [oo.tid for oo in list(self.objects.values())]

avail_ids = list(set(all_ids) - set(trk_ids))

# update object with id information

obj.update(self.next_id, cent, avail_ids[0])

# start up tracker

t = dlib.correlation_tracker()

rect = dlib.rectangle(obj.bbox[0], obj.bbox[1],

obj.bbox[2], obj.bbox[3])

t.start_track(rgb, rect)

# save off

self.objects[self.next_id] = obj

self.disappeared[self.next_id] = 0

self.trackers[self.next_id] = (t, obj)

# get next id

self.next_id += 1

def deregister(self, oid):

del self.objects[oid]

del self.disappeared[oid]

del self.trackers[oid]

def update(self, objs, rgb):
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trk_ass = []

# if empty no association requiered

if(len(objs) == 0):

# mark objects as missing a detection

oids_to_remove = []

for oid in self.disappeared.keys():

self.disappeared[oid] += 1

# remove if missing for too long

if(self.disappeared[oid] > self.frames_till_forget):

oids_to_remove.append(oid)

for oid in oids_to_remove:

self.deregister(oid)

return trk_ass

# calculate centroids

in_centroids = np.array([x.centroid for x in objs])

# register centroids if nothing is currently being tracked

if(len(self.objects) == 0):

for i in range(len(in_centroids)):

self.register(objs[i], in_centroids[i], rgb)

else:

object_ids = list(self.objects.keys())

tobjs = list(self.objects.values())

object_cen = np.array([x.centroid for x in tobjs])

# calculate distances between tracked objects and new centroids

dc = dist.cdist(object_cen, in_centroids)

# order by the smallest distances

rows = dc.min(axis=1).argsort()
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cols = dc.argmin(axis=1)[rows]

used_rows = set()

used_cols = set()

# loop over the distances and look for tracked objects

# being close to new centroids

for (row, col) in zip(rows, cols):

if((row in used_rows) or (col in used_cols)):

continue

# if the distance is under a certain amount we associate

# the centroid with the object

if(dc[row,col] < self.max_distance):

object_id = object_ids[row]

# update

self.objects[object_id].centroid = in_centroids[col]

self.objects[object_id].bbox = objs[col].bbox

self.disappeared[object_id] = 0

# count number of associations

trk_ass.append(object_id)

# mark row and col as used

used_rows.add(row)

used_cols.add(col)

# which ones are we missing

unused_rows = set(range(dc.shape[0])).difference(used_rows)

unused_cols = set(range(dc.shape[1])).difference(used_cols)

# check for objects who disappeared

if(dc.shape[0] >= dc.shape[1]):

for row in unused_rows:

object_id = object_ids[row]

self.disappeared[object_id] += 1
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if(self.disappeared[object_id] > self.frames_till_forget):

self.deregister(object_id)

# call it a new object

else:

for col in unused_cols:

self.register(objs[col], in_centroids[col], rgb)

return trk_ass

"""

# for multi processing later #TODO

def start_tracker(obj, rgb, input_q, output_q):

# get tracker from dlib

t = dlib.correlation_tracker()

rect = dlib.rectangle(obj.bbox[0], obj.bbox[1], obj.bbox[2], obj.bbox[3])

t.start_track(rgb, rect)

# keep looking for frame updates

while(True):

rgb = input_q.get()

# get and update position

if(rgb is not None):

t.update(rgb)

pos = t.get_position()

obj.bbox[0] = int(pos.left())

obj.bbox[1] = int(pos.top())

obj.bbox[2] = int(pos.right())

obj.bbox[3] = int(pos.bottom())

output_q.put(obj)

"""



193

'''

implementation modified from:

Jean-Paul van Brakel via:

https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-

data/22640362#22640362

'''

import numpy as np

# only supports saving to a file

# otherwise we get GTK conflicts with openCV

import matplotlib

matplotlib.use('AGG')

import matplotlib.pyplot as plt

class Zscore():

def __init__(self, lag, threshold, influence, memory_size=1):

self.lag = lag

self.threshold = threshold

self.influence = influence

self.debug = False

self.init = [False] * memory_size

self.filtered = np.zeros(shape=(memory_size, self.lag))

self.avg_filter = np.zeros(shape=(memory_size, 1))

self.std_filter = np.zeros(shape=(memory_size, 1))

# give y_lag as size lag

def run(self, y_lag, mbank):

# init algorithm

if(self.init[mbank]):

self.filtered[mbank,:] = y_lag

self.avg_filter[mbank] = np.mean(self.filtered[mbank,:])
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self.std_filter[mbank] = np.std(self.filtered[mbank,:])

self.init[mbank] = True

# setup

found = None

yy = y_lag[-1]

# did we excede std deviation threshold

if(np.abs(yy - self.avg_filter[mbank]) >

(self.threshold * self.std_filter[mbank])):

# which way are we over

if(yy > self.avg_filter[mbank]):

found = 1

else:

found = -1

# shift

fyy = (self.influence * yy) + \

((1-self.influence) * self.filtered[mbank, -1])

self.filtered[mbank, :] = np.append(

self.filtered[mbank, 1:], fyy)

else:

self.filtered[mbank, :] = np.append(

self.filtered[mbank, 1:], yy)

# update

self.avg_filter[mbank] = np.mean(self.filtered[mbank,:])

self.std_filter[mbank] = np.std(self.filtered[mbank,:])

if(self.debug):

print('in: {0}, avg/std: {1}/{2}, found: {3}'.format(yy, self.avg_filter[mbank],

self.std_filter[mbank], found))

return found
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def plot(self, title, y, mbank):

fig, axs = plt.subplots(2, 1)

axs[0].plot(y, color="b", linewidth=1.0)

axs[0].axhline(y=self.avg_filter[mbank], color="c", linewidth=2.0)

axs[0].axhline(y=self.avg_filter[mbank] + (self.threshold * self.std_filter[mbank]),

color="g", linewidth=1.0)

axs[0].axhline(y=self.avg_filter[mbank] - (self.threshold * self.std_filter[mbank]),

color="g", linewidth=1.0)

axs[0].set_xlabel('frames')

axs[0].set_title(title)

fig.tight_layout()

plt.show()

AnomalyScore:

zscore:

norm:

lag: 15

threshold: 1.8

influence: 0.8

diff:

lag: 60

threshold: 2.2

influence: 0.6

fft:

window: 90

score:

pos_w: 4

pos_w_fft: 2

pos_h: 1

area: 1

peak:

min_frame: 15

ClusterSeries:
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sub_features:

window: 30

cluster:

size_max: 2e3

size_min: 90

amount: 6

BehaviorEst:

anomaly:

window:

normal_up: 10

abnormal_up: 10

abnormal_down: 10

distracted_down: 40

score_threshold: 3

learn:

window:

normal_up: 5

abnormal_up: 5

abnormal_down: 5

distracted_stay: 10

distracted_down: 20

probability:

normal_up: 0.1

distracted_stay: 1

distracted_down: 0.1

score_threshold_ratio: 0.3

C.2 Python Real Time

#!/usr/bin/env python3

"""

The real time (threaded) version of the DDD pipeline
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#import pdb; pdb.set_trace() #DEBUG

"""

# std

import os

import sys

import time

import argparse

import datetime

import csv

import queue

import threading

# available in pip

import numpy as np

import cv2 as cv

from termcolor import cprint

from pyfiglet import figlet_format

# own code

from ddd import DDD

from DisplayHelper import DisplayHelper

def main():

# parse command line arguments

parser = argparse.ArgumentParser()

# arguments

parser.add_argument('-r', '--rec_only', action='store_true',

help='Store only raw video with no annotations')

parser.add_argument('-d', '--debug', action='store_true',

help='Print extra debug information')

args = parser.parse_args()

# welcome text
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cprint(figlet_format('DDD !!!', font='starwars'),

'yellow', 'on_grey', attrs=['bold'])

# setup objects

dh = DisplayHelper(rec_only=args.rec_only) #t0

drt = DDD()

# start text

cprint(figlet_format('Start', font='cybermedium'),

'green', 'on_grey', attrs=['bold'])

if(not args.rec_only):

# setup thread 1

t1_in_q = queue.Queue(maxsize=1)

t1_out_q = queue.Queue(maxsize=1)

# launch t1

t1 = threading.Thread(target=drt.detect_objects.run_tr,

args=(t1_in_q, t1_out_q), daemon=True)

t1.start()

else:

# rec only text

cprint(figlet_format('REC Only...', font='cybermedium'),

'blue', 'on_grey', attrs=['bold'])

# video loop

while(True):

# get, display and run detector

image, rgb = dh.read()

if(not args.rec_only):

# pass to queue

try:

t1_in_q.put_nowait(rgb)

except queue.Full:

# drop current image if full

pass
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# pull from queue

try:

detections = t1_out_q.get_nowait()

tracks = drt.tracker.update_all(detections, rgb)

except queue.Empty:

detections = None

tracks = None

# annotate image

drt.annotate_display(image, detections, tracks, True)

# display

dh.display(image)

# check for exit

if dh.close:

break

# end text

cprint(figlet_format('FIN', font='cybermedium'),

'red', 'on_grey', attrs=['bold'])

if __name__ == '__main__':

main()

"""

This class will host the camera, window and video recording information

"""

# std

import os

import sys

import time
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import argparse

import datetime

import csv

import threading

# available in pip

import numpy as np

import cv2 as cv

class DisplayHelper():

def __init__(self, rec_only=False):

# settings

self.window_name = 'ddd'

self.width = 800

self.height = 600

self.vid_fps = 30.0

self.scn_debug = True

self.time_last = time.time()

self.fps = 0

self.rec_only = rec_only

if(self.rec_only):

self.vid_codac = cv.VideoWriter_fourcc(*'XVID')

else:

self.vid_codac = cv.VideoWriter_fourcc(*'MJPG')

# overlay font

self.font = cv.FONT_HERSHEY_SIMPLEX

self.font_scale = 0.5

self.font_thick = 1

self.font_line = cv.LINE_AA

self.text_color = (255, 255, 153) # light yellow

self.back_color = (0, 0, 0) # black

# time stamp

time_str = '{:%Y-%b-%d_%H_%M_%S_%f}'.format(datetime.datetime.now())
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# setup camera

cap = cv.VideoCapture(0)

cap.set(cv.CAP_PROP_FRAME_WIDTH, self.width)

cap.set(cv.CAP_PROP_FRAME_HEIGHT, self.height)

cap.set(cv.CAP_PROP_FPS, self.vid_fps)

cap.set(cv.CAP_PROP_AUTOFOCUS, 0) # off

cap.set(cv.CAP_PROP_FOCUS, 0) # min (255 is max)

self.__cam = cap

self.__raw = None

(self.tr_ret, self.tr_image) = self.__cam.read()

self.thread_running = True

threading.Thread(target=self.update, args=()).start()

# setup display

cv.namedWindow(self.window_name, cv.WINDOW_AUTOSIZE)

cv.moveWindow(self.window_name, 0, 0)

cv.setWindowProperty(self.window_name, cv.WND_PROP_FULLSCREEN,

cv.WINDOW_FULLSCREEN)

# setup recording streams

if(not self.rec_only):

self.outa = cv.VideoWriter('{0}_anno_output.avi'.format(time_str),

self.vid_codac, self.vid_fps,

(self.width, self.height))

self.outr = cv.VideoWriter('{0}_raw_output.avi'.format(time_str),

self.vid_codac, self.vid_fps,

(self.width, self.height))

@property

def close(self):

#is_closed = (cv.getWindowProperty(self.window_name, 0) < 0)

is_closed = (cv.waitKey(1) & 0xFF == ord('q'))
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if(is_closed):

# stop thread

self.thread_running = False

# release and destroy

self.outr.release()

if(not self.rec_only): self.outa.release()

self.__cam.release()

cv.destroyAllWindows()

return is_closed

def update(self):

while(True):

# check for stopped thread

if(not self.thread_running):

return

# grab next frame

(self.tr_ret, self.tr_image) = self.__cam.read()

def read(self):

if(self.tr_ret):

# camera is mounted upside-down

img = cv.flip(self.tr_image, -1)

rgb = cv.cvtColor(img, cv.COLOR_BGR2RGB)

# unedited copy for playback

self.__raw = img.copy()

# calculate FPS

now = time.time()

self.fps = 1 / (now - self.time_last)

self.time_last = now

else:
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img = None

return img, rgb

def display(self, image):

# add debug information

if(self.scn_debug):

fps_info = 'FPS: {:.2f}'.format(self.fps)

# outer box

text_start = (15, 15)

text_size, base = cv.getTextSize(fps_info, self.font,

self.font_scale,

self.font_thick)

text_end = (text_start[0] + text_size[0],

text_start[1] - text_size[1])

cv.rectangle(image,

text_start,

text_end,

self.back_color, cv.FILLED)

# FPS

cv.putText(image, fps_info, text_start,

self.font, self.font_scale,

self.text_color, self.font_thick,

self.font_line)

# display image

cv.imshow(self.window_name, image)

# record video

self.outr.write(self.__raw)

if(not self.rec_only): self.outa.write(image)

C.3 Python Utilities
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#!/usr/bin/env python

import glob

import os

import sys

import threading

import random

import time

import shutil

import multiprocessing

try:

sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % (

sys.version_info.major,

sys.version_info.minor,

'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])

except IndexError:

pass

import carla

import skvideo.io

try:

import pygame

except ImportError:

raise RuntimeError('cannot import pygame, make sure pygame package is installed')

try:

import numpy as np

except ImportError:

raise RuntimeError('cannot import numpy, make sure numpy package is installed')

try:

import queue

except ImportError:

import Queue as queue
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class DriveAndFilm():

def __init__(self):

pygame.init()

# keys are known working vehicles and list of known good colors

self.vehicles = {'vehicle.lincoln.mkz2017': [2, 5],

'vehicle.nissan.patrol': [0, 2],

#'vehicle.audi.a2': [0],

'vehicle.tesla.model3': [0]}

# known good waypoint coordinates pairs

# 0 - lead car, 1 - tail car : (x, y)

self.waypoints = {'Town03_loc-0': [(186, -2), (193, -2)],

'Town01_loc-0': [(243, 327), (250, 327)],

'Town01_loc-1': [(174, 60), (167, 60)]}

# maneuver variation bounds

self.drift_bounds = {'duration': np.linspace(1.0, 2.5, 5),

'strength': np.linspace(0.07, -0.07, 4)}

self.swerve_bounds = {'duration': np.linspace(0.4, 1, 5),

'strength': np.linspace(0.50, -0.50, 4)}

print(self.drift_bounds)

def run(self, seed=42, maneuver_type='drift'):

# set random seed

random.seed(a=seed, version=2)

postfix = maneuver_type + '_' + str(seed)

# create a new folder for images

og_image_folder = './saved_images'

image_folder = og_image_folder

i = 0

while(os.path.exists(image_folder)):

image_folder = og_image_folder + '_{0}'.format(i)
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i = i + 1

# connect

client = carla.Client('localhost', 2000)

client.set_timeout(5.0)

# connect to world

position_list = [x for x in self.waypoints.keys()]

#if(x.startswith(wmap.name))]

rkey_pos = random.choice(position_list)

postfix += '_' + rkey_pos

if(rkey_pos.startswith('Town01')):

world = client.load_world('Town01')

elif(rkey_pos.startswith('Town03')):

world = client.load_world('Town03')

wmap = world.get_map()

print('using map: ' + wmap.name)

# setup syncronous mode

print('enabling synchronous mode.')

settings = world.get_settings()

settings.synchronous_mode = True

world.apply_settings(settings)

world.tick()

actor_list = []

try:

blueprint_library = world.get_blueprint_library()

# select vehicle type

rkey = random.choice(list(self.vehicles.keys()))

rcol = random.choice(self.vehicles[rkey])

print('using vehicle: ' + rkey)
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# setup vehicle type

bp = blueprint_library.find(rkey)

color = bp.get_attribute('color').recommended_values[rcol]

bp.set_attribute('color', color)

# select starting positions

rpos = self.waypoints[rkey_pos]

lead_waypoint = wmap.get_waypoint(

carla.Location(x=rpos[0][0], y=rpos[0][1]))

tail_waypoint = wmap.get_waypoint(

carla.Location(x=rpos[1][0], y=rpos[1][1]))

# spawn the lead car

lead_vehicle = world.spawn_actor(bp, lead_waypoint.transform)

lead_vehicle.set_simulate_physics(True)

lead_vehicle.set_autopilot(True)

actor_list.append(lead_vehicle)

print('created: {} at {}'.format(lead_vehicle.type_id,

lead_waypoint.transform.location))

# spawn the camera car

tail_vehicle = world.spawn_actor(bp, tail_waypoint.transform)

tail_vehicle.set_simulate_physics(True)

actor_list.append(tail_vehicle)

print('created: {} at {}'.format(tail_vehicle.type_id,

tail_waypoint.transform.location))

# setup camera

camera_bp = blueprint_library.find('sensor.camera.rgb')

#camera_bp.set_attribute('image_size_x', '800')

#camera_bp.set_attribute('image_size_y', '600')

## set camera capture rate to 30 FPS

#camera_bp.set_attribute('sensor_tick', str(1/30))
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# attach camera

camera_transform = carla.Transform(carla.Location(x=1.5, z=1.5))

camera = world.spawn_actor(camera_bp,

camera_transform, attach_to=tail_vehicle)

actor_list.append(camera)

print('created: {} at {}'.format(camera.type_id,

camera_transform.location))

# setup camera capture

camera.listen(lambda image:\

image.save_to_disk(image_folder +\

'/%06d.png' % image.frame_number))

"""

# set the spectator to spawned location

spectator = world.get_spectator()

spectator.set_transform(tail_waypoint.transform)

"""

"""

#TODO auto pilot settings

# https://carla.readthedocs.io/en/latest/measurements/

measurements, sensor_data = carla_client.read_data()

control = measurements.player_measurements.autopilot_control

# modify here control if wanted.

carla_client.send_control(control)

tail_vehicle.set_autopilot(True)

"""

# Make sync queue for sensor data

camera_bp = blueprint_library.find('sensor.camera.rgb')

camera_transform = carla.Transform(carla.Location(x=-5.5, z=2.8))

camera = world.spawn_actor(camera_bp,

camera_transform, attach_to=tail_vehicle)

actor_list.append(camera)

print('created: {} at {}'.format(camera.type_id,

camera_transform.location))
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image_queue = queue.Queue()

camera.listen(image_queue.put)

# setup display

frame = None

display = pygame.display.set_mode(

(800, 600),

pygame.HWSURFACE | pygame.DOUBLEBUF)

font = self.get_font()

clock = pygame.time.Clock()

start_time = pygame.time.get_ticks()

# setup maneuver

if(maneuver_type == 'drift'):

bounds = self.drift_bounds

else:

bounds = self.swerve_bounds

maneuver_start = 7

maneuver_time = random.choice(bounds['duration'])

film_end = 16

et = [x*1000 for x in

[maneuver_start,

(maneuver_start + maneuver_time),

film_end]

]

lead_steer = random.choice(bounds['strength'])

print(et)

# loop

while True:

if self.should_quit():

return

# get and advance time
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clock.tick()

world.tick()

ts = world.wait_for_tick()

eltime = (pygame.time.get_ticks() - start_time)

# alter behavior

tail_vehicle.apply_control(

carla.VehicleControl(throttle=0.6, steer=0.00))

if(maneuver_type == 'drift'):

# drift

if(et[0] < eltime < et[1]):

# execute maneuver

lead_vehicle.set_autopilot(False)

lead_vehicle.apply_control(

carla.VehicleControl(throttle=0.35, steer=lead_steer))

tail_vehicle.apply_control(

carla.VehicleControl(throttle=0.0, steer=0.00))

elif(et[1] < eltime < et[2]):

# correct

lead_vehicle.set_autopilot(True)

elif(et[2] < eltime):

# end run

break

else:

# swerve

if(et[0] < eltime < et[1]):

# execute maneuver

lead_vehicle.set_autopilot(False)

lead_vehicle.apply_control(

carla.VehicleControl(throttle=0.5, steer=lead_steer))

tail_vehicle.apply_control(
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carla.VehicleControl(throttle=0.0, steer=0.00))

elif(et[1] < eltime < et[2]):

# correct

lead_vehicle.set_autopilot(True)

elif(et[2] < eltime):

# end run

break

# frame management

if frame is not None:

if ts.frame_count != frame + 1:

logging.warning('frame skip!')

frame = ts.frame_count

while True:

image = image_queue.get()

if image.frame_number == ts.frame_count:

break

logging.warning(

'wrong image time-stampstamp: frame=%d, image.frame=%d',

ts.frame_count,

image.frame_number)

self.draw_image(display, image)

fps_surface = font.render('% 5d FPS' % clock.get_fps(),

True, (255, 255, 255))

time_surface = font.render(' % 3.2f s' % (eltime / 1000),

True, (255, 255, 255))

display.blit(fps_surface, (8, 10))

display.blit(time_surface, (8, 23))

pygame.display.flip()
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finally:

print('\ndisabling synchronous mode.')

settings = world.get_settings()

settings.synchronous_mode = False

world.apply_settings(settings)

# clean up

print('destroying assests')

for actor in actor_list:

actor.destroy()

print('done.')

return postfix, image_folder

def exit(self):

pygame.quit()

def draw_image(self, surface, image):

array = np.frombuffer(image.raw_data, dtype=np.dtype("uint8"))

array = np.reshape(array, (image.height, image.width, 4))

array = array[:, :, :3]

array = array[:, :, ::-1]

image_surface = pygame.surfarray.make_surface(array.swapaxes(0, 1))

surface.blit(image_surface, (0, 0))

def get_font(self):

fonts = [x for x in pygame.font.get_fonts()]

default_font = 'ubuntumono'

font = default_font if default_font in fonts else fonts[0]

font = pygame.font.match_font(font)

return pygame.font.Font(font, 14)

def should_quit(self):

for event in pygame.event.get():

if event.type == pygame.QUIT:

return True

elif event.type == pygame.KEYUP:
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if event.key == pygame.K_ESCAPE:

return True

return False

def img_to_video(in_q):

while True:

try:

# attempt to get the next item

item = in_q.get_nowait()

except queue.Empty:

break

else:

# process item

postfix, folder_path = item

# find an unused filename

print('converting images to video')

og_filename = 'carla_' + postfix

filename = og_filename

i = 0

while(os.path.exists(filename + '.mp4')):

filename = og_filename + '_{0}'.format(i)

i = i + 1

filename += '.mp4'

# create video writer

# fps = 30 doesn't seem to matter

writer = skvideo.io.FFmpegWriter(filename)

# outputdict={'-r': str(fps)})

# loop though images

for (root, _, filenames) in os.walk(folder_path):

for name in filenames:

fname = os.path.join(root, name)
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if(fname.endswith('.png')):

img = skvideo.io.vread(fname)

writer.writeFrame(img)

writer.close()

shutil.rmtree(folder_path)

print('finished: {}'.format(postfix))

time.sleep(.1)

return True

def main():

file_q = multiprocessing.Queue()

# start sim actor

daf = DriveAndFilm()

#maneu = 'swerve'

maneu = 'drift'

for i in range(127, 138):

postfix, image_folder = daf.run(seed=i,

maneuver_type=maneu)

file_q.put((postfix, image_folder))

time.sleep(10)

daf.exit()

# creating processes

cpu_count = multiprocessing.cpu_count()

processes = []

print('multiprocess count: {}'.format(cpu_count // 2))

for _ in range(cpu_count // 2):

p = multiprocessing.Process(target=img_to_video, args=(file_q,))

processes.append(p)

p.start()

# completing process

for p in processes:

p.join()
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print('processes completed')

if __name__ == '__main__':

main()

"""

"""

# default

import os

import sys

# pip

import yaml

import numpy as np

from sklearn.base import BaseEstimator, ClassifierMixin

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

# own

sys.path.append('../src')

from ddd import auto_batch_test

class D3E(BaseEstimator, ClassifierMixin):

""" class to cast ddd as a sci-kit learn estimator

"""

def __init__(self, prefix_in):

# run dirs

self.run_folder_path = '../data/video'

self.truth_file = '../data/truth/labels.json'

self.prefix_in = prefix_in

# load default params
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param_fp = '../src/parameters.yaml'

with open(param_fp) as f:

self.params = yaml.load(f, Loader=yaml.FullLoader)

def set_params(self, **parameters):

for parameter, value in parameters.items():

setattr(self, parameter, value)

# override

self.params['AnomalyScore']['zscore']['norm']['lag'] = self.zscore_norm_lag

self.params['AnomalyScore']['zscore']['norm']['threshold'] = self.

zscore_norm_threshold

return self

def fit(self, X, y=None):

return self

def predict(self, X, y=None):

return([])

def score(self, X, y=None):

# create a new directory to host all re-runs

og_prefix = '{}/sub_param_opt'.format(self.prefix_in)

prefix = og_prefix

i = 0

while(os.path.exists(prefix)):

prefix = og_prefix + '_{0}'.format(i)

i = i + 1

os.mkdir(prefix)

self.prefix = prefix

# run everything

report_info = auto_batch_test(self.params, self.prefix,

self.run_folder_path,

self.truth_file)

# calculate metrics
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total_mcc = np.mean(np.nan_to_num(np.asarray(

[v['MCC'] for k,v in report_info.items()]

)))

# print status

print('Run: {}\nFolder: {}\n Performance: {}\nParameters: {}'.format(i,

self.prefix, total_mcc, self.params))

return total_mcc

def main():

"""

np.linspace(5, 30, num=5,

dtype=np.dtype(int)).tolist(),

"""

tuned_params = {"zscore_norm_lag" : [5, 10, 30, 60, 120],

"zscore_norm_threshold" : np.linspace(1.5, 2.5, num=5).tolist()}

print('\n{}\n'.format(tuned_params))

# create a new directory to host all re-runs

og_prefix = 'param_opt'

prefix = og_prefix

i = 0

while(os.path.exists(prefix)):

prefix = og_prefix + '_{0}'.format(i)

i = i + 1

os.mkdir(prefix)

gs = GridSearchCV(D3E(prefix_in=prefix), tuned_params,

n_jobs=-1, pre_dispatch=10,

cv=2)

gs.fit(np.arange(200).tolist(), np.append(np.ones(100), np.zeros(100)).tolist())

# print results and save to file
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with open("{}/log.txt".format(prefix), "a") as f:

print('Best Score: {}'.format(gs.best_score_), file=f)

print('Best Parameters:\n\t {}'.format(gs.best_params_), file=f)

print('Results:\n\t {}'.format(gs.cv_results_), file=f)

if __name__ == '__main__':

main()

from moviepy.editor import VideoFileClip

# in seconds

clip = VideoFileClip("../data/video/my_video-2.mkv", audio=False).\

subclip(69,83)

clip.write_videofile("D2_C2_5-11-2019_BHS_CCtruck.mp4")

C.4 Python Libraries

termcolor 1.1.0 pyfiglet 0.8.post1 scipy 1.2.1 dlib 19.17.0 tsfresh 0.12.0 edgetpu 1.9.2 numpy

1.16.2 moviepy 1.0.0 matplotlib 3.0.3 pandas 0.25.0 opencv python 4.1.0.25 Pillow 6.1.0

scikit learn 0.21.3 pyyaml 5.1.2
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