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Abstract 
Grain growth during heat treatment has a negative effect on fatigue. As a result, grain 

growth kinetics have been determined for 4140 steel in order to predict the effective time for heat 

treating. A series of samples were heat treated at 850 
o
C and 900 

o
C and held for 60, 120 and 180 

minutes. It was experimentally determined that grain growth kinetics were faster for samples 

with a higher austenizing temperature. Diffusivity growth constants were found to be 2.682E-06 

(mm
2
/min) for the samples heated at 900C and 1.902E-06 (mm

2
/min) for those treated at 850C. 

The maximum heating time t before the deterioration of the material properties, namely fatigue, 

was calculated to be 510min at 850
o
C and 442min at 900

o
C. 
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1 Introduction  
 

 

Low alloy medium carbon steels are used in a variety of automotive and general 

engineering applications, particularly where strength and impact toughness are required.[1,2] 

Typical alloying elements include nickel, chromium, molybdenum, manganese, silicon or boron. 

The purpose of these elements are to optimize the mechanical properties, offering better 

toughness and material properties superior than plain carbon steels. For example, carbon 

increases hardness while combinations of chromium and molybdenum, increase elevated 

temperature strength. Although the chemical composition is important, the influence of 

microstructure on mechanical properties is more significant. [2] The only practical method of 

changing microstructure is heat treatment.  

Grain growth as a result of heat treatment can affect properties such as strength and 

fatigue life. It is reported that grain size is one of the factors that cause fatigue failure. Taylor et 

al show that the threshold value for fatigue crack growth increases with increasing grain size and 

decreasing yield strength. [10] Furthermore, according to the Hall-Petch relationship, as the 

average grain size decreases, the yield strength of the steel increases. [6] Grain growth is related 

to austenizing temperature and hold time, as well as the original grain size of the steel before 

hardening. [5] 

 Therefore the goal of this project was to identify the effects of austenizing temperature 

and hold time on grain growth in a heat treated medium carbon low alloy steel (AISI 4140). To 

accomplish this goal a series of samples were heat treated at 850
o
C and 900

o
C for 60, 120 and 

180 minutes. These samples were then cut, mounted, polished and etched in order for 

microstructure analysis to determine the prior austenitic grain size. The microstructure of each 
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sample was observed by high resolution optical microscopy. Using this methodology, its grain 

size was measured and grain growth kinetics were determined. 

 

  



 3 

2 Background 
 

2.1 4140 Steel 

AISI 4140 is a medium carbon chromium - molybdenum steel used for a wide range of 

applications in most industry sectors because of its low cost, good forgeability and 

machinablility. [1] Typical applications are: Bearings, Bushes, Cylinders (Various), Gears, 

Conveyor Rolls, Hydraulic Shafts, Hollow Shafts, Hollow Parts (Various), Nuts and Rings. 

This steel grade responds readily to heat treatment and is comparatively easy to machine 

in the heat treated condition. The chemical composition is listed in Table 1. 

Table 1: Chemical Composition of AISI 4140 Steel. [9] 

Chemical Composition Min.% Max.% 

Carbon  0.38 0.43 

Silicon  0.15 0.04 

Manganese  0.75 1.00 

Chromium  0.80 1.10 

Molybdenum  0.15 0.25 

Phosphorous   0 0.04 

Sulphur   0 0.015 

The chromium content provides good hardness penetration and the molybdenum imparts 

uniformity of hardness and high strength. [2] The material properties are show in table 3. This 

steel resists creep in temperatures up to 540
 o 

C and maintains its properties even after long 

exposure at relatively high working temperatures. The wear resistance can be considerably 

increased by flame hardening or induction hardening particularly with nitriding. [9] 

 

 



 4 

Table 2: Mechanical Properties of AISI 4140 Steel. [13] 

Properties 

 Conditions  

T (°C) Treatment 

Density (×1000 kg/m3) 7.7-8.03  25   

Poisson's Ratio 0.27-0.30 25   

Elastic Modulus (GPa) 190-210 25   

Tensile Strength (Mpa) 1020.4 

25 
normalized at 870°C 
   

Yield Strength (Mpa) 655  

Elongation (%) 17.7  

Reduction in Area (%) 46.8  

Hardness (HB) 197  25 annealed at 815°C  

Impact Strength (J) 
(Izod) 

54.5 25 annealed at 815°C  

 

2.2 Yield Stress and Heat Treatment 

Yield strength is the stress at which a material starts to deform plastically. Prior to this a 

material will deform elastically, returning back to its original shape once the load is removed. As 

shown in the curve in figure 1, there is no definite point on the curve where elastic strain ends 

and plastic strain begins; the yield strength is chosen to be that strength when a definite amount 

of plastic strain has occurred. During the yielding stage, the material deforms without an increase 

in applied load, but during the strain hardening stage, the material undergoes changes in its 

atomic and crystalline structure, resulting in increased resistance of material to further 

deformation. 
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Figure 1: Stress-Strain Diagram/Tensile Test [5] 

  Yield strength is an important property in most engineering design. A component 

designed to support a force during use, must have a yield strength high enough to prevent plastic 

deformation. The value is influenced by factors such as raw material quality, chemical 

composition, heat treatment process, etc. However, major microstructural changes result from 

the different heat treating parameters.  

The relationship between grain size and yield strength is given by equation 2-1, known as 

Hall-Petch equation. Where 𝜎𝑦  is yield strength, 𝜎𝑜  is the friction stress opposing dislocation 

motion, and K is the stress intensity factor and d is the mean grain size. 

 𝜎𝑦 = 𝜎𝑜 +
𝐾

 𝑑
  (2.1) 

 Mean grain size is determined by equation 2-2 which shows the relationship between 

grain growth and hold time. 
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 𝑑2 − 𝑑𝑜
2 = 𝑘𝑡  (2.2) 

The results reported by many researchers indicate that the yield strength increases 

following the Hall-Petch equation, but if the grain size reduces to the nano-range grain 

boundaries start to slide. This means that by changing grain size one can affect dislocation 

movement and yield strength. [12]  

In environments where crack nucleation is predominate; i.e in the low stress, high-cycle 

regime, grain size is directly proportional to fatigue life. [8] As grain diameter grows, planar slip 

increases which causing the grain boundaries to control the rate of cracking. The heat treatment 

parameters used to control grain size are considered to be mainly austenizing temperature, 

soaking time, control of quench rate and tempering temperature. These processes result in 

microstructural variations, especially the mixture of phases, and grain size.  

2.3 Heat Treatment of Steel 

 

The heat treating of steels results in a variety of microstructures. The important 

equilibrium phases are shown in the Fe-Fe3C equilibrium phase diagram (Figure 2). [7] Typical 

heat treatment processes usually start with an austenization treatment where the steel is heated 

into the austenite region. Here the ferrite phase transforms and all the carbides are dissolved in 

the austenite. Slow cooling to below the eutectoid temperature results in the formation of ferrite 

and cementite, as shown in Figure 3. Depending on the carbon content of the steel and the 

cooling rate, this might appear as proeutectoid ferrite and pearlite. Slower cooling rates produce 

coarser microstructures and very slow cooling rates, or holding at a temperature just below the 

eutectoid temperature, can result in a microstructure consisting of spherical cementite grains in a 

field of ferrite. [7] Heat treatments designed to strengthen steel, however, are based on the 
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formation of bainite, martensite and other phases, which can be formed by rapid cooling from the 

austenite field and holding at a relatively low temperature. [7] 

  

Figure 2: Fe-Fe3C equilibrium phase diagram. [7] 

 

The grain boundaries of the austenite phase produced during the treatment mentioned 

above are the prime location for nucleation of the new phases. For the slow cooling of a medium 

carbon steel from the austenite phase field, a proeutectoid ferrite would nucleate and grow from 

the prior austenite boundaries. When the temperature reaches eutectoid temperature the 

remaining austenite would transform into the eutectoid phase.  
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Figure 3: Isothermal transformation diagram for 4140 Steel [7]  

 

2.4  Method for revealing prior-austenite grain size 

 

The determination of prior-austenite grain size has been the subject of metallurgical 

research efforts for many years. Metallurgical laboratories are often required to perform prior-

austenite grain size determinations on martensitic steel components that have been heat treated. 

[4] In heat-treated steels, the carbon is distributed though the specimens leaving a martensitic 

microstructure. The grain size cannot be measured in martensite especially in medium and high 

carbon steels, thus one must measure the size of the parent austenite grains, formed during heat 
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treatment. The difficulty here lies in the etching procedure required to reveal the grain 

boundaries. 

There are several standard methods for determination of prior-austenite grain size: 

McQuaid-Ehn carburizing, oxidation, copper diffusion, and thermal etching. The carburization 

method by McQuaid and Ehn consists of delineating the austenite grain boundaries by the 

precipitation of a proeutectoid cementite network. The sample is austenitized, and then pack 

carburized at 925 C
o
 for 8 hours, and slowly cooled to room temperature. [11] Oxidation etching 

consists of heating a polished face of hypoeutectoid in a furnace with an oxidizing atmosphere. 

The grain boundaries are revealed by preferential oxidation or by grain-boundary 

decarburization. [4] Thermal etching or grain boundary grooving in vacuum is an established 

method for delineating austenite grain boundaries in a wide range of steels. The method consists 

of heating the polished specimen to the desired temperature into the austenite range under a 

vacuum of 10-3mm of mercury. Grooves form at the austenite grain boundaries as a result of 

preferential evaporation and surface tension effects and can be seen after cooling to room 

temperature. [3] 

Although these methods may occasionally be mandated by material or procedural 

specifications, they are typically not preferred because they have a tendency of altering the as-

received microstructure. These processes can also be labor-intensive and costly. [4] 

Nevertheless, the key element to revealing the prior austenite grain size is the etching technique. 

Special etchants must be used and often times they are not satisfactory in revealing a high 

percentage of grain boundaries.   

Chemical etching solutions are widely used. Etching reagents based on saturated aqueous 

picric acid plus a wetting agent are reported to give the best results in quenched and tempered 
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steels. [4] The most successful etchant for revealing prior-austenite grain size in martensitic and 

bainitic steels is Bechet and Beaujard’s etch [3]. 
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3 Experimental Plan 
 

The initial material was a bar of 4140 steel approximately 12 inches long. The rod was 

sectioned into 16 discs approximately ¼” thick using a MarkV CS600 abrasive saw in 

conjunction with a SiC blade.  Extra discs were cut for use as control samples and samples 

instrumented with thermocouples.  

After looking the different standard methods for determination of prior-austenite grain 

size: McQuaid-Ehn carburizing, oxidation, copper diffusion, and thermal etching, it was 

determined that they would be too costly and time consuming. The most appropriate strategy for 

this project would be to heat the sample into the austenite phase region and cool at a controlled 

rate. Since 4140 is a hypo-eutectoid steel with medium carbon content, the austenite grain 

boundaries are outlined by ferrite. After polishing and etching with the right etchant, microscopic 

examination may reveal the ferrite network around prior austenite grains.  

To identify the effects of austentizing temperature and hold time on grain growth in a 

heat treated medium carbon low alloy steel, a number of samples were heat treated at different 

austentizing temperatures.  Heat treatments were performed at the temperatures of 850 and 950, 

degrees Celsius for durations of 60, 90, 120 minutes.  This required a total of 6 samples. 

Table 3: Heating Matrix 

 

 

 

 

 

 

 

Heating Matrix 

Quench: Water   

Heat Rate: Immersion 

 Temp.  

Hold Time 850 
o
C 900 

o
C 

60min Sample 1 Sample 2 

120min Sample 3 Sample 4 

180min Sample 5 Sample 6 
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4 Methodology 
 

The goal of this project is to identify the effects of austenitizing temperature and hold 

time on grain growth in a heat treated medium carbon low alloy steel (AISI 4140). This required 

the delineation of the prior-austenitic grain size, which can be problematic and time consuming 

depending on the method used. To accomplish the goal data was obtained by heat treating 6 

samples at different austentizing temperatures. These treated samples were then cut, mounted, 

polished and etched in order for microstructure analysis to determine the prior austenitic grain 

size. The microstructure of each sample was observed by high resolution optical microscopy. 

Using this methodology, different microstructures were identified and grain growth was 

measured. In this chapter, the heat treatment process, sample preparation, image acquisition and 

sample measurement and analysis techniques are presented. 

4.1 Heat Treatment 

This section outlines the method used to heat treat each sample. 

4.1.1 Temperature-Time Data Acquisition and Furnace calibration 

 

The time-temperature data was collected by using a sample of 4140 steel, with a diameter 

of 4cm and thickness of 1.5cm instrumented with a thermocouple. A hole was drilled through the 

geometric center with 1/16” drill bit. The thermocouple used was an Omega brand K-type 

thermocouple. The hole was just slightly larger than the thermocouple to create a snug fit. 

Powdered graphite was place in the hole to eliminate air gaps between the thermocouple and the 

sample. The thermocouple was attached to an Omega HH506RA multilogger thermometer.  To 

acquire the temperature of the sample and time, the HH506RA was used in conjunction wit a 
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Compaq Armada laptop computer, running Windows XP. Omega software for the HH506RA 

was installed allowing for time and temperature data to be saved to an excel spreadsheet. The 

program also allowed the data capture rate to be changed. 

 

Figure 4: Heat Treatment Setup 

 

The furnace used for all heat treatments was a Thermolyne 1400 Furnace, model number 

FB1415M.  The thermocouple was tested and there was a significant difference between the 

furnace display temperature and the thermocouple reading. The offset was about 30 C
0 

so for 

each target temperature the furnace was adjusted to compensate.  

Appropriate temperatures were set based on the furnace calibration. Once the temperature 

was achieved, the thermocouple sample was placed in the furnace. The time temperature curve 

for that test is shown in Figure 6. It took 20 minutes for the thermocouple sample to reach the 

desired temperature and from that empirical test, the heat treatment duration timer could be 

started without needing a thermocouple. When the desired time duration was achieved, the 
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furnace door was opened and the sample was removed and immediately quenched in room 

temperature water.   

To observe grain boundaries after heat treatment, samples would need to be sectioned to 

reveal an inner surface, devoid of any anomalies or oxidation that the surface of each sample 

might contain. Standard practices for mounting and polishing were used to provide a clean 

polished surface to view under optical microscope.   

 

4.2 Sample Preparation 

4.2.1 Cutting 

 

Heat treated samples were each sectioned on a Mark V Series 600 abrasive saw, model 

number 11-1180.  A control sample that had not been heat treated was also sectioned on this saw.  

The blade used was a SiC for medium steels.  It had a 4 inch diameter and was 0.012 inches 

thick.  The blade specified is made specifically for hard alloys. A constant supply of coolant was 

maintained in the saw for the duration of the cutting operation. The samples were later mounted. 

4.2.2 Mounting  

 

After each sample was sectioned to reveal an internal face, one half of each was mounted 

in preparation for polishing and etching.  The samples were mounted on a Buehler Simplimet II 

mounting machine with a 1-1/4in ram using Beuhler Phenolic powder (green - catalog number 

20-3300-400). The samples were kept at a pressure of 4.2 ksi or 29 MPa and heated to 120 

degrees Fahrenheit.  The samples where then allowed to cool to 60 degrees Fahrenheit, and taken 

out of the mounting machine.  Once mounted, the backs of the sample mounts were inscribed 

with a sample number. 
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4.2.3 Grinding and Polishing 

 

The mounted samples went through a series of grinding and polishing phases.  Initially, 

each sample was ground on 180 grit silicon carbide paper to get consistent scratches in one 

direction and maintain a flat surface. Samples were ground for the duration required to achieve 

the desired flatness and surface finish on Buehler grinding paper. Grits used were 180, 240, 320, 

400, 600, 1200, and finally 2400 Buehler Microcut silicon carbide grinding paper. Samples were 

then washed and rinsed with acetone to remove any loose particles.     

Cleaned samples were then polished using 3 micron alumina polishing solution until the 

surface could no longer be improved. Lastly a Buehler polisher was used with Buehler 

Meastermet one micron colloidal silica polishing suspension, to achieve a final mirror polish on 

each sample. Once it was determined that the sample surface was well ground and polished, the 

samples were ready for etching. The polishing cycle was often repeated when samples needed to 

be re-etched in order to remove each previous etch from the sample surface.   

4.2.4 Etching 

 

To see the microstructure, etching is needed, with the most commonly used being 2% Nital. It 

was determined from several sources that the most successful etchant for revealing prior 

austenite grain size is Bechet and Beaujard’s etch. [3] The solution consisted of 2g picric acid, 

100mL water and a wetting agent. 3 common wetting agents were investigated: Sodium 

tridecylbenzene sulfonate, sodium dodecylbenzene sulfonate and Teepol. Dodecylbenzene was 

used because it was reported to be successful and was easiest to obtain. [4] The sample was 

immersed vertically in the solution at room temperature and etched in an ultrasonic cleaner for 7 

minutes. 1% HCl was added to the solution because it improved the results. Light surface smut 

was removed with warm water and an acetone rinse. Several other etchants were explored, 



 16 

including 2% Nital, Picral (2-4pct picric acid in ethanol) and Vilellas (1 pct picric acid and 5 pct 

concentrated hydrochloric acid in ethanol), each producing unsatisfactory results.  

4.3 Image Acquisition and Optical Microscopy 

 

After the samples had been prepared, images were taken using an optical microscope. 

A Nikon Epiphot metallograph with attached Nikon Digital Sight DS-U1 image acquisition 

system was used to take optical photos of the microstructure of every sample. Pictures were 

taken using the 50X and 100X lenses.  A computer attached to the Nikon Epiphot was used to 

capture images using Nikon ACT-2U image acquisition software.  The software allowed for 

contrast and brightness adjustment along with a user created scale to be placed on the picture for 

later analysis. Figure 5 displays a typical micrograph.  

 

Figure 5: Photo Micrograph of Sample 5 
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5 Experimental Results 
The following graphs show heat rate of immersion of sample 3 and the overall temperature 

time curve of sample 1.   

 

Figure 6: Temperature time curve for the first 15minutes after immersion 

 

 

Figure 7: Temperature Time Curves. Held at 850 C for 1hr. Quenched in water. 
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5.1 Measurement and Analysis  

 

The next step was to measure grain size. ASTM E112, outlines procedures for Standard 

Test Methods for Determining Average Grain Size. These are standard procedures that include 

microstructure measurements and estimation by comparison to templates and overlays.   

5.1.1 Mean Grain Diameter 

 

Four images of each sample’s microstructure were printed and analyzed. Each image was 

taken at a different location on the sample so that the mean grain diameter could be evaluated for 

the entire specimen. On each image 5 lines were drawn, at a length of 10cm and the number of 

grains intersected was counted according to the Heyn Method, as shown in Figure 6.  The 

calculation for the linear intercept is seen in equation 4-1     

    (4.1) 

 

 

where NL is the number of intercepts per total length of the test lines LT, P is the total number of 

grain boundary intersections and M is the magnification.  
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Figure 8: Heyns Linear Intercept Method 

 

Table 4: Sample Intercept Calculations 

 

 

 

 

 

Individual grains were also analyzed.  First a line was drawn across the longest dimension of the 

grain and another line perpendicular to the first. These two values were measured, and then 

averaged, giving an approximate average diameter relative to the scale.  All of the visible grains 

Intercepts 6 

Line Length 

(mm) 

97.5 

Grains/mm .03 

Magnification 50x 

Constant .3125 

Grain Diameter 

(mm) 

.0201 
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in a particular sample were averaged to obtain a mean diameter for the sample. Using the scale in 

Figure 7, an equivalent value for ASTM grain size could be found. 

 

 

Figure 9: Equivalent ASTM grain-size number 

5.1.2 Average Grain Diameter 

Table 5: Average Grain Diameter 4140 

Sample Grain Size 

(mm) 

Equivalent 

ASTM Number 

1 0.0150 8.8 

2 0.0172 8.5 

3 0.0170 8.5 

4 0.0203 8.0 

5 0.0213 7.8 

6 0.0249 7.4 

 

The data in table 6 corresponds with what is expected of heat treated steel. The samples showed 

grain growth as time and temperature increased. The experimental data from all samples can be 

found in appendix A. 

5.1.3 Grain Growth 

Table 6: Experimental Data 

Sample Austentizing 

Temperature (C) 

Hold Time 

(min) 

Grain Size 

(mm) 

1 850 60 0.0150 

2 900 60 0.0172 

3 850 120 0.0170 

4 900 120 0.0203 

5 850 180 0.0213 

6 900 180 0.0249 
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𝑑2 − 𝑑𝑜
2 = 𝑘𝑡       (5.1) 

 

Based on the grain growth equation (5-1), diameter squared was plot vs. time. After interpolating 

and obtaining a linear trend line in MS Excel, two diffusivity growth constants were found.  

k900 = 2.682E-06 (mm
2
/min) for the samples heated at 900C and k850= 1.902E-06 (mm

2
/min) for 

those treated at 850C. 

 

 

 

Figure 10: Grain Diameter vs. Time 

 

The grain growth kinetics were also simulated using a Beck type model. [14]  

𝑑2 − 𝑑𝑜
2 = 𝑘𝑜 ∙ exp⁡ −

𝑄

𝑅𝑇
 𝑡     (5.2) 

Where d is the mean grain diameter after hold at temperature T, d0 is the initial grain diameter, k0 

is the pre-exponential rate constant, R is the gas constant, Q is the overall activation energy for 

grain growth, and t is the holding time. The experimental data was plot (Figure 11) and the 
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coefficient k0 and exp  −
𝑄

𝑅𝑇
  for each hold temperature T was derived from an exponential 

curve.  

According to Karabelchtchikova et. al. [14] maximum grain size limit before the negative 

effects of fatigue require rework is 55μm. Using equation (5-2) calculations were made to 

determine the maximum heating time t before the deterioration of the material properties, namely 

fatigue. The maximum heating time was calculated to be 510min at 850
o
C and 442min at 900

o
C. 

 

 

Figure 11 
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6 Discussion  
 

Initially the oxidation method was considered for revealing prior austenite grain size. This 

proved unsuccessful because the oxide layer was not clear. Several etchants were used to reveal 

the grain boundaries however only Beaujard and Bechets etch gave favorable results. However 

there was still a lack of clearly visible prior austenite grain boundaries in the many of the test 

samples. Once micrographs were taken this posed problems in measuring grain size. In addition, 

the linear intercept method is intended for single phase microstructure so manual calculations 

were used to accommodate.  

 

 

 

 

 

 

 

7 Conclusion 
 

Grain growth during heat treatment is one of the factors that cause fatigue failure. 

Therefore it is important to know the relationship between grain growth and different heat 

treating variables. This project looked at austentizing temperature and hold times and proved that 

there is indeed a linear relationship between grain diameter squared and hold time. It was 

experimentally determined that grain growth kinetics were faster for samples with a higher 

austenizing temperature. It would be beneficial to further investigate fatigue and fracture crack in 

relation to grain size. With that relationship one could optimize heat treatment variables to 

reduce grain size thus improving fatigue strength. 
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9 Appendix 
 

9.1 Appendix A: Experimental Data 

 
 

Temperature 
(c) 

Time 
(min) 

Average Grain 
Diameter (mm) D1 D2 D3 D4 

850 60 0.0150 0.0132 0.0140 0.0170 0.0156 

900 60 0.0172 0.0162 0.0155 0.0190 0.0182 

850 120 0.0170 0.0175 0.0170 0.0175 0.0161 

900 120 0.0203 0.0205 0.0195 0.0200 0.0210 

850 180 0.0213 0.0215 0.0218 0.0203 0.0215 

900 180 0.0249 0.0260 0.0249 0.0241 0.0245 

  

Diameter 
Squared(mm2) D12 D22 D32 D42 

850 60 0.00022 0.00017 0.00020 0.00029 0.00024 

900 60 0.00030 0.00026 0.00024 0.00036 0.00033 

850 120 0.00029 0.00031 0.00029 0.00031 0.00026 

900 120 0.00041 0.00042 0.00038 0.00040 0.00044 

850 180 0.00045 0.00046 0.00048 0.00041 0.00046 

900 180 0.00062 0.00068 0.00062 0.00058 0.00060 
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9.2 Appendix B: Micrographs

 

Micrograph 1-1 

Microstructure of 4140, austenized at 850°C for 1hour then water quenched. Etched using Bechet-Beaujard reagent 

50x 
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Micrograph 2-2 

Microstructure of 4140, austenized at 850°C for 1hour then water quenched. Etched using Bechet-Beaujard reagent 

50x 
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Micrograph 3-3 

Microstructure of 4140, austenized at 850°C for 1hour then water quenched. Etched using Bechet-Beaujard reagent 

50x 
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Micrograph 4-4 

Microstructure of 4140, austenized at 850°C for 1hour then water quenched. Etched using Bechet-Beaujard reagent 

50x 
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Micrograph 5-1 

Microstructure of 4140, austenized at 900°C for 1hours then water quenched. Etched using Bechet-Beaujard reagent 

50x 
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Micrograph 6-2 

Microstructure of 4140, austenized at 900°C for 1hours then water quenched. Etched using Bechet-Beaujard reagent 

50x 
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Micrograph 7-3 

Microstructure of 4140, austenized at 900°C for 1hours then water quenched. Etched using Bechet-Beaujard reagent 

50x 
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Micrograph 8-4 

Microstructure of 4140, austenized at 900°C for 1hours then water quenched. Etched using Bechet-Beaujard reagent 

50x 
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Micrograph 9-1 

Microstructure of 4140, austenized at 850°C for 2hours then water quenched. Etched using Bechet-Beaujard reagent 
50x 
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Micrograph 10-2 

Microstructure of 4140, austenized at 850°C for 2hours then water quenched. Etched using Bechet-Beaujard reagent 
50x 
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Micrograph 11-3 

Microstructure of 4140, austenized at 850°C for 2hours then water quenched. Etched using Bechet-Beaujard reagent 
50x 
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Micrograph 12-4 

Microstructure of 4140, austenized at 850°C for 2hours then water quenched. Etched using Bechet-Beaujard reagent 
50x 
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Micrograph 13-1 

Microstructure of 4140, austenized at 900°C for 2hours then water quenched. Etched using Bechet-Beaujard reagent 
 

50x 
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Micrograph 14-2 

Microstructure of 4140, austenized at 900°C for 2hours then water quenched. Etched using Bechet-Beaujard reagent 
 

50x 
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Micrograph 15-3 

Microstructure of 4140, austenized at 900°C for 2hours then water quenched. Etched using Bechet-Beaujard reagent 
 

50x 
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Micrograph 16-4 

Microstructure of 4140, austenized at 900°C for 2hours then water quenched. Etched using Bechet-Beaujard reagent 
 

50x 
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Micrograph 17-1 

Microstructure of 4140, austenized at 850°C for 3hours then water quenched. Etched using Bechet-Beaujard reagent 

50x 
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Micrograph 18-2 

Microstructure of 4140, austenized at 850°C for 3hours then water quenched. Etched using Bechet-Beaujard reagent 

50x 
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Micrograph 19-3 

Microstructure of 4140, austenized at 850°C for 3hours then water quenched. Etched using Bechet-Beaujard reagent 

100x 



 46 

 
Micrograph 20-4 

Microstructure of 4140, austenized at 850°C for 3hours then water quenched. Etched using Bechet-Beaujard reagent 

50x 
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Micrograph 21-1 

Microstructure of 4140, austenized at 900°C for 3hours then water quenched. Etched using Bechet-Beaujard reagent 

50x 
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Micrograph 22-2  

Microstructure of 4140, austenized at 900°C for 3hours then water quenched. Etched using Bechet-Beaujard reagent 

50x 
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Micrograph 23-3 

Microstructure of 4140, austenized at 900°C for 3hours then water quenched. Etched using Bechet-Beaujard reagent 

50x 

 


