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Abstract 

WPI freshmen experience difficulties in their basic science courses because of poor 

background in mathematics. This IQP examines the reasons for this phenomenon and develops a 

treatise of fundamental topics in order to help students fill the gap between expected and actual 

knowledge. 
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Introduction
 

In recent years, much has been reported about the low achievement of American students 

in mathematics. 

A study of 12 industrialized nations conducted in 1964 found that of" 17-year-old 

students enrolled in a math-intensive college preparatory high school curriculum, that is, each 

country's best prepared students, the Americans ranked last" (see [5], p. 2). Even more 

disturbing is the magnitude of the gap in the mathematical competencies ofAmerican students, 

relative to the best-educated students from other countries. Four out of five Americans scored 

below the overall international average in math. 

The Second International Mathematics Study, conducted from 1980-1982, found that the 

top five percent of America's best high school seniors "had only average scores in relation to 

international standards in algebra, functions and calculus, and slightly above average scores in 

geometry" (see [5], p. 3). The SIMS findings also show that the United States ranks among the 

lowest in student retention of math. The U. S. was classified as a low coverage and low retention 

system (see [18], pp. 134-140). 

These educational studies indicate that the math curricula found in various countries are 

determined more by tradition than by fundamental educational principles. "American textbooks 

tend to develop ideas very slowly by progressing through a hierarchy of small, straightforward 

learning tasks. Texts from Asian countries and from the Soviet Union immerse students in much 

more demanding problem situations from the beginning (see [5], p. 27). 

In 1995, the Educational Testing Service reported that although math achievement was 

on the rise, only "about five to ten percent of students are able to demonstrate satisfactory or in­

depth performance on problem-solving tasks." Additionally, "many students perceive 

mathematics as mostly memorizing facts and not as a way to solve problems in real world 

situations" (see [4], p. 2). Other researchers note that students in math classrooms often learn 

rules for manipulating symbols, but fail to learn the meaning of the symbols and the principles 

which they represent. They plunge into problem solving without making sure they fully 

understand the problem (see [3], p. 72). 
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The Third International Mathematics and Science Study, in 1996, surveyed education in 

50 countries and included students who are in their last year of secondary school. This 

comprehensive study included analysis of textbooks, curricula, and instructional practices, as 

well as questionnaires and student assessments (U.S. "The Third" 1). The Summary of Findings 

resulting from this study notes that math curricula standards in the U. S. "are unfocused and 

aimed at the lowest common denominator. In other words, they are a mile wide and an inch 

deep." Also cited is a "lack of common standards on what to teach and how to teach it" (see 

[16], p. 1). Even textbooks are criticized. "U.S. mathematics and science textbooks included far 

more topics than was typical internationally, but provided significantly less coverage than the 

international average for the five most emphasized topics in math and science" (2). Of the 21 

nations whose students took part in the math assessment, American high school seniors came in 

19th. American advanced students in math came in 15th among 16 nations (see [9]). 

Schools have been adopting changes to cope with these dismal results, but the changes 

have been criticized. Interactive math has students working in groups to discover concepts with 

little direct instruction from a teacher (see [5], p. 66). Some new math textbooks contain poetry 

and essays about cultural differences in contrast to Japanese texts which are all about math (see 

[7], p. 182). In the first year after adopting these new math reforms, public school students in 

Palo Alto, California dropped from the 86th percentile nationally to the 58th, then went back up 

to the 77th percentile the next year when the schools moderated their approach (see [10]). 

One of the problems in changing the way math is taught in American classrooms is that 

researchers cannot agree on standardized methods of defining and recording outcomes (see [11], 

pp. 87-88). This leaves school systems and teachers confused about which new teaching 

methods to implement. 

Critics of math education in the United States have expressed their feelings to Congress. 

Senator Robert Byrd, in an address to the Senate, cited the results of the Third International Math 

and Science Study. He criticized a recent algebra textbook for its low mathematics content, and 

condemned the philosophy of teaching students that with computers, there is little need to do 

calculations and solve equations (see [2], p. 2). He expressed dismay at the current outcomes in 

math education, despite the billions of dollars the Federal government spends to improve 

education (1). In conclusion, he urged parents to "get heavily involved to reverse that trend 

now" (3). 
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Dr. Martha Schwartz, a representative ofMathematically Correct, an organization of 

concerned parents, mathematicians, scientists, and educators, recently expressed their concerns 

in a speech delivered to the House ofRepresentatives. She stated that the U.S. is slipping further 

behind in math education, and that an increasing number of parents are growing dissatisfied with 

the math taught in their schools (see [14], p. 1). She blamed some of the problems on state 

governments, and referred to a Fordham Foundation report, which found that most states fail to 

delineate standards for math education (2). 

Yet, the public is partly to blame for the weakness in math education. Richard 1. 

Shumway notes that traditionally the math topics taught in a school system are determined by the 

demands of society. He states that "There is continuing public pressure for a school mathematics 

program that guarantees minimal mathematical competence for survival" (393). 

In light of these findings, I questioned whether students at WPI are experiencing 

problems due to weak high school math backgrounds. The technical nature ofWPI' s curriculum 

requires students to have a stronger mathematical background than the general population. I 

decided to continue my rt?search on the WPI campus to determine if students here are affected by 

poor high school math preparation. 
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Selection of To~ 

To determine if the problem ofweak high school math backgrounds affects WPI 

students, I took a survey of the entire freshman class. Another reason for the survey was 

to assess what areas of math were least understood. The freshmen were asked to indicate 

their major/minor subjects, and to indicate how they well they felt they understood each 

of the following main topics: functions, complex numbers, logarithms, trigonometry, 

polar coordinates, geometry formulas, vectors, arithmetic & geometric series, and 

probability. Below is a summary of the weaknesses of the 181 freshmen who responded. 

Those Indicating Little or No Knowledge 

Topic Number ofRespondents Percent ofRespondents 

Probability 72 40 

Polar Coordinates 68 38 

Vectors 49 27 

Arithmetic & Geometric Series 48 27 

Logarithms 35 19 

Complex Numbers 30 17 

Functions 7 4 

Seven students mentioned they did not feel comfortable with any of the math topics. 

Another method I used to find out more about typical math weaknesses of 

incoming WPI freshmen was to consult with several ofWPI's MASH (Math and Science 

Help) leaders. I spoke with Carlos Calvo, Chris Cole, Melissa Curry, Patricia 

DeChristopher, Dennis Hubbard, and Vikki Tsefrikas who work with the calculus courses 

MAI020, MAI021, and MAI022. The most common failures reported were with 

sequences and series, probability, and logarithms, while geometry and trigonometry were 

also mentioned as weaknesses. Chris Cole noted that some of his students in MAI020 

have trouble with elementary algebra. 
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The MASH leaders feel that many students can memorize and regurgitate almost 

any topic, but have trouble in applying the topics to solving word problems and other 

applications, because these require thinking analytically through the problem. A 

widespread difficulty in doing proofs was observed. Proofs require an understanding of 

why a theorem is true, as opposed to problem solving, which requires only plugging 

numbers into a theorem and solving for an answer. 

I obtained the following information on the failure rates of students taking 

calculus courses from the Math Department Office. 

Course Percent of Students Failing 

MA1021 '96 - 97 79/409 = 19% 

MA1022 '96 - 97 150/622= 24% 

MA1023 '96 - 97 116/719= 16% 

MA1024 '96 - 97 125/661 = 19% 

MA1021 '97 - 98 120/465 = 26% 

MA1022 '97 - 98 156/607 = 26% 

MA1023 '97 - 98 125/586 = 21 % 

MA1024 '97 - 98 61/418= 15 % 

I also spoke with several members ofWPI's math faculty to find out their 

opinions regarding the common weaknesses of incoming WPI freshmen. Professors with 

whom I spoke include Brigitte Servatius, Peter Christopher, Joseph Fehribach, Joseph 

Petruccelli, Peter Schultz, Christopher Larsen, Roger Lui, and 1. 1. Malone. The faculty 

noted weaknesses in algebra, functions, advanced trigonometry formulas, logarithms, 

probability, and discrete math. Some professors observed that there are WPI students 

who don't know even the basics of high school mathematics. 

The faculty shared the opinion that students are insufficiently prepared by their 

high school math education, pointing out that most students are not taught to think 

logically to analyze problems, but rather to memorize the necessary formulas. 

Memorization without understanding sometimes leads to confusion of simple concepts 

such as sine and cosine of30 degrees. Students are really lost when they cannot find an 
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appropriate formula to use. Retention of math learned by memorization is poor. This 

causes professors to take time away from the teaching of new material to review what 

should have been learned in high school. 

Finally, I visited Doherty High School in Worcester to learn about a typical high 

school math curriculum. I spoke with Mr. Bertrand Bolduc, the head of the math 

department, regarding the math courses offered there and the math requirements to 

graduate. Each student must take a minimum of three years of math, in grades 9 - 12. 

The normal honors sequence is Algebra I, Geometry, Algebra II, Precalculus, Calculus 

(AP AB). Ofthe topics in my treatise, polar coordinates are not covered at all, because 

that topic is not needed until BC calculus. Functions, logarithms, trigonometry, geometry 

formulas, vectors, and arithmetic and geometric series are all covered, most of them in 

the precalculus course. There are three different levels in most of these courses, 

'Honors', 'Levell' and 'Level 2' and the thoroughness of coverage varies greatly 

between levels. A student in the honors classes learns each topic thoroughly, and a 

student in the lowest level (level 1) learns little or nothing about any of them. I reviewed 

tests from the Honors level and noticed that they consisted mainly of short problems. 

My research shows that the problem of American students having weaknesses in 

school math backgrounds is occurring among WPI students. After reviewing the 

feedback from students, tutors, and professors, the list of topics in my freshman survey 

appeared to be reasonable and comprehensive. Therefore, I have prepared my treatise on 

these topics. Since greater understanding rather than memorization is needed, I have 

included many explanations and proofs. 
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Algebra
 

Functions 

A function from a set A to a set B is a mapping that corresponds each element in 

set A to exactly one element in set B. Set A is called the domain, or set of input values. 

Set B is called the range, or set of output values. 

From this definition we can see some characteristics that are true of all functions. 

Each element in the domain must be mapped to exactly one element in the range, though 

the opposite is not true. Each element in the range may correspond with 1 or more than 1 

element from the domain. A function for which every element in the range corresponds 

with exactly one element in the domain is a one-to-one function. 

In algebra it is standard practice to represent a function by a set of ordered pairs 

(x,y) where the domain is the set ofx values, and the range is the set ofy values. The 

variable which represents the domain values is called the independent variable, and the 

variable which represents the range values is called the dependent variable. 

Standard function notation is to use a lowercase letter to 'name' the function, and 

write it as f{x) = <expression> where x is the independent variable, and the <expression> 

is a formula for mapping each element in the domain. For example the equation f(x) = x2 

defines a function whose domain is the set of real numbers, and whose range consists of 

the squares of all the elements in the domain, which is the set of non-negative real 

numbers. 

It is also possible to define functions by equations, for example the function above 

can be described by the equation y = X:, where y is the dependent variable. 

Domains of Functions 

In most simple functions, the domain consists of all real numbers, however there 

are cases where some numbers are excluded. Consider a fraction with a polynomial 

function in the denominator, such as f{x) = _1_. Here trying to compute f{5) would 
x-5 

require division by zero, therefore f{5) is undefined. All other values of x will produce a 

value f{x), therefore the domain ofthis function is all real numbers except 5. 
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Another example of a function which can have numbers excluded from its domain 

is a radical with an expression that can be negative, such as f{x) = .fi.. Since the square 

root operation is not defined for negative numbers, this function has a domain of all non­

negative real numbers. 

In each of the previous examples, the mapping formula was the same for all 

values in the domain. It is also possible to define a function different ways for different 

domain values, as long as the domain values do not overlap. For example, we can define 

a function g(x) which uses each of the previous definitions, g(x) = .fi. for all x ~ 0, 

_1_ for all x < o. This function has a domain of all real numbers. 
x-5 

Composition of Functions 

Another way to define a function is by putting one function into another. For 
2example, suppose we define f{x) = x2 + 5x - 6, and g(x) = x . It is possible to compose 

these functions by defining a new function h(x) = f{g(x». f{g(x» simply means the 

expression for g(x) is substituted into the f(x) function. 

Here h(x) = f{g(x» = (X2)2 + 5(X)2 - 6. It is possible to substitute f(x) into g(x) in 

the same way, obtaining g(f{x» = (x2 + 5x - 6i. 

Inverse Functions 

Some functions have the effect of 'undoing' each other, i.e. when they are 

composed with each other, they produce the original value ofx. Such functions are 

called inverses of each other. Two functions f and g are inverses if and only if the 

domain offis the same as the range ofg (and vice-versa), and f(g(x» = g(f(x» = x. For 

example, the functions f{x) = 3x - 7 and g(x) = ~ (x+7) are inverses of each other. The 
3 

inverse of a function f(x) is denoted by fl(X). Not all functions have an inverse, only 

one-to-one functions have an inverse. 
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Symmetry, Odd and Even Functions 

Graphing a function often facilitates analyzing its features. Functions of one 

variable can be graphed in the xy plane, with the independent variable on the horizontal 

axis (called the x-axis) and the dependent variable on the vertical axis (called the y-axis). 

Some functions have different forms of symmetry. Graphically, a function is 

symmetric about a line if it produces a mirror image when folded over the line. Two 

kinds of symmetry which are frequently used in algebra are symmetry with respect to the 

y-axis and symmetry with respect to the origin. 

A function is symmetric with respect to the y-axis iff(x) = f{-x) for all values 

of x in the domain. A function symmetric with respect to the y-axis is called an even 

function. Looking at the graph of an even function, it is easy to see that if it were folded 

over the y-axis, it would produce a mirror image. 

A function is symmetric with respect to the origin iff(-x) = -f{x) for all values 

ofx in the domain. A function symmetric with respect to the origin is called an odd 

function. The graph of an odd function will produce a mirror image when folded over 

both the x-axis and y-axis. All polynomial functions containing only terms of odd degree 

are odd functions, and all polynomial functions containing only terms of even degree are 

even functions. 

Arithmetic Operations on Functions 

It is possible to apply the basic operations of arithmetic, namely addition, 

subtraction, multiplication, and division to functions. The domain of sum, difference, 

product, and quotient functions of functions f and g is the intersection of the domain of f 

and the domain ofg. (In the case of quotient functions, any value which produces a zero 

in the divisor function must be eliminated.) The range is dependent on the functions 

themselves. 

Synthetic Division 

Division of a polynomial of degree greater than 1 by a polynomial of degree 1 can 

be done by a method called Synthetic Division. When dividing a polynomial f(x) = an,(l 

+ Cln_l,(l-l + ... + a2x2 + alX + 3{) by a polynomial x - k, the result will be a polynomial 
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n 1g(x) = bn_1X - + ... + b2x
2 + b1x + bo + _r-, where the quotient g(x) is a polynomial of 

x-k 

degree one less than f{x), and r is the constant remainder. 

To use Synthetic Division, write the coefficients of the dividend polynomial in 

decreasing order and put in a zero for the coefficient of any missing term. bn-l, the 

leading coefficient ofg(x), is the same as an, the leading coefficient off{x). All other 

coefficients of the quotient polynomial are computed using the formula bi = ai+1+ k(bi+1) 

for i = n-2, n-3, .... ,1,0. r = ao +k(bo). 

Example: Divide the polynomial 2x3 
- 29x + 33 by x - 3. 

Here k = 3, and we must put in a zero for the missing x2 term. 

3 I 2 ° -29 33 dividend coefficients 

6 18 -33 

2 6 -11 ° 
(remainder = 0) 

quotient coefficients 

Remainder Theorem 

The Remainder Theorem states that if a polynomial f(x) is divided by (x - k) the 

remainder is equal to f{k). If the remainder is zero, then by applying the Remainder 

Theorem we can claim that x - k is a factor off{x), and k is a root off{x). 

Finding Roots of Functions 

A root of a function (also called a zero) is a member ofthe domain, which when 

applied to the function, produces a value of zero. There are many ways to determine the 

roots of a polynomial function. Every polynomial of degree n (n ~ 1) has at most n real 

roots, exactly n real or complex roots. The easiest way, when feasible, is to factor the 

polynomial and set each factor equal to zero, and solve. 

Polynomials of degree two can always be solved using the quadratic formula, 

-b+.Jb 2 -4ac 2 
x = - , where a, b, c are the coefficients ofx , X, and the constant term. 

2a 

However there is no simple formula for finding roots ofpolynomials of degree greater 

than two. Graphically, roots occur at all points where the function touches the x-axis, but 
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this does provide an exact value. There are a few useful theorems to help us determine 

these roots. 

Rational Root Test 

The Rational Root Test states how to find rational roots in a polynomial. Given 

a polynomial f(x) = anx n + an_Ixn
-
1 + ... + a2x2+ alX + 8.0 which has all integer 

coefficients, all rational roots of f must be of the form p , where p is a factor of the 
q 

constant term 8.0, and q is a factor of the leading coefficient an. 

Intermediate Value Theorem 

The Intermediate Value Theorem states that if f is a polynomial function such 

that a < band f(a)=I=f(b) then every value between f(a) and f(b) occurs in the interval 

[a,b]. This theorem can be used to approximate a root if values of a and b can be found 

such that f(a) and f(b) have opposite sign. The closer a and b are, the better the 

approximation can be. 

Descartes' Rule of Signs 

Let f(x) be a polynomial of the form an~ + an_l~-l + ... + a2x2 + alX + 8.0, where 

all coefficients are real and 8.0 =1= O. Descartes' Rule of Signs states that 

1) The number of positive real roots of f is either equal to the number of changes 

in sign off(x) or is less than that number by an even integer, 

2) The number of negative real roots of f is either equal to the number of changes 

in sign off(-x) or is less than that number by an even integer. 

Complex Numbers 

There is no real number solution to the equation x2 
= -1. Mathematicians have 

invented a number system called the imaginary numbers where the number i is defined 

as the square root of -1, and the set of imaginary numbers consists of all numbers of the 

form bi, where b is any real number. All ofbasic arithmetic operations, such as addition, 

subtraction etc. can be performed on imaginary numbers just as on real numbers. 
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Complex numbers are created when a real number is added to an imaginary 

number. All complex numbers can be expressed in the form a + bi, where a and bare 

real numbers, and i is the imaginary unit. Complex numbers whose real component, a, is 

zero are called pure imaginary numbers. 

The complex conjugate of a complex number is the complex number which has 

the same real component, and the opposite imaginary component. In other words, the 

complex conjugate of (a + bi) is (a - bi). 

Arithmetic Operations on Complex Numbers 

Addition and subtraction of complex numbers can be done by separately adding 

or subtracting the real and imaginary coefficients. For example, the sum of (1 + 2i) + (3 

+ 4i), is simply (1 + 3) + (2i + 4i) = 4 + 6i. 

Multiplication of complex numbers is done by first expressing each complex 

number as a binomial, with real term and imaginary term, and multiplying the binomials. 

Using the same complex numbers as in the previous example, (1 + 2i)(3 + 4i) = 3 + 4i + 

6i + 8i2
. Since i was defined to be H , i2 is -1. So the expression simplifies to 3 + 10i 

- 8 = -5 + 10i. 

To perform division of complex numbers, it is first necessary to convert the 

denominator into a real number. This is done by multiplying both numerator and 

denominator by the complex conjugate of the denominator. The product of the 

conjugates produces a real number, which is divided into each component of the 

. 1+ 2i . 1+ 2i 3 - 4i 3 - 4i + 6i - 8i 2 
numerator. To find quotIent --, first multIply (--)(--) = 2 

3+4i 3+4i 3-4i 9-12i+12i-16i 

11 + 2i 11 2. 
= - +-1.
 

25 25 25
 

Powers ofi 

One final operation that is worth knowing is how to compute powers of i. Since i 

was defined to be H , i2 is -1. e= (i2)(i) = -i. i4 = (-i)(i) = _i2 = 1. Since i4 = 1, we 

need not compute any further powers of i. ik 
, where k > 4, is equal to (ik-4)(i4

) = t-4. So, 

to compute any power of i, take the remainder when the exponent is divided by 4. If the 



7 

remainder is 0, the answer is 1, if the remainder is 1, the answer is i if the remainder is 2, 

the answer is -1 if the remainder is 3, the answer is -i. 

Complex and Irrational Roots of Polynomials 

If all of the coefficients of a polynomial are real, complex roots will occur in 

conjugate pairs such as 5 + 2i and 5 - 2i. 

If all of the coefficients of a polynomial are rational, irrational roots will occur in 

conjugate pairs such as 1 +.J3 and 1 - .J3 . 

Logarithms 

Given an exponential equation y = aX , we say that log a y = x. This is read 'The 

base a logarithm of y equals x.' A logarithm is an exponent. In the previous equation, 

x is a logarithm, it is the power to which a must be raised to obtain y. An example using 

numbers is log 5 125 = 3, because 3 is the power to which 5 must be raised to obtain 125. 

Every exponential equation can be rewritten as a log equation, and vice-versa. 

Basic properties of logarithms, along with the corresponding exponential equation: 

a) Log x(1) = 0 ~ XO = 1
 

b) Log x(x) = 1 ~ xl =x
 

c) Log x(xY) = Y ~ xY =xY
 

These identities are obvious.
 

a) Follows because any non-zero number raised to the 0 power equals 1.
 

b) Is true because any number raised to the 1st power equals itself.
 

c) Any number raised to another power equals the same number raised to the same
 

power!
 

Logarithm Bases and the Number e 

Logarithms can be defined in any positive number base, except base 1. When 

there is no base specified, base 10 is assumed. 
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A special logarithm that is often used in mathematics and has many applications 

is called the natural logarithm. The natural logarithm involves taking the base e log, 

and is denoted by In. i.e. In (x) = loge(x). 

The irrational number e, rounded to a few digits equals 2.71828 ... There are 

many applications of natural logarithms; they are frequently used in calculus. 

Domain and Range of Exponential and Logarithmic Functions 

The domain of any exponential function, such as f(x) = eX, is all real numbers, 

while the range is all positive numbers. The domain of any logarithmic function, such as 

f(x) = In(x), is all positive numbers, while the range is all real numbers. The logarithm of 

a quantity between zero and one will be negative. 

Other Properties of Logarithms: 

Product Rule
 

1) loga(uv) = loga(u) + loga(v)
 

To prove this, suppose we have two logarithm equations, x = lo~(u), and y = loga(v).
 

Multiplying the corresponding exponential forms of the these equations, u = aX, and u =
 

aY, gives us the equation uv = aXaY. Taking the logarithm to base a ofboth sides of the
 

equation gives loga(uv) = loga(a x+Y) = x + y. Substituting x = loga(u), and y = loga(v)
 

completes the proof
 

Quotient Rule 

u
2) loga( - ) = loga(u) - lo~(v) 

v 

To prove this, use the logarithm equations, x = loga(u), and y = loga(v).
 

Dividing the corresponding exponential forms of the these equations, u = aX, and u = aY
,
 

gives us the equation ~ = aXaY = a x-Yo Taking the logarithm to base a of both sides of
 
v 
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the equation gives loga( ~ ) = loga(a X-
Y) = x - y. Substituting x = loga(u), and y = loga(v) 

v 
completes the proof 

Power Rule 

3) loga(un) = n loga(u). 

This can be proven by performing n applications of property #1, e.g. un = u*u*u ... 

hence loga(un) = 10ga(u*U*U ...) = loga(u) + loga(u) + loga(u) + ... = nloga(u). 

Change of Base Rules 

log x
4) loga(x) = b 

10gb a 

To prove this, let y = lo~(x), which implies aY = x. Taking the logarithm ofboth sides to 

base b, we get 10gb(aY) = logb(x). By applying property #3 to the left side of this 

equation, and dividing both sides by logb(a), we complete the proof 

To prove #5, simply apply property #4, substituting x for b, thus obtaining 

loga(x) _10g b X _ logx x = _1_ 
10gb a logx a logxa 

Solving Logarithmic and Exponential Equations 

Most logarithmic and exponential equations can be solved using these few basic 

properties. 

To solve a logarithmic equation of the form logax = b (where x is the unknown 

variable) it is helpful to exponentiate both sides, i.e. raise both sides to the power of a, 

obtaining a loga(x) = abo 
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To solve an exponential equation of the form aX 
= b, it is helpful to take a 

logarithm ofboth sides, i.e. take the logarithm to base a ofboth sides, obtaining 10ga(aX
) = 

x = loga(b). 
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Trigonometry 

Trigonometry is a branch of mathematics which deals with the study of sides and 

angles of triangles. 

Degrees and Radians 

Angles can be measured in degrees or radians, but most of the study of 

trigonometry deals with radian measure. A degree is an angle equal to _1_ of a 
360 

revolution around a circle. A radian is an arc length equal to one radius of a circle. 

Since the circumference of a circle = 21r r, there are 21r radians in a circle. Since there 

are 360 degrees in a circle, it is possible to convert an angle from radians to degrees by 

multiplying by 360 , and from degrees to radians by dividing by this factor. The radian 
21r 

measure of a central angle or a circle equals the length ofthe intercepted arc divided by 

the length of the radius. It follows that a straight angle has measure 1r radians, and a 

right angle has measure 1r radians. 
2 

Unit Circle and Quadrants 

The unit circle is the circle given by the equation x2 + i = 1. We can imagine 

the real number line wrapped around the unit circle starting with 0 corresponding to the 

point (1,0). Positive numbers are wrapped in a counter-clockwise direction, and negative 

numbers are wrapped in a clock-wise direction. Every real number e will then 

correspond to exactly one point on the circle. 

The unit circle can be divided into four quadrants. The 1st quadrant contains 

angles from 0 to 1r radians, the 2nd quadrant contains angles from 1r to 1r radians, the 
2 2 

3rd quadrant contains angles from 1r to 31r radians, and the 4th quadrant contains angles 
2 
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from 37l" to 27l" radians. For angles larger than 2 7l" radians, or less than 0 radians, add or
 
2
 

subtract multiples of 2 7l" until it fits one of the above categories. 

Quadrants from x and y Coordinates 

Another way to determine the quadrant is from the x and y coordinates. A point 

which has a positive x coordinate and a positive y coordinate lies in the 1st quadrant. A 

point which has a negative x coordinate and a positive y coordinate lies in the 2nd 

quadrant. A point which has a negative x coordinate and a negative y coordinate lies in 

the 3rd quadrant. A point which has a positive x coordinate and a negative y coordinate 

lies in the 4th quadrant. Note that angles which are exact multiples of 7l" (points that 
2 

have either the x or y coordinate equal to zero) are not considered part of any quadrant. 

Trigonometric Functions 

There are six trigonometric functions defined for angles on the unit circle and on 

triangles. They are sine, cosine, tangent, cotangent, secant, and cosecant. Below is a list 

of formulas to compute each trigonometric function for an angle e. The first formula 

listed after each function is for an angle on the unit circle (r =Jx 2 + y2 = 1), the second 

formula is for an acute angle in a right triangle. 

Sin( e ) = 1- - opposite leg Cos(e ) = ~ adjacent leg
 
r hypotenuse r hypotenuse
 

x adjacent leg Tan(e) =1-- opposite leg Cot(e) 
x adjacent leg y opposite leg 

Sec( e ) - r _ hypotenuse Csc( e ) =~ = hypot~nuse
 
x adjacent leg y opposIte leg
 

Worth noting above is that cotangent, secant, and cosecant are reciprocals of 

tangent, cosine, and sine, respectively. 
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Domain and Range of Trigonometric Functions 

The domain of each of the six trigonometric functions is all real numbers. 

Thinking of the definitions on the unit circle, we can see that sine and cosine have a range 

of -1 to +1 inclusive or [-1, 1]. Tangent and cotangent have a range of all real numbers or 

(-00 ,00). Secant and cosecant have a range of(-oo, -1] U [1, 00), where U is the symbol 

for union of sets. The trigonometric functions are periodic and are not one-to-one. 

Trigonometric Functions of Special Angles 

The values of the trigonometric functions of most angles cannot be calculated 

without a calculator or computer. However some 'special' angles have trigonometric 

functions which are simple. There are two kinds of right triangles that are familiar from 

geometry, the 90°-45°-450, and the 90°-60°-30°. 

In the 90°-45°-45° triangle, both legs have equal length x. From the 

Pythagorean theorem, we derive that the hypotenuse has length equal to J2 times each 

leg, or x.fi. Using the formulas for the three basic trig functions, we conclude the 

following: 

Sin(450) =	 opposite leg _ .fi Cos(450) - adjacent leg _ .J2 
hypotenuse 2 hypotenuse 2 

Tan(45°) opposite leg - 1 
adjacent leg 

The 90°-600 -300 triangle comes from slicing an equilateral triangle in half along 

one of the altitudes. Therefore the shorter leg has length equal to half of the hypotenuse. 

Using the Pythagorean Theorem, we can determine that the three sides are in the ratio 

1: .J3 :2. From the ratio of the sides, we can easily figure out the values ofthe 

trigonometric functions: 

Sin(300) =	 opposite leg_~ Cos(300) - adjacent leg _ .J3 
hypotenuse 2 hypotenuse 2 

Tan(300) = opposite leg _ .J3 Sin(600) = opposite leg _ .J3 
adjacent leg 3 hypotenuse 2 
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Cos(600) - adjacent leg = ~ Tan(600) - opposite leg - .J3 
hypotenuse 2 adjacent leg 

These are the only angles between 0 and 90 degrees that have simple 

trigonometric functions. It is possible, however, to use half-angle formulas and sum and 

difference formulas to compute trigonometric functions of some other angles. These 

formulas will be explained later. 

Reference Angles 

When dealing with angles greater than 90 degrees, it is impossible to define trig 

functions in terms of the parts of a right triangle. One way to define them is to use the 

unit circle definition, another way is to determine their values at the corresponding 

reference angles. A reference angle e' of an angle e is the acute angle formed by the 

terminal side of e and the nearest horizontal axis. 

All trig functions of e are the same as those of the reference angle e', with the 

possible exception of their sign. To see why this is true, consider the unit circle. Any 

angle in the 2nd or 3fd quadrant will have its reference angle formed using the negative 

horizontal axis, while an angle in the 1st or 4th quadrant has its reference angle formed 

using the positive horizontal axis. Suppose we construct an acute angle a in each of the 

4 quadrants, by starting on the positive horizontal axis and going up for the 1st quadrant, 

down for the 4th quadrant, and starting on the negative horizontal axis going up for the 2nd 

quadrant, and down for the 3fd
. It is obvious by properties of symmetry, that the x and y 

values of each of these angles all have the same magnitude, just different signs. 

Signs of the Trig Functions 

Using the formulas for finding trig functions in terms of the unit circle, we can 

determine which functions are positive in which quadrants. In the 1st quadrant, both x 

and yare positive, so the ratios Y, ~, and Y (that is, sine, cosine, and tangent 
r r x 

respectively) will be positive. (Remember r always equals 1 in the unit circle.) In the 2nd 

quadrant, x is negative and y is positive, so Y is positive, x is negative, and Yis 
r r x 
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negative. In the 3rd quadrant, x and yare both negative, hence Y and ~ will both be 
r r 

negative, and Y- is positive. In the 4th quadrant, x is positive and y is negative, so Y is 
x r 

negative, ~ is positive, and Yis negative. 
r x 

To summarize, sine (and its reciprocal cosecant) are positive in the 1st and 2nd 

quadrants, negative in the 3rd and 4th 
. Cosine (and its reciprocal secant) are positive in the 

1st and 4th quadrants, negative in the 2nd and 3rd. Tangent (and its reciprocal cotangent) 

are positive in the 1st and 3rd quadrants, negative in the 2nd and 4th
. 

Identities 

There are many different kinds of algebraic identities involving trigonometric 

functions, which are useful in applications. Following is a list of them, along with simple 

proofs. 

Pythagorean Identities 

1) sin2 e + cos2 e = 1 

2) tan2 e + 1 = sec 2 e 

3) coee + 1 = csc2 e 

Number 1 is easy to see by looking at the unit circle. Construct a right triangle 

inside the unit circle. A radius of the circle will become the hypotenuse. One leg will be 

constructed by drawing a vertical line from the point to the horizontal axis, and the other 

leg is constructed by drawing a line from the origin along the horizontal axis until it 

meets the other leg. Here the angle e is the central angle of the unit circle, formed by the 

hypotenuse and the horizontal leg. If we substitute the trig formulas for the unit circle 

into this identity, we get (Y-)2 + (~i = 1. Ifwe multiply each term in this equation by 
r r 

~, we get ~ + x2 =~, which is exactly the Pythagorean theorem, i.e. the sum of the 

squares of the legs of a right triangle equals the square of the hypotenuse. 
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Identities 2 and 3 follow easily from identity 1. Dividing each term in 1 by cos2 8 gives 

identity 2, and dividing each term in 1 by sin2 
() gives identity 3. 

CoFunction Identities 

1) sin (1l" 
2 

_ 8) = cos 8 2) cos (1l" 
2 

- 8) = sin 8 

3) 
1l" 

tan (- ­ 8) = cot 8 
2 

4) 
1l" 

cot (- ­ 8) = tan 8 
2 

5) 
1l" 

sec (- ­ 8) = csc 8 
2 

6) 
1l" 

csc (- ­ 8) = sec 8 
2 

Identities 1 and 2 follow from the definition of sine and cosine of an acute angle 

of a right triangle. The adjacent leg to one acute angle is opposite leg to the other acute 

angle. Identity 3 comes from dividing 1 by 2, and 4 comes from dividing 2 by 1. 

Identities 5 and 6 come from taking reciprocals of2 and 1. 

Negative angle identities 

1) sin (-8 ) = -sin 8 2) cos (-8) = cos8 

3) tan (-8) = -tan 8 4) cot (-8) = -cot8 

5) sec (-8) = sec8 6) csc (-8) = csc8 

Here numbers 1 and 2 can be seen from the unit circle. Starting from the point 

(1,0) ifwe move along the circle a distance 8 in both the positive and negative 

directions, the resulting positions will have the same x coordinate, but opposite y 

coordinates. Just as in the previous section, we obtain 3 and 4 by dividing 1 by 2, and 

2 by 1 respectively. Numbers 5 and 6 again come from taking reciprocals of2 and 1. 

Inverse Trig Functions 

Since the trigonometric functions are periodic and are not one-to-one, we must 

limit their domains to principal values in order to obtain inverse functions. The restricted 

domain of the original trigonometric function becomes the range of the inverse function. 

The six inverse trigonometric so obtained are called arcsin, arccos, arctan, arccot, arcsec, 

and arccsc. Sometimes they are written as sin-I, cos·I, tan-I, cort, sec-I, and csc·I. 
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Principal values in the 1& and 4th quadrants are used for sine and tangent. 

Arcsin is defined by y = arcsin x if and only if sin y = x, where the domain ofx 

values is the closed interval [-1,1] and the range of y values is the closed interval [_ 1£ , 1£ ]. 
2 2 

Arctan is defined by y = arctan x if and only if tan y = x, where the domain ofx 

values is all real numbers and the range of y values is the open interval (_ 1£ , 1£ ). 
2 2 

Principal values in the 1& and 2nd quadrants are used for cosine and cotangent. 

Arccos is defined by y = arccos x if and only if cos y = X, where the domain ofx 

values is the closed interval [-1,1] and the range of y values is the closed interval [0, 1£]. 

Arccot is defined by y = arccot x if and only if cot y = x, where the domain ofx 

values is all real numbers and the range ofy values is the open interval (0, 1£). 

The last two inverse trig functions are rarely used. Principal values for secant and 

cosecant are generally considered to be the same as for cosine and sine, as indicated 

below, but some authors list them as 1st and 3rd quadrants. U is the symbol for union of 

sets. 

Arcsec is defined by y = arcsec x if and only if sec y = x, where the domain ofx 

values is (-00, -1] U [1, 00) and the range ofy values is [0, 1£ ) u (1£ , 1£].
2 2 

Arccsc is defined by y = arccsc x if and only if csc y = x, where the domain ofx 

values is (-00, -1] U [1, 00) and the range ofy values is [- 1£ , 0) U (0, 1£]. 
2 2 

Euler's Identity 

Additional trigonometric formulas can be derived from an important identity, 
iecalled Euler's Identity, which states the following: e = cos e + i sin e. The proof of 

this theorem is simple. Ifwe perform the Taylor expansion of eix
, we get 
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ix . X 2 ix 3 X 4 ix 5 X 6 ix 7 
e = 1 + lX- - - - + - + - - - -- where the terms of even 

2! 3! 4! 5! 6! 7! 

degree form the Taylor expansion for cos x, and the terms of odd degree form the Taylor 

expansion for sin x. 

Trig Formulas for the Sum of Two Angles 

Now we can use Euler's Identity to derive angle sum formulas. Start with the 

equation ei(A + B) = (eiA
)(eiB). Apply Euler's identity to both sides, which gives the 

following: cos(A + B) + i sin(A + B) = (cos A + i sin A)(cos B + i sin B). Multiplying 

out the right side and combining the real parts and imaginary parts gives us: 

cos(A + B) + i sin(A + B) = cosAcosB - sinAsinB + i(sinAcosB + cosAsinB). 

The formula for sine of a sum of two angles comes from equating the imaginary 

parts of both sides: 

sin(A + B) = sinAcosB + cosAsinB 

The formula for cosine of a sum comes from equating the real parts ofboth sides: 

cos(A + B) = cosAcosB - sinAsinB 

By dividing these two formulas, we obtain the formula for tangent of a sum. 

sin(A + B) sin A cosB + cos A sin B tan A +tanB
tan (A + B) = --=-_...:..­

cos(A +B) cos A cosB - sin A sin B 1- tan A tanB 

Trig Formulas for the Difference of Two Angles 

Angle difference formulas can be found simply by substituting (-B) for B in the 

above derivations. 

Start with the equation ei(A -B) = (eiA)(ei(-B). Apply Euler's identity to both sides, 

which gives: cos(A - B) + i sin(A - B) = (cos A + i sin A)(cos (-B) + i sin (-B». 

Multiplying out the right side and combining the real parts and imaginary parts gives us 

cos(A - B) + i sin(A - B) = cosAcos(-B) - sinAsin(-B) + i(sinAcos(-B) + cosAsin(-B». 

Now, since sin(-x) = -sin(x) and cos(-x) = cos(x), we substitute obtaining 

cos(A - B) + i sin(A - B) = cosAcosB + sinAsinB + i(sinAcosB - cosAsinB). 
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The formula for sine of a difference of two angles comes from equating the 

imaginary parts ofboth sides: 

sin(A - B) = sinAcosB - cosAsinB 

The formula for cosine of a difference comes from equating the real parts: 

cos(A - B) = cosAcosB + sinAsinB 

By dividing these two formulas, we obtain the formula for tangent of a difference. 

- sin(A - B) sin A cosB - cosA sin B tan A -tanBtan (A - B) - -....:.......--~ 

cos(A -B) cosAcosB + sin A sin B 1+ tan A tanB 

Double Angle Formulas 

Double angle formulas can be derived by substituting A for B in the angle sum 

formulas. 

sin(A + A) = sin (2A) = sinAcosA + cosAsinA = 2sinAcosA 

cos(A + A) = cos (2A) = cosAcosA - sinAsinA = cos2A - sin2A 

tan(A + A) = tan (2A) = tan A + tan A = 2tanA .
 
1- tan A tan A 1- tan 2 A
 

Half Angle Formulas 

The double angle cosine formula can be used to produce another set of formulas 

called half angle formulas. From the unit circle we know that cos2A + sin2A = 1. Thus, 

the double angle cosine formula can be written in two other ways: cos (2A) = 1 - 2sin2A 

= 2cos2A-I. The frrst variation of the formula is used to obtain the half angle sine 

formula, the second variation is used to obtain the half angle cosine formula, and the half 

angle tangent formula is obtained by dividing. 

cos (2A) = 1 - 2sin2A => sin2A = 1- cos(2A) 
2 

2 2 1+cos(2A)
cos (2A) = 2cos A-I => cos A = ---­

2 

The forms above are useful for integrating sin2A and cos2A. 
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Substituting A for A, we obtain the half angle formulas: 
2 

. (A) _ + ~1- cosA	 A ~l+COSASIn - -_	 and cos ( - ) = ± . 
2 2	 2 2 

A) l-cosA
Dividing these last two results, tan ( - = 

2 l+cosA 

Law of Sines 

Two other formulas which are useful to solving for the sides and angles of a 

triangle are the Law of Sines and the Law of Cosines. The Law of Sines states that the 

ratio of a side of a triangle to the sine of the opposite angle is constant for all three sides. 

abc
In other words,	 -- =-- = -­

sin A sin B sin C 

where a,b,c are the sides and A,B,C are the angles opposite a,b,c respectively. 

To prove the Law of Sines, construct a triangle ABC, and draw an altitude h from 

angle C to its opposite side. The result will be two right triangles, each having one of the 

acute angles of the original triangle opposite the altitude h. From one of the triangles we 

can see that h = a sin B, from the other h = b sin A. Equating these parts gives us 

a sin B = b sin A =>	 _._a_=~. Since the name of each side and angle is arbitrary, 
smA smB 

this equation holds true for all three sides and angles of any triangle. 

Law of Cosines 
2The Law of Cosines states that a2 = b2 + c - 2bc cos A. (a,b,c can be substituted 

for each other) 

To prove this, construct a triangle ABC in the xy plane, where A = (0,0), B = (c,O) 

and C = (x,y) where x,y > o. Since C has coordinates (x,y), and A has coordinates (0,0), 

the side b forms the hypotenuse of a right triangle, with the 3rd point being (x,O). It 

follows from this triangle that x = b cos A and y = b sin A. Using the distance formula, 

the length of side a is the distance from B to C, which is ~(x - C)2 + (y - 0)2 . 

Squaring both sides and substituting gives us a2 
= (b cos A - C)2 + (b sin Ai 
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b2= cos2A - 2bc cos A + c2 + b2 sin2 A 
2 2 

= b2 (sin2 A + cos2 A) + c - 2bc cos A = b2 + c - 2bc cos A. 

The first and last parts of this equation make the Law of Cosines. 

Solving for Missing Parts of a Triangle Using the Law of Sines or Law of Cosines 

Usually it is possible to use either the Law of Sines or the Law of Cosines to solve 

a problem, but not both of them. When all three sides of a triangle are known, it is 

impossible to solve for the angle measures using the Law of Sines because none of the 

ratios are known, but using the Law of Cosines it is easy to plug in sides a,b,c and solve 

for the angles. 

Another case when it is impossible to use the Law of Sines is when there are two 

sides known, and only the angle between them is known. Here also, none of the required 

ratios for the Law of Sines is known, however the Law of Cosines can be used to first 

solve for the unknown side, then proceed to find the two missing angles as in the 

previous example. 

When only one side of a triangle is known, the Law of Cosines cannot be used. 

However, when at least two angles are also known, the third angle can be found by 

subtraction, and thus the Law of Sines can be used because the angle opposite the known 

side can be used to compute the necessary ratio. 

Rectangular and Polar Coordinates 

The most common way to represent points on the plane is by using (x,y) 

coordinates, where the first number represents the units along the horizontal axis, and the 

second number represents the units along the vertical axis. This type of coordinates is 

known as rectangular coordinates. 

There is another coordinate system which is often used in trigonometry and 

calculus, known as polar coordinates. With polar coordinates, the first coordinate 

represents the distance away from the origin, and the second coordinate represents the 

angle between the point and the positive horizontal axis. (This is the same way that 

angles are measured on the unit circle.) 
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Conversions between Rectangular and Polar Coordinates 

There are many applications which cannot be done using rectangular coordinates, 

but can be done easily using polar coordinates, thus it is necessary to have an easy 

method of converting from one system to the other. Suppose we are given a point in 

rectangular coordinates, (x,y), which we want to convert into polar coordinates. To find 

the distance from the origin, simply use the Pythagorean Theorem to compute the 

hypotenuse of the inscribed right triangle, i.e. ~ = x2+ y2, thus 

r= ~X2 +y2 

The x and y values correspond to the adjacent leg, and opposite leg, respectively, 

of the triangle. Since tan S = 1., S = Arctan 1.. 
x x 

Now suppose we are given a point in polar coordinates, (r, S), which we want to 

convert into rectangular coordinates. Since the x coordinate is the adjacent leg, and 

cosS = adjacent leg =~, we can multiply both sides of this equation by r, obtaining 
hypotenuse r 

x = r cosS. 

S · h d·· h . I d· SInce t e y coor Inate IS t e opposIte eg, an sIn = 
opposite leg 
hypotenuse 

-
y 

r 

y = r sinS. 

DeMoivre's Theorem 

In the previous section we saw how to multiply complex numbers. DeMoivre's 

Theorem is a shortcut to taking powers and roots of complex numbers. The complex 

numbers must be expressed in polar form, where r = .Ja 2 + b 2 and S = Arctan ~. 
a 
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Powers of Complex Numbers 

DeMoivre's Theorem states the following: Ifz = r (cosa + i sin a) is a complex 

number and n is a positive integer, then we find z" by taking the radius to the nth power 

and multiplying a by n. 

tt = (r (cos a + i sin a))" = r" (cos n a + i sin n a ). 

For example, calculate (2 + 2Jj i)8 using DeMoivre's Theorem. We convert 

(2 + 2Jj i) to polar form, r = 4, a =	 Jr , and n = 8. Then apply DeMoivre's Theorem, 
3 

(2 + 2Jj i)8 = (4(cos Jr + i sin ;r ))8 = 48(cos (8;r ) + i sin (8;r)) = 
3 3 3 3 

65536 ( -~ + J3 i ) = -32768 + 32768J3 i. 
2 2 

Roots of Complex Numbers 

DeMoivre's Theorem states that if n is a positive integer, the complex number 

z = r (cos a + i sin a) has exactly n distinct roots found by taking the positive nth root of 

the radius and dividing (a +2;r k) by n. 

n / = n l ( a + 21tk .. a + 21tk) h k 0 1 2 1v zz V r cos + I SIn were = , , , ... , n­
n n 

For example, calculate .Ji using DeMoivre's Theorem. We convert .Ji to polar 

form, r = 1 a = Jr and n = 2 so.Ji = , 2 ' , 

{;( a .. a) (Jr) .. (Jr) 1 i 
V 1 cos - + I sIn - = cos - + I sIn - -+- and 

2 2 4 4 12 12 
{; ( a + 21t .. a + 21t ) (5;r ) . . (5;r) 1 iv 1 cos + I sIn = cos - + I sIn - = - - - ­

2 2 4 41212 
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Geometry Formulas 

The following are several useful geometry formulas, several ofwhich are derived 

from calculus. 

Triangle Area Formulas 

Triangle with sides a,b,c opposite angles A,B,C respectively: 

Area = ~ab sin C 
2 

s2.J3 
Equilateral Triangle with side s: Area = -­

4 

I . h'd b d .. a + b + cT .nang e Wit SI es a, ,c an semlpenmeter s = --­
2 

Area =Js(s - a)(s - b)(s - c) 

Surface Area Formulas 

Sphere with radius r: Surface area = 4n ~ 

Circular cylinder with radius r and height h: Surface area = 2 7t r2 + 2n rh 

Circular cone with radius r and slant height 1: Surface area = 7t r + n r1 

Volume Formulas 

Prism with base area B and height h: Volume = Bh 

Bh
Pyramid with base area B and height h: Volume = ­

3 

Circular cylinder with radius r and height h: Volume = n rh 

2h1tf
Circular cone with radius r and height h: Volume = -­

3 

4nr 3 

Sphere with radius r: Volume = -­
3 
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Analytic Geometry 

Equations of Lines in a Plane 

There are three standard forms for expressing equations of lines in the xy plane. 

The first is called slope-intercept form, which is y = fiX + b, where m is the slope, and b 

is the y-intercept. The slope can be defined as the change in y per unit change in x. The 

y-intercept is the value of the y-coordinate when x = 0, also the point at which the line 

crosses the vertical axis at the point (O,b). 

Another standard form of a line is point-slope form. This form is useful to find 

the equation if two points of the line are known, or if the slope and one point are known. 

An equation in point-slope form is of the form y - yo = m(x - xo) where (xo, Yo) is a point 

on the line. If two points are known, then the slope can be calculated by y I - Yo, and 
Xl -X o 

either point can be used in the point-slope form. The slope-intercept form is actually a 

specific case of the point-slope form, where Xo = 0, and yo is the y-intercept, which is b. 

The third way to express the equation of a line is the general form, which is to 

put all variables and constants on one side of the equation and set it to zero in the form 

Ax + By + C = o. 

Conic Sections 

A conic section is a curve which results from the intersection of a plane and a 

cone. The basic types of conic sections: the ellipse, the circle, the hyperbola, and the 

parabola. 

Ellipses 

An ellipse is the set of all points such that the sum of the distances from two 

distinct fixed points, called foci, is constant. 

Ellipses are oval shaped, with the foci located inside the ellipse, and the line 

connecting the foci is known as the major axis. The line perpendicular to the major axis 

is the minor axis. The major axis intersects the ellipse at the vertices, and the midpoint 
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between the two vertices (which is also the midpoint between the two foci) is known as 

the center and is located at the point (h,k). 

The distance from the center to each vertex is defined as a, thus the major axis has 

a length of 2a. The distance from the center to each point where the minor axis crosses 

the ellipse is defined as b, thus the minor axis has a length of2b. The distance from the 

center to each focus is defined as c. 

Using these, we can derive the standard form of the equation of an ellipse. The 

ellipse was defined to be the set of all points such that the sum of the distances from the 

two foci is constant. For an ellipse with the major axis horizontal, the vertices are located 

at (h ± a, k) and the foci are located at (h ± c, k). The constant sum of the distances 

between a point and the foci can be found easily by using either vertex. It equals 

(a + c) + (a - c), which simplifies to 2a. 

Using the distance formula and any point (x,y) on the ellipse, we get the equation 

~[x -(h - C)]2 + (y - k)2 + ~[x -(h + C)]2 + (y - k)2 = 2a. After simplifying this 

becomes (a2- c2)(x - h)2 + a2(y - ki = a\a2- c2). To simplify further, we need to make 

use of an identity relating a, b, and c. Construct a right triangle by connecting one of the 

foci to one of the endpoints of the minor axis. Since this point is equidistant from both 

foci, the length of the segment drawn must equal a, since it was shown earlier that the 

sum of the distance to each focus from any point on the ellipse is 2a. The legs of the 
2 2 2triangle are band c, thus in an ellipse, a2= b2+ c or b2 = a - c by the Pythagorean 

Theorem. 
2 2Substituting in the previous expression yields b\x - h)2 + a2(y - ki = a b . 

Dividing this equation by a2b2gives the standard form for the equation of an ellipse with 

a horizontal major axis: (x - h)2 + (y - k)2 = 1 
a2 b 2 . 

With the major axis vertical, the equation would be (x - ~)2 + (y -2
k

)2 = 1. 
b a 

In both cases, the major axis has length 2a, and the minor axis length 2b. The foci always 

lie on the major axis, c units on either side of the center. 
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The eccentricity of an ellipse measures its 'ovalness' or thinness. Eccentricity is 

defined as ~. Hence a small eccentricity value (close to 0) means the ellipse is close to a 
a 

circle in shape, i.e. the major axis is only slightly longer than the minor axis. A large 

eccentricity value (almost 1) means the major axis is substantially larger than the minor 

axis, thus the ellipse is very long and thin. The eccentricity of an ellipse must be between 

oand 1, because the focus points are always inside the ellipse, c < a. 

Circles 

A circle is the set of all points in a plane that are equidistant from one point, 
2called the center. The standard form equation for a circle is (x - hi + (y - k)2 = r 

where (h,k) is the center, and r is the radius. Worth noting here is this equation is very 

similar to the equation for an ellipse, i.e. if we divided this equation by r2
, it would look 

exactly the same, except that a and b are equal. The circle is actually a special kind of 

ellipse with both foci located at the same point, the center. Hence the major and minor 

axes are the same, and the eccentricity is zero. 

Hyperbolas 

A hyperbola is the set of all points such that the difference of the distances from 

two distinct fixed points, called foci, is constant. Hyperbolas consist of two branches 

opening opposite each other, with one focus point inside each branch. 

The line connecting the foci of a hyperbola is known as the transverse axis. The 

points where the transverse axis intersects the hyperbola are called vertices. The 

midpoint of the transverse axis is the center, denoted by (h,k). The axis perpendicular to 

the transverse axis is called the conjugate axis. 

As the branches of a hyperbola become further from the center, they approach 

becoming straight lines. These lines are called the asymptotes of the hyperbola. Every 

hyperbola has two asymptotes, which intersect at the center. One end of each branch 

approaches one end of one of the asymptotes. 

Distances in a hyperbola are similar to the ellipse: 

a is the distance from the center to either vertex, 
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c is the distance from the center to either focus, 

b is the half width of a rectangle drawn between the branches of the 

hyperbola with length 2a and the asymptotes forming diagonals. 
2 + b2The Pythagorean relationship in a hyperbola is a = c2

. 

A rectangular hyperbola is a hyperbola where a = b. 

We can also derive the standard form of the equation of a hyperbola using the 

distance formula. As with the ellipse, the constant difference of the distances between a 

point on the hyperbola and the foci can be found easily by using either vertex. It equals 

(c + a) - (c - a) or 2a. For any point (x,y) on the hyperbola, we get an equation similar to 

that of the ellipse except the plus sign before the second term is changed to a minus sign. 

The standard form of the equation of a hyperbola with transverse axis horizontal 

(x-h)2 (_k)2
simplifies to - y = 1.

2 b2 a 

With the transverse axis vertical, the equation becomes (y -2k)2 _ (x - ~)2 = 1. 
a b 

The asymptotes for a hyperbola with center at (h,k) and transverse axis horizontal 

can be expressed by the equations y = k ± ~ (x - h). The asymptotes for a hyperbola 
a 

with center at (h,k) and transverse axis vertical can be expressed by the equations 

y = k ± ~ (x - h). We find the asymptote equations by taking the equation of the 
b 

hyperbola, changing the 1 to a 0, and solving for y. 

The eccentricity of a hyperbola is also defined as .£ and measures its flatness. 
a 

The eccentricity of a hyperbola must be greater than 1, because c > a. If the eccentricity 

is close to 1, the hyperbola is rather flat and the branches are pointed. As the eccentricity 

becomes greater than 1, the hyperbola branches open wider. 

Parabolas 

A parabola is the set of all points in a plane that are equidistant from a fixed point 

called the focus, and a fixed line called the directrix. The vertex is defined as the 

midpoint between the focus and the directrix. The axis of a parabola is the line 
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connecting the focus and the vertex. In most cases, the axis of the parabola is parallel to 

either the x-axis or the y-axis. 

The equation of a parabola with vertical axis, vertex at (h,k) and directrix at 

y = k - p, in standard form is (x - h)2 = 4p(y - k), where p represents the distance 

between the focus and the vertex. With horizontal axis, vertex at (h,k) and directrix at 

x = h - p, the equation is (y - ki = 4p(x - h). 

To derive the equation of a parabola, we use the point (x,y) on the parabola and 

the vertex (h,k). Ifwe consider the case where the parabola opens upward, then the focus 

lies on the point (h, k + p) and the directrix is y = k - p. Using the distance formula, the 

distance from the focus to the point (x,y) equals the distance from the directrix to the 

point. ~ (x - h)2+ [y - (k + P)]2 = Y- (k - p). Squaring both sides gives 

(x - h)2 + i -2y(k + p) + (k + p)2 = i - 2y(k - p) + (k - pi. Simplifying this gives the 

formula (x - hi = 4p(y - k). 

The eccentricity of a parabola can be defined as the ratio of the distance from the 

focus to the distance from the directrix for any point on the parabola. The eccentricity of 

a parabola is always 1. 

General Second Degree Equation and Rotation of Axes 

When the axes of a conic section are not parallel to the x and y axes, a general 

equation of the form Ax? + Bxy + Cy2 + Dx + Ey + F = 0 results. If the B term in the 

general equation is nonzero, and we must rotate the axes to identify the conic. Rotation 

of axes involves eliminating the B term by creating a new set of axes, x' and y', which are 

parallel to the axes of the conic and which form the x'y' plane. A new equation for the 

conic in the x'y' plane has new coefficients, A'(x'i + C'(y'i + D'x' + E'y' + F' = O. B' will 

be zero if we use as an angle of rotation, e, found by solving cot 2 e = A - C . 
B 

The new coefficients are then found by substituting into the following equations: 

A' = A cos2 e + B cos e sin e + C sin2 e 
C' = A sin2 e -B cos e sin e + C cos2e 
D' = D cos e + E sin e 
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E' = -D sinS + E cosS 

F'=F. 

After the new coefficients are found, with B' = 0, the conic can be identified and 

written in one of the standard forms described in the previous pages. 

Discriminant of a General Conic 

A quick way to identify a conic without rotating the axes is by evaluating the 

discriminant, defined as B2- 4AC. When B = 0, the type of conic depends entirely on 

A and C. We can easily see that if A or C (not both) are zero, the conic is a parabola, and 
2B - 4AC is zero. If A and C have opposite signs, then the conic is a hyperbola, and 
2B - 4AC is positive. If A and C have the same sign, then the conic is an ellipse, and 
2B - 4AC is negative. IfA and C are equal, then the ellipse is also a circle. 

When the axes are rotated, (B'l -4A'C' = B2- 4AC. Thus we can remember the 

rule from the simple case when there is no xy term and use the rule when there is an xy 

term. The graph ofAx2+ Bxy + Cy2 + Dx + Ey + F = 0 can be identified as follows: 

B2- 4AC = 0 ---)0 parabola 

B2- 4AC > 0 ---)0 hyperbola 

B2- 4AC < 0 ---)0 ellipse or circle. 

Vectors 

A vector is a line segment that has a length, called magnitude, and a direction. 

Every vector has an initial point and a terminal point. To compute the magnitude of a 

vector v (denoted 1'1 v II ) given an initial point (Xl, YI) and a terminal point (X2 , Y2), use 

the distance formula. For example, a vector with an initial point (2, 2) and a terminal 

point (5 , 6) has a magnitude of ~[(5 - 2)2 + (6 - 2)2] = 5. 

The component form ofv is expressed by < X2-XI , Y2-YI>. In our example, the 

component form would be < 3 , 4 >. 

Two vectors with the same magnitude and same direction are said to be equal. A 

vector with initial point (1 , -3) and terminal point (4 , 1) is equal to the vector with initial 

point (2 , 2) and terminal point (5 , 6) because each of them has component form <3 ,4>. 
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A vector with magnitude 1 is called a unit vector. Every vector v has exactly one 

unit vector which points in the same direction. It is computed by dividing each 

component by the magnitude. < 3 ,4> has magnitude of5, therefore its unit vector is 

3 4 
< - - >

5 ' 5 . 

Vector Addition, Subtraction, and Scalar Multiplication 

The sum ofvectors p and q, denoted by <pI, P2> and <qI, q2>, is < PI + qi , 

P2 + q2>. This can also be seen graphically by placing the initial point of p at the origin, 

and placing the initial point of q at the terminal point of p. The sum of vectors p and q is 

the vector with initial point at the origin and terminal point at the terminal point of q. 

The difference of vectors p and q is similar to addition, but the corresponding 

components are subtracted. Graphically, we place the initial points ofboth p and q at the 

origin. The vector p - q will go from the terminal point of q to the terminal point of p. 

We could also draw vector q going in the opposite direction as -q and add it to vector p. 

The scalar product of a positive real number k and a vector v has the same 

direction as the vector, and each component and the magnitude are multiplied by the real 

number. Ifk is negative, then the product has the opposite direction. Vectors which have 

the same direction but different magnitudes are called paraDel vectors. If two vectors are 

parallel, then the ratio between any component of the first and the corresponding 

component of the second is constant. 

Dot Product of Vectors 

The dot product is the multiplication of two vectors which results in a scalar. It 

is sometimes called the inner product. The dot product ofvectors p and q, denoted by 

<PI, P2> and <qI , q2>, is a real number equal to PIqI + P2q2. For example, the dot 

product of < 3 ,4> and < -1 ,2> is (3)(-1) + (4)(2) = 5. 

Angle between Two Vectors 

The dot product is useful to find the angle e between two vectors x and y. If we 

graph x and y with initial points at the origin, we can construct a triangle with one side 
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•
 

from the origin to the endpoints of each vector. The third side connecting the two 

endpoints will be the difference x - y. By applying the Law of Cosines to this triangle, 
2 2we obtain Ilx-yl12 = IIxl1 + IIYII - 211xllllyll cosS. Since IIx-yll2 = (Xl - Yl)2 + (X2 - Y2i = 

2IIxl1 + lIyll2 - 2(XlYl + X2Y2), we can simplify this to XlYI + X2Y2 = IIxlillyli cosS . 

x·y
This becomes the formula: cos S = _--:....-

Ilxlllly II 
Two vectors whose dot product is zero are perpendicular, and are called orthogonal 

vectors. 

Projection of One Vector onto Another 

We wish to project vector U onto vector b, written as proj bU. Ifthese vectors are 

placed with their initial points together, by trigonometry, the cosine of the acute angle 

between them = II proj bull . But by the previous formula, the cosine of this angle = 
lIull 

u· b . Thus the magnitude: IIproj ull = ~. Multiplying this by a unit vector 
II u 1IIIb II b lib II 

u·b
in the direction of b, gives the vector projection: (1Ib"Ir )(b). 

Distance from a Point to a Line 

From these formulas it is possible to find the distance from a point to a line in a 

plane. The perpendicular distance is the shortest distance from a line ax + by + C = 0 to a 

point (xo , Yo) not on the line. First we make a vector from any point (x, y) on the line to 

(Xo ,Yo): <Xo-x, yo-y>. Now take the length of the projection of that vector onto a vector 

perpendicular to the line, n = ai + bj, simplify, and we come up with this formula. 

. . . .. Ia(xo-x)+ b(yo - y) I
The magnItude of the proJectIon, the perpendIcular dIstance = . 

lin II 

The distance from a point to a line = Iax} + by 0 +c I.
 
(a 2 +b 2 

)
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Distance from a Point to a Plane 

The formula for the distance to the plane ax + by + cz + d = 0 from a point 

(xo , Yo, Zo) not on the plane is derived in a similar way. 

. . Iax + by + cz + d I 
The distance from a pomt to a plane = 0 0 .J 

2(a2 +b 2 +c ) 

Equations of Lines in Space 

A line in space can be determined uniquely by specifying a point on the line and a 

direction vector parallel to it. Given a point (X() , yo) on a line, and direction vector v = 

<a,b> , the line in two-space has parametric equations x = X(} + at, and y = yo + bt. Of 

course, in two-space, we could eliminate the parameter and have the familiar equations at 

the beginning of this section. 

Given a point (xo , yo , zo) in a line, and direction vector v = <a,b,c>, the line in 

three-space has parametric equations x = Xo + at, y = yo + bt, and z = Zo + ct. Ifwe 

eliminate the parameter in three-space, we get a three-part symmetric equation 

x-xo _ y-Yo = Z-Zo� 

abc� 

Equations of Planes 

An equation for a plane can be written given a point (X(), Yo, za) on the plane and a 

vector <a,b,c> which is normal or perpendicular to the plane. If (x, y, z) is any other 

point in the plane, the vector <x - X(}, Y- Yo, z - za> is orthogonal to vector <a,b,c> and 

so the dot product will equal zero. This gives the equation for a plane as: 

a(x - X(}) + bey - Yo) + c(z - za) = 0, 

which simplifies to: ax + by + cz + d = O. 
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Arithmetic Series & Geometric Series 

Arithmetic Sequence 

An Arithmetic Sequence is a sequence ofnumbers, which has the condition that 

the difference between any two consecutive terms is constant. The first term of an 

arithmetic sequence is generally labeled a or at and the common difference called d. The 

ith term in the sequence is given the label ai. 

Finding Terms of an Arithmetic Sequence 

Given any term in the sequence, and the common difference, it is possible to find 

any other term in the sequence. For example, if at is 8, and d = -3, we can find ~ by 

adding 7-1=6 multiples of-3, obtaining an answer of-10. Ifwe are told the ith andjth 

terms in the sequence, we can find any other term. First find the common difference, 

a. -a. 
I. Then any other term in the sequence can be found by adding or subtracting

d =	 J

j-i
 

I Of' dOd 22 -13 =.3 AnYother term
muItIp· Ies 0 fd . For examp e, I as IS 13, an ag IS 22, = 

8-5 

can be found by adding or subtracting multiples of d. 

Sum of an Arithmetic Sequence
 

It is also possible to compute the sum of the first n terms of an arithmetic
 

sequence. For a sequence of length n, pairs of terms which have a common sum can be 

grouped together to make the additions easier. al + an, a2 + 30-1, a3 + an-2, and so on, all 

have sums of a l + an or 2aI + (n-I )d. There are E..
2 

such pairs. Hence the sum of all 

terms in the sequence is ~ ( at+ an) or n (2at + (n-l)d).
2 2 

To compute the sum of a group of terms which does not include the first, simply 

treat the first term in that group as though it were the first in the sequence. 
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Geometric Sequence 

A Geometric Sequence is a sequence of numbers, which has the condition that 

the ratio between any two consecutive terms is constant. The first term of a geometric 

sequence is generally labeled a or at and the common ratio called r. 

Finding Terms of a Geometric Sequence 

Given any term in the sequence, and the common ratio, it is possible to find any 

other term in the sequence. For example, if at is 5, and the common ratio is 2, we can 

find ~ by multiplying 5 by 7-1=6 factors of2, obtaining an answer of320. Ifwe are told 

the ith and jth terms in the sequence, we can find any other term, as well as the common 

ratio, r = (j-,J;. For example, if lI:J = 13, and ~ = 117, the common ratio = (7-VII7 
=

13V~ 

V9 = J3. Any other term can be found by multiplying or dividing by factors of J3. 

Sum of a Geometric Sequence 

It is also possible to compute the sum of the first n terms of a geometric sequence, 

or all terms of an infinite sequence with I r I< 1.
 

For an infinite sequence, represent the sum S as S = a + ar + ar + ar3 + .
 

ar + a? + ar3 + ar4 + .
Multiplying both sides of this equation by r gives us rS = 

Subtracting the 2nd equation from the first gives us S - rS = a or S = _a_.
l-r
 

This is the formula for the sum of an infinite geometric series.
 

For a finite sequence of length n, the only difference is that when the 2nd equation 

above is subtracted from the first, the result will be S - rS = a - af+1, because here the 

a - ar D +1 

last term does not cancel out. Hence this formula is S = -- ­
l-r 

To compute the sum of a group of terms which does not include the first, simply 

treat the first term in that group as though it were the first in the sequence. 
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Binomial Theorem & Pascal's Triangle 

Patterns in Powers of Binomials 

Suppose we want to raise a binomial of the form (x + y) to a large power. This 

might appear to be extremely difficult or impossible without a computer. First we can 

raise the binomial to smaller powers and try to observe a pattern. 

(x + y)o = 1 

(x + y)l = X+ Y 

(x + y)2 = x2 + 2xy + I 
(x + y)3 = x3 + 3x2y + 3xy2 + y3 

(x + y)4 = x4 + 4x3y + 6X2y2 + 4xy3 + y4 

(x + y)5 = x5 + 5x4y + lOx3y2 + lOx2y3 + 5xy4 + y5 

and so on .. a few observations about these expressions. The terms of each expression of 

(x + y)" are always arranged in order such that the power ofx always decreases, and the 

power of y always increases, and their sum equals n. In each, there are always n + 1 

terms, and the coefficients of the terms were symmetric about the middle. Furthermore, 

. The coefficients of the
the sum of the coefficients in the expression of (x + y)" equals 20 

first term and last term of each expression are always 1, while the coefficients of the 

second term and second to the last term of (x + y)" always equal n. 

Binomial Theorem 

However the rest of the coefficients in between are not nearly as obvious. To
 

compute them we use the Binomial Theorem, which states that the mth term of the
 

expansion of (x + y)" is oem ,(l-m ~, where the coefficient oCm is equal to n!
(n-m)!m! 

There will be n+1 terms with m going from zero to n. 
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Pascal's Triangle 

Another feature of the expressions given above is that the sum of the coefficients 

nCm and nCm+l always equals the coefficient n+lCm+l. This feature is easy to see in 

Pascal's Triangle which is an infinite isosceles triangle of numbers where each row 

contains the coefficients in the expansion of (x + y)". 

1 
1 1 

121
 
133 1
 

1 464 1
 
1 5 10 10 5 1
 

1 6 15 20 15 6 1
 

The fITst row (technically row 0) contains the number 1, row 1 contains 1 1, row 2 

contains 1 2 1, row 3 contains 1 3 3 1, row 4 contains 1 4 6 4 1, row 5 contains 1 5 10 10 

5 1, etc. Each element of each row can be found either from the binomial theorem or by 

adding the 2 elements directly above it. 

The coefficients of a binomial expansion can be found by reading across the 

coefficients of a row in Pascal's Triangle. For example, the binomial (x + 3)5 = x5+ 

5x4(3)1 + 10x3(3)2 + IOx\3i + 5x1(3t + (3)5 = x5+ 15x4+ 90x3 + 270x2+ 405x + 243. 

It is also possible to search for only one or more terms from a row of the binomial 

expansion. For example, to find the coefficient ofx2y2 in the expansion of (3x + 2y)4, we 

would obtain the coefficient 4C2 from Pascal's Triangle, which is 6. Multiplying 

6(3x)2(2y)2 gives us 216x2y2. 

Combinations and Permutations 

Another use of the term nem is to represent the number of possible combinations 

of m items chosen from a group of n items, or subsets of n of length m. We just stated 

that 4C2 = 6, meaning that there are 6 ways to select 2 items from a group of 4. Ifwe 

have 4 items numbered 1 through 4, the sets of2 are {1,2} , {1,3} , {1,4} , {2,3} , {2,4} , 

{3,4} . 

The number of permutations of m items chosen from a group of n items, denoted 

nPm, is the number of ordered subsets ofn of length m. To calculate the number of 

permutations, consider selecting m items, one at a time, from a group ofn items. There 
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are n possible choices for the first item. For the second item, there are only n - 1 choices 

because one item has already been used. For the third item, there are only n - 2 choices 

because two items have already been used, and so on. For the mth item, there are n - (m ­

1) = n - m + 1 choices, since m - 1 items have been used. Hence, the total number of 

permutations oPmcan be expressed as a product (n)(n - 1)(n - 2) ... (n - m + 1), which can 

be simplified to n! For example, the number ofpennutations of2 items chosen 
(n-m)! 

24
from 4, denoted by J>2, is 4! = -= 12.

(4 - 2)! 2 

A formula for combinations nCm, as mentioned earlier, is n!
(n-m)!m! 

This is the same as the formula for oPmdivided by m!. The reason for this is because 

there are m! ways to order m items. Since the order does not matter for oCm, there will 

always be m! permutations for every one combination. In our example, there are twice as 

many permutations as combinations, because each combination listed can be reversed, 

thereby producing a different permutation. 
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Probability 

Probability 

The probability of an event occurring is the chance or likelihood that it will 

happen. In mathematical terms, probability can be defined as the total number of 

favorable outcomes divided by the total number of possible outcomes. 

As a very simple example, when tossing a coin, the probability of the coin coming 

up heads is 1/2. This is obtained by dividing the total number of favorable outcomes 

{heads} = 1 by the total number ofpossible outcomes {heads, tails} = 2. 

The probability of an event A occurring is denoted by P(A). The highest 

possible probability for any event to occur is 1, that happens when all of the possible 

outcomes are favorable. In other words, the event is guaranteed to occur. The lowest 

possible probability for an event to occur is 0, when none of the possible outcomes are 

favorable. In other words, the event is impossible. In all other cases, the probability of 

an event is a real number between 0 and 1. 

If the probability of an event occurring is p, then the probability of the event not 

occurring, or in other words the complement of p, is I-p. 

Independent, Dependent, and Mutually Exclusive Events 

Two events A and B are said to be independent if the outcome of event A has no 

effect at all on the outcome of event B, and vice-versa. For example, tossing a coin twice 

represents two independent events because the outcome of the first toss has no effect on 

the outcome of the second toss. 

If the outcome of an event A has an effect on the outcome of a future event B, we 

say that event B is dependent on event A. An example of this is drawing 2 cards from a 

standard deck ofplaying cards, without replacement. The probability that the first card 

drawn is a king is ~ = _1 , because there are 4 possible favorable outcomes (kings in 
52 13 

the deck) and 52 total possible outcomes (total cards in the deck). The probability that 

the second card drawn is also a king depends on the frrst outcome. In either case, the 

total number of possible outcomes is 51, since there are now 51 cards in the deck. Ifthe 
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first card drawn was a king, then there are 3 kings left, hence the probability of a second 

king is	 ~. However if the first card drawn was not a king, then there are 4 kings left,
 
51
 

hence the probability ofgetting a king would be ~.
 
51
 

Two events are said to be mutually exclusive if at most one of them can occur. 

For example, if A represents drawing a king from a deck, and B represents drawing a 

queen from a deck, then A and B are mutually exclusive because it is not possible for a 

card to be both a king and a queen. 

Probability of Event A OR Event B 

For two independent events A and B, the probability of either A or B occurring, 

i.e. P(A or B) = P(A) + P(B) - P(A and B). Note here that if A and B are mutually 

exclusive then peA and B) = 0, so peA or B) becomes simply peA) + PCB). The reason 

for this can be seen from the previous example, P(drawing a king) = ~, and P(drawing a 
52 

queen) = ~, so P(drawing a king or queen) = ~ + ~ = ~. 
52	 52 52 52 

Probability of Event A AND Event B 

For two independent events A and B, the probability of both A and B occurring, 

I.e. P(A and B) = P(A) * P(B). For example, tossing two fair coins, the possible 

outcomes are {HH, HT, TH, TT}. The probability ofgetting a head on anyone toss is 

1 h b bOlo fd" " " " "h" £'. I" 1 * 1 1 h"-, so t	 e pro a 1 tty 0 oing It tWIce In a row, USIng t IS 10rmu a, IS - - = -. T IS 
2 2 2 4 

agrees with the result obtained directly by using the set of possible combined outcomes of 

the two rolls. 

For two dependent events A and B, the probability of both A and B occurring, i.e. 

P(A and B) = P(A) * P(B given A). Using the example of drawing 2 cards from a 

standard deck of playing cards, without replacement, the probability that both cards will 

be kings, by this formula, is ~ * ~ = _1_ . 
52 51 221 
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Independent Binomial Events 

The Binomial Theorem and Pascal's Triangle also are useful in determining 

probabilities. The probability of an event A with peA) = 1/2 occurring exactly m times 

out of a possible n independent trials can be read directly from Pascal's Triangle. It is 

"Cm(the [m + l]th term in row n) divided by 2". 

If peA) = p, but P is not necessarily 1/2, the probability of event A occurring 

exactly m times out of a possible n independent trials is nCmpm (l-pt-m. 
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Divisibility Rules and Prime Numbers 

Divisibility 

An integer is divisible by another integer ifwhen divided the remainder is zero. 

When the divisor is very large, it is often possible to determine only by a calculator or 

computer, but with relatively small numbers there are easier methods. 

Divisibility by Powers of Two 

Suppose we want to test if a number is divisible by 2. Since lOis a multiple of2, 

we need only to look at the last digit. If the last digit is divisible by 2 (0,2,4,6,8) then the 

number is divisible by 2, otherwise it is not. The rest of the digits are not important 

because we can add or subtract any number of multiples of 10 without affecting its 

divisibility by 2. 

To test for divisibility by 4 is similar to testing for divisibility by 2, except here 

we must consider the last 2 digits. Since 100 is divisible by 4, we can add or subtract any 

number of multiples of 100 from a number without affecting its divisibility by 4. Hence 

we can conclude that a number is divisible by 4 if and only if its last 2 digits are divisible 

by4. 

Using similar reasoning, we can come up with divisibility rules for any power of 

2. The smallest power of 10 which is evenly divisible by 2n is IOn. Hence, when testing 

for divisibility by 2n, any number of multiples of IOn can be added or subtracted without 

affecting divisibility by 2n
. This means we must test only the remainder when the given 

number is divided by IOn. Therefore, a number is divisible by 2" if and only if its last 

n digits are divisible by 2". 

Divisibility by Powers of Five 

Five is also a factor of 10, hence the same idea used for divisibility by powers of 2 

will work for powers of 5. Since 10 is a multiple of 5, we again need to look at only the 

last digit. If the last digit is divisible by 5, i.e. 0 or 5, then the number is divisible by 5, 

otherwise it is not. The rest of the digits do not matter because any number of multiples 

of 10 can be added or subtracted without affecting its divisibility by 5. 
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For any power of 5, the smallest power of 10 which is evenly divisible by 5° is 

10°. Hence, when testing for divisibility by 5°, any number of multiples of Hf can be 

added or subtracted without affecting divisibility by 5°. Therefore, a number is divisible 

by SR if and only if its last n digits are divisible by SR. 

Unfortunately, for values of n much greater than 2 it will be difficult to test the 

last n digits for divisibility by 5°, so this method is not terribly useful except for very 

small values of n. 

Divisibility by Three and by Nine 

As would be expected, the tests for divisibility by numbers other than powers of 2 

and powers of 5 are quite different, because 2 and 5 are the only prime factors of 10. 

Testing divisibility by 3, we consider the sum of the digits of the number. This 

works because whenever 3 is added to a number, one of two things must happen. 

A) Ifthe units digit is less than 7 it will increase by 3, thereby increasing the sum 

of the digits by 3, which does not affect whether the sum of the digits is divisible by 3. 

B) If there is a carry in the units digit, the units digit will decrease by 7, and the 

tens digit will increase by 1, thereby decreasing the sum of the digits by 6, which does 

not affect whether the sum of the digits is divisible by 3. It is also possible that a carry 

will result in more than just the units digit. But each time any digit carries as a result of 

adding 3, that digit is decreased by 7, and the next highest digit increases by 1. 

Divisibility by 3 remains unaffected. 

Hence we conclude that a number is divisible by 3 if and only if the sum of its 

digits is divisible by 3. 

A similar argument can be made for testing divisibility by 9. Whenever 9 is 

added to a number, either 

A) If the units digit is 0, it will become 9, thereby increasing the sum of the digits 

by 9, which does not affect whether the sum ofthe digits is divisible by 9. 

B) If the units digit is not zero, a carry will result when 9 is added. The units 

digit will decrease by 1, and the tens digit will increase by 1, thereby leaving the sum of 

the digits unchanged. Just as in the previous case, it is possible that a carry will result in 
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more than just the units digit. But each time any digit carries as a result of adding 9, that 

digit is decreased by 1, and the next highest digit increases by 1, thereby leaving the sum 

of the digits unchanged. 

Hence we conclude that a number is divisible by 9 if and only if the sum of its 

digits is divisible by 9. 

Divisibility by Larger Numbers 

Divisibility tests for prime numbers greater than 5 exist, but are more 

complicated. These rules are all of the following form: A number is divisible by x if and 

only if XI times the units digit plus X2 times the tens digit plus X3 times the hundreds digit 

plus ..... is divisible by x. The x constants are determined by taking remainders when 

successive powers of 10 are divided by the number. 

For example, let us derive the formula for divisibility by 7. 

10° divided by 7 gives a remainder of 1, 

101 divided by 7 gives a remainder of 3, 

102 divided by 7 gives a remainder of2, 

103 divided by 7 gives a remainder of 6, 

104 divided by 7 gives a remainder of4, 

105 divided by 7 gives a remainder of 5, 

106 divided by 7 gives a remainder of 1. 

Once a remainder has repeated, the calculations can stop because the remainders 

will all repeat. There are 6 remainders in this sequence. This shows that a 6 digit number 

is divisible by 7 if and only if 1 times the 10° digit plus 3 times the 101 digit plus 2 times 

the 102 digit plus 6 times the 103 digit plus 4 times the 104 digit plus 5 times the 105 digit 

is divisible by 7. 

For numbers longer than 6 digits, repeat the pattern. 

A number is divisible by 7 if and only if 

1 times all of the 106k digits 

plus 3 times the 106k
+

1 digits 

plus 2 times the 106k
+

2 digits 
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plus 6 times (or minus 1 times) the 106k
+

3 digits 

plus 4 times (or minus 3 times) the 106k
+

4 digits 

plus 5 times (or minus 2 times) the 106k
+

5 digits 

is divisible by 7, where k = any nonnegative integer. 

It is possible to add or subtract any multiple of 7 from any of the coefficients 

above, in order to facilitate calculations. It would probably be easier to remember if the 

coefficients of the 6k + 3, 6k + 4, and 6k + 5 digits all were lessened by 7, becoming 

-1, -3, and -2 respectively, as 1,3,2,-1,-3,-2 is an easier sequence to remember than is 

1,3,2,6,4,5. 

Using similar methods, divisibility formulas for many larger numbers can be 

derived. Most are too long to mention in this paper, but here are a few of the simpler 

ones: 

Divisibility by 11 if and only if 

1 times 102k digits 

minus 1 times 102k
+

1 digits is divisible by 11. 

Divisibility by 13 if and only if
 

1 times 106k digits
 

plus 10 times 106k+
1 digits
 

plus 9 times 106k
+

2 digits
 

minus 1 times 106k
+

3 digits
 

minus 10 times 106k
+

4 digits
 

minus 9 times 106k
+

5 digits is divisible by 13.
 

Divisibility by 27 if and only if
 

1 times 103k digits
 

plus 10 times 103k
+

1 digits
 

plus 19 times 103k
+

2 digits is divisible by 27.
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Divisibility by 37 if and only if
 

1 times 103k digits
 

° 103k+1 dO °
I 10p us tImes 19ltS
 

plus 26 times 103k 
+ 

2 digits is divisible by 37.
 

Divisibility by Composite Numbers 

All of the above rules either test for divisibility by primes, or divisibility by 

powers of primes. These rules can be combined to test for divisibility by composite 

numbers which are the product of more than one distinct prime factor. For example, 

divisibility by both 2 and 3 implies divisibility by 6, and vice-versa. In fact, divisibility 

by x and divisibility by y is a sufficient test for divisibility by (xy) if x and yare 

relatively prime. (see next section) 

Prime and Composite Numbers 

A prime number is any positive integer that is not evenly divisible by any 

positive integer other than 1 or itself For example, 7 is a prime number, but 6 is not 

prime, because it is divisible by both 2 and 3. A number that is not prime is said to be 

composite. One is technically considered neither prime nor composite, but every number 

greater than 2 is either prime or composite. The smallest prime number is 2, the smallest 

composite number is 4. 

The Fundamental Theorem of Arithmetic states that all composite numbers can 

be expressed as the product of prime numbers in a unique way, this is known as its prime 

factorization. All positive numbers have a unique square root. Whenever a number can 

be expressed as the product of exactly two factors, one of these factors must be greater 

than or equal to the square root, the other factor must be less than or equal to the square 

root. Hence, to check if a number is prime, it is necessary to test whether the number is 

divisible by all numbers up to the largest integer less than or equal to its square root. If 

no factors are found, then the number is prime. 

To determine the prime factorization of a number, first find its smallest prime 

factor. Then divide the number by the prime factor, and find the smallest prime factor of 

the quotient, and divide again. Repeat this process until the quotient is 1, then all of the 
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prime factors have been found and the factorization is complete. For an example of this, 

we shall find the prime factorization of60. The smallest prime factor of 60 is 2, divide 

60/2 = 30. The smallest prime factor of30 is 2, divide 30/2 = 15. The smallest prime 

factor of 15 is 3, divide 15/3 = 5. The smallest prime factor of 5 is 5, divide 5/5 = 1. The 

prime factors of 60 are 2,2,3,5. This method works for any number, regardless how 

large. The prime factorization of a prime number consists of only one factor, the number 

itself 

Two or more numbers are relatively prime if the greatest common factor among 

them is 1, i.e. they have no common prime factors. To test if all numbers in a set are 

relatively prime, it is necessary to frrst find the prime factorization of each number. If 

there are any prime factors common to all numbers in the set, then the product of those 

numbers is the greatest common factor, and the numbers are not relatively prime. If there 

are no prime factors common to all numbers in the set, then the numbers are relatively 

prime. For example, consider the numbers 28 and 35. The prime factors of 28 are 2,2, 

and 7. The prime factors of 35 are 5 and 7. Since 7 is common to both, 28 and 35 are not 

relatively prime. The numbers 28 and 45 are relatively prime, because the prime factors 

of 45 are 3,3, and 5, none common with the prime factors of28. 

One well-known fact about prime numbers is that there is no largest prime 

number, i.e. there are infinitely many of them. This is actually very easy to prove. Start 

by assuming that a number x is the largest prime number. Consider the product of all 

prime numbers less than x. Adding 1 to this number will either 1) produce a new prime 

number, or 2) be a composite number having only prime factors greater than x. (It cannot 

be divisible by any prime less than x since 1 was added to the product.) 
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Number Bases 

Base Ten Numbers 

The number system we use is called base 10. There are 10 digits, from 0 through 

9.	 A number is made up of a set of digits, each to be multiplied by a power of 10 and 

) + 2(102) + 3(101) + 4(10°).
summed together. For example, the number 1234 = 1(103

Other Numbers as Bases 

Other number bases exist as well, and they function the same way except the 

digits are multiplied by powers of a number other than 10. It is impossible to define a 

number system with only one digit, as then the only existing number would be zero. 

However all integer number base greater than one are defined. Each base has a different 

set of characters to represent digits. Number bases less than or equal to lOuse digits 

from 0 through one less than the base number. Bases between 11 and 36 use digits 0 

through 9, followed by letters of the alphabet starting with A, i.e. A=10, B=11, and so 

forth. Numbers in bases other than base 10 are indicated with a subscript, i.e. 1012 

represents a number in base 2, or binary. 

Converting from One Number Base to Another 

Numbers can be converted from one base into another. Usually the easiest way to 

convert a number from base x to base y is to first convert from base x to base 10, then 

convert the base 10 number to base y. 

To convert from another base to base 10, simply multiply each digit by the base 

raised to the exponent of the place it's in, and sum them together in base 10. For 

example, ifwe want to convert the number 1238 to base 10, we compute 3(8°) + 2(81) + 

1(82) = 83. If the base from which we are converting is greater than 10, then we simply 

substitute the appropriate numbers for the letters. For example, converting the number 

A35D16 to base 10, we substitute 10 for A, and 13 for D, obtaining 13(16)° + 5(161) + 

3(16? + 10(16)3 = 41821. 

Converting a number k in base 10 to another number base (base y) can be 

done in two different ways. 
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The immediately most obvious way would be to find the greatest power of y less 

than k, divide k by that power. The quotient becomes the leftmost digit, and the 

remainder gets divided by y raised to the one less power. Repeat the process then until 

the remainder becomes zero, then all further digits are zero. For example, converting the 

number 83 10 to base 8. The largest power of 8 less than 83 is 82 = 64. ~ equals 1, with 
64 

remainder 19. The leftmost digit will be 1, and 19 is divided by 81
. The quotient of .!2. 

8 

is 2, with remainder 3. The next digit will be 2, and 3 is divided by 8°. The quotient of 

i is 3, with remainder O. Hence we are finishe"d, the answer is 83 10 = 1238. 
1 

While this method works well enough, there is a shortcut method. Start with the 

original number to be converted, 83, and divide by the base to which we are converting. 

The remainder becomes the rightmost digit of the new number. Divide the quotient by 

the base. The remainder becomes the next rightmost digit of the new number. Repeat 

this process until the quotient is zero. Doing the same conversion by this method, 83 has 
8 

a remainder of3 and a quotient of 10. The rightmost digit of the new base 8 number will 

be 3, while lOis divided by 8. .!.Q has a remainder of 2 and a quotient of 1. The next 
8 

rightmost digit ofthe new base 8 number will be 2, while 1 is divided by 8. ~ has a 
8 

remainder of 1. The leftmost digit of the new base 8 number, and since the quotient is 0, 

we are finished. The new number produced is the solution; it is 1238 . The same results 

can be obtained by both methods, but practically this second method is quicker. 

Fast Conversions without Going through Base 10 

Larger Base is Power of Smaller Base 

There is one instance when there is a much faster way to convert between 2 

number bases, x and y, than going through base 10. Ifx is an integer power ofy (or vice­

versa) then the direct conversion can be done very simply. Let z be the base y logarithm 

ofx (i.e. the power y must be raised to in order to get x). Each group ofz digits ofy 
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corresponds to one digit ofx, and can be converted independently from the other digits in 

the number. 

Larger Base to Smaller Base 
,For example, suppose we want to convert the number 571 8to base 2. 8 = 23

therefore each digit in the base 8 number corresponds to 3 digits in the base 2 number. 

Convert each digit into 3 base 2 digits, starting with the rightmost. 18 = 0012. These 

become the rightmost digits of the new base 2 number. 78 = 1112. These become the 

next rightmost digits of the new base 2 number. 58 = 1012. These become the next 

rightmost digits of the new base 2 number, and since there are no more digits left, the 

conversion is done. Hence the complete answer is 571 8 = 1011110012. 

Smaller Base to Larger Base 

Converting from the smaller base to the larger base is equally as simple. For 

example, we can convert 1110100112 from to base 16. Since 24 = 16, each group of 4 

digits of the base 2 number will become 1 digit of the new base 16 number. Always start 

from the right side. The first 4 digits, 0011 2 = 316. 3 becomes the rightmost digit of the 

base 16 number. The next 4 digits, 11012 = D16 (D=13) become the next rightmost digit 

of the base 16 number. Since there are fewer than 4 digits remaining in the base 2 

number, assume zeroes for the others. OOOh = 116. So 1 becomes the next rightmost 

digit of the base 16 number. Since there are no more digits, the problem is done and the 

final answer is 1110100112 = 1D3 16. 

Larger and Smaller Bases Are Both Powers of the Same Integer 

Ifx and yare both integral powers of a lesser number w, then the problem can be 

solved by first converting from base x to base w, then from base w to base y. For 

example, 8 and 16 are both powers of2. To convert a base 8 number to base 16, first 

convert it from base 8 to base 2, then from base 2 to base 16. 
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Arithmetic in Other Number Bases 

Addition and multiplication in other number bases is done the same way as in 

base 10. For example, suppose we want to add the numbers 1238 and 4568. In base g 

there doesn't exist a ones place, a tens place, and a hundreds place, instead there exists a 

gO place, gl place, g2 place, etc. We start by adding the rightmost digit, which is the gO 

place. 3 + 6 = 9 in base 10, but the digit 9 does not exist in base g. 38 + 68 = 11 8. 

Following the rules of addition, the number in the gO place gets written, and the number 

in the gl place gets earned. We then get the addition 1 + 2 + 5 in the gl place. 18 + 28+ 

58 = 108. The 0 gets written in the gl place and the 1 gets carried over to the g2 place. 1 

+ 1 + 4 = 6, so the answer to the problem is 1238 + 4568 = 601 8. 

Multiplication is also done in the same way. All of the partial products must be 

done in the appropriate base, and then added together for the final product in that same 

base. 
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