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Abstract

After the first plausible fully homomorphic encryption (FHE) scheme designed by

Gentry, interests of a building a practical scheme in FHE has kept increasing. This

paper presents an engineering study of accelerating the FHE with BGV scheme and

proves the feasibility of implement certain parts of HElib on GPU. The BGV scheme

is a RLWE-based FHE scheme, which introduces a set of algorithms in polynomial

arithmetic. The encryption scheme is implemented in finite field. Therefore, accel-

eration of the large polynomial arithmetic with efficient modular reduction is the

most crucial part of our research efforts. Note that our implementation does not

include the noise management yet. Hence all the work is still in the stage of some-

what homomorphic encryption, namely SWHE. Finally, our implementation of the

encryption procedure, when comparing with HElib compiled by 9.3.0 version NTL

library on Xeon CPU, has achieved 3.4x speedup on the platform with GTX 780ti

GPU.
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Chapter 1

Introduction

Since Gentry constructed the first plausible scheme in 2009, fully homomorphic

encryption (FHE) has been a prevalence in the area of cryptography. A consequent

possible application of practical FHE scheme is cloud computing which allows a

untrusted cloud to perform computations directly on ciphertexts for arbitrary times

without “leaking” (decryption) the original data from clients. Later the customers

can obtain their desired results by simply applying the decryption to the output sent

back from the cloud. Therefore during the entire operations on the cloud server, no

one other than the client is able to access the original plaintext, the user’s privacy

is ensured. Because of this invaluable feature, FHE has been increasingly attracting

the attentions from both academia and industry.

1.1 Different FHE implementations

Most cryptography schemes is based on mathematical problems which is proved hard

to solve through contemporary computational power. The basic idea to accomplish

FHE scheme is to introduce noise purposely to the ciphertext, which correlates the

security to certain existing mathematical problems, to make it difficult for adversary
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to extract the valid data from noisy ciphertexts. The first FHE scheme introduced

by Gentry is using ideal lattices wherein the security of the scheme is based on the

hardness of lattice problem [1]. In 2010, Gentry [2] proved that the security of his

FHE scheme can be reduced to the worst-case of hardness of lattice problems.

Similarly, Coron et al. proposed a FHE scheme over integers [3]; Brakerski

and Vaikuntanathan presented another efficient FHE scheme which is based on

learning with errors (LWE) problem [4]. At this moment, the LWE based schemes

are considered the most efficient among all prevailing FHE schemes. One of them is

designed by Brakerski, Gentry and Vaikuntanathan, which is widely known as BGV

scheme [5]. Another is designed by Lopez, Tromer and Vaikuntanathan, known as

LTV scheme [6]. The LTV scheme is also known as NTRU-based FHE scheme. Both

BGV and LTV are LWE-based schemes, and one should be aware that they all work

in polynomial rings, which requires vast and large-degree polynomial arithmetic.

1.2 Other important concepts in LWE-based schemes

1.2.1 Somewhat Homomorphic Encryption (SWHE)

As we mentioned earlier that almost all the FHE schemes is implemented by “in-

troducing noise to the plaintext”. One can recover the message by given the secret

key. However, the ciphertexts after evaluation may have a correctness problem due

to the growth of noise contained in the ciphertexts. Gentry invented a procedure

called “bootstrapping” which is to “refresh” the ciphertext to ensure the correctness

of decryption [1]. Since Gentry called the encryption scheme before bootstrapping

“somewhat” homomorphic, this SWHE term remains in all the later works. The

bootstrapping is viewed as a way of noise management and the later works also

introduced other ways of noise management. Therefore, all the scheme of FHE
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should contain a SWHE which supports only limited depth of evaluation circuit,

plus proper noise management in the cyphertext.

1.2.2 Batching

Note that the LWE-based schemes are working on polynomial rings. The SWHE

contained in such schemes uses polynomial rings with the form of

Rp = Z[X]/(F (X), p) (1.1)

as the plaintext space, where F (X) is a cyclotomic polynomial (which can be seen

as the “polynomial version of prime”) ring and p is a prime integer. Thus, the

plaintext, which is usually an one-bit number, is encrypted into ciphertext in a

respective “field” defined by equation (1.1). Then Smart and Vecauteren introduced

the concept of SIMD [7] and indicated that one can “split” the original plaintext

space into a vector of smaller spaces with the help of Chinese Remainder Theorem

(CRT) on polynomials. The original cyclotomic polynomial in the plaintext space

can be written into:

Φm(X) = F (X) = F1(X) · F2(X) · · · Fl(X)(mod p) (1.2)

where Fn(X) can be viewed as a plaintext space “slot”. Consequently, one can

“encode” a vector of plaintext bits, instead of a single bit, to respective slots de-

scribed by equation (1.2). Such “encoding” procedure is called “batching”. Thus

one can batch a vector of plaintext bits and encrypt them into one ciphertext so

that the evaluation is operated in parallel by applying component-wise operations

to ciphertexts.
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1.2.3 Ring Learning With Errors Problem (RLWE)

In 2010, Lyubaskevsky, Peikert and Regev [8] introduced the ring-LWE problem. In

the BGV scheme, Brakerski, Gentry and Vaikuntanathan used a special case of the

RLWE for FHE [5] which will be explained in the later section. For readers who

first know the words of RLWE, the general idea is that random linear equations,

when introduced and mixed with a small amount of noise sampled from a certain

distribution, are not distinguishable from a real uniform random distribution. Con-

sequently one can not find the true information from the noisy polynomials in a

certain ring.
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Chapter 2

Related Work

This work is focusing on accelerating and re-engineering the HElib which is a C++

implementation of BGV scheme. There are already several previous works which

have achieved decent performance.

2.1 First attempt of accelerating FHE scheme

The first attempt to accelerate a FHE scheme is on both FPGA and GPU platform,

which is implemented by Wang et al. following the scheme introduced by Gentry

and Halevi [9]. This scheme is a lattice-based scheme with the following encryption

procedure:

c = [u(r)]d = [b+ 2
n−1∑
i=1

uir
i] (2.1)

where d and r are public key. We can see from the equation (2.1) that one need

to evaluate the inner product of vector (with all 0/1 elements) u and ri. After the

encryption, one bit of plaintext will be encrypted to a large integer which could be

as large as 768 000-bits when a dimension of 2048 lattice is applied [10]. Therefore

the most crucial part that impacts the efficiency is modular multiplication among
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large integers [11].

According to [11], to achieve acceleration of large integer multiplication, they

employed the Strassen’s multiplication algorithm introduced by Emmart and Weems

[12] with the help of finite-field FFT:

Strassen multiplication for integers

1. Given 2 number A and B, view each digit of them as an sample in FFT
algorithm

2. Apply FFT to both A B into FFT(A) and FFT(B) respectively

3. Multiply the result of FFT in component-wise: C [i] = FFT(A)[i] * FFT(B)[i]

4. Compute the inverse FFT to the product C abouve: C’ = iFFT(C )

5. Resolve the carries(where b is the base):
for each element in C’ do

if C’ [i] >= b do
C’ [i+1] += C’ [i] div b;
C’ [i] = C’ [i] mod b;

end if
end for

6. return C’ [i];

Figure 2.1: Strassen FFT multiplication for integers

Because the Step 3 in Figure 2.1 is a component-wise multiplication in the

Strassen FFT multiplication algorithm, the advantage of parallelism computing of

GPU can be employed to achieve much better performance.

Niall et al. [12] found a specific prime, p = 0xFFFFFFFF00000001 for the FFT

procedure mentioned above in finite field. This prime actually belong to a set of

primes called solinas primes which have similar properties. Now we focus on the

prime 0xFFFFFFFF00000001 used by Niall and explain what special properties

does this prime have. Below are the definition of k-point FFT and iFFT in finite
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field:

X(i) =
k−1∑
j=0

xj(rk)ij(mod p) (2.2)

x(j) = −k−1
k−1∑
j=0

Xi(rk)−ij(mod p) (2.3)

where rk is the kth primitive root and p is a prime for the definition of finite field.

When a solinas prime is introduced here, in this case 0xFFFFFFFF00000001, for

64-point or less FFTs, the roots of unity are powers of two, e.g. r64 = 23 (Since under

the finite field p, (23)64mod p = 1, which is exactly the definition of a root of unity).

Thus, under the finite field for 0xFFFFFFFF00000001, all the multiplications in the

FFT procedure can be accomplished by shifting bits (multiplication with power-of-

two numbers) which is a much simpler operation than large number multiplications,

especially for FPGA devices.

2.2 Acceleration of LTV FHE scheme

LTV scheme is also a LWE based FHE scheme [6], which is much similar to BGV

scheme. Dai et al. has proved that the Strassen FFT multiplication algorithm is

also feasible when the case comes to polynomials, in which the LWE (or RLWE)

problem is employed. In this case all the operations are performed in a plaintext

space defined by a polynomial ring:

Rp = Z[X]/(F (X), p) (2.4)

More specifically, the F (X) is defined in the form of xn + 1, where n is the

“length” (degree) of a polynomial. Different from scheme based on lattice, the one-

bit message is actually “embedded” into a polynomial of Definition (2.4); Then the
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key way to achieve better performance is to accelerate the operations of polynomials

with a high degree.

To accelerate high-degree polynomial multiplications, the Strassen multiplication

need to be modified slightly as in Figure 2.2. (Note that due to the scenario of FHE,

we often assume that two polynomial operands are in the same degree n)

Strassen multiplication for polynomials

1. Whenever there two polynomial operands A and B exist, expand them to 2n-
degree polynomials by padding 0s to the coefficients. View each coefficient as
an sample of FFT.

2. Then simply aply FFT to both a and b: A = FFT (A), B = FFT (B);

3. Multiply the result of FFT in component-wise: C[i] = FFT (A)[i]∗FFT (B)[i]

4. Compute the inverse FFT to the product C above: C ′ = iFFT (C)

5. Resolve the carries

6. return C’ [i]

Figure 2.2: Strassen multiplication for polynomials

There is a slight difference between a large integer multiplication algorithm and

a high-degree polynomial. The former viewed each bit of a large integer as a sample

of FFT operation and the other viewed a coefficient of a polynomial as a sample.

More specifically, the FFT or Number Theoretic Transform (NTT) algorithm

applied here is the Cooley-Tukey FFT algorithm. The NTT algorithm used in [13]

is a radix 64 FFT as in Figure 2.3.
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NTT (Cooley-Tukey) algorithm

1. Split N samples into a vector of 4096(64 * 64) -sample rows.(4096 rows, N/4096
columns)

2. for each set of 4096 samples do

3. Split 4096 samples into a vector of 64-sample rows(64 rows, 64 columns)

4. for each 64 samples do

5. 64-point NTT

6. end for

7. Transpose

8. Multiply twiddle factors(4096-point)

9. for each 64-sample rows(after transpose operation) do

10. 64-point NTT

11. end for

12. end for

13. Transpose

14. Multiply twiddle factors(N-point)

15. for 4096 columns do

16. N/4096-point NTT

17. end for

Figure 2.3: Algorithm of NTT(FFT) used in cuHE

Note that the 64-point NTT is built with 8-point FFTs in assembly code on

GPU provide by Niall et al. such that the multiplications in the FFT are indeed

replaced with only shifting and addition operations. In a addition, Dai et al. also

built a complete scheme on GPU, cuHE [14], to utilize the computation power of

GPU heavily. But generally the most crucial part of this scheme affected by serial
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processing is still the multiplication of high-degree polynomial [13]. This NTT

algorithm used in cuHE only supports FFTs in the length of 16384, 32768 or 65536.
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Chapter 3

Accelerating The HElib

HElib [15] is an open source library project implemented in C++, which follows the

BGV scheme. The HElib has implemented the numerical and mathematical theory

employed in BGV and as well as the higher level applications. They have lower

layers filled with math structures and classes which could be an analogy to a lower-

level architecture as “assembly language”, providing a “platform” for the crypto

scheme [16]. Higher layers, called “crypto layers”, provide the classes and methods

required by FHE scheme, e.g. KeySwitching , FHEcontext , EncryptedArray

etc.

Similar to other hardware implementations, we focus on the FFT/iFFT proce-

dure and relative index utilities and polynomial arithmetics too, all of which lied in

lower-level layers.

3.1 Arbitrary-length Bluestein FFT

Each scheme and accelerating method mentioned above focus on implementation of

FFT algorithm for large-size multiplications during the encryption and evaluation.

Roughly, this is resulted from the Gentry’s original design since all the encryption
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schemes keep themselves secure by introducing noise to the plaintext which lead to

the huge size of encrypted data.

Although the NTT and FFT are different structurally, in concept they are the

same and they both employ Cooley-Tukey algorithm. My accelerating technique also

focus on FFT, however, employed the Bluestein FFT procedure instead. Although

it is easy to find that the original implementation in HElib also harness the Bluestein

FFT algorithm, we actually choose it with decent comparison and concern since not

all implementation on CPU are transportable to a GPU platform.

Bluestein FFT was presented by Bluestein in [17]. Now we can have a introduc-

tion to Bluestein’s algorithm. Recall that

X(i) =
k−1∑
j=0

xj(rk)ij(mod p) (3.1)

Multiply (rk)−
1
2
i2with both side of equation (3.1), it will become:

(rk)−
1
2
i2X(i) =

k−1∑
j=0

xj(rk)
1
2
(2ij−i2)(mod p) (3.2)

Since 2ij − i2 = −(j − i)2 + j2, the equation (3.2) would be respectively:

(rk)−
1
2
i2X(i) =

k−1∑
j=0

xj(rk)
1
2
(−(j−i)2+j2)(mod p) (3.3)

=
k−1∑
j=0

xj(rk)
1
2
j2(rk)−

1
2
(j−i)2(mod p) (3.4)

Therefore

X(i) = (rk)
1
2
i2

k−1∑
j=0

xj(rk)
1
2
j2(rk)−

1
2
(j−i)2(mod p) (3.5)

Note that the right side of equation (3.4) is actually the convolution of x(n)rk
1
2
n2
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and rk
− 1

2
m2

, where n = 0, 1, 2, ..., k−1,m = −k+1,−k+2, ...,−1, 0, 1, 2, ..., k−1 for

a k-point FFT. In another words, using Bluestein’s algorithm, the FFT procedure

is eventually turned to the convolution operation.

We can observe that, the second term of convolution, rk
− 1

2
m2

contains no pa-

rameters relative to the input x of the FFT. Thus we can simply put it into the

“precomputation” and only execute it once. In this way, we can accelerate the the

entire Bluestein FFT procedure. Here we also need to employ the computation

power of GPU and it is a rule of thumb that when coding in CUDA [nvidia2015c],

precomputation is a frequently-used step which could make the memory accessing

much more efficient.

In particular, the convolution operation can be also accelerated by a pair of

FFT and iFFT procedure and it is similar to the Strassen multiplication with the

only slight difference that it does not require the step of resolving carriers. Here it

may be confusing that the Bluestein’s algorithm is optimizing FFT using another

pair of FFTs! We shall analyze this step by step. First, Bluestein has proved that

the FFT in his algorithm has the complexity of N log N which is the same as the

Cooley-Tucky algorithm. In addition, the procedure to accelerate the convolution

operation is a well-developed process and has been widely applied to different fields.

That is, roughly, we could actually “lower the hardness” of computation during the

FFT procedure by putting steps into precomputation.

The Bluestein’s FFT have certain benefits. CUDA is a platform for parallel com-

puting invented by Nvidia [18]. However, that doesn’t mean the operation could

be pure in parallel when running on device. On the contrast one should always

keep cautious to the memory management such as reducing the inter-transportation

between Host and Device and avoid conflict of on device memory as much as pos-

sible to guarantee parallelism. There are good methodologies and suggestions from
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the guide book from Nvidia [19]. For example, as we described above, we don’t

need to resolve the carriers by continuously executing C ′[i + 1]+ = C ′[i] div b;

C ′[i] = C ′[i]mod b, which is called data dependency. Such a dependency would ex-

tremely impact the parallelism. Similarly, the Transpose steps in the Cooley-Tucky

NTT algorithm would also slow down the GPU execution or cause more restrictive

memory management and complex implementation.

In conclusion, the Bluestein FFT is implemented in following steps (all in finite

field)

NTT (Cooley-Tukey) algorithm

1. Apply FFT to sequence rk
− 1

2
m2

(extended to 2k length by padding 0s) and get

output: Rb = FFT(rk
− 1

2
m2

) (stage of precomputation)

2. Apply FFT to sequence x(n)rk
1
2
n2

(extended to 2k length by padding 0s) and

get output :Ra = FFT(x(n)rk
1
2
n2

)

3. Do element-wise multiplication between Ra and Rb :Rc[i] = Ra[i]∗ Rb[i]

4. Apply iFFT to Rc : R′c = iFFT(Rc)

5. Element-wise multiplication with (rk)
1
2
i2 : R′c[i+ k − 1] ∗ (rk)

1
2
i2

Figure 3.1: Bluestein FFT

When comparing to the Cooley-Tukey algorithm, it has the following benefits:

no execution steps in which elements have dependencies on each other, the data path

is cleaner (excluding transposing or carrier resolving), easy for memory management

and implementation, and benefiting a lot from precomputation. Thus the Bluestein

FFT algorithm is naturally GPU-friendly because of such properties. In addition,

there is also a bonus that when harnessing the Bluestein FFT procedure, we can

have k in arbitrary length, whereas the NTT algorithm supports only 16384, 32768

or 65536 of length k.
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3.2 Double-CRT and Barrett modular reduction

When the plaintext space is factored into lower-degree fields, the BGV introduced

the CRT. To achieve modulus switching, BGV scheme employ CRT second time on

ciphertext space and build a “modulus chain” containing a vector of modulus to rep-

resent the sub-field generated by CRT. HElib also constructed a class, DoubleCRT

to keep all unities for modulus switching.

As discussed above, the BGV scheme take good advantage of the FFT procedure

to accelerate the polynomial operation. HElib makes every polynomial ready-to-

evaluate before anything is evaluated. Therefore, HElib puts every polynomials

into a “double-CRT representation” by applying finite field FFTs on each finite

field represented by respective moduli in modulus chain (all operations are under

(mod qi)).

Therefore, a efficient modular reduction, especially for modular multiplication

is also required for the density of modular reduction operations. Wang et al. have

presented that they harnessed the Barrett Modular reduction [20] and we dicide to

follow this modular algorithm with introducing the power of solinas prime.

In the previous section, we present how one can take advantage of prime P ,

0xFFFFFFFF00000001. In fact, more generally, this prime can also speed up the

fundamental multiplication. Here the prime is large enough hence the operands are

in Z/PZ. Then the product can be written in the form of

296a+ 264b+ 232c+ d (3.6)

where a, b, c and d are all 32-bit values. Note that for prime 0xFFFFFFFF00000001

296 = −1 (mod p) , 264 = 232 − 1(mod p) , equation (3.6) can be written as

15



product = −1(a) + (232 − 1)b+ 232c+ d

= 232(b+ c)− b− a+ d (3.7)

We can obtain a fast fundamental multiplication by shifting 32 bits (multiplica-

tion with 232) and 32-bit subtractions and additions. Replacing the generic multipli-

cation using the notation ModPMul and similarly, we also replacing addition and

subtractions by ModPAdd and ModPSub. Note that ModPAdd , ModPMul

and ModPSub are implemented by assembly code on GPU to explore the power

of parallel computation as much as possible.

Barrett modular multiplication

1. n = dlog2(q)e, invQ = b22n
q
c (Precomputation)

2. t = ModPMul(a, b)

3. h = t/2n

4. y = ModPMul(h, invQ)/2n

5. z = ModPMul(y, q)/2n

6. r = t− z

7. While (r ≥ q) do

8. r = ModPSub(r, q)

9. return r

Figure 3.2: Algorithm of Barrett multiplication

The Step 7 and 8 in Barrett multiplication algorithm is a loop and Wang pre-

sented that in their scenario that while loop would not last long. However, in our

case, when applying some of the test cases for HElib data stream, certain inputs do
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cause very long execution time and we decided to replace the steps seven and eight

by a generic modular operation symbol, “% ”.

3.3 Mapping to Z/mZ∗

After finite field Bluestein FFT procedure finished with help of Barrett reductions,

one still need to discard some of the outputs [15]and permutate to maintain a consec-

utive vector of the rest of the outputs, which is directed by corresponding indexing.

This step is to make sure that when all the polynomial operands transformed in to

FFT domain, the elements should be all in Z/mZ∗.

Mapping to Z/mZ∗ in HElib

1. for each element in length m do

2. if the ith element is in Z/mZ∗

3. put it into output vector

4. end if

5. end for

Figure 3.3: Mapping to Z/mZ∗ in HElib

Obviously this algorithm could be a simple code segment in CPU, however, it will

impact the entire GPU implementation since the traverse-and-recombine procedure

will cause dependency among the treads on CUDA device. At first glance, this

procedure is not able to be avoided efficiently. We setup an auxiliary dropFlags

vector with the same length of input, which indicate that the elements should be

dropped or not, by the flag variables 1/0 respectively. With the help of GPU,

therefore, we introduce an offset function to help with this mapping procedure.
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Preparing step in CPU

1. In CPU, setup a vector which indicates that whether a respective element
should be dropped, dropF lags[].

2. Transporting the vector to GPU

Mapping to Z/mZ∗in GPU

1. Setup register variable offset for each thread;

2. for each, ith , element(thread) in the vector do

3. for all offset on thread index≥ i do

4. if index == i do

5. offset = 0

6. else do

7. offset = offset + 1

8. end if

9. end for

10. end for

11. Permutation: put each ith FFT output into the(i− offset)th result vector.

Figure 3.4: Mapping to Z/mZ∗on GPU

However, in practice, we observe that the indexes on which the elements should

be dropped actually have a certain periodical pattern. With this observation, we

decide to make this step further optimized. When knowing the period, the mapping

procedure is relatively simple to implement and less complex.
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Preparing step in CPU

1. In CPU, determine the period and use it as a parameter,P, send to GPU

Mapping to Z/mZ∗in GPU

1. Use modular P to deter

2. Setup register variable offset for each thread;

3. for each, ith , element(thread) in the vector do

4. Modular P to determine the wether the ith elemetn should be dropped

5. if dropped do

6. offset= 0

7. else do

8. offset = i/period+ 1

9. end if

10. end for

11. Permutation: put each ith FFT output into the(i− offset)th result vector.

Figure 3.5: Mapping to Z/mZ∗on GPU

Once the Z/mZ∗ is settled, the vector dropF lags and the period would not

change so the preparing steps above can be put into the precomputation step. Al-

though, according to our observation, the index of dropped element dropF lags al-

ways exist in a specific period, we are not able to prove it mathematically, hence

we decide retain the former one above as a backup option for readers whereas the

latter one is used for performance enhancement.
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3.4 Streaming operation

To harness the computational power of GPU, roughly, one need to first define several

kernels with certain functions or implementations, then send data from CPU (host)

to GPU (device) and let those kernels process the data according to their own defi-

nition. The GPU would run the kernels as much as possible to keep the parallelism

and high efficiency. Hence once the algorithm is modified with enough parallelism

and have the memory properly managed, one can get promising performance.

However, the CUDA do provide us a stream option which is used to handle

the potential overlap part of different kernels and memory-copy operations. As

mentioned in section 3.2, we also keep the double-CRT representation structure in

GPU, which means each polynomial need to be FFT transformed to several finite

fields. To lower the dependency and harness the parallelism, each polynomial in

specific finite field locates in separate parts memory and is copied to respective

parts of memory in GPU. This memory-copy operation here can actually overlap

with subsequent kernels.

This optimization needs to be cautious considering the effect on the default

stream [19]. When a certain procedure is running on GPU, if no stream is specified,

all the executions happen in the default stream, which have the highest priority

among all the streams. Therefore, when specified streams occurs, one needs to

rearrange the kernels and host codes to avoid the streamed kernels to be interrupted

by the default stream. After CUDA 7.0, the default stream can also take part in

the concurrency with other streams with the flag “–default-stream per-thread”

specified during the compilation of CUDA codes. Figure (3.6) shows the timing

of the kernels running on GPU without the overlapping stream. Comparing with

Figure 3.6, Figure 3.7 shows the streamed Memcpy operation. It is obvious in
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Figure 3.7 that the most expensive steps on GPU have a large overlapping time

period with other kernels, which is much more efficient.

Figure 3.6: Kernels without stream overlapping

Figure 3.7: The streamed overlapping kernels

3.5 cuFFT library

In Section 3.1, we present that the Bluestein FFT can actually employ the FFT

algorithm to accelerate the convolution step in the procedure. Therefore the NTT

kernel designed by Dai for NTRU based FHE is also a good practice here for acceler-

ating the Bluestein FFT algorithm. Observe that CUDA provides its own FFT for
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complex numbers. We also tried this built-in function and discovered that cuFFT

have an extremely powerful performance compared with the NTT algorithm. Even

the NTT algorithm is already promising enough, the efficiency of NTT is still based

on the large data amount of FHE, which is the parallelism provided by GPU when

multiple kernels are lunched in the GPU device. The performance of a single NTT

kernel doesn’t have any advantage compared with the one provided by NTL library

[21] in CPU. According to our observation on our platform, the cuFFT library, can

actually provide more than ten times the performance of a single NTT kernel with

the same volume of input data applied.

However, this built-in function of cuFFT has a precision issue. We have observed

that the results output from cuFFT always have, in certain range, difference with

the NTT ones. Recall that, the basic idea of the FHE scheme is to introduce noise

mask to the original plaintext to maintain the security and homomorphism. Without

using cuFFT, the noise still grow with evaluations. It is natural to have a conjecture

that this precision issue can be viewed as another noise growth out of the steps of

evaluation.

Ducas and Micciancio have focused on the accelerating the bootstrapping in HE-

lib. In their implementation, they used cuFFT library too and claimed that this

precision issue “doesn’t necessary break the correctness of the scheme” [22]. They

presented that the error growth during the FFT procedure is O(
√
logN) and their

implementation worked correctly when they were performing the Homomorphic

NAND and Refresh operations. Considering the huge advantage of the perfor-

mance, we decide to employ the cuFFT instead of NTT. However, we are not able

to theoretically prove the correctness during the fully homomorphic evaluation, so

we decide to leave this result at SWHE stage.

We have a noteworthy observation in details for HElib: HElib supports the
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option that using only half number of CRT primes for ciphertext space, which

means there would be L/2 + 1 small primes for modulus switching, where L is the

level of evaluation defined by user. This option is set as default when compiling

the HElib. However, when the using the default setting, it leads to a problem that

some of the primes have a size more than 32-bits. Another option is that, if a -

DNO HALF SIZE PRIME compiling flag is defined, there would be L different

small primes, which are all less than 32-bits, for the modulus switching step.

Note that even the cuFFT does provide the 64-bit double precision, the subse-

quent complex operations do not support the numbers that are larger than 32 bits.

Therefore, for simplicity of the implementation, we strongly recommend that, when

compiling the HElib, the -DNO HALF SIZE PRIME flag should be claimed.

3.6 Summary

Now that we have discussed about all the details included in the HElib encryption

acceleration. In this section, the conceptual details of encryption and the complete

system diagram of our GPU implementation will be presented. To encrypt a message

bit m ∈ R2, we need to extend the one-bit m to a vector m= (m, 0, ..., 0) ∈ Rn+1
q

and the output ciphertext is:

c = m+ 2·e+ AT · r ∈ Rn+1
q (3.8)

where r ← χ is sampled from a noise distribution which have coefficients ±1, 0

with probability 1/4 and 1/2 respectively. A is public key combined from vector

b = Bt + 2e followed by n columns of -B . B is a matrix sampled uniformly,

B← RN×n
q . The t is sampled by t← χn which is to generate the secret key, sk =

s ← (1, t[1], ..., t[n]) ∈ Rn+1
q .
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Here we shall describe the relationship between the BGV encryption to RLWE.

First, the scenario above is based on GLWE and one can accomplish a scheme based

on RLWE by simply setting N = 1 . When s is drawn uniformly and ei←χ, RLWE

problem is that samples (ai, bi) uniformly from R2
q and another bunch samples (ai, bi)

where bi = ai · s + ei are computational indistinguishable. Thus in this case, an

attacker can not distinguish the public key, AT , from a uniform in R2
q and also not

able to recover the message m containing in the ciphertext.

However, using the secret key, “Bob” the receiver of the ciphertext, can recover

this bit of message correctly. First, note that the crucial observation is A · s = 2e.

Consequently, the decryption is to compute the innerproduct of the ciphertext c

and the secret key s followed by modular reduction by modulus q and 2 serially:

[[< c, s >]q]2 = [[(mT + rTA)·s]q]2 = [[m+ 2rT e]q]2 = [m+ 2rT e]2 = m (3.9)

Since in equation (3.9), the second term is much smaller than the modulus q,

the whole scheme remains correct. If that condition is not satisfied, the decryp-

tion will be ruined. In particular, this term, 2rTe, is actually relative to the error,

which is the reason that why one need to keep the homomorphism by error man-

agement. Without error management, one will loose the correctness quickly during

the evaluation and that is why this encryption is called “somewhat homomorphic

encryption”(SWHE). Note that the number 2 in the above equation is the plaintext

space. If we replace the number ’2 ’ , in b = Bt + 2e and equation (3.9), by a prime

p, the scheme can supports other native plaintext space p instead of 2 .

Since the BGV scheme provides a SIMD option, after the batching step, the

encryption procedure is slightly different.
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First set up an “empty” ciphertext, (c
′
0, c

′
1), which means the “encryption of

zeros”. Define Q as the product of all the primes in the modulus chain for ciphertext

space. A random low-norm polynomial r ∈ RQ with ±1 and 0 coefficients. Then

sample another low-norm error polynomials (e0, e1) ∈ RQ which follows Gaussian

distribution with variance σ2. The computation for canonical ciphertext is as follow

−→c = (c0, c1) := r·(c′0, c
′

1) + p·(e0, e1) + plaintext (3.10)

.

The implementation of the encryption in equation (3.10) can is shown in Figure

(3.8).
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Figure 3.8: The encryption implementation on GPU
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Chapter 4

Experimental Results

In Chapter 2, we have introduced some variants of GPU implementations for FHE

schemes. However, different acceleration schemes are based on various assumptions,

parameter settings, notations and even different scenarios. For example, Wang et

al. implemented their integer-base scheme for one-bit encryption, and compared its

performance with the original C/C++ code from IBM Research. Leo et al. decided

to implement the bootstrapping procedure due to the lack of efficiency of certain

bootstrapping part on HElib. However, they only focus on the scale of one-bit but

the HElib supports SIMD (batching) techniques. Dai et al. have developed their

own entire NTRU library on GPU.

Our acceleration performance on GPU is compared with the corresponding func-

tions on HElib and the defined parameters are exactly the same as HElib, which

could help readers to verify the feasibility of GPU acceleration for BGV scheme.

HElib does support other plaintext field with p larger than 2 so we choose p = 5

and r = 1 as the native plaintext space. Then we setup the parameter, Hamming

weight of secret key, to 64. In this section, all the results below are generated on

the platform with Intel Xeon e5620 CPU and GTX 780Ti with CUDA 7.5 installed.
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The NTL included by HElib is on version 9.3.0.

4.1 Comparison of cuFFT/NTT procedure

In Section 3.5, we insist that it is worthy to harness the cuFFT library provided

by Nvidia, considering its astonishing performance. Here we setup the security

parameter, k, in HElib for 128, 256 and 512 respectively (which means we have

k − bit security ). Then, we extract the performance of certain Bluestein FFT

algorithm implemented by different version of FFT implementations and have them

shown below.

Security cuFFT(sec) NTT(on GPU) (sec) Speedup

128 0.001 0.065989 65.98
256 0.002 0.06499 32.49
512 0.003 0.146978 48.99

Table 4.1: Bluestein FFT performance comparison (with both cuFFT and NTT on
GPU)

Security cuFFT(sec) FFT using NTL(on CPU) (sec) Speedup

128 0.001 0.005999 6
256 0.002 0.005999 3
512 0.003 0.010998 3.67

Table 4.2: Bluestein FFT performance comparison (with cuFFT on GPU and FFT
using NTL library on CPU)

As shown in Table 4.1, when comparing with NTT on GPU, the cuFFT has

promising speedup when it comes to the single kernel. However, if the precision

must be preserved, the NTT algorithm can ensure exactly the same behaviors as

the ones in HElib. Note that when multiple NTT algorithm kernels are launched,

the performance can slow down according to the algorithm in the previous work

[14].
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4.2 Comparison of encryption procedure

In Chapter 1, we introduce the batching technique, which allow users to encrypt

multiple bits of plaintext in a SIMD pattern which is considered the parallel method.

This technique requires the definition of both the plaintext space and “sub-space”

generated by polynomial CRT. More specifically, HElib has a function, encode , to

batch multiple bits of plaintext. In our implementation, we leave this part remaining

on CPU and our CUDA implementation on GPU takes a polynomial as the input.

There is no common measurement standard for the performance. Ducas et al

and Sung Lee et al. implemented the bootstrapping which takes one-bit data as

input even their work is relative to HElib or BGV which supports SIMD technique;

According to Dai’s work, their cuHE GPU library is with SIMD included but also

taking a polynomial as their input. Therefore, our performance comparison includes

two version. One is performing with the encode function included and the other

one is without the encode function.

Security NTL(9.3.0)(sec) GPU (sec) Speedup

128 0.192971 0.077989 2.47
256 0.205969 0.090986 2.26
512 0.451931 0.160976 2.8

Table 4.3: Speedup of encryption including encode

Security NTL(9.3.0)(sec) GPU(sec) Speedup

128 0.166975 0.051991 3.2
256 0.172973 0.058992 2.9
512 0.389941 0.096985 4.0

Table 4.4: Speedup of encryption excluding encode

To make this comparison more straightforward, when the security parameter in

HElib is set to 128, 256 and 512, the length of FFTs employed by the Bluestein

algorithm during the encryption steps are 32768, 32768 and 65536 respectively.
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Comparing with HElib, our encryption with encode function, that takes a vector

of bits as input, is 2.5 times faster. The other one without the encode function

that takes a polynomial as the input is 3.36 times faster. Our implementations

have resulted a good performance and they still have more potential. Since our

goal is to re-engineering the HElib, which requires interfaces between HElib and

our implementation. According to Figure 4.1, the kernels are in parallel execution

pattern and the execution time (including all the memory-copy functions which

is known as the most expensive operation when switching to GPU platform) is

relatively small. Thus, we have to tolerant a large part of “overhead” caused by the

interface.

Figure 4.1: Results from Nvidia visual profiler
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Chapter 5

Future Work

5.1 The precision issue of cuFFT

As we presented in previous chapters, cuFFT have a huge advantage on performance

through the trade-off of precision. Somewhat unfortunately, we think that the pre-

cision issue cannot be simply ignored because most of the FHE schemes are based

on the idea of introducing noise “mask” to the plaintext and they evaluate noisy

ciphertext with correctness. However, at the time of writing this thesis, there is

no elaborative discussion and analysis for the issue that how exactly harmful this

precision issue would be when introducing cuFFT to the scenario of BGV or other

FHE schemes.

The part which most likely would be affected is the level of evaluation. According

to BGV scheme, the decryption would still valid as long as the magnitude of noise is

smaller that q/2, where the q is the odd prime number used to define the polynomial

fields. Therefore if the “base” of the noise has increased during the encryption, then

the later evaluation, which grow the noise each time, may reach the noise limit.
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5.2 Fully homomorphic encryption

Our implementation work is actually at the stage of SWHE. Other stages of fully

homomorphic encryption are about the noise management features, e.g. bootstrap-

ping and modulus switching. Only with these techniques applied, the scheme is

fully homomorphic since the noise management would allow the user to evaluate

the ciphertext in arbitrary depth.

5.2.1 Modulus switching

Our implementation have all the modulus needed during the modulus switching.

When there is a need to apply the modulus switching, the following procedure

should be applied.

1. First, define a parameter ∆ = q/q′ where q is the current modulus and q′ is
another smaller modulus.

2. When applying to a ciphertext, do −→γ = −→c mod∆

3. Ensure the coefficients in−→γ is divisible by p where p is the plaintext space
modulus by adding or subtracting multiple ∆.

4. Creat another ciphertext −→c ′ and −→c ′ = −→c −−→γ

5. Then output −→c ′ = −→c ′/∆

Figure 5.1: Modulus switching

5.2.2 Bootstrapping.

Although the BGV scheme is designed for FHE without bootstrapping, it intro-

duces bootstrapping as a form of optimization for their scheme. The bootstrapping

procedure has several advantages [5]:

1. The BGV scheme has to specify the levels of evaluations in advance. This

would cause a problem for implementation of hardware acceleration when more eval-
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uations, which exceed the level limit, need to be performed. In this scenario, more

primes need to be added for further evaluation. Such a scenario would negatively

affect the parallelism because when a prime is added outside the original defined

levels, most likely the hardware platform need to be designed again. Thus, usually

hardware implementations do not have good flexibility for this situation if there is

no bootstrapping feature in such implementations.

2. Bootstrapping make the ciphertexts shorter, and [22][23] have shown the

feasibility of accelerating the bootstrapping. Ducas et al. claimed that their boot-

strapping can be finished in less than a second. Therefore it is possible to design a

more flexible scheme with bootstrapping on hardware platform.

5.3 Extend the implementation to the complete

BGV scheme

From our experimental results, the major limitation of our implementation is that

when implementing certain parts of functions, the performance suffers a lot from

the GPU/CPU interface. Another LWE-based and NTRU based FHE scheme which

has a lot of similarities with BGV scheme has been implemented by Dai et al. as

cuHE which is open source on Github. So it is possible to implement the complete

HElib on GPU including the modulus switching and re-linearization on GPU. We

suggest that the HElib would achieve better performance when more modules, e.g.

SWHE including batching and noise management procedures, are implemented on

GPU.

33



Bibliography

[1] C. Gentry et al., “Fully homomorphic encryption using ideal lattices.” in STOC,
vol. 9, 2009, pp. 169–178.

[2] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomor-
phic encryption over the integers,” in Advances in cryptology–EUROCRYPT
2010. Springer, 2010, pp. 24–43.

[3] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully homomor-
phic encryption over the integers with shorter public keys,” in Advances in
Cryptology–CRYPTO 2011. Springer, 2011, pp. 487–504.

[4] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption
from (standard) lwe,” SIAM Journal on Computing, vol. 43, no. 2, pp. 831–871,
2014.

[5] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic
encryption without bootstrapping,” in Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference. ACM, 2012, pp. 309–325.
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