
Novel Bayesian Methods for Disease Mapping: An Application to
Chronic Obstructive Pulmonary Disease

by

Jie Liu

A Thesis

Submitted to the Faculty

of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Applied Statistics

by

May 2002

APPROVED:

Dr. Balgobin Nandram, Thesis Advisor

Dr. Homer Walker, Department Head



Abstract

Mapping of mortality rates has been a valuable public health tool. We describe

novel Bayesian methods for constructing maps which do not depend on a post strat-

ification of the estimated rates. We also construct posterior modal maps rather than

posterior mean maps. Our methods are illustrated using mortality data from chronic

obstructive pulmonary diseases (COPD) in the continental United States.

Poisson regression models have attracted much attention in the scientific commu-

nity for their superiority in modeling rare events (including mortality counts from

COPD). Christiansen and Morris (JASA 1997) described a hierarchical Bayesian

model for heterogeneous Poisson counts under the exchangeability assumption. We

extend this model to include latent classes (groups of similar Poisson rates unknown

to an investigator).

Also, it is standard practice to construct maps using quantiles (e.g., quintiles) of

the estimated mortality rates. For example, based on quintiles, the mortality rates

are cut into 5 equal size groups, each containing 20% of the data, and a different

color is applied to each of them on the map. A potential problem is that, this method

assumes an equal number of data in each group, but this is often not the case. The

latent class model produces a method to construct maps without using quantiles,

providing a more natural representation of the colors.

Typically, for rare events, the posterior densities of the rates are skewed, making

the posterior mean map inappropriate and inaccurate. Thus, although it is standard

practice to present the posterior mean maps, we also develop a method to provide

the joint posterior modal map (i.e., the map with the highest posterior probability

over the ensemble).
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For the COPD data, collected 1988-1992 over 798 health service areas, we use

Markov chain Monte Carlo methods to fit the model, and an output analysis is used

to construct the new maps.
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Chapter 1

Introduction

Recently, there has been increased interest in estimating mortality rates for small

geographical areas. Mapping small area death rates is a valuable public health tool,

which may be used to generate etiologic hypotheses and identify high rate areas

where intervention or treatment programs may be profitable. Also it has always been

of interest to know how and where to allocate limited resources, especially for local

and federal government. For example, if we know a particular disease occurrs in some

areas more often than in others, we might want to provide better medical facilities

and services in these areas. Furthermore, if we can find some potential risk factors

which show a statistically significant relation with the occurrence of a disease, we

might be able to implement some prevention program much more efficiently.

In this chapter we mainly discuss our motivation in conducting this study, Chronic

Obstructive Pulmonary Disease (COPD) and its potential risk factors, the recent

related research works and their main contributions, and finally, a plan of this thesis.
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1.1 Statement of the Problems

Pickle, Mungiole, Jones, and White (1996) have presented the maps of the leading

causes of death in the United States for 1988-1992. Our study is on one of the disease

categories studied in this recent Atlas, i.e., chronic obstructive pulmonary disease,

International Classification of Diseases 490-496 (World Health Organization 1977),

for white males that includes asthma, bronchitis, and emphysema. Recently, the

mortality rate of COPD has risen dramatically, making COPD the fourth leading

cause of death in the United States, with rates highest for white males.

Table 3.1 and table 1.2 show some recent statistics of COPD for the United States,

Figures are from “Monthly Vital Statistics Report”, Vol. 49, No. 8 and “Vital and

Health Statistics” Series 10, No. 200, the National Center of Health Statistics.

Table 1.1: COPD deaths count
Characteristics Statistics Year reported
Deaths Annually 124,181 1999

Age-Adjusted Death Rate 45.8 deaths/100,000 people 1999
Cause of Death Rank 4 1999

Table 1.2: COPD Cases report
Type of Disease Statistics Year reported

Cases of Bronchitis Reported Annually 14 .2 million 1996
Cases of Emphysema Reported Annually 2 million 1996

Cases of Asthma Reported Annually 14.5 million 1996

So far a lot of work has been done on the analysis of COPD data, among which

the mapping of small area mortality rates turned out to be a highly effective tool in

such analyses. Figure 1.1 is a map of observed COPD mortality rates for white males

age 65 +, map units are the 798 HSA’s (health service area).

However, we found two questionable points in the standard practice of disease

mapping:
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Figure 1.1: Map using observed rates for age 65+
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(1) Conventionally, means of the estimated rates are presented on the map.

(2) Colors are assigned by a post-grouping after the rates are obtained.

In a lot of cases, presenting estimated means of the rates is a natural and effective

practice. However, in the analysis on rare events (e.g., mortality rates of COPD),

this often turns out to be misleading. Because the distributions of such rare events

are usually highly skewed. This can produce a large difference between the means

and the modes, presenting means will fail to give us accurate information.

Also, when maps are constructed using quantiles, we cut the rates into groups

of equal size, each containing the same number of areas, and a different color is

applied to each group to represent the group difference. This method assume an

equal distribution of the rates among groups, whenever this assumption fail to be

satisfied, the map becomes misleading.

In this thesis, we try to come up with better methods which avoid the problems

mentioned above, and to provide more accurate analysis on dispersed data, especially,

for the analysis on COPD mortality rates.

Christiansen and Morris (1997) describe a hierarchical Bayesian model for hetero-

geneous Poisson counts under the exchangeability assumption. We extend this model

to include latent classes (groups of similar Poisson rates unknown to an investigator).

The inclusion of latent classes is to better model the heterogeneous subpopulation

(i.e., classes) structure in some data (as seen in COPD data), thus, instead of using

quantiles, produce a method to construct maps based on the latent classes, providing

a more natural representation of the colors.

We also develop a method to provide the joint posterior modal map, i.e., the map

with the highest posterior probability over the ensemble. For data with a highly
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skewed distribution (Gamma in our case), the mean is sometimes far away from the

mode, becoming a less informative parameter, whereas the mode always stands for

the point where the highest probability density lies. In such cases, mapping posterior

modes provide us more information about rates than posterior means do.

1.2 Description of the Data

The dataset comes from the National Center of Health Statistics (NCHS). It

contains the deaths number, population, and a set of potential explanatory covariates

for the 798 HSAs in the contiguous 48 states. Data are collected during 1988-1992

with 10 age groups being identified. In our study, we focus on the age groups which

contain age 65+ (65 and older). This group is of particular interest because COPD

occurred much more often, and it is justifiable to investigate causes of death of our

retirees.

In our study we also tried to link the mortality rate to the potential explanatory

variables (covariates). These covariates include smoking history, population density,

elevation, annual rainfall level, summer rainfall level, average income level and college

student ratio.

Previous studies show that:

• In general, hospitalization for respiratory disease is greater among smokers and

persons with lower income and education levels (Morris and Munasinghe 1994).

• In addition, hospitalization for childhood asthma is also related to urbanization

and second-hand smoke (Burr, Anderson, Austin, Harkins, Kaur, Strachan, and

Warner 1999; McConnochie, Russo, McBride, Szilagyi, Brooks, and Roghmann
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1999). These factors may serve as a surrogate for high levels of indoor pollutants

in poor housing (Bates 1989).

• Extreme climatic conditions are known to aggravate existing asthma and bron-

chitis (Bates 1989), as is living at high altitudes because of the reduced oxygen

supply (Schoene 1999).

• Repeated exposure to particulate matter and other air pollutants, primarily

from traffic exhaust and coal-burning power plants, can aggravate existing lung

conditions and can even cause death among the severely ill (English, Neutra,

Scalf, Sullivan, Waller, and Zhu 1999; Sunyer, Schwartz, Tobias, Macfarlane,

Garcia, and Anto 2000).

• In particular, small airborne particles such as SO2 found in urban air pollution

can be deposited deep in the lungs, causing severe pulmonary effects (Sunyer et

al. 2000; Schwartz and Neas 2000).

• Aerosolized toxins and viruses can be inhaled in dusty environments, causing

pulmonary effects (Centers for Disease Control 1998).

Because data are not directly available at the county or HSA level for all of these

risk factors, we used several proxy variables in the analysis.

Lung cancer mortality rates among white men during 1998-1992 are used as a

surrogate for smoking rates (Pickle et al. 1996).

We include rainfall as a climatic factor that may affect lung function at the ex-

tremes (both very dry and very wet conditions). For each recording station (a partic-

ular place where measurement is taken), the measure of annual rainfall (AR) is the

median rainfall over 1973-1992. The measure of AR for an HSA is the median of the

values for all stations within the HSA.

6



Population density is included as a possible proxy for urban pollution and older,

more crowded housing. Elevation is available directly.

The EPA reports actual measurements and predicted levels of airborne pollutants,

including SO2 and total suspended particulates, the most relevant for COPD (En-

vironmental Protection Agency 1997; Nizich, Pope, and the Pechan-Avanti Group

1998). However, not every HSA has a monitoring station, and the predicted lev-

els are of questionable quality at the local level. Thus, we did not include these

environmental variables in our model.

Finally, nine potential risk factors are included in our study, a list of these nine

covariates together with their explanations is given in table 1.3:

Table 1.3: Covariates explanation
Covariates Explanations
wmlung white male lung cancer mortality rate

a surrogate of smoking history
sqrtpopd square root of population density
sqrtelev square root of elevation

pcinc income per capital
pctcoll college students percentage
pctpov below poverty line percentage
srain summer rainfall level
arain annul rainfall level
rainpc per capital rainfall level

We tried to regress the mortality rate on these covariates. First we looked at

the correlation matrix of the nine covariates, and found there is no serious multi-

collinearity problem. We also tried include some interactions in the model, but they

all turned out to be non-significant, so finally we fit a linear regression model without

any interaction, with the normal assumptions basically satisfied.

The fitted results suggest that, among these nine covariates, only four of them are

statistically significant. The results are given in table 1.4

7



Table 1.4: Parameter Estimates of Regression Model (SAS output)
Variable DF Parameter Estimate Standard Error t Value P-value
Intercept 1 -5.92840 0.10677 -55.53 < .0001
wmlung 1 0.00803 0.00065697 12.22 < .0001
sqrtpopd 1 -0.00372 0.00103 -3.61 0.0003
sqrtelev 1 0.00443 0.00060025 7.38 < .0001
pcinc 1 -0.00000499 0.00000526 -0.95 0.3436
pctcoll 1 0.00238 0.00562 0.42 0.6715
pctpov 1 -0.00521 0.00363 -1.44 0.1512
srain 1 -0.00996 0.00698 -1.43 0.1539
arain 1 -0.00234 0.00088730 -2.64 0.0084
rainpc 1 0.17117 0.11668 1.47 0.1428

From table 1.4 it is easy to see only wmlung (White male lung cancer rate),

sqrtpopd (square root of Population density), sqrtelev (square root of elevation) and

arain (Annual rainfall level) are significant at a 5% significant level. So we include only

these four covariates as regressors in our linear regression model, in which mortality

rate is the response variable. The test statistics by fitting this model are given in

table 1.5, and a residual plot is in Figure 1.2.

Table 1.5: Parameter Estimates of Regression Model (SAS output)
Variable DF Parameter Estimate Standard Error t Value P-value
Intercept 1 -6.03472 0.04811 -125.44 < .0001
wmlung 1 0.00788 0.00060869 12.94 < .0001
sqrtpopd 1 -0.00435 0.00082186 -5.29 < .0001
sqrtelev 1 0.00468 0.00057727 8.11 < .0001
arain 1 -0.00271 0.00074502 -3.64 0.0003

8



Figure 1.2: A plot of residual versus predicted response
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The residual plot Figure 1.2 shows a problem of heteroscadesticity, suggestting

that it maybe better to fit a weighted least square model.

This result is also consistent with the work done by Nandram, Sedransk and Pickle

(2000), who used a sophisticated hierarchical Bayesian model. Their results are in

Table 1.6

Table 1.6: Posterior Means, Standard Deviations and 95% Credible Intervals for the
Regression Coefficients for the Covariates (age group 55+)

Variable Post mean Post S.T.D. 95% Credible Interval
Covariates for old age classes

White male lung cancer rate 3.73 .30 (3.15, 4.32)
Population density -5.58 .20 (-6.00, -5.21)
Elevation .80 .23 (.34, 1.23)
Annual rainfall -2.21 .40 (-2.93, -1.39)

For computational convenience, we also make a transformation on two of the

covariates, in the end the four covariates in our study are:

(a) White male lung cancer rate per 1000 population

(b) Square root of population density/104

(c) Square root of elevation/104

(d) Annual rainfall/102

Figure 1.3 shows the distributions of these four covariates in the country. Later we

link these maps to the mortality rate maps to make statistical inference.

10
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Figure 1.3: Maps For Risk Factors
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1.3 Thesis Overview

The goal of this thesis is to propose improved statistical models and methods for

analysis of the dispersed COPD mortality rates.

In Chapter 2, we describe the literature. First we describe the Poisson regression

model and the latent class model. Then we describe the discrete mixture model,

which has been fitted using the EM algorithm.

The theoretical part of this thesis is in Chapter 3, we set up a hierarchical Bayesian

latent class model for Poisson regression. Then a Bayesian analysis is conducted to

make inference about the mortality rates of the 798 HSAs. The inclusion of regression

is to link the mortality rates with the potential risk factors. The latent classes are

obtained through a prior density which is a mixture of Gamma densities that include

the covariates. A typical problem in a mixture model is the non-identifiability which

we eliminate by incorporating an order restriction. We apply Markov chain Monte

Carlo method in the computation, and the Metropolis-Hastings sampler is the main

algorithm used.

In Chapter 4, we describe how well the latent class model fits and how to choose

a reasonable number of classes for the model.

In Chapter 5, in an output analysis, we show how to obtain the new legends for

the maps and, how to obtain the posterior modal maps. Our model and these two

methods together are our three contributions to disease mapping.

Chapter 6, we make our final remarks based on the data analysis and map com-

parison. Some future issues are considered.

12



Chapter 2

Review of Literature

Models and methods of analysis on rate data are abundant, Walker et al. (1996),

Christiansen and Morris (1997), Nandram et al. (1999), Nandram (2000), A.F.Militino

et al.(2001) and so on. In this chapter, we describe three newly developed models

which are important for our work.

2.1 Hierarchical Poisson Regression Model

Christiansen and Morris (1997) proposed a new approach, called Poisson regres-

sion interactive multilevel modeling (PRIMM). One of our contributions in the thesis

is to extend the Poisson regression model to include latent classes. In this section we

give a brief description of their model.

(1) The Descriptive Model

Level 1 of the descriptive model specifies the distribution of the observed data

vector, d = (d1, . . . , dk)
′, given the individual parameters λi. Level 2 specifies gamma

distributions for λi, given the hyperparameters α ≡ (β, ζ).

13



Level 1: Individual Model.

The observed counts (d1, . . . , dk) have independent Poisson distributions with

expected values E(di) = niλi, i = 1, . . . , �, for known exposures ni > 0. Given

λ = (λ1, . . . , λ�)
′.

di|λi ∼ Poisson(niλi), independently i = 1, . . . , k. (2.1)

The observed rates, r, with ri ≡ di/ni have expectations E(ri) = λi.

Level 2: Structural Model.

The individual Poisson parameters (λ1, . . . , λ�) follow conjugate gamma distri-

butions for i = 1, . . . , � independently, given the unknown hyperparameter vector

α = (β0, . . . , βk−1, ζ)′, where k is the number of unknown regression coefficients.

Thus

λi|α ind∼ Gamma(ζ, ζ/µi), log(µi) = x′
iβ (2.2)

The log link (i.e., the natural link for the Poisson distribution) is assumed for

the structural means, so log(µi) = x′
iβ for fixed covariates xi = (xi0, . . . , xi,k−1)

′, β =

(β0, . . . , βk−1)
′, with the intercept term represented by setting xi0 = 1. Here ζ > 0

corresponds to an unobserved prior count, not necessarily an integer. The squared

coefficient of variation of λi, 1/ζ, is the same for all components in (2.2). The struc-

tural model (2.2) allows µi to be known (k = 0) and allows exchangeable (without

covariates, k = 1) and nonexchangeable (if k ≥ 2) distributions for λi. In all cases

standardized rates, λi/µi ∼ Γ(ζ, ζ) are exchangeable, with unit expectation.

Level 3: Distribution on the Structural Parameters.

14



The joint prior density for the k + 1-dimensional hyperparameter vector is

h(β, ζ) = z0/(ζ + z0)
2 (2.3)

Equivalently, B0 ≡ ζ/(ζ + z0) ∼ uniform(0, 1). (2.4)

The choice of an improper prior distribution for β is standard, which can provide

good repeated sampling properties to the resulting rules. They choose a proper prior

distribution like (2.4) for ζ because the maximum likelihood estimate of ζ can occur

at infinity (Aragon, Eberly 1992 and Morris 1997). When that happens, maximum

likelihood estimates of the shrinkages Bi = ζ/(ζ + niµi) occur at the boundary point

Bi = 1, interfering with further assessments and especially with evaluating precision.

The uniform distribution for B0 is relatively uninformative, giving both ζ and 1/ζ

infinite expectations. The constant z0 is the median of ζ, so that small values of z0

are less informative and encourage less shrinkage a priori. A conservative choice, one

that mainly lets the data speak, would choose z0 small enough so that z0 is less than

the median of ζ.

(2) The Inferential Model

The marginal distributions of the observed data di are independent negative bi-

nomials, these being gamma mixtures of Poisson distributions. To fix notation, the

negative binomial distribution, NB(ζ, p) ≡ NB[µ = ζp/(1− p), µ +µ2/ζ], for ζ > 0,

0 < p < 1 has density function

Γ(ζ + d)

Γ(ζ)d!
pd(1 − p)ζ , d = 0, 1, 2.... (2.5)

15



As used here, (2.5) arises as the density of a mixture of Poisson(Λ) distributions on

d if Λ ∼ Γ(ζ, 1) × (p/(1 − p)) is the mixing distribution. For fixed µ, large values of

ζ make the negative binomial approximately Poisson.

Level 1: Marginal Model for the Observations.

The observed counts di, given the hyperparameters β and ζ, have independent

marginal distribution for i = 1, . . . , �

di|β, ζ ∼ NB(ζ, 1 −Bi) (2.6)

and

Bi ≡ ζ/(ζ + niµi) (2.7)

with 0 < Bi < 1. For large ζ or, equivalently, for “shrinkage factors” Bi near unity,

the negative binomial distribution (1.6) is approximately the Poisson distribution.

Smaller values of ζ indicate extra variation beyond the Poisson variation in the true

rate λi.

Level 2: Conditional Model for the Individual Parameters.

The conditional distributions (1.8) for the unobserved Poisson rate parameters,

given (β, ζ) and the data, are gamma distributions with means and variances that

are linear in the data.

λi|data, β, ζ
ind∼ Gamma(di + ζ, ni + ζ/µi) (2.8)

i = 1, . . . , �, independently, where the posterior means λ∗
i and variances (σ∗

i )
2, given

the hyperparameters, are denoted by

λ∗
i ≡ E(λi|data, β, ζ) = (1 − Bi)ri + Biµi (2.9)
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and

(σ∗
i )

2 ≡ Var(λi|data, β, ζ) = λ∗
i (1 −Bi)/ni (2.10)

Linearity of the conditional mean (2.9) holds because the gamma distribution is

conjugate to the Poisson likelihood. The gamma distribution choice for the structural

model (2.2) is conservative (i.e., it provides minimax estimators for mean squared

error) among all distributions with the same first two moments for this problem

(Morris 1983).

Results from this method show that, the use of Gamma prior density with re-

gression is appropriate, and the whole hierarchical model also works well for analysis

of dispersed rates. Compared to the methods earlier, PRIMM has the following

advantages. First, PRIMM provides better coverage probabilities and smaller risk

than many other published methods. Second, in most cases, the nominal operating

characteristics of PRIMM hold up better than the most commonly used alternative

methods. Third, PRIMM provides point and interval estimates for both individual

and the structural parameters, unlike some of the other methods, so it is widely used

for a lot of statistical applications.

2.2 Latent Class Model

One of our major contributions in this thesis is to include the latent classes into

the Poisson regression model. Thus, in this section we describe the reasons and

advantages to use latent class model.

The structure of many datasets is too complex to be represented by a single

parametric model (e.g. Poisson or normal) especially if they exhibit multimodality,

outlying subsets of observations, and so on (McLachian and Basford, 1998; Lavine and
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West, 1992; Leonard et al., 1994). Nonparametric analysis is one way of circumventing

the problems raised by the complexity of observed structures. A Bayesian approach to

a completely nonparametric analysis is via Dirichlet process prior. Another method

which retains the framework of parametric densities, but approximates the underlying

sampling density as a finite mixture of g latent classes is given as follows.

di|p
˜
, α
˜
∼

g∑
j=1

pjfj(di|αj), i = 1, . . . , n

where fj(di|αj) is a given parametric density such as the normal, exponential or

Poisson. Such a model is appropriate for a heterogeneous population containing

subgroups whose sizes are proportional to pj . The parameters αj might, for example,

relate to means and variances µj , Vj of normal subpopulations, or means µj of Poisson

subgroups. Means can in turn be related to covariates x1, . . . , xn via class-specific

regression parameters βj. For example, for a mixture of Poisson regressions one

might have

di ∼
g∑

j=1

pjPoisson(µij)

log(µij) = βjzi.

As noted by Dempster et al. (1997) a mixture model can be expressed alternatively

in terms of the original data and augmented data, where the latter consists of an

indicator variable Zi of group membership among the g groups, and we assume that Zi

is known. If wij are dummy indicators equaling one when Zi = j and zero otherwise,

then the likelihood of the complete data (observed and augmented data combined) is

g∏
j=1

n∏
i=1

p
wij

j [fj(di|αj)]
wij .
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In practice of course the wij are unknown. However the complete data represen-

tation means that a mixture model can be represented hierarchically, analogous to

the random effects models, with at the first level the mixture density parameters αj,

then the (unobserved) class indicators

wij ∼ g(wij |αj),

and finally the observed data

di ∼ fZi(di|αj , wij).

The expected posterior probabilities of class membership for individuals, i.e., ϕij =

Pr(wij = 1), have the form

ϕij = pjfj(di|αj)/

g∑
k=1

pkfk(di|αk).

Posterior means for each case are then weighted averages of the subpopulation

means with weights ϕij. So in the Poisson case without covariates the expected

posterior mean for case i is
∑g

j=1 ϕijµj and in the regression case is
∑g

j=1 ϕije
βjzi.

The goal in the latent mixture analysis without covariates, is often the same as

in random effects approaches to heterogeneity: to provide a smoothed estimate (e.g.

of disease morbidity) which results from “borrowing strength” over the ensemble

(Bohning, 2000). In the regression case, the goal might be to identify subpopulations

with different economic choice patterns or health behaviors.

2.3 Discrete Poisson Mixture Models

Conventional approaches for estimating rates in disease mapping or mortality

studies are based on Poisson regression. Frequently, overdispersion is present and this
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extra variability is modeled by introducing random effects. A.F.Militino, M.D.Ugarte

and C.B.Dean (2001) introduced the use of discrete Poisson mixture models for iden-

tifying high rates, assuming the population arises from a discrete mixture of Poisson

distributions.

A.F.Militino et al. is not the first to use discrete mixture model. Earlier, several

models were used to describe the spatial distribution of rates. The models are mixed

Poisson models, which incorporate random region-specific effects, which may repre-

sent environmental factors, and sometimes exhibit spatial correlation. Conditional

on random region-effects Ri, representing region-specific relative rates, the observed

numbers of cases, Yi, i = 1, . . . , N , are assumed to have independent Poisson distri-

butions with mean EiRi; here Ei is the expected number of cases in the ith region

based on rates from a standard population.

Typically, the distribution of the random effects is assumed to be normal. Different

choices have been explored in other contexts of generalized linear mixed modeling

when random effects are assumed independent; for example, the gamma and the

inverse-Gaussian distributions. Schlattmann and Bohning (1993) illustrated the use

of a non-parametric mixing distribution for mapping rates. This yields a discrete

mixture model and a key feature of this approach is that it provides a more robust

method for including random effects than the parametric approaches described above.

A.F.Militino, M.D.Ugarte and C.B.Dean then compared the use of discrete mix-

ture models with independent random effects for mapping problems, with normal

mixtures which incorporate spatial autocorrelation. A focus of the comparison is how

well the discrete and normal mixtures identify high rates. The key finding of their

work is to show that the discrete mixture model is indeed more efficient than other

available models in locating regions with high rates. This is one of the objectives in

modeling mortality data for disease mapping.
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The computation is done using the EM algorithm. It is pertinent for us to make

a brief description of the computation. Let Y = (Y1, . . . , YN )T be the vector of

observations corresponding to the COPD mortality counts for the N contiguous re-

gions. Associated with each region are random effects which model heterogeneity.

The non-parametric mixture model assumes that these region-specific random effects

have a discrete probability distribution taking g values R1, . . . , Rg with probabili-

ties p1, . . . , pg , respectively. Each of these g components of the mixture represents a

class containing a proportion pj from the population with mortality ratio Rj where∑g
j=1 pj = 1. If the population in the ith region is denoted by ni, the marginal

distribution of the counts Yi is given by

Yi
iid∼

g∑
j=1

pjPoisson(EiRi).

where Ei = nim and m is the overall mean infant mortality rate. Hence, condi-

tional on the region-specific random effects, the mortality counts are assumed to be

distributed as independent Poisson.

Estimation would be trivial if we know which class each observation belongs to.

In this case, the likelihood function would have the simple multinomial form.

�∏
i=1

{[
p1

(EiR1)
yie(−EiR1)

yi!

]zi1 [
p2

(EiR2)
yie(−EiR2)

yi!

]zi2

, . . . ,

[
pg

(EiRg)
yie(−EiRg)

yi!

]zig}

where zij, called latent variable, taking value 1 when observation i belongs to class j

for j = 1, . . . , g, i = 1, . . . , N , take 0 otherwise.

The EM algorithm takes advantage of this simplicity and creates a two-stage it-

erative estimation scheme where, in the first stage, a ‘guess’ is made regarding the

grouping of the classes. Then estimation based on such grouping is conducted. It
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has been applied to a wide variety of mixture problems. Dempster et al. (1997) in-

terpreted the mixture density estimation problem as an estimation problem involving

incomplete data. In our situation, it is the zij’s which are regarded as the ‘missing’

data and the above likelihood function is considered to correspond to the ‘complete’

data. They also related estimation for the mixture density problem to a broader class

of statistical problems and showed that the EM algorithm for the mixture density

problems is essentially a specialization of a more general algorithm for calculating

maximum likelihood estimates from incomplete data. The EM algorithm has been

found in most instances to have the advantages of reliable global convergence, low

cost per iteration and ease of programming. Although it has been criticized because

its convergence can be slow, especially when there is a high proportion of missing

data, it works very well in many instances, and in particular, in the case considered

in the paper of A.F.Militino et al (2001).

The iterative scheme of the EM algorithm has two steps. Step 1 calculate the

conditional expectation of zij given Yi, then step 2 maximizes the conditional distri-

bution of the complete likelihood after substituting E(zij|Yi) for the ‘missing’ data

zij. This yields solutions

m̂ =

∑N
i=1 Yi∑N

i=1 ni

∑g
j=1 E(zij|Yi)Rj

, R̂j =

∑N
i=1 E(zij|Yi)Yi∑N
i=1 E(zij|Yi)Ei

, p̂j =

∑N
i=1 E(zij|Yi)

N
.

The iterative procedure starts with an initial value for m, Rj, pj and z. The number

of components is considered fixed. Step 1 and 2 above are repeated until a specified

convergence criterion is reached.

22



Chapter 3

A Hierarchical Latent Class
Regression Model

In this chapter, we describe a hierarchical Bayesian latent class model with g

latent classes. We first consider the case when g = 1, essentially the Christiansen and

Morris model. Then this model is extended to include g > 1 latent classes. A related

question is how many latent classes there are (i.e., the value of g). We do not need

to determine what g is because typically disease maps are usually represented with

4-6 colors, so we choose g to be 4, 5 or 6.

3.1 The Regression Model for a Single Class

3.1.1 The Model

Some previous work has been done with the assumption of a single class, the esti-

mated mortality rates are then cut into equal quantiles. For example, with quintiles

each contain 20% of the total data. Then mapping is done based on this grouping.

The following model explains how this works in a hierarchical Bayesian analysis.
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The observed death numbers for 798 HSAs (d1, . . . , d�) have independent Poisson

distributions with expected values E(di) = niλi, i = 1, . . . , �, for known populations

ni > 0. Given λ = (λ1, . . . , λ�)
′.

di|λi
iid∼ Poisson(niλi), independently i = 1, . . . , �. (3.1)

The observed rates, r, with ri ≡ di/ni have expectations E(ri) = λi. The unob-

servable parameters (λ1, . . . , λ�) follow conjugate gamma distributions for i = 1, . . . , �

independently, given the unknown hyper-parameter vector α
˜

= (α, β
˜
)′. Here β

˜
=

β0, . . . , βk, denote the potential risk factors which are selected in Chapter 1, where

we recall in Table 3.1

Table 3.1: Potential Risk Factors
Covariates x

˜
Coefficients β

˜
Corresponding Factors

x0(≡ 1) β0 Intercept
x1 β1 Smoking History
x2 β2 Population Density
x3 β3 Elevation
x4 β4 Annual Rainfall

We try to link the above covariates to the parameter λi, which stands for the

mortality rate. Fit the covariates in the regression model (with mortality rate λi as

the response variable) we get the prior distribution,

λi|α, β
˜

iid∼ Gamma(α, αe−x
˜

′
iβ
˜) (3.2)

where T ∼ Gamma(α, λ) means fT (t) = λαtα−1e−λt

Γ(α)
. That is,

P (λ
˜
|α, β

˜
) =

�∏
i=1

(αe−x
˜

′
iβ
˜)αλα−1

i e−αe−x
˜

′
iβ
˜

λi

Γ(α)
.
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Now for the hyper-parameters, α and β
˜
, we use the following proper prior distribution,

P (α) =
1

(1 + α)2
, α ≥ 0.

β
˜
∼ MN(µβ

˜
, ∆0)

where µβ
˜

and ∆0 are two constants to be specified by the user. We fit a weighted

least square regression model and specify µβ
˜

and ∆0 as below. The computational

details can be found in the Appendix A.

µβ
˜

= b
˜

= (X ′W−1X)−1(X ′W−1Y )

∆0 = (X ′W−1X)−1 (Y − Xb)′W−1(Y − Xb)

n − 2

where Y, X and W are the reponse vector, covariate matrix and weight matrix re-

spectively.

3.1.2 Markov Chain Monte Carlo Computation

After setting up the model and all the priors, we can proceed using Markov chain

Monte Carlo (MCMC) method to make inferences about the parameters in the model.

The particular MCMC method used here is called Metropolis-Hastings sampler. It

works by drawing sample from the conditional distribution. After a large number of

iterations, the sample will converge to the joint posterior distribution.

Now let us start by finding the conditional distributions for the parameters; we

also need a start value for each parameter in the Gibbs sampling iterations.

We use di

ni
as the starting value for λi, which is the observed mortality rate for

HSA i. As for the starts for α and β
˜
, we use Nelder-Mead algorithm to find the

optimal values which maximize the density function, these values will be used as the

start values.
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First, conditional posterior distributions are proportional to the joint posterior

distributions

π(λ
˜
, α, β

˜
|data) ∝ π(λ

˜
, α, β

˜
, data)

i.e.

π(λ
˜
, α, β

˜
|data) ∝

�∏
i=1

(niλi)
die−niλi

(di)!

×
�∏

i=1

(αe−x
˜

′
iβ
˜)αλα−1

i e−αe−x
˜

′
iβ
˜

λi

Γ(α)
× 1

(1 + α)2

× 1√
(2π)pdet(∆0)

e
− 1

2
(β
˜
−µβ

˜

)′∆−1
0 (β

˜
−µβ

˜

)
(3.3)

where µβ
˜

= b
˜

= (X ′W−1X)−1(X ′W−1Y ) and ∆0 = (X ′W−1X)−1 (Y −Xb)′W−1(Y −Xb)
n−2

Then from the joint posterior distributions, we can find the conditional posterior

distributions for each parameter. First, for λi

λi|α, β
˜
, data ∼ Gamma(α + di, ni + αe−x

˜
′
iβ
˜). (3.4)

For α and β
˜
, the distribution function is too complex, so here we use the Metropolis-

Hastings approximation method. First propose an approximate multivariate-normal

distribution density for α and β
˜
, then we draw a sample from the proposed distribu-

tion, and decide to keep it or discard it by Metropolis-Hastings procedure.

The proposed multivariate-normal distribution for vector (α, β
˜
)′ is (detail compu-

tation can be found in Appendix B):

(
α
β
˜

)
∼ MN




[
α̂

β̂
˜

]
,


 σ2

α ν
˜
′

ν
˜

∆β




 (3.5)
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In which α̂ and β̂
˜

are the solutions from Nelder-Mead algorithm.

Now we draw a random sample of α, β
˜

from (3.5).

First, draw a random β
˜
∗ from

N(β̂
˜
, ∆β),

then, draw a random α∗ from Gamma distribution with mean and variance calculated

by:

µα = α̂ + ν ′∆−1
β (β

˜
∗ − β̂

˜
),

Var(α) = σ2
α − ν ′∆−1

β ν.

Now we use Metropolis-Hastings method to decide take or throw the new sample

drawn.

Let’s use the notation f (α, β
˜
) stand for the complex conditional posterior distribution

of α, β
˜
, and f0 (α, β

˜
) stand for the proposal density we used, i.e., Gamma multiplied

by Multivariate-Normal. The sample we just drawn is denoted by (αn+1, β
˜

n+1), then

we compute

ϕ(n) =
f (αn, β

˜
n)

f0 (αn, β
˜

n)
,

ϕ(n + 1) =
f (αn+1, β

˜
n+1)

f0 (αn+1, β
˜

n+1)
,

and

an,n+1 = min

{
ϕ(n + 1)

ϕ(n)
, 1

}
.

Draw random number µ from U (0, 1) distribution. Decision rule is

⇒ take (αn+1, β
˜

n+1) if µ < an,n+1

⇒ retake (αn, β
˜

n) if µ ≥ an,n+1.
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3.2 The Regression Model for Many Classes

The model used in the previous section is appropriate when the observations are

from a single population (i.e., one class). As described in Chapter 2, in reality this

is not always the case. There is often a random class-specific effect which make the

population structure too complex to be modeled by a simple distribution. In such

cases, we should use the mixture models.

The key idea in our model is introduced in this section, which combine the discrete

Poisson mixture model with regression model, and use MCMC methods to estimate

the parameters and make other inferences. Some details of implementing this idea is

also given in this section.

3.2.1 The Model

As before, the observed death numbers for 798 HSAs (d1, . . . , d�) have independent

Poisson distributions with expected values E(di) = niλi, i = 1, . . . , �, for known

populations ni > 0. Let λ = (λ1, . . . , λ�)
′. Now the population contains a set of

classes, and each class contains a proportion of the whole data.

di|λi ∼ Poisson(niλi) independently i = 1, . . . , �. (3.6)

We use a mixture prior for the λi in the following form,

λi|p
˜
, µ
˜
, α, β

˜

ind∼
g∑

j=1

pjGamma(α, α
1 − µj

µj
e−x

˜
′
iβ
˜). (3.7)

That is,

P (λ
˜
|p
˜
, µ
˜
, α, β

˜
) =

�∏
i=1




g∑
j=1

pj

(α
1−µj

µj
e−x

˜
′
iβ
˜)αλα−1

i e
−α

1−µj
µj

e−x
˜

′
iβ
˜

λi

Γ(α)


 .
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We take the shrinkage prior as the prior density for α

π(α) =
1

(1 + α)2
,

and we use a multivariate normal density as the prior for β
˜

β
˜
∼ MN(µ(0)

˜
, c∆(0)

˜
).

where c is a variance inflation factor. We take c = 10000 in our analysis to obtain a

proper diffuse prior density for β
˜
.

Here µ(0)

˜
and ∆(0)

˜
are specified as:

µ(0)

˜
= b

˜
= (X ′W−1X)−1(X ′W−1Y ),

∆(0)

˜
= (X ′W−1X)−1 (Y − Xb)′W−1(Y −Xb)

n − 2
,

Y, X and W are respectively the reponse vector, covariate matrix and weight matrix

in the regression model. Detailed computations can be found in Appendix A.

The prior for p
˜

is Dirichlet(1, . . . , 1); this non-informative proper prior density is

used since there is no information about p
˜
.

A typical problem of the latent class model is nonidentifiability. To maintain

identifiability, we incorporate the order restriction.

1

2
≡ µ1 < µ2 < . . . < µg < 1.

By constraining the µk between µk−1 and µk+1, it avoids the possible switching be-

tween two µk’s, thus eliminate the nonidentifiability problem.

When k = 1, µ1 = 1
2
, the prior for λi becomes Γ(α, αe−β

˜), which is exactly the model

by Christiansen and Morris (1997), we described in Section 3.2.
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3.2.2 MCMC Computation

Metropolis-Hastings sampler is still used here, the procedures are similar with the

case of (g = 1).

Joint Posterior Distribution

The new parameter zij is introduced as a latent variable, to simply the compu-

tation. It takes value 1 when observation i belongs to class j for j = 1, . . . , g, i =

1, . . . , N , take 0 otherwise. Then the joint posterior distribution is:

π(λ
˜
, α, β

˜
, µ
˜
, p
˜
, φ
˜
|data) ∝

�∏
i=1

(niλi)
die−niλi

(di)!

×
�∏

i=1

g∏
j=1


pj

(α
1−µj

µj
e−x

˜
′
iβ
˜)αλα−1

i e
−α

1−µj
µj

e−x
˜

′
iβ
˜

λi

Γ(α)




zij

× 1

(1 + α)2
× 1√

(2π)pdet(∆(0)

˜
)
e−

1
2
(β
˜
−µ(0)

˜
)′∆(0)

˜
−1(β

˜
−µ(0)

˜
) (3.8)

where µ(0)

˜
= b

˜
= (X ′W−1X)−1(X ′W−1Y ) and ∆(0)

˜
= (X ′W−1X)−1 (Y −Xb)′W−1(Y −Xb)

n−2
.

Note that Σg
j=1pj = 1, and the inclusion of latent variable make the computation

a lot more convenient, as noted from the EM algorithm.

Below we calculate the conditional posterior distributions to run the Metropolis-

Hastings sampler. For λi

λi|α, β
˜
, µ
˜
, p
˜
, z
˜
, data ∼ Gamma(α + di, ni + αe−x

˜
′
iβ
˜

g∑
j=1

(
1 − µj

µj
zij))

For p
˜

pj |α, β
˜
, µ
˜
, λ
˜
, z
˜
, data ∼ Dirichlet(

�∑
i=1

zi1 + 1, . . . ,

�∑
i=1

zig + 1)
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For zi
˜

zi
˜
|α, β

˜
, µ
˜
, p
˜
, λ
˜
, data ∼ Multinomial[1, q

˜
]

where

qj =
pj(

1−µj

µj
)αe

−α
1−µj

µj
e−x

˜
′
iβ
˜

λi

∑g
j=1[pj(

1−µj

µj
)αe

−α
1−µj

µj
e−x

˜
′
iβ
˜

λi
]

,

g∑
j=1

qj = 1.

To draw a zij, we just draw a random number µ from U(0, 1), then compare with the

accumulated probability.

Cell Cumulative probability
c1 q1

c2 q1 + q2

c3 q1 + q2 + q3

.

.

cg−1 q1 + q2+, . . . , qg−1

cg 1

If the random number µ lies in the interval of (ck−1 < µ < ck), then let φik = 1,

others all equal to 0, for all the i = 1, . . . , �.

For µ
˜
, we use the grid method under the order constraint to draw the sample. For

example, when we draw µ3 (when k ≥ 3), since 1
2
≡ µ1 < µ2 < . . . < µk < 1, so we

have restriction

µ2 < µ3 < µ4(or 1, if k = 3).

The conditional posterior density for µ3 is:

P (µ3|all other parameters, data) =

�∏
i=1




(α1−µ3

µ3
e−x

˜
′
iβ
˜)αλα

i e
−(α

1−µ3
µ3

e−x
˜

′
iβ
˜

)λi

Γ(α)




zi3

Then, we cut interval (µ2, µ4) into n grids, n ≈ 100 in our case. For all grids,

we calculate the posterior densities (use the value of the mid-point on each grid)
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π1, . . . , π100.

Similar to drawing z’s, we first calculate

qh =
πh∑100

h′=1 πh′
, thus get

100∑
h=1

qh = 1.

Then we calculate the cumulative probability of these qh’s.

Cell Cumulative probability
c1 q1

c2 q1 + q2

c3 q1 + q2 + q3

.

.

c99 q1 + q2+, . . . , q99

c100 1

To draw a sample of µ3, first draw a random number x from U(0, 1), then compare

with the cumulative probability. If the random number x lies in the interval of

(ch−1 < x < ch), then pick the corresponding mid-point on the hth grid as a sample

µ3.

For α and β
˜
, we still use the Metropolis-Hastings method, and still use multivariate-

normal distribution as the proposal distribution. (Computation details can be found

in the Appendix B).

Therefore the vector (α, β
˜
)′ have the following multivariate-normal distribution

(
α
β
˜

)
∼ MN




[
α̂

β̂
˜

]
,


 σ2

α ν
˜
′

ν
˜

∆β




 (3.9)

In which α̂ and β̂
˜

are the solutions from Nelder-Mead algorithm,


 σ2

α ν
˜
′

ν
˜

∆β


 is

the inverse of the negative Hessian matrix.
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Now we draw a random sample of α, β
˜

from (3.9)

First, draw a random β
˜
∗ from

N(β̂
˜
, ∆β)

Then, compute the mean and variance of α∗, µα∗ , Var(α∗).

µα∗ = α̂ + ν ′∆−1
β (β

˜
∗ − β̂

˜
),

and

Var(α∗) = σ2
α − ν ′∆−1

β ν

We draw α∗ from a Gamma density with mean µα∗ and variance Var(α∗).

Now we use Metropolis-Hastings method to decide take or throw the new sample

drawn.

Let’s use the notation f (α, β
˜
) stand for the complex conditional posterior dis-

tribution of α, β
˜
, and f0 (α, β

˜
) stand for the proposal joint density of α and β

˜
, i.e.,

Gamma multiplied by Multivariate-Normal. The sample we just drawn is denoted by

(αn+1, β
˜

n+1), then we compute

ϕ(n) =
f (αn, β

˜
n)

f0 (αn, β
˜

n)
,

ϕ(n + 1) =
f (αn+1, β

˜
n+1)

f0 (αn+1, β
˜

n+1)
,

and

an,n+1 = min

{
ϕ(n + 1)

ϕ(n)
, 1

}
.

Draw random number µ from U (0, 1) distribution. Decision rule is
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⇒ take (αn+1, β
˜

n+1) if µ < an,n+1

⇒ retake (αn, β
˜

n) if µ ≥ an,n+1.

3.2.3 Performance of the Metropolis-Hastings algorithm

We will use M = 1000 iterations for analysis. Let Ω = (p
˜
, µ
˜
, α, β

˜
) as the parameter

vector, so we need a sample of Ω(h), h = 1, . . . , 1000. To get this sample, we let the

Metropolis-Hastings sampler run 5500 iterations, and “burn in” the first 500 iterations

because it is unlikely to get convergence in a such a short time. Then, we pick every

5th from the remaining 5000. Thus, make the Ω(h) independent, so in the end we have

a sample of 1000 observations.

A further check on the jumping rate of the Metropolis-Hastings sampler shows,

this method runs well for all the models, as shown in table 3.2.

Table 3.2: Jumping Rate of the Metropolis-Hastings sampler by the number of classes
g Jumping rate
1 0.4912727
2 0.4900000
3 0.4994546
4 0.4929091
5 0.5027273
6 0.4883636
7 0.4927273
8 0.5012727
9 0.5092728
10 0.4987273

From this table we see the jumping rates are all centered with 0.5, which means

the Metropolis-Hastings sampler is running well, sampling with a rejection rate of

about 0.5.
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The sample we get are basically independent, which can be seen from the autocor-

relation table 3.3. (We only include a small part of all the autocorrelations computed,

these are for g = 1, for some randomly selected rates).
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Table 3.3: Autocorrelation Study
Autocorrelation Std. Error

0.1670 0.0315
0.0822 0.0315
0.0411 0.0315
0.0288 0.0315
0.0394 0.0315
0.0170 0.0315
0.0584 0.0314
0.0635 0.0314
0.0596 0.0316
0.1281 0.0316
0.0051 0.0315

Because all the autocorrelations and standard errors are small enough, we treat

the sample values as independent.

3.2.4 Sensitivity Test

In the Metropolis-Hastings sampler, when there is no information available, we

usually specify the magnitude of the prior variance based on our experience. In

such cases, we should test the sensitivity of the model under different specified prior

variance.

The way we specify this variance is, first calculate a rough estimate, then multiply

it by a constant, called variance inflation factor. Now we will change this factor and

compare the result each time, to see how robust the model is.

The test is done for two choices of g, one and five, and the test results are shown

in Table 3.4.
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Table 3.4: Mean and Standard Deviation of the 798 Posterior Means and Standard
Deviations of the Variance Inflation Factor for Two Choices of number of classes

g Variable Variance Factor Mean Std Dev
1 Mean 1000 3.871 0.609

10000 3.871 0.609
100000 3.871 0.609

Std Dev 1000 0.288 0.109
10000 0.288 0.108
100000 0.288 0.108

5 Mean 1000 3.873 0.618
10000 3.873 0.617
100000 3.873 0.618

Std Dev 1000 0.291 0.116
10000 0.291 0.116
100000 0.292 0.117

Note: All the figures in the table are multiplied by 103, then rounded to three

significant digits, originally they are different under more significant digits.

It can be seen that the model is pretty stable, no matter what value we take, the

mean and standard deviation of the posterior means (of mortality rates) are virtually

unchanged.
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Chapter 4

Assessment of the Model

In this chapter, we first check how well the model fits by looking at the residuals.

We assess each model by using two methods, deviances and marginal likelihood.

4.1 Analysis of Residual

To get residuals of the mortality rates λ
˜

= (λ1, . . . , λ798)
′, we start from the death

number d
˜

= (d1, . . . , d798)
′. Since λi = di

ni
, here death number di ∼ Poisson(niλi), i =

1, . . . , 798, population ni is a constant, so we have:

E(λi) = E(
di

ni
) =

E(di)

ni
(4.1)

and

V ar(λi) = V ar(
di

ni
) =

V ar(di)

n2
i

.

Also, for standard deviation std(λi)

std(λi) =
√

V ar(λi) =

√
V ar(di)

n2
i

=
std(di)

ni
. (4.2)
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Here we use a cross-validation method to compute the mean of di given the mortality

rates of all the other HSA’s, we denote λ
˜

(i) the vector of mortality rates, whose

elements are all the λj except λi.

To calculate the mean of di given d
˜

(i), we use a weighted sample average:

E(di|d
˜

(i)) = E
Ω|d

˜
(i)

[E(di|d
˜

(i), Ω)]

= niE(di|d
˜

(i)) = ni

M∑
h=1

ω
(h)
i λ

(h)
i (4.3)

where λ
(h)
i is the hth sample of λi, M is the sample size, here M = 1000, and

ω
(h)
i =

[(niλ
(h)
i )die−niλ

(h)
i ]−1∑M

h=1[(niλ
(h)
i )die−niλ

(h)
i ]−1

.

In the same way we can calculate

Var(di|d
˜

(i)) = E
Ω|d

˜
(i)

[Var(di|d
˜

(i), Ω)] + Var
Ω|d

˜
(i)

[E(di|d
˜

(i), Ω)]

= niE(λi|d
˜

(i)) + n2
i Var(λi|d

˜
(i)) (4.4)

where

Var(λi|d
˜

(i)) = E[λi − E(λi|d
˜

(i))]
2

=
M∑

h=1

ω
(h)
i [λ

(h)
i − E(λ

(h)
i |d

˜
(i))]

2.

We use E(di|d
˜

(i)) and V ar(di|d
˜

(i)) to approximate E(di) and V ar(di), and therefore

we can also get E(λi) and std(λi) by plug in (4.1) and (4.2).

For residuals, first define:

aresi = ri − E(ri|r
˜

(i))

sresi =
ri − E(ri|r

˜
(i))

std(ri|r
˜

(i))
.
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Here aresi is the regular residuals and sresi is the standardized residuals. It is easy

to prove

E(ri|r
˜

(i)) =
E(di|d

˜
(i))

ni

std(ri|r
˜

(i)) =
std(di|d

˜
(i))

ni
.

Figure 4.1 is a plot of residual versus standard deviation, for g = 1, . . . , 6. We add

bands of ±2 standard deviations in the plot, where most of the residuals should fall

inside if the model fits well.

Figure 4.2 is a plot of the standardized residual versus predicted value, for g = 1, . . . , 6.

The band in the plot is (-2, +2), most of the standardized residuals should fall in this

band if the model fits well.

Figure 4.3 is a box plot, instead of plot all the mortality rates in a single box, we

divide them into 12 groups by region, and plot in each region. This provide a more

insightful view of the residuals.

All the plots suggest a good fit, with most of the residuals fall inside the bands, and

all the box plots have a normal like distribution around 0 (for g = 1, 4, 5, 6). Outliers

exist, but not too many. All these are signs of a good fit.
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Figure 4.1: Residual Against Standard Deviation With Bands at Two Standard De-
viations
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Figure 4.2: Standardized Residual against Predicted Value
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Figure 4.3: Box Plots of Residuals by 12 Regions of the US
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4.2 Analysis of Deviance and Marginal likelihood

So far we have done setting the model and checking the model fit, but actually

we are always using several models instead of one, since we choose different g in our

model, which gives us different models. Now we want to compare the models under

different g’s, this is a process of model selection. But in our particular case, the most

important problem is to provide improved maps.

4.2.1 The Deviance Measure

To assess the goodness of a model, we first use the Gelfand and Ghosh (1997)

deviance in Poisson distribution.

Deviance is defined as:

Dk(M) = Pk(M) + Gk(M)

= 2
�∑

i=1

ωi

{
t
(M )
i − t(µ

(M )
i )

}

+2(k + 1)
�∑

i=1

ωi

{
t(µ

(M )
i ) + kt(yi,obs)

k + 1
− t(

µ
(M )
i + kyi,obs

k + 1
)

}
. (4.5)

Here M refers to the model, k is a constant to be specified (we use 100), yi,obs is the

observed data value yi, t(x) is a function defined as

t(x) ≡ x log x − x

and

t
(M )
i = E[t(yi)|yi,obs, M ], µ

(M )
i = E[yi|yi,obs, M ].

Here ωi ≡ 1 for Poisson distribution.

To calculate the t
(M )
i , we start from

t
(M )
i = E[t(yi)|yi,obs, M ] =

∞∑
y=0

[y log y − y]
(niλi)

ye−niλi

y!
.
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Notice that

y log y − y|y=0 = 0.

So we get

t
(M )
i = E[t(yi)|yi,obs, M ] =

∞∑
y=1

[y log y − y]
(niλi)

ye−niλi

y!

=
∞∑

y=1

y log y
(niλi)

ye−niλi

y!
− niλi.

Let y − 1 = ζ, then

y−1=ζ
=

∞∑
ζ=0

(ζ + 1) log (ζ + 1)
(niλi)

(ζ+1)e−niλi

(ζ + 1)!
− niλi

= niλi

∞∑
ζ=0

log (ζ + 1)
(niλi)

ζe−niλi

ζ!
− niλi

= niλi

{ ∞∑
ζ=0

log (ζ + 1)
(niλi)

ζe−niλi

ζ!
− 1

}

For Poisson distribution with parameter niλi,

P (y = s + 1)

P (y = s)
=

(niλi)

s + 1

This is an increasing function of s, we get

when s + 1 ≤ niλi,
P (y = s + 1)

P (y = s)
≥ 1, i.e., P (y = s + 1) ≥ P (y = s)

when s + 1 ≥ niλi,
P (y = s + 1)

P (y = s)
≤ 1, i.e., P (y = s + 1) ≤ P (y = s)

so the mode lies on the point where s = [niλi − 1], [niλi − 1] is the nearest integer to

niλi − 1.

In practice, we do not need to take ζ from 0 to ∞. We only care about a limited

interval around the mode, the interval we use here is:

{Max(0, mode − 10std), mode + 10std} .
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To calculate t
(M )
i , we just sum up [y log y − y] (niλi)

ye−niλi

y!
on interval (Max(0, mode −

10std), mode + 10std). That is,

t
(M )
i ≈

b∑
y=a

[y log y − y]
(niλi)

ye−niλi

y!
.

Here mode = Max(0, [niλi − 1]), std is the standard deviation of ζ, std ≈ √
niλi.

a = Max(0, mode − 10std) and b = mode + 10std.

To calculate µ
(M )
i , we use the sample mean as an approximation, µ

(M )
i ≈ niλ̂i.

Here λ̂i is the sample average of the 1000 iterates,
∑1000

h=1 λ
(h)
i .

After we calculate µ
(M )
i and t

(M )
i , plug these in the formula (4.5) give us the

deviance.

4.2.2 Computing Marginal Likelihood

Another important measurement to assess the model is to compute marginal like-

lihood. For different g, we can easily get the joint posterior distribution of all the

parameters and data. From this joint posterior density, if we can integrate all the

parameters out, then we will get the marginal likelihood function of data given model,

comparing this function value under different g will give us the best model.

The equation below explain this idea.

fg(d
˜
) =

∫
fg(d

˜
|Ω)π(Ω)dΩ, for some g

Here Ω is the vector of all model parameters, because λ
˜

can be integrated out, so for

g = 1, Ω = (α, β
˜
); for g > 1, Ω = (α, β

˜
, µ
˜
, p
˜
).

A problem is, the joint posterior density is usually very complicated, it is extremely

hard to integrate all the parameters out. So we use Monte Carlo integration to solve

this problem.
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First construct the importance function f∗
g (d

˜
, Ω) by looking at the joint posterior

density fg(d
˜
, Ω), f∗

g (d
˜
, Ω) is a probability density function ( integratable over Ω ) which

satisfy f∗
g (d

˜
, Ω) ≈ fg(d

˜
, Ω) on the whole range of Ω, then we make a transformation

fg(d
˜
) =

∫
fg(d

˜
, Ω)dΩ =

∫
fg(d

˜
, Ω)

f∗
g (d

˜
, Ω)

f∗
g (d

˜
, Ω)dΩ

let

Gg(d
˜
, Ω) =

fg(d
˜
, Ω)

f∗
g (d

˜
, Ω)

then the problem turned out to be finding E(Gg(d
˜
, Ω)). Here

fg(Ω|d
˜
) =

1

Dg(1, . . . , 1)
× (g − 1)! × P(µ

˜
)

× 1√
(2π)pdet(∆0)

e
− 1

2
(β
˜
−µβ

˜

)′∆−1
0 (β

˜
−µβ

˜

) × 1

(1 + α)2
,

and

f∗
g (d

˜
, Ω) = Dirichletp

˜
(ẑ1, . . . , ẑg) × P(µ

˜
) × h(α, β

˜
|d
˜
).

Here h(α, β
˜
|d
˜
) is the proposal density in the Metropolis-Hastings step,

(
α
β
˜

)
∼ MN




[
α̂

β̂
˜

]
,


 σ2

α ν ′

ν ∆β






We draw α and β
˜

from Gamma and multivariate-normal just as in the Metropolis-

Hastings sampler step. Then plug these sample values into the above formula to

evaluate Gg(d
˜
, Ω(h)). Finally, we estimate E(Gg(d

˜
, Ω)) by

̂E(Gg(d
˜
, Ω)) = M−1

M∑
h=1

Gg(d
˜
, Ω(h)),

Ω(h) is the sample parameter vector, h = 1, . . . , M , M is the sample size. We first

use the results from Metropolis-Hasting sampler to construct the importance function

f∗
g (d

˜
, Ω). Then draw a sample Ω̂(1), plug it into Gg(d

˜
, Ω) and get Gg(d

˜
, Ω(1). Draw
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another sample Ω̂(2) and repeat this process until reach a big enough sample size M

(here we use 10000), we will get a good approximation.

Table 4.1 show the results from computing deviance and marginal likelihood, we

choose up to g = 8 different models.

Table 4.1: Results From Model Selection Methods
g Pk(M) Gk(M) Deviance log Marginal Likelihood N.S.E

1 1212.504 329.9967 1542.501 -3580.421 0.0029
2 1202.819 324.3637 1527.182 -3582.652 0.1222
3 1209.665 324.3541 1534.019 -3584.219 0.2219
4 1212.547 317.5014 1530.048 -3586.351 0.5064
5 1303.804 222.6683 1526.472 -3596.543 0.6426
6 1241.213 320.3492 1561.562 -3596.032 0.9976
7 1258.806 272.7744 1531.580 -3626.447 0.9451
8 1236.289 315.3004 1551.589 -3632.781 0.7983

The model selection criteria is, for deviance, choose the model which produce

the minimum deviance, for marginal likelihood, choose the model which produce the

maximum marginal likelihood.

Based on what the two measurements show, it is not clear what value of g to

choose. The marginal likelihood indicate that g = 1 is fine, but it is not very different

from g = 2, 3, or 4. The deviance indicates that g = 5 is the best, but it is not very

different from g = 2, 3, or 4, even though the values at g = 2, 3, 4, 5 are smaller than

the others. However, it is encouraging that for the likelihood g = 1 is not chosen.

Therefore, for comparison, we consider g = 1, 4, 5, 6.
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Chapter 5

Methods for Improved Maps

In this chapter we introduce the method of using posterior modes in mapping,

for the purpose of comparison, the standard method (using posterior means) is also

described.

Finally, we develop a new method in constructing map legends, which has some

advantages over the standard method.

5.1 Disease Mapping by using Posterior Means

A standard method in disease mapping is to use the means of the mortality rates.

The procedure is the following:

(a) Calculate the posterior means of the mortality rates in the 798 HSA’s

(b) Order the 798 rates and cut them into K groups based on certain criteria

(c) Apply a different color to each group on the map

We obtained a Rao-Blackwellized map for the procedure above for any value of g.

Based on the model in Chapter 3, conditional posterior density of the mortality rate
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λi is written independently for i = 1, . . . , �.

π(λi|α, β
˜
, µ
˜
, p
˜
, d
˜
) ∝

(niλi)
die−niλi

(di)!
×




k∑
j=1

pj

(α
1−µj

µj
e−x

˜
′
iβ
˜)αλα−1

i e
−α

1−µj
µj

e−x
˜

′
iβ
˜

λi

Γ(α)


 (5.1)

π(λi|α, β
˜
, µ
˜
, p
˜
, d
˜
) ∝

k∑
j=1

pj

(α
1−µj

µj
e−x

˜
′
iβ
˜)αλdi+α−1

i ndi
i e

−(ni+α
1−µj

µj
e−x

˜
′
iβ
˜

)λi

Γ(α)

∝
k∑

j=1

pj

(α
1−µj

µj
e−x

˜
′
iβ
˜)αndi

i

[ni + α
1−µj

µj
e−x

˜
′
iβ
˜
]α+di

×
[ni + α

1−µj

µj
e−x

˜
′
iβ
˜]α+diλdi+α−1

i e
−(ni+α

1−µj
µj

e−x
˜

′
iβ
˜

)λi

Γ(α + di)
.

Letting

ωij =
α

1−µj

µj
e−x

˜
′
iβ
˜

[ni + α
1−µj

µj
e−x

˜
′
iβ
˜
]
,

we get

π(λi|α, β
˜
, µ
˜
, p
˜
, d
˜
) ∝

k∑
j=1

pjω
α
ij(1−ωij)

di×
[ni + α

1−µj

µj
e−x

˜
′
iβ
˜]α+diλdi+α−1

i e
−(ni+α

1−µj
µj

e−x
˜

′
iβ
˜

)λi

Γ(α + di)
.

Now we construct new weights

Λij =
pjω

α
ij(1 − ωij)

di∑k
j=1 pjω

α
ij(1 − ωij)di

then

π(λi|α, β
˜
, µ
˜
, p
˜
, d
˜
) =

k∑
j=1

ΛijGamma(α + di, ni + α
1 − µj

µj
e−x

˜
′
iβ
˜). (5.2)

From (4.6) we can get the posterior mean of mortality rates

E(λi|α, β
˜
, µ
˜
, p
˜
, data) =

k∑
j=1

Λij
α + di

ni + α
1−µj

µj
e−x

˜
′
iβ
˜

. (5.3)

These posterior means will be used in mapping, all the legends are constructed based

on them.
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5.2 Disease Mapping by using Posterior Mode

Drawing maps by using posterior means has been the standard practice. But for

the highly dispersed data like COPD, since the distribution is often skewed, the mean

is far away from the mode, so the use of means in mapping can produce biased results.

To fix this problem, we provide an alternative method, which is based on the

posterior mode of the mortality rates. This method is actually more robust for dif-

ferent types of data, and the computation is not too expensive. The modes of the

joint posterior density of mortality rates λ
˜

= (λ1, λ2, . . . , λ798), is indeed the highest

posterior density map. The procedure is to obtain the value of the posterior π(λ
˜
|d
˜
)

at each of the 1000 iterates obtained from the Metropolis-Hastings sampler. Suppose

we order π(λ
˜

(h)|d
˜
), h = 1, . . . , M , we draw the map for λ

˜
(h∗) where λ

˜
(h∗) maximize

π(λ
˜
|d
˜
) over the M iterations.

The procedure is as follows:

(a) Draw a sample of the model parameters Ω(1), Ω(2), . . . , Ω(M ), where Ω(i), i =

1, . . . , M is a vector of all the model parameters (α, β
˜
, µ
˜
, p
˜
). As seen earlier,

M = 1000 is a conventional choice.

(b) Draw λ
˜

(1) = (λ
(1)
1 , . . . , λ

(1)
798)

′ from π(λ
˜
|d
˜
, Ω(1)), and calculate π(λ

˜
(1)|d

˜
).

π(λ
˜
|d
˜
, Ω(1)) is the posterior conditional distribution of λ

˜
given data and other param-

eters. Here,

π(λ
˜

(1)|d
˜
) =

∫
π(λ

˜
(1)|d

˜
, Ω)π(Ω|d

˜
)dΩ

≈ M−1

M∑
h=1

π(λ
˜

(1)|d
˜
, Ω(h))
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where,

π(λi|di, Ω) =

k∑
j=1

ΛijΓ(α + di, ni + α
1 − µj

µj
e−x

˜
′
iβ
˜),

Λij =
pjω

α
ij(1 − ωij)

di∑k
j=1 pjωα

ij(1 − ωij)di

,

and

ωij =
α

1−µj

µj
e−x

˜
′
iβ
˜

[ni + α
1−µj

µj
e−x

˜
′
iβ
˜
]
.

In fact, to make the computation easier, we work on the log scale, i.e., compute the

log π(λ
˜

(1)|d
˜
) instead of π(λ

˜
(1)|d

˜
). Then it turned out to be finding

M−1

M∑
h=1

e

���
i=1 log π(λ

˜
(1)
i |d

˜
,Ω(h))

�

Below are the procedures we draw λ
˜

(1) from π(λ
˜
|d
˜
, Ω(1)).

For the ith HSA, calculate the weights Λij using Ω(1) and then calculate the accumu-

lated weights of Λij, as below

Cumulative Weights
Ci1 Λi1

Ci2 Λi1 + Λi2

Ci3 Λi1 + Λi2 + Λi3

.

.

Ci(k−1) Λi1 + Λi2+, . . . , +Λi(k−1)

Cik 1

Draw a random number µ from uniform distribution U(0, 1), if µ lies in the inter-

val of the (n − 1)th and nth accumulated weights, i.e, Λi1+, . . . , +Λi(n−1) < µ ≤
Λi1+, . . . , +Λin (here n ≤ k), then we draw λi from Γ(α + di, ni + α1−µn

µn
e−x

˜
′
iβ
˜).

(c) Draw λ
˜

(h) from π(λ
˜
|d
˜
, Ω(h)), and calculate log π(λ

˜
(h)|d

˜
).

(d) Repeat (c) until we get all the 1000 C(h) = log π(λ
˜

(h)|d
˜
), h = 1, . . . , 1000
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(e) Order C(h), find the maximum value CM , the λ
˜

correspond to CM is chosen as

the mode, draw the map based on this λ
˜
.

For our COPD data, we know the distributions of mortality rates are a little skewed,

so the modes should not be very close to the means as in the symmetrical distribution

cases. In Figure 5.1 and Figure 5.2 we show the difference between the posterior means

and modes for the 798 HSA’s, the variable to describe this difference is:

(
Mean

Mode
− 1) × 100%

Figure 5.1: Percentage difference of posterior means and modes (g = 1)
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Figure 5.2: Percentage difference of posterior means and modes (g = 5)

From these two plots we can see, for both the model without latent class and

the model with 5 latent classes, the difference between posterior means and posterior

modes are apparent. There are some places where the differences are more than 20%.

5.3 New Legend Construction

The standard practice in legend construction is to use quantile of the posterior

mean rates. This method is straightforward and convenient in computation. The com-

puter package Arc view-GIS provide any number of quantiles, for example, quintiles.

Then the data are divided into 5 groups each contain 20% of the total observations,

ordered from the lowest to highest, a different color is assigned to each of the 5 groups

and the map is drawn based on these colors. This method is effective in a lot of cases,
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and will still be in use in practice. But a potential problem is, when the data is

not evenly distribution in terms of magnitude, this method could provide misleading

information.

An alternative method is to cut the data based on its own structure. As described

in previous chapters, our model uses some parameters to measure the latent structure

in the data. So we can build some “cutting points” from these model parameters.

The model parameters used to measure the latent structure are: µ
˜

= (µ1, . . . , µg)
′.

They are ordered as:

1

2
= µ1 ≤ µ2 ≤ µ3, . . . ,≤ µg < 1.

Here g ≥ 2, when g = 1, and we do not have mixture model.

We can see that, for a particular µk, it lies in the interval (µk−1, µk+1), µk−1 and

µk+1 are the boundaries of µk, therefore, we can build “cutting points” based on these

“boundary values”.

Next, we show how to carry out these information about µ
˜

to the mortality rates λi
˜

.

Suppose that we know that the ith HSA belongs to group k, then

E(λi|Ω, di, k) =
α + di

ni + α1−µk

µk
e−x

˜
′
iβ
˜

(5.4)

Transform (4.8), we can get

E(λi|Ω, di, k) =
α + ni(

di

ni
)

ni + α1−µk

µk
e−x

˜
′
iβ
˜

=

α
1−µk

µk
e−x

˜
′
iβ
˜

1−µk
µk

e
−x
˜

′
i
β
˜

+ ni(
di

ni
)

ni + α1−µk

µk
e−x

˜
′
iβ
˜

= ωik
µk

1 − µk
ex˜

′
iβ
˜ + (1 − ωik)(

di

ni
) (5.5)

where

ωik =
α1−µk

µk
e−x

˜
′
iβ
˜

[ni + α1−µk

µk
e−x

˜
′
iβ
˜
]
.
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Thus, to obtain the cut points for the map in (4.8), we replace ωik by arithmetic mean

ωk = �−1
∑�

i=1 ωik, ex
′
i

˜
β
˜ by their geometric mean ex

′
˜
β
˜, where x′

˜
= �−1

∑�
i=1 x′

i
˜

, and

di

ni
by the overall average death rate

�
di�
ni

.

ωk
µk

1 − µk
ex

′
˜
β
˜ + (1 − ωk)(

∑
di∑
ni

)

Here k = 2, . . . , g.

Table 5.1 lists all the cutting points for the COPD mortality rate under different

model settings (g = 2, . . . , 6). The table 5.2 shows the quantiles under three different

model settings (g = 4, 5, 6). Compare the two tables for same model settings we can

see, these breakpoints are different.

Table 5.1: Cutting Points
g Cutting Points

2 3.82×10−3

3 3.52×10−3 3.62×10−3

4 3.59×10−3 3.71×10−3 4.04 ×10−3

5 3.59×10−3 3.69×10−3 3.84×10−3 4.24×10−3

6 3.53×10−3 3.61×10−3 3.69×10−3 3.82×10−3 4.19×10−3

Table 5.2: Quantiles
g Cutting Points

4 3.41×10−3 3.81×10−3 4.27 ×10−3

5 3.35×10−3 3.67×10−3 3.99×10−3 4.33×10−3

6 3.23×10−3 3.58×10−3 3.88×10−3 4.10×10−3 4.47×10−3
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Chapter 6

Data Analysis and Map
Comparison

In the previous chapters we developed our models, and then obtained parameter

estimates and mortality rate estimates through Metropolis-Hastings sampler. Finally

the model was checked and new methods in mapping were described. In this chapter,

we use the methods in the previous chapters to analyze the COPD mortality rate,

and use our new methods to draw maps. A comparison of the maps drawn from

traditional method and new method is made.

6.1 Covariates Analysis

The Metropolis-Hastings sampler generates a sample of the regression coefficients,

along with the standard deviation and 95% confidence interval. We can use these es-

timate to link the mortality rates with the risk factors, and even do some predictions.

Table 6.1 contains the sample summary of these regression coefficients, for g =

1, . . . , 6.
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Table 6.1: Sample Summary for Regression Coefficients by the number of classes
g βj Mean Std. Dev. N.S.E. 95% C.I.

1 β0 -6.00506 0.03251 0.00609 (-6.07665, -5.93602)
1 β1 0.00804 0.00045 0.00009 (0.00710, 0.00896)
1 β2 -0.44775 0.04349 0.00862 (-0.54584, -0.35104)
1 β3 0.00449 0.00039 0.00008 (0.00365, 0.00527)
1 β4 -0.32746 0.05000 0.00951 (-0.43326, -0.23049)
2 β0 -6.02452 0.03774 0.01751 (-6.10270, -5.94924)
2 β1 0.00813 0.00046 0.00009 (0.00719, 0.00906)
2 β2 -0.43798 0.04706 0.00988 (-0.53577, -0.34300)
2 β3 0.00447 0.00041 0.00009 (0.00367, 0.00525)
2 β4 -0.33307 0.05300 0.01033 (-0.44594, -0.22464)
3 β0 -6.04060 0.04991 0.03451 (-6.16549, -5.95579)
3 β1 0.00812 0.00045 0.00010 (0.00719, 0.00903)
3 β2 -0.43371 0.05082 0.01211 (-0.54149, -0.32824)
3 β3 0.00442 0.00041 0.00010 (0.00358, 0.00524)
3 β4 -0.33716 0.05263 0.01214 (-0.44429, -0.22956)
4 β0 -6.05964 0.05070 0.03448 (-6.16492, -5.97013)
4 β1 0.00814 0.00045 0.00008 (0.00723, 0.00904)
4 β2 -0.43683 0.05063 0.01243 (-0.54419, -0.33586)
4 β3 0.00441 0.00041 0.00012 (0.00359, 0.00524)
4 β4 -0.33990 0.05159 0.01065 (-0.43595, -0.23676)
5 β0 -6.08932 0.06344 0.05192 (-6.22880, -5.98198)
5 β1 0.00815 0.00048 0.00011 (0.00717, 0.00908)
5 β2 -0.43464 0.05379 0.01176 (-0.55045, -0.32982)
5 β3 0.00444 0.00042 0.00010 (0.00357, 0.00523)
5 β4 -0.33874 0.05525 0.01297 (-0.43966, -0.23060)
6 β0 -6.11109 0.05995 0.04841 (-6.25431, -6.01598)
6 β1 0.00816 0.00047 0.00011 (0.00722, 0.00907)
6 β2 -0.43533 0.05187 0.01032 (-0.54200, -0.33582)
6 β3 0.00440 0.00042 0.00008 (0.00358, 0.00520)
6 β4 -0.34017 0.05346 0.01195 (-0.45107, -0.23604)
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• All the 95% credible intervals do not contain 0, means they are all significant.

This confirm our conclusion in the exploratory data analysis.

• β1, the coefficient for white male lung cancer mortality rate is positive. This

confirms Morris and Munasinghe (1994); those places where more people smoke tend

to have a higher COPD mortality rate.

• β2, the coefficient for population density is negative, this confirms Nandram et

al (2000). The possible reason might be, those places with a high population density

usually have better medical services, and when there is an emergency, people living in

a remote area are more likely to be delayed by the long travel to the nearest hospital.

• β3, the coefficient for elevation is positive. This confirms extreme climatic con-

ditions aggravate existing asthma and bronchitis (Bates 1989), as is living at high

altitudes because of the reduced oxygen supply (Schoene 1999).

• β4, the coefficient for the annual rainfall level is negative. As claimed before,

repeated exposure to particulate matter and other air pollutants, primarily from

traffic exhaust and coal-burning power plants, can aggravate existing lung conditions

and can even cause death (Neutra et al. 1999; Sunyer et al. 2000). In particular, small

airborne particles such as SO2 found in urban air pollution can be deposited deep in

the lungs, causing severe pulmonary effects (Sunyer et al. 2000; Schwartz and Neas

2000). Aerosolized toxins and viruses can be inhaled in dusty environments, causing

pulmonary effects (Centers for Disease Control 1998). Rainfall, on the contrary, can

lower the density of airborne particles and dust in the air, thus lower the chance of

catching a pulmonary disease.
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6.2 Map Comparisons

On the next few pages, we compare the maps drawn by our new methods and the

maps drawn by using the standard methods.

In the order, the maps are respectively:

[ Figure 6.1 ] Maps drawn with and without using latent class model.

These two maps both present posterior modes of mortality rates. In the map on top,

the rates are estimated without using latent class model, but in the map on bottom,

the rates are estimated by using our latent class regression model.

[ Figure 6.2 ] Maps presenting posterior means and posterior modes.

There are two maps in this figure, for g = 5 (using five latent classes). As labeled,

they present the posterior means and modes of the mortality rates respectively, map

legends are constructed by our new method.

[ Figure 6.3 ] Maps with legends constructed by standard and new methods.

As labeled, the maps present posterior modes, drawn from model using five latent

classes, with legends constructed by both the traditional method and our new method.

[ Figure 6.4 ] Maps by using the current methods and all of our new methods.

In the map on top, the mortality rates are estimated without using latent class model,

then the posterior means are presented by quantile grouping method. In the map on

the bottom, the mortality rates are estimated by using latent class model(g = 5),

then the posterior modes are presented, they are grouped by using our new legend

construction method.
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Figure 6.1: Comparison of models with and without latent classes
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Figure 6.2: Comparison of maps using posterior means and modes
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Figure 6.3: Comparison of map legend construction methods
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Figure 6.4: Comparison of map legend construction methods
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From Figure 6.1, we can see that, in the two maps, even though the general

patterns are the same, quite a few HSA’s are presented by different colors.

Here are two examples of big changes across the maps. Henrico, VA and Prince

Edward, VA HSA, turned to be much darker; St. Louis, MN and Douglas, WI HSA,

turned to be lighter.

From Figure 6.2 we can see there are some differences between the mean map

and mode map, even though they are drawn from exactly the same model, and the

legends are constructed by the same method.

Here are some examples of big changes across the maps. Mercer, WV and Tazewell,

VA HSA, is shown as among the lightest color in mean map, but presented by the

darkest color in the mode map. The same happens to Fremont, CO - Custer, CO

HSA. The Elko, NV and Lander, NV HSA, on the contrary, changed from darkest to

lightest.

In Figure 6.3, the map on the top is constructed by the traditional quantile

method, so there are equal number of HSA’s in each color. The map at the bottom

is drawn by using our new method, the numbers of HSA’s in each color are shown

beside the legend. By simply looking at these numbers, we can see how different the

two maps are!

Here are some examples of the differences between the traditional method and

the new method. Nueces, TX and San Patricio, TX HSA, changed from the second

lightest color to the most lightest color. Maricopa, AZ and Yavapai, AZ HSA is

changed from the third lightest color to the second lightest color.

Figure 6.4 is a comparison of the map drawn by the current standard practices,

with the map drawn by using the three new methods provided in this thesis.
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6.3 Conclusion and Future Research

The Bayesian hierarchical latent class model is good for modeling rare events such

as COPD mortality rates, as shown in this thesis. The conventional method used in

map legend construction is based on post-grouping of the estimated rates. That is,

rates are first estimated, and then they are grouped by some criterion. There are

many different grouping methods, each one is appropriate for a particular type of

data. In practice it is hard to decide which method is appropriate. The new method

we proposed eliminates this problem by using a grouping that is part of the model.

Present posterior modes rather than posterior means is also superior when the rates

are skewed, such as COPD mortality rates.

In future, we can do research in the following directions:

(1) Present variation in the map.

(2) Extend the model to include spatial-temporal components.

(3) Apply our model to other data. Although we have studied the COPD data, our

model can be used to study any rare event, such as traffic accidents.
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Appendix: A,B

Appendix A: Specify µβ
˜

and ∆0

To specify µβ
˜

and ∆0, start from the prior density for λi, since

λi|α, β
˜

iid∼ Gamma(α, αe−x
˜

′
iβ
˜),

so we have

E(λi) =
α

αe−x
˜

′
iβ
˜

= ex˜
′
iβ
˜ .

take a log of both sides of this equation, and let λi = eτi, then we have E(τi) ≈ x
˜
′
iβ
˜
. Fit

a weighted least square regression on the data, we estimate the parameter coefficients

as

b
˜

= β̂
˜

= (X ′W−1X)−1(X ′W−1Y ),

where X is covariates matrix and the Y is the response vector of τ
˜
.

The estimates b
˜

are used in β
˜
’s prior distribution, taken as the means of β

˜
, i.e.

µβ
˜

= b
˜
.

By the same way, we get the covariance matrix by

∆0 = (X ′W−1X)−1 (Y − Xb)′W−1(Y − Xb)

n − 2
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Appendix B: Proposed multivariate-normal den-

sity for parameter vector (α, β
˜
)’, for general g.

First, take a logarithm of the real density function

∆(α, β
˜
) =

�∑
i=1

{
α

g∑
j=1

φij log(
1 − µj

µj

) + (α − 1) log λi − αe−x
˜

′
iβ
˜λi

g∑
j=1

(
1 − µj

µj

φij)

}

+
�∑

i=1

{α[log α − x
˜
′
iβ
˜
] − log Γ(α)} − 2 log (α + 1)

−1

2
log((2π)pdet(∆0)) − 1

2
(β
˜
− µβ

˜
)′∆−1

0 (β
˜
− µβ

˜
) (6.1)

Then, we take the first, second and cross derivatives of ∆(α, β
˜
) against α and β

˜
, form

a derivative matrix called Hessian Matrix.

∂∆

∂α
=

�∑
i=1

{
g∑

j=1

φij log(
1 − µj

µj
) + log λi − e−x

˜
′
iβ
˜λi

g∑
j=1

(
1 − µj

µj
φij)

}

�∑
i=1

{log α − x
˜
′
iβ
˜

+ 1 −Φ(α)} − 2
1

1 + α
(6.2)

∂2∆

∂α2
=

�∑
i=1

{
1

α
−Ψ(α)

}
+ 2

1

(1 + α)2
(6.3)

here Φ(α) and Ψ(α) are the first and second derivative of log Γ(α).

∂∆

∂βk

=
�∑

i=1

{
−αxk(i) + αxk(i)e

−x
˜

′
iβ
˜λi

g∑
j=1

(
1 − µj

µj

φij)

}

−
∂

{
1
2
(β
˜
− µβ

˜
)′∆−1

0 (β
˜
− µβ

˜
)
}

∂βk
(6.4)
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∂2∆

∂βk1∂βk2
=

�∑
i=1

{
−αxk1(i)xk2(i)e

−x
˜

′
iβ
˜λi

g∑
j=1

(
1 − µj

µj
φij)

}
− 1

σk1k2
2

(6.5)

∂2∆

∂α∂βk

=
�∑

i=1

{
−xk(i) + xk(i)e

−x
˜

′
iβ
˜λi

g∑
j=1

(
1 − µj

µj

φij)

}
(6.6)

We get the covariance matrix of (α, β
˜
)′ by take the inverse of the Hessian matrix.

Σ =


 σ2

α ν ′

ν ∆β


 =


 −∂2∆

∂α2 − ∂2∆
∂α∂β

− ∂2∆
∂α∂β

− ∂2∆
∂βk1∂βk2



−1

(6.7)

Where the ν is a covariance vector related to ∂2∆
∂α∂β

and the ∆β is a covariance matrix

related to ∂2∆
∂βk1∂βk2

.

A special case: g = 1.

When g = 1, the number of parameters in the model is reduced greatly, thus the

computation is also simplified a lot.

First, take a logarithm of the real density function.

∆(α, β
˜
) =

�∑
i=1

{
α[log α − x

˜
′
iβ
˜
] + (α − 1) log λi − αe−x

˜
′
iβ
˜λi − log Γ(α)

}

−2 log (α + 1) − 1

2
log((2π)pdet(∆0)) − 1

2
(β
˜
− µβ

˜
)′∆−1

0 (β
˜
− µβ

˜
) (6.8)

Then, we take the first, second and cross derivatives of ∆(α, β
˜
) against α and β

˜
, form

a derivative matrix called Hessian Matrix.

∂∆

∂α
=

�∑
i=1

{
log α − x

˜
′
iβ
˜

+ 1 + log λi − e−x
˜

′
iβ
˜λi − Φ(α)

}

−2
1

1 + α
(6.9)
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∂2∆

∂α2
=

�∑
i=1

{
1

α
−Ψ(α)

}
+ 2

1

(1 + α)2
(6.10)

here Φ(α) and Ψ(α) are the first and second derivative of log Γ(α).

∂∆

∂βk

=
�∑

i=1

{
−αxk(i) + αxk(i)e

−x
˜

′
iβ
˜λi

}
−

∂
{

1
2
(β
˜
− µβ

˜
)′∆−1

0 (β
˜
− µβ

˜
)
}

∂βk

(6.11)

∂2∆

∂βk1∂βk2

=
�∑

i=1

{
−αxk1(i)xk2(i)e

−x
˜

′
iβ
˜λi

}
− 1

σk1k2
2

(6.12)

∂2∆

∂α∂β0
=

�∑
i=1

{
−xk(i) + xk(i)λie

−x
˜

′
iβ
˜

}
(6.13)

We get the covariance matrix of (α, β
˜
)′ by take the inverse of the Hessian matrix.

Σ =


 σ2

α ν ′

ν ∆β


 =


 −∂2∆

∂α2 − ∂2∆
∂α∂β

− ∂2∆
∂α∂β

− ∂2∆
∂βk1∂βk2



−1

(6.14)

Where the ν is a covariance vector related to ∂2∆
∂α∂β

and the ∆β is a covariance matrix

related to ∂2∆
∂βk1∂βk2

.
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