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Abstract

Sample surveys play a significant role in obtaining reliable estimators of a finite pop-

ulation. In a world of “big data”, a large amount of available non-probability samples

are easier and faster to obtain than probability samples. In this research, we focus on bi-

nary data which occur in many different situations. The main idea of this research is to

compare the performance of nine methods with different constructed survey weights, and

we can use these methods for non-probability sampling after weights are estimated (e.g.

quasi-randomization). In particular, we employ original weights, adjusted weights, ad-

justed standardized weights, and trimmed weights to build posterior distributions. We ap-

ply our models to the simulation study and compare their performance by posterior mean,

posterior standard deviation, relative bias, posterior root mean squared error, and the cov-

erage rate of 95% credible intervals. Also, we discuss an application on body mass index

and compare these nine models.

Keywords: Bayesian statistics, Non-probability samples, Normalized likelihood, Selec-

tion bias, Survey weights.
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Chapter 1

Introduction

1.1 Background

Sample surveys play a significant role in obtaining reliable estimators of finite pop-

ulation, such as means, totals, and ratios. The sample is a subset of a population and a

perfect sample would be represented in the sense that our interests in the population could

be estimated from the sample with a known degree of accuracy. In an ideal situation, the

sampled population where the sample was taken would be identical to the target popu-

lation. However, the ideal survey is hard to attain. Moreover, according to the items of

interest, a good sample should have accurate responses. But in many surveys, it is chal-

lenging to collect accurate responses. For instance, the surveys of people usually obtain

the sampled population which would be smaller than the target population, and sometimes,

people refuse to tell the truth or they do not always understand the questions (Lohr 2009).

To simplify the presentation of concepts, we assume the sampled population is the target

population, which could be considered as population.

Let yi, i = 1, . . . ,N, be the variable of interest of the i-th unit, where N < ∞ is the

total number of units in the population. In probability sampling, the probability of each

unit being selected is equal or unequal, like simple random sampling, stratified sampling,

cluster sampling, and systematic sampling.

Without any doubt, probability sampling is the golden rule for finite population pre-

diction and inference. However, the sampling probability preference is challenged because

of nonresponse, time, and cost. The survey response is declining steadily; rare events, such

as crashes, need long-term observation; convenience samples are faster, easier, and cheaper

to collect; massive data are increasingly available but unstructured and hard to analyze
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(Beaumont 2020; Rao 2020).

Therefore, it is necessary to pay more attention to the non-probability sampling.

Compared to probability sampling , the non-probability sampling is more feasible consid-

ering the desire for access to “real-time” data, the high cost of data collection, and the

decline in the response rates (Groves 2011, Miller 2017, Johnson and Smith 2017, Beau-

mont 2020), Rao et al. (2010) and Haziza, Beaumont, et al. (2017) summarized the typical

weighting process in the multipurpose surveys.

Nandram (2007) discussed the Bayesian prediction inference under informative

sampling via surrogate samples. In Chapter 2, we introduce the surrogate method in more

detail. Also, Beaumont (2020) and Rao (2020) reviewed available methods to use data from

a nonprobability source, the literature on combining information from probability sample

and nonprobability sample, and concluded on recent approaches which are not reliable or

general enough to improve population prediction and inference.

In this research, we focus on binary data which occurs in many different situations.

In statistics, binary data are a type of categorical data that can only be two possible values,

such as “yes” and “no”, or “head” and “tail”. For binary variable, which is a random

variable of binary type, it follows a Bernoulli distribution. For our application on body

mass index, we analyzed “obesity” and “non-obesity” categories.

The main idea of this research is to compare the performance of nine methods with

different constructed survey weights, and we can use these methods for non-probability

sampling after weights are estimated (e.g. quasi-randomization). In this chapter, we intro-

duce basic terms on a sample survey, and then, discuss two methods - frequentist model-

ing and Bayesian modeling on survey sampling. In Chapter 2, we describe our Bayesian

methodology that uses nine different types of survey weights. A simulation study is per-

formed in Chapter 3, to make further comparisons of these nine models. In Chapter 4, we

discuss an application on body mass index and compare the nine methods. Finally, Chap-

ter 5 reviews the strengths and weaknesses of our study in more detail and provides some
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future research suggestions.

1.2 Survey Sampling

As we all know, a good sample, which is a set of a population, should be represented

in the sense that our interests in the population could be estimated from the sample with a

known degree of accuracy. In an ideal survey, the sampled population should be the same

as our target population, but in reality, the sampled population is usually much smaller

than the target population. However, when some part of our target population is not in the

sampled population, selection bias occurs. For example, a sample of convenience is usually

biased, because the samples which are easier to select or that are more likely to respond to

are often not representative of the inconvenient to select or non-responding samples.

1.2.1 Simple Probability Samples

A simple random sample is the simplest form of a probability sample. When every

possible sample of the population has the same chance of being selected, this is the simple

random sample.

In probability sampling, each possible sample from the population has a known

probability of being chosen. We calculate πi = P(Unit i in sample) by adding up the proba-

bilities of all possible samples that include unit i, and this is also called selection probability.

Definitely, ∑
N
i=1 πi = n. Then, we can define the sampling weight, for any sampling meth-

ods, to be the reciprocal of the selection probability, wi =
1
πi

. Also, the sampling weight of

i-th unit is the number of population units which can be represented by unit i.

Considered the most basic form of probability sampling, simple random sampling

provides the basic theoretical concepts for the more complicated sampling. There are two

ways to perform a simple random sample: with replacement or without replacement. For a

simple random sample with replacement of size, n from a population of size N, each unit is

randomly selected from the population with the same probability 1/N; for a simple random
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sample without replacement, the probability of selecting any sample S including n units is

1/
(N

n

)
.

As we mentioned before, yi, i = 1, . . . ,N, is the variable of interest of the i-th unit,

where N < ∞ is the total number of units in the population, and n is the sample size. In a

simple random sampling, each unit has the same inclusion probability πi =
n
N ; correspond-

ingly, all sampling weights are the same with wi =
1
πi
= N

n . Note that, for a simple random

sampling,

∑i∈S wi = ∑i∈S
N
n = N,

∑i∈S wiyi = ∑i∈S
N
n yi = t̂,

∑i∈S wiyi
∑i∈S wi

= t̂
N = ˆ̄y.

All survey weights are the same in a simple random sampling. In other words, every unit

in the sample represents the same number of units, N/n, in the population.

1.2.2 Sampling with Unequal Probabilities

Suppose a town has three supermarkets, ranging in size from 100 square feet to

1000 square feet, and we want to estimate the total amount of sales in the four stores for last

week by sampling just one of the stores. Of course, one larger supermarket could have more

sales than a smaller supermarket. In this situation, the probability that a store is selected

should be related to its square feet, which leads to unequal survey weights. For example,

let store A account for 1/15 of the total floor area of the three stores, so it is sampled with a

selection probability of 1/15. For illustrative purposes, we have the following table to show

the relationship between the size of the store and its selection probability πi:
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Store Size (sqrt) πi yi (in Thousands)

A 100 1
15 12

B 400 4
15 78

C 1000 10
15 210

Total 1500 1 300

This example is the probability proportional to size (PPS) sampling, i.e. the selec-

tion probability is the proportion of the relative size of the i-th unit. In addition, if a sam-

pling process where every unit of the population is subjected to an independent Bernoulli

trial can determine whether the unit is a part of the sample or not, it calls Poisson sampling.

In a simple random sampling of size n of a population of size N, for all units i

wi =
N
n
.

In stratified sampling, the sampling weight for item i in stratum h, in which nh units

will be sampled out of Nh total, is

wih =
Nh

nh
.

In one stage cluster sampling with n clusters sampled out of N total, the sampling

weight for cluster i is wi = N/n and for each unit j inside of it

wi j =
N
n
.
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In two-stage cluster sampling with n clusters sampled out of N total, the sampling

weight for cluster i is wi =N/n and for each unit j inside of it, where mi secondary sampling

units are going to be sampled out of Mi total

wi j =
N
n

Mi

mi
.

1.2.3 Non-probability Sampling Methods

Non-probability sampling is defined as a sampling mechanism in which the re-

searchers select samples based on the subjective judgment of researchers rather than ran-

dom selection. In general, it is a sampling method in which not all units of the population

have an equal chance of being selected, unlike probability sampling, where every unit has

the non-zero probability to be chosen. To deal with non-probability sampling, we have

two main methodologies, design-based approaches and model-based approaches (Särndal

et al. 1978, Gregoire 1998).

Classical survey sampling relies on design-based methods. This means that the

most important source of randomness is the probability described by the sampling design to

the various subsets of the finite population. In other words, the concept of sampling design

plays a significant role in classical survey sampling theory, where the design could specify

the randomized way in which a sample is selected from the finite population, like simple

random sampling, stratified random sampling, cluster sampling, two-stage sampling, etc.

The choice of design is always inspired by administrative or practical causes, but also by

the desire of making full use of auxiliary information. Design-based approaches proceed

by suggesting one or more suitable estimators for each given design.

However, in a world of “big data”, for a large amount of available data which are

easier and faster to obtain than probability samples, classical design-based approaches are

hard to apply directly for making population inference, even if the data elements are se-

lected randomly. The main cause is that the selection probabilities are missing or the selec-
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tion mechanism is unknown in non-probability sampling (Chen, Li, and Wu 2020).

For inference from big data or non-probability samples, model-based methods are

widely applied. Model-based approaches assume a mathematical or statistical model,

which is ordinarily a linear or generalized linear model (Valliant 2000). Baker et al. (2013)

summarized adjusted methods rely on models and external auxiliary information, which

is provided by a task force of the American Association for Public Opinion Research

(AAPOR). Buelens, Burger, and Brakel (2018) compared different model-based inference

methods for non-probability samples and presented a simulation study using real-world

data.

To make an inference about a finite population, Rao (2020) stated that it is possi-

ble to use a single non-probability sample only. In the presence of a relevant probability

sample and a set of common auxiliary variables, we can use propensity scores to esti-

mate survey weights and then consider the non-probability samples as regular probability

samples, which is also known as quasi-randomization (Lee and Valliant 2009, Elliott and

Valliant 2017). In addition, another way is fitting models on the non-probability sample and

then make predictions on the response variable for units in the probability sample (Kim et

al. 2018, Wang et al. 2015).

1.3 Frequentist Modeling vs. Bayesian Modeling

This section provides an account of both frequentist modeling and Bayesian mod-

eling to inference from survey samples, focusing on descriptive parameters of a finite pop-

ulation.

1.3.1 Frequentist Modeling

The frequentist modeling to inference assumes that the population structure is a

specified population model and that the sample holds the same model, which means there

is no sample selection with respect to the assumed population model. Usually, distribution
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assumptions can be avoided by focusing on variance estimation, point estimation, or associ-

ated confidence interval, as design-based inference, which causes applied models to specify

the mean function and the variance function of our variable of interest (Rao et al. 2011).

An important advantage of frequentist modeling is that it leads to inferences conditional on

the selected sample of units.

1.3.2 Parametric Bayesian Approach

Under a specified distribution on the assumed model, it is easy to implement Bayesian

inference, by given the model holds for the sample. Royall and Pfeffermann (1982) dis-

cussed Bayesian inference on the finite population with normality assumption and flat pri-

ors on the parameters of a linear regression model. To get inference on the more com-

plicated model, we can use the Monte Carlo Markov chain (MCMC) method to simulate

samples from the posterior distribution of parameters.

Musal et al. (2012) present a Bayesian framework for population utility estimation.

Pfeffermann, Da Silva Moura, and Do Nascimento Silva (2006) discussed an application

of the Bayesian modeling to make inferences from multilevel models under informative

sampling. Nevertheless, in this situation, the multilevel sample model, which is induced by

informative sampling, is more complicated and different than the corresponding population

model, which means it is hard to use frequentist methods. This author shows it is efficient

and convenient to use non-informative priors on the model parameters and applied MCMC

methods for dealing with such complex sample models. This application presents the com-

putational advantage provided by parametric Bayesian modeling over the corresponding

frequentist modeling.

1.3.3 Non-parametric Bayesian Approach

When it comes to multipurpose surveys, the parametric Bayesian approach based

on distribution assumptions is restricted because it is difficult to make valid model assump-
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tions. In this situation, the non-parametric Bayesian approach is appealing to be applied.

Chipman et al. (2010) introduced a strong non-parametric Bayesian predictive tool-

Bayesian Additive Regression Trees (BART)-by automatically and randomly capturing

non-linear associations and high-order interactions. The idea of BART is that using the

sum of trees regressions to approximate the outcome variables or our interests as an ar-

bitrary function of predictors. Kern et al. (2016) and Wendling et al. (2018) elucidate

the advantages of BART for predictive inference of population to protect against model

misspecification, Rafei et al. (2021) expand the idea of double robustness such that more

flexible non-parametric methods, like BART, as well as Bayesian models, could be used

for prediction.

Another robust approach is taking the Dirichlet process into consideration. It has

been shown that the Dirichlet process prior is useful because it makes the process more

robust, and the Bayesian method helps to reduce the effect of unidentifiable prominent

in non-negligible and non-response models (Nandram and Choi 2004). Furthermore, the

Dirichlet process model, Dirichlet mixture model, and Dirichlet process Gaussian model

can also be applied to deal with data noise (Nandram and Yin 2016a, Nandram and Yin

2016b).
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Chapter 2

A Bayesian Predictive Inference Model

When a biased sample is selected from a finite population, it is hard to make infer-

ences about the population since the nature of bias is unknown, such as when a sample is

selected from a finite population with probability proportional to size (PPS).

In PPS sampling, the selection probabilities of samples are proportional to some

measure of size, and this measure of size is also proportional to the characteristic of our

interest. Let yi, i = 1, . . . ,N, be the variable of interest of the i-th unit, where N < ∞ is the

total number of units in the population. πi, i = 1, . . . ,N , denote the selection probabilities

of the entire finite population. Therefore, πi = β0 +β1yi, i = 1, . . . ,N. For example, larger

fish have a higher probability to be captured by net, and they do be larger in length so

that when we focus on the length of fish in our pond, it is reasonable to take the selection

probabilities to be linearly related to the length of fish.

Suppose f (y
∼
| θ1∼

) is the probability distribution of finite population, and we draw

samples with weights function w(y
∼
;θ1∼

,θ2∼
). Therefore, the probability distribution of sam-

ples is updated to p(y
∼
| θ1∼

,θ2∼
). In other words, the non-representative sample is observed

from

p
(

y
∼
| θ1∼

,θ2∼

)
∝ w

(
y
∼
;θ1∼

,θ2∼

)
f
(

y
∼
| θ1∼

)
. (1)

In this chapter, we try to answer the question that “Can we recreate the proba-

bility sample from finite population f (y
∼
| θ1∼

)?”. By adjusting the sample weights, we

create different surrogate samples from the original finite population and compare their

performance of making inferences about the original finite population via f (y
∼
| θ1∼

). In the

model-based analysis, PPS sampling is a special case within the Bayesian framework that
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deserves special attention. To compare the different drawing methods, Poisson sampling is

also considered.

2.1 Simple Random Sampling Model

Suppose a simple random sample of size n is selected from a finite population of

size N, ys = (y1, . . . ,yn)
′ and yns = (yn+1, . . . ,yN)

′ are the sampled and non-sampled units.

Assume our data are binary,

y1 . . . ,yN | p i.i.d∼ Bernoulli (p). (2)

Under the Bayesian framework, since there is no information about p, we consider

the proper but non-informative prior

p∼ uniform (0,1). (3)

According to Bayesian theorem, when we have a prior on unknown parameters θ
∼

,

and the likelihood function based on observed data y
∼

is f (y
∼
|θ
∼
), then

π(θ
∼
|y
∼
) =

f (y
∼
|θ
∼
)π(θ

∼
)∫

f (y
∼
|θ
∼
)π(θ

∼
)dθ
∼

,

where π(θ
∼
|y
∼
) is posterior distribution on unknown parameters θ

∼
, and can be written as well

as

π(θ
∼
|y
∼
) ∝ f (y

∼
|θ
∼
)π(θ

∼
). (4)

Therefore, the posterior distribution is

p | ys
∼
∼ Beta (ts +1,n− ts +1), (5)

where ts = ∑
n
i=1 yi, then it is reasonable to make inference about p via the posterior distri-
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bution.

Let T = ∑
N
i=1 yi, which is the finite population total, and Tns = ∑

N
i=n+1 yi is for

non-sampled units. When it comes to finite population proportion, it can be calculated

as P = T/N = f ȳs + (1− f )ȳns, where f = n
N is the weight, and ȳs = ∑

n
i=1 yi/n, ȳns =

∑
N
i=n+1 yi/(N− n) are two parts with respect to sampled units and non-sampled units. In

this way, to make prediction of non-sampled units, Bayesian predictive inference formula

is useful,

f
(

Tns | ys
∼

)
=
∫ 1

0
f (Tns | p)π

(
p | ys

∼

)
d p, (6)

where π(p | ys
∼
) is the posterior distribution of p, given by Equation 5, and it is easy to show

that Tns | p ∼ Binomial (N− n, p). Then, through Equation 6 we can combine observed

sampling information and non-sampling information to make inference about our interests

of population.

2.2 Sampling Models

In a biased sample, Equation 5 and Equation 6 are no longer satisfied. In this

situation, the surrogate sampling method allows us to obtain a surrogate random sample

from a population, and then make an inference of our interests of the population. In most

situations, weights as well as covariates are known, but not the response y, in the probability

samples. To handle this problem of the biased estimate, we discuss nine survey weights

models.

In general, in this section, we discuss how to obtain f (y
∼
| θ1∼

) in Equation 1 by

adjusting the sample weights, then generate different surrogate samples from original finite

population to make inference of our interests of the population.
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2.2.1 Survey Weights

Let yi be a vector of response for a unit i; xi be a vector of observed covariates for

a unit i; ui be a vector of unobserved covariates for a unit i; zi be an indicator variable for

unit i being selected (zi = 1 if the unit i was in the probability sample and zi = 0 if the unit

i was in the non-probability sample; Wi be the survey weight for unit i; πi is the selection

probability that the unit i was selected given all its features, under the assumption that the

selection probability only depends on observed covariates,

πi = P(zi = 1 | xi,ui,yi) = P(zi = 1 | xi) , i = 1, . . . ,N.

When a sampling plan is implemented in a finite population of size N to draw a

size n sample, with given selection probabilities π1, . . . ,πN to each selected unit, since

Wi = 1/πi, i = 1, . . . ,N, the unbiased estimator of population total and population size are

T̂ = ∑
n
i=1 yiWi,

N̂ = ∑
n
i=1Wi.

(7)

Potthoff, Woodbury, and Manton (1992) mentioned the effective sample size,

ne =
(∑n

i=1Wi)
2

∑
n
j=1W 2

j
.

The effective sample size indicates the degree to which the variance increases due to

the unequal weight. Then, the adjustment weight required to eliminate the bias introduced

by the weight is

wi =
neWi

∑
n
j=1Wj

, i = 1, . . . ,n. (8)

13



Here, we use capital W for original survey weights, and small w for adjusted survey

weights. The effective sample size ne has some interesting properties. For example, by

calculation, we get ne = ∑
n
i=1 wi = ∑

n
i=1 w2

i ; When Wi are almost equal, ne ≈ n.

If replace ne to n in Equation 8, we obtain a new adjusted weight, adjusted stan-

dardized weight w∗,

w∗i =
nWi

∑
n
i=1Wi

, i = 1, . . . ,n, (9)

and this adjusted standardized weight w∗ satisfied n = ∑
n
i=1 w∗i = ∑

n
i=1 w∗2i .

To improve statistical efficiency and increase the robustness of statistical inferences,

Winsorization is an effective way to deal with outliers (Rao 1966, Basu 1971, Haziza,

Beaumont, et al. 2017). Outliers here are defined as observations fall above Q3 +1.5(Q3−

Q1), where Q1=1st quartile, Q3=3rd quartile. Let W ∗ be weights after trimming and W0 be

the threshold, which value is Q3 +1.5(Q3−Q1),

W ∗i =


W0, Wi ≥W0

aWi, Wi <W0

, (10)

where a is a rescaling parameter such that ∑
n
i=1W ∗i = ∑

n
i=1Wi.

To sum up, we introduced original survey weights W , adjusted survey weights w,

adjusted standardized survey weights w∗, and trimmed survey weights W ∗.

2.2.2 Posterior Distributions

In this part, different survey samples are incorporated with Equation 5 based on

Equation 7 to develop Bayesian posterior distributions, and we denote them using nine

cases.

14



• Case A: The simplest model if we ignore the survey weights and use responses

of non-probability sampling to make inference of interests of population. Since

y1 . . . ,yN | p i.i.d∼ Bernoulli (p) and p∼ uniform (0,1), the posterior distribution is,

θ | y
∼
∼ Beta

(
n

∑
i=1

yi +1,n−
n

∑
i=1

yi +1

)
. (11)

As we discussed in the previous section, the model ignoring survey weights would

be biased, and by comparing other cases with this one, it is supposed to show how

biased samples influence our inference of population. In other words, inference of

population is made according to p(y
∼
| θ1∼

,θ2∼
) in Equation 1, which is obviously bi-

ased.

In following cases, our goal is to obtain f (y
∼
| θ1∼

) by incorporating different survey weights

with Equation 1. Case B and case C are related to original survey weights W .

• Case B: Replace sample total with estimator of population total in Equation 5 by

using original survey weights,

θ | y
∼
∼ Beta

(
n

∑
i=1

yiWi +1,
n

∑
i=1

(1− yi)Wi +1

)
. (12)

• Case C: Consider the normalized likelihood with original survey weights,

fC(θ | y
∼
) ∝

θ ∑
n
i=1 yiWi(1−θ)∑

n
i=1(1−yi)Wi

∏
n
i=1 [θ

Wi +(1−θ)Wi]
. (13)

Here, we used the normalized likelihood to update the posterior distribution accord-

ing to Equation 4.

The following models are generated by using adjusted survey weights w (case D and case

E), adjusted standardized survey weights w∗ (case F and case G), and trimmed survey

weights W ∗ (case H and case I).
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• Case D: Beta distribution with adjusted survey weights w,

θ | y
∼
∼ Beta

(
n

∑
i=1

yiwi +1,
n

∑
i=1

(1− yi)wi +1

)
. (14)

• Case E: The normalized likelihood with adjusted survey weights w,

fE(θ | y
∼
) ∝

θ ∑
n
i=1 yiwi(1−θ)∑

n
i=1(1−yi)wi

∏
n
i=1 [θ

wi +(1−θ)wi]
. (15)

• Case F: Beta distribution with adjusted standardized survey weights w∗,

θ | y
∼
∼ Beta

(
n

∑
i=1

yiw∗i +1,
n

∑
i=1

(1− yi)w∗i +1

)
. (16)

• Case G: The normalized likelihood with adjusted standardized survey weights w∗,

fG(θ | y
∼
) ∝

θ ∑
n
i=1 yiw∗i (1−θ)∑

n
i=1(1−yi)w∗i

∏
n
i=1
[
θ w∗i +(1−θ)w∗i

] . (17)

• Case H: Beta distribution with trimmed survey weights W ∗,

θ | y
∼
∼ Beta

(
n

∑
i=1

yiW ∗i +1,
n

∑
i=1

(1− yi)W ∗i +1

)
. (18)

• Case I: The normalized likelihood with trimmed survey weights W ∗,

fI(θ | y
∼
) ∝

θ ∑
n
i=1 yiW ∗i (1−θ)∑

n
i=1(1−yi)W ∗i

∏
n
i=1
[
θW ∗i +(1−θ)W

∗
i
] . (19)
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Chapter 3

Simulation Study

In this chapter, one simulation is studied to assess the performance of our nine

different models.

The design of our simulation is inspired by the one implemented in Nandram (2007).

The samples are given a random selection mechanism with unequal probabilities. But in

the simulation chapter, to generate probability samples, it is assumed that at the stage of

analysis, the selection probabilities are known, and our goal is to adjust for the selection

bias by using a probability sample whose weights are known. We conduct the simulation

under nine Bayesian models.

Consider a finite population of size N, and the sample units y1, . . . ,yN are drawn

with probability proportional to measures of size x1, . . . ,xN , which should be non-negative.

Here, x is auxiliary variable and z is a latent variable, generated as follows:

xi
iid∼ Gamma(α,β ), (20)

zi | xi
iid∼ N

(
ρ

σx
(xi−µ) ,1−ρ

2
)
, i = 1 . . .N, (21)

where ρ is the correlation coefficient, µ = α

β
and σ2

x = α

β 2 .

Then, we use the latent variable to generate binary responses,

yi =


1, zi ≥ 0

0, zi < 0

, (22)
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where i = 1 . . .N.

In this simulation, assume that our interest is the population proportion, Ȳ = ∑
N
i=1 yi
N .

In a biased sample, the sampled values are taken with unequal selection probabilities which

depend on the characteristic y. For the probability proportional to size sampling, construct

selection probabilities,

πi =
nxi

∑
N
i=1 xi

, i−1, . . . ,N. (23)

For the Poisson sampling, samples are selected as follows,

Ii ∼ Bernoulli(πi), i = 1, . . . ,N,

when I = 1, individual y is selected and when I = 0, individual y is not selected from

population. Letting n0 = ∑
N
i=1 Ii denote the size of sample in Poisson sampling, we have

E(n0) = ∑
N
i=1 E(Ii) = n, and Var(n0) = ∑

N
i=1 πi(1−πi), so n0 ≈ n.

Now, we can perform the simulation study to access the estimators of the finite

population under probability proportional to size (PPS) and Poisson sampling with respect

to measure of size xi, i− 1, . . . ,N, and the effective size of samples should be equal to or

around n = 100 according to different sampling method. Keeping the population size fixed

at N = 1000 and β = 1, we can generate K = 10000 datasets at ρ = {0.2,0.5,0.8} and

α = {2,5,15}, which means there are nine design points for each posterior distribution.

To evaluate the repeated surrogate sampling properties of our nine models, posterior

mean (PM), posterior standard deviation (PSD), relative bias (RB), posterior root mean

squared error (PRMSE) and the proportion of the 100 95% credible intervals containing θ

(PCI) are calculated as below:
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PM(̂̄y) = 1
K

K

∑
k=1

̂̄y(k), (24)

PSD(̂̄y) = 1
K

K

∑
k=1

var
(̂̄y(k)) , (25)

RB(̂̄y) = 1
K

K

∑
k=1

(̂̄y(k)− ȳ
)
/ȳ, (26)

PRMSE(̂̄y) =
√√√√ 1

K

K

∑
k=1

(̂̄y(k)− ȳ
)2

/ȳ, (27)

PCI(̂̄y) = 1
K

K

∑
k=1

I

(∣∣∣̂ȳ(k)− ȳ
∣∣∣< z0.975

√
var
(̂̄y(k))) , (28)

where ̂̄y denotes the posterior surrogate mean from iteration k, ȳ is the finite population

true mean, and var(.) represents the variance estimate of the posterior mean based on the

surrogate sample.

For the two sampling processes in Table 1 and Table 2, we can see there is no

significant difference in posterior mean for each posterior distributions and n̂. Also, the

effective sample size ne of Poisson sampling are almost 100, satisfied that E(ne) = n, and

Var(ne) is small.

Keeping ρ fixed and increasing α , we can find the eight posterior distributions using

survey weights performed better than A (posterior distribution without weights). The PMs

of model A, C, I are closer to the true mean with increased α , but PMs of distribution B,

D are further. On the other side, the distances between PM and true mean of nine posterior

distributions are greater when ρ is increasing and α is fixed.

As for comparisons of the PM, there is no significant difference between PPS and

Poisson sampling, and the effective size of Poisson sampling is around n in Table 3 and

Table 4. With ρ fixed and α increasing, PSDs of model D, E (posterior distributions with

standardized weights) become smaller but others get greater. Also, if α is fixed and ρ is
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Table 1

PPS: Comparisons of the posterior mean (PM) using nine posterior distributions of the
finite population by ρ and α

ρ α A B C D E F G H I θ n̂

0.2 2 0.5472 0.4996 0.5001 0.4996 0.4993 0.4998 0.5005 0.5095 0.5010 0.4961 58.97

5 0.5371 0.5009 0.5001 0.5007 0.5006 0.5009 0.5011 0.5051 0.5004 0.5033 80.62

15 0.5109 0.4910 0.4992 0.4913 0.4910 0.4911 0.4917 0.4920 0.4994 0.4992 93.39

0.5 2 0.6063 0.4769 0.4985 0.4776 0.4763 0.4774 0.4859 0.5039 0.5004 0.4900 57.91

5 0.5705 0.4828 0.4987 0.4830 0.4826 0.4831 0.4860 0.4927 0.4994 0.4932 79.66

15 0.5490 0.4994 0.5000 0.4990 0.4995 0.4993 0.4992 0.5015 0.5002 0.4973 93.49

0.8 2 0.6416 0.4351 0.4963 0.4377 0.4285 0.4361 0.4610 0.4833 0.4990 0.4562 56.90

5 0.5921 0.4551 0.4963 0.4561 0.4551 0.4559 0.4637 0.4687 0.4973 0.4711 80.77

15 0.5676 0.4877 0.4989 0.4877 0.4879 0.4880 0.4890 0.4905 0.4992 0.4833 93.43

increasing, PSDs of model D and E are greater but others are smaller. Further, based on

the type of survey weights, we compare models in pairs and we can conclude that PSDs

of models ignoring denominator are larger than PSDs of models considering denominator,

except for model D and E, where D (without denominator) is smaller than E (with denom-

inator). D and E have larger PSDs than others and model B and C (with raw weights), H

and I (with trimmed weights) have similar and smaller PSDs.

When ρ is fixed, RBs of almost all models are smaller with increasing α but RBs

of model G seem to have an increasing trend in Table 5 and Table 6. When α is fixed and ρ

is increasing, RBs of model A and I are increasing, too. But RBs of the others are smaller

than greater. Also, the tables show that model C and I have smaller RBs.

According to Table 7 and Table 8, these two tables indicate that model C and model

I have smaller PRMSEs than the other models. Keeping ρ constant and changing α from 2

to 15, we can figure out that PRMSEs of almost all models are negative related to α , except
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Table 2

Poisson sampling: Comparisons of the posterior mean (PM) using nine posterior distribu-
tions of the finite population by ρ and α

ρ α A B C D E F G H I θ n̂ ne

0.2 2 0.5537 0.4961 0.4999 0.4962 0.4941 0.4961 0.4989 0.5096 0.5009 0.4975 59.87 100.32

5 0.5315 0.4980 0.4998 0.4981 0.4983 0.4981 0.4980 0.4998 0.5000 0.5019 81.00 100.35

15 0.5256 0.5059 0.5007 0.5056 0.5055 0.5060 0.5056 0.5068 0.5006 0.5012 92.74 99.12

0.5 2 0.6088 0.4862 0.4991 0.4868 0.4851 0.4865 0.4919 0.5139 0.5012 0.4888 58.83 99.84

5 0.5768 0.4931 0.4994 0.4935 0.4930 0.4932 0.4949 0.5010 0.5002 0.4918 80.96 99.55

15 0.5558 0.5068 0.5007 0.5066 0.5065 0.5068 0.5063 0.5090 0.5010 0.4972 93.80 100.36

0.8 2 0.6599 0.4510 0.4969 0.4529 0.4463 0.4519 0.4713 0.5017 0.5003 0.4549 57.55 100.26

5 0.6149 0.4784 0.4983 0.4788 0.4782 0.4787 0.4826 0.4942 0.4997 0.4697 81.57 101.45

15 0.5547 0.4743 0.4976 0.4747 0.4748 0.4749 0.4760 0.4777 0.4979 0.4840 95.17 102.01

model G, PRMSEs of which get larger when α increases. If the α is constant, PRMSEs of

A tend to be greater with increasing ρ , but there is no significant pattern for other models.

The Table 9 and Table 10 indicate that model D, E and G have the highest proportion

that true mean θ is included in the 95% credible interval. However, it is surprising that

when ρ = 0.8 and α = 2, the PCIs of some models are too small. For instance, only one

95% credible interval of model A in Poisson sampling contains the true mean from the 100

datasets.

To see more details, we draw the histogram of surrogate posterior means, true mean,

and 95% credible intervals under nine models for one dataset. Here we can see from Fig-

ure 1, the true mean is 0.454 and ρ = 0.8, α = 2. For model A, if we ignore the survey

weights and only consider the posterior distribution of our interest, it is possible to get

left-side skewed distribution which is not good for inference. Model B, model C, model H,

and model I used the raw weights and trimmed weights, but didn’t be standardized, so the

distributions are sharper than others, which used the standardized weights. For model D,
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Table 3

PPS: Comparisons of the posterior standard deviation (PSD) using nine posterior distri-
butions of the finite population by ρ and α

ρ α A B C D E F G H I n̂

0.2 2 0.0511 0.0221 0.0166 0.0658 0.0691 0.0511 0.0434 0.0222 0.0167 58.97

5 0.0515 0.0221 0.0167 0.0566 0.0571 0.0513 0.0475 0.0221 0.0167 80.62

15 0.0514 0.0223 0.0168 0.0530 0.0530 0.0516 0.0501 0.0223 0.0167 93.39

0.5 2 0.0503 0.0220 0.0166 0.0663 0.0691 0.0511 0.0429 0.0220 0.0166 57.91

5 0.0510 0.0222 0.0167 0.0569 0.0577 0.0513 0.0474 0.0221 0.0167 79.66

15 0.0513 0.0222 0.0168 0.0529 0.0532 0.0514 0.0501 0.0222 0.0168 93.49

0.8 2 0.0492 0.0218 0.0166 0.0674 0.0716 0.0510 0.0435 0.0219 0.0167 56.90

5 0.0507 0.0221 0.0167 0.0564 0.0571 0.0514 0.0478 0.0222 0.0167 80.77

15 0.0510 0.0222 0.0168 0.0528 0.0531 0.0513 0.0502 0.0222 0.0169 93.43

model E, model F, and model G, after survey weights standardized, posterior distributions

are flattened and it causes the higher probability to cover the real population mean. This

can also be speculated from their small proportion values (Table 9 and Table 10).
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Table 4

Poisson sampling: Comparisons of the posterior standard deviation (PSD) using nine pos-
terior distributions of the finite population by ρ and α

ρ α A B C D E F G H I n̂

0.2 2 0.0511 0.0221 0.0166 0.0658 0.0691 0.0511 0.0434 0.0222 0.0167 58.97

5 0.0515 0.0221 0.0167 0.0566 0.0571 0.0513 0.0475 0.0221 0.0167 80.62

15 0.0514 0.0223 0.0168 0.0530 0.0530 0.0516 0.0501 0.0223 0.0167 93.39

0.5 2 0.0503 0.0220 0.0166 0.0663 0.0691 0.0511 0.0429 0.0220 0.0166 57.91

5 0.0510 0.0222 0.0167 0.0569 0.0577 0.0513 0.0474 0.0221 0.0167 79.66

15 0.0513 0.0222 0.0168 0.0529 0.0532 0.0514 0.0501 0.0222 0.0168 93.49

0.8 2 0.0492 0.0218 0.0166 0.0674 0.0716 0.0510 0.0435 0.0219 0.0167 56.90

5 0.0507 0.0221 0.0167 0.0564 0.0571 0.0514 0.0478 0.0222 0.0167 80.77

15 0.0510 0.0222 0.0168 0.0528 0.0531 0.0513 0.0502 0.0222 0.0169 93.43

Table 5

PPS: Comparisons of the relative bias (RB) using nine posterior distributions of the finite
population by ρ and α

ρ α A B C D E F G H I n̂

0.2 2 0.1213 0.1047 0.0283 0.1005 0.1114 0.1019 0.0659 0.0980 0.0288 58.97

5 0.0920 0.0898 0.0240 0.0884 0.0900 0.0888 0.0732 0.0875 0.0241 80.62

15 0.0775 0.0790 0.0209 0.0775 0.0787 0.0778 0.0734 0.0786 0.0210 93.39

0.5 2 0.2376 0.1028 0.0281 0.0989 0.1088 0.1012 0.0620 0.0852 0.0300 57.91

5 0.1590 0.0812 0.0243 0.0802 0.0805 0.0795 0.0657 0.0787 0.0248 79.66

15 0.1204 0.0795 0.0266 0.0778 0.0780 0.0777 0.0730 0.0798 0.0266 93.49

0.8 2 0.4073 0.1266 0.0898 0.1208 0.1412 0.1238 0.0760 0.1286 0.0954 56.90

5 0.2570 0.0759 0.0557 0.0737 0.0747 0.0739 0.0577 0.0725 0.0577 80.77

15 0.1762 0.0841 0.0394 0.0820 0.0832 0.0829 0.0785 0.0865 0.0397 93.43
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Table 6

Poisson sampling: Comparisons of the relative bias (RB) using nine posterior distributions
of the finite population by ρ and α

ρ α A B C D E F G H I n̂ ne

0.2 2 0.1230 0.1129 0.0244 0.1085 0.1202 0.1112 0.0711 0.0952 0.0244 59.87 100.32

5 0.0970 0.0978 0.0274 0.0955 0.0982 0.0967 0.0815 0.0934 0.0272 81.00 100.35

15 0.0952 0.0880 0.0242 0.0857 0.0863 0.0865 0.0820 0.0888 0.0243 92.74 99.12

0.5 2 0.2458 0.0914 0.0307 0.0878 0.0954 0.0892 0.0581 0.0897 0.0327 58.83 99.84

5 0.1752 0.0817 0.0268 0.0796 0.0814 0.0796 0.0667 0.0804 0.0273 80.96 99.55

15 0.1240 0.0813 0.0266 0.0799 0.0798 0.0800 0.0756 0.0820 0.0268 93.80 100.36

0.8 2 0.4505 0.1053 0.0935 0.1011 0.1151 0.1034 0.0663 0.1234 0.1007 57.55 100.26

5 0.3092 0.0859 0.0632 0.0846 0.0853 0.0839 0.0727 0.0976 0.0658 81.57 101.45

15 0.1518 0.0747 0.0345 0.0734 0.0737 0.0735 0.0687 0.0750 0.0349 95.17 102.01

Table 7

PPS: Comparisons of the posterior root mean square error (PRMSE) using nine posterior
distributions of the finite population by ρ and α

ρ α A B C D E F G H I n̂

0.2 2 0.0833 0.0592 0.0226 0.0874 0.0938 0.0768 0.0573 0.0558 0.0230 58.97

5 0.0740 0.0527 0.0216 0.0759 0.0767 0.0718 0.0633 0.0515 0.0217 80.62

15 0.0674 0.0477 0.0210 0.0690 0.0695 0.0681 0.0653 0.0475 0.0209 93.39

0.5 2 0.1281 0.0575 0.0227 0.0867 0.0922 0.0759 0.0554 0.0500 0.0234 57.91

5 0.0968 0.0482 0.0216 0.0731 0.0738 0.0683 0.0607 0.0475 0.0218 79.66

15 0.0824 0.0477 0.0224 0.0690 0.0694 0.0679 0.0652 0.0479 0.0224 93.49

0.8 2 0.1925 0.0638 0.0442 0.0910 0.1009 0.0801 0.0581 0.0648 0.0466 56.90

5 0.1322 0.0448 0.0317 0.0700 0.0710 0.0660 0.0580 0.0432 0.0324 80.77

15 0.1025 0.0483 0.0268 0.0690 0.0697 0.0681 0.0657 0.0491 0.0269 93.43
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Table 8

Poisson sampling: Comparisons of the posterior root mean square error (PRMSE) using
nine posterior distributions of the finite population by ρ and α

ρ α A B C D E F G H I n̂ ne

0.2 2 0.0846 0.0630 0.0218 0.0901 0.0969 0.0805 0.0595 0.0553 0.0218 59.87 100.32

5 0.0753 0.0564 0.0230 0.0786 0.0801 0.0751 0.0667 0.0544 0.0229 81.00 100.35

15 0.0750 0.0519 0.0221 0.0724 0.0728 0.0714 0.0689 0.0522 0.0221 92.74 99.12

0.5 2 0.1315 0.0524 0.0236 0.0827 0.0872 0.0716 0.0542 0.0514 0.0243 58.83 99.84

5 0.1029 0.0487 0.0225 0.0726 0.0739 0.0688 0.0612 0.0480 0.0226 80.96 99.55

15 0.0845 0.0483 0.0225 0.0694 0.0698 0.0685 0.0658 0.0486 0.0226 93.80 100.36

0.8 2 0.2111 0.0550 0.0457 0.0846 0.0917 0.0731 0.0561 0.0635 0.0486 57.55 100.26

5 0.1546 0.0488 0.0345 0.0730 0.0738 0.0686 0.0616 0.0535 0.0355 81.57 101.45

15 0.0929 0.0449 0.0247 0.0671 0.0673 0.0656 0.0631 0.0450 0.0249 95.17 102.01

Table 9

PPS: Comparisons of the proportion of the 100 95% credible intervals containing θ (PCI)
using nine posterior distributions of the finite population by ρ and α

ρ α A B C D E F G H I n̂

0.2 2 0.85 0.46 0.94 0.97 0.96 0.87 0.96 0.51 0.92 58.97

5 0.9 0.51 0.98 0.96 0.96 0.96 0.96 0.58 0.98 80.62

15 0.98 0.58 0.98 0.97 0.99 0.97 0.98 0.61 0.97 93.39

0.5 2 0.32 0.49 0.94 0.98 0.97 0.91 0.96 0.63 0.93 57.91

5 0.7 0.62 0.97 0.97 0.98 0.96 0.98 0.58 0.97 79.66

15 0.9 0.62 0.98 0.97 0.97 0.96 0.97 0.6 0.98 93.49

0.8 2 0.04 0.48 0.32 0.99 0.96 0.83 0.97 0.4 0.26 56.90

5 0.27 0.68 0.67 0.99 0.98 0.96 0.99 0.7 0.65 80.77

15 0.58 0.61 0.84 0.97 0.96 0.96 0.97 0.59 0.85 93.43
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Table 10

Poisson sampling: Comparisons of the proportion of the 100 95% credible intervals con-
taining θ (PCI) using nine posterior distributions of the finite population by ρ and α

ρ α A B C D E F G H I n̂ ne

0.2 2 0.81 0.47 0.97 0.96 0.96 0.86 0.96 0.53 0.99 59.87 100.32

5 0.91 0.52 0.95 0.92 0.91 0.9 0.92 0.53 0.97 81.00 100.35

15 0.93 0.56 0.97 0.95 0.94 0.94 0.94 0.53 0.95 92.74 99.12

0.5 2 0.3 0.58 0.92 0.99 0.98 0.9 0.99 0.59 0.91 58.83 99.84

5 0.66 0.59 0.96 0.98 0.98 0.96 0.98 0.62 0.95 80.96 99.55

15 0.79 0.61 0.94 0.99 0.99 0.97 0.99 0.61 0.95 93.80 100.36

0.8 2 0.01 0.51 0.3 0.97 0.97 0.91 0.94 0.49 0.18 57.55 100.26

5 0.18 0.63 0.59 0.98 0.98 0.98 0.99 0.55 0.58 81.57 101.45

15 0.73 0.66 0.91 0.97 0.98 0.98 0.98 0.67 0.91 95.17 102.01

Figure 1

One simulated data: the histogram of surrogate posterior means, true mean (red line), and
95% credible intervals (blue lines) under the nine models.
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Chapter 4

Application on Body Mass Index

In this chapter, we apply our models to the Body Mass Index (BMI) from NHANES

III (Nandram and Choi 2005, Nandram and Choi 2010). In these datasets, raw sample

weights for each county are given. Therefore, we can apply our nine models to these six

counties as well as the whole state.

We use six counties, California, from NHANES III. The datasets contain age, race

and sex as observed covariates, where age is collected as integers from 20 to 90; race uses

{0, 1} to denote Hispanic and non-Hispanic; sex is represented by 0 for male and 1 for

female. Body mass index (BMI) is a simple index of weight-for-height that is commonly

used to classify overweight and obesity in adults. It is defined as a person’s weight in

kilograms divided by the square of his height in meters (kg/m2). World Health Organization

defined that obesity as a BMI greater than or equal to 30. In this dataset, we focus on

obesity, which means yi = I(BMIi ≥ 30), i = 1, . . . ,n. Here, our sample size is n = 1867,

including six counties.

From Table 11, model H and I (using the trimmed weights) have stable PMs under

different counties. To improve the efficiency of point estimators, the excess weights are

redistributed below the threshold, which means the restricted weights have a great effect

on the PMs, and also improve the robustness of estimators. In addition, from Table 12,

model H and I also have the smaller PSDs as we expected. By trimming the weights, we

are supposed to get a smaller mean square error than that of other used estimators. Also,

the posterior means via models with survey weights are more likely to be smaller than the

unweighted model. As we see in the simulation study, the posterior distribution of model B,

model C, model H, and model I are sharper than others and have smaller posterior standard

deviations. In addition, if we consider the normalized likelihood, the PMs would be smaller
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Table 11

Posterior mean (PM) of nine models for BMI data by different areas

A B C D E F G H I n̂ n

All 0.2277 0.1917 0.1913 0.1931 0.0911 0.1925 0.1998 0.2197 0.2205 498.43 1867

1 0.2537 0.2198 0.2188 0.2255 0.1876 0.2233 0.2140 0.2300 0.2279 76.31 164

19 0.2474 0.1683 0.1661 0.1802 0.0965 0.1697 0.1726 0.2567 0.2555 49.88 176

37 0.2279 0.2353 0.2337 0.2382 0.1853 0.2356 0.2131 0.2345 0.2332 180.26 795

71 0.2367 0.2082 0.2069 0.2235 0.1550 0.2108 0.2048 0.2336 0.2313 33.38 125

73 0.2506 0.1585 0.1570 0.1711 0.1281 0.1628 0.1791 0.2333 0.2328 40.56 141

85 0.2149 0.1504 0.1490 0.1629 0.0649 0.1557 0.1637 0.1713 0.1701 55.82 128

than just using the Beta posterior distribution.
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Table 12

Posterior standard deviation (PSD) of nine models for BMI data by different areas

A B C D E F G H I n̂ n

All 0.0162 0.0125 0.0122 0.0219 0.0178 0.0151 0.0190 0.0129 0.0134 498.43 1867

1 0.0364 0.0134 0.0130 0.0470 0.0503 0.0341 0.0391 0.0135 0.0131 76.31 164

19 0.0346 0.0115 0.0123 0.0565 0.0529 0.0302 0.0490 0.0142 0.0142 49.88 176

37 0.0191 0.0137 0.0134 0.0336 0.0389 0.0201 0.0207 0.0139 0.0134 180.26 795

71 0.0393 0.0133 0.0127 0.0709 0.0746 0.0384 0.0443 0.0133 0.0136 33.38 125

73 0.0386 0.0114 0.0118 0.0561 0.0631 0.0328 0.0462 0.0142 0.0136 40.56 141

85 0.0390 0.0114 0.0112 0.0472 0.0355 0.0336 0.0449 0.0128 0.0115 55.82 128
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Chapter 5

Concluding Remarks

The discussion is motivated by the desire to make predictions and inferences about

our finite population from biased samples by generating surrogate samples.

According to our simulation study, the performance of these nine models is differ-

ent and depends on the correlation between covariates and responses. In the BMI dataset

analysis, these nine models are able to deal with the dataset that contain extreme survey

weights and make proper inferences of the population, which shows the advantage of the

Bayesian framework.

Also, we can consider standardizing the trimmed weights to make the posterior dis-

tribution more flatten. Table 13 compares model H, model I with updated models, respec-

tively. After we standardized the trimmed survey weights, the posterior mean is slightly

larger, and the posterior standard deviation increased about twice as much because of the

flattened distribution.

In future work, it is reasonable to consider how to incorporate probability samples

with non-probability samples to make full use of known information. Once the survey

weights are obtained, they can be incorporated into a Bayesian model .

For the normality assumption on the dataset, the non-parametric methodology is

helpful to relax model assumptions and can be more flexible on prediction and inference,

and we can extend our models with some machine learning approaches. In particular, it is

reasonable to combine our working, bias adjustment by using different survey weights on

non-probability sampling, with the Dirichlet process mixture model.
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Table 13

Posterior mean (PM) and posterior standard deviation (PSD) of H, I models and updated
models for BMI data by different areas

PMH PMI PSDH PSDI PMH∗ PMI∗ PSDH∗ PSDI∗ n

All 0.2197 0.2205 0.0129 0.0134 0.2197 0.2760 0.0162 0.0182 1867

1 0.2300 0.2279 0.0135 0.0131 0.2329 0.3297 0.0339 0.0365 164

19 0.2567 0.2555 0.0142 0.0142 0.2606 0.2759 0.0361 0.0362 176

37 0.2345 0.2332 0.0139 0.0134 0.2346 0.2780 0.0206 0.0209 795

71 0.2336 0.2313 0.0133 0.0136 0.2371 0.2781 0.0397 0.0416 125

73 0.2333 0.2328 0.0142 0.0136 0.2387 0.2551 0.0379 0.0412 141

85 0.1713 0.1701 0.0128 0.0115 0.1775 0.2327 0.0350 0.0419 128
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