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Abstract
In this thesis, we study algebras of nilpotent matrices. In the first chapter, we give complete

proofs of some well-known results on the structure of a linear operator. In particular, we
prove that every nilpotent linear transformation can be represented by a strictly upper

triangular matrix. In Chapter 2, we generalise this result to algebras of nilpotent matrices.
We prove the famous Lie-Kolchin theorem, which states that an algebra is nilpotent if and

only if it is conjugate to an algebra of strictly upper triangular matrices.
In Chapter 3 we introduce a family of algebras constructed from graphs and directed graphs.
We characterise the directed graphs which give nilpotent algebras. To be precise, a digraph
generates an algebra of nilpotency class d if and only if it is acyclic with no paths of length
≥ d . Finally, in Chapter 4, we give Jacobson’s proof of a Theorem of Schur on the maximal
dimension of a subalgebra of Mn(k) of nilpotency class 2 . We relate this result to problems

in external graph theory, and give lower bounds on the dimension of subalgebras of
nilpotency class d in Mn(k) for every pair of integers d and n . We conclude the thesis with

some open problems.



2

Introduction
A nilpotent matrix is a special case that, if multiplied by itself a certain number of times,

equals the zero matrix. An algebra of nilpotent matrices is simply the operation of nilpotent,
Addition, Multiplication, that allow for the result to still be nilpotent. In constructing

algebras of nilpotent matrices, one might want to know of the limits to how small or how
large the dimensions of such an algebra could be while still maintaining its properties.

Using published resources, Mirzakhani and Erdös among others, as well as various literature
in Linear Algebra and Graph Theory, this project will explore the upper and lower bounds

on the dimensions of subspaces of nilpotent matrices in the matrix algebra Mn(k) . For
integers n,t we would like to compute the dimension of the largest subspace of Mn(k)

which all matrices satisfy M t = 0 .
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1. LINEAR ALGEBRA AND JORDAN CANONICAL FORM

In this chapter, we review eigenvalues, eigenvectors and generalized eigenvectors of linear
transformations. This material is essential for understanding the Jordan Canonical Form The-
orem. Eventually, we will want to discuss the structure of a nilpotent linear operator. Then in
Chapter 2, we will discuss algebras of nilpotent matrices.

1.1. Background. While we expect some familiarity with Linear Algebra, we will review all
the notions required for the Jordan Canonical Form. While everything that we discuss holds
over an arbitrary algebraically closed field, the reader may assume that all vector spaces are
defined over C without issues. The material in this section is standard, and can be found in
any Linear Algebra Textbook, for example Linear Algebra and its Application[3] and Linear
Algebra, Fourth Edition[5]

1.1.1. Subspaces.

Definition 1. ([5], 6-7) A vector space V over a field F consists of a set on which two
operations, addition and scalar multiplication, are defined so that for each pair of elements
x, y . in V there is a unique element x + y in V , and for each element a in F and each
element x in V there is a unique element ax in V , such that the following conditions hold:

(1) For all x, y in V , x+ y = y + x (commutativity of addition).
(2) For all x, y, z in V , (x+ y) + z = x+ (y + z) (associativity of addition).
(3) There exists an element in V denoted by 0 such that x+ 0 = x for each x in V .
(4) For each element x in V there exists an element y in V such that x+ y = 0 .
(5) For each element x in V , 1x = x .
(6) For each pair of elements a, b in F and each element x in V, (ab)x — a(bx) .
(7) For each clement a in F and each pair of elements x, y in V , a(x+ y) — ax+ ay .
(8) For each pair of elements a , b in F and each element x in V , (a+ b) — ax + bx .

Definition 2 ([5], page 16-17). A subset W of a vector space V over a field k is called
a subspace of V if W is a vector space over k with the operations of addition and scalar
multiplication defined on V . The zero subspace is also a subspace of V .

Definition 3. ([3],196) Let v1, · · · , vn be vectors in a vector space V . The Span of v1, · · · , vn
is

Sp(v1, · · · , vn) =
n∑
i=1

αivi|α ∈ F

Sp(v1, · · · , vi) is always a subspace of V . If Sp(u1, · · · , un) = Sp(v1, · · · , vn) , then
u1, · · · , un is a generating sset for Sp(v1, · · · , vn)

Definition 4. ([3], 211) Let H be a subspace of a vector space V . A set of vectors B =
b1 · · · bn in V is a basis for H if:

(1) B is a linearly independent set, and
(2) the subspace spanned by B coincides with H ; that is, H=Span ( b1 · · · bn )
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Theorem 5 ([5], page 16-17). Let V be a vector space and W a subset of V. Then W is a
subspace of V if and only if the following three conditions hold with the operations defined in
V.

(1) 0 ∈ W
(2) x+y ∈ W, whenever x ∈ W and y ∈ W
(3) αx ∈ W, whenever α ∈ k and x ∈ W

1.1.2. Linear transformations and matrices.

Definition 6. Let V and W be Vector spaces. A function T : V −→ W is linear if it holds
to the following:

(1) : T (v1 +v2 ) = T (v1) + T (v2) , for all v1, v2 ∈ V
(2) : T (αv)= αT (v) , for any α ∈ R , for all v1, v2 ∈ V

Definition 7. If T be a linear transformation and B is a basis for V , the matrix Mwith
respect to B is as shown below:

[M ]BB = [(Mb1)B|(Mb2)B| · · · |(Mbn)B]

with Mbi being interpreted as the image of bi under M .with that knowledge, [M ]BB can be
written as shown below,

a1b1 + a2b2 · · · anbn =


a1

a2
...
an


B

this way that the matrices can be described in is in terms of change of basis, this way it
could give future proving of proofs a more structured foundation onto which they could be
attained.

1.1.3. Eigenvalues and eigenvectors.

Definition 8. Let T be a linear operator on a vector space V . An eigenvector of T is vector
v such that

Tv = λv

for some scalar λ . We refer to λ as the eigenvalue of T associated with v .

Suppose that we want to find the eigenvectors of a matrix M . To do this, We will be some
initial definitions.

Definition 9. ([3], 105) Let A=
[

a b
c d

]
. The determinant of A = ad - bc

Definition 10. ([5],209; [10], 396) Let M be a n× n matrix as shown as below:

M =

m11 · · · m1n
... . . . ...

mn1 · · · mnn


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The (n− 1)× (n− 1) matrix M i,j can be obtained by deleting the ith row and j th column
as follows:

M i,j =



m1,1 · · · m1j−1 · · · m1,j+1 · · · m1n
... . . . ... . . . ... . . . ...

mi−1,1 · · · mi−1,j−1 · · · mi−1,j+1 · · · mi−1,n
... . . . ... . . . ... . . . ...

mi+1,1 · · · mi+1,j−1 · · · mi+1,j+1 · · · mi+1,n
... . . . ... . . . ... . . . ...

mn,1 · · · mn,j−1 · · · mn,j+1 · · · mn,n


Definition 11. ([5], 209-210) Let M be a n× n matrix, with m ≥ 2 . the determinant of M
is as follows:

det(M) =
n∑
j=1

(−1)1+j ×M1j × det(M i,j) .

Theorem 12. ([3],105) detA 6= 0 iff M has full rank.

With these Defintions and theorems, We have now have the necessary info for the following
Lemma.

Lemma 13. The scalar λ is an eigenvalue of the matrix M if and only if det(M − λI) = 0 .

Proof. Assume that λ is an eigenvalue of M . Then there exists a non-zero vector v such
that Mv = λv . So Mv − λv = 0 . This can be rewritten as (M − λI)v = 0 , so the matrix
M − λI has the non-zero vector v in its Null Space, so M − λI is non-invertible, and has
determinant 0.

In the other direction, assume that det(M − λI) = 0 . Then there exists a vector
v ∈ Null-space(M − λI) . But then (M − λI)v = 0 , which is equivalent to Mv = λv
and v is an eigenvector of M with eigenvalue λ , as required. �

We have shown that every eigenvalue of M is a root of the characteristic polynomial
det(M − λI) . Furthermore, each eigenvector of M associated with the eigenvalue λ is a
vector in the null-space of M − λI . In fact, the eigenvectors of M with eigenvalue λ form
a subspace of V .

Definition 14. Let T be a linear operator on a vector space V , and let λ be an eigenvalue of
T . The eigenspace of T corresponding to λ , denoted Eλ is the subset of V defined by

Eλ = {x ∈ V : (T − λI)(x) = 0}

Lemma 15. The eigenvectors of M with eigenvalue λ along with the zero vector form a
subspace of V .

Proof. We will use Theorem 5 to show that the eigenvectors of M with eigenvalue λ form
a subspace of V . First, we observe that M0 = λ0 = 0 . Next, suppose that u, v are
eigenvectors. Then

M(u+ v) = Mu+Mv = λu+ λv = λ(u+ v) ,
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so u+ v is also an eigenvector of V with eigenvalue λ . Finally, if u is an eigenvector and µ
is a scalar, then M(µu) = µ(Mu) so µu is also an eigenvector.

We have verified all conditions of Theorem 5, so the eigenvectors of M with eigenvalue λ
form a subspace of V as required. �

1.2. Diagonalisable matrices. Diagonal matrices are particularly easy to work with. They
are precisely the matrices which admit a basis of eigenvectors. Unfortunately, not all matrices
are diagonalisable. In this section, we focus on diagonalisable matrices, and later we will
prove the Jordan Canonical Form Theorem which explains the general structure of a linear
operator.

Definition 16. A matrix M is diagonal if mij = 0 whenever i 6= j .

Proposition 17. [M ]BB is diagonal if and only if every basis vector b ∈ B is an eigenvector
of M .

Proof. As this is an if and only if statement, we assume one half of the proposition and prove
the other.
(1) If [M ]BB is diagonal , then every basis vector b ∈ B is an eigenvector of M .
(2) if every basis vector b ∈ B is an eigenvector of M , then [M ]BB is diagonal .

For (1), suppose that :

[M ]BB =

λ1 · · · 0
... . . . ...
0 · · · λn


Since that the basis bi is all zeroes except for the ith row

[bi]B =


0
...
1
...
0


B

because of :

[M ]BB ∗ [bi]B =


0
...
λi
...
0


B

, λi ∗ [bi] =


0
...
λi
...
0


B

, [M ]bb ∗ [bi]b = λi ∗ [bi]

for every i, then every basis b ∈ B is an eigenvector of M .
For (2), suppose that every vector in B is an eigenvector of M . Then [Mbi ] , same as [bi]b ,

is non-zero only in the the ith row. Constructing [M ]bb will produce a diagonal matrix. �

It is useful to be able to decide whether a matrix is diagonalisable.
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Definition 18. A matrix M is diagonalizable if there exists an invertible matrix P and a
diagonal matrix D such that D = P−1 ∗M ∗ P

We finish this section with a demonstration of how to diagonalise a matrix A . First, we
compute the characteristic polynomial of A , then we factor this polynomial to find the eigen-
values of A (this relies on Lemma 13 ). Finally, we construct the eigenvectors of A . Since
they form a basis for the underlying vector space, we can represent A as a linear transforma-
tion with respect to this basis, and by Proposition 17 this matrix must be diagonal. Example:

A =

2 1 −2
1 0 0
0 1 0


A− λ ∗ I =

2− λ 1 −2
1 −λ 0
0 1 −λ


det(A− λ ∗ I) = (2− λ)((−λ)2 − 0)− 1((−λ)− 0)− 2(1− 0)⇒ (1− λ)(1 + λ)(λ− 2)

λ = −1, 1, 2

with these eigenvalues, we can find the null-space

nullspace(A− (−1)λ) =

 1
−1
1

 , nullspace(A− 1λ) =

1
1
1

 , nullspace(A− 2λ) =

4
2
1


with that, we can construct a matrix P that has the eigenvectors of the matrix A as columns,
which were found using the nullspace of (A− λI) , as its columns:

P =

 1 1 4
−1 1 2
1 1 1

 , D =

−1 0 0
0 1 0
0 0 2


the matrix becomes upper triangular and the diagonal contains the eigenvalues of the matrix
A. each of the eigenvalues have instances equal to the multiplicity of the matrix’s characteris-
tic polynomial (-λ3 +2*λ2 +λ-2), which when factored, becomes (1-λ)(1+λ)(λ-2), each one
having a multiplicity of one.

One way that the matrix can be described is in terms of change of basis, this way , it could
give future proving of proofs a more structured foundation onto which they could be attained.

Theorem 19. A n×n matrix M is diagonalizable if and only if M has n linearly independent
eigenvectors

Proof. Due to this being a if and only only if statements, we must show that if a n×n matrix
M is diagonalizable, then M has n linearly independent eigenvectors, as well as show that if
M has n linearly independent eigenvectors, then n-by-n matrix M is diagonalizable.
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Suppose M is diagonalizable. We show that M has n linearly independent eigenvectors.
we have to use the definition of a diagonalizable matrix, D = P−1MP . Since M is diago-
nalizable, we can use the diagonal matrix from the definition, as show below:

D =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
... . . .

0 0 0 · · · λn


With respect to this basis, the following set of vectors are all eigenvectors of M :

1
...
0

 · · ·
0

...
1




since the matrix d has n linearly independent eigenvectors, we can conclude that the matrix
M does as well.

Suppose M has n linearly independent eigenvectors, then n-by-n matrix M is diagonaliz-
able, for this direction, the second part of proposition 17 will be used (if every basis vector b
∈ B is an eigenvector of M , then [M ]BB is diagonal ). the basis of M will be diagonal. �

Unfortunately, an n × n matrix M need not have n linearly independent eigenvectors. It
may happen that M has generalized eigenvectors, which we define next.

1.3. Generalised Eigenvectors and generalised eigenspaces. There are limits to diagonal-
ization. As stated in Theorem 19, if a n×n matrix M has n linear independent eigenvectors
,then M is diagonalizable. The limitations of diagonalization occur when a matrix is unable
to abide by the rules of diagonalization due to the matrix having less then n linear indepen-
dent eigenvectors. For example, there will be an attempt made to diagonalize the matrix A ,
as shown in the example below:

Example 20.

A =

 0 1 0
0 0 1
−2 −5 −4


A− λ ∗ I =

−λ 1 0
0 −λ 1
−2 −5 −4− λ


det(A− λ ∗ I) = −λ3 − 4 ∗ λ2 − 5 ∗ λ− 2

λ = −1,−2
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the eigenvalues of this matrix is -2 and -1 , with -1 having a multiplicity of 2. By creating
eigenvectors from the two eigenvalues, we will produce the eigenvectors, as shown below:

nullspace(A−−1λ) = nullspace(

 0 1 0
0 0 1
−2 −5 −4

−
−1 0 0

0 −1 0
0 0 −1

)

nullspace(

 1 1 0
0 1 1
−2 −5 −3

)

[R3 + 2R1 =⇒ R3] =

1 1 0
0 1 1
0 −3 −3


[R3/3 =⇒ R3] =

1 1 0
0 1 1
0 −1 −1


[R3 +R1 =⇒ R1] =

1 0 −1
0 1 1
0 −1 −1


[R3 +R2 =⇒ R3] =

1 0 −1
0 1 1
0 0 0


x1 = x3, x2 = −x3, x3 = x3 1

−1
1


nullspace(A−−2λ) =

 1
−2
4


Since there were only two real eigenvectors, it doesn’t abide by the rule of the proof,

therefore A isn’t diagonalizable.

Definition 21. Let T be a linear operator on a vector space V , and let λ be an eigenvalue
of T . The generalized eigenspace of T corresponding to λ , denoted Kλ is the subset of V
defined by

Kλ = {x ∈ V : (T − λI)p(x) = 0, p > 0, p ∈ Z}

Lemma 22. For any T , The generalized eigenspace Kλ is a subspace of V

Proof. In the same way that we proved that Eλ is a subspace of V, we must prove that Kλ

is a subspace of V . We recall theorem 5 to see the requirements for the lemma. First ,
we will check that the zero vector exists in the generalized eigenspace, which does since
(T − λ ∗ I)0=0 .
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Next is proving the addition rule of the subspace theorem. Let x+, y ∈ Kλ . Suppose
(T −λI)a(x) = 0 and (T −λI)b(y) = 0 , where a ≥ b > 0 .In order to show that x+y ∈ Kλ

we can change (T −λI)(a+b)(x+y) into (T −λI)(a) ∗ (T −λI)(b)(x+y) , that way we could
change (T − λI)(a+b)(x + y) into (T − λI)(a)(T − λI)(b)(x)+ (T − λI)(a)(T − λI)(b)(y)
becomes 0 due to the definition of generalized eigenvectors.

The second part to prove is the scalar multiplication. Suppose that (T − λI)(a)(x) = 0 .
Then(T − λI)(a)(c ∗ x) will become c ∗ (T − λI)(a)(x) , which becomes c ∗ 0 = 0 so it
satisfies the subspace theorem. This ends the proof. �

We would like to understand the structure of a generalised eigenspace. First, we will
construct a basis of Kλ using the linear transformation T .

Proposition 23. Let v ∈ Kλ be a generalised eigenvector, and suppose that (T −λI)mv 6= 0
but (T −λI)m+1v = 0 . Then the set {(T −λI)kv | 0 ≤ k ≤ m} is linearly independent and
(T − λI)mv is an eigenvector of T .

Proof. Write wi = (T − λI)iv for 1 ≤ i ≤ m . Suppose that

α0w0 + α1 + w1 + . . .+ αmwm = 0

for scalars αi . Then applying (T − λI)m to both sides of the equation, we get

α0wm = 0 .

We conclude that α0 = 0 . Next, we apply (T−λI)m−1 to both sides of the linear dependence
and we get

α0wm−1 + α1wm = 0 .
But we already established that α0 = 0 so we see that α1 = 0 also. Continuing in this way,
we find that all of the αi = 0 and so the vectors wi are linearly independent by definition.

The second claim, that wm is an eigenvector is immediate from the definition of an eigen-
vector. �

Using Proposition 23, we can construct a basis for any generalised eigenspace as follows:
first we choose a vector v1 in Kλ which is not in the image of (T −λI) . Beginning with this
vector, we construct a maximal linearly independent set of vectors w1,0, w1,1, . . . , w1,m as in
Proposition 23. If these vectors do not span Kλ then we repeat this process with a vector not
contained in Sp(w1,0, w1,1, . . . , w1,m) . Eventually, we get a basis of Kλ consisting of vectors
wi,j . Note that with respect to this basis, the matrix of T − λI is of a very special form: it
is zero except possibly for some entries 1 immediately above the diagonal. We will consider
such matrices further later in this chapter.

Next, we show that generalised eigenvectors with distinct eigenvalues are linearly indepen-
dent. First we prove the result for ordinary eigenvectors.

Proposition 24. Suppose that v1, . . . , vt are eigenvectors of T with distinct eigenvalues
λ1, . . . , λt . Then the eigenvectors are linearly independent.

Proof. Suppose that there were a linear dependence, say

α1v1 + α2v2 + . . .+ αtvt = 0 .
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Consider what happens to this equation when we apply T k . We obtain

α1λ
k
1v1 + α2λ

k
2v2 + . . .+ αtλ

k
t vt = 0 .

Since the λi are distinct, we obtain a system of linear equations of the form

1 1 1 · · · 1
λ1 λ2 λ3 · · · λt
λ2

1 λ2
2 λ2

3 · · · λ2
t

λ3
1 λ3

2 λ3
3 · · · λ3

t
...

...
... . . . ...

λt−1
1 λt−1

2 λt−1
3 · · · λt−1

t


×



α1v1

α2v2

α3v3
...
...

αtvt


=



0
0
0
...
...
0


Which is a Vandermode Matrix

[5]
, which is Invertible whenever all λi are distinct. The

solution to this matrix only works if αi , for all i, equals zero.
�

The next theorem shows that there are no linear dependences between the generalised
eigenvectors of T .

Theorem 25. Suppose that v1, . . . , vt are generalised eigenvectors of T with distinct eigen-
values λ1, . . . , λt . Then the generalised eigenvectors are linearly independent.

Proof. By definition, a generalised eigenvector of height 1 is an (ordinary) eigenvector. Write
ej for the height of vj , and observe that T ej−tvj is a generalised eigenvector of height t . In
particular, wj = T ej−1vj is an ordinary eigenvector, with eigenvalue λ . Next, observe that
(T − λi)vj = (λj − λi)vj . Set M =

∏
i 6=j(T − λj)ej−1 ,then

Mvj =
∏
i 6=j

(λi − λj)ej−1

which is an eigenvector of T with eigenvalue λj . We write γj for the scalar such that
Mvj = γjwj . Now, suppose that

α1v1 + α2v2 + ...+ αkvk = 0

is a linear dependence between the generalised eigenvectors vi . Applying M to this equation,
we obtain

α1γ1w1 + α2γ2w2 + . . .+ αkγkwk =,

which is a linear equation between eigenvectors of T . By Proposition 16, the scalars αi are
all zero, so the generalised eigenvectors are linearly independent.

�

Theorem 26 (Cayley Hamilton, I). Let T : V → V be a linear operator over an alge-
braically closed field, and G1, . . . , Gk the generalised eigenspaces of T . Then T = ⊕ki=1Gi .

Proof. We showed in Theorem 23 that the generalised eigenspaces are disjoint. It will suffice
to show that they span V . We will prove this by induction. The base case is dimV = 1 , in
which case the result holds trivially.
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Suppose that the result holds for all vector spaces with dimV ≤ t and let V be a vector
space of dimension t + 1 . Since T is defined over an algebraically closed field, T has an
eigenvector, say Tv = λv . So the generalised eigenspace G1 corresponding to the eigenvalue
λ is nonempty. Let U be a complement for Gλ , which is invariant under T . By the induction
hypothesis, and by Theorem 25, the space U has a direct sum decomposition into eigenspaces
U = G2 ⊕ G3 ⊕ · · · ⊕ Gk , where Gi is a generalised eigenspace with eigenvalue λi . We
need to show that each generalised eigenspace of U is also a generalised eigenspace of V .
It will suffice to show that a generalised eigenvector not contained in Gλ is contained in
U . Suppose that w ∈ Gλ and u ∈ U , such that w + u is a generalised eigenvector of V
with eigenvalue µ , distinct from λ (since otherwise w + u would be contained in Gλ , by
definition). By Theorem 25, (T − µI)t+1(w + u) = 0 . Hence (T − µI)t+1w = 0 , and
w ∈ Gλ ∩ Gµ . But Theorem 25 forces w = 0 so the generalised eigenvector belongs to U ,
and by the induction hypothesis is contained in one of the Gi . Hence, G is a direct sum of
generalised eigenspaces. �

As a corollary to the Cayley Hamilton theorem, we can be a little more explicit about the
form of a matrix which is written with respect to a basis of generalised eigenvectors of T .
Since the image of a generalised eigenvector v ∈ Gλ is another vector in Gλ , we have that
the matrix of T with respect to the basis of generalised eigenvectors is of the following form:

M1 0 . . . 0
0 M2 . . . 0
...

... . . . ...
0 0 . . . Mt


where the matrices Mi are arbitrary for the moment.

Next, consider the action of T on a single generalised eigenspace. We observe that there
exists an ordering of the generalised eigenvectors such that Tvi = λvi +

∑
j>i αjvj . This

follows from the definition of the height of a generalised eigenvector. Hence, it can be shown
that each matrix admits a basis with respect to which it is upper triangular. This result is
sometimes known as Cauchy’s thoerem. Shortly, we will prove the Jordan Canonical Form
theorem, which makes this result more precise.

Definition 27. The characteristic polynomial of T is the polynomial χ(t) =
∏

(t − λi)
mi

where the product ranges over the eigenvalues of T and mi is dimension of the generalised
eigenspace Gλ .

The minimal polynomial of M is the unique monic polynomial of smallest degree for
which p(M) = 0 .

We can give an alternative statement of the Cayley Hamilton theorem in terms of the char-
acteristic and minimal polynomials. Observe that the polynomial pλ(x) = (x − λ)b annihi-
lates all generalised eigenvectors of height at most b .

Theorem 28 (Cayley-Hamilton, II). Let M be a matrix, and χM(t) the characteristic poly-
nomial of M . Then χM(M) = 0 . That is, M satisfies its own characteristic polynomial.
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While logically equivalent to our statement, this one fundamentally obscures the main
application of the Cayley-Hamilton theorem: for any T ∈ Hom(V, V ) there exists a unique
decomposition of V into generalised eigenspaces, Gi . Each Gi is T -invariant, and the
decomposition V = ⊕ti=1Gi is a direct sum. Hence, with respect to a basis of generalised
eigenvectors, T can be expressed as a block-diagonal matrix,

where Mi encodes the action of T on the generalised eigenspace Gi . Applying Cauchy’s
theorem to each Mi , these matrices are upper triangular with fixed diagonal λi .

1.4. Jordan Canonical Form. In this section , we will be discussing the Jordan canonical
form (JCF) and it’s uses for finding the dimensions of a nilpotent matrix.

Definition 29. Let M be a n × n matrix, with n > 0.M is a Jordan block if there is λs on
the diagonal, with ones on the super-diagonal, and zeros elsewhere.

Definition 30. A matrix M is in Jordan canonical Form if it was a direct sum of Jordan
blocks on the diagonal and zero matrices elsewhere.

The JCF, as show by the matrix in Fig.1 is a way of representing a matrix that is upper
triangular and with the eigenvalues being on the diagonal, with multiple instances of a number
being equal to the multiplicity of the eigenvalues and the super-diagonal would only have
either zeros or ones, with the ones only existing only if the eigenvalues are the same.

λ1 1 0 · · · 0 0
0 λ1 0 · · · 0 0

0 0 λ2 · · · 0 0
...

...
... . . . 0 0

0 0 0 0 λn 0
0 0 0 0 0 λn


Theorem 31. Let Gλ be the generalised eigenspace of T with eigenvalue λ . There exist
generalised eigenvectors v1, . . . , vd ∈ Gλ and integers e1, . . . , ed such that each chain

Ci = 〈vi, (T − λI)vi, . . . , (T − λI)eivi〉
is a T -invariant subspace of Gλ , and Gλ = ⊕dj=1Cj .

Proof. This proof is by induction on the dimension of Gλ . The base case holds trivially when
Gλ has dimension 1: any non-zero vector is a basis, and there is no non-trivial condition to be
satisfied. Suppose that all generalised eigenspaces of dimension ≤ r can be expressed as a di-
rect sum of cyclic subspaces. For any v ∈ Gλ the cyclic subspace Cv = 〈(T −λI)tv | t ∈ N〉
is T -invariant (the argument is identical to the one given in Proposition

We write M for the restriction of T − λI to Gλ . For a vector vi = vi,0 we write
M jvi,0 = vi,j . Recall that the height of vi,0 is the least j such that vi,j = 0 .

Now, suppose that Gλ has dimension r + 1 . Since Gλ contains an eigenvector, M is
neither injective nor surjective on Gλ . Hence the range of M is a proper subspace U of Gλ ,
of dimension ≤ k . Applying the inductive hypothesis to U , we obtain a basis

u1,0, . . . , u1,e1−1, u2,0, . . . , u2,e2−1, . . . , ud,0, . . . , ud,ed−1 ,
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for U , where ei is the height of ui . Every vector u ∈ U is of the form Mv for some vector
v ∈ Gλ (not necessarily unique). For each 1 ≤ i ≤ d choose a vector vi ∈ Gλ such that
Mvi = ui,0 . In particular, vi,j+1 = ui,j for any non-negative integer j .

We will show that the vectors

v1,0, . . . , v1,e1 , v2,0, . . . , v2,e2 , . . . , vd,0, . . . , vd,ed

are linearly independent. Suppose that

α1,0v1,0 + . . .+ α1,e1v1,e1 + . . .+ αd,edve,ed = 0 .

Applying M to both sides of this equation (noting carefully that Mvi,ei = 0) ,

α1,0u1,0 + . . .+ α1,e1−1u1,e1−1 + . . .+ αd,ed−1ud,ed−1 = 0 .

But the ui,j are linearly independent by the induction hypothesis, so αi,j = 0 for all
1 ≤ i ≤ d and 1 ≤ j ≤ ei − 1 . What remains is an equation

α1,e1v1,e1 + . . .+ α1,edvd,ed = 0 ,

or equivalently, since vi,ei = ui,ei−1 ,

α1,e1u1,e1−1 + . . .+ α1,edud,ed−1 = 0 ,

Again, by the inductive hypothesis these vectors are linearly independent and so all αi,j are
0 .

A careful inspection of the proof thus far shows that we have constructed a basis for a
subspace consisting of vectors which belong to R(M) , or have a non-zero image in R(M) .
By the Replacement theorem, we can extend the linearly independent set vi,j given above
to a basis of V . Any additional vectors satisfy xi /∈ R(N) and xi ∈ Null(N) . These are
precisely the eigenvectors which do not belong to any cycle of dimension greater than 1 .
Hence a basis for Gλ is given by

v1,0, . . . , v1,e1 , v2,0, . . . , v2,e2 , . . . , vd,0, . . . , vd,ed x1, . . . , x` .

This completes the proof. �

Theorem 31 gives a precise structure for the generalised eigenspace Gλ of any linear oper-
ator on a finite dimensional vector space: the sets of vectors vi,0, . . . , vi,ei generate maximal
cyclic subspaces, each of dimension greater than 1 , while the xi correspond to eigenvec-
tors which are not the image of any generalised eigenvector under (T − λI) . Consider the
restriction of T to a cyclic subspace, Ci :

T |Ci
=


λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ

 ,

which is a matrix with λ on the diagonal, 1 above the diagonal and 0 elsewhere. The restric-
tion of T to Gλ has λ along the diagonal, 0 or 1 along the super-diagonal and 0’s elsewhere.
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A cyclic subspace of dimension ei gives ei − 1 consecutive 1’s in the super-diagonal, and a
zero in the super-diagonal separates the bases of each cyclic subspace.

Theorem 32 (Jordan Canonical Form). Let T : V → V be a linear operator. Then V
admits a direct sum decomposition V = ⊕ri=1Gi where each Gi is a generalised eigenspace
of T . Each Gi admits a direct sum decomposition into cyclic subspaces Gi = ⊕tij=1Ci,j . If
dimCi,j = d then the restriction of T to Ci,j is a d × d matrix with λi on the diagonal, 1
above the diagonal and all other entries 0 .

The decomposition of V into cyclic subspaces is unique up to the ordering of terms. Let
B be a basis of V formed as a union of the bases of the Ci,j . The matrix [T ]B is a Jordan
Canonical Form of T , and is unique up to ordering of the blocks on the diagonal.

Proof. The decomposition of V into generalised eigenspaces is the Cayley-Hamilton theo-
rem, Theorem 26. The decomposition of each generalised eigenspace into cyclic subspaces
is Theorem 31. �

It will be useful for us to have multiple characterisations of diagonalisable matrices. Here
is a theorem which provides four.

Theorem 33. let there exist a matrix M . the following statements are equivalent:
(1) the Jordan canonical form of M is a diagonal matrix
(2)M is diagonalizable
(3) M has no generalized eigenvectors
(4) for everyλ , the algebraic and geometric multiplicity are equal

Proof. (1 =⇒ 2): If the Jordan canonical form of M is a diagonal matrix, then M is diag-
onalizable bending the definition of diagonalizable matrices, the matrix M is diagonalizable
if there exists an invertable matrix P and a diagonal matrix , which in this case is JCF(M),
such that JCF (M) = P−1 ∗M ∗ P . Due to definition 8, if the JCF of M is diagonal, so is
the matrix M

(2 =⇒ 3): if M is diagonalizable , then M has no generalized eigenvectors since M
is diagonalizable, then M can be changed into a diagonal matrix. A diagonal matrix is one
that has only entries of the diagonal. Due to that, the eigenvectors of that matrix will not be
generalized eigenvectors.another way to prove this is to recall back to theorem 11 ( A n-by-n
matrix M is diagonalizable if and only if M has n linearly independent eiegenvectors). the
proof can reworded as A n-by-n matrix M is diagonalizable if and only if M has n linearly in-
dependent (real) eigenvectors and zero generalized eigenvectors ,as Generalized eigenvectors
are not linearly independent.

(3 =⇒ 4): if M has no generalized eigenvectors, then for everyλ , the algebraic and
geometric multiplicity are equal A n-by-n Matrix M that only has real (linearly independent)
eigenvectors,due to theorem 11,will be diagonalizable , have n real eigenvectors, and it’s
diagonal form will appear as below: λ1 · · · 0

... . . . ...
0 · · · λn


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having a characteristic polynomial of (λ1) ∗ (λ2) ∗ · · · ∗ (λn) for each λ , their algebraic and
geometric multiplicity is each 1

(4 =⇒ 1): If for everyλ , the algebraic and geometric multiplicity are equal, then the
Jordan canonical form of M is a diagonal matrix If both algebraic and geometric multiplicity
are equal, then the matrix M will only have linear independent eigenvectors, and due to
theorem 11, will be diagonalizable, and if it is, then it’s Jordan form will as well. �

With this section, We will apply the results found to the next section, where we will discuss
Nilpotent matrices.

1.5. Nilpotent matrices. In this section, we will be discussing the properties of Nilpotent
matrices and it’s uses for eventually finding the upper limits of it’s dimensions.

Definition 34. A matrix M is nilpotent if there exists an integer k such that Mk = 0 .

Example 35. Let A be the following matrix:

A =

0 0 1
0 0 1
0 0 0


Then A2 = 0 so A is an example of a nilpotent matrix.

Lemma 36. Let A be a nilpotent matrix with entries in C . Then every eigenvalue of M is
equal to 0.

Proof. Since A is nilpotent, there exists an integer k such that Ak = 0. Suppose that Av = λv
for some vector v . Then Akv = λkv and also Akv = 0v . In the complex numbers, the only
solution to λk = 0 is λ = 0, thus every eigenvalue of A is equal to zero. �

We observe that the only nilpotent matrix which is also diagonalisable is the zero matrix.

Lemma 37. A nilpotent diagonalisable matrix is the zero matrix.

Proof. If A is diagonalisable then A admits a basis of eigenvectors. By Lemma 36, Av = 0
for every v in this basis. So A = 0 . �

Hence, we can write down the Jordan Canonical form of a nilpotent matrix. By Theorem
32 it suffices to count the number of generalised eigenspaces of each height to understand the
Jordan Canonical Form of a nilpotent matrix A . It can be represented as follows:

JCF (A) =

M1 · · · 0
... . . . ...
0 0 Mn


Where M1 · · ·Mn is a jordan block that is nilpotent.
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2. ALGEBRAS OF NILPOTENT MATRICES

In this section, we study sets of nilpotent matrices closed under addition and multiplication.
According to our definitions, an algebra need not contain an identity element.

2.1. Definitions and elementary properties.

Definition 38. ([6],245) A set A ⊆Mn(C) is an algebra if
(1) A is closed under matrix addition.
(2) A is closed under matrix multiplication.
(3) A is closed under scalar multiplication by λI for any λ ∈ C .

In other words, an algebra A carries the structure both of a ring and a vector space.

Definition 39. ([6],267) let A be an algebra and I a subset of A .We say I is an ideal if:
(1) A+B ∈ I for all A,B ∈ I
(2) MA and AM ∈ I for all A∈ I and M ∈A
(3) rA∈ A for ∀ A ∈ I and ∀ r ∈ R

Now that we know the preliminaries, we can go forward in discussing the definitions of
the Theorem.

Definition 40. A subspace of matrices of Mn(C) which is closed under matrix multiplication
is called a sub-algebra of Mn(C) . A subalgebra is nilpotent if every matrix in the subalgebra
is nilpotent.

Definition 41. Let M be a n-by-n matrix

M =

m11 · · · m1n
... . . . ...

mn1 · · · mnn


M is Strictly Upper Triangular if mij = 0 for every i ≥ j.

We can see the strictly upper triangular matrix in the example as follows:

M =


0 m1,2 · · · m1,n
... . . . . . . ...
... 0

. . . mn−1,n

0 · · · · · · 0


Lemma 42. Matrices that are strictly upper triangular are also nilpotent.

Proof. Suppose that M is a strictly upper triangular matrix. Then mij = 0 whenever i > j .
This Lemma will be proved using induction on k .

Induction hypothesis: Let mk
ij be the (i, j) entry of Mk . Then mij = 0 whenever

i ≥ j − k + 1 .
Base case: When k = 1 , this is the definition of a strictly upper triangular matrix, which

holds for M by hypothesis.
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Induction step: Suppose that the induction hypothesis holds for Mk . Then the (i, j) entry
of Mk+1 is obtained as follows:

mk+1
ij =

n∑
t=1

mk
itmtj .

By hypothesis, mk
it = 0 for all i ≥ t− k+ 1 and mtj = 0 for all t > j . Hence every term in

the sum is zero when at least one equality is satisfied for each value of t . Substituting j for
t in the first equality, we see that this occurs precisely when i ≥ j − k + 1 as required. �

As the next example shows, in general, sums and products of nilpotent matrices need not
be nilpotent.

Example 43. Let A and B be the following matrices:

A =

[
0 1
0 0

]
, B =

[
0 0
1 0

]
A and B are nilpotent by themselves, however, the following sums and products of A and
B are not nilpotent.

A+B =

[
0 1
1 0

]
, AB =

[
1 0
0 0

]
(A+B)2k =

[
12k 0
0 12k

]
, (A+B)2k+1 =

[
0 12k+1

12k+1 0

]
, (AB)k =

[
1k 0
0 0

]
We record some further properties of algebras of nilpotent matrices.

Proposition 44. If A is an algebra of nilpotent matrices, then there does not exist an idem-
potent element in A . That is, there is no solution in A to the equation A2 = A apart from
the zero matrix.

Proof. Suppose that A contains an element such that A2 = A and A is non-zero. Then for
any integer k ≥ 3 , we have that Ak = Ak−2A2 = Ak−2A = Ak−1 hence by induction, we
find that Ak = A for all k ≥ 1 and so A cannot be nilpotent. �

In fact, we will prove that Proposition 44 is the only obstruction to an algebra being nilpo-
tent. To achieve this goal, we will develop some of the structure theory of matrix algebras, in
particular the Lie-Kolchin Theorem.[8]

Lemma 45. Let A be a subalgebra of Mn(k) . If N is a nilpotent ideal of A then N t = 0
for some t ≤ n2 .

Proof. Suppose that N j = N j+1 , then N j = N j+t for all t ≥ 0 , so N j = 0 . Consider the
sequence

dim(N ), dim(N 2), dim(N 3), . . .

where we take the dimension of N j as a vector space in each case. We have shown that this
sequence is strictly decreasing until it hits zero. The initial term is bounded by n2 , which
yields the result. �



21

Of course Lemma 45 is not best possible. We will sharpen this bound to n − 1 once we
develop some stronger tools. Since N is a vector space, we can construct a basis B from
which we obtain a descending chain of ideals which refines that in Lemma 45.

Proposition 46. If N is a nilpotent left-ideal of A , then there exists a basis B = {N1, N2, . . . , Nd}
for N as a vector space such that Im = 〈Nm+1, . . . , Nd〉 is a left-ideal of N for each m .

Proof. Suppose that N is nilpotent of class c , with basis B . We will show that this basis can
be reordered to produce the result. Let N1N2 . . . Nc−1 be a non-zero product of length n− 1
consisting of elements of B (not necessarily distinct). Such a product exists by hypothesis.
Consider the decomposition

N = 〈N1〉 ⊕ I1

where I1 is spanned as a vector space by the set B − {N1} . A solution to the equation
XY = N1 with X ∈ I1 and Y ∈ N (or X ∈ I1 and Y ∈ N ) would contradict the
assumption on the nilpotency class of N , it follows that I1 is a two-sided ideal of N .

Let Nt be the initial term in a non-zero product of maximal length in It , decomposing

It = 〈Nt〉 ⊕ It+1

gives an ideal It+1 which is two-sided in It .
By induction, NNt ∈ It for any N ∈ N , hence NNt = αNt + βNt+1 for some

Nt+1 ∈ It+1 . If α is non-zero, then NkN = αkN + X for some X ∈ It+1 and N is
not nilpotent. So It+1 is a left-ideal of N for all 1 ≤ t ≤ d . �

In Proposition 46, each ideal It+1 is 2-sided in It , but not necessarily in N (in analogy
with the construction of a composition series of a finite group in the Jordan-Hölder theorem,
for example).

2.2. The Lie-Kolchin theorem. Proposition 46 can be extended to characterise nilpotent
subalgebras in Mn(k) . This is essentially the Lie-Kolchin theorem for associative algebras.
A similar argument characterises nilpotent and solvable objects in a number of other cate-
gories, including Lie Algebras and Algebraic Groups (where the result can be slightly more
complicated). Our proof is entirely constructive, though the algorithm we describe is not
particularly efficient. We begin with a necessary and sufficient condition for an algebra to be
‘triangularisable’.

Proposition 47. An algebra A ⊆Mn(k) is conjugate to an algebra of upper-triangular ma-
trices if and only if there exists a maximal chain of subspaces 0 = Vn ≤ Vn−1 ≤ · · · ≤ V0 = V
which is stabilised by A .

Proof. Suppose that A is conjugate to an algebra of upper-triangular matrices, without loss
of generality we may assume the A is upper triangular. Writing ei for the ith standard basis
vector, the subspaces Li = 〈ei, ei+1, . . . , en〉 are all fixed subspaces of A . Equivalently,
Mei = λMei + xM where xM ∈ Li+1 for any M ∈ A . Hence, ei + Li+1 is a common
eigenvector for A in the quotient space V/Li+1 . So ei is a generalised eigenvector for A .
So V admits consisting of generalised eigenvectors for all of A .
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In the other direction, suppose that A preserves a maximal chain of subspaces, which we
write 0 = Vn ≤ Vn−1 ≤ · · · ≤ V0 = V . Taking vi to be a generator for the complement of
Vi+1 in Vi , we find that Mvi = λMvi + xM for some xM ∈ Vi+1 . Writing the matrix for M
with respect to this basis, we find that it is upper triangular, as required. �

By elementary linear algebra, all eigenvalues of a nilpotent matrix are zero. The 0-
eigenspace of a matrix M is precisely the null-space of M , for which a basis exists by
the Rank-Nullity theorem. As a result, in the case of nilpotent matrices, many of these results
do not require the base field to be closed. A similar result holds for solvable algebras, in
which case an algebraically closed field is required to triangularise matrices.

Theorem 48 (Lie-Kolchin, cf. Theorem 26.1 [2]). Suppose that N0 is a nilpotent subalgebra
of Mn(k) . Then N0 is conjugate to a subalgebra of N , the sub-algebra of strictly upper
triangular matrices.

Proof. Let B be a basis for N0 constructed as in Proposition 46. Suppose that Wt+1 is
the space of common eigenvectors for It+1 . Recall that It = 〈Nt, It+1〉 . We claim that
Ntv ∈ Wt+1 for any non-zero v ∈ Wt+1 . This holds since It+1 is two-sided in It and hence

It+1Ntv = It+1v = 0 .

Either Ntv = 0 in which case v is a common eigenvector of It , or Ntv is a non-zero vector
in Wt+1 . In the latter case, N2

t v = 0 since N2
t ∈ It+1 so Ntv is a common eigenvector of

It .
Since Id , the last non-zero ideal in the chain determined by B contains a single nilpotent

matrix, W0 is non-zero. The argument above shows inductively that Wt+1 is non-empty if
Wt is non-empty. Hence there exists a common eigenvector v0 for N0 .

To conclude the proof, apply this argument (again, from scratch) to the induced action of
N0 on V/〈v0〉 . We obtain a vector v1 such that V1 = 〈v0, v1〉 is a 2-dimensional subspace
fixed by N0 , and in which Nv1 = αv0 for any N ∈ N0 . If α = 0 then v1 is another
eigenvector for N0 , otherwise v1 is a generalised eigenvector. Continuing this process, we
construct the required chain of subspaces in V to which we apply Proposition 47. �

Corollary 49. A nilpotent subalgebra of Mn(k) has nilpotency class at most n− 1 .

Proof. Suppose that M is a product of k terms from N , the algebra of s.u.t. matrices. A
computation verifies that mij = 0 whenever i+ k < j and the result follows. �

Hence, every nilpotent subalgebra of a matrix algebra is conjugate to an algebra of strictly
upper triangular matrices.
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3. DIGRAPHS AND ASSOCIATED MATRICES

In the previous section, we saw that every nilpotent subalgebra of Mn(C) is conjugate to
an algebra of upper triangular matrices. In particular, the dimension of a nilpotent algebra of
Mn(C) is bounded above by

(
n
2

)
. We also saw that the nilpotency class of such an algebra

is at most n − 1 . In this section, we explore lower bounds on the dimension of a nilpotent
subalgebra of Mn(C) of bounded nilpotentcy class. Our main tool will be the idea of using
the edges of a directed acyclic graph to construct a nilpotent algebra.

3.1. Graphs, digraphs and their adjacency matrices. We begin with the definition of a
finite graph.

Definition 50. Let V be a finite set, and let E be a subset of V (2) , the set of unordered pairs
of elements of V . The pair (V,E) is a graph.

Normally, we call the elements of V vertices and the elements of E edges. An important
tool for working with graphs is the adjacency matrix, which we define next.

Definition 51. ([11], 14) Let Γ = (V,E) be a graph. Label the rows and columns of the
matrix AΓ by the elements of V . We define AΓ(vi, vj) = 1 if {vi, vj} ∈ E and 0 otherwise.
We can say that AΓ is the adjacency matrix of Γ

In other words, the adjacency matrix encodes the edges of of Γ . Perhaps slightly less
familiar than the definition of a graph is that of a digraph.

Definition 52. Let V be a finite set, and let E be a subset of V [2] , the set of ordered pairs
of elements of V . The pair (V,E) is a directed graph.

The definition of the adjacency matrix of a directed graph is identical to that for ordinary
graphs. Note that while the adjacency matrix of an ordinary graph is always symmetric, any
(0, 1) matrix may be the adjacency matrix of a directed graph.

The key property that we will need later is that our graphs and digraphs contain no cycles.
We define this property next.

Definition 53. A cycle in a graph is a sequence of edges e1 = (v1, v2) , e2 = (v2, v3), . . . , vk = (vk, v1)
in which each edge shares one vertex with the previous edge and one vertex with the next edge
in the cycle. We consider an undirected edge to be a cycle of length 2 . A directed cycle is
defined similarly: the output of one edge in the cycle is equal to the input of the next edge. A
graph is acyclic if it contains no directed cycles.

Example 54. We give an example of a directed graph which does not contain a directed cycle,
and the corresponding adjacency matrix, which is nilpotent. For convenience, we include the
vertex labels on the adjacency matrix.

Example 55. In this example, we give an undirected graph. Note that the adjacency matrix
is symmetric and that the square of the matrix has non-negative terms on the diagonal. In
fact these are the degrees of the vertices. More generally the diagonal entries of Mk count
the number of walks of length k in the graph which start and finish at a given vertex. In
particular, the adjacency matrix of an (undirected) graph with a positive number of edges is
never nilpotent, because each edge is a cycle of length 2 .
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1

2

3

4

⇐⇒


1 2 3 4

1 0 1 0 1
2 0 0 1 0
3 0 0 0 1
4 0 0 0 0



FIGURE 1. An acyclic directed graph and it’s adjacency matrix

1

2

3

4

=⇒


1 2 3 4

1 0 1 1 1
2 1 0 1 0
3 1 1 0 0
4 1 0 0 0



Example 56. Finally, we consider a directed version of the previous graph in which there are
no directed cycles. In this case, we note that all directed paths have length at most 2 , and that
the third power of the adjacency matrix is zero. While this matrix is not S.U.T, it is conjugate
to an S.U.T Matrix.

1

2

3

4

=⇒


1 2 3 4

1 0 1 1 1
2 0 0 1 0
3 0 0 0 0
4 0 0 0 0



Now we formalise the observations made in the three examples given above. The next
result relates paths of length k in a directed graph Γ entries in the kth power of the the
adjacency matrix, A(Γ)k .

Theorem 57. The number of directed paths of length k in Γ between vi and vj is equal to
the (i, j) entry of A(Γ)k .

Proof. Let Γ be an undirected graph, such that Γij=Γji , where Γij= 1 if there is an edge
between i and j and 0 otherwise, where 1 ≤ i, j ≤ n .

α− Γ =

m1,1 · · · m1,j
... . . . ...

mi,1 · · · mi,j





25

When k = 1 , the result is trivially true.
Our induction hypothesis is that A(Γ)dij is the number of paths of length d between vi and

vj for all pairs of vertices vi, vj ∈ Γ .
Then writing A(Γ)d+1 = A(Γ)dA(Γ) and applying the usual formula for matrix multipli-

cation, we see that

A(Γ)ik =
n∑
j=1

A(Γ)dijA(Γ)jk .

By the induction hypothesis, A(Γ)dij is the number of walks from vi to vj of length d . The
term A(Γ)jk is 1 if there is an edge between vj and vk and 0 otherwise. So the product
A(Γ)dijA(Γ)jk counts the number of paths of length d+ 1 from vi to vk which pass through
vj at the final step. So summing over vj gives the total number of paths of lenght d+ 1 from
vi to vk as required. �

Suppose that Γ is a non-empty graph, with an edge between vi and vj . Then in every odd
power of A(Γ) the (i, j) entry is non-zero, and in every even power of A(Γ) the (i, i) and
(j, j) entries are non-zero. Hence no power of A(Γ) is every equal to the zero matrix. We
have the following result.

Proposition 58. The adjacency matrix of an ordinary graph is never nilpotent.

Proof. Since an ordinary graph isn’t directed, the adjacency matrix of it will be symmetric.

Symmetric matrices that aren’t zero matrices contain the submatrix
[

0 1
1 0

]
,which squares to

a 2× 2 identity matrix, and thus, when multiplied by itself any number of times, won’t be a
zero matrix �

On the other hand, it is possible to construct directed graphs for which the adjacency matrix
is nilpotent. The next result characterises such directed graphs.

Theorem 59. The following are equivalent.
(1) The directed graph Γ has no directed cycles.
(2) The adjacency matrix A(Γ) is nilpotent.
(3) There exists an ordering on vertices such that for all directed edges [ei, ej] we have

i < j .

Proof. 1 → 2: If Γ has no directed cycles, then no directed path in Γ can visit the same
vertex twice. If |V | = n there can be no directed paths of length greater than or equal to
n− 1 . By Theorem 57 we know that A(Γ)n−1 = 0 . Hence A(Γ) is nilpotent.

2 → 3: If A(Γ) is nilpotent, then A(Γ)k = 0 for some k . Recall that the columns of
A(Γ) are labelled by vertices, and a column contains the zero vector if and only if there are
no incoming edges at that vertex. Similarly, a column in A(Γ)k is zero if and only if there
are no paths of length k terminating at that vertex. Let Xi be the set of vertices which label
a column of zeros in A(Γ)i but not in A(Γ)i−1 . By construction, whenever i > j there is no
path from a vertex in Xi to a vertex in Xj . So any ordering of the vertices of Γ constructed
by first labelling all vertices in X1 then labelling all vertices in X2 and so on will have the
required property.
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3 → 1: If i < j for every directed edge, then there cannot be a sequence of edges which
forms a closed cycle. �

We can refine this result a little further, as shown below.

Corollary 60. If the longest directed path in Γ has length k−1 , and if Γ has no cycles, then
A(Γ) is nilpotent of class k .

3.2. Matrix algebras associated with directed graphs. In this section we associate a nilpo-
tent matrix algebra with an acyclic directed graph.

Definition 61. Let Γ be an acyclic directed graph on v vertices, and write Mij for the v × v
matrix which contains a 1 in the (i, j) entry and zeros elsewhere.

Define a set of matrices α(Γ) = {Mij | [i, j] ∈ E(Γ)} , and define

AΓ = 〈α(Γ)〉 .
to be the algebra generated by α(Γ) .

First we prove that A(Γ) is really a matrix algebra (that is, that it is closed under matrix
multiplication).

Proposition 62. The algebra A(Γ) is closed under matrix multiplication.

Proof. We construct a basis for A(Γ) as follows. Observe that EijEkl = 0 unless j = k .
Thus the product of the matrices associated with two directed edges is non-zero if and only
if the end of the first edge is equal to the start of the second edge. Similarly, a product
Ei1j1 · · ·Eikjk is zero unless jt = it+1 for all t . That is: unless the product corresponds to a
path in the graph.

Since the graph is acyclic, all paths have finite lenght. In fact, a basis for A(Γ) is given by
the set of matrices

{Eij | there exists a path from i to j} .
It is clear that the product of two matrices either is zero or corresponds to a path in the

graph, and so the algebra is closed under multiplication. �

Proposition 63. The dimension of A(Γ) is equal to the number of pairs (i, j) of vertices in
Γ such that there exists a path from i to j in Γ .

We will be particularly interested in graphs with the property that every pair of vertices
joined by a path are already joined by an edge: such digraphs are called transitive.

Example 64. Suppose that Γ is the directed graph on {1, . . . , n} such that (i, j) is an edge
of Γ if and only if i < j . Then A(Γ) is the algebra of all s.u.t. matrices.

Example 65. Suppose that X = {1, . . . , n} and Y = {n+ 1, . . . , 2n} . Define a digraph on
X ∪ Y by adding all edges from X to Y . Then A(Γ) is the algebra of matrices of the form(

0 A
0 0

)
It can be verified that this algebra has nilpotentcy class 2 , all products in the algebra are zero.
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Though it is less important for our main result, it is also possible to define a function from
algebras to directed graphs. We define this function and give some of its properties in the
remainder of this section.

Definition 66. Let B be an algebra of v × v matrices. Define a directed graph as follows:

β(B) = (V,E)

where V = {1, 2, . . . , v} and [i, j] ∈ E if and only if there exists a matrix B in B such that
Bi,j 6= 0 .

The result of applying the composite operation βα to a graph Γ , and the result of applying
αβ to an algebra B are described in the next result.

Theorem 67. The following hold for compositions of α and β .
(1) The edge [i, j] is in βα(Γ) if and only if there is a path between i and j in Γ .
(2) Mi,j ∈ αβ(B) if and only if for some B ∈ B the entry Bi,j is non-zero.
(3) For any graph Γ , it holds that αβα(Γ) = α(Γ) .
(4) For any algebra B , it holds that βαβ(B) = β(B) .

Proof. the proof is as follows:
(1) (a) If the edge [i, j] is in βα(Γ) , then there is a path between i and j in Γ: Using

definition 53, we construct a set of matrices from the graph Γ . With, we use
Defnition 58 to make a Graph from α(Γ) , which would have the same edges as
Γ

(b) If there is a path between i and j in Γ , then the edge [i, j] is in βα(Γ):
(2) (a) If Mi,j ∈ αβ(B) , then for some B ∈ B the entry Bi,j is non-zero.

(b) If for some B ∈ B the entry Bi,j is non-zero, then Mi,j ∈ αβ(B) .
(3) Using Definitions 53 and 58, we can show that α(Γ) equals a set of matrices. Using

this and definition 58, we can set βα(Γ) to be a graph, similar to Γ . With this, we
use defintion 58 again, thus seeing that α(Γ)= αβα(Γ)

(4) Similar to (3), we do the inverse. By using Definitions 53 and 58, we can show that
β(B) equals a set of matrices. Using this and definition 53, we can set αβ(B) to be
a set of matrices, similar to B . With this, we use defintion 53 again, thus seeing that
β(B)= βαβ(B)

�
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4. THEOREMS OF SCHUR, JACOBSON, GALLAI-HASSE-ROY-VITAVER AND

APPLICATIONS

In light of Corollary 60, we can construct a nilpotent algebra of class k from a directed
graph with no paths of length greater than k − 1 . It is clear from Definition 61 that the
dimension of α(Γ) is equal to the number of directed edges in Γ . In this section we apply
some theorems from graph theory to bound the number of edges in such a graph.

The Gallai-Hasse-Roy-Vitaver theorem describes the maximal number of edges in a graph
with these properties. In this section we give a proof of this result. The Gallai-Hasse-Roy-
Vitaver theorem

The following result details the relationship between digraphs and nilpotent algebras ad-
mitting a basis of Ei,j matrices. (Not every nilpotent algebra need have such a basis - compare
to Theorem 75.)

Theorem 68. Let Γ be an acyclic digraph with no paths of length ≥ k . Then the digraph
algebra AΓ has nilpotency class k . The dimension of AΓ is the number of edges in Γ .

The next theorem, discovered multiple times in graph theory gives a family of dense di-
rected graphs having no paths of length ≥ k .

Theorem 69 (Gallai-Hasse-Roy-Vitaver). Let Γ be an undirected graph. Over all orienta-
tions of the edges of G , the orientations with minimal longest paths come from colourings of
G . In particular, the minimal longest path will have length equal to the chromatic number
minus 1 .

Proof. Suppose that Γ has chromatic number k , and suppose that a k -colouring is given
(with colours {1, 2, . . . , k}). Define an orientation on Γ by directing edges toward the larger
colour. By definition no edges join vertices with the same colour. So along any directed path,
the colours are strictly increasing, so all paths have length at most k − 1 .

Conversely, let Γ be an acyclic directed graph. Label each vertex by the length of a longest
path beginning at that vertex. Observe that each class under this labelling is an independent
set: if there were an edge between two vertices in class i , then the source vertex has a path
of length i+ 1 emanating from it. Hence this labelling is a proper colouring of Γ . �

So a lower bound on the dimension of an algebra of n×n matrices of nilpotency class k is
obtained by finding the densest graph on n vertices with chromatic number ≤ k . The latter
is a well-studied problem in extremal graph theory, closely related to the so-called Turán
problem.

Theorem 70 (Turán, Chapter 41 of [1]). The densest graph on n vertices which does not
contain a complete graph Kr as a subgroup is the complete multipartite graph on r − 1
parts, where any two parts have size differing by at most 1 . The number of edges in such a
graph is equal to r−2

r−1

(
n
2

)
.

While a graph containing Kr as a subgraph must have chromatic number at least r + 1
the converse result is not true. So the densest graphs with given chromatic number are not
known in general, though it is known that they are not asymptotically more dense than the
Turán graphs, described above.
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Lemma 71. A k -colourable graph does not have a complete subgraph Kk+1 .

Proof. Such a subgraph would require k + 1 colours. �

Theorem 72 (Erdös, [4]). The number of edges in a graph with chromatic number r + 1 is
of the form

(1 + o(1))
r − 2

r − 1

(
n

2

)
.

In this note we give an exposition of some results of Schur and Jacobsen on algebras of
nilpotent matrices.

4.1. The RREF basis of a nilpotent algebra. The ideas in this section are drawn from
Jacobsen, [7].

Definition 73. Let Eij be the matrix with 1 in position (i, j) and zero elsewhere.

Proposition 74. Provided j > i , the operation M 7→ (I + αEij)M (I − αEij) is a change
of basis which sends s.u.t. matrices to s.u.t. matrices.

Proof. First observe that E2
ij = 0 so the inverse of I+αEij is I−αEij . Hence the operation

M 7→ SMS−1 is a change of basis. In the product, all three matrices are upper triangular, so
the product is upper triangular. If M is assumed nilpotent then the product is nilpotent, all
eigenvalues are zero and the matrix is in fact strictly upper triangular. �

We will write Sij(M) = (I + αEij)M (I − αEij) for this change of basis operation.
Observe that the effect of Sij is to add a multiple of row j to row i and to subtract the same
multiple of column i from column j . The next result is Jacobsen’s.

Theorem 75. Let N be a C-algebra of nilpotent matrices in s.u.t. form. There exists a
conjugate algebra N ′ with a basis of matrices Ei,j + Xi,j . In analogy to the RREF, we call
Ei,j the pivot of the basis element. The matrix Xi,j is zero in row i and at all pivots.

Proof. Since N is an algebra of n × n matrices, it is a finite dimensional vector space.
Let B = {U1, U2, . . . , Ur} be a basis for N where the Ui are ordered lexicographically.
The process we describe below may be considered a modification of the usual algorithm for
computing the RREF of a linear system.

Let (i1, j1) be the position of the first non-zero entry in U1 . Without loss of generality, we
may assume that U1(i1, j1) = 1 and that Uk(i1, j1) = 0 for k > 1 . By applying a sequence
of operations Si1,j for varying j we obtain a conjugate algebra N (1) in which the first row of
the image of U1 is zero apart from position (i1, j1) . Since the effect of Si1,j is to add column
ii to column j the first rows of matrices U2, . . . , Ur are unchanged (though later rows may be
changed). Furthermore, all matrices remain s.u.t. Finally, observe that N = 〈U1,N1〉 where
N1 is an algebra of dimension r − 1 in which all matrices are 0 in position (i1, j1) .

Proceeding with N1 as we did with N we obtain a basis 〈V1, . . . , Vr〉 where we have the
analogue of the RREF property: each Vi has a leading 1 entry, the row in which this entry is
contained has a unique non-zero entry, and all other Vi are zero at this position. �
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It is well-known that the general classification problem for nilpotent algebras is intractable:
it is known to be related to impossibly general problems in representation theory. Without
further assumptions the result above is likely best possible. By enforcing some further as-
sumptions it is possible to proceed further.

4.2. Algebras of nilpotency class 2. In this section we investigate algebras of nilpotency
class 2 .

Theorem 76. Suppose that N is nilpotent of class 2 . If Ei,j + Xi,j belongs to the RREF
basis of N then

(1) Every element of N is zero in row j .
(2) Every element of N is zero in column i .

Proof. Let M ∈ N . By hypothesis, (Ei,j +Xi,j)M = M (Ei,j +Xi,j) = 0 . On the other
hand Xi,j is zero in row i . So (Ei,j +Xi,j)M contains row j of M in the ith row. Hence
row j of M is zero.

The analogous operations on columns prove the second result. �

As a corollary of Theorem 76 we obtain a famous theorem of Schur, which is most often
stated for commutative algebras. Recall that an algebra A is commutative if AB = BA for
all A,B ∈ A . This theorem was proved first by Schur, a later proofs were given by Jacobsen
and Mirzakhani, [9, 7].

Proposition 77. If A is nilpotent of class 2 then 〈In〉 ⊕ A is commutative.

Proof. Let a1In + A1 and a2In + A2 be two elements of 〈In〉 ⊕ A . It is easily verified that
〈In〉 ⊕ A is closed under addition. Since A is nilpotent of class 2 , it follows that

(a1In + A1)(a2In + A2) = a1a2In + A1 + A2 ∈ 〈In〉 ⊕ A ,
and so the algbera is closed under multiplication. Finally,

(a2In + A2)(a1In + A1) = a2a1In + A2 + A1 = a1a2In + A1 + A2 ,

and so the algebra is commutative. �

Corollary 78. In dimension 2n the maximal dimension of an algebra of nilpotency class 2 is
n2 . Equivalently, the maximal dimension of a commutative algebra of matrices in dimension
2n is n2 .

Proof. By Theorem 76 the problem is reduced to a combinatorial one. From the set
{(i, j) | 1 ≤ i, j ≤ 2n} we must select the largest possible set D with the following proper-
ties:

• If (i0, j0) ∈ D then (j0, x) /∈ D for all 1 ≤ x ≤ 2n .
• If (i0, j0) ∈ D then (x, i0) /∈ D for all 1 ≤ x ≤ 2n .
• i ≥ j for all (i, j) ∈ D .

Equivalently, the entries in the first index must be disjoint from those in the second index. An
optimal solution is to split the index set into two pieces, and then select all Ei,j where i is
drawn from one set and j from the other. A quick calculation shows that the unique optimal
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solution is to select i ∈ {n + 1, . . . , 2n} and j ∈ {1, . . . , n} , in which case an algebra of
dimension n2 is obtained. This completes the proof of the theorem. �

A similar argument gives the maximal dimension of an algebra of nilpotency class 2 in the
algebra of matrices of size 2n + 1 , which is n(n + 1) . We note the connection to digraph
algebras (in which Ei,j belongs to the algebra if and only if there is a directed path from
vertex i to vertex j ): the condition of Theorem 76 is precisely the condition that the graph
algebra contains no paths of length 2 . The maximal such graphs are then obvious from
consideration of directed bipartite graphs.

Let A(n, k) be the maximal dimension of an algebra of n×n matrices of nilpotency class
k . Let B(n, k) be the maximal number of edges in a graph on n vertices with chromatic
number k and let C(n, k) be the number of edges in a Turán graph. We have shown that

k − 2

k − 1

(
n

2

)
≤ C(n, k) ≤ B(n, k) ≤ A(n, k) ≤

(
n

2

)
.

We conclude this thesis with some questions and suggestions for further research.
(1) Are any of the quantities displayed above equal for large n?
(2) Are there any explicit examples of graphs demonstrating that C(n, k) < B(n, k) for

large values of n and k?
(3) Are there explicit examples of nilpotent algebras which deomnstrate that B(n, k) < C(n, k)

for large values of n and k?
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AbstractTable of the values of C(n, k), the number of edges in a Turan
graph. Columns are labelled by the nilpotency class k and rows labelled

by n
2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 2 3 3 3 3 3 3 3 3 3 3 3 3 3

4 4 5 6 6 6 6 6 6 6 6 6 6 6 6

5 6 8 9 10 10 10 10 10 10 10 10 10 10 10

6 9 12 13 14 15 15 15 15 15 15 15 15 15 15

7 12 16 18 19 20 21 21 21 21 21 21 21 21 21

8 16 21 24 25 26 27 28 28 28 28 28 28 28 28

9 20 27 30 32 33 34 35 36 36 36 36 36 36 36

10 25 33 37 40 41 42 43 44 45 45 45 45 45 45

11 30 40 45 48 50 51 52 53 54 55 55 55 55 55

12 36 48 54 57 60 61 63 64 64 65 66 66 66 66

13 42 56 63 67 70 72 73 75 76 76 77 78 78 78

14 49 65 73 78 81 84 85 87 88 89 89 90 91 91

15 56 75 84 90 93 96 98 100 101 102 103 103 104 105
The entry in row i and column j of the above table is the maximal number of edges in a
Turan graph on n vertices with vertices divided into at most k groups. By Theorem 68, this
quantity is a lower bound on the dimension of a subalgebra of nilpotency class k in Mn(C) .

We comment on some features of the table:
(1) Since every nilpotent algebra of class k is nilpotent of class k + 1 the rows of the

table are non-decreasing.
(2) Since every nilpotent algebra of dimension n can be embedded into the algebra of

(n + 1) × (n + 1) matrices, the table is non-decreasing in columns. (Recall that we
do not require a subalgebra to be unital.)

(3) The entries in the first column (labelled k = 2) are given by Schur’s Theorem, which
we proved as Corollary 78.

(4) By Lemma 49, the maximal nilpotency class of a subalgebra of Mn(C) is n− 1 . So
each row of the table achieves its maximal value, which is

(
n
2

)
on the diagonal, and

all entries to the right of the diagonal in a given row are equal.
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