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Abstract 
The field of robot learning from demonstration focuses on algorithms that enable a robot 

to learn new abilities from examples provided by a human teacher.  This project aims to show 

that in the context of learning from demonstration, data collection can be facilitated by collecting 

demonstrations from remote users through a browser and presenting the learning task as a game 

with certain motivational features. Furthermore, it explores possible improvements on learning 

algorithms through the use of filtering by score, the game’s natural fitness function.  We 

demonstrate our approach through a system that enables users to remotely control a KUKA 

youBot robot to play a game of Whack-A-Mole through a common web browser. We collect data 

on how users play and utilize a decision tree learning algorithm to teach the robot to play 

autonomously. We find that filtering data by score does not significantly improve robot 

performance over using all data.  Using A/B testing techniques, we find that motivational game 

features noticeably improve the quantity and quality of collected data. 
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Executive Summary 
 Artificial intelligence allows computer programs to autonomously perform tasks 

independently of human control. In many cases, the algorithms that determine the behavior of 

these programs are manually written by human developers, but in the field of machine learning, 

behaviors are learned programmatically. This is especially useful for robotics applications, as it 

is difficult to directly program a robot to handle all of the diverse cases it may encounter in real-

world situations. 

 Robot Learning from Demonstration (LfD) is a growing branch of machine learning in 

which human teachers generate training data, typically in the form of state-action pairs, by 

demonstrating the target task. A robot then learns to complete the task autonomously by 

processing this data. Most robots used for LfD studies are confined to their laboratories, and 

researchers must bring demonstrators into these labs to obtain training data. This requires 

significant extra time and effort for both the demonstrators and the researchers. Continuing a 

recent trend, this project dealt with these issues by bringing Learning from Demonstration to the 

web. By allowing users to control a robot from the browser, this project was able to more easily 

obtain training data from a wide variety of users. 

 Another difficulty encountered in many LfD studies deals with motivating users to 

provide useful data for the robot. Because many robotics tasks can be boring and repetitive, some 

researchers are forced to pay participants for providing demonstration data. This can be 

expensive and does little to guarantee the quality of the data. This project used a game for the 

learning task and focused on attracting users by making the game enjoyable. A number of 

motivational game features were implemented to increase both the quantity and quality of 

demonstration data provided. 

 Decision Trees were selected as the primary machine learning algorithm for this project, 

as they are easily human-readable, can handle a mixture of discrete and continuous data, and can 

be generated quickly as more training data is added. The Waffles
1
 machine learning library was 

chosen for an implementation of this algorithm, as it was open-source, easy to use, and written in 

C++, the language used for this project’s robot control code. 

                                                 
1
 http://waffles.sourceforge.net/ 

http://waffles.sourceforge.net/
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 For the project’s central learning task, the game of whack-a-mole was chosen, because it 

was simple for users to learn and fun to play, could be represented with a reasonably-sized state 

space, was easily resettable, and was not overly susceptible to lag. The layout of the physical 

whack-a-mole game consisted of seven mole holes, arranged in an isosceles trapezoid, such that 

the robot would have to drive to different positions to whack all of the moles. User input for the 

game was gathered through mouse controls on a web interface. A fixed-length game format was 

chosen, in which the goal was to obtain the greatest number of points by whacking as many evil 

moles as possible while not whacking the good moles. 

 The system architecture implemented for this project consisted of the following four 

components: the moles, the server, the web interface, and the robot. The first component was an 

eight feet long by two feet wide whack-a-mole setup consisting of seven individual mole 

mechanisms. Each mechanism was responsible for controlling which of two possible moles 

would appear in a single mole hole. This mechanism used a servo and a belt drive to rotate a pair 

of knitted moles about an axle. Custom pulleys were 3D printed for these mechanisms, and 

custom servo mounting plates were laser-cut from acrylic. Each mechanism was housed in a self-

contained wooden frame. Several iterations of the pulleys, mounting plates, and moles were 

designed, prototyped, and tested before deciding on a final design. An Arduino RedBoard 

microcontroller with a servo shield was used to control the position of each mechanism’s servo. 

 The second component of the system, the server, handled all core game logic for whack-

a-mole and was responsible for communicating with all of the other components. The server kept 

track of the state of each pair of moles and sent commands to the Arduino accordingly. The 

server code was primarily written in C++, using the Robot Operating System framework (ROS). 

The libserial library was used for communication between the server and the Arduino. 

 The web interface was responsible for interacting directly with users and relaying 

information between the users and the server. The interface was used to display a video feed of 

the game, along with additional game information, to users over the internet. When users clicked 

buttons on the interface to control the robot, commands were relayed to the robot through the 

server. Additionally, the web interface handled all user account management and other 

administrative tasks. The interface’s back end was primarily written in PHP, while the client side 

used HTML, CSS, and JavaScript. A MySQL database was used for storing game and user 

information. 
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 The robot used for the study was a KUKA youBot. It was controlled by a program, 

written in ROS that responded to commands sent from the server. These commands allowed the 

robot to navigate to discrete positions, using a laser scanner for navigation, and to move its arm 

to whack nearby moles. 

 

Figure 1: The KUKA youBot (http://www.youbot-store.com/) 

 To allow the robot to learn to play whack-a-mole, the interface collected state-action 

pairs from users’ games and stored them in the database. When a user logged into the system, he 

could control the robot to play a game of whack-a-mole by clicking on mole and robot position 

buttons corresponding to actions for the robot to take. Each time a user clicked one of these 

buttons, the interface logged the corresponding action with the current state of the system as a 

state-action pair. The instantaneous state of the game was mainly represented by seven mole 

times, each corresponding to which type of mole was occupying a particular hole, if any, and 

how long it had been up. The state also contained information on the position of the robot and 

the orientation of its arms. The action space consisted of six possible actions: driving to one of 

three robot positions or whacking one of three nearby moles.  

In lieu of playing a game directly, each user was given the chance to watch the robot play 

the game autonomously. To do this, the robot collected the state-action pairs stored in the 

database and used them to generate a decision tree. This tree was then used to select each action 

for the robot to take given the current game state. When starting the game, the user could select 
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whether to train the robot with only the state-action pairs he provided or with the training data 

provided by all users. 

To improve user engagement, and thereby increase the quantity and quality of 

demonstration data provided, a number of motivational game features were added to the game. 

To foster healthy competition between users, a high scores table was implemented, allowing 

users to compare their best scores with those of others. Game statistics were also tracked for each 

user and were made available for all users to see. To keep users coming back, a progression of 

five levels was added to the game. Each level introduced new game mechanics and came with 

additional backstory. Later levels included several virtual game elements, such as worms for 

feeding moles to keep them up longer, mini moles that slowed down the robot unless dragged 

off, and lasers that could be fired at entire rows of moles at once. 

Once the system was fully implemented, the game was opened to the public, and a study 

was run for two weeks. Over the course of this study, 523 games were played by 191 unique 

users, producing a total of 9568 state-action pairs. The data collected from the study was used for 

a few different types of analysis. 

From the state-action pairs collected during the study, the robot was able to successfully 

learn to play whack-a-mole autonomously. When trained from all of this training data, the robot 

was able to outperform the average human player. Further analysis was conducted to determine 

the impact of both quantity and quality of demonstration data on the learned behavior of the 

robot. It was found that increasing the size of the training data set generally resulted in higher 

average scores for the autonomous robot. Filtering the data by game score revealed that the robot 

performed significantly better when trained with data from high-scoring users than when trained 

with data from low-scoring users. 

In order to assess the impact of each game feature on the demonstration data provided by 

users, each user account was randomly assigned a study category upon creation. This category 

determined which game features that user had access to. Analysis of data quantity showed that 

more players returned for four or more games if they had access to motivational features. Access 

to multiple levels contributed to this slightly more than access to the high scores table, but a 

combination of both resulted in the highest numbers. In terms of quality, users without access to 

either game feature earned far lower scores on average than those with either high scores or 

levels. Users with access to the high score table but only the basic level performed the best on 
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average. This is likely because a desire to achieve the high score kept them playing this level 

again and again with continual improvement in skill. 
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1.0 Introduction 
Artificial intelligence is a large and quickly-growing field of computer science. 

Programmers usually manually construct behaviors for specific tasks, but for robots operating in 

complex real-world environments, there are too many different and unforeseeable tasks a robot 

may need to perform for this approach to be viable. It is possible to generate behaviors 

autonomously using machine learning algorithms, but these can be expensive and slow.  

An increasingly popular branch of machine learning is Learning from Demonstration 

(LfD), which involves using a human’s demonstration of the task to lead the robot’s learning in 

some way. This can generate behaviors much faster than learning from nothing. No special 

technical knowledge is required on the part of the demonstrator, making this much more 

accessible than programming behaviors using conventional means. However, some tasks are 

very dull to demonstrate, especially to demonstrate repeatedly. The demonstrator may become 

bored and begin demonstrating sloppy behavior, causing the robot to learn to behave sloppily, or 

may choose not to participate in further demonstration. To counteract this, some researchers pay 

participants for their time. However, this is expensive, and motivation research has shown that 

monetary incentives promote quantity of work without improving quality. Another problem is 

that many LfD studies require participants to be physically present. This severely limits the 

number and variety of participants.  

To address these drawbacks, this project implemented a web interface through which 

users could control a robot in playing the game of whack-a-mole. The web interface was used, 

because it allowed more users to participate. A game was chosen for the task so as to improve 

engagement, in turn improving quality and quantity of demonstrations. The demonstration data 

provided by users was used to train the robot to play the game autonomously. This data was also 

used to assess the impact of filtering training data by game score on the quality of learned 

behavior. Additionally, the project studied the effects of various motivational game features on 

the demonstrators and their performance. 
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2.0 Background 
 This project builds upon prior work in a number of areas. This section gives an overview 

of machine learning and Learning from Demonstration (LfD), with a focus on previous work 

toward bringing LfD to the web. It also discusses the topic of human engagement, which the 

project uses to motivate participants in an LfD study. 

2.1 Machine Learning 

 Machine learning is a technique by which computers learn a model, often in order to 

complete a task or classify data, based on past experience and relevant examples (Alpaydin, 

2004). In machine learning, software solutions to specific problems need not be programmed 

explicitly. Rather, the computer program uses data analysis and pattern matching to learn 

solutions based on known examples. Machine learning is particularly useful for solving problems 

that humans are either unable to solve or unable to explain their ability to solve, such as speech-

to-text conversion (Alpaydin, 2004). In such a domain, there may be wide ranges of input and 

output values that are related by a series of difficult-to-quantify rules. Using traditional 

algorithms, the programmer would be responsible for ascertaining and implementing all of these 

rules, a daunting or even near-impossible task for some problems. With machine learning, the 

program analyzes a set of example input-output pairs, known as state-action pairs for some 

applications, and constructs a set of rules, known as a policy, to fit them. Using these rules, it can 

then predict output values for previously-unseen inputs. Machine learning is also particularly 

suitable for solving problems that vary based on environment, such as a user interface that 

changes its behavior to suit the needs and habits of each user (Alpaydin, 2004). For these types 

of problems, machine learning allows the programmer to create a general application that can 

adapt to different circumstances, rather than requiring an entirely new implementation for each 

scenario.  

The field of machine learning contains a wide variety of algorithms for learning policies 

for mapping input values to output values, each with its own advantages and disadvantages. For 

example, the k-nearest neighbor algorithm represents example state-action pairs as labeled points 

in n-dimensional space, with each coordinate corresponding to a single input attribute. When a 

new state is encountered, the algorithm chooses an action based on the most common label of 

some number of points nearest to this state. Gaussian mixture models behave similarly, but save 

memory by fitting the cloud of points to a number of ellipsoids that can be derived from 
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equations. Decision trees represent the process of selecting an output as a tree of choices based 

on input attributes. Reinforcement learning involves determining correct behavior based on 

rewards or punishments given for successfully or unsuccessfully completing a task. For more 

information on these and many other types of learning algorithms, consult Chapters 18 through 

21 of Russell and Norvig’s text on artificial intelligence (Russell, 2009). 

2.1.1 Decision Trees 

The primary learning algorithm used in this project was decision tree learning. Russell 

defines a decision tree as representing “A function that takes as input a vector of attribute values 

and returns a ‘decision’ – a single output value” (Russell, 2009). A decision tree determines the 

appropriate output value by conducting a series of tests on the input values. Each node in the tree 

represents a test of a single input feature, where each possible value or range of values that the 

feature can have corresponds to a branch. The leaves of the tree correspond to the output values. 

An example of a simple decision tree can be seen in Figure 2. 

 

Figure 2: Example decision tree (Lozano-Pérez & Kaelbling, 2005) 

  

In machine learning, decision trees can be induced from a set of example input-output 

mappings. The ideal objective when constructing a decision tree based on examples is to produce 

the smallest possible tree that is consistent with all of the examples. One method of finding a 

relatively small tree is a greedy divide-and-conquer approach, in which tests of the individual 

input attributes that have the largest impact on the output value are placed nearest to the root of 

the tree (Russell, 2009). This increases the likelihood that output values can be determined from 

a small number of tests, in which case the tree must be very shallow.  
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2.1.2 Robot Learning from Demonstration 

 One area in which machine learning can have a particularly large impact is the field of 

robotics. As robotic systems must sense and interact with the physical world, autonomous 

robotics tasks often involve determination of behavior based on complex state representations. 

Decision making in such large and imperfect domains lends itself well to machine learning, 

though it comes with a set of additional challenges. In robot learning, the main focus is on 

learning a policy that maps the state of the robot’s environment to the actions that the robot will 

perform. Due to the complexity of the state and action spaces that many robots must deal with, it 

can be very difficult to program these policies using mathematical algorithms, and thus machine 

learning algorithms can be used to allow the robots to learn policies themselves.  

Learning from Demonstration (LfD) is a method by which a robot learns a policy from 

examples provided by a teacher (Argall, Chernova, Veloso, & Browning, 2009). To create these 

examples, the teacher demonstrates the desired task, and this demonstration is broken up into a 

sequence of state-action pairs mapping the world state at each point in the demonstration with 

the action taken by the demonstrator. Using these state-action pairs as training data, the robot can 

then attempt to perform the task autonomously, applying machine learning techniques to 

determine the appropriate actions to perform throughout its attempt. A number of studies have 

been conducted in the field of LfD, using a variety of machine learning techniques and to 

accomplish a variety of tasks. For a comprehensive survey of the many approaches to LfD, 

consult Argall, et al.’s A survey of robot learning from demonstration (2009).  

2.1.3 Robot Learning on the Web 

 In many areas of machine learning, recent efforts have focused on solving problems 

through the use of larger data sets, usually acquired from the web. In the field of natural 

language processing, Banko and Brill found that increasing the size of the training data set 

continued to observably improve learning results even as the size expanded to several orders of 

magnitude larger than the standard size (2001). Further evidence has shown that obtaining a 

larger data set has often been a more successful use of effort than improving the learning 

algorithms used to process the data. Halevy, Norvig, and Pereira found that a carefully filtered 

and annotated corpus of one million words was less useful for learning natural language 

processing than was a trillion-word corpus compiled programmatically from unmodified web 

pages (2009). 
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Applying this principle to robot learning from demonstration, obtaining training data 

from many users over the internet should result in greater success. Nevertheless, due to the 

complications involved with non-expert, off-site robot control and training, significantly less 

research has been done in this area thus far. Over the last two decades, several experiments have 

been conducted into web-based robot control. The first web-based robot control system was the 

Mercury Project, which allowed users to control a robot searching a sandbox for buried artifacts 

(Goldberg, Gentner, Sutter, & Wiegley, 2000). The project focused on the creation of a robust 

system that would encourage repeated user visits, and it was accessed by more than five 

thousand machines during its continuous 6-month run from 1994 to 1995. In 2000, Saucy and 

Mondada built a system through which users could drive a robot around a maze environment 

from an open web page, controlling the position of the robot and the orientation of an overhead 

camera (2000). One year of usage data from the system was collected and analyzed for user 

behavior patterns. Brady and Tarn conducted research into methods of dealing with the varying 

latency that characterizes internet robot control (2002). 

More recently, researchers have begun using web-based robot control systems to aid in 

machine learning. Due to the importance of large sets of data in machine learning, much effort 

has been applied toward increasing the size of LfD training datasets by increasing the number of 

users participating in user studies. For a typical robot learning study, this can be difficult, as the 

robot, for cost and safety reasons, is usually confined to a specific laboratory. To conduct user 

studies, researchers typically must bring nearby subjects into the lab one at a time, a process that 

requires significant time for both the subjects and the researchers and limits the total number of 

subjects that can participate. Through the use of a web interface for robot control, human 

subjects from around the world can log on at their convenience and control the robot. This would 

allow for a greater number of teachers to contribute to the training data in the same amount of 

time, likely increasing the comprehensiveness of the data. Furthermore, if the robot is capable of 

operating and repeatedly completing the task without researcher supervision, training of the 

robot can occur at any hour, without taking up the time of the researchers. If enough users can be 

found to participate in the study, such a system presents the opportunity for much more extensive 

data to be captured and thus far greater LfD performance to be achieved. 

Crowdsourcing of robot learning data collection has been attempted in several studies in 

recent years, and has been approached from multiple angles. A study conducted by Crick, et al. 
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involved more than one hundred users training a robot to navigate a maze via a web-based 

interface. The study, which used decision tree learning, focused on improving LfD by more 

closely matching the perception of the world that humans use to make decisions in 

demonstrations with the sensory perception that the robot is limited to (Crick, Osentoski, Jay, & 

Jenkins, 2011). The Robot Management System, a general framework for integrating 

crowdsourcing with human-robot interaction, provides a web-based robot control interface, as 

well as features to support user study tests and the ability to interface with either physical robots 

or simulation (Toris, Kent, & Chernova, to appear). 

The primary benefit to crowdsourcing the collection of training data is that, when a 

sufficient number of users are involved, large sets of data can be collected without an excessive 

or impossible time commitment on the part of each user. One of the chief difficulties of this 

approach can be finding enough users to participate in a study. A solution to this that has been 

explored in many recent crowdsourcing ventures is the paid micro-task market. These markets 

allow individuals to complete very small tasks, generally taking no more than a few minutes to 

complete, in return for small monetary rewards, typically only a few cents to a few dollars. The 

most well-known paid micro-task market framework is Amazon’s Mechanical Turk, which has 

been used for a wide variety of applications. One previous application of this framework in robot 

learning dealt with grasping objects of unknown shapes. To accomplish this, the robot requested 

information from the crowd at key steps in the process, using Mechanical Turk to crowdsource 

such subtasks as image labeling, object clustering, and model selection (Sorokin, Berenson, 

Srinivasa, & Hebert, 2010). While monetary incentive can be an effective means of obtaining 

users for an LfD study, it can be costly, and it does not necessarily motivate users to train the 

robot as effectively as they could. An alternative is to make the task of training the robot 

inherently enjoyable, thus motivating users to complete the task often and work to provide the 

best training data that they can. 

2.2 Demonstrator Motivation 

 Learning from demonstration studies usually focus on learning algorithms, the structure 

and content of the data collected, or the method of collecting data. There are very few papers 

which focus on the engagement of the human participants. However, human engagement is an 

area which has been studied broadly in psychology and in the field of video games. A popular 
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theory in psychological studies is Self-Determination Theory (SDT). This theory classifies 

motivation into two distinct groups: intrinsic motivation and extrinsic motivation. Intrinsic 

motivation stems from the desire to do a task because it satisfies the basic psychological needs 

for competence, autonomy, and relatedness, whereas extrinsic motivations come from outside of 

the task itself, such as monetary rewards, punishments, or self-esteem pressure. According to 

Przybylski et al., intrinsic motivation has many benefits over extrinsic motivation, including 

more effective and creative completion of the task (Przybylski, Rigby, & Ryan, 2010). 

Cognitive Evaluation Theory (CET) is a subset of SDT which looks at the effects of 

extrinsic rewards on intrinsic motivations, focusing mainly on how such rewards satisfy the 

needs for competence and autonomy. These two needs can come into conflict when rewards are 

given. For rewards to affect intrinsic motivation, they must occur during or as a result of 

engagement with the task they are meant to be motivating. Intrinsic motivation is hindered when 

a reward is seen as a controlling behavior because it works against satisfying the autonomy need. 

It does not matter whether the reward is given as a result of participation or of success. This 

applies to most extrinsic motivations. However, if the reward is given only when the user has 

displayed some feat of skill, the need for competence is satisfied and intrinsic motivation is 

enhanced. For maximum intrinsic motivation, skill must be recognized in a way which does not 

hinder the participant’s feeling of autonomy. A verbal example of this from Deci is the 

difference between saying "I haven't been able to use most of the data I have gotten so far, but 

you are doing really well, and if you keep it up I'll be able to use yours," which was seen as 

controlling, and “Compared to most of my subjects, you are doing really well,” which was seen 

as informational (Deci, Koestner, & Ryan, 1999). The controlling reward boosted intrinsic 

motivation less than the informational one. Sometimes giving a reward can lower intrinsic 

motivation after the task is complete because the participant reflects on his actions as being 

controlled by his desire for the reward. Offering a reward for a task can cause disinterest because 

participants are accustomed to being bribed to do uninteresting tasks. 

Applied to video games, these theories provide some insight into why good video games 

are so effective at engaging players. Fun is a strong intrinsic motivation, and many game 

elements are good at satisfying the psychological needs on which intrinsic motivations rely. 

Balance between boredom and frustration provides ludic tension (Denis & Jouvelot, 2005). 

However, for non-game applications, adding game-like elements cannot effectively enhance an 
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application which does not already have engaging underlying interactions (Liu, Alexandrova, & 

Nakajima, 2011). It is important to avoid amotivating pitfalls such as a lack of interactivity. 
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3.0 Design Choices 
 Before building and implementing the system, the project team spent significant time 

designing and planning. During this period, a number of key decisions were made to shape the 

course of the project. Several matters of design were considered, and many infeasible or 

suboptimal ideas were discarded. This section details several of these choices, discussing ideas 

that the team considered and the reasoning behind the final decisions that were made.  

3.1 Machine Learning Algorithm: Decision Trees 

As machine learning was a central focus of this project, one important early consideration 

was the choice of machine learning algorithm to use in training the robot. In making this 

decision, several techniques were considered for handling mappings of world states to robot 

actions. The algorithms considered include k-nearest neighbor, Gaussian mixture models, 

decision trees, neural networks, hierarchical task networks, and reinforcement learning. In the 

end, decision trees were chosen as the primary learning algorithm, due to several key properties 

that they possess. Firstly, decision trees, more than the other algorithms that we considered, 

could easily represent their policies in a human-readable format. For any action that the robot 

took from its learned behavior, researchers could follow a visual representation of the tree from 

the root to a leaf to understand the logic behind choosing the particular action. Another important 

advantage of decision trees was their ability to natively handle mixtures of discrete and 

continuous state data, which are common in many robotics tasks. Finally, decision trees could be 

computed from training data relatively quickly. This was desirable, as it allowed the robot to 

continue to improve its learned behavior as more data continued to arrive via the web-based 

system. It also allowed the robot to quickly change its training data set on demand, allowing for 

comparisons between behaviors learned from a single user and those learned from the synthesis 

of all users’ data. Taken together, these three properties made decision trees especially suitable 

for our project. 

 

3.2 Machine Learning Library: Waffles 

The next important decision to make regarding machine learning was the library to use as 

the starting point for this project’s machine learning code. As so many general-purpose 

implementations of common learning algorithms were widely available, it would have been a 
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waste of effort to write an algorithm from scratch as a part of this project. On the other hand, it 

was important to select an open-source library, in case the algorithm needed to be modified to 

include functionality for combining data from multiple users and filtering this data based on the 

success with which users completed the task. To meet these needs, the following five open 

source machine learning libraries were investigated and considered: WEKA
2
, Waffles

3
, dlib ml

4
, 

MLC++
5
, and Shark

6
. Ultimately, the Waffles library was chosen, as it was the only one of the 

five that possessed all three of the ideal characteristics examined in making the decision. Firstly, 

it was written entirely in the C++ language, and was easy to access directly from other C++ code. 

This was useful, as C++ was also the language used for the software that controlled the basic 

functionality of the robot, simplifying the process of interfacing the two components. 

Additionally, Waffles was found to be very simple to set up and use immediately, remaining 

relatively lightweight and user-friendly. Finally, it supported a wide range of learning 

algorithms, including decision trees, the technique decided upon for the project. To ensure that 

Waffles would be capable of interfacing with the robot and performing the desired functionality, 

a test program was written to exercise some of Waffles machine learning demonstration code 

from a ROS node. This was accomplished very easily, and the experience indicated that Waffles 

would be quite easy to use with the project’s existing software. 

3.3 Choosing a domain 

Whack-a-mole was chosen as the task for the robot to learn, but several other domains 

were also considered. Several ideal properties were weighed:  

 The task must be easily autonomously resettable. Manually setting up each test 

would be very time-consuming and would make unsupervised studies impossible.  

 As with any project, cost and complexity were limited.  

 The task should be intrinsically fun and engaging for humans. Although it would 

be interesting to attempt to make an inherently boring task more engaging, that is 

not the primary focus of this project.  

                                                 
2
 http://www.cs.waikato.ac.nz/ml/weka/ 

3
 http://waffles.sourceforge.net/ 

4
 http://dlib.net/ml.html 

5
 http://www.sgi.com/tech/mlc/ 

6
 http://image.diku.dk/shark/sphinx_pages/build/html/index.html 

http://www.cs.waikato.ac.nz/ml/weka/
http://waffles.sourceforge.net/
http://dlib.net/ml.html
http://www.sgi.com/tech/mlc/
http://image.diku.dk/shark/sphinx_pages/build/html/index.html
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 The state space must be large enough that a single person cannot exhaust all of it 

quickly, but not so large as to be intractable. A feature space of three to ten mixed 

continuous and discrete features would be sufficient.  

 Learning behaviors for the task should not take so long as to outlast the user’s 

patience. Showing the user the behavior which the robot learned from his 

demonstrations could be engaging if it takes no more than a few seconds.  

 The task must not be too susceptible to lag. Because the studies were to be done 

online, lag was unavoidable. An extremely time-sensitive task would suffer from 

this.  

 The state of the task needed to be easily determinable. A domain with an 

uncertain state would have more noise in its state-action pairs, potentially 

interfering with learning. This may be interesting to study, but is outside the scope 

of this project.  

 The theme and content of the task had to be family friendly. An overly violent or 

obscene task, aside from being unprofessional, would send the wrong message 

about robots and limit potential participants.  

 Ideally, the task would have some useful application. Teaching the robot a task 

with real-world value would be better than having it learn some task with no use 

outside of a learning study.  

 The lab area reserved for the robot was eight feet wide by eleven feet long, so 

whatever system was built needed to fit within that space.  

 The robot’s gripper had a very limited range of two inches, so the task needed to 

limit reliance upon the gripper.  

 The robot’s arm had five degrees of freedom, and its software did not have a 

perfect solution to the inverse kinematics of this arm.  

 The task had to be safe for the robot, bystanders, and lab equipment.  

 Allowing users to have full control over the robot could lead to unwanted 

damages, especially in the case of a malicious user, so the task had to allow for 

restricted or filtered control of the robot so that it would always behave safely. 

 Finally, a task which had some benefit to using the physical robot over a 

simulation would take advantage of the availability of the robot. 
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Considering subsets of these constraints, several candidate tasks were proposed. More 

traditional machine learning domains such as chess and the 24-game were dismissed early 

because they were not interesting enough for the user and too difficult for the robot to manipulate 

reliably. Maze navigation was considered, but size constraints would prevent the construction of 

a maze large enough to be interesting for the robot to learn to navigate. A system by which 

different mazes could easily be configured was considered, but such a system would be more 

suitable for transfer learning studies than for learning from crowd-sourced demonstration studies. 

Furthermore, manual placement of the robot at the beginning of each session would be necessary 

in a maze navigation task if the same start and end positions needed to be studied multiple times, 

unless some clever solution were implemented. Carnival game-like tasks were then proposed. 

The three most promising were an offshoot of pachinko or pinball, a shooting gallery, and 

whack-a-mole. 

In pachinko, players bet on where a ball will land after it has been launched onto an 

inclined plane with numerous pegs. The pachinko offshoot would have involved turning knobs 

and levers to adjust obstacles on the inclined play board with the goal of guiding a ball to a 

certain target position. When the obstacles were ready, the ball would be launched onto the top 

of the board. The state of the objects would affect the likelihood of paths the ball could take. 

There would be different goal positions that could activate at different times. The robot would 

have to learn optimal obstacle configurations for each goal position and timing considerations for 

manipulating the levers and knobs. Though this could work from a learning perspective, it would 

be difficult to build reliably, difficult to simulate with fidelity, and it may be difficult for the 

robot to manipulate the knobs. The main advantages of this task were that it would not require 

any manual reset, it would take up a fairly small space, and it would not be affected by lag. 

The shooting gallery task would have involved one or multiple tracks lined with hinged 

targets. The robot would be able aim and to fire ping pong balls at the targets to knock them 

down. The tracks would rotate, causing the targets to move. The targets could be actuated in 

some way so that a controller could choose when each target should be up. The track speeds 

could be modulated. This would be difficult to build robustly, it might be difficult to get the 

robot to aim successfully, it would suffer greatly from lag, it could be difficult to ascertain the 

state, and it would have a lot of continuous features in the state space, making learning 
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potentially intractable. Furthermore, it would be putting a gun-like object under the control of a 

robot, which could make many people quite uncomfortable.  

Whack-a-mole would place the robot in front of an array of holes, out of which fake 

moles would occasionally pop up. The robot would be equipped with a hammer, which it would 

use to whack the moles. A whacked mole would immediately retreat back into its hole. A mole 

not whacked would stay up for a fixed amount of time before retreating back into its hole. 

Whack-a-mole as a domain fit the project’s constraints better than any proposed alternative. It 

was fairly simple, so building it was feasible. Its set of possible state spaces and sets of actions 

were very manageable while still being flexible enough to be interesting. It was simple and 

familiar enough for users that they would not have much difficulty learning to play it, but 

complex and nuanced enough that they would have fun playing it. It would be a little bit 

susceptible to lag, but less so than the shooting gallery. It was slightly violent, but it was more 

like cartoon violence than actual violence. There were many ways to make it more interesting if 

the need should arise. 

3.4 Whack-a-mole design 

Once whack-a-mole was chosen for the domain, the team still needed to make a number 

of decisions regarding the shape of the game. This section details considerations for the game’s 

layout, web interface, game structure, and motivational features. 

3.4.1 Layout 

In a traditional whack-a-mole game, mole holes are laid out in a three by three square 

grid. However, this was not necessarily the best layout for the purposes of this project. The ideal 

layout would provide an interesting set of actions for the robot to perform while being easy for 

users to understand and interact with. The layout also had to satisfy some physical constraints. 

The robot’s reach and the area the game could fill were limited, and the number of mole holes 

had to be few enough that it would be feasible to build. 

For a given layout, there are two distinct types of action sets which could be used. The 

actions could focus more on the moles or they could focus more on the specific motions of the 

robot. If the focus fell on the moles, there would be one action for each mole, and the specific 

motions of the robot would be pre-programmed into the action, such as driving to a position 

within reach of the mole, moving the arm to a position above the mole, and whacking the mole.  
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This type of action set would be simpler for users to input, but they may not be able to easily 

predict how the robot will move to hit the moles they select. The other style of action set, 

focusing on specific robot movements, would contain actions such as driving to different 

positions, moving the arm to different positions, and whacking the currently targeted mole. 

While it is possible to have actions as granular as turning the arm by degrees, anything less 

discrete than a few preset positions would interfere with the learning and perplex users. This 

style of action set is slightly more complicated, but users would know exactly what the robot 

would do when they selected each action. There are various sets of actions that lie between these 

two styles. 

 Some layouts considered were the traditional three by three layout, a single long strip of 

moles, multiple disconnected areas with several moles each, and two rows in an isosceles 

trapezoid.  

Figure 3 - Traditional 3x3 mole layout 
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The traditional layout, depicted in Error! Not a valid bookmark self-reference., was 

most suited for a stationary robot whacking each mole by moving only its arm. This would allow 

users to click on any mole through the web interface and cause the robot to hit it without any 

ambiguity in the actions it would take, but the constraints of the robot’s arm would have made 

this difficult.  

 

The long strip of moles, as depicted in Figure 4, would have allowed the same simple and 

unambiguous mole selection, and moved the work from the robot’s arm to its base. However, to 

achieve a large enough state space, there would need to be several moles. As the number of 

moles increased, the single strip of moles would quickly become larger than the physical 

constraints allowed.  

Figure 4 - Long strip of moles layout 

Figure 5 - Disconnected areas mole layout 
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Having multiple disconnected areas of moles, as seen in Figure 5, could be especially 

interesting if moles outside the closest area could not be seen, but this might have made the state 

space too complex. This may also have introduced additional difficulties in navigation. 

 

Figure 6 - Isosceles trapezoid mole layout 

The layout which was chosen had seven moles in two rows, forming an isosceles 

trapezoid, as seen in Figure 6. There were four moles in the close row and three in the far row. 

This layout was especially interesting because the middle two close moles, outlined with dotted 

circles, could each be reached from two different robot and arm positions, from the left and from 

the right. For actions, a set in between the two styles was chosen. The robot could whack any of 

the three moles within reach or move to one of the three discrete positions.  

3.4.2 Web Interface 

 The technology upon which the web interface would be built was decided upon from the 

very start. RMS was used because it had already been implemented with the robot before the 

start of this project. There were a number of decisions to make for the web interface, including 

how to display the robot and the state of the game, how users would control the robot, and how 

to handle multiple users in the case that more than one person wanted to control the robot at a 

time. 

 Making the interface visually appealing was left to the details and polish of the 

implementation, but the content of the view was considered at this time. The available options 

were to have one or several webcams show the robot and the moles, to display a virtual 

representation of the robot and moles, or both. For a game, completeness of information is 

important for prevention of unwanted player confusion, unless incompleteness of information 
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enhances or is specifically required by the mechanics of the game. This ruled out overhead 

cameras because the state of the moles would be difficult for players to determine. It also 

dismissed a view from behind the robot because the robot would occlude the view of the moles. 

A camera position looking down on the robot from the side was chosen because it minimized the 

occlusion of moles from the robot without being too high to clearly see when moles popped up. 

It was decided that an additional virtual display of the state of the game would be added if the 

webcam view proved insufficient. 

 The options available for the controls of the interface were to allow users to directly click 

on moles, to click on virtual buttons corresponding to robot actions, or to map key-presses to 

robot actions. Clicking on moles was simpler and more direct than clicking on isolated virtual 

buttons, but it proposed the added difficulty of overlaying buttons or other visuals with the 

proper affordances onto the video stream so users would know where they could click. This was 

deemed to be feasible, however, and isolated buttons were judged as too confusing, especially 

for new users. While keyboard controls could enable expert players to play slightly more 

quickly, they would be much less intuitive than mouse controls. For this reason, the input system 

chosen for the game consisted of using a mouse to click buttons overlaid on the moles. 

 This project aimed to gather data from many people, and it was possible that several 

people would want to participate in an online study at the same time. Because there was only one 

robot, time had to be divided between the users in some way. The typical way of dividing time 

has users sign up for a time on a schedule of available time slots. This is a clean and simple way 

to do it, but if someone cancels or otherwise does not attend their scheduled time, that time is 

lost. It would be possible to ask the user scheduled for the next time slot if he wanted to take the 

earlier slot, but there is no guarantee that the lost slot could be filled. An alternative would be to 

have a queuing system much like that of a restaurant. Users would have access to the robot in a 

first-come, first-served fashion. More formally, this would be a first-in-first-out queue. They 

could be told how many users were ahead of them in the line, or given an estimate of how much 

time they had left. If a person closer to the front of the line canceled, the rest of the line would 

simply move up without the system having lost a time slot. A third option would be to have a 

competition between users playing in simulation and give the next slot to the one with the 

highest score. For this project, the second option was chosen, and a queue was created to allow 

users to play on a first-come-first-served basis. 
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Another question related to what should be done with users who were waiting for a turn 

on the robot. Several options were available: the waiting users could be ignored until their time 

came to control the robot, at which point they would be notified; they could look at their own 

play statistics or the statistics of others, including a high score table; they could watch the user 

currently in control of the robot; they could play a simulation of whack-a-mole; or they could 

watch a simulated robot play whack-a-mole using behavior learned from user demonstrations. 

Creating the simulation of whack-a-mole was deemed outside the scope of the project, and it was 

decided that the best way to understand how the game works was to watch others play. For these 

reasons, each user waiting for a turn was able to watch the current game, with overlays on the 

video feed showing the estimated time until his turn. Users were later able to check their play 

statistics and the high score table, but not while waiting in the queue. 

3.4.3 Game structure 

For the structure of the game, the two main options considered were endless sessions 

during which the difficulty steadily increased and fixed-time sessions. Endless sessions might 

have been more interesting and would have facilitated a larger range of high scores, but knowing 

exactly how long each user will spend in each session made scheduling fixed-time sessions 

easier. 

Traditional whack-a-mole has only one type of mole that pops up. This works acceptably 

for traditional whack-a-mole because it can work on very small time scales, pushing the limits of 

human reaction time. Because of lag and the speed of the robot, these time scales are far too 

small for a remote-controlled robot web interface. To keep the game interesting for users at these 

larger time scales, two mole types were used: good moles and evil moles. Hitting an evil mole 

would be rewarded and hitting a good mole would be punished. The reward would be given as 

points. Two options for the punishment were considered: losing points and accumulating strikes. 

After accumulating too many strikes, the game would end in early failure. Losing points that 

have been earned can be somewhat demotivating, and has a weaker effect than an early failure, 

but an early failure could interfere with fixed-time gameplay sessions. For this reason, losing 

points was chosen as the punishment for hitting a good mole. To give the punishment more 

weight, the number of points lost when hitting a good mole was set to be several times the 

number gained from hitting an evil mole. Missing an evil mole was not explicitly punished 

because there are many possible states in which it is impossible for the robot to hit every mole. 
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To further increase the fun of the game, different ways of modulating the difficulty were 

considered. Typically, whack-a-mole games increase difficulty by making the moles pop up and 

down faster as the game progresses, and making more moles pop up at a time. Adjusting the 

mole speeds could interfere with the robot’s learned behavior, so it was ruled out. Modifying the 

configurations of moles presented, however, was promising. In addition to increasing the number 

of simultaneously-appearing moles, moles which were far apart could pop up more often, and the 

frequency of good mole appearances could increase. Mole configurations which had fewer 

recorded data could be more likely to appear, speeding the coverage of the state-space. Mole 

point-values could also change, but this would have been difficult to communicate to the user 

effectively and would have required more information in the learning’s feature space. The mole 

configuration could go through preset sequences to convey different ideas. For example, the 

game could be briefly limited to bring up only one mole, but it could quickly move between 

different holes as a sort of boss mole. Another idea was inspired by Space Invaders, where evil 

moles would start appearing from the top and move their way to the side and down. Yet another 

idea involved moles quickly moving from one side of the mechanism to the other to indicate that 

they were passing by. Finally, a wave sequence was considered as a reward for players who 

achieved the highest score of the day or otherwise deserved something nice. These preset 

sequences, however, were largely ruled out because the return on time investment was estimated 

to be much smaller than modifying the methods of randomly popping moles up. 

Increasing the difficulty at all would only serve to frustrate and confuse users if the fixed-

time sessions were very short. The robot should be able to whack several moles at each 

perceived level of difficulty before the next appears. This provides a lower bound of at least a 

few minutes per fixed-time session, depending on the speed of the robot, if difficulty is to be 

ramped increased over the course of each session. Alternately, sessions could be shorter and 

players could choose difficulty at the start. This would allow them to unlock higher difficulties 

over time, if the range of possible difficulties allowed it. This difficulty unlocking would 

increase the chance for users to return to play again after stopping, if they had not yet unlocked 

all existing difficulty settings. 

3.4.4 Motivational Aspects 

 There were various considerations for how to tailor the system to maximize the amount 

of data received. To make it as easy and enticing as possible for users to start playing the game 
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for the first time, account creation needed to be as easy as possible. Ideally, users would be able 

to play without creating an account. However, this would have made analyzing the motivational 

features impossible. The smallest set of required data was a username, for identifying the user, 

and a password, for protection. Any additional data could be set after registration.  

An ideal to strive toward was for the game to be fun or interesting enough that players 

suggest it to their friends. If this were achieved, the number of players would grow naturally. 

Users could also be gathered in the usual ways: posting links to the game on various web pages 

and forums; sending emails to students, game writers, and friends; more traditional paid 

advertisement; and setting up Mechanical Turk HITs.  

The system would ideally be interesting enough that users would want to play again after 

their first time. One step toward achieving this would be to have some longer-term arc of 

progression which could not be completed in a single play. This could take the form of typical 

extrinsic motivators such as achievements or other unlockables, a high score table, a storyline, or 

various information displayed to the user, such as state-space coverage or number of evil or good 

moles hit. Because motivation can be so difficult to predict, it was decided that several of these 

options would be tried and compared against each other. The largest and most time-consuming 

of these was to be a progression of different levels. Each new level would introduce a new game 

mechanic and expose more of a story involving moles and the robot. Because the constraints of a 

physical system were very limiting, it was decided that many of these new mechanics would be 

virtual. 

A progression of ten levels with a corresponding pun-filled storyline was originally 

proposed: 

Level 1: The Mole Menace 

Mechanics:  Standard Whack-A-Mole game 

Story: None written. 

 

Level 2: Siege of Moleville 

Mechanics: Any mole-holes which would have normally been empty are filled 

instead with good moles. 

Story: The evil moles have mounted an attack on a peaceful mole village. Stop them, 

but make sure not to hit the civilians! 

 

Level 3: The Early Mole Catches the Worm 

Mechanics: Virtual worms appear in the ground which can be clicked and dragged 

onto moles. Feeding a worm to a mole causes the mole to stay up a few seconds longer. 
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Story: The mole menace continues across the land, but a new discovery has been 

made. Moles love to feed on worms! Feeding worms to moles will keep them from popping 

back into the ground for longer periods of time, giving you more time to whack them. 

 

Level 4: Molercycle Chase (moles fly past from right to left) 

Mechanics: Instead of the moles appearing randomly as they normally do, they 

appear starting on the right side and quickly switching between holes toward left. 

Story: The brilliant scientist Dr. Mole von Mole has reportedly discovered a secret 

weapon to aid in the fight against the evil moles. Unfortunately, an evil molercycle gang is 

racing toward his lab. You have to stop them and get there first! 

 

Level 5: The Mole Doctor's Secret Weapon 

Mechanics: A virtual laser mechanism can be charged up with the mouse and fired 

at any mole hole, instantly whacking it. 

Story: Dr. von Mole has developed the latest in mole-whacking technology: The 

Whack-o-LASER. Pick up batteries to charge the LASER. When fully charged, it can be 

fired to instantaneously whack moles from long range! 

 

Level 6: One Small Step for Mole 

Mechanics: Both worms and lasers 

Story: The good Doctor has been hard at work developing a cure to the spreading 

disease that has turned moles to evil around the world. Now he needs only to spread this 

antidote. He planned to launch the cure into space in his rocket ship, and scatter it down 

around the world. Unfortunately, there was a mole in his organization: the plans were leaked, 

and the evil moles are bearing down on the launch site. There is no time to launch the rocket, 

but you must hold off the attacking moles long enough for the doctor to escape with the cure. 

 

Level 7: Slow Mole-tion 

Mechanics: Virtual mini-moles tackle the robot. While a mini-mole is clinging to the 

robot, it moves more slowly. These must be shaken off with the mouse. Also, evil moles do 

not pop up near the robot. 

Story: Many of the evil moles have been getting increasingly clever. You are tasked 

with taking out a particularly dangerous group of moles that have learned to avoid the robot. 

To make matters worse, the moles have begun to use their superior numbers to slow  you 

down. Drag the mini moles off of the robot, or they'll drastically slow you down. 

 

Level 8: Invader Moles from Space 

Mechanics: Instead of the normal random mole configurations, moles appear in the 

top-left hole and move to the right, then move down and switch directions, like Space 

Invaders. Every mole must be whacked before it reaches the bottom-left hole. Worms and 

the laser are also present. 

Story: Despite your best whacking efforts, the evil mole disease has spread over 

nearly the entire world. Dr. Mole van Mole and the remaining good mole survivors have fled 

to the last remaining safe place: Mole-agascar. Unfortunately, the evil moles have found a 

way to reach the island: in the rocket ship they stole. Stop these invader moles from space, as 

they parachute down to earth. Stop them from reaching the bottom left for at least 2 minutes, 

or the good moles are done for. 

 

Level 9: Fall of Mole City: 

Mechanics: Empty holes are filled with good moles, evil moles do not pop up near 

the robot, and worms, lasers, and mini-moles are all present. 
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Story: The attacking moles have reached the gates of the last major mole settlement: 

Mole City. Use every weapon in your arsenal to hold them off as long as you can. Dr. von 

Mole only needs a little more time to deploy the cure. 

 

Level 10: Moles' Last Stand 

Mechanics: Moles flip between good and evil at a fixed rate. The laser and mini-

moles are also present. 

Story: The end is near! The evil moles have pushed through the city and have 

surrounded Dr. Mole von Mole's new laboratory. You can't stop them all alone. But it's not 

over! Your heroic actions have inspired the good moles to fight back! This is where robot 

and mole make their last stand! As the good and evil moles are locked in combat, you must 

tip the scales and save the mole world! 

 

 

It was determined that ten levels would be too many. If each level were two minutes long, 

that would be asking players to spend more than twenty minutes on the game. Depending on how 

long the queue waits were, that could be as long as an hour to beat the game. Even that assumes 

the player beats each level on their first try. This was unreasonable, especially for a game on the 

web, where attention spans are very short. Furthermore, this progression of levels had a 

somewhat sparse introduction of new mechanics, which risks losing players’ interest. To shorten 

the levels and condense the introduction of new mechanics, several levels were merged together, 

and a few were cut. 

Levels four and eight relied on special sequences of moles rather than random 

configurations. This did not seem to fit well with the rest of the game, and would have been more 

difficult to implement than the changes in random mole configurations, so those two levels were 

cut.  

It was noticed that the mechanics of levels two and three were very good for each other. 

That is, the increased frequency of good moles would encourage players to use the worms more 

strategically. Therefore, those two levels were combined. 

Level seven seemed to be fairly good as it was because its two mechanics complemented 

each other in the same way that those of levels two and three had. However, there was little point 

in introducing worms in one level just to take them away the next level, so worms were added to 

levels seven and ten. This was expected to make those levels more strategic and give players 

more options for play style. For the same reason, mini-moles were added to level six. Level five 

was cut because introducing the laser without any other mechanics did not seem very interesting. 
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The moles avoiding the robot on level nine was deemed excessive. Too many other 

mechanics were present in that level already, so the mole behavior was returned to normal in that 

level. 

The mechanic of the laser would have been too powerful and would have required too 

little thought from the player. A few options were considered, such as limiting the number of 

uses or only allowing the laser as a rare power-up, but these did little to fix the problem. Instead, 

the behavior of the laser when fired was changed to actually increase its power, but also to 

increase its situationality. Instead of being able to fire at any individual mole, the laser would fire 

at an entire row of moles. Because friendly moles were worth negative three points, this meant 

that firing a laser at a row would only benefit the player if that row had no friendly moles in it. 

This restriction severely limited the laser, but a strategic use of worms could circumvent that 

restriction by keeping evil moles up until all friendly moles went down, allowing for very high 

scores. 
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4.0 Methodology 
This interdisciplinary project involved work in several different areas. This section 

describes each of the major tasks that were completed as part of the project. Topics include 

hardware design and construction, robot control software, web development, machine learning 

implementation, and game design. 

4.1 System Overview 

 

 

Figure 7: Block diagram of the complete system 

Figure 7, above, shows a block diagram of the overall system created for this project, 

which consists of four primary components. The first component, the web interface, is 

responsible for communicating with users. Through the web interface, users may control the 

robot in playing the game of whack-a-mole, generating action commands when various buttons 

on the interface are pressed. The web interface is also responsible for displaying a camera feed of 

the robot and the whack-a-mole setup to show users the state of the game as they play, and for 

displaying game statistics and other information. The second component of the system, the 

server, is the piece that ties the entire system together and controls the main flow of logic 

through the system. The server is responsible for passing along commands to and from the web 

interface, robot, and moles. Additionally, the server contains all of the logic that runs a game of 

whack-a-mole, and it also handles all of the learning algorithms and management of state-action 

pairs. The third component, the robot, is responsible for moving back and forth in front of the 

whack-a-mole setup, rotating the arm to the appropriate orientations, and whacking the moles. 
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The robot selects which actions to execute by querying the server, which determines the action to 

perform from either the web interface or the learning algorithm, depending on whether the robot 

is playing autonomously or not. The final portion of the system, the moles, consists of seven 

mole mechanisms, each with a friendly mole, an evil mole, and a servo. The seven servos are 

controlled by an Arduino microcontroller, which receives commands from the server indicating 

when to raise and lower each mole. 

4.2 Building the Mole Mechanisms 

The physical whack-a-mole setup created for this project is made up of seven self-

contained mole mechanisms laid out in the shape of an isosceles trapezoid. Each mechanism is 

associated with a particular mole hole and is responsible for controlling the evil mole and the 

friendly mole that pop up in that hole. Several iterations of design, prototyping, and testing were 

involved in the creation of the final mole mechanisms. 

 

Figure 8: Full Whack-A-Mole setup 

 The first step in designing the mole mechanisms was to determine the method by which 

the moles would be actuated. In traditional whack-a-mole type games, moles typically move 

linearly up and down in circular holes. Unfortunately, linear actuators such as solenoids were 

found to provide less range for much greater costs than rotational actuators such as servomotors. 

More importantly, linear actuation systems do not lend themselves as well to this project’s 

version of whack-a-mole, due to the need for two different moles to occupy each hole. Though 

design ideas were proposed that would allow for this behavior, they were all deemed too large, 

too costly, and less robust. Instead, it was determined that a motor should be used to actuate each 

pair of moles. This allows each mechanism to easily spin up either type of mole by rotating in 

the correct direction. Figure 9 shows an early sketch illustrating this concept. 
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Figure 9: Illustration of mole mechanism behavior 

 Once the general concept for a mole mechanism was decided upon, a proof-of-concept 

prototype was put together to show that rotating moles into position was both feasible on a 

reasonable budget and capable of creating the necessary range of motion in limited space. After 

this test proved successful, a more detailed prototype was created. The moles were mounted on 

wooden mounting bars rotating about an axle. Though the plan was for the robot to only gently 

whack the moles, there was a concern that it could whack too forcefully if out of alignment. To 

mitigate risk of damage to the servo in this situation, the servo was mounted to the side of the 

axle and connected to it with a pair of pulleys and a belt. This initial prototype, shown in Figure 

10, was designed to allow for either a rubber band or a string to be used for the belt. The entire 

mechanism was mounted in a wooden frame consisting of a plywood base and two 2x4s to hold 

the axle. The pulleys were created using a 3d printer and contained holes for mounting directly to 

the mole bars and servo.  
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Figure 10: Initial mole mechanism prototype 

Once completed, this prototype was tested for robustness to determine whether it could 

run successfully for the long periods of time that the whack-a-mole game required. This test was 

conducted by programming an Arduino microcontroller to spin the servo back and forth 

repeatedly. The mechanism was left running for an entire night in front of a webcam, which 

automatically took a picture of the mechanism in the same position every minute. These pictures 

were used to measure the change in angle of the popped-up moles over time to determine 

whether they had become misaligned. When testing this first prototype, it was found that most of 

the mechanism worked reliably, but that neither the rubber band nor the string could function as 

an effective belt for long periods of time. The rubber band would lose traction on the pulleys 

over time, allowing the moles to slip. The string worked well at first, because it remained tied to 

the pulleys, but it would come loose over time and was tedious to fix. 

The issues with the prototype that this test demonstrated were used in the creation of 

further prototypes. Due to the limitations of the rubber band and the string, the pulleys were 

redesigned to use a timing belt. The team went through several iterations of these pulleys to get 

all of their alignments with the other components correct. 

The final prototype used acrylic servo mounting plates and wooden mole mounting bars, 

both cut with a laser cutter, in addition to the 3d-printed pulleys. To increase stability, 4 
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additional wooden legs were added to each mechanism’s frame, which contained a thick 

plywood base and a thinner wooden cover with a slot cut out for the moles to pass through. A 

photograph of this mechanism can be seen in Figure 11, and the CAD models used to create 

some of its components are shown in Figure 12. 

 

Figure 11: A finished mole mechanism 

 
Figure 12: CAD models of select final prototype components 

 The new prototype underwent the same testing as its predecessor, but was found to work 

much more robustly. The timing belt eliminated almost all of the slop in the system, and was also 
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very easy to adjust. Once the prototype had passed the testing, six more identical mechanisms 

were created. These seven mechanisms were placed adjacent to each other to form the final mole 

setup. A green carpet, with holes cut in it, was later draped over the mechanisms to cover up 

their inner workings and to simulate a grassy field for the moles. 

 

 Another aspect of the system that needed to be decided upon at this stage was the moles 

themselves. Figure 13, below, shows comparison photos of each of the mole prototypes that were 

tested. The first prototype mole was created out of cardboard, and covered with felt. This mole 

worked reasonably well, but took a long time to create and appeared rather unfinished. The 

second prototype consisted of commercially available stuffed moles. Unfortunately, the only 

stuffed moles that could be obtained in sufficient quantities were too large and heavy to be easily 

lifted by the servos, and arguably too cute to whack. They also would have required significant 

modification to distinguish friendly moles from evil moles. For the third iteration, another 

student offered to crochet custom moles. She made these moles in two different colors, allowing 

the good and evil moles to be easily distinguished. These moles also had the benefit of being 

light and easy to affix to the mounting bars. Due to these advantages, these moles were selected 

for the final design.  

 

Figure 13: Comparison of mole prototypes 

 The servos from all of the completed mole mechanisms were connected to a single 

Arduino RedBoard microcontroller through a servo shield. This shield, with its external power 
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supply, allowed the Arduino to drive all seven servos simultaneously. The Arduino was then 

programmed to control these motors based on inputs sent to it via USB serial communication. A 

ROS node was written to run on the server and handle communication with the Arduino to 

update the states of the moles as determined by the whack-a-mole game logic. 

4.3 Robot Control Software 

 With the mole mechanisms complete, it was time to program the robot’s interactions with 

the moles. The robot needed to be able to drive forward and back to different positions and to 

move the arm in such a way that it appeared to whack the moles. This behavior needed to be 

built upon some version of the ROS drivers for the youBot, as those were provided the most 

convenient and easily available method of controlling the robot. The drivers version selected was 

the ROS Groovy version which the RAIL lab had developed, as that was the most recent version 

at the time this project was started. Also, a member of the project team had helped to develop it, 

so it was more familiar than other versions. 

 To drive back and forth, a ROS node was written which sent command velocities to the 

robot’s base. Although the youBot had odometry which could have been used to dead-reckon its 

position, using it would have been too unstable over long periods of time. Instead, a Hokuyo 

laser range-finder was used to provide feedback and close the control loop for position,as seen in 

Figure 14. The laser had a range of several meters over 180 degrees, and was mounted to the 

front of the robot’s base. A wooden board was placed at the far side of the mole mechanisms, 

allowing the laser to see an obstacle with a known location. By finding the distance between the 

robot and this wall, the robot was able to know its horizontal position relative to the mole 

mechanisms, allowing it to drive to the desired positions accurately and repeatably.  

However, the robot did not always stay at the same vertical distance from the mole 

mechanisms, and it occasionally introduced some rotational error. To fix both of these, a wall 

was constructed in the front of the mole mechanisms to allow the laser to see the nearest border 

of the mechanisms. The first attempt to create this wall involved draping a white cloth sheet over 

the mole mechanisms. However, the sheet was not opaque enough to consistently reflect the 

laser. Next, several long sheets of wood were taped together. This had the advantage of being 

foldable and fully obstructed the laser, but the black duct tape used to hold the wood together at 

the joints was too shiny and caused problems with the laser. To fix this, a less reflective masking 

tape applied on top of the duct tape. Having this wall allowed the robot to find its vertical 
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position relative to the mole mechanisms. The laser simply found the distance to the wall. To 

correct angular error, all of the visible measurements along the wall were used to calculate the 

angle of the wall with respect to the robot. This worked, but had the problem that as the robot 

came closer to the far wall, fewer points along the other wall would be visible for calculating the 

angle. This made it so that the rightmost position occasionally took more time to correct the 

angle than the other positions. The far wall could have been used to calculate angle when there 

was not enough visible space on the other wall, but it was not wide enough to be useful for 

calculating angle. Because of the omni-wheels of the youBot, the robot was able to turn in place 

or while driving. This allowed constant correction of the robot’s complete position and rotation, 

removing any chance of error accumulating over time. 

 

To move the arm, the drivers required a message describing the desired position for each 

joint. The drivers ran PID control on each joint separately, eventually causing the arm to reach 

the desired configuration. No self-collision avoidance was done by the drivers, so care had to be 

taken when choosing desired arm positions. Specifically, the arm had a home position which it 

moved to whenever the robot started. Positions had to be chosen such that the arm would not 

collide with the base at any point along the path from the home position to each other position. 

To make the arm appear to whack the moles, it was estimated that two positions for each mole 

was enough. To achieve a whack motion, the arm was held up in a ready-to-whack position, then 

it moved to a position holding the hammer just above the mole, then it returned to the ready-to-

whack position. Ideally, the speed of the motion would increase until stopping abruptly just 

above the mole to achieve a more convincing whack motion, but this would have been unsafe, 

and stressful for the arm motors. To find reasonable positions, a keyboard teleoperation node 

Figure 14: Diagram of robot position control with laser scanner 
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from the drivers was used which allowed jogging of individual joints. The robot was placed in 

position relative to the moles and the arm was moved manually to each necessary position. The 

positions were judged based on how they appeared in the camera feed. Each arm configuration 

was recorded and entered into the code for a new node which handled the whack-a-mole arm 

positions. This arm contained a small finite state machine which, upon receiving a whack 

command, moved the arm to the corresponding ready-to-whack position first, then down to the 

whack position, then back up to the ready position. By moving to the ready position first, it 

prevented any strange motion which could have occurred if the arm tried to whack a mole with 

which it was not already properly aligned. 

To make these two position nodes handle command messages, they were first combined 

into one robot control node, then callbacks for robot position and mole whack command 

messages were added. These callbacks simply changed the desired position of the robot or the 

state of the arm. This robot control node had a loop which determined whether the current state 

of the robot was close enough to the desired positions, using thresholds that were tuned to 

provide a reasonable balance between response time and stability. When an action finished, a 

message saying so was published. For safety, a boundary was set so that if the robot strayed too 

far from the acceptable positions, all motion stopped. This happened if the robot had been moved 

while it was off, if it ran over an unknown obstacle and was knocked off course, or if an obstacle 

obstructed the laser in such a way as to irreparably confuse the robot’s knowledge of its position. 

At one point about midway through the project, a hardware problem with the robot arm 

arose. It was beyond the team’s abilities to fix, so the arm was sent back to KUKA for repair. It 

was determined that a very basic simulation of the robot would allow development to continue 

while the arm was absent. The positions node was duplicated and all references to the robot were 

stripped out. Every place in the code which waited for the robot to reach its desired position was 

replaced with a timer with a fixed delay. The delays used were estimates until the robot returned 

to full functionality, at which point each delay was set to match the actual robot’s action 

durations as closely as possible. This simulation sped up development significantly even after the 

robot returned to full functionality, and provided much ease of mind to the team when the system 

was publicized. 
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4.4 Server Setup 

 The server needed to allow ROS to communicate with clients remotely, handling 

connections and user accounts. To accomplish this, we used the Robot Management System. 

Installation involved setting the server up as a LAMP (Linux, Apache, MySQL, PHP) server as 

described by the RMS installation tutorial. RMS allowed communication between clients and 

any ROS nodes running on the server by using rosbridge to relay ROS topics and services to and 

from each client through websockets. ROS nodes ran normally on the server and were able to 

treat any messages from the client as if they had been published by another ROS node running 

on the server. Clients connected to the server using a standard web browser. Pages were written 

in PHP and HTML. Pages which required communication with ROS achieved it using a 

JavaScript library called roslibjs, which had equivalents for ROS topics, messages, and services. 

 A vital tool during development and maintenance was PHPMyAdmin, which allowed 

easy communication with the database. This allowed for experimentation with MySQL queries 

and easy visualization of database structure and contents. 

4.5 Basic Whack-a-mole Game 

 This section details the implementation of a playable whack-a-mole game. It covers the 

central logic controlling the game, the web-based robot control, and key website features. Robot 

learning and additional game features are discussed in later sections. 

4.5.1 Core Game Logic 

 All of the core game logic for the whack-a-mole game was handled by a single ROS 

node, the whack-a-mole game node. This node was responsible for determining the states of the 

moles throughout the game and for keeping track of game information such as score and time 

remaining. It also communicated directly with the web interface and the robot control software. 

 The primary task of the game node was to manage the state of each game of whack-a-

mole. When it received a start game message from the web interface, it first ensured that the 

robot was initialized to its starting position. Once the game node received confirmation of this 

from the robot, it would begin the game and start the time remaining countdown. The time 

remaining in the game was published every second, so that it could be displayed to the user on 

the interface, and when it reached zero, the game would end. The game node also tracked and 

published the player’s score, so that this too could be displayed. 
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 While a game was in progress, the game node kept track of the state of each of the seven 

mole holes. These states represented both the time for which each mole had been up and whether 

the mole was good or evil. This information was all captured in an array of seven values. The 

sign of each value kept track of whether a mole was good or evil, while the magnitude kept track 

of the length of time for which the mole had been up. A zero for a particular mole hole indicated 

that the hole was empty, because neither mole was up. The game node published these state 

values at regular intervals, as they were used for generating state-action pairs for learning. When 

a mole popped up or went back down, it also published the states for the Arduino control node, 

which updated the position of whichever mole mechanism had changed. 

 When creating the whack-a-mole game, it was decided that the moles should come up in 

a random fashion, leading to a different game each time. This made for a much better robot 

learning problem, as there was no set solution to the game, and it increased the replay value for 

human players. During a game, the game node is responsible for randomly determining whether 

each mole pops up in a given iteration of the game loop. Each mole that is not already up has a 

set probability of popping up, with a chance of appearing as either a good mole or an evil mole. 

These probabilities are easily modified to allow tuning of the flow of the game. If not whacked 

by the robot, each mole will then stay up for a fixed amount of time before going back down. 

 One problem was occasionally encountered with this system, in which a mole would 

appear not to go down, or would immediately switch types of mole, because the mole would 

come back up immediately after going down. This issue was fixed by adding a minimum cool-

down time for which a mole needs to remain down. Another issue that came with randomly 

selecting moles to bring up was the possibility that no evil moles could come up for a significant 

length of time. This would leave the player with nothing to whack, and could lead to boredom 

and frustration. This problem was rectified by adding functionality to ensure that at least one evil 

mole is up at any given time. If there are no evil moles up at any point in the game, the game 

node randomly selects one eligible mole to bring up as an evil mole. 

 The game node was also responsible for updating the mole states in response to whacks 

from the robot. The robot control node never directly accessed the states of the moles, but it did 

keep track of its own position. When given a command to whack a particular mole hole, it 

published a whack impact message upon reaching the low point in its whacking arc, regardless of 

whether the hole that it whacked actually contained a visible mole. The game node listened for 
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this message and checked its record of the mole states to determine whether a mole was hit. If so, 

it updated the mole states accordingly, causing the Arduino control node to bring down the mole. 

This gave the appearance that the moles duck back under ground when hit by the robot’s 

hammer. Depending on the type of mole that was hit, the game node either increased or 

decreased the player’s score. Whacking an evil mole granted a player one point, while hitting a 

good mole lost him three points. These values, along with those which controlled when and how 

frequently moles popped up, were function parameters that could be easily modified if necessary. 

4.5.2 Web Control 

For users to be able to play the game, they needed to understand the current game state. 

This was accomplished through a video feed froma USB webcam which was connected to the 

server. The webcam was connected to ROS using the usb_cam_node, which handled 

communication with the camera’s drivers and did some minimal calibration. The video was 

streamed to users with the MJPEG stream package which came with RMS. In effect, this served 

individual JPEG images to clients in sequence. Unfortunately, for unknown reasons, this only 

worked correctly in the Chrome browser. Streaming services such as Twitch, Ustream, and 

Livestream were considered, but Linux support was weak for these services and integrating them 

with ROS would have been a major project. Because the mjpeg stream only worked in Chrome, a 

check was added to all PHP pages which redirected to a page informing users not in Chrome that 

Chrome was the only working browser for the system. Being limited to Chrome did, however, 

make writing the pages easier, because compatibility with other browsers was not an issue. 

While the system was first being set up, it was necessary to test how well it handled lag. 

To measure the latency of the ROS communication, a service was created through which the 

client occasionally requested the current time from the server. The client recorded the current 

client-side time when it sent the request and again when it received the response. The difference 

between these times was the round-trip time. A relatively consistent round-trip time of 4-16ms 

was common for those on the wired network at WPI. The WPI wireless was a bit worse and less 

consistent at 10-50ms. A person from the U.K. reported a round-trip time of between 200 and 

400ms. These delays were just for raw data, however, and not for the video stream. Because this 

method of measuring latency actually caused a fair amount of overhead with ROS, it was 

disabled before the system was publicized. 
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 The user interface for the game was written mostly in JavaScript with some HTML and 

CSS3 for structure and formatting. The robot position and mole whacking buttons needed the 

following images: Normal; Hover; Disabled; Pressed; and Active. While the buttons were 

enabled, the image would switch between Normal, Hover, and Pressed depending on the mouse 

position and button state. When the buttons were disabled, they would normally show the 

Disabled image, but the button corresponding to the robot’s current action would show the 

Active image. Whenever a button was pressed, the corresponding command was sent to the 

robot, and all command buttons were disabled until the robot sent back a message claiming the 

action had been completed. To accomplish these image switches, the various mouse events were 

used. OnMouseEnter and OnMouseExit switched between Normal and Hover. OnMouseMove 

was used as a global update function so that buttons which had been disabled would update their 

appearance. To determine whether a button was pressed, the mouse button state needed to be 

obtained. However, there was no way to poll for the mouse button state, so global 

OnMouseDown and OnMouseUp functions kept track of a the global mouse button state. Once 

these image switches were implemented, it was quickly noticed that images took time to load 

when they were switched to for the first time. To fix this, each image was preloaded when the 

page finished loading. Separate images were drawn for the robot position and mole whacking 

buttons. Figure 15, below, shows the robot position buttons on the left and the mole whacking 

buttons on the right. In each group, the buttons appear in the following order: Normal, Active, 

Disabled, Hover, and Pressed. Because the buttons would be overlaid atop the video feed, they 

needed to be either transparent or very small to prevent obscuring the game state. Very small 

buttons would have been difficult to click, and having hit-boxes larger than the buttons would 

have been confusing to users, so large, transparent buttons were drawn. 
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Figure 15: Robot position and mole whacking buttons 

 When the simulated robot was running, it did not appear in the video feed. To visualize it, 

a box and line representation of the robot, as seen in Figure 16, below, was drawn onto a 

JavaScript canvas in the interface, directly on top of the video feed. 

 

Figure 16: Simulated robot visualization 

To get the state of the simulated robot, the fake robot positions node published the current 

arm and base positions. However, this looked very choppy when there was any sort of lag, so 

client-side interpolation was used. The fake robot positions node published the time since each 

action started and the remaining time until the action finished, as well as the current position. 

Time differences were used instead of exact times so that the interface would not be confused if 

it were in a different time zone or if lag had caused significant desynchronization. When the 

interface received an update, it set the robot visualization to the exact position in the update and 

stored the two time differences. For each frame until the next update, the interface updated the 

robot position using linear interpolation between the start and end position, based on the time 

that had passed since the update. This made the motion appear much smoother in laggy situations 
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than it did without interpolation, but the linear interpolation did not match the acceleration 

curves of the real robot. To make it look a bit closer, the smoothstep function was applied to the 

interpolation. Altogether, the interpolation worked well in most situations, but it had occasional 

hiccups where the robot visualization would jump when it received an update that did not match 

its expectations. 

In addition to the video feed and buttons, a representation of the main variables of the 

game state was necessary. Divs were added to the top of the video feed with simple text for the 

score and remaining time. When the score changed, the game node published a message with the 

new score. When the interface received it, a callback function was called. This function updated 

the text of the score div. A similar function was called for game time updates. However, 

changing the text was not an obvious enough form of user feedback. To enhance it, the score div 

was made to change color when the score changed. When the score went up, it flashed yellow, 

the same color as the evil moles. When the score went down, it flashed red, to show that it was 

bad. This was achieved using CSS color transitions. The default behavior of a CSS transition is 

to apply the transition duration equally to any change, but it was desired that the color would 

change instantly and then slowly return to its original value. A function which accomplished this 

was found in Mozilla’s X-Tag library and used. 

The basic progression of a game was as follows: The user would enter the game interface 

from elsewhere and see a start game button. The user would press start game, causing the 

interface buttons to appear and a message to be sent to the server indicating that the game should 

start. The user would play the game by pressing the buttons until the time ran out, at which point 

all the buttons would disappear and the user would be redirected to an end-game page. This was 

accomplished with a state machine with three states: waiting-to-start, in-game, and game over. 

The game would start in the waiting-to-start state, but if the interface received a message which 

indicated that a game was currently in session, the interface would switch to the in-game state. 

This allowed users to refresh the page mid-game without worrying about interface problems. The 

waiting-to-start state would also transition to the in-game state if the user pressed the start game 

button. The in-game state would switch to the end-game state if the game time hit zero. When in 

the end-game state, the interface set some POST variables describing the game and score, and 

redirected the user to an end-game page. The end-game page told the user what they just scored. 
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4.5.3 User Account Creation 

 The RMS framework that was used for this project was initially intended for controlled, 

pre-scheduled user studies, in which potential users would sign up to participate in experiments 

at set times. System administrators would create accounts for these users, filling in all of the 

applicable user information. They would also manually schedule experiments for each user, 

setting the times in which the user account could have access to the robot interfaces. One of the 

goals of this project was to make LfD studies more accessible to potential demonstrators without 

requiring as much advanced planning by either the demonstrators or the conductors of the 

studies. To accomplish this goal, functionality was needed that would allow users to dynamically 

create accounts for themselves at any time. 

 The first step in developing this feature entailed the creation of a new page on the site 

that could create a new user account for the current user. The initial version of this page was 

rather simple, and did not include any user interaction. Rather, it implemented the necessary 

RMS system calls to create a new user with randomly assigned user information. It then logged 

in the user with that account before redirecting to the main page. 

 While this page allowed users access to the site, the randomly-assigned username and 

password meant that each account was one-use-only, and a user would have to create a new 

account each time he returned to the site. This was not desirable, because it does not allow for 

tracking of statistics for individual users who may visit the site multiple times. A better solution 

would allow each user to supply a chosen username and password for her account, allowing her 

to login again later with the same information. Thus, a signup page was created, with fields for 

username and password that match those on the login page. RMS supports storing of first name, 

last name, and email address for each user account, but this information was unnecessary for this 

study, so these fields were omitted from the form to reduce the hassle of account creation and 

allow for greater anonymity. It was hoped that this would encourage more users to take the time 

to create accounts. As the LfD study that was conducted could be described as an experiment 

with human subjects, the research study was cleared with the WPI Institutional Review Board, 

and a link to an informed consent document was included on the signup sheet. This document 

outlined the purpose of and procedures used in the study, as well as the lack of risk to the 

personal safety of study participants. Users were required to check a box indicating their consent 

before they could create their new accounts. 
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 To facilitate robot learning, a second account was created for each user corresponding to 

the autonomous robot that would be trained with that user’s data. This account was given the 

same username, but with the word “robot_” appended onto the front. The user was not given 

access to this account’s password and thus could not directly log in as the robot. When the robot 

was run autonomously using data from only this user, though, the user ID for the game would be 

recorded as that of this robot user, so that its scores could be compared with those of its human 

teacher. 

 

4.5.4 Queue 

With multiple users and only one robot, control over the robot had to somehow be 

assigned to users fairly. As had been decided earlier, a first-in-first-out queue system would be 

used. This was implemented as a ROS node which stored and published a double-ended queue of 

user IDs. Before users were allowed to control the robot, they would be shown the queue page, 

which contained a video feed of the robot and a button with the text “Play Soon”. When a user 

hit the play soon button, they were added to the queue. An important aspect of the queue was that 

it allowed those waiting in the queue to watch people play before they did, giving them a chance 

to learn how to play. When a user reached the front of the queue, they were redirected to the 

game interface as it has been described above. If a user failed to hit the start game button within 

thirty seconds of reaching the main game interface, they forfeited that game and were sent back 

to the end of the queue. This prevented users from maintaining an endless monopoly on the 

robot. When the user ended their game, they were taken out of the queue, allowing the next 

person to play. Because games were two minutes long and the maximum wait between the end of 

one game and the start of the next was thirty seconds, the time until reaching the front of the 

queue could be estimated from the number of users ahead of a user in the queue. Because the 

entire queue was published to each user, each user knew their location in the queue, so an 

estimated time was shown to those in the queue. The thirty second wait time was averaged down 

to 15 seconds, because in practice very few users waited more than a few seconds to start a 

game.  

To avoid rewriting the code for the HUD elements, the queue functionality was added to the 

same JavaScript file that was used for the game interface. Three new states were added: not-in-

the-queue, waiting-in-the-queue, and at-the-front-of-the-queue. Upon loading the queue page, the 
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state was set to not-in-the-queue. If the interface received a queue message stating that the 

current user was in the queue, it would switch to the waiting-in-the-queue state. This could 

happen if the user had just pressed the play soon button or if the user had reloaded the queue 

page after entering the queue. As soon as the user’s id was the first in the queue, the state was set 

to at-the-front-of-the-queue. In the state, the user was immediately redirected to the game 

interface. 

4.6 Learning from Demonstration 

 One of the primary goals of this project was to develop an engaging Robot Learning from 

Demonstration study on the web. Creation of this study required a number of steps to support the 

application of machine learning to the chosen domain. Demonstration data had to be collected 

and recorded as the system was used. A machine learning algorithm implementation was needed 

to allow the robot to learn a behavior from the data. Functionality was required to allow users to 

remotely begin the learning process with specific subsets of this data. Finally, the effectiveness 

of the learning process needed to be evaluated at the conclusion of the study. 

4.6.1 Collection of Demonstration Data 

 In Robot Learning from Demonstration, a robot learns how to autonomously complete a 

task based on training data provided by human demonstrators. Thus the first step in creating an 

LfD study entails developing a means of recording this training data. For this project, the task 

consisted of playing a game of whack-a-mole, and the training data was made up of state-action 

pairs corresponding to each move or whack of the robot. Each time a user clicked a button to 

either move the robot to a new position or to whack one of the moles, a state-action pair was 

generated. The action recorded in each pair was a numerical value corresponding to which of the 

six possible whack or move actions was selected by the user. The state for each pair included the 

seven mole states at the time the action was chosen, as well as the position of the robot and the 

orientation of its arm. 

 This information was recorded in a database table with each row corresponding to a 

single state-action pair. Every time a user clicked on a button on the interface, a JavaScript 

function was called to log the corresponding state-action information. The state data used in this 

function was the most recent data obtained from the game node. Due to security concerns, the 

client-side JavaScript could not have direct access to the database. Instead, the client-side 
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logging function called an AJAX function, which was responsible for passing the state and 

action information to the PHP running on the server. In the PHP, the appropriate queries were 

made to insert the new state-action pair rows into the database. 

4.6.2 Learning Algorithm Implementation 

 Once it was possible to collect training data from users, the next step was to implement 

an algorithm with which the robot could learn from this data. This was accomplished through the 

creation of the Whack-A-Mole learning node, a ROS node responsible for training the robot and 

for executing its learned behavior. For training the robot to play whack-a-mole, this node 

implemented the decision tree algorithm provided by the Waffles machine learning library. This 

algorithm took in a specified set of state-action pairs and used it to produce a decision tree, 

which the robot could follow to select each action based on the current game state. The algorithm 

also printed this tree to a text file, allowing the tree to be examined and analyzed. An example of 

part of one of these printed trees can be seen in Figure 17, below. The learning node was set up 

to accept messages specifying the parameters by which to filter the set of state-action pairs in the 

database. These parameters included user, game version, and game mode. Functionality was also 

added to support filtering of the training data by score, to analyze whether the robot performed 

better when trained only with data from high-scoring games. 
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Figure 17: Sample decision tree printout 

 One issue found in early tests of the learning algorithm was that the decision trees that 

were produced often downplayed the importance of the robot position state variable. Because 

this was a discrete variable with only three possible values, while each mole state was 

represented by a continuous variable, the learning algorithm was able to find points in the mole 
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states on which to split with higher information gain near the root of the tree. Meanwhile, the 

robot position variable, which defines what moles correspond to the left, middle, and right whack 

actions, was often split on only near the leaves of the decision trees. This meant that the tree was 

often over-fitting, as the small differences in the time that a certain mole has been up were 

playing a much larger role in action selection than they should have. This hurt the algorithm’s 

ability to fit data from new games of whack-a-mole and significantly reduced the performance of 

the autonomous robot. This issue was mitigated by manually forcing the decision tree to always 

split first on the robot position. With this split in place, the algorithm could easily match up the 

three whack actions with the moles that corresponded to them in the given robot position. 

4.6.3 Execution of Learning from the Web 

 Once the learning algorithm was in place, it was important to give users the ability to 

execute robot learning from the web. By giving users the opportunity to see the effects of their 

training data in action, this project aimed to increase user engagement with the study as a whole. 

To make this possible, the start game screen was modified to give a user the option of watching 

the robot play autonomously, rather than playing himself. When a user reached the front of the 

queue and was redirected to the game interface, he would be presented with three radio buttons 

for selecting the type of game. The first button allowed the user to control the robot and thereby 

provide it with additional training data. The second button trained the robot using only that user’s 

training data and allowed him to observe the robot playing autonomously. If the user had not yet 

provided any training data by playing, this option was disabled. The third button trained the 

robot using all of the training data provided by all users and allowed the current user to observe 

this community-trained robot’s autonomous performance. 

 When a user selected either the second or third button and started the game, the interface 

sent the necessary decision tree creation parameters to the learning node. The learning node then 

selected the corresponding data and constructed the tree. In this autonomous case, the interface 

also included the robot’s user ID in the start game message to the game node. This set the game 

node to listen for action commands from the learning node, rather than the web interface. During 

the game, the learning node constantly listened for the current mole states, and it maintained the 

robot and arm positions. Each time the robot completed an action, the learning node inputted the 

current mole, robot, and arm states into the decision tree and determined the appropriate action to 

take. This action was then sent to the robot for execution. 
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4.6.4 Evaluation of Learning Effectiveness 

 One important component of the study that was conducted involved evaluating the 

effectiveness of the robot’s learning to play whack-a-mole. This evaluation was done primarily 

by running a series of autonomous whack-a-mole games under different conditions and 

comparing their results. First, the robot was trained with the data provided from every user, and 

its distribution of game scores was compared directly to the distribution of scores achieved by 

the human players. Next, the training data was filtered by various metrics, and the resulting 

learned behaviors were compared. This analysis sought to determine the impact of both the 

quantity and the quality of provided demonstration data on the autonomous robot performance. 

These relationships were explored by filtering the training data based on number of state-action 

pairs and game score, respectively. 

4.7 Motivational Game Elements 

 To explore the effects of motivating study participants, several additional game elements 

were added, each designed to improve user engagement. These included a high scores table, user 

statistics, and a level progression. A/B testing was used to assess the effectiveness of each of 

these features. 

4.7.1 High Scores Table 

 The first motivational game feature implemented in the game was the high scores table, a 

table comparing the best scores achieved by each player. This was intended to motivate users to 

achieve better scores, and therefore provide better training data, by facilitating competition 

between users. 

 Before the high scores table could be implemented, it was necessary to record the user 

ID, final score, and timestamp for each game. To do this, a game data table was created in the 

database for storing this information. The game node was then modified to record the 

information in the database at the end of each game. Every game would provide one row of 

information to the table, including a unique game identifier. Additional columns were added to 

this table later to support other game features such as user statistics and levels. 

 Once this infrastructure was in place, a high scores page was created where a user could 

view how his scores compared to those of other players. This page dynamically constructed the 

table upon page load with the most recent score information, pulled from the database in the 
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PHP. The scores themselves were presented as a series of tables, each in its own tab. Tabs were 

presented for displaying the high scores for all time or for only the current day. Within each of 

these, additional tabs were later added for filtering high scores by level, once additional levels 

were added as another motivational game feature. 

 

Figure 18: High Scores page 

 Each high score table determined the scores to display by selecting all of the rows from 

the game data table that matched the filter of the given tab. These rows were then sorted in 

descending order by score and iterated through to display the high scores. A separate list of user 

IDs in the table was kept to ensure that only the best score from each user was included. This 

was done to avoid cluttering the table with many scores from a single user, which could make it 

difficult for another user to find his best score in the table. To assist users in locating their own 

scores, the logged-in player’s username and high score were colored red in the table. This 

player’s most recent score was also displayed at the top of the page, along with the most recent 

scores achieved by the robot trained from his data, and by the robot trained from all players’ 

data. The high scores achieved by the autonomous robot with each player’s data and with all data 

were also included in the table, and these entries were colored blue to allow for easy comparison 

between the performances of robot and human players. These features can all be seen in Figure 

18, a screenshot of the high scores page. The high scores page was made easily accessible to 
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users through a button in the menu bar at the top of every page. A link to the high scores table 

was also included in the results page that displayed to the user at the end of each game. 

4.7.2 User Statistics 

 The second major motivational feature added to the game was the ability to view user 

statistics. By giving users access to numerical statistics about their games, as well as the ability 

to compare these statistics with those of other players, this feature aimed to motivate users to 

improve. 

 Implementation of this feature required significant support from the Whack-A-Mole 

game node. To store the information necessary to generate the statistics, several columns were 

added to the game data table. These new columns recorded the number of moles whacked of 

each type, as well as the total number of whack attempts. Once new mechanics were added with 

additional levels, they also included information on the number of worms picked up and fed to 

moles, the number of mini moles shaken off the robot, the number of each type of mole hit with 

lasers, and the number of laser firings. 

 

Figure 19: User Stats page 

 To display these statistics to the users, a stats page was created. Similarly to the high 

scores page, this page contained two tabs, allowing the user to view either all-time statistics, or 
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statistics for the current day only. Each tab contained a two-column table detailing the value of 

each tracked statistic for the selected player. Some of these statistics, such as Evil Moles 

Whacked and Whack Attempts, were taken directly from summed columns in the game data 

table, while others, such as Average Score and Whaccuracy, were computed from these values 

indirectly. A screenshot of one player’s user stats page can be seen in Figure 19, above. To allow 

users to compare their statistics with those of other players, the stats page was tied into the high 

scores page. When viewing the high scores table, a user can click on any player’s username to 

view their statistics page, or use the menu bar to access their own statistics page. 

4.7.3 Level Progression 

 Another major feature added to the game was a series of five different levels. The basic 

game as has been described, without any changes, was the first level. The other four levels 

modified the game logic to change the way the moles came up and added various virtual 

elements to the user interface. A screenshot of the fourth level which displays all virtual features 

can be seen in Figure 24. Players started out on the first level, and would progress to the next if 

they scored enough points to beat the level. The required number of points was different for each 

level, and was balanced in such a way as to be more difficult to achieve in later levels. Because 

the first level was the only one without virtual elements, it was the only level for which the 

collected data was usable for teaching the robot. To maximize the data collected on the first 

level, users who did not score enough points on a level to progress to the next were sent back to 

the first level. A page was added with descriptions for each level which introduced the new 

mechanics present in that level and exposed the story. The end-game page was modified to tell 

players whether they had scored enough to progress, and to link them to the page describing the 

next level if they had. 

 In order to implement the virtual features, a small object-oriented game engine was 

written in JavaScript. Although JavaScript does not have natural support for object-oriented 

classes in the same way that languages like C++ or Java have, class methods and inheritance can 

be achieved by careful manipulation of function prototypes. The core of the game engine was the 

sprite, a game object which could be regularly updated and which could draw images to the 

canvas. Support for animated sprite sheets, updating position from velocity, and checking the 

mouse against the sprite’s bounds was implemented. The main game interface JavaScript file 

was modified to implement this game engine. The divs which had been used for the robot 
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position and whacking buttons were replaced with identical sprites, making the code much 

cleaner and more manageable. All of the onMouse events were modified to call corresponding 

sprite methods on all existing sprites. A window interval was set to call a game update function 

at a fixed rate. This update function called each existing sprite’s update function.  

This JavaScript game engine also used the WebAudio API for playing sounds. The 

WebAudio API allows for loading sounds at runtime and modifying them during playback. This 

was used to slightly randomize the pitch and volume of sounds for added variation. Although it 

was intended to make sounds for each game element, time constraints only allowed for sounds of 

moles coming up and down. Several recordings of the actual mole mechanisms were chosen 

from randomly and played whenever a mole state changed. 

To support variation in mole behavior between levels, the game node was restructured 

with increased reusability in mind. The main loop of the game node managed the state of the 

game at a very high level, and a hierarchy of parameterized helper functions was used to 

encapsulate each basic task. Variations in game mechanics were handled by a set of flags 

indicating the state of each mechanic in the current game. A function was created for changing 

the game mode of the game, and it determined the correct new values of these flags. This system 

allowed the developers to easily add or remove existing features in each game mode. Though it 

was not used for the chosen level set, this system also allowed the game mode to be changed 

mid-game. This was intended to add support for dynamically-triggered bonus rounds and similar 

mechanics. Lookup tables linked each level with its starting game mode, the score necessary to 

beat it, and a goal message to display to the user. 

The second level introduced virtual worms that would appear at random locations 

overlaid on the video feed. These virtual worms extended the sprite class from the JavaScript 

game engine. The area in which they could appear was chosen such that it would not interfere 

with the existing buttons. The user could click on a worm and drag it around, then release the 

mouse to drop it. The worms had an animation for appearing and disappearing in the ground, one 

for idling while in the ground, and one for being dragged around in the air. The frames of these 

animations can be seen in Figure 21 and Figure 20, below. 
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Figure 21: Sprite-sheet of worm in ground  

At its core, each worm was a state machine with states corresponding to its animation, 

with one additional state for being invisible. If the player dropped a worm on a mole, that mole 

would eat the worm. When a mole ate a worm, that mole would stay up for an additional few 

seconds. This allowed players to strategically choose which moles to feed. To encourage players 

to use the worms and to maximize their usefulness, the mole behavior was also changed. Any 

mole hole which would have been empty was now filled with a friendly mole. This increased the 

danger of missing evil moles because if a player missed badly enough, they would hit a friendly 

mole and lose three points. This change in mole behavior was implemented in the game node 

through the inclusion of the noDownAllowed flag, which corresponded to three modifications in 

the game logic. Firstly, this parameter changed the behavior of the function responsible for 

bringing down a single mole, such that a good mole was brought up instead. Secondly, it 

modified the function that checked whether a mole was eligible to be brought up, allowing 

existing good moles to be switched to evil moles at any time. Finally, it modified the mole 

spawning probabilities to keep the rate of evil moles approximately the same, while eliminating 

the chance of good moles randomly popping up when already up by default. 

The third level introduced virtual miniature moles which would tackle the robot and hang 

onto it. Each mini-mole gripping the robot slowed its speed while driving. If all five mini-moles 

were on the robot, it could not move. The arm speed was unaffected by mini-moles. To prevent 

the robot from slowing down, players could click and drag the mini-moles off the robot. This 

would stun the mini-moles for a time before they would tackle the robot again. Like the worms, 

the mini-moles were implemented as a child of the sprite class, and had a state machine 

governing their behavior. The mini-moles had states for being stunned, preparing to tackle the 

robot, and gripping the robot. The mini-moles had a stunned image and a normal image, which 

can be seen in Figure 22, below. 

Figure 20: Sprite-sheet of worm in air 
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Figure 22: Sprite-sheet of mini-mole 

To encourage players to pay attention to the mini-moles, the mole behavior was set so 

that no evil moles would appear within whack-able range of the robot. They would appear only 

in further holes which could not be reached without driving the robot. The game node 

implemented this by tracking the position of the robot based on updates from the robot control 

node. A function was written for determining the set of valid evil mole locations based on a 

given robot position. The function that checked for whether a mole could come up as an evil 

mole was modified to disallow moles at these locations. To compensate for the fewer valid 

locations, the overall mole spawn rates were increased. In all other aspects, the mole behavior 

was the same as in level 1. Worms also appeared in this level, so there was some interplay 

between the mechanics of the mini-moles and the worms. With both of these mechanics 

appearing at once, players had more choices. They could choose to use worms strategically to 

give them more time to shake off the mini-moles, or they could focus on shaking off the mini-

moles as quickly as possible. 

The fourth level introduced a laser. Players charged it up by shaking a knob back and 

forth on a virtual laser mechanism. When the charge passed a certain threshold, two buttons 

would glow red. Pressing the top button would fire the laser at the entire top row of moles, and 

pressing the bottom button would fire it at the entire bottom row of moles. This was chosen over 

targeting individual moles because being able to target individual moles gave players too much 

freedom. Targeting entire rows was both more powerful because players could hit multiple evil 

moles if they timed it well, and more limited because players would have to manage the risk of 

hitting friendly moles that were up in the targeted row. To accentuate this balance between 

power and risk, the overall mole spawn rate was increased in the game node, but the ratio of 

friendly moles to evil moles was increased as well. Improving power and situationality in this 

way can encourage more strategic play. The laser was implemented as a hierarchy of multiple 

sprite subclasses. At the top was the laser mechanism, which slid onto the screen from the sides 

and managed the sub-components of the laser. The sub-components were the battery, which 

handled the charge and determined when the laser could be fired; the knob, which could be 

dragged left and right to increase the battery’s charge; the buttons, which activated when the 
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charge was sufficiently full and caused the corresponding laser to fire when clicked; and the laser 

itself, which provided a visual effect for the laser firing. The laser effect drew a rectangle to the 

canvas with a horizontal centered blue-white gradient which started out thin, grew tall, then grew 

thin again, in a squared sine curve, before disappearing. The entire laser mechanism can be seen 

in Figure 23, below. On the server side, the game node was responsible for maintaining and 

publishing the state of the battery, as well as processing laser firing messages. In the game node, 

firing the laser at a particular row was treated as equivalent to simultaneously whacking all 

moles in that row. 

 

Figure 23: Laser mechanisms and beam 

The fourth level also included the previous two levels’ virtual mechanisms: the worms 

and the mini-moles. Because the evil moles could spawn near the robot on this level, players had 

even more choices than before. An effective strategy was to ignore the mini-moles, choosing 

instead to charge the laser. The combination of the worms and the laser allowed for interesting 

strategies for using the worms to line up entire rows of evil moles for the laser to hit. If a player 

were fast enough to manage all three virtual game elements, they could achieve a very high score 

on this level. 
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Figure 24: Screenshot of level four 

4.7.4 A/B Testing Procedures 

 In order to achieve the goals of the project, it was necessary not only to implement game 

features in a robot learning from demonstration study, but also to evaluate the effectiveness with 

which they increased the quality and quantity of demonstration data. This analysis was key to 

showing whether similar motivational elements could be successfully applied to future LfD 

studies.  

To evaluate the impact of the motivational features, a control group was needed to allow 

for comparisons between users with and without such features. To this end, each user was 

randomly assigned a user category upon creating an account. This category determined which 

game features would be accessible to that user. For the purposes of this study, the user base was 

split into four categories of approximately equal size.  

The first category was the Minimal Features category, and it acted as the control group. 

Users in this category could play the basic whack-a-mole game and watch the robot play 
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autonomously, but they had no access to high scores, user statistics, or extra levels. While 

playing the game, these users were given no indication that more levels existed past Level 1. 

When a user in this category completed a game, the end game screen would contain no link to 

the high scores table, so the user would have no way to compare his score to those of others. The 

menu bar for this user type also excluded buttons for high scores, user stats, and levels. 

The second user category was called Scores Only. Users in this category were given 

access to the high scores table and the user statistics page, but could also only play Level 1. 

When a user in this category completed a game, the end game screen would contain a link to the 

high scores table. Buttons for the high scores page and user stats page were present in the menu 

bar for these users. The high scores table that was accessible to these users did not contain tabs 

for showing scores from different levels. Rather, the only scores displayed in the table were 

those from Level 1. Splitting up the high scores table and user statistics pages into separate 

categories was considered. This idea was ultimately rejected due to the links between these 

features and the desire to limit the total number of categories, so that each category would have 

enough users for effective analysis. 

The third user category was called Levels Only. Users in this category were given access 

to all of the game’s levels, but not to the high scores table or user statistics. The game interface 

for these players displayed not only the score of the current game, but also the total score 

summed from this score and the scores of all previous levels in the streak. The end game page 

for a user in this category displayed the user’s score along with a message about whether or not 

the player had beaten the level. If so, it told the user which new level he had reached, and 

included a link to the description of this level. Users in the Levels only category could access the 

level descriptions from the menu bar, but could not access the high scores or user stats pages. 

The final user category was the All Features category, which included all of the 

implemented game elements. Users in this category were given access to the high scores table, 

the user stats page, and all game levels. The high scores page visible to these users included a tab 

for the best total scores from a series of consecutive levels, as well as a tab for each individual 

level. At the end of a game, a user in the All Features category would be shown her score and 

told whether she beat the level. If so, a link would be displayed to the description page of the 

new level she had reached, and if not, a link to the high scores page would be shown. Users in 
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this category had easy access to high scores tables, user statistics, and level descriptions from the 

menu bar. 

To analyze the effectiveness with which each game element motivated users, game 

results were compared across the four categories with respect to several metrics. The analysis 

sought to determine the impact that the presence or absence of high scores tables and levels had 

on both the quantity and quality of demonstration data collected. The quantity of collected data 

was assessed by comparing metrics such as average number of games played per user, number of 

state-action pairs collected, and percentage of games ended early, across categories. The quality 

of data was assessed using metrics such as average score and top score per user. 

4.8 Running the Study 

Before making the system public, a failsafe was put in. A system status table was added 

to the database. If there were some malfunction or a change needed to be made, a flag in this 

table could be set to bring the system offline for everyone except the admins. If a normal user 

attempted to access any of the pages that interacted with either the robot or the database while 

the system was offline, they would be redirected to a page saying that the system was offline for 

maintenance. 

 For similar reasons, functionality was added for displaying admin messages to users. To 

accomplish this, a new column was added to the system status table for holding the current 

admin message string. On the web interface, a message box was added at the top of the screen 

that would be visible to users at from all pages on the site. On load, each page would read in the 

current admin message from the table and update the box accordingly. Because players in the 

queue would not be reloading the page while they wait, a ROS listener was added to the queue 

and game interfaces to listen for a new admin message published to the admin message topic. A 

bash script was created to automate these two methods of displaying an admin message. The 

script allowed admins to update the message both in the database and on the interface with a 

single execution. 

 Once these final features were in place, it was time to begin obtaining users for the study. 

As there was only one robot, only one player could play the game at a time. Since extremely long 

wait queues could hinder the chances of users playing multiple games, the game was advertised 

separately to different groups in several waves. Before official release, the game was play-tested 

by a few friends, who provided feedback that was instrumental in making final modifications to 
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the game. Once released, the game was first advertised to friends of the developers over social 

media sites such as Facebook and Twitter. Next, it was advertised via email to WPI students with 

relevant majors. Emails were sent separately to groups of a few majors at a time to avoid 

excessive queues. Finally, the game was advertised on a few online game developer forums. The 

advertising periods were all separated by at least one day, which was sufficient time for most 

users to complete most of their playing, making space in the queue for players from the next 

advertising period. 
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5.0 Results and Discussion 
 Upon completion of the system, the project team opened the game to the public and 

conducted a user study. As users played the game, data was collected about their play. The team 

analyzed this data to assess the robustness of the system, the robot’s ability to learn the game, 

and the effects of motivational game features on the quantity and quality of demonstration data.   

5.1 Study Results 

 The system was publicized over a period of two weeks. In that time, a total of 523 games 

were played by 191 unique users, making a total of 9568 state-action pairs. These games 

accounted for approximately 52,000 seconds of play time, which means that players were in 

games for about 4.3% of the two weeks. Furthermore, these account for over a third of the time 

that the robot was up, which was roughly an average of three hours per day. 11% of those games 

ended early. There were an additional 88 users accounts which were created but which never 

played a game. This means that 70% of users who created an account played at least one game 

with it. Stats on the number of people who visited the site but did not create an account were not 

collected because it would have been impossible to distinguish people who were visiting the site 

for the first time from those who had created an account already and were not logged in. 

 The advertisement of the system was fairly successful. Each round of advertisement 

brought in a somewhat gradual stream of new users for a few hours, which was the desired 

effect. On one day, however, an email was sent to several mailing lists at once, and too many 

people signed up and tried to play at the same time. The queue was filled with 10 people for 

several minutes, but they quickly left, presumably because of the large wait time. Afterwards, the 

stream of new users was slightly slower than the other days. The number of users over time can 

be seen in Figure 25, below 
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Figure 25: Total games played by user category 

 The game was very popular amongst the other students in the lab. Of the top five players 

with the most games played, three were from this group. Several of the top names on the high 

score table were students in this group. Every student in the lab who played, played several 

games. Why was being in the lab more engaging than playing from far away? It is possible that 

there was some difference between the students in the lab and the other players that made the 

game more appealing to the students in the lab. For instance, the students in the lab had watched 

the mole mechanisms be built over the course of the preceding months, and some of them were 

familiar with the youBot. Some of them had run or participated in similar remote robot control 

studies. It is also possible that the experience of playing in the lab was better than playing from 

elsewhere. The lag was lowest in the lab, the mole and robot sounds could be heard instantly, and 

a player could see the physical robot rather than a video feed of it. There was also a more 

personal competition between students in the lab than a player only looking at the high score 

table would get. However, because there were other users who were just as engaged as the 

students in the lab, these advantages were not necessary for full enjoyment of the game. 
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5.2 Robustness of the System 

 One of the lesser goals for this project was to make a system robust enough to survive 

being left on for days at a time without supervision. This goal was met with the mole 

mechanisms. They were left unattended every night during the two weeks the study was active. 

There was one incident where a mole mechanism’s pulley fell apart, but this was easy to repair 

and was most likely caused by improper construction. None of the other mole mechanisms had 

any problems throughout the entire study. The Arduino was left powered on for the whole study, 

as well, and also did not have any problems. 

 The largest mechanical problem encountered was the rare incident in which the robot ran 

over its own power and Ethernet cables. This happened only twice during the study, but both 

times it happened it disabled the robot until it was manually untangled and reset. Hanging the 

wires from the ceiling was considered, but this had the danger of getting caught by the arm, 

which would have probably pulled the wires out of the ceiling and caused more damage than 

running over the wires did. 

 Another hardware problem which occurred before publicizing the system was the 

malfunction of the youBot’s arm. The frequency with which it would fail to start increased 

slowly over a few weeks until it would not start at all. With the help of the youBot support 

hotline, the problem was diagnosed as a hardware problem, probably with the control circuitry, 

and the arm was sent to KUKA for repair. Because KUKA did not return the arm in a timely 

manner, an identical arm was borrowed from MIT. This arm worked properly for the whole span 

of its use. 

 The most serious software problem was a race condition which occurred between a user 

reaching the front of the queue and being redirected to the game interface. As soon as the system 

kicked out the previous user, it brought the next user to the front of the queue and created an 

experiment for that user, which is what allowed that user to see the game interface page. If the 

user were redirected to the game interface page before the experiment was created, the user 

would not be allowed to see the game interface page. This happened at least twice.  

5.3 Learning Effectiveness 

 Analysis of the robot’s ability to learn to play whack-a-mole from demonstration yielded 

a number of interesting results. The first major result to become apparent was the dramatic 

improvement in autonomous robot performance following the addition of the robot position split. 
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Before this change was made, the robot performed somewhat decently when trained with data 

from a small number of reasonably skilled users, but started playing atrociously once the number 

of training data points got too high.  

It is believed that this was caused by over-fitting in the decision tree due in part to it often 

ignoring the robot position value. From the perspective of a human playing the game, in most 

situations the position of the robot is the single most important factor in deciding which direction 

to whack or move. Often this is the primary difference in state between two state-action pairs 

with similar mole states but different actions. Yet, because this attribute was represented as a 

discrete variable, the algorithm would often attempt to split repeatedly on mole state variables 

instead. With a huge amount of state-action pairs available, the decision tree would often attempt 

to fit all of these data points based solely on slight differences in mole times. This would result in 

the robot constantly taking actions that would only make sense if it were in a different robot 

position. 

Once the tree was manually split into three trees based on robot position, results 

improved greatly. This change had the largest impact when the robot was trained from fairly 

large sets of data. Players who played many games with high scores were able to train the robot 

to achieve very high scores with this new algorithm, and the robot trained from all user data 

became significantly better as well. 

After completion of the study, the robot played several games autonomously using 

behavior learned from various subsets of the collected training data. The scores achieved in these 

games were recorded, compared, and examined for trends. The first notable result from these 

games was that on average the robot, when trained from all collected user data, was able to 

outperform the average human. As seen in Figure 26, below, the average score achieved by the 

autonomous robot during these trials was 16 points, while human players averaged only 12 

points per game over the course of the study. This was a clear indicator that the robot was able to 

successfully learn the task. Because the robot indiscriminately used all training data for these 

trials, one might assume that it would perform about as well as the average human, but there are 

a couple of factors that help explain its higher scores. Firstly, many of the humans that scored 

poorly in their games did not fail due to poorly-chosen actions, but instead either left long delays 

between actions or ended their games early. Secondly, depending on user location, some amount 

of network latency would always be added to users’ response time, which contributed to these 
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types of delays even among skilled players. When running autonomously, the robot did not have 

these problems. Because the state space defined for this project did not include a wait action, 

state-action pairs were only recorded when users commanded the robot to drive or whack a mole. 

In autonomous mode, the robot always selected an action after completing the previous action, so 

it did not learn these delays. In these trials, the autonomous game was also never ended early. As 

Figure 26 shows, the robot was not quite able to match the average performance of top-scoring 

players when trained with only the top-scoring quartile of the training data, but when trained 

with the bottom-scoring quartile of the data, it scored far better than its demonstrators, many of 

whom likely suffered from the aforementioned issues. 

 

Figure 26: Comparison of human-controlled and autonomous robot performance filtered by score 

 The next bit of analysis performed with these autonomous robot trials was to examine the 

effects of training data quantity on learned behavior. To do this, the robot was trained several 

times with sets of randomly-selected state-action pairs. The number of state-action pairs in the 

training set was varied, and correlated with the average score achieved by the autonomous robot 

trained with that data. Figure 28 shows the general relationship between average score and 
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dataset size on a logarithmic scale. This shows that increasing the number of state-action pairs 

clearly increased the performance of the robot up to a certain point. Figure 27 is a similar plot, 

but the dataset size is plotted on a linear scale, showing data points at or above 1000 state-action 

pairs. This view makes it clear that there is less of a clear correlation once the training data size 

exceeds 1000 pairs. At this size, the robot seemed to fairly consistently make intelligent 

decisions, but a few key negative actions each game, caused by bad state-action pairs, limited the 

average score it could achieve. 

 

   

To deal with these harmful data points, the final portion of the study’s learning analysis 

dealt with filtering state-action pairs by game score. This analysis sought to ascertain the 

correlation between the scores users achieved and the scores attained by the robot when trained 

with their data. To ensure that data quality would be the only variable in this evaluation, the 

quantity of state-action data was kept constant for each trial. Figure 26 compares the 

performance of the robot when trained from the top-scoring 25 percent of all state-action pairs 

with its performance when trained with the bottom-scoring 25 percent of all data. The chart 

clearly shows that the robot trained with better data performed significantly better, though the 

difference was less pronounced than the difference in performance between the humans who 

provided the data. 

Figure 27: Score vs training data size (linear scale) Figure 28: Score vs. training data size (log scale) 
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5.4 Impact of Game Features 

One of the goals of this project was to analyze the effect that adding game features to a 

robot learning from demonstration task could have on the quality and quantity of the data 

collected. As was described above, users were split into four categories, each with a different 

subset of game features. It was expected that the high score table would improve quality of data 

because it added a level of feedback and competition to achieving higher scores, and the levels 

would improve quantity of data because they would give players more interesting challenges to 

overcome than the basic game. These trends did appear in the data, but they were somewhat 

weak. 

To analyze data quantity, the number of games played by each user was considered first. 

The most obvious metric would be the average number of games played per user, which can be 

seen in Figure 29, below. The group with all features had a slightly higher average, but the 

standard deviations were so great that the difference was statistically meaningless. 

 

Figure 29: Average games played per user with standard deviation 

 To get a better idea of which categories were more likely to bring in more data, the 

percentage of users who played more than a certain number of games was considered. The 
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clearest trend was visible when looking at the percentage of users who had played more than 

three games, which can be seen in Figure 30, below.  

 

Figure 30: Percent of users who played more than 3 games 

 The scores category’s percentage was higher than the minimal features category’s 

percentage by about 4%, and the levels category’s percentage was higher by about 8%. Although 

no expectation was held about the effect of a high scores table on data quantity, it is not 

surprising that there was some improvement, and that levels had more improvement than scores. 

The all features category’s percentage was higher by almost 12%, which is the sum of the gain 

from the scores and levels. This suggests, as far as quantity of data goes, that the gains from 

scores and levels were orthogonal. They each provided separate sources of motivation which 

could be added together without losing anything in their combination. However, it should be 

noted that the high scores table was slightly more featureful when levels were present because, in 

addition to the individual score for each level, it also counted the total score of a player’s run 

across multiple levels. Although it could not be measured, this could have affected the 

motivating effect of the high scores table, which may have allowed the lossless addition of scores 

and levels. If this feature were not present, it is possible that the all features category would not 

have been as far above the other categories. 
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 To analyze data quality, the main metric used was score. A higher score meant a game 

with better data. However, only the scores from the first level were considered because that was 

the only level which was present across all categories. The average score per game achieved by 

each category was considered. These can be seen below, in Figure 31. The minimal features 

category had the lowest average score, and it was low enough to actually be statistically 

significantly lower than the other groups. Interestingly, the scores only category had the highest 

average score. It was expected that the scores category would have higher data quality than the 

levels category, but not that it would be greater than the all features category. This may be due to 

the fact that the users in the all features category spent at least some portion of their time playing 

on the later levels, giving them less time on the first level to achieve higher scores. Also 

interesting was that the levels only category had a higher average score than the minimal features 

category. This could be due to the fact that the levels category required users to reach a certain 

score on level one in order to proceed to the next level. 

 

Figure 31: Average score achieved with standard deviations 
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 Another metric for data quality considered was the number of state-action pairs collected 

per game. The averages turned out to be very nearly the same between all categories except the 

minimal features category, which was significantly lower than the other three, as can be seen in 

Figure 32, below. 

 

Figure 32: Average state-action pairs collected with standard deviation 

To determine why the minimal features category was so deficient, game durations were 

analyzed. Because game duration was not actually recorded in the database, it had to be 

calculated from the difference between the earliest and latest timestamps of the state action pairs 

in each game. The average game duration graph, seen in Figure 33, below, shared the deficiency 

in the minimal features category with the average state-action pair graph. However, the levels 

only category had a slightly lower average game duration than the other two featureful 

categories. 
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Figure 33: Average approximate game duration 

It became clear that the deficiency in these two categories was related to players ending 

their games early. For a game to end early, the player had to either stop entering actions or 

navigate away from the page after starting a game. If a game lasted less than one minute, which 

was half of the length of a full game, it was considered as ending early. The percentage of games 

which lasted less than a minute in the minimal features category was significantly higher than it 

was in the other categories, and it was slightly higher in the levels only category than in the other 

two featureful categories.  This can be seen in Figure 34, below. The increase in the levels only 

category may have been due to players giving up on the more difficult levels. The all features 

category also had a slightly higher drop-out rate than the scores only category, possibly for the 

same reason, but it was much less pronounced than the levels only category. 
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Figure 34: Percentage of games which lasted less than a minute 
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6.0 Conclusions 
Despite the lack of statistical significance in the results, the data showed clear trends 

which matched expectations and supported the goals of the project. The building of the web-

based learning from demonstration system was a success, and it was robust enough to serve its 

purpose well. Although no control study was done offline, putting the system on the web 

definitely enabled more users to provide demonstrations than an offline system would have had. 

Many of the users who played Whack-A-Mole were from out of state, and a few were even from 

overseas. These users would not have been able to provide demonstrations if they were required 

to do so from within the lab.  

Presenting the task as a game was also a success. Aside from showing excitement about 

controlling a real robot, many users reported that the game itself was fun. The added 

motivational game features, the high scores table and the levels, improved both quantity and 

quality of the data collected. It was interesting to note that high scores improved quality more, 

and levels improved quantity more, but both features had an effect of both aspects of the data. 

Although those players who gave us feedback claimed to enjoy the levels, very few players made 

it all the way to the end of the game. 

Our chosen task, Whack-A-Mole, does not have an immediately obvious useful non-

game equivalent. It would be interesting to see a study similar to this one which compares a non-

game task with a near-equivalent game task, especially if the non-game task solved a real 

problem. 

We speculate that lag was the greatest enemy of player engagement. The game became 

more difficult and unstable as lag increased. Though still playable to a point, the difficulty level 

with more than a certain amount of lag was too high for most players. This may have been 

responsible for the somewhat high percentage of users who played only one game. Each game’s 

round-trip time was not recorded because of scalability considerations, but these could probably 

be solved. Recording or otherwise minimizing lag should be a priority for any groups 

considering undertaking a remote robot control study. 

The other goal of this project, analyzing the machine learning, was also a success, but 

less clearly so. The machine learning itself was a success as the robot was able to learn to not 

only play Whack-A-Mole, but to play it better than the average human. However, it never got 

better than the best humans. This may be a limitation of decision trees, or of the definitions for 
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states and actions that were used. Testing different algorithms and multiple different definitions 

for states and actions was beyond the scope of the project, but doing so could provide some 

insight about why the robot couldn’t beat the best humans. Future groups could also look into 

ways to prevent over-fitting. Although the Waffles library had support for tuning tree parameters 

to reduce over-fitting, it was weak and too slow to use here. The goal related to machine learning 

was to analyze filtering by score and show that it could improve performance. This improvement 

was not seen. Rather, the average score without filtering was the same as the score achieved after 

filtering out all but the best quarter of the data. This may have been related to the strange effect 

seen when filtering out all but the worst quarter of the data. With the bad data, the robot was still 

able to score reasonably well. This suggests that the decision trees being created were 

surprisingly robust to bad data, which could explain why the trees made from all data were just 

as good as the ones made from the best data. 

Overall, this project showed that bringing robot learning from demonstration studies to 

the web as games has many real and potential advantages over the traditional methods. 
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