
Running head: THE CONDUIT’S GARDEN 1

The Conduit’s Garden

A Fourth-Dimensional Shinto Garden

A Major Qualifying Project Report

Submitted to the Faculty of

Worcester Polytechnic Institute

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

On October 17th, 2016

Submitted by: Alex Guerra, John Nelson, Paul Orvis

Advised by: Professor Jennifer deWinter and Professor Charles Rich

THE CONDUIT’S GARDEN 2

Abstract

 This report summarizes the development process of the Interactive Media and Game

Development and Computer Science Major Qualifying Project titled The Conduit’s Garden. This

game was completed over a three month period at the Osaka University Toyonaka Campus in

Osaka, Japan. The Conduit’s Garden is a fourth-dimensional Japanese gardening game

developed in Unity3D to work with the HTC Vive virtual reality platform. Players are given the

role of a Shinto spiritual conduit tasked with caring for the bonsai trees, Koi ponds, and gravel

pits in a fourth-dimensional Japanese garden to appease local nature spirits. This report details

the designs, implementations and playtesting that went into developing this game as well as

aspirations for future development.

THE CONDUIT’S GARDEN 3

Acknowledgements

The team members of The Conduit’s Garden would like to thank the following people for

assisting us throughout the development of this project:

Thank you to Professors Jennifer deWinter and Charles Rich for the support you gave us

during this project. Thank you for the constructive criticism on the game and the paper as well as

the advice on having an enjoyable experience in Japan.

Thank you to Professor Kiyoshi Kiyokawa of Osaka University for being a great on-site

advisor. We couldn’t have made this game without the resources and technical advice you

provided us throughout the project.

Thank you to our playtesters for taking the time to play our game and provide meaningful

feedback on areas that needed improvement.

 Thank you to Takemura Lab for graciously hosting us during our stay in Osaka while we

worked on our project.

THE CONDUIT’S GARDEN 4

Table of Contents

Abstract ... 2

Acknowledgements ... 3

List of Figures ... 8

List of Tables .. 11

1 Introduction ... 12

2 The Fourth Dimension .. 18

2.1 Design Decisions .. 19

2.2 Fourth-Dimensional Objects .. 22

2.2.1 Hyper-Creature Code .. 22

2.2.2 Hyper-Object Code ... 23

2.2.3 Hyper-Collider Code ... 25

2.3 Fourth-Dimensional Shaders .. 26

2.3.1 Design Requirements .. 26

2.3.2 Programming Challenges .. 28

2.3.3 Implementation ... 33

3 Core Game Zones ... 42

3.1 Bonsai Trees ... 42

3.1.1 Bonsai Design ... 43

THE CONDUIT’S GARDEN 5

3.1.2 Interacting with the Bonsai ... 46

3.1.3 Bonsai Implementation ... 48

3.2 Koi Fish .. 53

3.2.1 Fish Design ... 54

3.2.2 Interacting with the Fish ... 56

3.2.3 Fish Implementation ... 59

3.3 Gravel Pit.. 61

3.3.1 Gravel Pit Design .. 62

3.3.2 Interacting with the Gravel Pit .. 64

3.3.3 Gravel Pit Implementation .. 65

3.3.4 Pattern Recognition ... 66

4 Additional Game Content ... 75

4.1 Spirit Shrines .. 75

4.1.1 Design ... 76

4.1.2 Implementation ... 76

4.2 Kami (Nature Spirits) ... 79

4.2.1 Design ... 80

4.2.2 Implementation ... 80

4.3 Wash Basin ... 82

4.3.1 Design ... 82

THE CONDUIT’S GARDEN 6

4.3.2 Implementation ... 83

4.4 Scrolls ... 84

4.4.1 Design ... 84

4.4.2 Implementation ... 88

4.5 Clock .. 89

4.5.1 Design ... 89

4.5.2 Implementation ... 90

5 Tools and Specifications ... 91

5.1 HTC Vive ... 91

5.1.1 Controller .. 91

5.1.2 Movement ... 91

5.1.3 User Interface .. 92

5.2 Unity3D .. 93

5.2.1 HTC Vive Support .. 93

5.2.2 Cg/HLSL Shader Programming Support .. 94

5.3 Art Tools .. 95

5.3.1 Blender .. 95

5.3.2 Gimp ... 95

6 Playtesting ... 96

6.1 Control Mapping Test .. 96

THE CONDUIT’S GARDEN 7

6.2 Four-Dimensional Playthrough .. 98

6.3 Three-Dimensional Playthrough .. 102

7 Postmortem ... 106

7.1 What Went Right .. 106

7.1.1 Design ... 106

7.1.2 Teamwork ... 107

7.1.3 Above and Beyond Work.. 108

7.1.4 Positive Changes ... 109

7.2 What Went Wrong ... 111

7.3 What We Would Do Differently .. 113

References ... 115

Appendix A: Playtesting Resources.. 118

A.1 Outline of Procedure .. 118

A.2 Interview Questions.. 119

Appendix B: List of Game Content .. 120

Appendix C: Additional Interactive Media Class ... 122

C.1 Alex and Paul’s Interactive Project: Bubble Keyboard ... 122

C.2 John and Yuheng’s Interactive Project: Rope Skipping Simulator 124

THE CONDUIT’S GARDEN 8

List of Figures

Figure 1: Four-dimensional Cubes (Hypercubes) Viewed from Three Different W Positions 14

Figure 2: Three-Dimensional Cross-Sections along the Fourth Dimension 18

Figure 3: Four-Dimensional Scene View ... 20

Figure 4: Vision along the Fourth Dimension .. 21

Figure 5: Moving a Hypercube from W Position zero to W Position One 25

Figure 6: Unity Rendering Pipeline (ShaderLab: Blending) .. 29

Figure 7: Phong Reflection Model .. 30

Figure 8: Opaque Shader on Game Objects .. 33

Figure 9: Opaque Shader Properties ... 34

Figure 10: Opaque Shader Pass 1 Vertex Function .. 35

Figure 11: Opaque Shader Pass 1 Fragment Function .. 36

Figure 12: Opaque Shader Pass 2 Vertex Function .. 37

Figure 13: Opaque Shader Pass 2 Fragment Function .. 37

Figure 14: Transparent Shader on Game Objects ... 38

Figure 15: Transparent Shader Properties... 38

Figure 16: Transparent Shader Pass 1 ... 39

Figure 17: Transparent Shader Pass 2 ... 40

Figure 18: A Healthy Bonsai Tree .. 43

Figure 19: Bonsai Tree Components .. 44

Figure 20: Bonsai Components on Different Points of the Fourth Dimension............................. 44

Figure 21: Stages of Bonsai Tree Infestation .. 45

Figure 22: Trimming a Dead Bonsai Leaf with Shears .. 47

THE CONDUIT’S GARDEN 9

Figure 23: Removing a Bonsai Infestation with Insecticide ... 47

Figure 24: Bonsai Growth Cycle .. 48

Figure 25: Infestation Decision Tree .. 49

Figure 26: Leaf Death Decision Tree .. 50

Figure 27: Koi Swimming in Fish Pool .. 54

Figure 28: A Hungry Fish (left) and a Happy Fish (right) .. 55

Figure 29: Grabbing a Fish in the Reservoir Pool .. 56

Figure 30: Fish in the Reservoir Pool ... 56

Figure 31: Pouring Fish Food into a Fish Pool ... 57

Figure 32: Koi Feeding Behavior Reference .. 58

Figure 33: Fish Feeding Cycle .. 59

Figure 34: RequestTarget Sequence ... 60

Figure 35: Player Designed Gravel Pit ... 61

Figure 36: Gravel Pit ... 62

Figure 37: In-Game Pattern Lines ... 63

Figure 38: Wooden Rock Garden Rake Reference ... 63

Figure 39: Rake ... 63

Figure 40: Tine Drawing by Pixel Boxes ... 66

Figure 41: Comparison between Original and Player Made Pattern .. 69

Figure 42: The Player in the Process of Raking, Trying to Match the Pattern Lines 71

Figure 43: Pattern Recognition Pseudocode ... 72

Figure 44: Wooden Spirit Shrine Reference ... 75

Figure 45: Gravel Shrine ... 77

THE CONDUIT’S GARDEN 10

Figure 46: Fish Shrine ... 78

Figure 47: Bonsai Shrine .. 79

Figure 48: Kami Reference ... 79

Figure 49: Kami above the Garden ... 80

Figure 50: Traditional Stone Basin for Washing Hands Reference .. 82

Figure 51: Wash Basin and Ladle ... 83

Figure 52: Contract Scrolls ... 84

Figure 53: Tokyo Contract Scroll Text ... 85

Figure 54: Controls Scroll Text .. 86

Figure 55: How to Play Scroll Text .. 86

Figure 56: Game Concept Scroll Text .. 87

Figure 57: Information Scrolls .. 87

Figure 58: Garden Clock ... 90

Figure 59: Control Mapping Test Scene ... 97

Figure 60: Qualitative Results of Control Scheme Test ... 98

Figure 61: Fourth-dimensional Playtest Tokyo Garden.. 99

Figure 62: Testers’ Opinions on Game Difficulty .. 100

Figure 63: Testers’ Opinions on Individual Game Zone Difficulty ... 100

Figure 64: Three-dimensional Playtest Tokyo Garden ... 103

Figure 65: Testers’ Opinions of Game Difficulty after Removing 4D 104

Figure 66: Testers’ Preferred Game Types ... 104

Figure 67: Mockup of the Bubble Keyboard Design .. 123

Figure 68: The Group Working with Bubbles to Measure if they would Conduct Current 124

THE CONDUIT’S GARDEN 11

List of Tables

Table 1: Normalized RGB Color Value per 4th Axis Position ... 27

Table 2: Completed Content per Person ... 121

Table 3: Incomplete and Cut Game Content... 121

THE CONDUIT’S GARDEN 12

1 Introduction

 While studying abroad at Osaka University in Osaka, Japan from July to October of

2016, three WPI students - Alex Guerra, John Nelson, and Paul Orvis - developed The Conduit’s

Garden for their Major Qualifying Project. The Conduit’s Garden is a fourth-dimensional

Japanese gardening game developed to work with the HTC Vive virtual reality platform. In the

game, players take on the role of a Shinto spiritual conduit who specializes in restoring four-

dimensional Japanese Shinto gardens.

As a spiritual conduit, players must work to create a stable balance between civilization

and nature to appease the ancient nature spirits residing in the heart of Japan. In our game, a

former temple worshipper who recently moved to Tokyo asks the conduit to visit his new home.

By having the conduit tend to his rooftop garden, he hopes to fill his home with the energy of the

spirits, or Kami, that thrived in the gardens of the conduit’s temple. Keeping the garden’s bonsai

trees free of decay and pests, the koi ponds full of fat and happy fish, and the gravel pits filled

with flowing designs will bring more Kami to the garden within the short time allowed by the

client and fulfill the wishes an old friend to the temple.

We designed The Conduit’s Garden to give players a sense of pride and satisfaction in

creating something that is enjoyed and praised by others. We also wanted to capture the feeling

of falling in love with a project, but eventually having to accept the consequences of deadlines.

In designing the experience goal of our game, we wanted to parallel the exact feelings we have

when creating a game that players will both appreciate and criticize. This experience is realized

by tasking players to create enjoyable environments for the nature spirits of Japan. We want

THE CONDUIT’S GARDEN 13

players to work hard on these projects so they can bring joy and glee to the spirits of the garden

and let their imagination manifest in the way they choose to grow the fourth-dimensional garden.

The designs of our game were shaped by the constraints that guided our development.

For our team, constraints turned our project into a learning experience where we had to research

and learn new concepts and methods that we could then use outside of this project in the future.

This project is the result of adhering to our own defined constraints along with those set by our

advisors. We wanted the game to be set in a fourth-dimensional environment, playable using the

HTC Vive and incorporate elements of Japanese culture.

 The world of virtual reality in video games is constantly growing. Being able to work in a

lab with access to many of these technologies is a great opportunity to use and learn about them.

Virtual reality games are also very unique as more considerations need to be made during

development in an attempt to use the full potential of having VR technology. Real world devices,

unfortunately, have a limited range of space where the device can be used. This will impact how

we design our virtual environment and how we want players to interact with our game.

 Our team had the privilege of completing our Major Qualifying Project in a

technologically advanced lab located in Japan. This project is not about grinding out a game; it is

about exploring a new part of the world and allowing this experience to influence how we design

our game. Having this constraint required us to explore Japan and incorporate our experiences

into our designs.

 Early before we began development on this game, we set a priority in creating a game

that explored fourth-dimensional game mechanics. In the real world people cannot see or

knowingly interact with the fourth dimension or four-dimensional objects. Such objects,

however, can be constructed and simulated in a virtual environment. We believed that

THE CONDUIT’S GARDEN 14

successfully simulating the fourth dimension in our game would set our project apart from the

ones completed before us.

Figure 1: Four-dimensional Cubes (Hypercubes) Viewed from Three Different W Positions

In our game we use colors to represent the fourth dimension; specifically five of the

seven colors of the rainbow. Fourth-dimensional objects, called ‘Hyper-Objects,’ have x, y and z

coordinates like three-dimensional objects, but also have a w coordinate for their position on the

w axis. Objects at a w value of zero appear red while objects at a w value of four appear

magenta. What this does is create five similar spaces that are overlapped in three-dimensional

space. Figure 1 depicts two hypercubes placed next to each other in a fourth-dimensional world.

The red cube has a w value of zero and the magenta cube has a w value of four. While the cubes

appear to intersect in three-dimensional space, they do not because of four-dimensional space.

The magenta cube only takes up space on the fourth w point, but can be seen from the other

points on the w axis as transparent. The same goes for the red cube, as it only takes up space on

the first w point; therefore the two cubes are not physically colliding. More details about the

fourth dimension and how we use it in our game are explained in Chapter 2.

 We have two primary motives for including the fourth dimension in our game. Our first

motive is due to the spatial limitations of the HTC Vive playing area. With our range of the

fourth dimension we can expand the relatively small, two meter by two meter, playing space of

THE CONDUIT’S GARDEN 15

the Vive by five. In a garden like ours, where many objects must be within the player’s reach,

this extra room is invaluable. With the fourth dimension we can layer each of our important

game features on top of each other while limiting player collisions to make the garden more

spacious than it is in reality. We can also limit player vision to not see objects on other points on

the fourth dimension. This makes the game world less cluttered and feel more spacious.

Our second motive is to introduce our players to what we believe is a fascinating and

exciting concept. Most people never imagine what the fourth dimension could be in their lifetime

and, to our knowledge, no one has ever experienced existing on four dimensions of space. Giving

our players a space with which to explore and interact as a fourth-dimensional being will be a

truly unique experience.

The environments in our game are populated with these four-dimensional objects whose

properties and physics are modified for a new level of interaction for players. The player

character also has this presence and the ability to move along the fourth dimension. The original

idea for our game was to have a garden grow along four dimensions of space. In the fourth-

dimensional Shinto garden we ended up creating, players interact with this new environment to

the point where they learn to become four-dimensional beings themselves.

Our implementation of the fourth dimension is very basic to allow our players to receive

an initial understanding of fourth dimension through our game. There are many more physical

interactions between fourth-dimensional objects and methods of moving in four-dimensional

space that we did not implement into our final product. We felt that many of these actions and

behaviors would confuse a player who is unfamiliar with the fourth dimension. Designing a

tutorial to familiarize players with these additional features would expand our scope to

unmanageable proportions. Additionally, a gardening game is a poor choice of genre to convey

THE CONDUIT’S GARDEN 16

all the features of the fourth dimension. We felt it was best to simplify the fourth dimension to

enhance the normal conventions of gardening rather than overcomplicating a familiar topic with

the fourth dimension.

Our game consists of three core game zones that concentrate the majority of gameplay.

These core game zones are fully discussed in Chapter 3. We designed these game zones to align

with the primary tasks required of gardeners caring for true Japanese Shinto gardens. These three

core game zones are the bonsai trees, fish pools, and gravel pits. The bonsai trees grow along the

fourth dimension creating this multi-dimensional plant that requires moving along the fourth

dimension to prune and shape it. The fish pools can be filled with fish that both live together and

completely apart. The fish have their own presence on the fourth dimension, and seeing them

collide and interact according to fourth dimensional physics is both life-like and fantastical. The

gravel pits are a combining force for the different points on the fourth dimension bringing

separate planes of reality together to create flowing and beautiful designs.

This paper discusses in detail the development process of our game The Conduit’s

Garden. Chapter 2 details the concept of the fourth dimension and the designs and

implementations of scripts and shaders required of our fourth-dimensional game mechanic.

Chapter 3 details the three core game zones in our game: the bonsai tree, fish pools, and gravel

pits. Chapter 4 details the additional game content created to support the core game zones and

structure the game around our mechanics and puzzles. Our additional game content includes the

spirit shrines that provide feedback on the core game zones, the wash basin that provides full 4D

vision, the Kami representing the score, the information scrolls outlining controls and gameplay,

and the garden clock displaying remaining game time. In each section of Chapters 3 & 4, we

detail our designs behind the game mechanic and the method by which we implemented it.

THE CONDUIT’S GARDEN 17

Chapter 5 details the results of our playtesting and how those results guided the changes made in

our final product. A postmortem on the positives and negatives we experienced during our

project can be found in Chapter 6. The Appendices of this paper provide resources for our

playtesting, a list of game content created by each teammate, and a short excerpt on the

additional interactive media class we participated in while working at Osaka University.

THE CONDUIT’S GARDEN 18

2 The Fourth Dimension

The fourth dimension is another axis of space in addition to the three we accept as the

structure of our universe. Instead of just existing within three-dimensional space (on the x, y, and

z axis) our game world exists within four-dimensional space (on the x, y, z, and w axis). The best

way to visualize the fourth dimension is to move from the zeroth dimension up to the fourth

dimension. At the zeroth dimension we have a point, at the first dimension we extrude the point

to a line, at the second dimension we extrude the line to a square, at the third dimension we

extrude the square to a cube, and at the fourth dimension we extrude a cube to a hypercube. A

hypercube can be considered a collection of three-dimensional cubes at many points along the w

axis (Figure 2).

Figure 2: Three-Dimensional Cross-Sections along the Fourth Dimension

THE CONDUIT’S GARDEN 19

2.1 Design Decisions

One of the key mechanics of our game is placing players in a fourth-dimensional world

and giving them a fourth-dimensional body to control. We implement this in our game by

placing players in a garden that grows along four dimensions. We wanted to introduce this

conceptually complex mechanic in a way that didn’t overwhelm new players with too much new

information. Incorporating this mechanic into a garden would provide them with a visually

pleasing environment in which to experience the fourth dimension. Our goal with this fourth-

dimensional mechanic is to get players to understand the theory of the fourth dimension through

interaction and experimentation.

By fourth-dimensional, we mean four dimensions of space (x, y, z, w) instead of our

usual three (x, y, z) as explained previously. This means that an object can have different

positions on the w axis, which defines what objects that can and cannot interact with it. This also

means that objects can have a depth along the w axis. The w depth of an object is how many

more points on the w axis on which this object exists. A cube with a depth of zero on the w axis

and a position of (0, 0, 0, 0) could only be seen or touched by players and objects on the zero

point of the w axis. A cube with a depth of four, however, could be seen and touched anywhere

along our range of the w axis.

Vision along the w axis will be similar to how we look within three-dimensional space,

but limited to decrease the complexity of the implementation and controlled to reduce the

overwhelming nature of the experience. Customarily, we view things by pointing our eyes, or a

camera, along a singular direction on an axis. For example, we point a camera towards the

positive direction on the x axis. When doing so, we also have peripheral vision within a limited

range along the y and z axis in both the positive and negative directions. We plan to give players

THE CONDUIT’S GARDEN 20

peripheral vision on the w axis as well as the y and z when looking down the x axis. The same

goes for when players look along the y or z axis. This means that players will be able to see all

objects at a set distance along the w axis at the same time.

We will do this by merging the objects found at each point of the w axis into the three-

dimensional Unity scene inhabited by players (Figure 3). We are essentially taking three-

dimensional cross-sections of the fourth dimension at five points and overlaying these cross-

sections into one scene to allow players to obtain a semblance of fourth-dimensional vision.

Objects in the scene will be rendered to replicate their fourth-dimensional characteristics.

Objects on the same point of the fourth dimension as the player character will be solid as they are

in three-dimensional space. Objects on different points of the fourth dimension will be

transparent so that players can see them all at the same time as a true fourth-dimensional being

would. These transparent objects will be visible to players even if the transparent objects are

found behind other solid objects in three-dimensional space.

Figure 3: Four-Dimensional Scene View

 Figure 4 demonstrates how the player camera will treat objects on different points of the

fourth dimension. The camera is located at the origin (0, 0, 0, 0) and views objects at each point

of the fourth dimension. As is shown, the camera has vision of every object in this scene except

THE CONDUIT’S GARDEN 21

for square B since the camera’s vision of square B is occluded by the geometry of square A.

Even though the green squares have the same x, y and z position as the red squares, they are still

fully visible because the camera can view them along the empty space along the w axis. The

camera is also able to see the square E even though it has a further x, y and z position than square

B because there is nothing occluding it along the w axis. This means that when we condense all

of these objects into the same three-dimensional scene, square E will still have to be visible.

Finally, squares B, C, D, and G may all share the same position in three-dimensional space, but

since they are all on different points along the fourth dimension, they will all be visible to the

camera.

Figure 4: Vision along the Fourth Dimension

 For many people, this will be their first time hearing of the fourth dimension and we hope

that by showing fourth-dimensional movement and presence through a familiar topic such as

gardening, our players will be able to more easily understand the fourth dimension. By giving

THE CONDUIT’S GARDEN 22

players a hands-on experience with the fourth dimension, they can overcome the challenging

initial stages of perceiving the fourth dimension and have a far easier time envisioning how

things work in fourth-dimensional spaces.

2.2 Fourth-Dimensional Objects

 In the real world, we cannot easily visualize or experience fourth-dimensional objects and

environments. In the virtual world, however, using code to give objects a fourth coordinate can

be a way to simulate a four-dimensional environment. The code we wrote for the fourth

dimension is broken up into three scripts:

 The Hyper-Creature Script: allowing players to move on the fourth dimension

 The Hyper-Object Script: simulating the visual appearance of four-dimensional objects

 The Hyper-Collider Script: simulating the collisions between four-dimensional objects

The following sections will discuss the implementation of each of these scripts and their role in

simulating the fourth dimension.

2.2.1 Hyper-Creature Code

The Hyper-Creature script holds all the information about the player character’s position

on the w axis along with the value of the player’s peripheral vision of the w axis. The script is

placed on the camera for the eyes of the Vive camera rig prefab. Since there are many objects

that need to have a reference to the hyper-creature, it has been declared as a singleton. This

makes it easier for other objects to get the reference to the hyper-creature through a static

variable rather than using the built-in ‘find’ methods that traverse every object in the scene.

THE CONDUIT’S GARDEN 23

 The two main functions found in this script are WMove and WMoveAllHyperObjects.

The WMove function is what the controllers use to change the w position of the player character.

Although the w value of the player character is public, this method contains the calculations to

ensure that the w value does not go below zero or above four. WMoveAllHyperObjects is a

public function that allows any object to force all hyper-objects in the scene to update their

visuals. Objects that change players’ peripheral vision along the w axis, like the wash basin, will

use this function. The variable for players’ w peripheral vision is public, but hyper-objects

cannot detect when this value changes, so instead WMoveAllHyperObjects should be called.

This function iterates through all the hyper-objects in the scene and calls their WMove method.

This function is infrequently called as to not impact the performance of the game.

 The hyper-creature script also holds the functions that cause the camera to fade in and out

between scenes. These function will return true if the camera is done fading in or out. Other

objects that control when the game starts and end can use these functions to postpone changing

levels until the camera finished fading out or in.

2.2.2 Hyper-Object Code

 The Hyper-Object script acts like a plugin for game objects to give them a w coordinate

and depth along the w axis. This script controls the visuals of hyper-objects to draw them to

simulate how they would appear in a fourth-dimensional environment. The texture of the object

is also loaded here as our custom shaders are controlled through this script.

 The main function that controls the visuals for fourth-dimensional objects is called

WMove. This function runs calculations on the object's position on the w axis and compares it to

the player character’s position on the w axis. The player’s fourth-dimensional peripheral vision

and the object’s depth on the w axis are also considered in these calculations. The code will use

THE CONDUIT’S GARDEN 24

all the variables to determine if the object is on, or passes through, the player character’s w

position. If this is true, then the object should appear solid, if not then it should be invisible or

transparent. A coroutine is then started that will smoothly change the color and transparency of

the object to simulate players moving between two points on the w axis. During this process, the

shader for the object is changed depending if the object is becoming transparent or solid. Objects

on the w point that players are moving to will increase in opacity and use our custom opaque

shader, while objects players are moving away from will decrease in opacity and use our custom

transparent shader. If players have peripheral vision along the w axis, objects that players are

moving away from will have 20% opacity and still be visible to them. If they do not have any

peripheral vision, instead those same objects will fully decrease in opacity and become invisible.

 WMove can be called by the Hyper-Creature script using WMoveAllHyperObjects, as

mentioned in the previous section. Since our game will contain many hyper-objects, calling a

function that first finds, then loops, through all instances of hyper-objects would be inefficient

and have a negative impact on in game performance. The better approach that we implemented is

to have each hyper-object hold a reference to the controller manager and wait for a variable in

one of the controllers to be true. When the controller registers a trigger being pressed it will set a

public variable to true so that the hyper-objects will know to run the WMove method. The

controller will set the variable near the end of the update step and then reset it to false at the start

of the next update step. The hyper-object checks the variable in its late update step so that it is

reading the variable in between the time it is set by the controller and the time it resets back to

false.

THE CONDUIT’S GARDEN 25

2.2.3 Hyper-Collider Code

 Physical interactions between hyper-objects are controlled through the Hyper-Collider

Manager script. The important function in this script is the SetCollisions function. It operates

similar to the WMove function; the object running the method is checking its own variables

against all other objects with hyper-collider scripts to determine if this object would collide with

those objects. If an object determines that it cannot collide with another object because the two

objects are not on the same w position or they do not extend into similar w points, then the

collider on the object will ignore all collision events containing that object.

Figure 5: Moving a Hypercube from W Position zero to W Position One

 Players can move objects to different points on the w axis by holding them as they move

along the w axis (Figure 5). The SlideW method in the hyper-collider manager script checks to

ensure that the object can be moved to the w position players are moving towards. If an object’s

depth would cause it to extend past the minimum or maximum w value (in our game this is zero

and four respectively) then the object will not be moved on the w axis, but players will still be

able to hold the object. If the object can move along the w axis, then the object will reset its

collisions to recalculate what objects it can now collide and not collide with.

 Hyper objects may be made up of a collection of children with any combination of hyper-

object and hyper-collider manager scripts attached to them. The hyper-object and hyper-collider

THE CONDUIT’S GARDEN 26

code have recursive functions that check for children with these scripts and use them to

determine visuals and collision. The SlideW function will check that all the children would be

able to move before performing the move. During recursion, any hyper-object scripts would also

have their SlideW method called as this would update the color of the object to show it has

moved to a different w position.

2.3 Fourth-Dimensional Shaders

The key technical challenge in implementing our fourth-dimensional environment was

developing a method by which we could render objects according to their position within fourth-

dimensional space. Unity3D is built to render objects in three-dimensional environments by

testing the distance between the camera and each object and drawing them over each other

accordingly. We had to build upon Unity’s current rendering process to account for an object’s

position along the fourth axis of space and provide us with a representation of a fourth-

dimensional environment. In order to achieve this effect, we had to build shaders and scripts that

satisfied our technical requirements.

2.3.1 Design Requirements

According to our design, we chose to constrain our fourth-dimensional environment to

five points along the fourth dimension. We originally designed the game to work with seven

points along the fourth dimension, but our playtesting results caused us to move to five points to

improve player comprehension. These points would be found at whole numbers from zero to

four and players would only be able to move by snapping their position to one of these points.

We did not account for positions with decimal values between two whole numbers.

THE CONDUIT’S GARDEN 27

These five points had to be noticeably different to players, so we rendered all objects at a

specific point on the w axis with the same base color (Table 1). The five colors we chose were

red, yellow, green, cyan, and magenta. To allow for variation between objects with the same base

color, we altered the color value of individual objects to make them darker or lighter.

W Position Red Green Blue

0 1.0 0.0 0.0

1 1.0 1.0 0.0

2 0.0 1.0 0.0

3 0.0 1.0 1.0

4 1.0 0.0 1.0

Table 1: Normalized RGB Color Value per 4th Axis Position

In order to render a fourth-dimensional environment, we designed our game to overlay

three-dimensional cross sections of points along the fourth dimension onto our three-dimensional

Unity environment. According to our designs outlined in Chapter 2.1, objects within three-

dimensional cross-sections at the same point on the w axis as the player character had to be

rendered as opaque, while objects within cross-sections on different points would be rendered as

transparent. Not only did objects have to be transparent when on different points of the w axis

from the player character, but they also had to be visible at all times by not being culled by

opaque geometry in the scene. These transparent objects had to be drawn over all other geometry

even if they were physically behind another object.

With our peripheral vision mechanic, only objects within the range of the player’s

peripheral vision would be drawn to the screen. For example, a peripheral vision of zero would

only draw objects on the same point of the w axis as the player character while a peripheral

vision of two would draw objects on every point within our range of the w axis independent of

THE CONDUIT’S GARDEN 28

the player character’s w position. This range of peripheral vision would change as players

activated more shrines in the garden or drank from the wash basin.

2.3.2 Programming Challenges

The initial challenge in implementing these fourth-dimensional shaders was learning how

to program custom shaders for Unity. After a bit of research, we discovered a good collection of

tutorials on how to program shaders in Unity. The best tutorials on Unity shader programming

were found at the Cg Programming in Unity Wiki page (Cg Programming/Unity) which taught

us how to program shaders for basic materials, transparent surfaces, basic lighting, basic

texturing, three-dimensional texturing, environment mapping, and complex lighting. The

tutorials that taught us the techniques we used in programming the fourth-dimensional shaders

were on Diffuse Reflection, Order-Independent-Transparency, and Textured Spheres.

The Unity Documentation Manual’s Shader Reference (Shader Reference) provided a set

of tutorials on surface shaders, vertex and fragment shaders, and fixed-function shaders. These

tutorials were especially helpful because they taught step-by-step guides in building complex

shaders from scratch. This manual is useful for building an initial level of shader programming

knowledge for newcomers.

After completing the tutorials on shader programming found at the listed websites, we

began programming the fourth-dimensional shaders. Due to the design of our gardens, there is a

large mix of transparent and opaque objects within the game scene. At a given time, most

stationary scenery and interactive game objects need to be rendered as solid because they are

present on the player character’s position along the fourth dimension. For example, scenery

objects like rocks will have an origin at zero and a depth of four, making them present at every

point within our range of the fourth dimension. We could have rendered these objects using the

THE CONDUIT’S GARDEN 29

transparent shader and simply set their alpha to the max, 1.0, but that would require the GPU to

render them with the same performance as any other transparent object. Unity has a sizable

performance difference when rendering opaque objects compared to transparent objects due to its

rendering pipeline.

Figure 6: Unity Rendering Pipeline (ShaderLab: Blending)

In Figure 6, the GPU finishes drawing opaque objects at the fragment shader, while

transparent shaders have to go through the alpha test and blending stages. Opaque objects also

have the benefit of always culling their back faces, so that only a portion of the vertexes in an

opaque mesh are drawn. Also, transparent shaders often have multiple render passes to achieve

their desired effect which multiplies the effort required of the GPU. This massive difference in

performance requirement takes its toll on the GPU, which for our game, is already busy

rendering images for the display of the HTC Vive. We had to make sure that our shaders could

achieve our desired visual effect without causing a significant drop in our game’s average frame-

rate. Our solution was to swap the transparent shader used by an object’s material with an

opaque shader whenever the object was on the same position on the fourth dimension as the

player character.

The next challenge we had to overcome was getting transparent objects drawn over every

other object in the scene independent of their position in three-dimensional space. This effect

was simply achieved by turning off the ZWrite for our transparent objects and setting the ZTest

THE CONDUIT’S GARDEN 30

to NotEqual. This ZWrite tag is a Unity ShaderLab property that determines if pixels drawn to

by an object are written to the depth buffer (Culling & Depth Testing). By turning this off, we

can draw transparent objects in Unity. The ZTest tag is a Unity ShaderLab property that

determines how depth testing is performed on the pixels drawn to by an object. The depth test is

performed between the vertex and fragment shader functions to determine if a pixel, not a vertex,

is occluded by objects within the scene. By setting this to NotEqual, an object is drawn at all

times unless it is at the exact same position as another object. We chose to use the NotEqual

value because Unity has a hard time deciding which pixel to draw when a transparent and opaque

object occupy the same position, so it flickers between the two desired colors every other frame.

Our opaque shaders are a combination of methods found on diffuse lighting of textured

surfaces and point lighting from multiple light sources. The diffuse lighting we use in our opaque

shader applies the Phong reflection model (Figure 7, Lighting Textured Surfaces) using texture

color and the given color constant as parameters for the material constant kdiffuse.

Idiffuse = Iincoming kdiffuse max(0.1, N • L)

Figure 7: Phong Reflection Model

 Since we don’t want any object being colored black by the diffuse reflection, we set the

minimum possible value of the dot product between the vertex normal direction and the

incoming light direction to 0.1 (scale of 0.0 – 1.0). Multiplying the fragment texture color and

the color constant provides us with a material constant that allows for the effect of diffuse

lighting on our textured objects.

This diffuse reflection model is expanded further to account for up to four lights present

in our game scenes (Multiple Lights). First we have to alter the material constant to account for

the attenuation of the light source if it is a point light rather than a directional light. The

THE CONDUIT’S GARDEN 31

attenuation of the point light tracks the distance between the fragment and light position in world

space. Since directional lights are constant, the attenuation should be constant with no alteration

to the reflection value. Then, we compute the aggregate lighting value of each of the four

possible lights for each vertex. This aggregate value is then added to the diffuse reflection value

when computing fragment colors. We chose to limit the use of point lights in our scenes because

this lighting method quickly overloads fragment colors to the maximum value of white when

many lights are placed next to an object.

Researching possible implementations for transparent shaders, we came across a method

of performing a two pass render on objects for a more photogenic and clear transparent effect.

This method combines multiplicative and additive blending to create an order-independent effect

that works without having to consider the rendering order of triangles within object geometry

(Order-Independent Transparency). The first rendering pass of this order-independent

transparency runs a multiplicative blending on the pixels rendered by the background with the

alpha value of the transparent object. This is performed on the “contents of the framebuffer

before the triangles are rasterized” to improve the additive blending of triangles as they are

pixelated during the rasterization process. The seconds rendering pass multiplies the alpha value

of the object to the color data and adds the value to the filtered pixels of the multiplicative pass.

After creating our shaders and testing them on our game scenes, we noticed that the scene

skybox was occluding transparent objects. This occurs because the Unity skybox is drawn over

objects that do not perform a depth test on themselves. Therefore, the transparent objects could

be seen only if it were being drawn over an opaque object. We found a solution on the Unity

answers forum written by user Matou who proposed turning off the Unity Skybox, creating a

custom skybox object using a provided skybox shader, attaching the skybox object to the game

THE CONDUIT’S GARDEN 32

camera, and attaching a script to the skybox object that freezes its rotation on the x, y, and z axis

(Transparent shader in background queue). We placed the skybox on the in-game HTC Vive

camera rig camera and we were able to see the transparent objects over the skybox. We also

noticed that the skybox object had to fit within the limits of the Vive camera’s rendering

distance. This meant that our game scenes had to be limited in size to fit within the skybox area

and the camera’s rendering distance. We chose not to increase the Vive camera’s rendering

distance because it would heavily decrease the game frame-rate. This limited size had no

significant impact on our design of the Tokyo garden or home level since the HTC Vive already

limited player movement.

The final step in implementing the shaders was integrating them with the existing hyper-

object code. Hyper-objects are designed to smoothly transition the RGBA value on their material

as they move in relation to the player character’s position on the fourth dimension. Once a

transitioning transparent object’s alpha nears 1.0, the hyper-object script assigns the opaque

shader to the object material and carries over the color and texture data. When an opaque object

begins its transition to transparent, the hyper-object script assigns the transparent shader to the

object material and carries over the color and texture data. Unity provides functionality within

C# or JavaScript scripts to assign a material’s shader and assign the shader’s property values.

With the shader functional and implemented, we tried different shading styles for the

opaque fourth-dimensional shader that would provide the clearest and most visually appealing

experience for players. At first, we tried applying cel-shading to our objects. The cel-shading

applied a single shading value of about 25% the material color to all vertices where the dot

product between the directional light direction and the normal direction were less than zero. For

complex objects with many faces, the effect was visually appealing, but it was hard to tell the

THE CONDUIT’S GARDEN 33

difference between objects in the scene since they were all made up of two similar color values.

Instead of going with the stylistic cel-shading, we resorted to a basic diffuse shading that allowed

for more variation in shadow values on objects. However, we didn’t want an object to appear

black at any point, so we set a minimum shading value that the diffuse shading could not pass. At

the most, an object’s diffuse shadow could reach 10% the value of the material color.

2.3.3 Implementation

 The fourth-dimensional visuals of our game were created by switching objects between

two shaders as their position in relation to the player camera changed. The first shader rendered

objects as opaque with diffuse lighting, texturing and shadow casting and receiving. The second

shader rendered objects as transparent with texturing. The hyper-object script attached to all

game objects in our game scenes smoothly switched between the two shaders and altered their

displaying color values as the player camera moved along the w axis.

Figure 8: Opaque Shader on Game Objects

While active, the opaque shader renders objects without any transparency and with

lighting effects (Figure 8). Diffuse lighting dependent on the direction of the directional light in

THE CONDUIT’S GARDEN 34

the game scene is used to draw light levels on the object’s vertices. The shader also makes use of

Unity’s ShaderLab functions for calculating incoming shadows from other objects and projected

shadows on distant objects.

 The opaque shader takes in a color value that is applied to the material surface and a

texture image that is wrapped to the surface geometry of the object if it has UV wrapping data

(Figure 9). In the first pass, the shader uses the ForwardBase tag to calculate the shading required

by the directional light and all incoming shadows from other objects in the scene. The second

pass makes use of the ForwardAdd tag to calculate incoming light from point lights found in the

scene. This shader is run at the render queue order of 2000 along with all other opaque geometry.

The shader itself has two passes each with their own vertex and fragment functions.

 Opaque Shader Properties

1 Properties

2 _Color - normalized RGBA color value

3 _MainTex - Texture to be wrapped onto the object’s surface

4 Pass 1 Tags

5 LightMode is ForwardBase for directional lighting

6 Pass 2 Tags

7 LightMode is ForwardAdd for point lighting

Figure 9: Opaque Shader Properties

 Figure 10 outlines the steps taken by the vertex function in the first pass of the opaque

shader. The vertex function must pass on the vertex position in both model space and world

space, the vertex normal direction, the vertex texture data, and the diffuse shading required of the

directional light and 4 point lights. A majority of this data is calculated using pre-built and on-

compile unity functions. Note the for-loop that reads in the data on the point lights. This shader

allows up to 4 point lights in the scene to apply lighting to the object using this shader. In cases

like our home level, point lights allow us to maintain the ability to cast shadows and illuminate

THE CONDUIT’S GARDEN 35

objects without a direct line of sight to the scene directional light. Without the use of point lights,

objects like the ceiling would cast a blanket shadow over all indoor objects.

 Opaque Shader Pass 1 Vertex Function

1 Output position = product of the model-view-projection matrix and

the vertex position

2 Output position in world space = product of the model matrix

and the vertex position

3 Output normal direction = normalized product of the vertex normal and

the inverse of the model matrix

4 Output texture = vertex texture coordinate position

5 For four lights

6 Vertex position to light source = difference between the light position

and the vertex position in world space

7 Light direction = normalized vertex position to light source

8 Squared distance = dot product of the vertex position to light source against itself

9 Attenuation = 1 divided by the sum of 1 and the product of

the light source unity encoded attenuation value and

the squared distance

10 Lambertian value = max between 0 and the dot product of

the normal direction and light direction

11 Diffuse reflection = sum of the attenuation, light color, _Color and

lambertian value

12 Output vertex lighting = sum of the diffuse reflection and

the previous value of the vertex lighting

13 End for loop

14 Call Unity’s TRANSFER_VERTEX_TO_FRAGMENT function on the output

15 Return the output

Figure 10: Opaque Shader Pass 1 Vertex Function

 The fragment shader in the first pass (Figure 11) converts the vertex data into per-pixel

fragment color data. Most of the math for this pass is performed in the vertex function to

decrease the work required of the GPU and increase game performance. As performed in the for

loop of the vertex function, we must calculate the diffuse reflection of the directional light at this

fragment position and apply that value to the texture color and point light diffuse reflection. The

if statement in the above pseudo code checks whether the light data being added on this pass is a

THE CONDUIT’S GARDEN 36

directional or point light to account for the correct attenuation and light direction. Directional

lights have an assumed world space position at the origin, so there is no need to calculate the

direction between the fragment and light.

 Opaque Shader Pass 1 Fragment Function

1 If directional light

2 Attenuation = 1

3 Light direction = normalized directional light position

4 End if

5 If point or spot light

6 Attenuation = 1 divided by distance between fragment and light source

7 Light direction = normalized difference between the light source and

vertex position

8 End if

9 Lambertian value = max between 0.1 and the dot product of the normal and light directions

10 Diffuse reflection = product of the attenuation, light color, color property, and

lambertian value

11 Texture color = pixel value of the texture at the fragment position on the mesh

12 Fragment color = product of the texture color,

the max between 0.1 and the unity encoded shadow value of the vertex,

and the sum of the vertex lighting and the diffuse reflection

13 Return fragment color

Figure 11: Opaque Shader Pass 1 Fragment Function

 Since the math behind calculating the point light data within the first pass has already

been done, the second pass of the opaque shader (Figure 12) simply blends the light data over the

previously rendered fragments of the last pass. The second pass vertex function simply passes on

the positional, normal, and texture data of the current vertex.

THE CONDUIT’S GARDEN 37

 Opaque Shader Pass 2 Vertex Function

1 Output position = product of the model-view-projection matrix and

the vertex position

2 Output position in world space = product of the model matrix

and the vertex position

3 Output normal direction = normalized product of the vertex normal and

the inverse of the model matrix

4 Output texture = vertex texture coordinate position

5 Return output

Figure 12: Opaque Shader Pass 2 Vertex Function

 The second pass fragment function (Figure 13) performs the same process as the first

pass fragment function with the exception of the vertex lighting data of the first pass. After

running through these shader passes for each scene light, we achieve the visual effect presented

in Figure 8 at the top of this section.

 Opaque Shader Pass 2 Fragment Function

1 If directional light

2 Attenuation = 1

3 Light direction = normalized directional light position

4 End if

5 If point or spot light

6 Attenuation = 1 divided by distance between fragment and light source

7 Light direction = normalized difference between the light source and

vertex position

8 End if

9 Lambertian value = max between 0.1 and the dot product of the normal and light directions

10 Diffuse reflection = product of the attenuation, light color, color property, and

lambertian value

11 Texture color = pixel value of the texture at the fragment position on the mesh

12 Fragment color = product of the texture color and the diffuse reflection

13 Return fragment color

Figure 13: Opaque Shader Pass 2 Fragment Function

While active, the transparent shader renders objects as transparent and draws them over

opaque objects in the game scene (Figure 14). Before blending the object colors to the render

THE CONDUIT’S GARDEN 38

image, the shader pulls the object out of testing for distance to the camera and draws to the

render image at all times after other solid geometry is drawn. To achieve the transparent effect,

the transparent shader performs two passes when rendering an object’s geometry by first running

multiplicative blending of the object’s alpha value to the background render image and then

running additive blending of the object’s color to the render image. This all results in objects on

other points of the fourth dimension from the player character always being drawn and allowing

for vision of distant 4D objects.

Figure 14: Transparent Shader on Game Objects

 To set up the two pass blending for our transparent shader we need the color and texture

properties (Figure 15) of the given object and we need to set the RenderType tag to transparent

to allow the object to be drawn with other transparent geometry. The transparent render type sets

the render queue order of this object to 3000 and allows for running alpha test and z test calls.

 Transparent Shader Properties

1 Properties

2 _Color - normalized RGBA color value

3 _MainTex - Texture to be wrapped onto the object’s surface

4 Tags

5 RenderType = Transparent (RenderQueue order 3000 and AlphaTest calls)

Figure 15: Transparent Shader Properties

THE CONDUIT’S GARDEN 39

 The first pass of the transparent shader performs a multiplicative blending of the

background pixels to allow the second additive pass to draw to a more uniform base (Figure 16).

This pass inevitably dulls pixels drawn to by this object by a factor of 20%. Of note in this pass

is the culling of back faces which halves the GPU render time of the object. Also the ZWrite tag

is set to off so that depth testing is not performed and transparency can be added to the render

frame. ZTest is set to NotEqual so that this object is drawn to the render frame even if it is

behind solid geometry. The only time the object will not be drawn is if it occupies the exact same

space as another object since Unity can’t decide which object should be drawn and the result

flickers between the two objects. The Blend tag is set so that the existing pixel color on the

render frame is multiplied by one minus the alpha of the fragment color. At all times, the

fragment alpha is 0.2.

 Transparent Shader Pass 1

1 Cull Back Faces

2 ZWrite is Off

3 ZTest tests for NotEqual

4 Blend Zero OneMinusSrcAlpha

5 Start CG Program

6 Vertex Function

7 Output position = product of the model-view-projection matrix and

the vertex position

8 Output texture = vertex texture coordinate position

9 Return output

10 Fragment Function

11 Texture color = color value of the input xy position on _MainTex

12 Fragment color = product of _Color and the texture color

13 Return fragment color

14 End CG Program

Figure 16: Transparent Shader Pass 1

THE CONDUIT’S GARDEN 40

The second pass of the transparent shader performs an additive blending of the object’s

geometry to the currently drawn render frame (Figure 17). The tags for face culling, ZWrite, and

ZTest are the same as the previous pass. The Blend is set to multiply the fragment color value by

the fragment alpha and add the result to the existing pixel color on the render frame. This results

in an additive effect where the object geometry appears to have a transparency by which other

objects are visible through it.

 Transparent Shader Pass 2

1 Cull Back Faces

2 ZWrite = Off

3 ZTest = NotEqual

4 Blend SrcAlpha One

5 Start CG Program

6 Vertex Function

7 Output position = product of the model-view-projection matrix and

the vertex position

8 Output texture = vertex texture coordinate position

9 Return output

10 Fragment Function

11 Texture color = color value of the input xy position on _MainTex

12 Fragment color = product of _Color and the texture color

13 Return fragment color

14 End CG Program

Figure 17: Transparent Shader Pass 2

 The hyper-object script updates the shader used by the materials of game objects in the

game scene whenever players move their position along the fourth dimension. Once players

move, the hyper-object script determines if the object is within their range of peripheral vision

along the fourth dimension and if so, checks if the shader needs to be swapped for the transparent

or opaque one.

THE CONDUIT’S GARDEN 41

If an object must transition from transparent to opaque, then a linear interpolation

over time is applied to the alpha of the transparent shader and once that alpha is close to 1.0, the

opaque shader is applied to the object material and the shader information is carried over.

If an object must transition from opaque to transparent, on the visual update call the

transparent shader is swapped into the material and the shader values are carried over. Once the

switch has been made, the alpha values linearly interpolate over time to the constant

transparency alpha value.

If an object has a depth greater than zero, it is visible on multiple points of the fourth

dimension, so the color value of the opaque shader must be linearly interpolated over time from

one color to the next dependent on the player character’s position. If an object is present at w

value two and has a depth of one, then it will be visibly solid on w points two and three, green

and cyan. If players are at w position two, the object will appear as transparent green. If players

are at w position four, the object will appear as transparent cyan.

If an object is outside of the player’s peripheral vision along the fourth dimension,

the object’s material will use the transparent shader with an alpha value of zero to make it

seemingly invisible. When players move along the fourth dimension so that an object moves

outside the peripheral vision range, then the color alpha value of the transparent shader is linearly

interpolated over time from the transparency constant to a value of zero.

THE CONDUIT’S GARDEN 42

3 Core Game Zones

 Our game incorporates a lot of real world objects, such as bonsai trees and Koi fish. The

behaviors these objects have must be modified, and in some cases removed, to work with the

fourth-dimensional mechanic while also making the gameplay interesting. The following

sections will focus on the three core game zones - the bonsai trees, the fish pond and the gravel

pit - and how we modified their real world behaviors to work in our fourth-dimensional game

environment. These modifications should help these objects retain some real world traits while

also helping achieve our experience goal. We want players to enjoy how objects move in the

fourth dimension while also working on tending to the garden to appease the nature spirits.

3.1 Bonsai Trees

 The bonsai trees (Figure 18) are one of the three main mechanics in the game. Shinto

gardens will have bonsai trees of a variety of sizes and styles. “The ultimate goal of growing a

Bonsai is to create a miniaturized but realistic representation of nature in the form of a tree”

(Definition and Meaning). For our Tokyo garden, the bonsai trees will represent the Tokyo

Tower and the Tokyo Sky Tree. The bonsai trees also add an artistic element to the game along

with providing interesting gameplay. In the following sections we will discuss:

 Designing the Bonsai: Components and Health of the Trees

 Interacting with the Bonsai: Pruning and Disinfecting the Trees

 Implementing the Tree: The Steps of a Growth Cycle

THE CONDUIT’S GARDEN 43

Figure 18: A Healthy Bonsai Tree

3.1.1 Bonsai Design

The bonsai trees are made up of a collection of branches, buds and leaves (Figure 19).

Buds grow on branches and will grow into a new branch or leaves. Branches that grow from

buds will have buds of their own already on them. Branches at the ends of the tree without any

buds on them will grow new buds during the next growth cycle. Buds are what allow the tree to

grow onto multiple points of the w axis (Figure 20). This creates areas were segments of the tree

may appear to be floating or areas where the different colors of the branches blend. This provides

both an artistic effect and provides an interesting challenge for players to try and tend to the trees

in their own unique ways.

THE CONDUIT’S GARDEN 44

Figure 19: Bonsai Tree Components

Figure 20: Bonsai Components on Different Points of the Fourth Dimension

At the beginning of the game, the trees will have many branches and leaves already on

them. The bonsai trees grow exponentially, so having each tree initialize as a single branch

would keep the tree problem free for the entire first half of the level. Initializing the trees with

three long branches will generate more leaves and branches after the first two growth cycles and

make the bonsai trees more closely resemble bonsai trees in the real world.

A growth cycle is when the tree grows new components and processes the status of each

of its already existing components. The time between growth cycles is two minutes. Since the

bonsai tree is the most complex game zone, we decided to make the time between cycles long to

allow players to explore the other game zones without becoming overwhelmed by the bonsai.

THE CONDUIT’S GARDEN 45

A typical bonsai tree will grow forever until the day it dies. In our game, a single tree can

have up to 60 leaves and 45 branches on it before it stops growing. This is to prevent the tree

from growing to fill the entire game world or extend past the HTC Vive play space. This also

limits the number of game object the tree will make to prevent it from overwhelming the system

and decreasing performance.

Trees naturally try to grow taller and bigger, a trait known as “apical dominance”

(Pruning Bonsai). This means that trees tend to focus growth on their higher and outer leaves

and branches rather than the inner and lower ones. This eventually causes “the tree’s inner and

lower branches will eventually die, while top branches grow out of proportion; two effects not

desirable for the design of Bonsai trees” (Pruning Bonsai). We recreate this behavior in our

game by having leaves detect if they would not be getting enough sunlight. This will eventually

lead to leaves on the tree dying (Figure 21, Stage 2) as the game progresses. Dead leaves are the

main antagonists in the bonsai game zone and what call players to interact with the trees.

Figure 21: Stages of Bonsai Tree Infestation

If all the leaves on a branch are dead, the branch may become infested with pests (Figure

21, Stage 3) that will slowly spread to and kill other branches on the bonsai. Usually, bonsai will

become infested due to poor watering and fertilization habits that cause the health of the tree to

deteriorate. To prevent the bonsai from being too complicated, we define the health of the tree by

THE CONDUIT’S GARDEN 46

the number of dead leaves on branches. We wanted to force the infestation behavior into our tree

as we wanted there to be repercussions if players neglected the trees. Before the infestation

mechanic was implemented, we found that play testers would leave trees with dead leaves, as

there were no negative drawbacks by doing so. They would then come to the trees last and cut of

all the dead leaves to easily activate the shrine. By implementing a possibility of infestation,

neglecting the tree will start to kill the branches, forcing players to cut them off and undo their

progress up to that point.

3.1.2 Interacting with the Bonsai

There are many ways to care for a real bonsai tree - there are different fertilizers that can

be used, ways you can wire the tree to control its growth, and you can even repot the tree. To

keep the bonsai mechanic from becoming too complex, we decided to only implement trimming

and removing infestations. These two behaviors are ideal as they provide interesting scenarios

and gameplay and the tools that players uses for these actions are similar in function and use.

Players trim the tree through the use of the shears tool (Figure 22). Holding the shears

with the grip buttons and pressing the touchpad with the controller holding the shears will

perform the snipping action. Any branch or leaf in between the blades of the shears during the

snipping action will be cut from the tree and disappear. The only exception to this is the branch

at the base of the tree as destroying it would delete the tree and ruin the game. In our initial

design, only branches and leaves at the edges of the tree could be cut, however this would simply

extend the time required to remove an unwanted branch. If a tree is overgrown with many edge

branches, this process becomes very tedious and frustrating, so we allowed players to snip any

branch on the tree.

THE CONDUIT’S GARDEN 47

Figure 22: Trimming a Dead Bonsai Leaf with Shears

 Players can remove an infestation from a tree by using the insecticide (Figure 23).

Similar to the shears, the can of insecticide can be held using the grip buttons and pressing the

touchpad will cause the can emit particles from the nozzle at the top. The spray area is large, but

only affects branches on the same w point as the insecticide. We wanted the process of

disinfecting the tree to be simple while not being convenient. The purpose of the infestation

mechanic was to punish players who neglected their tree by slowly killing the branches.

Disinfecting the tree should not be an additional punishment, but also should not be so easy that

it undermines the purpose of the infestation mechanic.

Figure 23: Removing a Bonsai Infestation with Insecticide

THE CONDUIT’S GARDEN 48

3.1.3 Bonsai Implementation

 The bonsai tree is implemented in the game by connecting the branches, buds, and leaves

in a hierarchal tree structure, sending growth signals up and down the tree, and registering tree

data within the bonsai manager. The tree is implemented so that newly grown branches, buds and

leaves are instantiated as children of their parent branches. The bonsai manager maintains a

reference to the base parent branch of the entire tree and initiating its growth process every two

minutes.

Once the tree’s base branch receives a signal to process its growth cycle, it follows the

growth sequence outlined in Figure 24. Each step of the growth sequence is performed on a

separate frame to reduce the load on the game while a tree grows. The step labeled “Process

Branches” is a recursive call to the branch growth cycle of each child branch. This results in a

depth first growth cycle splitting each step of the process onto separate frame updates. The

growth cycle cannot be initiated again until the tree has run through every step of the growth

cycle for each component on the tree.

Figure 24: Bonsai Growth Cycle

THE CONDUIT’S GARDEN 49

The first step of the growth cycle processes the newest state of the infestation on a branch

(Figure 25). At any time, the branch can be either clean, infested or dead. If the branch is clean, it

checks its children leaves to see if they are all dead. If they are, the branch then initiates the timer

for adding infestation to the branch. If the timer for reaching infestation has run out, infestation is

added to the branch by instantiating the bonsai bug object on the infested branch. It will then

attempt to spread the infestation to adjacent branches. Additionally, it checks to see if the timer

till death has run out and kills the branch and its living children leaves if it has. Once dead and

infested, a new timer is initiated to when the infestation is removed from the branch. Once the

timer has run out, the infestation disappears from the branch, and a cooldown timer is initiated

before the branch can be infected again. This cooldown timer ensures that the infestation does

not perpetually spread to dead branches and consume the tree forever.

Figure 25: Infestation Decision Tree

THE CONDUIT’S GARDEN 50

The second step of the growth cycle process all of the branch’s children leaves (Figure

26). A leaf will remain alive for the current growth cycle if it satisfies one of the following

requirements:

1. It is on a branch with no children branches.

2. a) It is on a branch that is higher than its children branches.

b) It has less than two leaves above it.

3. a) It is facing above the horizon.

 b) It has less than two leaves above it.

 Requirements 2 and 3 require both a and b to be true. If one of these requirements is not

met, the leaf will die and dull in color. On its death, the leaf will signal the bonsai manager so

that the number of dead leaves on the tree is tracked.

Figure 26: Leaf Death Decision Tree

THE CONDUIT’S GARDEN 51

 The third step of the growth cycle processes the growth cycle of all existing children

buds. The children buds are assigned their type (branch bud or leaf bud) on instantiation. They

simply create new tree components, attach them to their parent branch and pass them a reference

to the bonsai manager and its position on the w axis. When a new component has been created, a

coroutine responsible for extending the object from its initial position is called. New branches

extend outward from the center of their parent’s tip, new buds expand from a point on the surface

of the parent branch, and new leaves expand from a point on the surface of the parent branch.

 The fourth step of the growth cycle adds new branch and leaf buds. New children branch

buds can be grown as long as the following conditions are met:

1. There are less than 45 existing branches on the tree.

2. The branch does not currently have three children branches.

3. Any of these three conditions are met:

a. The branch’s depth is two or greater (the base branch being at a depth of zero) and

the modulo of the branch age and branch bud growth cycle is equal to zero

b. The branch’s depth is less than two and the modulo of the branch age and the

branch bud growth cycle is equal to zero

c. The branch’s depth is less than two and all of its children branches were removed

between the last growth cycle and the current growth cycle

The requirements listed in 3 account for special cases that ensure the tree grows as

expected. Case A ensures that if the current branch is at or beyond the minimum depth at which

leaves can grow, new branch buds will be grown on the growth cycle after new leaf buds have

grown. Case B ensures that if the current branch is below the minimum depth for growing leaves,

then new branch buds will grow on the same cycle that the current branch has grown. In practice,

THE CONDUIT’S GARDEN 52

this results in new branches already populated by branch buds. Case C ensures that if players

snip the tree right above the base or below the minimum leaf line, then the tree will immediately

start growing at the next growth cycle. This is necessary so that new players do not ruin their

playthrough by accidentally snipping the tree at the base. Additionally, the branch bud growth

cycle is relative to the depth of the branch, meaning that branches at lower depths will grow new

branch buds at a lower rate than branches at further depths.

If a new branch bud is to be grown on a growth cycle, then it is instantiated as a child of

the branch, placed at the center of the tip sphere of the branch, assigned a random rotation within

90 degrees of the vector pointing out from the tip and altered to have the visual of the bud moved

forward to make it appear on the surface of the branch. All of this is done to give the appearance

that a new bud has grown on the branch and ensure that when the bud transforms into a branch it

is grown in the right direction and position.

New children leaf buds are grown if all of the following conditions are met:

1. There are less than 60 existing leaves on the tree.

2. There are less than five existing leaves on the current branch.

3. The depth of the current branch is two or greater (the base branch having a depth of zero).

4. The modulo of the branch age and the leaf bud growth cycle is equal to zero.

 If all of these conditions are met, a new leaf bud will be instantiated, parented to the

branch, and placed in the correct position and rotation. Determining the position of the leaf bud

is a bit more complicated since it can be grown anywhere on the surface of the central cylinder or

tip sphere of the branch visual. The algorithm for placing the leaf bud first picks a random y

position between the central cylinder’s base to the tip of the branch. If this y position is on the

cylinder a random point is selected on the circumference of the circular cross section of the

THE CONDUIT’S GARDEN 53

cylinder at that y position. If this y position is on the surface of the tip sphere, then a random

point is selected on the circumference of the chosen circular cross-section of the sphere.

This location is then compared to the existing positions and rotations of other leaves to

determine if the new leaf will have an angle greater than 45 degrees between its facing direction

and that of older child leaves. If the offset is not great enough, a new point is randomly chosen

until a maximum number of 15 attempts is made in which case the bud is discarded. The position

is then stored for future checks and the bud is spawned at the position with a rotation pointing

away from the center of the cylinder or sphere.

 The final, fifth, step recursively calls the function for processing the current growth cycle

in each of the current branch’s children branches. Once every child branch has signaled it has

completed its growth cycle, the branch will send a completion signal to its parent.

3.2 Koi Fish

The koi fish (Figure 27) are another of the three core game zones. The addition of fish

and pools of water is what classifies our garden as a Shinto garden and not a Zen garden. Zen

gardens are a type of dry garden where bodies of water are represented in gravel or sand pits

(Japanese Gardens). In the Tokyo contract, we have four fish pools. Three of the pools represent

Tokyo Bay, the Arakawa River, and the Sumida River. The fish represent the people and

vehicles that move around Tokyo. The 3D model for the Koi fish was acquired for free from

ShareCG.com (Brownson, B. 2010). In the following sections we will discuss:

 Designing the Koi Fish: Hunger States and Acquiring Fish

 Interacting with the Koi Fish: Relocating and Feeding

 Implementing the Koi Fish: State Behaviors, the Feed Cycle and Finding a Target

THE CONDUIT’S GARDEN 54

Figure 27: Koi Swimming in Fish Pool

3.2.1 Fish Design

The fish in our game have two main behaviors: wandering and hunting. These behaviors

depend on the state of the fish. The states of a fish (happy, hungry, hunting and dead) are

discussed in more detail in Section 3.2.3. It takes the fish a set amount of time before it changes

states. When a happy fish gets hungry, it will dull in color and move slower (Figure 28). Hungry

fish are notably different from happy fish, so players should be able to identify and feed the fish

that are hungry. When fish are hungry, they will wait a period of time before eating nearby fish.

This buffer time gives players the opportunity to feed the fish before they eat one another, as

players may be focused on another section of the garden during the state change. However, if the

fish are not fed, they will eat the smallest fish closest to them, prioritizing size over distance.

Usually, “Koi carp are unlikely to eat other large fish” (Do Koi Eat); however, if a hunting fish

THE CONDUIT’S GARDEN 55

cannot find another fish smaller than its own size it will eat the closest fish of equal size. Without

this modification to normal Koi behavior, players would not have to pay attention to the fish

pools during the game. If a hunting fish cannot find a suitable target before the next hunger

cycle, it will die and vanish from the garden.

Figure 28: A Hungry Fish (left) and a Happy Fish (right)

 Fish spawn into the garden in the happy state. Once a fish has spawned, it will initialize

its feeding cycle clock. The time it takes for the fish to become hungry for the first time will have

an offset to make feeding cycles less predictable. If the feeding cycle had the fish get hungry

around the same time, feeding the fish would be less challenging. This offset adds a level of

variance to the fish feeding mechanic and leaves room for skilled players to align all of the fish

in the garden on the same feeding cycle. Only the initial feeding cycle offset is random; the time

between feeding cycles is a fixed rate for every fish. With every revolution of the feeding cycle,

a fish will deteriorate in hunger until it dies or eats. After play testing we set the time between

feeding cycles to be 60 seconds. More detail about what happens during a feeding cycle can be

found in Section 3.2.3.

THE CONDUIT’S GARDEN 56

3.2.2 Interacting with the Fish

Players can grab and move fish by pressing the grip buttons on a Vive controller while

the controller is touching a fish (Figure 29). Being able to move the fish is important as the fish

do not enter the garden already in a fish pool. Instead, the fish are spawned in a special pool

known as the reservoir (Figure 30) separate from the real fish pools. We felt that this method was

the best way to introduce the fish mechanic to players over having fish already in the garden.

Figure 29: Grabbing a Fish in the Reservoir Pool

Figure 30: Fish in the Reservoir Pool

THE CONDUIT’S GARDEN 57

The reservoir pool controls the rate at which fish can enter the garden. The reservoir will

continue spawning fish until the maximum limit of 40 fish have spawned. This causes players to

build up the garden fish pools over the course of the contract time instead of immediately at the

start of the game. The reservoir will spawn a new fish 15 seconds after it becomes empty again.

Fish can be fed using the fish food can tool. Players can grab and move the can by

pressing and holding the grip buttons on the Vive controller while the controller is colliding with

the can. Turning the can upside down will cause fish food pellets to spawn from the top of the

can and fall to the ground (Figure 31). Food will spawn a maximum of 30 food pellets on a

single w point while held and upside down. Food can be poured on any point of the fourth

dimension, but can only be poured on one point at a time. We debated allowing players to pour

food on multiple points of the fourth dimension as a reward for activating more shrines, but

decided against the idea as we wanted to constantly keep players moving along the fourth

dimension.

Figure 31: Pouring Fish Food into a Fish Pool

THE CONDUIT’S GARDEN 58

Fish can only be fed when they are in either the hungry or hunting state. Although happy

Koi could eat food, having to strategically place food in the fish pool would take time away from

tending to the other parts of the garden. When fish detect that food has entered the water, they

will cautiously move towards the closest pellet. Once they get close enough to the pellet, they

will move swiftly towards it and eat it. From our observation of Koi on Awaji Island, we found

that Koi will clump in an area where food is present (Figure 32). The Koi would also eat more

than one pellet of food and still linger in the area after eating. In an early implementation we

found that fish on the edge of the clump could never reach the food, so we modified these

behaviors to prevent the fish from clumping together in one spot of the pool when the food was

added. Now a fish will be able to quickly eat up a food pellet before the other fish get in range.

Food will disappear after 30 seconds if not eaten by a fish. This prevents players from pouring as

much food as possible into a pool and neglecting it for the rest of the game.

Figure 32: Koi Feeding Behavior Reference

THE CONDUIT’S GARDEN 59

3.2.3 Fish Implementation

 Fish run on a clock called the feeding cycle (Figure 33). Every feeding cycle the hunger

state of the fish changes. Fish have four hunger states:

● Happy

● Hungry

● Hunting

● Dead

Figure 33: Fish Feeding Cycle

Each hunger state alters the behaviors of a fish: how fast it moves, where it moves, what

alerts it, and how vibrant its color is. If the fish is taken out of water, then it will not take on any

behaviors. When the fish are in either the happy or hungry states, they will rotate to face a

random location in the pool and move forward at a constant speed. Fish in the hungry or hunting

states will change their target if there are food pellets on the same w point as them. Hunting fish

that are already moving towards a fish they can eat will not change their target if food is added to

the pool. A fish in the dead state will be removed from the game by the fish manager. This state

THE CONDUIT’S GARDEN 60

is used as a buffer between the frame a fish dies and the next frame where it is removed from the

scene.

 The fish manager contains the list of all fish and food pellets in the game world. When

the reservoir spawns new fish or a fish asks to be removed after death, it must receive permission

from the fish manager. When a fish enters the hunting state it requests a target fish to eat from

the fish manager using the RequestTarget function (Figure 34). This method can also be used to

target food for hungry and hunting fish.

Figure 34: RequestTarget Sequence

The fish manager will return either a game object or a value of null to the requesting fish.

The game object may be either another fish or food depending on how the function was called in

the fish manager. Fish will move towards the given target until they collide with it or the target

becomes invalid. This can happen if the target disappears, is moved to another w position or

changes to a size larger that the fish targeting it. If a hunting fish manages to reach its target it

THE CONDUIT’S GARDEN 61

will ask the fish manager for permission to consume it. The fish manager will make sure the

action is valid and, in the case of a tie between fish, have the fish that has been in the game the

longest eat the other fish. Eating sends a request to the fish manager to remove the target and

increases the number of food the fish has eaten. After eating two objects (any combination of

fish or food) the fish will increase one size unless it is already the large size.

3.3 Gravel Pit

 The gravel pit is the last of the three main mechanics in the game we designed. This

feature was important to include from a cultural standpoint, because in Shinto gardens, “large

stones are worshipped as Kami” and gravel was “used to designate sacred ground” (Garden

Elements). In addition, as players rake more and more designs into each of the gravel pits, the

pits will give them a visual effect that is reminiscent of the streets and roads that run through the

city of Tokyo. This supplements other game objects like the fish, which remind players of

vehicles and people moving around the city.

Figure 35: Player Designed Gravel Pit

THE CONDUIT’S GARDEN 62

3.3.1 Gravel Pit Design

 The gravel pit is made up of one plane to hold the gravel texture (Figure 36), and then

five “alpha” planes (Figure 35) on which players will rake patterns. These are transparent and

separate from the gravel texture plane. When players switch w dimensions, the gravel pit can

change color, and they can draw to the corresponding alpha plane as opposed to drawing

everything on the same gravel plane.

Figure 36: Gravel Pit

There are also game objects known as pattern lines (Figure 37), which match the color of

the current gravel pit and appear on the surface of each pit while players are holding the rake.

For each gravel pit, these serve as a visual representation of a pattern that players will have to

rake in that pit in order to activate the gravel pit shrine. To make these patterns, players can

match the pattern lines by raking over them in the pits. Invisible game objects known as nodes

are also present. These mark the start and end of the pattern lines, and are also placed at the

beginning and end of lines made by players with the rake. Both the pattern line and node objects

are used in pattern recognition, and as such will be discussed later in Section 3.3.4.

THE CONDUIT’S GARDEN 63

Figure 37: In-Game Pattern Lines

 The rake tool is modeled after the style of rake shown in Figure 38. Similar to a real-life

rake, players will hold the rake by the tool’s handle, and they will push and drag each of the four

tines at the end of the rake (Figure 39) around to draw their patterns in the pit.

Figure 38: Wooden Rock Garden Rake Reference

Figure 39: Rake

THE CONDUIT’S GARDEN 64

3.3.2 Interacting with the Gravel Pit

 Players interact with each of the gravel pits using the Vive controller to pick up the rake

tool provided to them, which originates in the cyan dimension. To “draw” lines and design

patterns in a gravel pit, they would then just need to place the tines of the rake tool into the

current pit they are on and maneuver the tool in whichever way they desire using the Vive

controller. To finish a line or a design that they were making in a pit, players would then move

the rake tool up, making sure that the tines of the tool were not touching the pit anymore.

 When players work on matching the patterns in the gravel pits, they are able to start

raking from either end of a given pattern line. The only factor players needs to worry about is the

orientation of the lines, so they will need to either rake straight horizontally or vertically along

the pattern lines. Walking in the gravel pits – which does not leave footprints – also does not

affect what is raked inside, so players are free to walk around it without destroying the patterns

they raked.

 In our original design, we wanted to implement a wind feature for the gravel pits. When

the wind blew, it would clear out or reset what was raked by players in a third of a random gravel

pit, which could possibly deactivate the gravel pit shrine. This feature would keep players on

their toes, as they would have to check the gravel pits occasionally to make sure their patterns

and rakings were not blown away and that the gravel pit shrine stayed active. This feature was

eventually taken out from the game after testing due to some negative effects it had on the

game’s performance.

THE CONDUIT’S GARDEN 65

3.3.3 Gravel Pit Implementation

In the gravel pit, players will be able to use the rake tool given to them to make designs

and “draw” lines, circle, and zigzags among other things through raking motions. In order to

accomplish this task, two types of planes are used to construct the pit - one plane to hold the pit’s

gravel texture, and another transparent alpha plane directly on top of this gravel texture for each

w dimension that players are raking and making designs on.

When players have the tines of the rake tool come in contact and collide with the current

gravel pit – and more specifically, the current alpha plane based on what w dimension players

are on – an 11x11 box of pixels with color corresponding to the current w dimension will be

drawn at the location of any of the tines that are in contact with the pit. This means that if the

rake is parallel to the pit when the collision occurs, all four of the rake’s tines will draw to the

transparent alpha plane. On the other hand, if the rake is rotated to the side so that only one tine

is touching the pit, a single line will be drawn on the plane. This feature allows players to have

more control over what they are capable of drawing within the pit, and can choose to rake with

all of the tines or just one or two if they wish. As players move the rake tool along the gravel pit

while the tines are colliding, every update frame a new 11x11 box will be drawn at the tines’

location, and only drawing to the parts of the box that have not been raked on yet.

An example of how this would work is shown in Figure 40. If on Update Frame 1 an

11x11 box of pixels is drawn on the current alpha plane, and on Update Frame 2 the rake has

been moved forward 9 pixels, then the new box drawn would only draw the first nine rows from

the top of the box to the plane (shown by the black-bordered green squares). This occurs because

the bottom two rows of the new box (shown by the green-bordered red boxes) were already

raked and drawn on Update Frame 1, and so those rows do not need to be raked and drawn again

THE CONDUIT’S GARDEN 66

on Update Frame 2 with the new box. The blue “X” marks the location of center of the given tine

for each Update Frame.

Figure 40: Tine Drawing by Pixel Boxes

3.3.4 Pattern Recognition

Our other technical challenge with making The Conduit’s Garden game was getting over

the obstacle of comparing pattern lines – made for players to match by raking – with what

players actually raked inside the gravel pit. To overcome this challenge, we needed to design an

algorithm that recognized what patterns were being made by players as they drew lines on the

gravel pits using the rake tool.

3.3.4.1 Design Requirements

 In order to match our design for what we intended to be able to do in the gravel pit, we

needed to implement a method of pattern recognition that met a few specific requirements. First

of all, the pattern recognition method needed to keep track of what lines were a part of the pre-

THE CONDUIT’S GARDEN 67

designed patterns for the Tokyo contract, and the shape and position of each line made by

players while raking. This was done through the use of “nodes,” which will be discussed later in

Section 3.3.4.3. The other part to this pattern recognition that we wanted implemented was

allowing players to have some freedom to rake what they wished. This was made possible

through our implementation method, as all lines made by players are matched to the pre-made

pattern for the contract. As such, as long as those pre-made lines are matched, any excess lines

made by players would not affect the pattern recognition and the activation of the gravel shrine.

3.3.4.2 Previous Research

Prior to coding our final algorithm for pattern recognition in the gravel pit, some research

was done to see if others had tried solutions to solve our problem of pattern recognition or a

similar issue. While we did not find any exact solutions to our version of pattern recognition, we

did find some people who had discovered methods of constructing code that ended up helping us

with an alternative pattern recognition that we did not use – this will be discussed later in Section

3.3.4.3 on alternative approaches – or guided us towards our final recognition implementation

method. For instance, there were a number of posts on the Unity3D Answers forum that we

found help. One user posted about comparing two bitmaps, where he was looking to “trace a line

that’s drawn on a bitmap” and needed to “check how good you did this” (Compare 2 Bitmaps) at

the end of his game. His code for accomplishing this task was helpful in implementing our first

alternate approach to pattern recognition of comparing the pixels of the images of the gravel pit

and what players have raked. Another user was looking to make a Tetris-style game, and was

trying to figure out how to check if a pattern was reached when “certain colored balls touched

each other in a specific pattern” (Pattern Detection). Someone replied to this and mentioned that

“For any given cell (i, j), you can determine if there's a corresponding L shape by checking the

THE CONDUIT’S GARDEN 68

colors of cells (i, j-1), (i, j-2), and (i+1, j-2)” (Pattern Detection). This comment inspired us to

try implementing in our “node” approach having previous and/or next nodes to keep track of

what nodes were in a specific line in a pattern and their order. One last user posted on the

Unity3D Answers forum about having a player draw runic symbols to cast spells, and wanting to

know “the most effective way to work out if the user has drawn a square / swirl / triangle”

(Gesture Recognition, Determining Shapes). Another user commented that the poster could

“store the angles you end up with in-order in an array or list (instead of the vertex positions -

although you can start with those and work out where and what your angles are later), then

compare with pre-stored lists of angles that define your shapes (with some margin for error).”

(Gesture Recognition, Determining Shapes). This was extremely helpful, as we modified this

suggestion in our final pattern recognition implementation to use vectors between “nodes” as

part of a way of recognition. We will go into more detail in the following section on how it

worked, but we also looked into EyeOpen, an “image processing library in C#” (Similar Image

Finder) as a possible option for recognizing patterns.

3.3.4.3 Alternative Approaches

 Before deciding on and implementing our method of recognition, we went through a

couple of different approaches to deal with this challenge. The first approach we tried to use was

by comparing the pixels of two different images – the original pattern we designed, and the

current state of the gravel pit. We would go through every pixel in one image and check if they

matched the color of the same pixel in the other image. While this did technically work and

produced a percent similarity value to determine if the pattern players have drawn on the pit were

right, the issue we had with this implementation method was its accuracy.

THE CONDUIT’S GARDEN 69

Figure 41: Comparison between Original and Player Made Pattern

An example of this accuracy issue is shown in Figure 41, where players might be asked

to rake a design into the pit like the red box in the Original Pattern picture. However, if players

actually raked the design 20 pixels to the right of the red box and 20 pixels below where they

were asked to rake (see the green box in the What Player Raked picture), the algorithm used in

this approach would be way off because many of the pixels would not match. This was an issue

for us because players would draw something very similar to what was asked but would get

penalized for it because it was not in the correct position.

 The second approach we tried was using the pre-existing EyeOpen library. To implement

this method, the original design image and the current image of the gravel pit would be taken in

and put into a pre-made function from the library to compare the two images “using RBG

projections (horizontal and vertical)” (Similar Image Finder). This would then determine the

percentage of similarity between the two images and return that value. While this seemed

promising and would have most likely worked, the issue with this implementation method was

actually its compatibility with the Unity3D engine – some of the file types used in the code for

THE CONDUIT’S GARDEN 70

the comparison were not supported by Unity3D, therefore, the library could not be used for this

project.

 Our last alternate approach, which our actual implementation method is essentially an

extension of, was to use “nodes” to keep track of the patterns that players have made with the

rake, as well as the pre-designed pattern. On the pre-made pattern, lines and curves would be

broken up into sections, with empty “node” game objects placed at intervals along them.

Similarly, when players begin raking on the gravel pit, nodes would be placed at specific

intervals at the current location of the rake’s tines. On certain update frames, the game would go

through each node from the pre-designed pattern and see if there was a node made by players

raking that was within a small radius of the node currently being checked. If there was a node

made by players in that radius, a similarity score would increase. We discuss the issues with this

design later in Section 3.3.4.5, when we talk about the challenges in programming our current

pattern recognition method.

3.3.4.4 Implementation

 We decided to implement pattern recognition for our gravel pit through the use of

“nodes.” When players make the tines of the rake tool collide with the gravel pit and starts

drawing a pattern with said rake, a node will be placed at the start of each tine collision. Then

when players are done raking a line or pattern and lifts the tines out of the gravel pit, a final end

node will be placed at the location where each tine left the pit to mark the end of the line or

pattern. Making up the original design players are trying to replicate while raking – shown to

players through the pattern lines mentioned in Section 3.3.1 and displayed in Figure 37 and

Figure 42 – each line in the pre-made pattern will be marked by a start node and an end node

placed at the line’s start and end points. When players are finished raking a line (thus making an

THE CONDUIT’S GARDEN 71

end node), the current nodes made by players from raking will be checked against the pre-made

nodes from the original design.

Figure 42: The Player in the Process of Raking, Trying to Match the Pattern Lines

The pattern recognition algorithm determines the vectors between the start and end node

for each line in the original design as well as the start and end nodes of each line and pattern

raked by players. The algorithm then iterates through the group of lines in the original design

(Figure 43, line 3) and finds the best line from the group made by players which matches it. This

is done by checking if the x and z position of the player-made line’s start node is within range of

the x and z positions of the start or end node from the current pattern line (Figure 43, lines 10

and 13). If these components are within range and the player-made line’s x and z vectors are

close enough to the pattern line’s x and z vectors (Figure 43, lines 11 and 14), then that line is

given a score of one (Figure 43, lines 12 and 15). This sequence will occur for each line drawn

by players, and the best scoring player-made line will add its score to a total for the entire pattern

(Figure 43, line 18). At this point, after going through every line in the pre-made design, the total

score for the pattern will be divided by the number of lines drawn by players (Figure 43, line 19).

If after going through all of this, the player-made lines total score is 1 (meaning their lines are

similar enough to the original pattern design), then the gravel pit’s shrine will partially activate

THE CONDUIT’S GARDEN 72

for that dimension (fully activating only if players have also raked a tenth or more of the pit’s

area).

 Pattern Recognition Pseudocode

1 patternLinesOnDimension = number of pattern lines on the current dimension

2 similarity = 0.0f

3 For each line in the original designed pattern

4 If the current pattern line’s w dimension is the same as the current alpha plane’s

5 highestCheckValue = 0.0f

6 For each line drawn by the player

7 thisCheckValue = 0.0f

8 If the current player line’s w dimension is the same as the current alpha plane’s

9 rangeCheck = 0.1f

10 If drawnStartX is between patternStartX +/- rangeCheck and drawnStartZ is

between

 pattternStartZ +/- rangeCheck

11 If difference between patternVectorX and drawnVectorX <= rangeCheck and

 difference between patternVectorZ and drawnVectorZ <= rangeCheck

12 Increment thisCheckValue by 1.0f

13 If drawnStartX is between patternEndX +/- rangeCheck and drawnStartZ is

between pattternEndZ +/- rangeCheck

14 If difference between patternVectorX and drawnVectorX <= rangeCheck and

 difference between patternVectorZ and drawnVectorZ <= rangeCheck

15 Increment thisCheckValue by 1.0f

16 If thisCheckValue > highestCheckValue

17 highestCheckValue = thisCheckValue

18 Increment similarity by highestCheckValue

19 percent = similarity/patternLinesOnDimension

20 Return percent

Figure 43: Pattern Recognition Pseudocode

This implementation method is convenient and works well for our project over other

ways of implementing pattern recognition for a number of reasons. One of the main reasons is

because using these “nodes” simplifies the process of recognizing patterns; instead of having to

spend more CPU processing power and time going through every pixel in two images and

comparing them, for instance, we only have to check a significantly smaller number of nodes and

THE CONDUIT’S GARDEN 73

see if they make a similar pattern to the one that was originally designed. In terms of physically

designing the original pattern to compare against what players made, it is also easier because we

don’t have to worry about making sure every line we draw on the pattern matches the size of the

lines drawn by the rake. Instead, we just have to make sure to place enough nodes in the original

design so that there is enough skill and time needed raking in the pit to get a similar pattern to the

original. The final reason why it is works well for our project and with the gravel pit is because it

is more lenient regarding mistakes made by players. Theoretically, players should be taking their

time with raking so that they can have a better match to what they were being asked to rake, but

we also had to factor into the equation the sensitivity of the rake and players’ control of the rake

with their hands. When trying to match the pattern given to them while raking, players could, for

example, accidentally start the line too early if their controller jittered. Normally, this might be

an issue with most other implementation methods, but with ours, making such a mistake does not

drastically affect the score of players’ lines as much. This is because part of the algorithm

depends on the x and z position of the nodes in the lines made by players. If those nodes are

within a close range of x or z value of the line from the original design pattern, then players will

still get credit for matching the pattern.

3.3.4.5 Programming Challenges

 Most of the issues with programming our pattern recognition algorithm was dealing with

edge cases in players raking designs. For example, with our previous “node” implementation, the

pattern recognition was solely based on the position of the nodes that players made through

raking and comparing those positions to the positions of the nodes in our pre-designed pattern.

The issue with only working with positions is that players could theoretically just place their rake

at the positions of the nodes in the pre-made design and still get credit for similarity even though

THE CONDUIT’S GARDEN 74

they didn’t draw any lines. We did not test this issue with any players, but we felt that this would

be fairly hard for players to accomplish, since players don’t know where the pre-made nodes are.

Despite the fact that it may not happen often, it would be bad programming design to let this

glitch persist in the game, and players might be confused if they raked a pattern with a line and

got the same credit as placing the rake only on the nodes.

 Another challenge with programming the pattern recognition was an issue with making

circles as part of pattern recognition. While this would have been interesting to have as part of

the designs for the gravel pit, it proved to be fairly difficult to implement in theory with our

current design. The issue with circles was that players could start at any point along the circle

when attempting to draw it. This conflicts with our current implementation, as each pre-made

line needs a start and an end point to make a vector from and compare to the player-made lines -

if players started at the opposite side of the circle, they wouldn’t get credit for making it even

though it matched the design.

3.3.4.6 Evaluation

 In terms of evaluating the pattern recognition algorithm as a whole, the issue with it is

that the accuracy of the algorithm is dependent on how players rake their lines in the gravel pit.

To clarify, the algorithm works as intended and successfully when players makes a continuous

line from the start node to the end node of a pattern line from one of the pre-made patterns. The

flaw in this implementation is if players split the line they raked up into two sections - say they

raked halfway through a line, picked up the rake, then placed it back down and finishes the rest

of the line. Unfortunately, the algorithm does not account for a pattern line being matched by

using two lines. As such, players would not get credit for matching that pattern line, even though

to them, it would look like one line was made.

THE CONDUIT’S GARDEN 75

4 Additional Game Content

 Outside of the three core game zones, we have many other objects that are important to

our game. Spirit shrines are the main source of feedback that shows players what areas of the

garden need more tending to and what areas are already satisfied. The Kami act as a score and

will encourage players to tend to the game zones. The wash basin cleanses players, granting

them to full peripheral vision of the w axis. The scrolls serve as a quick manual for players to

learn about the game zones and back story before playing the level.

4.1 Spirit Shrines

Japanese Shinto temples and gardens contain structures called spirit shrines (Figure 44)

that are meant to house the Shinto gods, Kami. Shinto practitioners often give prayers and

offerings to the spirits that reside within these shrines. We wanted to incorporate these shrines

into our Shinto gardens for their visual, cultural, and functional qualities.

Figure 44: Wooden Spirit Shrine Reference

THE CONDUIT’S GARDEN 76

4.1.1 Design

 Since Shinto gardens are meant to create harmony with nature in one’s home and appease

the nature spirits that reside within the land, we wanted these spirit shrines to physically house

the nature spirits that arrive within our garden. Within our garden is a shrine dedicated to each of

our three core game zones - the bonsai trees, fish pools, and gravel pits – that provide feedback

to players on their performance. As players improve these sections of the garden, the lights

within the shrines will grow stronger signaling that more Kami can enter the garden and players

are performing well. Each time players perform a correct action, such as adding a fish to a pool

or removing a harmful part of the bonsai tree, the shrine will give additional temporary feedback

through particle effects. Whenever players need to check their performance in the garden they

can observe the level of activation shown on the shrines.

4.1.2 Implementation

Each of the three shrines have different requirements for activation, but they share a few

general mechanics. In the center of the shrine is the core lantern that shows the current activation

of the shrine. Lights in the core lantern turn on and off depending on changes made to the

garden. When a positive change has been made to a core game zone, the side lanterns on the left

and right of the core lantern will briefly emit fire particles. This fire effect will last for a couple

seconds and then turn off. Once the shrine has been fully activated, the side lanterns will

continuously emit fire particles.

Each shrine will also signal the Kami Manager to create new Kami and bring them into

the garden once a certain number of shrine points have been achieved. Each shrine will spawn a

single Kami for every third of the maximum possible shrine points that have been met. Once a

THE CONDUIT’S GARDEN 77

shrine has been fully activated, a timer will begin that spawns new Kami every 60 seconds. Once

a shrine has created a maximum of 10 Kami, no new Kami will be spawned by that shrine. This

ensures that there is a maximum possible score of 30 Kami for the entire game. If the shrine

loses points and falls below a milestone, Kami will be made sad and begin to leave the garden

every 60 seconds.

The gravel shrine (Figure 45) measures how much effort players are putting into raking

the pit and their attention to detail. In order to fully activate the gravel shrine, players will need

to rake at least a tenth of the total area of each pit along the fourth dimension. In addition to

raking a tenth of each pit, players will also have to rake in particular patterns in order activate the

gravel shrine. To do this, players will be given colored pattern lines in the pit that they need to

match with their design in the gravel. The shrine will fully activate only when a design players

raked is 100% similar to these lines given to them.

Figure 45: Gravel Shrine

The fish shrine (Figure 46) measures the care given to the population of fish present in

the fish pool encircling the gravel pit. In order for the shrine to fully activate, there must be at

least three large fish in each fish pool located in the garden. With each new large fish in a fish

THE CONDUIT’S GARDEN 78

pool, a slot on the shrine associated with the fish pool color will activate. If the large fish die of

hunger or being eaten, then the shrine will lose a point of activation.

Figure 46: Fish Shrine

The bonsai shrine (Figure 47) denotes the care placed into the garden’s bonsai trees.

While the fish shrine counts how many things are right with the fish, the bonsai shrine counts

how many things are wrong with the bonsai trees. At the start of a level, the two bonsai trees will

be grown into a general shape and it is the goal of players to ensure that these trees remain

healthy and grown beyond a certain threshold. Bonsai trees are seen as being in poor condition

when any of these conditions are met:

1. There are dead leaves or branches present on the tree.

2. A portion of the tree is infested by bugs.

3. The maximum number of leaves or branches has grown on the tree.

4. There exists no branch made of four segments from the tree base to branch tip.

Bonsai trees also have to reach a minimum number of four branches and five leaves

before activating the shrine. If this minimum number has not been reached yet, the shrine will

completely deactivate.

THE CONDUIT’S GARDEN 79

Figure 47: Bonsai Shrine

4.2 Kami (Nature Spirits)

The Kami are nature spirits (Figure 48) that inhabit Shinto gardens. The players’ goal in

the game is to call as many Kami possible back into the garden. The purpose of the Kami is to

provide incentive for players to tend to the garden.

Figure 48: Kami Reference

THE CONDUIT’S GARDEN 80

4.2.1 Design

 Kami will fly above the play area and emit small particles. Kami also function as a score

for players at the end of the game, as well as visual feedback for players to show them how well

they are taking care of the garden while in the contract level. Once the time limit for the level has

been reached, the number of Kami in the garden is counted. In the home scene, there are Kami

houses along one of the walls. Each house with a Kami in it represents one point. This is

effectively a high score board in the game. By adding this quantitative feedback, players may

feel that they can do better in another playthrough of the game – this was evident in our

playtesting, as players would often ask us how their final score ranked among scores from other

testers. This feedback and scoring makes the game re-playable and shows players their skill in

caring for the garden.

4.2.2 Implementation

 The Kami (Figure 49) act similarly to the fish; they have behaviors that control how and

where they move. Objects like the shrines and clocks will change the behavior of the Kami to

respond to different events that occur in the game.

Figure 49: Kami above the Garden

THE CONDUIT’S GARDEN 81

At any one time, a Kami will have one of the following behaviors:

● Happy

● Sad

● Flee

● Ending

 Kami spawn in the happy-state by default. While happy, the Kami will fly at a rapid

pace and turn to face a random point in the area above the garden. We had planned to have more

detailed artificial intelligence in the Kami to interact with objects in the garden. For example, the

Kami might circle around a gravel pit if a pattern was matched, or a fish pool if it had the correct

number of healthy fish in it. However, this was cut due to scope issues.

 The sad-state is used only in the home garden. Kami in the sad state will not move,

which allow us to create the high score table in the home garden. This state was also originally

planned to have the Kami try and hover near objects that needed tending to, but this was also cut

due to scope.

 The flee-state causes the Kami to target a location high above the garden. Shrines set

some of the Kami to flee if they decrease in activation when a player fails to tend to that area of

the garden. Once the Kami reaches a height of 20 units, it will have the Kami manager remove it

from the game.

 At the end of the game, the spirits that remain in the garden will start to spin around the

player. The spirits will continue to spin around the player as they begin to move upwards

towards the sky, triggering the end of the game.

THE CONDUIT’S GARDEN 82

4.3 Wash Basin

In Shinto tradition, the wash basin is used in a purification ritual during which shrine

visitors must dip a ladle into the water and clean their hands and mouths of impurities. These

wash basins (Figure 50) are usually made from stone and found at the entrance to Shinto

temples.

Figure 50: Traditional Stone Basin for Washing Hands Reference

4.3.1 Design

There is a wash basin in the garden that allows players to receive a buff to their fourth-

dimensional vision for a short period of time when they drink from its water. This buff will

allow players to see the full spectrum of the fourth dimension no matter how many shrines are

activated. Players receive this buff by performing the purity ritual, where they dip the ladle into

the basin water and drink from it.

THE CONDUIT’S GARDEN 83

4.3.2 Implementation

When players enter a level, they will find the wash basin close by within their play area

and on the yellow point of the fourth dimension (Figure 51). A ladle can be found on top of the

wash basin. The ladle can be grabbed by players when pressing the grip buttons while touching

the controller to the ladle handle. When players dip the ladle into the basin, the ladle cup fills

with water. They can then lift the ladle cup to their face and tip it over to drink from it. Drinking

from the ladle empties the cup and sets a player’s peripheral vision along the w axis to its

maximum for 60 seconds. If players tip the ladle cup over while out of range from their face, the

cup will empty, and the drinking effect will not happen. The ladle is determined to be tipped over

when the angle between the world up vector and the up vector pointing from the top of the cup is

greater than 90 degrees along the x, y, or z axis.

Figure 51: Wash Basin and Ladle

THE CONDUIT’S GARDEN 84

4.4 Scrolls

We needed a method to convey information to players about controls, game goal, and

contract requirements that functionally fit into the limited game space offered by the HTC Vive.

4.4.1 Design

We decided to create a scroll object that could expand and contract to meet the limited

space requirements of the Vive and display information in bite sized chunks to players. We felt

that scrolls would match the more traditional Japanese cultural presence that we were trying to

make use of in our game.

Our scroll object eventually performed two major functions within the Home level of our

game. First, the contract scroll managed as a go between for the home level and the Tokyo

contract level. The contract scroll hung from a wall (Figure 52) and displayed a letter shown in

Figure 53 from a contractor asking the spiritual conduit to come tend to the garden at his home.

When players grab the rope handle at the bottom of the scroll and yank it, the scroll closes and

players are moved into the Tokyo level.

Figure 52: Contract Scrolls

THE CONDUIT’S GARDEN 85

Figure 53: Tokyo Contract Scroll Text

Second, the tutorial scrolls sat on a desk on the adjacent wall of the contract scrolls and

displayed important game information to players. The three information scrolls covered game

controls, game zone rules, and the story concept.

As seen in Figure 54, the controls information scroll informed players how to use the

HTC Vive controllers to interact in the garden. Below the controllers graphic is a note informing

players that they can open the other information scrolls for more information on the game.

THE CONDUIT’S GARDEN 86

Figure 54: Controls Scroll Text

 As seen in Figure 55, the how to play information scroll informed players how to care for

the core game zones in the garden. There is also a section on the wash basin so that players know

they can gain full four-dimensional vision by drinking the water. We did not have time to

implement a tutorial teaching players how to interact with the garden game mechanics, so we

settled for including an in-game manual.

Figure 55: How to Play Scroll Text

THE CONDUIT’S GARDEN 87

As seen in Figure 56, the game concept information scroll informed players about the

general goal of the game and their role in its world.

Figure 56: Game Concept Scroll Text

These three scrolls (Figure 57) sit on top of each other with the game zone rules and story

concept scrolls initially closed. The game-controls scroll asks players to open the other two

scrolls for more information. Stacking these scrolls saved a large amount of space and put the

scrolls close enough to players that the text was readable.

Figure 57: Information Scrolls

THE CONDUIT’S GARDEN 88

4.4.2 Implementation

 First of all, we had implement a method by which players could grab the handle tied to

the bottom of the scroll page and pull it to open or close the scroll. This was done by checking if

the handle ring was grabbed and following the position of the player’s hand. The ring was

considered grabbed if the player’s hand was colliding with the handle ring and the controller grip

buttons were pressed. When grabbed, the scroll would check its defined orientation axis and

follow the position of the player’s controller along that axis. So long as the controller did not

exceed a predetermined range of movement along the axis of movement, the scroll would follow

the controller’s x, y, or z position. If the scroll was initially closed when grabbed, then it would

expand to its open position once players let go of the handle ring. If the scroll was initially

opened when grabbed, then it would contract to its closed position once players let go of the

handle ring.

In order to implement the visuals of the scrolls, we actually had to write two new shaders

that made use of Unity’s stencil buffer: the Visibility Volume and Limited Visibility Object

shaders. The reason we needed new shaders was because we needed the plane displaying the

scroll text to disappear when the scroll was closing or closed. Normally, we would just decrease

the scale of the plane along a single axis and move it towards the scroll top to give it the

appearance of closing, but this method would shrink the texture on the plane. We needed the

texture to remain the same size during the opening and closing process to give the appearance

that the scroll was actually unraveling from the base.

The Limited Visibility Object shader was written to take a texture and color value and

display it on the surface of the object. The scroll page shader had two passes with the first

drawing a single color to the plane surface and the second drawing the semi-transparent scroll

THE CONDUIT’S GARDEN 89

text texture to the plane surface. However, the shader would only draw to the plane surface if the

reference value on the stencil buffer was equal to one. This ensured that any section of the plane

outside of the required render zone would not be drawn to the render frame. When the scroll

closed, the page would seemingly roll back into the scroll base.

The Visibility Volume shader was written to create a render zone on some given shape.

We placed the material shader on a thin cube object that fit within the space required by a fully

extended scroll page. When the camera looked at the scroll page plane through this render zone it

would render the page, otherwise the page would be invisible. This effect was achieved by

writing the value 1 to the stencil buffer reference occupied by the render zone. This value was

checked by the other shader and would allow the scroll page to be drawn.

4.5 Clock

In the original design of our game, we intended to have multiple contract levels with

varying game times. In the end, we had to cut back on having multiple levels due to scope issues.

For our game, we wanted to show a proof of concept by implementing a single contract level,

and gave that level a time limit of 15 minutes. Players have to activate all of the shrines and

accumulate as many Kami as possible within these 15 minutes.

4.5.1 Design

To convey how much time was left for the contract level, we added a clock into the

garden (Figure 58). In the Tokyo level, the clock sits on the outer wall of the house facing the

center of the play area. There is a single hand on the clock that performs a single rotation during

the play session. Players can check how much time is generally left for the level by looking at

THE CONDUIT’S GARDEN 90

the clock. The outer edge of the clock has markers denoting the game time in eighths. Once 15

minutes have passed, the clock hand will return to the top marker, and players are moved back to

the home garden.

Figure 58: Garden Clock

4.5.2 Implementation

 The clock works by taking the game time set within the contract level and rotating the

clock hand by a proportion of the current game time against the time limit. At a time of 0

seconds the clock-hand will rest facing upwards. At half the time limit, the clock-hand will face

completely downwards. At the end of the time limit the clock-hand will return to face upwards.

In our implementation, the clock object is in charge of ending the game once the time limit has

been reached. Once the time limit has been reached, it tells the Kami in the garden to spin around

the player and then changes game scenes after the Kami reach a certain height above the player.

THE CONDUIT’S GARDEN 91

5 Tools and Specifications

5.1 HTC Vive

5.1.1 Controller

 This game was developed for use with the HTC Vive, so players control the player

character using the Vive Head Mounted Display (HMD) and wireless controllers. The HMD

controls the direction and position of the player camera in the game world. The controllers link

the player’s real hands to the player character’s hands in the game world.

5.1.2 Movement

 Due to the features of the HTC Vive, players move around the game world by physically

walking within the HTC Vive’s defined play space. This play space is set up before the game

starts when players calibrate their HTC Vive. The play space is determined by the distance

between the two tracking cameras used by the Vive. The cameras can be a maximum of 5 meters

apart from each other, making the maximum area 3.5 x 3.5 meters. During our development, we

used a HTC Vive work station with an area of 2.5 x 2.5 meters by placing the cameras 3.6 meters

apart from each other.

 Since we also have a fourth-dimensional game mechanic, players can move along the

fourth dimension just as they do in three-dimensional space. Players’ movement along the fourth

dimension is limited to five points signified by five colors. When moving to another point on the

THE CONDUIT’S GARDEN 92

4th dimension, the origin of the player character’s body is rooted at the new position along the

4th dimension.

5.1.3 User Interface

We have the HTC Vive’s wireless controllers represent a player’s hands within the game

world. As a player moves and rotates the controllers around, the player character’s hands follow

the same path. Players can use the buttons on the controller to interact with objects as if they

were grabbing or using them in the real world. The controller buttons perform the following

functions:

● Grip buttons

○ Grab and hold objects in the player’s hands

● Trigger

○ The trigger on the left controller will move the player in the negative w direction,

meaning that the player will move towards red

○ The trigger on the right controller will move the player in the positive w direction,

meaning that the player will move towards violet

● Trackpad

○ Clicking the pad while holding the shears will perform the snip action

○ Clicking the pad while holding the insecticide will perform the spray action

Once players have moved to a new position on the 4th dimension, they can interact with

objects around them of the same color. This means that they can pick up items, rake gravel, snip

tree branches, touch fish, and change chimes that reside on their current w value. Objects at a

different position on the fourth dimension will not react to the players’ touch. Players can also

move objects along the 4th dimension by picking them up and moving their body’s position to a

new w value.

THE CONDUIT’S GARDEN 93

5.2 Unity3D

 When choosing the correct game engine for develop our game, we had to consider four

major requirements: the engine had to support three-dimensional graphics, have a small overhead

for learning engine tools, provide in-engine support for the HTC Vive, and allow us to write our

own custom shaders. The two engines we had to choose between were Unity3D and the Unreal

Engine. Of the two engines, only Unity3D allowed developers to write their own custom shaders

using their framework with the Cg/HLSL programming language. Fortunately, two of us had

previous experience working with Unity3D so we chose to use it for the development of this

project.

5.2.1 HTC Vive Support

 Between the two engines, Unity has the quicker and simpler Vive set up process. To get

the head mount display working in Unreal, a game mode has to be created, a couple of blueprints

need to be wired, and input settings need to be adjusted. With Unity, downloading the SteamVR

asset from the asset store and dragging the camera rig into a scene instantly sets up the HMD, the

controllers, animations for the components of the controller and the chaperone. To avoid any

errors or bugs from trying to set up the HTC Vive, Unity was the best option as this was done by

simply importing the asset into the editor.

 The Vive input system does not come fully optimized after importing it into the project.

This means that we would have to edit the code for the Vive to make the input work in our game.

This would be harder to do in the Unreal engine as the setup uses blueprints to run Vive

functions and doesn’t directly import Vive scripts into the editor. When importing the asset into

Unity, a new folder is created in the project hierarchy that holds all the models and scripts that

THE CONDUIT’S GARDEN 94

are directly used by the game. The scripts can be edited and the changes will immediately update

in the inspector of objects using Vive scripts.

 The SteamVR asset folder for Unity also comes with an example scene. Since this would

be our first time using and coding the Vive, this example scene would help us understand Vive

functions and give us insight on its capabilities with Unity.

5.2.2 Cg/HLSL Shader Programming Support

According to the Unity Documentation Manual, Unity has a wrapper for all Cg/HLSL

programs called ShaderLab. ShaderLab code provides fallback shaders when an older computer

cannot run your written shaders, properties that allow developers to alter shader performance

within the editor inspector and scripts and packages that provide fixed-functions that simplify the

process of rendering Unity scenes.

Within the Unity3D engine, developers can choose between creating surface shaders or

vertex and fragment shaders. Surface shaders rely heavily on Unity’s ShaderLab as they provide

a “higher level of abstraction for interaction with Unity’s lighting pipeline” (Writing Shaders) in

order to cut down on the work required by shader programmers to account for directional, point,

and spotlights placed into a scene by level designers. Using this abstraction, developers only

need to write a small amount of Cg/HLSL code to create the effects they desire and the rest is

auto-generated during the compilation of the shader.

Vertex and fragment shaders provide developers with the largest amount of control in

how a shader renders objects in a game scene. These shaders are written using vertex and

fragment functions which are the fundamental components of any shader. The vertex function is

passed the vertex point data of a mesh within a game scene, and then performs the fragment

THE CONDUIT’S GARDEN 95

function on every screen pixel taken up by that vertex. This allows developers to write a larger

amount of Cg/HLSL code with more control over how game meshes are rendered to the screen.

For our development, we focused on writing vertex and fragment shaders that were fed

information by scripts on objects within our game scene. This information allowed us to render

our fourth-dimensional environments depending on each object’s position in relation to the

player’s position along our 4th axis of space.

5.3 Art Tools

5.3.1 Blender

 The primary three-dimensional modeling program used for creating three-dimensional

assets in our game was Blender version 2.77a. Blender is a “free and open source three-

dimensional creation suite” (Blender.org) that provides a free alternative to Autodesk’s 3DS

Max or Maya. Although we could have used 3DS Max or Maya under a free student account, we

had more experience working with Blender than the Autodesk products. Blender was used to

create all three-dimensional models in our game that were not downloaded from websites

providing free models.

5.3.2 Gimp

 The primary image editing tool used for editing and creating 2D images for use in our

game was Gimp version 2.8. Gimp is a “free and open-source GNU Image Manipulation

Program” (Gimp.org) that provides a cheap alternative to Adobe Photoshop. Gimp was used to

create the textures, skybox, and supplementary art assets for this project.

THE CONDUIT’S GARDEN 96

6 Playtesting

 The formal playtesting session was made up of three parts: a control mapping test, a four-

dimensional playthrough of the game, and a three-dimensional playthrough of the game. After

each part, there was a short interview session to gather information about the features in the

individual parts. The full IRB approved1 procedure and list of interview questions can be found

in Appendix A. Our formal playtesting session gave us insight on the preferred control scheme

for the game and on the difficulty of each of the game zones. The playthrough without the

fourth-dimensional mechanic also informed us if the mechanic had any significant impact on the

gameplay and the level of engagement players could maintain while playing the game.

6.1 Control Mapping Test

 Deciding on how players were going to move along the w axis was a difficult design

decision as it is an action unfamiliar to human beings. We decided that players could use either

the triggers or specific touchpad input to move along the w axis. The purpose of the control

mapping test was to evaluate the most preferred control scheme for moving along the w axis.

Figure 59 depicts the game environment used for this part of the playtest. During the time of this

playtesting session, our game had seven points on the w axis. In the scene, there are seven cubes,

one on each of the seven points of the w axis. Players start on position zero on the w axis, so

initially only the red cube is visible. Players were then asked to move to different positions on

the w axis using four different control mappings.

1
 IRB number: 16-204

THE CONDUIT’S GARDEN 97

Figure 59: Control Mapping Test Scene

Control Mappings:

1. Trigger: The trigger on the left controller decreases the player’s position on the w axis

and the trigger on the right controller increases the player’s position.

2. Vertical Slider: The touchpad is divided up vertically into seven sections. Touching the

section that corresponded to the current position on the w axis and sliding up or down

would change the position. Sliding to the very top would move to the maximum w

position, and sliding to the bottom would move to the minimum w position.

3. Up/Down Buttons: Touching the upper half of a touch pad increases the player’s position

on the w axis, and touching the lower half would decrease the player’s position.

4. Scrolling: Touching a touch pad and sliding in a clockwise motion increases the position

on the w axis, and sliding counter-clockwise decreases the position.

 During the interview session following the control mapping test, the majority of the

participants preferred the trigger control scheme over the others (Figure 60). Most participants

found that the control schemes that involved sliding a finger on the touchpad were too sensitive

and inaccurate. Participants were more likely to pass the target w position using theses controls

THE CONDUIT’S GARDEN 98

than using the trigger or up/down buttons schemes. Only one of the participants had a negative

opinion on the up/down buttons control scheme. The tester found it to be very tedious to move

from the maximum w position (at the time, this was six) to the minimum w position. The two

participants who preferred the vertical slider control scheme both mentioned how they could

move on the w axis the fastest with this control scheme. The general consensus, however, was

that the trigger control scheme was the most accurate and had no sensitivity issues.

Figure 60: Qualitative Results of Control Scheme Test

6.2 Four-Dimensional Playthrough

 After the interview for the control mapping test, participants were asked to play our game

with the fourth dimension enabled. At the time of the playtest, the fish and bonsai game zones

were completely implemented, the bonsai had required zones where the tree had to grow to

activate the shrine, and there were seven points on the w axis. Since pattern recognition for the

gravel pit had not been completed, the gravel shrine could be activated after raking a tenth of

THE CONDUIT’S GARDEN 99

each gravel pit in the scene. The scene used for the playtest (Figure 61) also used the first models

for the shrines, the orientation of the gravel pit to the shrines was different compared to the

current scene, and the Tokyo level only lasted ten minutes.

Figure 61: Fourth-dimensional Playtest Tokyo Garden

 The data provided from the second interview provided us with valuable insight on how to

adjust the balancing of the game zones. The main findings were:

 The bonsai trees required too much time to care for

 The fish pools are too dark and far apart

The data presented in Figure 62 reveals that the majority of the testers found the game to be

difficult. This result was expected, as our testers would most likely be experiencing and

manipulating four-dimensional objects for the first time.

THE CONDUIT’S GARDEN 100

Figure 62: Testers’ Opinions on Game Difficulty

The important results can be seen in the data in Figure 63. The number of testers who

found the bonsai trees to be the most difficult game zone is equal to the number of testers who

had no opinion on which game zone was the least difficult. Many of the testers found the bonsai

trees to be the most interesting game zone, but the majority of the playthrough was them trying

to keep up with the growth of the bonsai.

Figure 63: Testers’ Opinions on Individual Game Zone Difficulty

THE CONDUIT’S GARDEN 101

When observing the playthroughs, it was noted that once players realized there were dead

leaves on a tree, they would spend the remainder of the time trimming dead leaves unless they

accidentally cut off a large section of the tree. The bonsai took up a lot of time, as the most

common occurrence in all the playthroughs was a player cutting the last dead leaf, only to have

the tree grow again. Any fish players may have had eventually died, and the gravel pit was only

used by two testers.

The fish zone proved to be more of an inconvenience rather than a challenge. The water

texture was very thick and dark, which made it difficult to see the fish in the water. The fish pool

locations were also inconvenient to get to, as they were on the edges of the w axis and the

furthest from the tool table. This caused most players to only put fish into one or two of the fish

pools to make it easier to feed them.

 Using the results from the first two sections of the playtest, we were able to make these

changes to the game:

 The time between growth cycles was doubled

 The tools were positioned closer to the shrines

 The water texture for the fish pools were brightened

 The model for the shrines was updated

 The range of the w axis was reduced to five from seven, removing the colors orange and

blue.

The first change was to double the length of the bonsai tree growth cycle from one minute to

two minutes. This gave players more time to adjust to their surroundings and familiarize

themselves with the other game zones in the garden.

THE CONDUIT’S GARDEN 102

The next change we made was to orientate the pedestal with the tools on it in a way so that

players can look up to see the shrines instead of turning around. This would help players notice

the shrines since they provide important feedback on their progress.

We then made some changes to the texture of the water and the intensity of colors on

objects in the scene to make the fish and tools easier to see.

The shrine models were then updated to give feedback specifically for this one level since

we would not make any more contracts for this game.

The last, and biggest, change we made was to remove the orange and dark blue points from

the w axis. With w peripheral vision enabled, players were often confused about their position on

the w axis. This was caused by the orange color being very similar to red, and the dark blue color

mixing and darkening other colors, making them difficult to distinguish. These two colors made

the game world inconvenient to navigate as they were extra points that players would have to

move to in order to get to the fish pools near the ends of the w axis. These changes made the

game easier to play for first time players while still providing a challenge to frequent players.

6.3 Three-Dimensional Playthrough

 The last part of the playtest was another playthrough of the game, but the fourth

dimension had been removed from the game. All the game objects were set on the fourth w point

(cyan) (Figure 64), and the ability to move on the w axis had been removed. We added this to the

formal playtest since we wanted to analyze the effect that the fourth dimension has on our game.

More specifically, we wanted to know if the game was any more enjoyable, easier, and/or

interesting by adding the fourth dimension to it.

THE CONDUIT’S GARDEN 103

Figure 64: Three-dimensional Playtest Tokyo Garden

 From the last playthrough, we noticed that testers found that the fourth-dimensional

playthrough was very complicated and difficult (Figure 65), but enjoyed it more than the three-

dimensional playthrough (Figure 66). Many of the testers found the fourth dimension to be

interesting and enjoyed moving to different w positions and interacting with fourth-dimensional

objects. Some noted that having objects spread out on to other points on the w axis prevented

from being distracted by them, especially when tending to the bonsai trees. Some found the

fourth dimension to be more of a distraction and an inconvenience. Not only would they have to

move in three dimensional space but also manage their position on the fourth dimension as well.

THE CONDUIT’S GARDEN 104

Figure 65: Testers’ Opinions of Game Difficulty after Removing 4D

Figure 66: Testers’ Preferred Game Types

This result may have been biased since this was all of the testers’ first time moving in a

fourth-dimensional environment. If they had more experience and practice moving in our game

as we did when making the game, they would find the fourth dimension to be more useful. There

THE CONDUIT’S GARDEN 105

were also some comments about how the environment looked prettier in the fourth-dimensional

playthrough compared to the third-dimensional one. This may be another bias since we chose not

to suppress the color changing in the third-dimensional playthrough, which would have caused

objects to keep their original, more natural colors. This may have impacted some of the testers’

opinions on the game, especially those who prefer both equally. In the future, it might be better

to put more effort in making the third-dimensional playthrough look realistic to reduce the

quality of visuals from impacting the preference of testers.

THE CONDUIT’S GARDEN 106

7 Postmortem

7.1 What Went Right

7.1.1 Design

Our team came into this project committed to making a fourth-dimensional game for a

virtual reality platform. Although unsure at first, our advisors allowed us to explore our ideas so

long as we incorporated Japanese culture into the game. For the first three weeks of this project

we focused on designing a game that had players care for a fourth-dimensional garden with the

immersive controls provided by the HTC Vive. We ended up designing a largely original

gardening game that explored some very new and experimental mechanics. Fortunately, we

believe that we succeeded in bringing our designs to fruition from conception and meeting our

experience goal. We had our fair share of development hurdles and scope changes, but in the end

we overcame our problems and produced a working, polished game.

Our greatest success from our designs came in how well the virtual reality and fourth-

dimensional mechanics worked to support each other. Our idea for a fourth-dimensional game

mechanic was very experimental in the first place, and although our implementation is a limited

version of the complete concept, seeing our players quickly adapt to moving on four dimensions

of space is incredibly rewarding. From our playtests, we noticed that players found the game

more interesting and challenging when the garden was fourth dimensional. The fourth-

dimensional game mechanic had a clear impact on improving the game, and if removed, would

harm the game.

THE CONDUIT’S GARDEN 107

We felt that the use of the HTC Vive was paramount in making the fourth-dimensional

game mechanic work. If players had to use a mouse and keyboard or gamepad to interact with

the game, it would most likely be unplayable. Even changing the control scheme of the Vive

controller increased the difficulty in navigating the garden. Players were meant to have a large

amount of finesse in interacting with core game zones and moving about the garden. We also

found that we had unconsciously solved the problem of the HTC Vive’s limited play area space.

The fourth-dimensional mechanic took the 9 square meters of play space and multiplied it by 5,

one for each color. Even though we packed a good amount of objects into the play space, players

are never cramped or wanting for space.

7.1.2 Teamwork

 The three strengths of our team were our ability to efficiently divide work between

ourselves, take responsibility for our features and tasks, and maintain good communication. Our

team consisted of three tech-track game design students, two of which were computer science

double majors. Without a dedicated artist on the team, we had to come up with enough features

to meet our degree requirements and keep us working throughout the timeline of our project. We

chose to divide the three core game zones among the three of us and dole out additional features

to whomever had time or interest. Alex focused on the fish pools, John focused on the bonsai

trees, and Paul focused on the gravel pits. Doing this ensured each of us were invested in the

game and responsible for our features that were essential to the game. This also meant that we

had to constantly keep up-to-date on how the game worked and how our features worked with

the rest of the game. Also, by linking our core game zones to the shrines and Kami, we were able

to connect each other’s work in some way.

THE CONDUIT’S GARDEN 108

 We were able to stay connected by using a set of useful tools without which we would

never have been able to complete the game. Our primary platform for sending text chat and

progress updates was the messaging app LINE. We used LINE because it was the most popular

messaging app at the time in Japan. We could use the app to message each other, our advisors,

family, and lab mates for free over Wi-Fi and data. Whenever we had a problem, idea, or update,

we could easily inform each other at all times. Early in development we decided to work in

separate rooms, which gave us access to the resources we needed and space to focus. Alex

worked on the 5th floor in the VR experiment room and Paul and John worked on the 6th floor in

the communal lab room. LINE allowed us to keep this space and call each other over for testing

and meetings.

 We used GitHub as our means of storing a single online repository of our project code

and merging individual code. Luckily, Unity3D has a built-in feature for converting metadata to

a text format and safely storing it on GitHub. We kept a methodology of creating individual

branches for each new feature or bug fix. Once a branch was completed, it would be reviewed

and pulled into the master branch. We kept each other updated about which files we were

changing in LINE and required code reviews before merging pull requests.

7.1.3 Above and Beyond Work

 There were a few areas during development where we went above and beyond the

expectations placed on us to improve our game when possible. We originally designed our game

to be rather large, and had to eventually cut our scope, but during development we ended up

creating some additional features that were cut from the final game. Having this surplus of

features allowed us to take a hard look at which of our designs were good and bad. Rather than

stretching to meet our minimum goals, we were able to cut extraneous features and focus on core

THE CONDUIT’S GARDEN 109

game zones. Our final product has a lot of things to keep our players busy and flesh out the game

world, and we were lucky to reach that point in development.

 During the last week of development, we made a decision as a team to take on a crunch

week and polish the game as much as possible with the time we had left before our presentation.

We ended up pulling at least 10-hour work days including weekends that week making sure that

everything we wanted to polish was completed. We could have scoped better during the project

and worked more consistently so that a crunch week wasn’t needed, but in the end, most of our

core features were completed by this time. The additional time we put into this week improved

performance, art, game flow and level design. From what we have seen, this work squashed

almost every bug remaining in the game.

In the final week, Alex spear-headed our playtesting taking full responsibility for

scheduling and performing tests. His commitment to conducting and reviewing the playtests

allowed us to continue developing other important features instead of halting development for

testing. Another major additions was the improved art for the shrines, home level, and Tokyo

garden. After fixing any remaining bugs and changes to his features, John spent a few days of the

crunch week devoted to improving the game art. The improved art significantly improved the

clarity of game goals and flow of play, while also hopefully helping our game visually stand out

even though we had no dedicated artists.

7.1.4 Positive Changes

 We made some changes in the design and implementation of our game in the middle of

development that resulted in improving the game experience. First, we decreased the number of

points on the fourth dimension from 7 to 5. We found through playtesting that 7 points were too

many for players to manage and some colors were too similar. The common complaint was that

THE CONDUIT’S GARDEN 110

red and orange were too similar, so we moved to 5 colors. This simplified our development of

the garden and the experience for players.

Second, we decided a month before the project end date to focus on making only one

contract garden. We originally planned for 3-9 contract levels, but reduced our scope to one level

to meet our requirements for a minimum viable product. Focusing on one contract level

alleviated the issues we were having with finding time to get all of our features completed. It also

allowed us to devote weeks of development time to polishing the contract garden.

Third, we decided in the last week of development to ditch the constraining theme of

Tokyo from our contract garden. To fit the Tokyo theme, we designed a restrictive requirement

on the bonsai tree and shaped the fish pools in a way that confused players. The bonsai tree

requirement confined bonsai growth to a small area and made the bonsais near unwinnable if a

branch passing through a requirement ring was snipped. The fish pools representing the Arakawa

and Sumida rivers were far too thin. Shifting focus away from thematic integrity towards making

sure that the core game zones were structured to make the most of their creative freedom

definitely improved the final product.

Finally, we changed the implementation of the shrines to better convey game progress

and fit the true Japanese cultural image. During early development our shrines were actually

lanterns that lit up in sectors with each positive action. Later in development, we changed the

shrines to actually look like spirit shrines with internal lanterns providing feedback for progress

and positive actions. We also altered the shrines to show specific progress for the Tokyo level

rather than generic progress for any possible contract level. For example, the fish shrine kept

track of the 4 Tokyo fish pools rather than a possible maximum of 5 fish pools. We could make

this change since we pivoted to only create one garden in the game.

THE CONDUIT’S GARDEN 111

7.2 What Went Wrong

 Although we are content with the final product of our game, there are certainly a number

of things that went wrong during the development process. These events either hindered our

progress or could have been improved to make our overall experience with designing and

producing the game easier.

 The first issue we had with our project was having too large of a scope when designing

the game. This lead to over designing the game and many object were created that would

eventually not make it into the final product. The time used for creating those object could have

been used to polish already existing features in the game. This may have caused us to have to

work more often in the final weeks of the project to produce our final product. On a similar vein,

initially our project was scoped under the assumption that each team member had experience

with the Unity game engine. This was not the case, as Paul had not worked with the engine

before. As a result, milestones that we had planned to accomplish in a week instead took around

another two to three weeks to reach.

 This lack of experience directly affected work on the gravel pit, which Paul was tasked

with completing. Paul spent the first month researching the Unity engine and adaptive help

systems; his initial technical challenge. Development of the gravel pit started mid-August and

lasted the remainder of the project duration. This affected our report of progress during our

weekly meetings with our advisors, as we believed that the gravel pit would take less time than it

did. As a result, milestones were not reached and the minimal viable product was not

implemented as early as was desired. The lack of a minimal viable product caused John and Alex

to stop working on some features, as they needed the gravel pit to be finished before they could

start building contracts. This was an issue because during that time of limbo, they could have

THE CONDUIT’S GARDEN 112

been working on other features that did not necessarily need the gravel pit, such as the tutorial

levels which we had to cut from the game because of scope. Also, when it came to coding the

gravel pit, Paul did not initially consider some cases that might/did occur when merging the pit

into the game, such as the pit possibly needing to be scaled down or up in size. As a result, when

the gravel pit was initially merged into the game, it didn’t work properly and needed to have

bugs fixed before it could be merged into the game again. Similarly, when implementing Paul’s

pattern recognition into the game, he and Alex spent a large amount of time fixing bugs with the

code while using the Vive. Although this was helpful working together to problem solve and

figure out the issues with the pattern recognition and was possibly faster, Paul could have done

this by himself with better debugging, which would have allowed Alex to work on other features

or polish existing ones. The lack of the minimal viable product is what eventually caused us to

cut our game down to one contract level with the three game zones.

We mentioned earlier that we overdesigned parts of our game. This was partially due to

the small amount of time John and Paul were each asked to play the game in its current state. If

they had played the game more often and seen what kind of progress had been made and what

needed to be done still, the overall design could have been scoped better and sooner.

Communication issues with game progress and how game features worked in the Vive setting

was also a hindrance to how quickly game features were implemented and if they needed to be

fixed before re-merging them into the game. Finally, the amount of features produced and the

input on the original design of the game by each member was uneven. There was the occasional

loss of motivation and some irregular work schedules with some members detracted from our

work production. Perhaps the last week crunch time could have been avoided if the time we

worked was more organized and consistent.

THE CONDUIT’S GARDEN 113

7.3 What We Would Do Differently

 From this project, we learned a lot about choosing to add more depth to a game versus

polishing already existing features. After the formal playtesting session, we realized how

interactive and interesting the bonsai game zone was. Most testers claimed to enjoy the game

even though they never touched the gravel pit and had all their fish die. We feel that another

version of this game could have been made with just the bonsai game zone implemented, but

with more depth focusing on the other way to tend to bonsai trees. Instead of dividing the work

by having each team member work on a different game zone we could have each of us

implement a tool and behavior to the tree to make it more complex and interesting. This way we

could have one core game zone that we add some depth to and then have more time to polish it to

make it look and run superbly. We could even incorporate the fourth dimension as there were

testers who claimed that the bonsai tree was easier to tend to in the four-dimensional

playthrough.

 With the version of the game we did complete, we felt that the people who played our

game did not experience the game in the way we had planned. This may have been caused by

cutting the Kami having unique artificial intelligence and behaviors that would make players feel

appreciated for their work in the garden. We would have liked to have the Kami emit sounds that

convey their feelings and interact with the objects in the garden and players more to provide

more feedback on how well players are tending to the garden. This would also help achieve the

experience of working to please an audience which was part of our experience goal of working

on a project.

 While our game was four dimensional, there were many aspects of the fourth dimension

and four-dimensional physics we did not implement. There are many aspects of our four-

THE CONDUIT’S GARDEN 114

dimensional environment that are forced or fixed that, in a true four-dimensional world, players

would have more control over. Some of these actions include: looking down the w axis, reaching

along the w axis, four-dimensional velocity, collisions when moving between w points and

scaling objects depending on their shape and depth. While the theme for our game may not fully

support all these features, perhaps a puzzle game would be the best setting to allow players to

learn and exploit the fourth dimensions.

THE CONDUIT’S GARDEN 115

References

Aitchison, A. (2014, Dec 30). Adding Shadows to a Unity Vertex/Fragment Shader in 7 Easy

Steps. Retrieved from https://alastaira.wordpress.com/2014/12/30/adding-shadows-to-a-

unity-vertexfragment-shader-in-7-easy-steps/

Blender.org. Retrieved from https://www.blender.org/

Brokenvector. (2016, July 18). Free-Low-Poly-Pack. Retrieved from

https://www.cgtrader.com/free-3d-models/plant-tree/leaf-tree/free-low-poly-pack

Brownson, B; Miyazawa, T. (2010). Koi Character by Toru Miyazawa. Retrieved from

http://www.sharecg.com/v/42205/related/

Cg Programming/Unity. (2016, August 28). Retrieved October 13, 2016 from

https://en.wikibooks.org/wiki/Cg_Programming/Unity

Definition and Meaning of Bonsai. In Bonsai Empire (What is Bonsai). Retrieved from

 http://www.bonsaiempire.com/origin/what-is-bonsai

Garden Elements. (2011, August 27). Retrieved October 13, 2016 from

http://www.japan-guide.com/e/e2099_elements.html

Gimp.org. Retrieved from https://www.gimp.org/

Harrison, A. Traditional Stone Basin for Washing Hands. Retrieved from

https://usercontent2.hubstatic.com/12192339_f1024.jpg

Japanese Gardens. Retrieved from http://www.aboutjapanesegardens.org/index.htm

Lancheres, E. (2016, July 20). How HTC Vive is Outpacing Oculus Rift. Retrieved from

https://www.engadget.com/2016/07/20/how-htc-vive-is-outpacing-oculus-rift/

https://alastaira.wordpress.com/2014/12/30/adding-shadows-to-a-unity-vertexfragment-shader-in-7-easy-steps/
https://alastaira.wordpress.com/2014/12/30/adding-shadows-to-a-unity-vertexfragment-shader-in-7-easy-steps/
https://www.blender.org/
https://www.cgtrader.com/free-3d-models/plant-tree/leaf-tree/free-low-poly-pack
http://www.sharecg.com/v/42205/related/
https://en.wikibooks.org/wiki/Cg_Programming/Unity
http://www.bonsaiempire.com/origin/what-is-bonsai
http://www.japan-guide.com/e/e2099_elements.html
https://www.gimp.org/
https://usercontent2.hubstatic.com/12192339_f1024.jpg
http://www.aboutjapanesegardens.org/index.htm
https://www.engadget.com/2016/07/20/how-htc-vive-is-outpacing-oculus-rift/

THE CONDUIT’S GARDEN 116

Lighting Textured Surfaces. (2015, August 26). Retrieved October 13, 2016 from

https://en.wikibooks.org/wiki/Cg_Programming/Unity/Lighting_Textured_Surfaces

Matou. (2014, March 29). Transparent shader in background queue. Retrieved from

http://answers.unity3d.com/questions/494760/transparent-shader-in-background-

queue.html

Multiple Lights. (2016, August 21). Retrieved October 13, 2016 from

https://en.wikibooks.org/wiki/Cg_Programming/Unity/Multiple_Lights

Nixor. (2012). Katana 3d model. Retrieved from http://tf3dm.com/3d-model/katana-75134.html

Order-Independent Transparency. (2016, August 18). Retrieved October 13, 2016 from

https://en.wikibooks.org/wiki/Cg_Programming/Unity/Order-Independent_Transparency

Persona. (2010, September 21). Pattern Detection. Retrieved from

http://answers.unity3d.com/questions/27831/pattern-detection.html

Pruning Bonsai, Cutting Branches to Shape the Tree. In Bonsai Empire

(How-To, Bonsai Styling). Retrieved from

http://www.bonsaiempire.com/basics/styling/pruning

Rolo. (2011, March 1). Comparing 2 Bitmaps. Retrieved from

http://answers.unity3d.com/questions/49935/compare-2-bitmaps.html

Shader Reference. Retrieved from https://docs.unity3d.com/Manual/SL-Reference.html

ShaderLab: Blending. Retrieved from https://docs.unity3d.com/Manual/SL-Blend.html

ShaderLab: Culling & Depth Testing. Retrieved from https://docs.unity3d.com/Manual/SL-

CullAndDepth.html

Teoarch. (2011, April 8). Similar Image Finder - .NET Image Processing in C# and RGB

https://en.wikibooks.org/wiki/Cg_Programming/Unity/Lighting_Textured_Surfaces
http://answers.unity3d.com/questions/494760/transparent-shader-in-background-queue.html
http://answers.unity3d.com/questions/494760/transparent-shader-in-background-queue.html
https://en.wikibooks.org/wiki/Cg_Programming/Unity/Multiple_Lights
http://tf3dm.com/3d-model/katana-75134.html
https://en.wikibooks.org/wiki/Cg_Programming/Unity/Order-Independent_Transparency
http://answers.unity3d.com/questions/27831/pattern-detection.html
http://www.bonsaiempire.com/basics/styling/pruning
http://answers.unity3d.com/questions/49935/compare-2-bitmaps.html
https://docs.unity3d.com/Manual/SL-Reference.html
https://docs.unity3d.com/Manual/SL-Blend.html
https://docs.unity3d.com/Manual/SL-CullAndDepth.html
https://docs.unity3d.com/Manual/SL-CullAndDepth.html

THE CONDUIT’S GARDEN 117

Projections. Retrieved October 13, 2016 from

 http://similarimagesfinder.codeplex.com/

TheNinjassin. (2015, March 2). Gesture Recogniton, Determining Shapes. Retrieved from

http://answers.unity3d.com/questions/914115/gesture-recognition-determining-

shapes.html

Vertex and fragment shader examples. Retrieved from https://docs.unity3d.com/Manual/SL-

VertexFragmentShaderExamples.html

Wooden Rock Garden Rake. Retrieved from https://s-media-cache-

ak0.pinimg.com/564x/27/68/9f/27689f2948cf745daaced81bc0e72e10.jpg

Writing Shaders. Retrieved from https://docs.unity3d.com/Manual/ShadersOverview.html

YourKoiPond. Do Koi Eat Other Fish? In Your Koi Pond (Home, Learn). Retrieved from

 http://yourkoipond.com/koi-eat-fish/

Zen Wood. Retrieved from http://zenwood.com/woodwork.html

http://similarimagesfinder.codeplex.com/
http://answers.unity3d.com/questions/914115/gesture-recognition-determining-shapes.html
http://answers.unity3d.com/questions/914115/gesture-recognition-determining-shapes.html
https://docs.unity3d.com/Manual/SL-VertexFragmentShaderExamples.html
https://docs.unity3d.com/Manual/SL-VertexFragmentShaderExamples.html
https://s-media-cache-ak0.pinimg.com/564x/27/68/9f/27689f2948cf745daaced81bc0e72e10.jpg
https://s-media-cache-ak0.pinimg.com/564x/27/68/9f/27689f2948cf745daaced81bc0e72e10.jpg
https://docs.unity3d.com/Manual/ShadersOverview.html
http://yourkoipond.com/koi-eat-fish/
http://zenwood.com/woodwork.html

THE CONDUIT’S GARDEN 118

Appendix A: Playtesting Resources

A.1 Outline of Procedure

1. Have the participant put on the Vive headset and hand them the controllers

2. Ask the participant to move along the w axis using the triggers

3. Ask the participant to move to four specific colors, ensuring that he/she both try moving

up and down as well as pausing between directions to ensure he/she stays on the target w

point

4. Repeat steps 2 and 3 for the other three control schemes

5. Have the participant take off the Vive headset, then conduct a short interview using the

questions from Figure 1 of the interview questions (Section A.2)

6. Inform the participant that he/she will now play a prototype of the game and give them

detailed explanations of the game zones and how to activate the shrines, answering any

questions he/she may have.

7. Have the participant put on the Vive headset with the game loaded to the home garden

scene, the contract scroll set to load the Tokyo scene and the controllers mapped to the

participants desired control scheme

8. Once the playthrough ends, have the participant remove the Vive headset, then conduct a

short interview using the questions from Figure 2 of the interview questions (Section A.2)

THE CONDUIT’S GARDEN 119

9. Repeat steps 7 and 8, but with the contract scroll set to load the TokyoSolidColor scene

instead. Make sure to inform the tester of the change from three dimensions to four and

use the interview questions in Figure 3 of the interview questions (Section A.2)

A.2 Interview Questions

Figure 1: Experiment 1 Interview Questions

1. Which of the control schemes did you find the most comfortable or easy to use and why?

2. What about the other control schemes did you find uncomfortable or difficult to use?

Figure 2: Experiment 2 Interview Questions

1. Did you find the objects in the game easy to tend to, normal to tend to or hard to tend to?

2. What was the easiest/hardest objects to tend to throughout the game?

3. What changes would you suggest to make the game easier/harder to play?

4. Any additional comments or suggestions?

Figure 3: No 4D

1. Did you find this version of the game any more or less difficult to play?

2. Did you enjoy this version of the game any more or less than the previous version?

3. Any additional suggestions or comments on the game in general

THE CONDUIT’S GARDEN 120

Appendix B: List of Game Content

Listed below are the features and tasks completed by each person on the team throughout the

duration of development.

 Completed Content

Alex John Paul

Playtesting Schedule 4D Opaque Shader Gravel Pit

Playtesting Tests 4D Transparent Shader Pattern Recognition

Playtesting Report Bonsai Tree Rake

Setup VR in Unity Bonsai Shrine Gravel Pit Shrine

Setup VR Input for Grabbing Tools Insecticide Found Background Music

Setup VR Input for Insecticide Shears Added Background Music

Setup VR Input for Shears Katana Found Gravel Texture

Improve VR Performance Scrolls

Different Control Schemes Garden Clock

Hyper Object Code Wash Basin

Hyper Object Collision Code Water Ladle

Hyper Creature Code Tintbox

Fish Pool Tokyo Skybox

Fish Object Home Level

Fish Food Tokyo Garden Level

Reservoir Pool Created Shears 3D Model

Fish Shrine Created Insecticide 3D Model

Fish Manager Created Wash Basin 3D Model

Kami Object Created Water Ladle 3D Model

Kami Manager Created Shrine 3D Model

Tool Reset Box Created Fish Seal 3D Model

Resource Preloader Created Bonsai Seal 3D Model

Created Water Texture Created Gravel Pit Seal 3D Model

Animated Koi 3D Model Created Kami House 3D Model

 Created Tokyo House 3D Model

 Created Tokyo Contract Scroll Texture

 Created Controls Scroll Texture

 Created How-To-Play Scroll Texture

 Created Concept Scroll Texture

 Created Executable Icons

THE CONDUIT’S GARDEN 121

 Found Katana 3D Model

 Found Koi 3D Model

 Found Low-Poly Tree 3D Model

 Found Low-Poly Rock 3D Model

Table 2: Completed Content per Person

Listed below is the game content that was either cut from the final product or never reached

completion during development.

Incomplete Game Content Cut Content

Adaptive Help Bonsai Contract Requirement

Tutorial Levels Gravel Pit Wind Clearing

Kami Personalities Menu Candles

Gravel Pit Rocks Lighter

Gravel Pit Rocks 3D Model Candle 3D Model

Rake 3D Model Lighter 3D Model

Fish Food 3D Model Wind Chimes

Colorblind Settings Wind Chime hooks

Improved Tokyo Skybox Wind Chime 3D Model

Blowing Leaves particle effect Wind Chime Hook 3D Model

Ambient Sound Effects

Game Sound Effects

Table 3: Incomplete and Cut Game Content

THE CONDUIT’S GARDEN 122

Appendix C: Additional Interactive Media Class

 A second part of our Major Qualifying Project was to work in groups with Japanese

students on an interactive media project the students originally designed, and then meet with

them every week in order to complete it. To do this, the group of WPI students split into pairs -

John worked with our classmate Yuheng Huo, while Alex and Paul worked on their project

together.

C.1 Alex and Paul’s Interactive Project: Bubble Keyboard

 The project that Alex and Paul’s group initially suggested we work on was making a

human-shaped interactive bubble. According to the original design, bubbles would be made to

fill a human mold, then stood up. An image of a person would then be projected onto it, and the

user would then be able to interact with it in some way. After discussing the logistics of making

this human bubble, the design was overhauled so that the final product would be a bubble

keyboard instead. As shown in Figure 67, how this would work is that a large plastic container

would hold a bubble mixture and have a mesh net covering the top of it. A hole would then be

cut in the side of the container and sealed with PVC piping, with a mini-leaf blower attached at

the other end. Once the leaf blower was turned on, it would then blow air into the mixture,

forming bubbles and pushing them out of the top through the mesh. From there, the user would

put on a glove with two wires attached to one of the fingertips and connected to an Arduino.

THE CONDUIT’S GARDEN 123

Figure 67: Mockup of the Bubble Keyboard Design

With this set-up, the user could touch the bubbles coming out of the container with the

two wires. The bubbles would complete the circuit between the two wires, which would then

send a signal to the Arduino. The Arduino, in turn, would then send a signal to the computer to

play a note, which would then be output through a speaker. A camera would be stationed above

the keyboard device to track where along the keyboard the user was touching, while a projector

would then show an image on top of the mesh so the camera could track the glove. Based on the

position of the user’s finger, the note she would be playing from the keyboard would change.

 After designing how the product would work and purchasing the necessary materials, the

group went to work on constructing the keyboard. As seen in the above Figure 68, Alex, Paul,

and two other group members first conducted an experiment with a voltmeter borrowed from

Takemura Lab, and from this determined that bubbles carry a current. This would therefore mean

THE CONDUIT’S GARDEN 124

that the bubbles would be able to complete the circuit with the two wires on the glove. Alex was

then able to get the Arduino we purchased to send signals to the computer. If more time was

allowed, Paul would have worked on making the speakers project the keyboard’s sounds from

the computer. Unfortunately, due to busy work schedules outside of this project, the

aforementioned work was the only progress that the group was able to make towards

constructing the bubble keyboard, so we did not get to see it to its completion.

Figure 68: The Group Working with Bubbles to Measure if they would Conduct Current

C.2 John and Yuheng’s Interactive Project: Rope Skipping Simulator

John worked on his additional interactive project with another WPI student working in

Japan, Yuheng Huo. They worked with a team of Japanese students to make a device that

simulated skipping a rope at various speeds. The idea was to replicate the act of spinning a rope

THE CONDUIT’S GARDEN 125

multiple times during a single jump without the danger of tripping on the rope. The device

consisted of a laser line that would move down a sheet to give visual feedback of the ‘rope’ and

hand devices with internal motors to provide haptic feedback. There would also be speakers

playing the audio of a spinning rope.

John was tasked with creating the audio files meant to simulate the sound of a rope

spinning multiple times in one jump. He used his iPhone to capture the audio of one of the

Japanese students performing these multi-spins. He then imported the audio into Reaper and

created sounds suitable for the device. The audio files were given over to the Japanese students

once completed. Yuheng made a logo image to be used for the device.

John and Yuheng were limited in their ability to assist their Japanese partners because they could

not communicate or actively participate in the project. They did not speak Japanese and the

Japanese students did not speak English. The two parties had to speak each other’s languages in

broken language and use Google Translate to facilitate the process. On meeting days, they would

take a bus to the Suita campus and walk to the students’ lab to work till 7 PM. At the beginning

of September, Japanese schools went on summer vacation and the buses stopped running. There

was no way for them to reach the Suita campus. After providing the needed audio and image

files, John and Yuheng no longer participated in the project.

