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Abstract

We evaluate the security of human voice password databases from an information

theoretical point of view. More specifically, we provide a theoretical estimation

on the amount of entropy in human voice when processed using the conventional

GMM-UBM technologies and the MFCCs as the acoustic features. The theoretical

estimation gives rise to a methodology for analyzing the security level in a corpus

of human voice. That is, given a database containing speech signals, we provide

a method for estimating the relative entropy (Kullback-Leibler divergence) of the

database thereby establishing the security level of the speaker verification system.

To demonstrate this, we analyze the YOHO database, a corpus of voice samples

collected from 138 speakers and show that the amount of entropy extracted is less

than 14-bits. We also present a practical attack that succeeds in impersonating the

voice of any speaker within the corpus with a 98% success probability with as little

as 9 trials. The attack will still succeed with a rate of 62.50% if 4 attempts are

permitted. Further, based on the same attack rationale, we mount an attack on

the ALIZE speaker verification system. We show through experimentation that the

attacker can impersonate any user in the database of 69 people with about 25%

success rate with only 5 trials. The success rate can achieve more than 50% by

increasing the allowed authentication attempts to 20. Finally, when the practical

attack is cast in terms of an entropy metric, we find that the theoretical entropy

estimate almost perfectly predicts the success rate of the practical attack, giving

further credence to the theoretical model and the associated entropy estimation

technique.
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Chapter 1

Introduction

In the last decade, we have witnessed large scale adoption of biometric technologies,

e.g. fingerprint scanners on laptops, cameras with built-in face recognition capabili-

ties at airport terminals and stadiums, and voice based authentication technologies

for account access on smartphones. Among biometric authentication technologies,

voice based authentication is playing a pivotal role due to the exponential growth

in the smartphone user base [1] and due to the unparalleled convenience it offers.

Indeed, human voice can be easily captured over large distances simply over a stan-

dard phone line without requiring any special reader device. Furthermore, compared

to other biometric schemes voice authentication offers the user a greater degree of

freedom during signal acquisition.

Voice verification comes in two flavors: text dependent and text independent.

Text independent voice verification, i.e. speaker verification, is not concerned with

the text that is spoken. In contrast, in text dependent systems, the verification

requires a match on the spoken text as well as a match on the user. With rapid

developments in mobile computing and voice recognition technologies, it is conve-

nient to use voice verification in the service of biometric authentication. Typically, in
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commercial speaker verification systems, speech recognition is applied before speaker

verification to prevent playback attacks. The user is asked to recite a randomly gen-

erated pass-phrase, and only if what the user says matches the pass-phrase, the

system proceeds to the text-independent voice verification step.

Given the usability and ease of deployment, a number of companies are now offer-

ing voice based authentication services: PerSay’s VocalPassword and FreeSpeech,

Agnitio’s Kivox and VoiceVault’s VoiceSign, VoiceAuth products, etc. Unfortu-

nately, the precise details of the extraction techniques used are not made public. We

can only speculate on connections to academic work developed in the last decade.

During the late 1990s to early 2000s, researchers in [2, 3] introduced the Gaussian

Mixture Model (GMM) and the adapted GMM (GMM-UBM) to the speaker ver-

ification task. Later in [4, 5], the authors propose a new classifier by combining

a support vector machine with a Gaussian Mixture Model verifier. In the mean-

time, researchers in [6, 7, 8] developed Joint Factor Analysis (JFA), a modification

of GMM in order to tackle channel variability. Today, the state-of-the-art I-Vector

method [9] is a derivative of JFA.

With all this deployment of voice authentication technologies, it becomes crucial

to evaluate voice authentication technologies from a security point of view. Specifi-

cally, we are interested in text independent voice authentication. We want to explore

whether or not human voice allows us to build a voice based authentication scheme

whose security matches that of a cryptographic authentication scheme.

Studies in [10, 11, 12, 13, 14] indicate in general that the security level of biomet-

ric features themselves may be low. A number of studies in [15, 16, 17, 18] show that

the speaker verification systems are vulnerable to synthesized speech attacks. All

these attacks assume the attacker has acquired speech samples from target victims.

The attacker builds synthesized speech through some transformation method based
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on the parameters trained from the speech sample of the victim. To counter such

attacks, authors of [19, 20] developed an anti-spoofing system targeting the synthe-

sized speech attack. However, researchers seldom examine the speaker verification

system from the information security point of view. In this work we take an initial

step in that direction.

1.1 Motivation

To examine the security level of text-independent speaker verification systems, the

performance of the current systems need to be reviewed. Two basic parameters are

introduced in terms of evaluating the performance of a speaker verification system:

false negative rate and false positive rate. These two rates represent the probability

of a valid user being rejected by the verification system and probability of a fake user

being accepted by the verification system, respectively. For a specific system one

can always decrease one of these two rates by increasing the other one. The overall

performance can be evaluated by a single parameter called equal error rate (EER).

The EER is reached when the false negative rate equals false positive rate. A lower

EER, in general, is the attribute of a better speaker verification system. Based on

the summary of the performance of current text-independent speaker verification

systems, EER is ranging from 1% to 10% [6, 7, 3]. The 1% false positive rate

means that out of every 100 attempts to carry out voice authentication by random

people one person will succeed. In other words, a person’s account will have a

1% probability of being compromised by a random attacker. Since 1% implies

− log2 (
1

100
) = 6.6 ≈ 7 bits, this corresponds to the security offered by an encryption

algorithm with a key size of about 7 bits. One way to increase the security level

would be to decrease the false positive rate. However, decreasing the false positive

3



rate would correspond to a higher false negative rate. Even if we tolerate the very

high noise level that comes with decreasing the false positive rate by a factor of 100

the increase in security would be effectively doubling the key length. That is, going

from around 7 bits to about 14 bits. This logic can be seen as a strong indicator of

the limited amount of entropy that can be extracted from human voice.

The importance of establishing an entropy estimation is the real measure of

identification capacity. To elaborate, in any voice identification system, the per-

son’s voice features will eventually be converted into a model or a key or any other

mathematical representation. The form of which must be known publicly according

to Kerckhoffs’ basic security principles. This representation of the speaker’s voice

features will only be as unpredictable to an attacker as allowed by the entropy of

the voice features. Therefore, if the entropy is low an attacker will simply test every

single instant of the voice representation (which will be small due to the low entropy)

until the attacker finally succeeds in impersonating that speaker. Security cannot

be guaranteed by a complicated extraction process, but instead has to be rooted in

entropy. Establishing the entropy content of a human voice password database in a

way that is meaningful for security applications is the goal of this dissertation. Thus

far – to the best of our knowledge – no rigorous study of the extractable entropy

from human voice has appeared in the literature.

1.2 Dissertation Outline

In this dissertation, we show from both theoretical and practical views that the

entropy of the Voice Password Databases is limited. We estimate the security level

of text-independent speaker verification systems presenting a full fledged information

theoretical analysis. The remainder of this dissertation is organized as follows.
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In Chapter 2, we overview the related background knowledge of text-independent

voice authentication/verification technologies. We start by reviewing how a typical

voice authentication system works. Next, we explain feature extraction and feature

modeling techniques. We focus on the fundamental text-independent voice verifi-

cation techniques, i.e. we review Mel-Frequency Cepstral Coefficients (MFCC) and

Gaussian Mixture Model (GMM).

In Chapter 3 we explain how we estimate the entropy of a human voice password

database. We start by introducing the concept of entropy in security and enumer-

ating different entropy metrics. Next, we explore the possibility of applying the

differential entropy metric to a human voice password database and point out the

deficiency of using this metric. Eventually, we propose and show by experiments

that relative entropy is an appropriate measurement of uncertainty of the voice pass-

word database. We finally relate the theoretical relative entropy estimation to the

attack introduced in detail in Chapter 4.

In Chapter 4, we propose an attack on a simulated voice authentication system.

We begin with describing the MFCC-GMM based voice authentication system that

we are attacking. We then explain the attack rationale and the detail of the attack.

Finally, we show the experimental results. The successful attack in this chapter is

a support of our theoretical entropy estimation in Chapter 3.

In Chapter 5 we take a further step to attack a third-party open-source text-

independent voice authentication system. We first introduce the target system AL-

IZE. Then we explain the attack rationale. After reviewing why the attack method

in Chapter 4 cannot apply directly to the ALIZE system, we propose an effective

method of building mock speech signals. Next, we apply the proposed attack method

to the YOHO database and show the experiments. Finally, we relate this attack to

the previous attack in Chapter 4.
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In Chapter 6 we relate our work to the state-of-the-art speaker verification sys-

tems. We explain that although we demonstrate our work using the classical GMM-

UBM speaker verification system, the limited entropy which enables our attack on

GMM-UBM is an intrinsic property of the speech signal still present even if JFA or

an I-Vector based system is employed. Meanwhile, we propose possible utilization

of the voice passwords.

Finally, in Chapter 7 we conclude the dissertation.
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Chapter 2

Background

In this chapter, we briefly review existing voice authentication technologies. In

Section 2.2 we explain short term cepstral analysis and two representative cepstral

features: MFCC and LPCC. In Section 2.3, we introduce Gaussian Mixture Model,

the feature modeling methods targeting text-independent voice authentication tasks.
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2.1 Introduction

Speaker verification systems work in two phases: enrollment and verification [21].

During enrollment, a speaker is asked to contribute speech samples whose features

are then extracted as shown in Figure 2.1. The speech features are then used to

develop the users’ speech models. The speech model is stored for future comparison.

At a later time, when verification is required, see Figure 2.2, fresh samples are

collected from the user. After similar extraction phases, the resulting extracted

features are compared against the model stored during enrollment.

Feature Extracting 
Module

Speech from 
known speaker

Speech 
features Modeling Module

Speech model for
known speaker

Figure 2.1: Speaker enrollment.

Feature Extracting 
Module

Speech from 
unknown speaker

The known 
speaker model Score Decision Module

Accept or
Reject

Speaker Model 
database

Figure 2.2: Speaker verification.

Feature extraction, also known as speech parameterization, is dominated by

the cepstral family. Mel-frequency cepstral coefficients (MFCC) and Linear pre-

dictive coding coefficients (LPCC) are the representative technologies. Feature

modeling methods can be classified as generative approaches and discriminative

approaches based on the training mechanism. The generative approaches capture

within class features, including Gaussian Mixture Models (GMM), Hidden Markov

Models (HMM), Vector Quantization (VQ), and the well known Joint Factor Analy-

sis (JFA). Note that the HMM take into the consideration the temporal sequence of
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the feature therefore widely used in text-dependent speaker verification tasks. Other

techniques do not model temporal information, mainly used for text-independent

speaker verification tasks. The discriminative approaches capture the boundary be-

tween two classes. The representation of discriminative approaches are artificial

neural networks (ANNs) and Support Vector Machines (SVM). Table 2.1 summa-

rizes the popular feature extraction and feature modeling methods [22].

Table 2.1: Summary of tasks in speaker verification.
Feature Extraction Methods Feature Modeling Methods

MFCC, LPCC

Generative approaches Discriminative approaches
Text-
independent

Text-
dependent SVM, ANN

GMM, VQ,
JFA

HMM

2.2 Feature Extraction

The most popular feature extraction technique used in voice verification systems

is based on short term cepstral analysis including MFCC, LPCC, etc [23, 24, 25].

We now briefly review two basic techniques that will be essential to our entropy

estimation and our attack.

2.2.1 Cepstral Analysis

Cepstral analysis [26] is widely used technique today for speech and speaker feature

extraction tasks. A human voice signal s(n) is typically modeled as a convolution

s(n) = e(n) ∗ θ(n) where θ(n) represents the response of the vocal system and the

e(n) represents the excitation. In both speech recognition and speaker recognition

applications the goal is to extract unique features representing the speaker or the

speech. This information is precisely the kind of information that is captured by
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the response of the vocal system θ(n). Consequently, the initial task of any speech

or speaker recognition application becomes the extraction of θ(n). To achieve this

goal, cepstral analysis may be employed. According to [27], the cepstrum of a signal

s(n) is defined as

cs(n) = DFT−1{log{|DFT(s(n))|}} =
1

2π

π∫

−π

Cs(w)e
jwndw . (2.1)

Here DFT represents the Discrete Fourier Transform, S(ω) denotes the DFT coeffi-

cients of s(n), and the cepstrum is obtained by cs(n) = DFT−1{log(|S(ω)|)}. Based

on equation 2.1, the steps in computing the cepstrum can be explained as follows:

1. Compute the DFT of the speech signal s(n): by computing the DFT, the

convolution of the vocal system θ(n) and the excitation e(n) turns into a

multiplication, i.e. S(ω) = E(ω) ·Θ(ω).

2. Compute the logarithm of the amplitude of S(ω): by computing the loga-

rithm of S(ω), the multiplication E(ω) · Θ(ω) turns into addition Cs(ω) =

log(|S(ω)|) = log(|E(ω)|) + log(|Θ(ω)|) = Ce(ω) + Cθ(ω).

3. Compute the inverse DFT 1 of the above: this step will effectively take the

signal into a different frequency domain (called quefrency) where the signal

ce(n) representing Ce(ω) in quefrency domain resides at the higher quefrency

part while cθ(n) (the quefrency representation ofCe(ω)) will reside at the lower

quefrency part. This allows us to extract the response of the vocal system.

The steps above highlight a general framework for extracting voice features. In order

to produce more effective results different scaling techniques can be applied to the

1Note that signal Cs(ω) is even, so the DFT is equivalent to the Discrete Cosine Transform
(DCT) which is adopted in practical implementations.
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process. In particular, we will be interested in using the cepstrum along with the

Mel-scale filter banks and short term processing. In the next two sections we briefly

explain these techniques.

2.2.2 Short-term Processing

Commonly a speech signal s(n) is not processed as a whole. Instead, signals are

initially divided into a number of overlapping smaller segments each of which is

processed individually. This partitioning of the signal is motivated by the dynamic

variation of the signal which is better captured through the smaller segments.

There are two important concepts in short term processing: frame rate (step) and

window duration. Typically both are expressed in milliseconds. Window duration is

the length of one short term piece. Where as frame rate is the time duration between

the beginning of two windows [28]. Research shows that the quickest movement of

vocal articulators are in the order of 10 ms [27, 29] and therefore is used as the

frame rate. The window duration is commonly 2–3 times the frame rate causing an

overlap of adjacent short term pieces.

2.2.3 Mel-scale & Filter Banks

As mentioned earlier the cepstrum spectrum is typically used along with Mel-scale

filter banks which yields the Mel-frequency cepstral coefficients (MFCC) [30]. The

central idea of the Mel (melody) frequency scale is to apply a linear map on the

signal’s frequency components below 1000 Hz and a logarithmic map for frequency

components above 1 kHz. As such, the Mel-scale can be represented using the
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following equation [31].

Mel(f) = 2595 · log10

(
1 +

f

700

)
,

where f represents the normal frequency components in the range 0 to 4 kHz — the

range of the traditional telephone bandwidth.

It is important to note that the Mel-frequency components are influenced by the

amplitudes of nearby components. This effect forms a critical-band. The critical-

band is constant for about 100 Mels on Mel-scale. Mel filter banks are designed

with the critical-band in mind. The original Mel filter banks are 20 overlapped

filter banks with 10 evenly distributed banks below 1 kHz in Hertz scale and 10

banks with a log distribution covering the range of 1− 4 kHz. To compute the Mel

frequency components, Cs(w) will go through the group of Mel filter banks yielding

Cmel
s (w), the Mel-frequency version of Cs(w), which will be used in the later steps

of cepstral analysis.

2.2.4 MFCC and LPCC

Mel-frequency cepstral coefficients (MFCC) [30, 32] have been shown to outperform

any other Short Term Cepstrum feature extraction technique in speech recognition

and later on widely used in speaker verification tasks. Similar to other cepstral fea-

tures, MFCC is obtained from a speech signal through a combination of transforms

[21, 33, 25]. Particularly, MFCC can be carried out with the following steps.

1. Break the input into a number of time frames to be processed independently.

Each frame is typically 20− 30 ms.

2. Using a Fast Fourier Transform (FFT) compute the frequency components of

each of the time frames and take the amplitude.
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Speech 
signal windowing FFT Abs() Filterbank Log() DCT MFCC

Figure 2.3: Transformation from signal to MFCC.

3. Use a number of triangular band-pass filters in order to project the frequency

components of each frame into the Mel-scale.

4. Take the logarithm.

5. Apply a discrete cosine transform (DCT) on the output of the filters in order

to compute the MFCC for each frame.

The output of the above steps will be a matrix C where the entry cij represents

the ith Mel-frequency cepstral coefficient for the jth time frame of the input sound as

shown in Figure 2.3. To remove the channel filter bias and intra-speaker variability,

compensation methods can be applied [21]. Note that MFCC processing is invertible

by inverting each step in the MFCC computation steps. However, because some of

the MFCC processing steps are non-linear, the inversion will be a lossy process. The

inversion details can be found at [34].

The other often used voice feature is Linear Predictive Coding coefficients (LPCC)

[35]. The LPCC is also based on short term processing and cepstral analysis (see

Section 2.2.1 and 2.2.2 for detail). The first two and last steps of LPCC transforma-

tion are exactly the same as MFCC. The rationale behind LPCC is that the voice

signal can be viewed as a group of auto regressive (AR) filters. The LPCC estimates

the parameter of the AR filter for each windowed speech signal. For each windowed

signal, the parameter of the AR filter is estimated by previous parameters. That is

the reason why it is called linear predictive coding.
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From mathematical point of view, MFCC and LPCC are very similar to each

other. They can both be viewed as high dimensional continuous random variables.

We name them as short-term processed cepstral feature (STC) because of their sim-

ilarity in math form. Whenever the STCs are extracted, they are not directly used

as templates for verification task. Instead, they are commonly further compressed

as certain mathematical model. In the next section we will discuss how the voice

feature is modeled.

2.3 Feature Modeling

In voice verification, the extracted feature is not directly used as the voice tem-

plate. Instead, a more compressed probabilistic representation will be generated

based on the voice feature. This process is called feature modeling. We now briefly

review Gaussian mixture model. This approach founds the basis of text-independent

speaker verification algorithms.

2.3.1 The Gaussian Mixture Model

The Gaussian Mixture Model (GMM) [2] is one of the most widely used voice models

in text-independent speaker verification. Based on the GMM, many other methods

were derived. One of the most popular methods is Joint Factor Analysis (JFA)

[6, 7, 8]. The JFA model tackles the inter-speaker variability problem and therefore

improves the performance of the speaker verification process. The GMM is a uni-

state HMM [36] regardless of temporal information. The GMM is based on the

fact that any probability distribution can be expressed as a collection of weighted

Gaussian distributions with different means and variances [37]. Each Gaussian may

reflect one aspect of features of the human voice. What is interesting about the
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GMM is that the model is trained using unsupervised computer clustering which

means that the individual Gaussian distributions are unlabeled. Therefore, we may

not know which Gaussian distribution captures which features of the human voice.

The GMM is a collection of weighted Gaussian distributions λ which reflects the

real distribution of mass2. A GMM is denoted by λ = {pi, µi,Σi} i = 1, 2, ...N where

pi gives the weight of ith component. Therefore,
∑

pi = 1. The mean and variance

of the ith component are represented by µi and Σi, respectively. N represents the

number of Gaussian components. The Gaussian Mixture Density is defined as

p(X|λ) =
M∑

i=1

pibi(X) . (2.2)

Where X is a random vector, bi(X) is probability density function of ith component

explicitly given as

bi(X) =
1√

2π|Σi|
e−

1
2
(X−µi)

′

Σ−1
i (X−µi) .

Given K observations of the random vector X , the probability of X following the

GMM λ can be expressed as

q(X|λ) =

(
K∏

k=1

p(Xk|λ)

) 1
K

(2.3)

where Xk is the kth observation of X . For a known speaker j, the GMM model λj

is computed such as to maximize the overall probability q(Xj|λj). Therefore, the

GMM λj provides a voice template. In GMM based biometric verification system,

a two phase scenario is applied. In the enrollment phase, a feature Xj extracted

from a person j, is used to generate a template GMM λj. In the verification phase,

2In the voice verification case this corresponds to the cepstral features.
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a decision function

q(X ′|λj)





≥ T accept

< T reject
(2.4)

is computed. Where T is the pre-defined constant threshold and X ′ is a fresh feature

extracted from an unknown person who claims to be j. If the likelihood q(X ′|λj)

is greater than the thresh hold, the unknown person passes the verification as j

otherwise the authorization fails.

Finally, we note that a more popular version of the GMM, namely the Adapted

Gaussian Mixture Model, is in use today [3]. In the Adapted GMM, a univer-

sal background model λb is generated by training with samples collected from all

speakers. Afterwards, each speaker is modeled by adapting the background model.

In the verification phase, the Gaussian mixture density p(x) in Equation 2.2 is sub-

stituted by p′(x) =
p(x|λj)

p(x|λb)
. The details of the adapted GMM modeling algorithm

can be found in [3]. The main advantage of the adapted GMM is that the training

phase for a speaker is much faster while at the same time it gives a more accurate

verification performance. In this dissertation we will base our analysis on the more

popular adapted GMM.
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Chapter 3

Entropy Estimation

In this chapter, we estimate the entropy of a human voice password database as-

suming a voice authentication technology that uses MFCC features and a GMM.

In Section 3.2 and 3.3 we first explain the relationship between entropy and secu-

rity and introduce some basic concepts of entropy. In Section 3.4, we explore the

estimation of differential entropy on STC and point out the problem of using this

entropy metric. In Section 3.5 we propose an entropy estimation on STC using the

relative entropy and show the relative entropy is an good measurement of entropy

bits of the voice features. In Section 3.6, we show experimental results. Finally in

Section 3.7, we connect the entropy estimation to the attack in Chapter 4.
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3.1 Introduction

Entropy is a measurement of uncertainty of a random variable. The importance

of establishing an entropy estimation is the real measure of identification capacity.

Security cannot be guaranteed by a complicated extraction process, but instead has

to be rooted in entropy. Establishing the entropy content of a human voice password

database is crucial in estimating the achievable secure level of a voice authentication

system.

In this chapter we develop an estimation on the relative entropy between users’

voices from human voice password database using the Short Term Cepstrum fea-

tures. By understanding the relative entropy between humans’ voices using a certain

verification technique we are essentially achieving two goals:

1. We place an approximation on the number of people who can be uniquely

identified using the studied verification technique.

2. We place an approximation on the computational effort required to break the

identification technique. That is, we capture the amount of effort needed to

mimic someone else’s voice without previous knowledge of that person’s voice

characteristics.

Under this view we can start evaluating various voice identification software and

technologies in a way that takes into account the most important of all factors, i.e.

security. Further, in this chapter we derive a technique and then use it to estimate

the entropy extracted from the YOHO voice verification corpus [40].
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3.2 Entropy and Security

The entropy [41] of a discrete random variable X is defined as

H(X) = E

[
1

logP (X)

]
=
∑

X∈χ

P (X) logP (X) (3.1)

where P (X) is the probability density function of the r.v. X . It is a measurement

of information bits, i.e. a quantity measurement of the minimum number of yes/no

questions one needs to ask to determine the value of X . The entropy of the English

alphabet, for example, is 4.7 bits assuming the frequency of appearance of each letter

is equal (see Example 1). This means given a letter, at least 4.7 binary questions

need to be asked in order to successfully guess the letter. In other words, one needs

to make a guess among all 24.7 = 26 possibilities to obtain the right letter. In

reality, however, the frequency of letters is not uniform as it is a commonsense that

the letter “e” has the highest frequency while the “z” has the lowest frequency in

the daily usage of the English language. If the frequency of letter usage has been

taken into consideration, the entropy of the English alphabet is only 4.14 bits [42].

That is to say, one needs less effort to successfully guess a letter randomly picked

from an English article than to guess a letter randomly picked from the alphabet

set.

Example 1. Let α = {a, b, c, . . . , z} be the alphabet of English. Assume the fre-

quency of each letter is equal, then the entropy of α is

H(α) =
26∑

i=1

1

26
log

1

26
= 4.7 bits

The concept of entropy highly relates to the security level of cryptographic au-

thentication systems. The entropy of a cryptographic key indicates the expected
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number of trials that an attacker needs in order to successfully guess the key. To

make the concept clear, we review Example 1. Assume a key generation system

produces a key with a single letter picked from the English alphabet, then an at-

tacker may obtain that key with 24.7−1 trials on average using brute-force attack.

The probability that the attacker successfully guesses the key with one attempt is

pr = 1
24.7

= 1
26
. Now assume the attacker is memory-less, i.e. he may re-pick the

same key in his attempts, with N attempts the attacker has P = 1 − (1 − pr)
N

success rate in guessing the key. The attacker will have more than 50% success rate

to get the correct key with 18 trials. If the authentication system picks the letter

randomly from an English book, i.e. the frequency of letter usage is taken into

consideration, the attacker is expected to obtain the key with only 24.14−1 trials.

The connection between entropy and security is also valid in voice authentication

systems. Remember that the voice feature can be viewed as the high dimensional

random variable (see Section 2.2.4 for detail). The entropy of the voice feature

predicts the effort that an attacker needs to reproduce a victim’s voice feature.

3.3 Shannon Entropy, Differential Entropy and

Relative Entropy

The entropy in the form of Equation 3.1 is also known as Shannon entropy which

measures the quantity of expected information bits of a random variable. The

limitation of Shannon entropy is that it only applies to the discrete random variable.

To extend the Shannon entropy to continuous form, the differential entropy

(continuous entropy) is introduced. The differential entropy h(X) of a continuous
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random variable X is defined as

h(X) = −

∫

S

f(x) log f(x)dx (3.2)

where f(x) and S are the probability density function and the support set of the

r.v. X, respectively [41]. However, the differential entropy is quite different from the

Shannon entropy in terms of its properties. For instance, the differential entropy

can be negative while the Shannon entropy can not. A more important difference is

the differential entropy is not a quantity measurement of expected information bits

as Shannon entropy is. Instead, the differential entropy reflects the compactness

of a random variable in distribution, i.e. a small value of the differential entropy

means the random variable is confined to a small area of distribution, while a large

value of the dfferential entropy indicates the random variable are more spread in

the distribution. The differential entropy relates to Shannon entropy through the

quantization of a random variable [41]. Suppose the range of a continuous r.v. X

is divided into n bins. Each bin has a length of ∆ = 2−n. The quantized random

variable X∆ is defined as

X∆ = xi when∆i ≤ X < ∆(i+ 1) (3.3)

where xi is the expected value of ith bin of the r.v. X. The entropy of the discrete

r.v. X∆ which is the quantized version of the r.v. X should be

H(X∆) = −
∑

∆f(xi) log f(xi)− log∆ (3.4)
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As the ∆ → 0,

H(X∆) + log∆ → h(X) (3.5)

H(X∆)− n → h(X) (3.6)

The other form of entropy metric is relative entropy a.k.a. Kullback-Leibler

divergence. Relative entropy between two probability mass functions p(x) and q(x),

is defined as

D(p||q) = Ep log
p(x)

q(x)
(3.7)

=
∑

x∈χ

p(x) log
p(x)

q(x)
(3.8)

Similarly, the relative entropy in continuous case is in the form of

D(p||q) =

∫
p(x) log

p(x)

q(x)
(3.9)

where the p(x) and q(x) are now probability density functions [41]. The relative

entropy is a counting measure similar to Shannon entropy, therefore it measures the

information in bits. On the other hand, unlike Shannon entropy/differential entropy,

the properties of relative entropy are the same in both discrete and continuous cases.

The relative entropy is conceptually known as a measurement of the “distance”

between two distributions of random variables. Note that the relative entropy is not

a symmetric metric, i.e. D(p||q) is not commonly equal to D(q||p). According to

[41], the relative entropy measures the inefficiency using distribution q to describe

the real distribution p.
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3.4 Exploration of Differential Entropy on STC

Since the voice feature STC is continuous random variable, we first explore the

possibility of applying differential entropy to the voice feature.

Proposition 1. Let STC(S) ∈ R
Q×L be a matrix of L Q-dimensional STC vectors

of a speech signal S representing the concatenation of all speech signals in a database

D, and let σj be the standard deviation of the jth row of STC(S), then

h (STC(S)) ≤
1

2

Q∑

j=1

log2(2πeσ
2
j ) , (3.10)

where h (STC(S)) is the differential entropy of STC(S).

Proof. Let the Cj be the jth row of STC(S), then

h (STC(S)) = h(C1, C2, . . . CQ) ≤

Q∑

j=1

h(Cj) , (3.11)

where the equality holds if and only if the C1, C2, . . . CQ are independent. Ac-

cording to [41] the differential entropy of any random vector X with E(X) = µ

and V ar(X) = σ2 is upper bounded by the entropy of the Gaussian distribution

N(µ, σ2). As such, we can upper bound h (STC(S)). First we write

h(Cj) ≤ h(N(µj , σ
2
j )) , (3.12)

where µj and σ2
j represent the mean and variance of Cj . We now combine Equations

3.11 and 3.12 to upper bound h (STC(S)) as

h (STC(S)) ≤

Q∑

j=1

h(N(µj , σ
2
j )) =

1

2

Q∑

j=1

log2(2πeσ
2
j ) . (3.13)
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Equation 3.13 gives a loose upper bound on the differential entropy of the STC

features. We next discuss the possibility of deducing more rigorous bounds. To

do this, we analyze the source of entropy inside STC features. There are 3 main

sources of entropy which contribute to the total entropy found in STC(S); the text-

independent voice entropy h(V ), the entropy in the spoken words h(W ) and noise.

The entropy added by the noise is useless from a security point of view. However, for

a general bound we assume the noise is a part of h(V ). Note that this assumption

can only increase h(V ) and therefore will not effect the validity of our bound. Based

on this we can write

h(STC(S)) = h(V,W ) .

Our goal is to upper bound h(V ) which according to the joint entropy definition can

be written as

h(V ) = h(V,W )− h(W |V ) . (3.14)

h(V ) is the text-independent entropy that is solely contributed by the speaker’s

voice, h(W |V ) is the entropy of the said words given a specific speaker and h(V,W )

is the total entropy in the speech signal. The upper bound on h(V ) can be com-

puted using hu(V,W ) the upper bound of h(V,W ) and hl(W |V ) the lower bound of

h(W |V ). That is,

h(V ) ≤ hu(V,W )− hl(W |V ) . (3.15)

Upper-bounding h(V,W ) is equivalent to upper-bounding h(STC(S)). Accord-

ing to Equation 3.13, we can upper bound the entropy in h(V,W )

h(V,W ) ≤
1

2

Q∑

j=1

log2(2πeσ
2
j ) = hu(V,W ) , (3.16)
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Next, we compute a lower bound on h(W |V ). By definition (see [41]),

h(W |V ) =
M∑

i=1

p(Vi)h(W |Vi) .

Since we are restricting ourselves to voice signals after being processed by STC,

h(W |Vi) will be h(STCi). That is, the entropy in the speech of speaker i. p(Vi) is

the probability that speaker i is selected from the database of speakers. With M

speakers in the database all equally likely to be chosen we have p(Vi) = 1/M . So

we can simplify the equation of h(W |V ) as

h(W |V ) =
1

M

M∑

i=1

h(W |Vi) =
1

M

M∑

i=1

h(STCi) . (3.17)

To compute a lower bound on h(W |V ) we resort to GMM. The Gaussian mixture

model is a probabilistic technique for modeling an arbitrary random vector. As

the number of components in the GMM λ increases it produces a more accurate

approximation of the distribution X from which an arbitrary random vector X is

drawn. In fact, given a sufficient number of components a GMM can approximate

any smooth function to arbitrary accuracy [43]. Therefore, with sufficiently many

components in λ one can approximate the entropy of X by using the entropy of λ,

that is h(X ) ≈ h(λ). We now borrow the following proposition from [37].

Proposition 2. ([37]) Given a set of random vectors Xi ∈ R
Q from some distribu-

tion X and modeled by a GMM λ = {wi, µi,Σi} where i = 1, 2, ...N , a lower bound

on the entropy of λ can be written as

hl(λ) = −
N∑

i=1

wi · log2

(
N∑

j=1

wj · zi,j

)
, (3.18)
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where

zi,j = N(µi;µj,Σi + Σj) =
1√

2π|Σi + Σj |
e−

1
2
(µi−µj)

′

(Σi+Σj)−1(µi−µj) .

According to [43], as N goes to infinity, λ tends to describe X which is the true

distribution of X . With that we state the following corollary to Proposition 2.

Corollary 1.

h(X ) = lim
N→∞

h(λ) ≥ lim
N→∞

hl(λ) , (3.19)

where h(·) is the differential entropy.

Now let λi be a GMM for STCi then according to Corollary 1 we have

h(STCi) = lim
N→∞

h(λi)

where N denotes the number of Gaussian components. Using Proposition 2 and

Equation 3.17 we have

h(W |V ) ≥ 1
M

∑M

i=1 limN→∞ hl(λi) = hl(W |V ) . (3.20)

Finally, using Equations 3.15, 3.16 and 3.20 we get

h(V ) ≤
1

2

Q∑

j=1

log2(2πeσ
2
j )−

1

M

M∑

i=1

lim
N→∞

hl(λi) (3.21)

Equation 3.21 gives the upperbound of differential entropy. As we discussed

in Section 3.3, the differential entropy is not directly a quantity measurement of

information in bits. To convert the differential entropy to Shannon entropy, we have

to apply Equation 3.6. Therefore, we apply Equation 3.6 to Equation 3.16, 3.20 and
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3.21 to get

H (V,W ) ≤
1

2

Q∑

j=1

log2(2πeσ
2
j ) + c1n (3.22)

H(W |V ) ≥
1

M

M∑

i=1

lim
N→∞

hl(λi) + c2n (3.23)

H(V ) ≤
1

2

Q∑

j=1

log2(2πeσ
2
j )−

1

M

M∑

i=1

lim
N→∞

hl(λi) + (c1 − c2)n (3.24)

where n is quantization bit while c1 and c2 are two constant.

In this section we developed an upperbound of differential entropy of voice fea-

tures. However, we have no idea of the relation of c1 and c2. Unless c1 equals c2

the bound on H(V ) will not be constant. For instance, if c1 > c2 then H(V ) is

in a form of a constant plus n bit. By increasing n, we can increase the extracted

entropy. With the presented analysis and following brief discussion we can see the

difficulty in estimating information bits in human voice through differential entropy.

This motivated us to consider another entropy metric, i.e. relative entropy, which

will be discussed in the following section.

3.5 Relative Entropy on STC

Our goal in this section is to introduce relative entropy as an measurement of un-

certainty of the STC voice features. Several estimation methods and bounds are

discussed in Section 3.5.2. Relative entropy is useful for measuring the security ob-

tained from using human voice identification on a given database of speech samples.
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3.5.1 Relative entropy estimation of voice features

Since voice features are continuous1, the classic entropy (the Shannon entropy) [41]

which measures the uncertainty of a discrete random variable does not apply directly.

Differential entropy once appeared to be the more appropriate metric. Based on

the discussion in the previous section, it is not. The reason is differential entropy

does not inherit many properties of entropy in the discrete case and therefore does

not reflect the accurate number of bits that is necessary to represent an individual’s

voice. More importantly, the security of voice passwords is not rooted in the absolute

entropy of voice itself. Instead, it is rooted in the “distance” between the different

people’s voice signals.

To overcome these obstacles, we make use of the notion of relative entropy.

Relative entropy is defined by Equation 3.7 and 3.9 Unlike entropy which has two

different forms in case of discrete and continuous, relative entropy maintains the

same form from discrete to continuous case. In [44], relative entropy is used to

represent a measurement of biometric information i.e. how close two biometric

features are. Now, we use relative entropy to measure entropy residing in voice.

Assume Vi(X) and Vj(X) refers to GMM of voice from person i and j, the relative

entropy

DKL(Vi||Vj) = EVi(x)

[
log(

Vi(x)

Vj(x)
)

]
(3.25)

measures how many additional bits one would need to express Vi given an expression

for Vj. The measurement of relative entropy is essential to estimate the security

level of voice authentication systems. It estimates the effort that an attacker need

to successfully impersonate an arbitrary victims i.e. the relative entropy indicates

how many attempts the attacker needs to make in order to modify his own voice

1Note that state-of-the-art text-independent speaker authentication uses a continuous proba-
bility density function GMM to model voice
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feature to be the victim’s voice feature.

3.5.2 Estimation of Relative Entropy for two GMMs

There is no closed form expression that allows us to compute the relative entropy

for two given GMMs. However, several estimation methods can be applied. As

mentioned in [45], assume two GMMs λ(x) and λ′(x), an accurate estimation of

DKL(λ||λ
′) can be obtained by Monte Carlo Sampling:

1. Draw from λ i.i.d. samples {xi}
n
i=1.

2. Compute DMC(λ||λ
′) = 1

n

∑n

i=1 log
(

λ(xi)
λ′(xi)

)
.

Note that as n goes to infinity, DMC converges to DKL(λ||λ
′). The weakness of

Monte Carlo Sampling is the high complexity of computation. In practice, it is

more convenient to use a bound over an estimation procedure. Here we borrow the

following proposition from [45].

Proposition 3 (Relative Entropy Upper Bound [45]). An upper bound on relative

entropy between two GMMs λ(x) and λ′(x) is given as

DKL(λ||λ
′) ≤

∑

i,j

pip
′
jDKL(N(µi,Σi)||N(µ′

i,Σ
′
i))) = Du1(λ||λ

′) . (3.26)

Alternatively, if two GMMs have same number of components n, the upper bounded

can also be expressed as

DKL(λ||λ
′) ≤ DKL(p||p

′) +
n∑

i

piDKL(N(µi,Σi)||N(µ′
i,Σ

′
i))

=

n∑

i

pi(log(
pi
p′i
) +DKL(N(µi,Σi)||N(µ′

i,Σ
′
i)))

= Du2(λ||λ
′) (3.27)
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where λ = {pi, µi,Σi}
n
i=1 and λ′ = {p′i, µ

′
i,Σ

′
i}

n
i=1.

We next demonstrate the application of these estimates on a real voice database.

3.6 Experiments & Results

In this section we will utilize the relative entropy estimation explained in Section

3.5 to estimate the entropy available to a speaker verification system. Our focus

will be on speaker verification systems that use the MFCC extraction technique

along with GMM modeling. The voice samples that we use for our experiments are

collected from the YOHO database which contains 138 speakers, with each speaker

reciting a random combination of three two digit numbers. We will start this section

by explaining our choice of parameters for the speaker verification system that we

analyze.

3.6.1 Parameter Selection

In the system that we analyze, the voice signal is first broken into a number of

overlapped 10 ms frames which gives the highest time resolution [27, 29]. Each

frame then goes through a hamming window of length 32 ms. Each frame will then

produce a 26 dimensional MFCC vector. The first 13 features except 0th dimension

are kept as the MFCC features and the rest are discarded. Although the optimal

number of filter banks is an open question, typically, the number of filters ranging

from 20 to 32 is suggested for frequencies ranging from 0 to 4 kHz [25, 46]. The

dimension of the MFCC coefficients should be smaller than the number of filters i.e.

the high dimensions are discarded [21]. According to [47], 12 coefficient is sufficient

for speaker recognition. The 12-coefficients MFCC setup is used in [48, 49]. Also

note that the first and second derivatives of the MFCC features are sometimes
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concatenated as the last dimension to the features in order to increase the entropy.

However, experiments [47] have shown that dynamic (derivative) features contribute

far less to the speaker verification performance than normal features. Furthermore,

research in [50] have shown that adding dynamic features contributes very little to

the overall identification performance. Therefore, our speaker verification module

includes only standard MFCC features. Now, based on the 13 dimensional MFCC

features, a 256 component adapted GMM is trained as outlined in [3] which can be

summarized as follows

1. A 256 component universal background model λb is trained

2. For each person i, the GMM λi is trained by adapting the mean vector of λb.

Conceptually, the precision of the GMM can be improved by using more com-

ponents. However, increasing the number of components beyond a certain point

increases the computational cost without yielding any significant benefit in the pre-

cision. Therefore, we fix the number of Gaussian components to 256 which gives

a very good approximation of the original signal [3]. Since the YOHO dataset is

only constrained to voice samples reading digits, 256 GMM should be sufficient to

accurately estimate both the background model and the speaker model [21].

Note that we only adapt the mean of the background model which is what is

suggested in [3]. Also note that the covariance matrices in the background model

can be either full or diagonal. Although the full matrices will do a little better than

the diagonal matrices in terms of recognition they require more computation time.

Based on our database, the verification performance yield an EER of 1.12% and

1.42% using the full and the diagonal covariance matrices, respectively.
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3.6.2 Entropy Upper Bound

We now proceed to estimate the relative entropy bound using Equation 3.27. We

introduce two quantities: Du2(λi||λb) which reflects the expected upper bound on

entropy in bits found in λi, given λb. The second quantity is Du2(λi||λj) which

reflects the expected upper bound on entropy in bits found in λi, given λj. Recall

that λi and λb represent the GMM of the ith person and the GMM of the background,

respectively. In order to get a good understanding of these numbers we define the

averages over all people in the database. We define Db as the average of Du2(λi||λb)

over all speakers which can be computed as

Db =

N∑

i=1

p(λi)Du2(λi||λb) .

We also define D̄ which is the average of Du2(λi||λj) over all (i, j) combinations

which can be computed as

D̄ =
N∑

j=1

p(λj)
N∑

i=1

p(λi)Du2(λi||λj) .

The value Db is the average upper bound on relative entropy between the peo-

ple and the background which reflects the amount of information the background

reveals about the people. On the other hand, D̄ is the average upper bound on

relative entropy between any two people in the database which reflects the amount

of information that the model of one person yields about another person’s model.

Table 3.1 shows the results for Db and D̄ when using a diagonal and a full covariance

matrix in the model. Figure 3.1 shows the value of Du2(λi||λb) for various values of

i as well as Di =
∑N

j=1 p(λj)Du2(λj||λi).

The results in Table 3.1 and Figure 3.1 suggest that there is no more than 14
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Full Variance Diagonal Variance
Db 7.23 8.07
D̄ 12.54 13.95

Table 3.1: Upper bound of Relative Entropy in the YOHO voice database.
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Figure 3.1: Averaged relative entropy bounds Du2 for each person in the YOHO
database.
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bits of entropy that separates one person’s GMM from another. This suggests that

an attacker with access to his GMM in a database can impersonate another person

in the database with less than 214 authentication attempts on average. Note here

that a speaker typically will not have access to his GMM in a database. Therefore

such a bound might not immediately have any practical implications. However, the

low amount of entropy does suggest that an attack might exist to compromise the

use of human voice for authentication. Next we explore this possibility.

For an attacker to mount an attack, the first question that should be asked is

“How much information will his voice model without background adaptation (de-

noted λ̂) yield about anyone else’s voice model?” This question is relevant because

without background adaption the attacker can attempt to manipulate his voice di-

rectly in order to attack a database of speakers.

To understand this relation, we let the attacker model his voice with a single

Gaussian N(µ̂, σ̂), where µ̂ and σ̂ are the mean and variance of the attacker’s own

voice features. Now with this model we can estimate the Du1(λi||N(µ̂, σ̂)) by Equa-

tion 3.26. The result is shown in Figure 3.2.

This result indicates that the distance between the voice model built by the

attacker and the voice models in the system is no more than 11 bits. In the next

section, we will show that λ̂ can be even made more closer to λi by increasing the

number of components that is used to generate λ̂.

Figure 3.2 suggests that an attacker can manipulate his voice in order to im-

personate someone else in a database in less than 211 tries on average. Of course

these results hint the existence of an attack but do not expose an attack algorithm.

Also note that so far we have been looking at the upper bound. In the next section

we will re-visit the relative entropy estimates before we relate the quantities to an

actual attack.
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Figure 3.2: Du1(λi||N(µ̂j, σ̂j)) for 10 selected js. Here j = 1, 2, . . . , 10. Each color
represents a j value.

3.6.3 Empirical Results on Monte Carlo Sampling Method

From the estimation above, we know the upper bound of relative entropy in voice.

Now, we use Monte Carlo Sampling to derive a more accurate estimate. Assume

MFCCi = {cci,j}
n
j=1 is the collection of MFCC features for the ith person in a voice

database, where cci,j represents the features of the jth time frame. Then

DMC(λi||λ̂) =
1

n

n∑

j=1

log

(
λi(cci,j)

λ̂(cci,j)

)
.

Recall that λ̂ is the voice model built by the attacker i.e. the GMM without back-

ground adaptation. Also note that this is a generous estimation since Monte Carlo

Sampling assumes i.i.d. samples. For the YOHO database, n is around 30, 000 which

is large enough to yield a decent estimation [45]. To simplify the computation, we

pick a single random speaker from the 138 that are in the YOHO database to act as
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Figure 3.3: Monte Carlo Estimation of relative entropy. The dot line shows the
average of 138 victims versus one designated attacker while the solid lines show 10
randomly picked victims versus the attacker.

the attacker. The attacker varies the number of components that he uses to build

GMM from 1 to 10. The experiment results can be found in Figure 3.3. We can see

that the relative entropy is about 5 to 6 bits on average. Meanwhile as the number

of components increases, the relative entropy decreases a little.

3.7 From Entropy Estimates to a Practical Attack

Relative Entropy is a measure of the amount of information that one distribution

reveals about another. Low relative entropy is indicative of security weakness in
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an authentication system. Although the multi-dimensional MFCC vectors appear

to have high degree of freedom, the results we have shown so far indicate that it

should be easy for an attacker to impersonate another user’s voice in the same

database. The results shared in the previous section suggests the existence of an

attack that would allow an attacker to run an impersonation attack with an average

of about 32 to 64 authentication attempts. Indeed, the authors of this dissertation

have successfully demonstrated such attack in [51]. Here we review the attack and

expose the connections between the attack in [51] and the results of the previous

section. More detail of the attack will be explained in Chapter 4 and Chapter 5.

The attack targets a voice identification system that uses adapted GMM to

model basic MFCC features of speakers. Moreover, the attack assumes processing

parameters identical to what is outlined in this dissertation.

A successful attack signal needs to pass the speaker verification and the speech

recognition processes. To produce such a signal we create two attack signals each

of which targets one of these two modules. These two attack signals will be merged

later, in order to produce the final attack signal which we will refer to as the hybrid

signal.

The first attack signal will target the speech recognition module. Creating this

signal will amount to speech synthesis and therefore will be straightforward. The

attacker may simply use his/her own voice to speak the challenge words provided for

verification. As we discussed earlier, these signals are used to ensure the freshness

of the audio signal that is fed to the system. We refer to this signal as S1.

The second attack signal requires constructing a speech signal with impulse

functions centered at the average of each MFCC feature. More specifically, the

attacker analyzes a large amount of his voice signals and then transforms his voice

into a number of MFCC features. The attacker can then model his features using

37



% of passing people
# of Gaussian components in GMM (n)

1 2 3 4 5 6 7 8 9 10
m
o
ck

si
gn

al
ra
ti
o
(q
) 1 0.00 0.00 0.00 0.00 4.41 6.62 6.62 6.62 5.88 5.88

2 0.00 0.74 0.74 9.56 25.74 29.41 32.35 39.71 52.94 55.15
3 0.00 1.47 11.76 26.47 40.44 45.59 52.21 59.56 55.15 55.15
4 0.00 4.41 19.12 41.18 47.79 60.29 63.97 72.79 74.26 77.94
5 0.00 8.09 29.41 55.15 56.62 70.59 72.06 80.88 88.24 90.44
6 0.00 5.88 34.56 58.82 64.71 75.74 77.94 90.44 93.38 94.12
7 2.21 11.03 45.59 62.50 71.32 77.94 82.35 91.91 94.12 95.59
8 1.47 12.50 43.38 62.50 70.59 80.15 86.76 92.65 98.53 97.79

Table 3.2: Success rate of attack with various parameters.

a few component GMM (in this attack we use 9-component GMM). The attacker’s

GMM will contain a number of means (in our case 9). Now the attacker will create a

sound signal which corresponds to an impulse function centered at one of the GMM

means by inverting the GMM model for MFCC features [34]. The impulse function

will correspond to a voice signal where every time frame gives rise to the same exact

MFCC value (the value of the chosen mean). This means that the attacker will

have several candidates for the attack signal one corresponding to every mean in

the GMM. We refer to these signals as Si
2 where i ∈ [1, . . . , n] and n represents the

number of components in the GMM model.

In the last step of the attack we merge the two attack signals to create the final

hybrid signal. There are a number of strategies to merge the signals. Our results

show that the most successful method is a simple concatenation. This means that

the hybrid signal will consist of the first attack signal followed immediately with the

second attack signal. There is a degree of freedom here, i.e. the duration of the two

signals relative to each other. In the next section we will show that the best results

where achieved when the second attack signal was several times the size of the first

attack signal. We refer to the hybrid signal as Hi = [S1|S
i
2]. Note that the first

attack signal needs to be computed in real time due to the challenge. However, the
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Figure 3.4: Relation between Relative entropy and attack. Note that when q = 1,
the Shannon entropy goes to infinity in case of n = 1, 2, 3, 4.

second attack signal can be precomputed.

Table 3.2 shows the success rate of the attack with different parameter. Here the

q parameter represents the ratio of the length of the mock signal Si
2 to the speech

signal S1. The variable n denotes the number of components in the attacker’s GMM.

The larger the q parameter is, the more dominant the mock signal part is. From an

authentication protocol perspective, the parameter n determines the max number

of trials the attacker is allowed to make before triggering an authentication failure.

Note that an attacker can succeed with a very high probability (> 98%) in as little

as 9 trials.

To relate success rates of this attack to the relative entropy, we convert the

success rates in Table 3.2 into bits measured using Shannon entropy. To do this

we model each attack as a series of n independent repeated Bernoulli experiments.

As shown in Table 3.2, n represents the number of GMM components, while p

39



represents the success rate by up to n trials. The outcome of each trial therefore

can be captured by a Bernoulli probability distribution (r, 1− r) where

r =
(
1− (1− p)

1
n

)
,

resulting in a Shannon entropy of − log r. Figure 3.4 shows a simple comparison

between relative entropy estimation DMC and Shannon entropy estimates applied

to the Bernoulli distributions. We focus on q = 1 (least successful attack) and q = 8

(most successful attack) where the mock signal is least and most dominant respec-

tively. It should be clear that the entropy estimates obtained from a real attack

correlates with the entropy estimate derived in the previous section as illustrated

by Figure 3.4.

3.8 Conclusions

In this chapter, we took a first step towards evaluating voice password databases

from a security perspective. We defined an authentication model that captures what

is nowadays used in many voice password products. Furthermore, we developed a

theoretical framework based on the notion of relative entropy in order to estimate

the entropy of a voice database. Using the derived entropy estimates we were able

to estimate the security level offered by a voice authentication system relying on a

voice database. Our experimental results are strictly based on voice authentication

systems that use short term cepstrum for feature extraction. However, it remains as

an open question whether it might be possible to extend similar results to other types

of feature extraction techniques. Finally, in order to verify our security estimates,

we carried out a number of experiments using the YOHO voice database. We first

estimated that for the 138 speakers in the database only 14 bits of entropy could
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be extracted. As a confirmation to this result, we outlined a practical attack that

succeeded in impersonating any of the 138 people in the database with as little as

9 tries and a success probability of 0.98.
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Chapter 4

Attack on Simulated Voice

Authentication System

In this chapter, we develop an attack on a simulated voice authentication system.

We will start by describing the type of system that we are attacking in Section

4.2 and then explain the rationale behind the attack in Section 4.3. In Section 4.4

we describe the attack in detail and outline its limitations. Finally, we show the

experimental result of the attack in Section 4.5.
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4.1 Introduction

In this chapter we demonstrate an attack on basic voice authentication technologies.

Specifically, we show how one member of a voice database can manipulate his voice

in order to gain access to resources by impersonating another member in the same

database. The attack targets a voice authentication system built around parallel and

independent speech recognition and speaker verification modules and assumes that

adapted Gaussian Mixture Model (GMM) is used to model basic Mel-frequency

cepstral coefficients (MFCC) features of speakers. We experimentally verify our

attack using the YOHO database. The experiments conclude that in a database of

138 users, an attacker can impersonate anyone in the database with a 98% success

probability after at most nine authorization attempts. The attack still succeeds,

albeit at lower success rates, if fewer attempts are permitted. The attack is very

simple to carryout and opens the door for many varients which can prove quite

effective in targeting voice authentication technologies. The attack also highlights

the limited amount of entropy that can be extracted from the human voice when

using MFCC features.

4.2 Voice Authentication Assumptions

In the following, we list the assumptions we make on the targeted voice authentica-

tion system.

Assumption 1: Parallel Processing In the previous sections we explained that

typical voice authentication systems will randomly chose a number or words

and prompt the user to utter the chosen words in order to prevent replay

attacks. Once the system captures the voice, it will proceed by running two

parallel tasks:
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1. A speech recognition process to insure that the speech signal corresponds

to the randomly chosen text confirming freshness.

2. A speaker verification process to ensure the identity of the speaker.

In our attack we will assume that these two processes, speech and speaker

verification, are applied in parallel. That is to say that the system will process

the speech signal through a speech recognition module and a speaker verifi-

cation module independently and simultaneously and will only authorize the

speaker if both modules return a positive result.

Assumption 2: Basic MFCC and GMM As discussed in Section 2, the basic

idea of speaker verification relies on extracting MFCC features and modeling

them using a GMM. Many variants of the standard MFCC and GMM model

are utilized today. For a general result we assume that the attacked system will

have a speaker verification module which utilizes a standard MFCC feature

extraction step followed by a standard GMM modeling step.

4.3 Attack Rationale

The strategy we follow in our attack is to synthesize a rogue speech signal that

will satisfy the speaker verification module without degrading the performance of

the speech recognition process too much. Since it is the center piece of our at-

tack, we briefly review (in informal terms) the speaker verification process. In the

enrollment step, a person’s voice is modeled as a probability distribution over the

MFCC features. The features are extracted from captured voice samples. In the

speaker verification step newly captured voice samples are processed, and the result-

ing features are placed into the model yielding an aggregate metric that captures the
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likelihood of the features extracted from the new sample coming from the same per-

son. With more voice samples, the model becomes more accurate, in turn improving

the accuracy of the likelihood predictions.

In order to capture this probability distribution a GMM model is built. Before

elaborating on the attack rationale we make two observations:

1. As explained earlier a GMM model contains a number of Gaussian distribu-

tions which are trained by varying its mean, variance and weight. According

to [3] the best results are achieved when GMMs are assigned fixed variances

and weights and are trained by only moving around the means of the Gaus-

sian. Essentially, the means of the Gaussians in a GMM model will capture

the peaks of the modeled feature distribution.

2. In general, GMMs behave in a manner similar to any other basis system where

adding more GMM components will result in a more accurate model of the

distribution. This suggests that maximizing the number of components in the

GMM will yield significantly better results. This hypothesis was investigated

in [3] where the authors found that the equal false positive and false negative

rates saw very little improvement beyond 256 components. Another important

results of [3] is that increasing the number of components from 16 to 2048

improved the equal false positive and false negative rate from 20% to 10%.

This means that 80% of the speakers were properly identified using a mere 16

component GMM. In essence, the general shape of the probability distribution

of MFCC features will be captured with a small number of GMM components.

These observation lead us to the following hypothesis:

Given a probability distribution of an MFCC feature modeled through a GMM

with a small number of components, the means of the GMM reflect the most likely
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values of the MFCC feature.

Figure 4.1: 12 MFCC features each modeled using 256 GMM components with each
color representing one of 138 people.

Figure 4.2: 12 MFCC features each modeled using 4 GMM components with each
color representing one of 138 people.

With a lower number of components in the GMM model the training algorithm

has little room to work in. Therefore, it becomes likely that the means of the
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Gaussians will capture the likely values of the MFCC features. Figures 4.1 and

4.2 show the distribution for 12 MFCC components of 138 different people. Figure

4.1 uses 256 component GMM and Figure 4.2 uses 4 component GMM. It should

be clear that the general shape and peaks of the distributions are preserved even

when using as little as 4 components in the GMM. Simply using the means of the 4

component GMM gives a pretty accurate reflection of the peaks in the more accurate

256 component GMM.

Another observation concerning Figures 4.1 and 4.2 is the range of the features.

The MFCC features do not span a large range of values which means that there will

be many overlaps between the people’s voice features even in a group of 138 people.

Different people will have different feature distributions but with a significant overlap

with other people. This is indicative of the limited amount of entropy that can be

extracted from the MFCC features. This should make it clear that the means in

one person’s GMM will with a good probability fall into another person’s MFCC

distribution. This is exactly the point of weakness that our attack targets.

In general the goal of a MFCC based speaker verification system is to to test

whether a given set of MFCC features belong to a specific person or not. When

considering full distributions of a MFCC components belonging to two different

people an overlap will occur but that will not be sufficient to create a misidentifica-

tion. The nature of the Gaussian’s in the GMM spread the probability on the range

so that although an overlap exists it will preserve the uniqueness of every person.

However, due to the observations we made earlier the means in a GMM capturing

one person’s features will with good probability be close to the means of a different

GMM capturing the features of another person. This is where the system can be

manipulated.

If a person’s feature distribution is replaced with an impulse function represent-
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ing one of the means in their feature GMM, then we can expect the system to pass

that person as someone else with a good probability. Since the means of the GMM

are close to other people’s feature distribution peaks, and since we are using an im-

pulse function to place all the concentration of the distribution on these means we

will likely be a able to stimulate a misidentification. In the next section we explain

this attack in more detail.

4.4 The Attack

A successful attack signal needs to pass the speaker verification and the speech

recognition processes. To produce such a signal we create two attack signals each

of which targets one of these two modules. These two attack signals will be merged

later on in order to produce the final attack signal which we will refer to as the

hybrid signal.

The first attack signal will target the speech recognition module. Creating this

signal will amount to speech synthesis and therefore will be straightforward. The

attacker may simply use his/her own voice to speak the challenge words provided for

verification. As we discussed earlier, these signals are used to ensure the freshness

of the audio signal that is fed to the system. We refer to this signal as S1.

The second attack signal requires the creation of the MFCC impulse functions

that we discussed in the previous section. More specifically, the attacker analyzes a

large amount of his voice signals and then transforms them into a number of MFCC

features. The attacker can then model his features using a few component GMM

(in our attack we use 9-component GMM). The attacker’s GMM will contain a

number of means (in our case 9). Now the attacker will create a sound signal which

corresponds to an impulse function centered at one of the GMM means by inverting
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the GMM model for MFCC features [34]. The impulse function will correspond to

a voice signal where every time frame gives rise to the same exact MFCC value

(the value of the chosen mean). This means that the attacker will have several

candidates for the second attack signal one corresponding to every mean in the

GMM. We refer to these signals as si2 where i ∈ [1, . . . , n] where n represents the

number of components in the GMM model.

In the last step of the attack we merge the two attack signals to create the final

hybrid signal. There are a number of ways to merge these two signals. Our results

show that the most successful method is a simple concatenation. This means that

the hybrid signal will consist of the first attack signal followed immediately with the

second attack signal. There is a degree of freedom here, i.e. the duration of the two

signals relative to each other. In the next section we will show that the best results

where achieved when the second attack signal was several times the size of the first

attack signal. We refer to the hybrid signal as Hi = [S1|S
i
2].

Note that the first attack signal needs to be computed in real time due to the

challenge. However, the second attack signal can be precomputed. So when attack-

ing a live system the attacker proceeds as outlined in Table 4.1.

4.5 Experimental Results

Our experiments utilize the YOHO database which contains voice samples collected

from 138 different speakers with a sampling frequency of 8 kHz [40]. Each speaker’s

voice is recorded reciting a random combination of three two digit numbers. For

each speaker, YOHO has 4 enrollment sessions and 10 test sessions. Each enrollment

session contains 24 phrases (which are roughly equivalent to 3 of minute speech)

while each test session contains 4 phases (which are roughly equivalent to 20 second
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Table 4.1: Steps of the proposed voice password impersonation attack.

Impersonation Attack:

1. The system will ask the attacker to say a
certain word.

2. The attacker creates the S1 signal that
corresponds to him saying the given word.

3. Let i = 1:
4. The attacker feeds the authorization system the

signal Hi. If the system accepts the
voice signal then the attack has succeeded.
If i = n then the attack has failed.

5. Otherwise, i = i+ 1.
6. Go back to Step 4.

speech).

We start by explaining our setup for the voice authentication system that we

will be attacking.

4.5.1 Voice Authentication Setup

As explained in the previous section, our voice authentication system is composed

of two parallel sub-modules, i.e. speech recognition and speaker verification. Speech

recognition will be concerned with the actual speech spoken by the user. For this

module we decided to use a standard library for speech recognition. This is why

we used the Windows .NET Framework [52]. We treated the speech recognition

module as a black box that takes in a voice signal and returns the written form of

the speech input.

In the speaker verification, the voice signal is first broken into a number of

overlapped 10 ms frames. Each frame goes through a hamming window length

32 ms. Then for each frame a 26 dimensional MFCC is calculated. The first 13

feature except Zero’th dimension are kept as the MFCC features. Note that first
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and second derivatives of MFCC are sometimes concatenated to the last dimen-

sion of MFCC feature in order to increase entropy. However, experiments in [47]

have shown that dynamic (derivative) features contribute far less to the speaker

verification performance than normal features do. Furthermore, research in [50]

have shown that adding derivatives of MFCC contributes very little to the overall

identification performance. Therefore, our speaker verification module includes only

standard MFCC features. Next, based on the 13 dimensional MFCC features, a 256

components adapted GMM is trained following [3]:

1. A 256 component universal background model λb is trained

2. Each person’s GMM λi is trained by adapting only the mean vector of λb

where i refers to the ith person.

The verification process proceeds as follows. Given a sound signal from a person

x, the MFCC components are extracted and passed through a decision function D,

where

Dj(MFCCx) = log

(
p(MFCCx|λj)

p(MFCCx|λb)

)
. (4.1)

Given a threshold T , if Dj(MFCCx) > T the voice originating from x is passed as

the person j, otherwise the authorization fails. We set the threshold T = 0.1 such

that it yields a false positive rate of 0.48% and false negative rate of 3.1% 1

Note that the voice signal will pass the voice authentication if and only if it

passes both the speech and the speaker verification modules.

1For the equal error rate (where the false positive equals the false negative) our data happens
to be at 1.21%.
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4.5.2 Hybrid Signal Setup

Now we introduce our hybrid signal setup. Remember that the hybrid signal refers

to the signal that is used to mimic the voice of any target person. In our setup we

randomly chose one ID out of the 138 speakers that are in our data set, and denote

this person as x. Clearly, an attacker has access to his own voice. Therefore he

will always have the ability to build MFCCx(W ) representing any pass-phrase W .

Since the attacker does not know the background model 2, his own GMM is simply

trained by the K-mean method without background adaptation. Let us denote the

mean vector of his own GMM as mx(i) where i = 1 . . . n is the index of the mean

vector of the GMM.

To build up hybrid signal the attacker takes the following three steps:

1. Pick up one of mx(i),

2. Append a block of repetition of mx(i) to the last frame of MFCCx,

3. Invert the MFCC signal to synthesize the corresponding voice signal Hi.

The hybrid signal will compose of a noisy pass-phrase recited by the attacker followed

by a block of mock signal built up frommx(i). Note that the mock signal will appear

as noise to the naked eye. The first part is used to pass the speech verification process

while the second part is used to pass the speaker verification step.

4.5.3 Empirical Results

Two parameter values are decided in building the hybrid signals: the block length of

the repetition of mx(i) denoted as q and the number of components in the attacker’s

GMM denoted as n. The q parameter represents the ratio of the mock signal Si
2

2The attacker can build a background model from a separate dataset that he constructs. Here
we just assume that he does not know the background.
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Table 4.2: Success rate of Attacking with different parameters. Assume speech
signal S1 is with a ratio of 1.

% of passing people
# of GMM (n)

1 2 3 4 5 6 7 8 9 10

m
o
ck

si
gn

al
ra
ti
o
(q
) 1 0.00 0.00 0.00 0.00 4.41 6.62 6.62 6.62 5.88 5.88

2 0.00 0.74 0.74 9.56 25.74 29.41 32.35 39.71 52.94 55.15
3 0.00 1.47 11.76 26.47 40.44 45.59 52.21 59.56 55.15 55.15
4 0.00 4.41 19.12 41.18 47.79 60.29 63.97 72.79 74.26 77.94
5 0.00 8.09 29.41 55.15 56.62 70.59 72.06 80.88 88.24 90.44
6 0.00 5.88 34.56 58.82 64.71 75.74 77.94 90.44 93.38 94.12
7 2.21 11.03 45.59 62.50 71.32 77.94 82.35 91.91 94.12 95.59
8 1.47 12.50 43.38 62.50 70.59 80.15 86.76 92.65 98.53 97.79

to the speech signal S1. The larger the q parameter is, the more dominant the

mock signal part is. From an authentication protocol perspective, the parameter n

determines the max number of trials the attacker is allowed to make before triggering

an authentication failure.

In our experiments, we applied different ratios of the mock signals. We varied q

from 1 to 8. Meanwhile we varied the n parameter from 1 to 10. There were a total

of 137 victims that the attacker can try and impersonate. For this, given a fixed q,

for each victim the attacker tries n times, each time with a different hybrid signal

Hi. Table 4.2 summarizes the results of the attack. For select q values these results

are also plotted in Figure 4.3.

The results clearly demonstrate that the attacker can certainly impersonate other

people in the database with a high success rate if the attack parameters are chosen

carefully. At first glance it is clear that with 9 GMMs an attacker can almost

certainly impersonate anyone in the database (98.5% success rate). The problem of

course is that a real system might not allow as many as n = 9 trials. Even under

such a restriction the 4 GMM scenario can produce pretty impressive results at 62%

success rate. These results strongly demonstrate a sever limitation in the intrinsic
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Figure 4.3: Attack success rate for select q values.

security of voice password authentication systems.

4.5.4 Limitations and Possible Improvements

In the previous sections we have outlined an attack targeting a sanitized voice pass-

word authentication system, and shared some experimental results showing the effi-

cacy of the proposed attack. Before we draw the conclusions we would like to point

out a number of limitations of the attack and briefly discuss possible improvements:

1. Our system carries out the speech recognition and speaker verification steps

in parallel (Assumption 1). If the speech recognition module is applied first to

the signal it might impose certain filters on speech signal thus eliminating the

second part of the speech signal. Such a procedure would prevent our attack.

This is in part due to the straightforward concatenation between the speech

signal and the added MFCC signals. More involved steps of signal mixing can
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be explored in order to strengthen our attack.

2. These results apply to a particular voice authentication system that uses stan-

dard MFCC features followed by GMM modeling (Assumption 2). While this

particular setting is commonly used in practice, the specifics vary from one

implementation to another. Specifically, we do not include derivative features

into our assumed system. Hence the success rate when applied to an actual

product will vary as well. Further work is required to assess the vulnerability,

and the precise success rate for actual products in the market.

4.6 Conclusions

In this chapter we demonstrated an attack on basic voice authentication systems. We

demonstrated how one member of a voice database can manipulate his voice in order

to attack the other voice password accounts in the system. We demonstrated our

attack using the YOHO database which contains 138 people, and we showed how an

attacker can impersonate anyone in the database with a 62% success probability after

at most four authorization attempts. The attack reaches a 98% success probability

if up to nine authorization attempts are permitted. Our approach presents the first

steps towards attacking real-world voice authentication systems.
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Chapter 5

Attack on a Third-party Voice

Authentication System

In this chapter, we demonstrate an attack on a third-party open-source text-independent

voice authentication system. We first introduce our target system: ALIZE voice au-

thentication system in Section 5.2. In Section 5.3, 5.4 and 5.5, we discuss the attack

rationale and propose how the mock speech signal can be built. This is followed by

Section 5.6 where we show experimental results of the application of our attack to

the YOHO database.
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5.1 Introduction

In this chapter, we mount an effective attack on a third-party open-source text-

independent voice authentication system. Specifically, we show how an attacker

can simply use a signal generated at fixed frequency to pass voice authentication

and gain access to other user accounts. We demonstrate this attack on the ALIZE

voice authentication system using the YOHO voice database. We show through

experimentation that the attacker can impersonate any users in the database of

69 people with about 25% success rate with only 5 trials. The success rate can

achieve more than 50% by increasing the allowed authentication attempts to 20.

These success rates are significantly higher than the rates achievable by exploiting

the false positive rate of the voice authentication system using random trials. Note

that our attack in this chapter together with the attack in the previous chapter

do not assume the attacker has any knowledge of the victim’s voice. That is the

main difference between our attack and synthesized speech attack mentioned in

[15, 16, 17]. The experiments on YOHO database shows that the success rate of

impersonating users exploiting the attack methods matches the prediction given by

the theoretical entropy estimation. The theoretical entropy estimation together with

the fact that our attack takes effect indicate the entropy of human voice database is

limited. The limited entropy explains from information point of view, why speaker

verification system is vulnerable to spoofing attack.

5.2 Open Source Software

ALIZE is an open-source voice authentication system implementing the MFCC and

GMM based text-independent speaker verification algorithm [3]. It was originally

invented from University of Avignon [53, 54]. Later on as mentioned in [55] and [56]
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ALIZE became a baseline reference system under BioSecure Speaker Verification

Benchmarking Framework. Note that BioSecure Network of Excellence was founded

in 2004. More information can be found in [57] and their website [58]. The other

baseline reference system adopted by BioSecure is BECARS [56, 57]. The ALIZE

system can be downloaded from [59]. In this chapter we mount attack on ALIZE

system.

5.3 Attack Rationale

Our attack is based on the indication that human voice has low entropy (see Chap-

ter 3 for theoretical analysis). The speech feature of human voice concentrates in

a relatively small high dimensional space because of the low entropy. Therefore it

becomes possible to build a mock speech whose speech feature is similar to the fea-

ture of other users. The strategy of our attack is to synthesize a mock speech signal

that satisfies the speaker model generated from the speaker verification module.

To make our point, we briefly review the speaker verification process. In the

enrollment phase, a user’s voice is modeled as GMM over MFCC features. In the

verification phase, a newly collected voice sample is processed. The resulting MFCC

feature is placed into GMM, yielding a likelihood metric measurement. If that

measurement is greater than a given threshold, the new voice sample passes the

authentication, otherwise it fails. Note that in both phases the MFCC (and its

derivatives) is used to represent the feature of voice. Thus, later on in the context,

the word “speech feature” and the MFCC are interchangeable to each other and

both refer to the high dimensional vector containing MFCC (and its derivatives). To

simplify the concept, we can view the MFCC as orderless high dimensional random

variable (r.v.). We denote such a r.v. as C. The Gaussian Mixture Model captures
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the probability density function (pdf) of the r.v. C . We denote the Gaussian

Mixture Density function in Equation 2.2 as G(C), specifically

Gi(C) = p(C|λi) . (5.1)

Here Gi(C) denotes the Gaussian mixture density function defined with parmeter

λi.
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Figure 5.1: Demonstration of point-wise verification process of GMM based voice
authentication.

Now we discuss the rationale behind the attack. At first glance, the attacker

has to retrieve the whole distribution of a voice feature in order to impersonate

other users. However, we claim that this will not be necessary. We now explain

this by examining the verification process. Assume in the verification phase, the

system is judging whether or not a fresh MFCC is extracted from the user i who
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has previously enrolled GMM template Gi(C). The following two observations can

be made:

1. Based on Equation 2.3 Equation 2.4 the overall likelihood score measures the

geometric mean of point-wise “distance” from each of the MFCC points to the

template GMM Gi(C). A successful verification can be expected for sure in

case that each point-wise measurement yields a likelihood greater than T (the

given threshold in Equation 2.4).

2. For the point-wise measurement, i.e. consider only a single point of MFCC

in each measurement, the possible value of MFCC to pass the verification is

not determined by the entire distribution Gi(C), but a range Si of C, where

the corresponding probability Gi(C) is greater than the threshold T . In other

words, any value within range Si would lead to a successful point-wise verifi-

cation (see demonstration in Figure 5.1). Furthermore, based on Observation

1, any collection from Si can be used as voice feature to pass the verification

as the user i.

The above observations indicate that the attacker could impersonate the user i by

picking up mock speech feature from any value in the range of Si. We formalize the

attack rationale to the following proposition:

Proposition 4. In GMM based speaker verification [3], given a threshold T and a

speaker model GMM Gi(C) capturing the distribution of ith user’s voice feature, we

define the passing set of the user i as Si = {c : Gi(c) > T}. If the attacker can find

any subset ca ⊂ Si, the attacker can impersonate the user i using the voice feature

built from ca.

Proof. Assume in the feature domain, ca is known. Then an n-frame mock voice

feature M can be built up. Here M = {c1, c2, . . . , cn} where ci ∈ ca for all i and n
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is an arbitrary positive integer number. Since ca ⊂ Si = {c : Gi(c) > T} we have

Gi(ck) > T for all k. Furthermore, from Equation 2.3 and Equation 5.1 we derive

that q(M |λi) = (
∏n

k=1Gi(ck))
1
n > T . According to Equation 2.4, the mock voice

feature M will pass the authentication as the user i.

Now we demonstrate a visualized explanation for Proposition 4 with Figure

5.1. On this one dimensional example, the model of voice feature (the MFCC) is

the probability density function (the black dash curve) built up by 4 equal weight

Gaussians (the colorful solid curves). Assuming the threshold is T, in case that the

voice feature contains only one point and the feature point falls within the range of

Si, such voice feature will definitely lead to a successful verification. In case that

the voice feature contains more than one points and all the feature points fall within

the range of Si, such voice feature will also for sure pass the verification.

Proposition 4 simplifies the attack from acquiring an entire distribution Gi(C) of

a voice feature to searching for a few points ca. Note that this proposition applies to

both GMM and GMM-UBM systems. In case of GMM-UBM system, the Equation

5.1 is substitute by

Gi(C) =
p(C|λi)

p(C|λb)

where λb is the universal background model. Again, due to the low entropy of human

voice, ca should not be hard to find. To synthesize a mock speech signal, we can go

from two directions: either find ca first and invert it back to time domain, due to the

invertible property of MFCC (see Section 2.2.4), or build a time domain signal that

yields ca. In the following sections we will discuss how to generate attack signals in

detail.
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5.4 Review of an Earlier Attack

In this section, we briefly review the attack introduced in [51] which defines a voice

authentication systems following the GMM based speaker verification technology

specified in [3]. The attack works by building a mock MFCC and then inverting it

back to time domain. The attack assumes that the attacker has access to his/her

own speech samples and therefore can produce the GMM from his/her own speech

feature. Next, a mock MFCC is built by repeating one of the means extracted

from the attacker’s GMM. Finally, the mock speech signal is generated by inverting

the mock MFCC signal back to time domain. Note that each of the means of the

GMM is considered as a candidate point of ca. Thus with an N component GMM,

the attacker would have up to N candidate mock speech signals, i.e. the attacker

may try the authenticate up to N times. The experiments in [51] showed that the

attacker can impersonate more than half of the voice in the target database with

N = 4 and can impersonate almost everyone with N = 9.

A possible reason why the mean of the GMM can be good candidates of ca

is because of the low entropy of voice. The same reference, i.e. [51], provides the

following explanation: Given a probability distribution of an MFCC feature modeled

through a GMM with a small number of components, the means of the GMM reflect

the most likely values of the MFCC feature. The claim is based on two observations

in [51]:

1. MFCC features of different people are similar to each other and therefore

highly overlapped.

2. Even with only a few components the GMM captures the general shape of a

MFCC distribution.

However, this attack does not apply to ALIZE authentication system, due to an
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additional normalization step in MFCC processing.

5.5 Attack Method Targeting ALIZE: From Time

Domain Signal to MFCC

In this section we propose a successful attack method targeting the ALIZE authen-

tication system. We start from examining what prevents the previous method in

Section 5.4 from working on the ALIZE. In the ALIZE the MFCC processing step

is implemented exactly in the same way as we described in Section 2.2.4 except

that there are two more additional steps: energy detection and normalization. The

energy detection is used for silence removal. The bottom N% of low energy frames

is considered as background noise and therefore removed. The normalization deals

with the environmental mismatch 1. Given the MFCC feature c ∈ C, the normal-

ization step is processed by

cn =
c−E(c)

V ar(c)
. (5.2)

Where the E(c) and V ar(c) are mean and variance of the original MFCC. The

normalized MFCC will have zero means and one variance for each dimension.

These two new steps compared with the system in [51] change the value of desired

mock MFCC and therefore cause the failure of applying attack method in Section

2.2.4 to ALIZE. Especially, the normalization step treats the constant-like mock

MFCC 2 as DC offset and reset the mock MFCC back to zero. The normalization

step makes it harder to convert MFCC back to time signal.

Instead of finding a de-normalization step, we present an alternative way of

1Note that normalization may not be the necessary step in case of clean environment databases
such as YOHO database the one we used in the experiment.

2Remember the mock MFCC is a repetition of a means of a GMM in [51]
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building the attack signal. That is we explore time domain signals which have decent

probability yielding a mock MFCC ∈ ca. Remember in [51], the mock MFCC was

generated by the repetition of mean of Gaussians. The reason the authors did this

was because they wanted a MFCC feature with repetition of a simple pattern which

contains as few different values as possible so as to increase the chance of hitting

the set Si (see Proposition 4 for detail). Similarly, we want our time domain mock

speech signal maps to a simple MFCC pattern. Based on this criteria, sine wave

may be a good candidate. Since it maps to an impulse function in frequency domain

the sine wave leads to a simple pattern in MFCC domain. To deal with the energy

detection we apply Gaussian modulation to the pure sine wave. Finally, our mock

speech signal appears to be a Gaussian modulated sine wave with a form

y(t) = cos(2πfct)e
− t2

τ2 . (5.3)

Here fc corresponds to the frequency of sine wave, and τ determines the width of

the pulse in time domain. The possible frequencies for fc in the pulse ranges from

0 to fs
2
where the fs is the sample frequency. For each mock speech, the frequency

is fixed. This mock speech signal overcomes the normalization problem in ALIZE

software. In the next session we will demonstrate the performance of the attack.

5.6 Experimental Results

We now demonstrate our experimental results. We start by discussing target system

selection and the voice database selection. Then, we describe the parameter setup

for both the target system and the mock speech signal. Next, we show the attack

performance. Finally, we conclude this section with discussions.
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5.6.1 Target System Selection – Why ALIZE

An ideal target system should be a well known commercial voice authentication

system. However, the detail implementation of such commercial system can not

be found easily. Instead, we found ALIZE. The reasons why we choose ALIZE

are as following: first, it is an open-source software. We can know exactly how

each step works inside the system. Second, it is quality guaranteed and thoroughly

tested. Related to which, many research papers have been published. Third, it is

well documented. Besides research publications, AIZE has user guide which can be

downloaded along with the software. More detail of ALIZE can be found in Section

5.2.

5.6.2 Database Selection

Our experiments utilize the YOHO database which contains voice samples collected

from 138 different speakers with a sampling frequency of 8 kHz [40]. Each speaker’s

voice is recorded reciting a random combination of three two digit numbers. For

each speaker, YOHO has 4 enrollment sessions and 10 test sessions. Each enrollment

session contains 24 phrases (which are roughly equivalent to 3 of minute speech)

while each test session contains 4 phrases (which are roughly equivalent to 20 second

speech).

Note that in the provided document in [59], ALIZE is evaluated under database

BANCA and NIST 2005. We did not use these two databases because both of these

two databases are unconstraint speeches yielding high Equal Error Rates (EER)

around 10% which in turn gives high false positive rates. Such an high equal error

rate itself gives too much advantages to the attacker. Thus, instead, we use another

NIST database YOHO which constrains the speech content to digital numbers. Such
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that it is more robust and secure. We keep the parameter selection in most case

in the same way as the selections targeting NIST 2005 in [59], unless there were

necessary changes.

5.6.3 ALIZE Setup

We now describe the parameter setup for ALIZE system with YOHO database. In

ALIZE, the voice signal is first broken into a number of overlapped 10 ms frames.

Each frame goes through a hamming window length 20 ms. Then for each frame a

24 dimensional MFCC is calculated. The first 16 feature except Zero’th dimension

as long as their first derivatives are kept as the MFCC features. Note that the

signal energy and derivatives of the energy are also appended to the feature. The

final voice feature contains totally 34 dimensions (16 MFCC, 16 delta MFCC, 1

energy and 1 delta energy). The energy detection step follows this step. Based the

energy dimension, the frames are classified to two clusters. The cluster corresponds

to the high energy is kept as speech frames while the cluster corresponds to the low

energy is discarded. Note that after this step the energy dimension is discarded, i.e.

the voice feature contains only 33 dimensions in the training and the verification

session. Next, the speech frames is normalized by Equation 5.2. After that, a 512

components adapted GMM is trained following [3]:

1. A 512 component universal background model λb is trained

2. Each user’s GMM λi is trained by adapting only the mean vector of λb where

i refers to the ith user.
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The verification process proceeds as follows. Given a sound signal from a user x, the

MFCC components are extracted and passed through a decision function D, where

Dj(MFCCx) = log

(
p(MFCCx|λj)

p(MFCCx|λb)

)
. (5.4)

Given a threshold T , if Dj(MFCCx) > T the voice originating from x is passed as

the user j, otherwise the authorization fails.

We set the threshold T = 0.5 such that it yields a false positive rate of 0.44%

and false negative rate of 1.56%. 3

5.6.4 Mock Signal Setup

The mock speech signal is built up from fixed frequency Gaussian-modulated sinu-

soidal pulse which is given by

y(t) = cos(2πfct)e
−

c0t
2

(bwfc)
2 . (5.5)

Here, c0 > 0 is a constant, fc is the center frequency and bw is the fractional band-

width. The center frequency fc varies from 1 to 4000 Hz. We select the fractional

bandwidth as bw = 200
fc

such that all pulses will have same time length and one

pulse takes effect within 20 ms which equals to the length of windowed frame in the

ALIZE setup. We repeatedly generate the pulse every 100 ms, such that pulses do

not interfere with each other during the windowing process. Figure 5.2 and Figure

5.3 show a typical waveform of mock signal in time domain.

3For the equal error rate (where the false positive equals the false negative) our data happens
to be at 0.94%.
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Figure 5.2: Example of mock speech.
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Figure 5.3: Example of mock speech (zooming in one pulse).

5.6.5 Empirical Results

Due to the existence of the false positive rate of the system, one may pass the

authentication as someone else with small probability. With huge amount of trials

of different voice samples collected from random users, the attacker will eventually

successfully impersonate a designated user and get access to his account. The success
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rate of this naive brute-force attack is given by

Sr = 1− (1− fn)
N (5.6)

depending on false positive rate fn and number of trials N . We name such an

naive attack as random test. Note that in our system setup the fn is 0.44%. We

will show in the following experiments our attack scheme performs overwhelmingly

better than the random test.

We now test the success impersonation rate of all mock speech signals with the

center frequencies ranging from 1 to 4000 Hz. As shown in Figure 5.4, in most cases

of all 4000 frequencies, our mock signals achieve higher success rate than random

test. Figure 5.5 shows the number of times that each speaker in the database is

impersonated by the mock speech signals. We can also see from Figure 5.5 that

in case of 97 speaker IDs out of 138, our mock signals pass the verification more

times than random test. Based on Figure 5.5, 89.9% of the users in the database

can be impersonated at least once after trials of all 4000 frequencies. Meanwhile, on

average the mock signal succeeded 110 times out of 4000 trials which is equivalent

to 2.76% success rate with one trial. The 2.76% success rate outperforms the rate

of random test which equals 0.44% with one trial. The experiment so far indicates

that our mock speech signals built from 4000 various Hz perform in overall better

than random test. However with 4000 trials, the random test itself can almost get

access to any designated account. The coming up question is if we reduce number

of trials, i.e. building less mock signals, can our attack scheme still achieve a better

success rate than random test does?

To answer the question above, we next show that with a few number of trials

our attack will still successfully get access to a decent number of accounts. To do
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this we need obtain some pre-knowledge that which frequencies are statistically more

likely to pass the verification. Such a job will be easy, if Figure 5.4 is given to the

attacker in advance. For instance, we can see from Figure 5.4 that some frequencies

around 2300 Hz have more than 10% of chance to mimic the users’ voice in the

database. Meanwhile, frequencies around 500 Hz, 1150 Hz and 3400 Hz also have

decent probability to impersonate users in the database. Knowing this, we would

start to try our luck with the mock signal built from 2300 Hz. Then we would try

500 Hz, 1150 Hz and 3400 Hz consequentially, so on and so forth. Although in the

reality, the attacker is not allowed to get access to the voice database of the target

system, he can collect his own database and obtaining the “pre-knowledge” from

his own database.
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Figure 5.4: Success rate of impersonating users using fixed frequencies ranging from
1 to 4000 Hz on YOHO database with 138 users.

In the next experiment, we assume the attacker has his own voice database4.

4Note that since human voice is relatively easy to collect, it’s reasonable to make such an
assumption
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Figure 5.5: Number of times that each speaker is impersonated by mock speech
signals testing on YOHO database with 138 people.

The attacker then can better select candidate signal out of 4000 frequencies with

the help of his own database. We name this attack as selected frequency attack.

To simulate this, we divide the YOHO database into two equal size subsets DB1

and DB2, each containing 69 speakers. We assume DB1 belong to the attackers

and used for training the “pre-knowledge” while DB2 acts as database of the target

system. To get the “pre-knowledge”, we build up a matrixMp based on the database

DB1. Here in Mp, the row indexes the speaker ID in DB1; the column indexes the

frequencies of the mock speech signals (i.e. the ID of mock speech signal). In the

attacker’s training process, we set Mp(i, j) = 1 whenever the mock speech built

from jth frequency successfully impersonate the ith user in DB1. Note that the

matrix Mp reflect statistically which frequencies are more likely to mimic the users’

voice in the database. We then mount the attack to the ALIZE system which uses

database DB2. Having the “pre-knowledge” matrix Mp, we select candidate signals
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Impersonation Attack using selected frequencies:

1. Select ĵth mock speech signal such

that ĵ = arg(maxj(
∑

i Mp(i, j))).

2. Find all î such that Mp(̂i, ĵ) = 1. Then

set Mp(̂i, j) = 0 for all j,

set Mp(i, ĵ) = 0 for all i.
3. Go back to step 1 unless Mp(i, j) = 0 for all i and j.

Figure 5.6: Steps of selecting mock speech signal based on Mp.

using the algorithm as shown in Figure 5.6. We then repeat the same experiment

by exchanging the roles of DB1 and DB2, i.e. DB2 acts as the attacker’s database

while DB1 becomes ALIZE’s database in the second experiment.

Figure 5.7 gives the success rate of the attack versus number of trials the attacker

attempts. As we can see in Figure 5.7, using our attack method, around 25% of the

accounts are compromised within 5 trials compared to 2.18% success rate through

random test with same amount of trials. If the number of allowed trials is rised up

to 20, more than 50% of the accounts are compromised while the random test can

only impersonate 8.44% of users with 20 trials.

5.6.6 Discussions

Now we relate the result in this chapter to the entropy estimation in Chapter 3 and

the simulated attack in Chapter 4. We see certain performance degradation from

Table 4.2 to Figure 5.7, explained as follows:

1. ALIZE uses 34 dimensions of voice features (including delta MFCC), while

assumed authentication in Chapter 4 uses 12 dimensions of voice feature. The

increasing of dimensions adds up entropy. However, as explained in [51], delta

MFCC will not add too much entropy since they are highly dependent of

MFCC. That explains why we need more trials to mount a successful attack
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Figure 5.7: Selected frequency attack assuming the attacker makes usage of his own
voice database.

to ALIZE while the number of trials does not increase tremendously compared

with [51].

2. ALIZE applying normalization to voice feature in a way that makes it hard

to build mock signal from MFCC domain (see details in Section 5.5). Alter-

natively, we propose a possible attack that builds signals from time domain

using various fixed frequencies.

3. The proposed attack in this chapter may not be the optimized one. Different

from the means of GMM which are good representation of ca in MFCC domain

due to the similarity of GMMs, there is no direct connection from the frequency
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signal to ca. Each specific frequency signal in time domain forms a unique

pattern in MFCC domain. We search blindly among frequencies to find a

pattern that coincidentally matches to some points in ca.

The fact that we can still find such a match with only a few trials is an empirical

confirmation of the analysis in Chapter 3 that the entropy of human voice is low.

As shown in Figure 5.7 the attack signal can impersonate about 25% of users with

only 5 trials. As the number of allowed trials is increased to 20, the impersonation

rate can achieve more than 50% success. The attack is significantly more effective

than random test which yields success rates of 2.18% and 8.44% with 5 and 20 trials,

respectively.

5.7 Conclusions

In this chapter, we demonstrated an attack on the ALIZE voice authentication sys-

tems. We showed how an attacker can use fixed frequency stimulus to build mock

speech signals which can pass the voice authentication with a limited number of

trials. We demonstrated the attack on ALIZE voice authentication system using

the YOHO database. The attack achieves more than 50% success rate of imper-

sonating any users in the database after at most 20 authentication attempts. The

attack can still succeed with about 25% success rate if only 5 attempts are allowed.

The comparison of success rate between the attack and the random test shows the

effectiveness of our attack.
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Chapter 6

Further Discussion

6.1 How Does Our Work Relate to State-Of-the-

Art Systems?

Since the introduction of GMM-UBM more than a decade ago, many new techniques

have appeared in the literature gaining popularity over GMM-UBM. Joint Factor

Analysis (JFA) [60, 6, 7] and I-Vector [9] are representatives of state-of-the-art text-

independent speaker verification systems. However, these systems are still tightly

related to GMM-UBM.

Joint Factor Analysis (JFA) [8] is an extension of GMM. The JFA models inter-

session variability which is mainly contributed by channel variability and intra-

speaker variability. Whereas GMM-UBM only models the intra-speaker variability.

Suppose F represents the number of dimensions of voice features, e.g. MFCC and

N stands for the number of Gaussian components in a universal background model.

The JFA model defines a super-vector M with dimension of F ×N by concatenating

the F dimensional mean vectors in the GMM of a given speech. The super-vector

M is the composition of the UBM mean vector m, speaker factors vy+ dz and the

75



channel factor ux

M = m+ vy + dz + ux . (6.1)

JFA can be viewed a less noisy version of GMM-UBM. If we set u = 0, the

super-vector M is very close to the adapted GMM of a speaker. From the entropy

point of view, since GMM-UBM is more noisy (i.e. the adapted GMM counts the

channel variability into speaker variability), the entropy estimation result on GMM-

UBM should be higher than JFA, therefore, the estimation on GMM-UBM will

yield an entropy upper-bound. Furthermore, the scoring process of JFA is similar

to GMM-UBM. The likelihood scoring method used by GMM-UBM can be directly

applied to JFA [61, 62]. In this sense, the attack rationale in our dissertation also

applies to the JFA based system. Moreover, it may not be necessary to use JFA in

our experiment setup. The overall performance of JFA is better than GMM-UBM

because JFA compensates channel variability. However, in case that all speakers’

voice samples are recorded by the same device in a clean environment, as in the case

of the YOHO database that we are using, JFA will have no significant advantage

over GMM-UBM as the term u is close to 0.

The I-Vector [39] is based on JFA. Similar to JFA the I-Vector represents the

super-vector M as

M = m+Tw , (6.2)

where T is the total variability matrix with low rank and w is a random vector,

i.e. the I-Vector characterizing the inter-speaker variability. The angle between

pre-enrolled I-Vector and target I-vector represents the similarity score. Since there

are no channel related terms, extra channel compensation steps are needed before

scoring. Popular compensation methods include WCCN, LDA plus WCCN [9].

The I-Vector extracts more compressed information from GMM. A simple mod-
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ification on the attack rationale in Section 5.3 can make it fit to the case of the

I-Vector. Instead of using Proposition 4, the attacker needs to find a signal repre-

sentation leading to a I-Vector who has an angle within the range of θ − δ to θ + δ

where θ is the angle of the pre-enrolled I-Vector belonging to a victim. The δ is the

threshold to determine whether or not the verification will succeed. If the entropy

of voice is low, such a signal representation will be easy to find.

From GMM to JFA to I-Vector, the voice characters become more precise and

more compact. However, our work shows from both theoretical and practical views

that the entropy of the Voice Password Databases is limited. The limited entropy

which enables our attack on GMM-UBM is an intrinsic property of the speech signal

still present even if JFA or an I-Vector based system is employed. The experiments

in [39] complement our attack. As seen in Table 2 of [39] the 2 second short utterance

in testing yields an incredibly high equal error rate no matter how long the training

sessions are. This experiment can also be viewed as an “attack” to the speaker

verification system. The attack signal is the 2 second short utterance. This results

in [39] shows JFA and I-Vector based systems are also vulnerable to an attack similar

to the one presented in this dissertation due to the limited entropy of human voice.

6.2 Utilization of Voice Passwords

The experiment of entropy estimation in Chapter 3 and the attacks in Chapter

4 and 5 are indications that the entropy of the text-independent human voice is

limited. One needs to be very careful when they want to use the human voice for

the authentication task.

The experiments in Chapter 3 show that the entropy of voice feature extracted

from the YOHO database containing 138 users is less than 14 bits. The 14 bits is the
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amount of entropy that a 4-digits number password can provide. Voice passwords

can be applied to the place where a weak password is acceptable. For example, the

voice passwords can be a substitution of 4 digits lock code on Iphones.

The strength of the text-independent voice password can be reinforced by tak-

ing into consideration the content of the speech i.e. using text-dependent voice

authentication. In such case, in the enrollment phase, the user has to remember

a passphrase and record his passphrase along with his voice. In the verification

phase, the user needs to recite the same passphrase. If and only if the voice and

the passphrase both match, the user can pass the authentication. We now estimate

the entropy of such a text-dependent voice password. Assume the entropy provided

by the text-independent voice is nv bits and the length of the passphrase is c. Each

character of the passphrase composes of letter a to z and digit 0 to 9. As a result

the entropy that the password can provide is c log2 36. The total entropy of such a

text-dependent password is nv + c log2 36 bits. Assuming the nv = 14 and c = 4,

the entropy of such voice password is about 34 bits. A higher entropy bits can

be reached by using longer passphrase. Similarly, instead of using passphrase, we

may combine other biometric sources with voice. The security level of such a fusion

system will be strengthened. The total entropy of such a fusion system is
∑N

i=1 ni

where the N is the number of biometric sources and ni is the entropy of the ith

source.
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Chapter 7

Conclusion

In this dissertation, we estimated the security level of voice password databases. We

reviewed an authentication model i.e. the MFCC and GMM based authentication

model that captures what is nowadays used in many voice password products. Next,

we developed a theoretical framework based on the notion of relative entropy in or-

der to estimate the entropy of a voice database. Using the relative entropy estimates

we were able to estimate the security level offered by a voice authentication system

relying on a voice database. In order to verify our security estimates, we carried

out a number of experiments using the YOHO voice database. We showed with

experiments that the number of entropy which can be extracted from the YOHO

database which contains 138 speakers is no more than 14 bits. To confirm our the-

oretical entropy estimation, we propose an attack on the MFCC and GMM based

basic voice authentication systems. We demonstrated our attack using the YOHO

database and showed how an attacker can impersonate anyone in the database with

a 62% success probability after at most four authorization attempts. The attack

reaches a 98% success probability if up to nine authorization attempts are permit-

ted. Furthermore, we demonstrated an attack on a third-party system, the ALIZE
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voice authentication systems. We showed how an attacker may use fixed frequency

stimulus to build mock speech signals which passes the voice authentication with a

limited number of attempts. Again, we demonstrated the attack using the YOHO

database and showed the attack can achieve more than 50% success rate of im-

personating any users in the database after at most 20 authentication trials. The

attack can still maintain a success rate of about 25% if only 5 attempts are allowed.

The comparison of success rate between the attack and the random test shows the

effectiveness of our attack. With these, we take an initial step towards evaluating

voice password databases from a security perspective.
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