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Abstract 
 

Recently, there are great interests in the location-based applications and the 

location-awareness of mobile wireless systems in indoor areas, which require accurate 

location estimation in indoor environments.  The traditional geolocation systems such as 

the GPS are not designed for indoor applications, and cannot provide accurate location 

estimation in indoor environments.  Therefore, there is a need for new location finding 

techniques and systems for indoor geolocation applications. 

In this thesis, a wide variety of technical aspects and challenging issues involved 

in the design and performance evaluation of indoor geolocation systems are presented 

first.  Then the TOA estimation techniques are studied in details for use in indoor 

multipath channels, including the maximum-likelihood technique, the MUSIC super-

resolution technique, and diversity techniques as well as various issues involved in the 

practical implementation.  It is shown that due to the complexity of indoor radio 

propagation channels, dramatically large estimation errors may occur with the 

traditional techniques, and the super-resolution techniques can significantly improve the 

performance of the TOA estimation in indoor environments.  Also, diversity techniques, 

especially the frequency-diversity with the CMDCS, can further improve the 

performance of the super-resolution techniques.  The CRLB derived with the single-

path AWGN channel model for the traditional applications is not applicable in indoor 
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multipath channels.  In this thesis, computer simulations based on the frequency-domain 

channel measurement data, collected with a standard channel measurement system in 

typical indoor application environments, are employed to evaluate the performance of 

various TOA estimation techniques.  Our simulation results provide a clear insight into 

the achievable performance in indoor application environments.  The simulation method 

presented in this thesis can be used in practice to conveniently establish empirical 

performance benchmarks when designing the super-resolution TOA estimation systems 

for indoor applications. 
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Chapter 1 

Introduction 
 

1.1 Indoor Geolocation 

In recent years, with the fast advancement of wireless communication 

technologies and the ever increasing penetration level of mobile computing devices into 

the people’s daily life, there are increasing interests in the location-based applications 

and the location finding systems for indoor areas, that is, inside and around building 

environments [Bac97, Wer98, Bah00, Wan01, Pah02b].  The availability of the location 

information of mobile computing devices will enable the creation of a large number of 

new location-based applications.  In commercial applications, there is an increasing 

need for location finding systems in indoor areas to track people with special needs, 

such as the elderly and children who are away from visual supervision, to navigate the 

blind, to locate in-demand personnel and equipments in hospitals, and to find people 

and specific items in large building complex, such as shopping mall and warehouses, 

among many other similar application scenarios.  In public safety and military 

applications, location finding systems are needed to track inmates in prisons and to 

navigate policemen, firefighter, and soldiers to complete their missions inside and 

around buildings.  In addition, location-awareness has been widely accepted as a key 
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feature of the next generation wireless systems.  With the accurate location information 

of the users of mobile devices, such as laptop computers, cellular phones, and handheld 

PDAs, service providers may provide location-sensitive billing, location-specific 

advertisement, and the like location-aware services.  The next generation location-aware 

mobile devices, being a powerful communication and/or computing devices carried by 

users at all time, will be often used in indoor environments.  Therefore, it is important to 

employ the location finding techniques that can perform accurate location estimation in 

indoor environments. 

The existing geolocation systems such as the Global Positioning System (GPS) 

and wireless enhanced 911 service system (E-911) also address the issue of location 

finding [[Kap96, Caf98], but these technologies are not designed for indoor applications, 

and they cannot provide accurate location information in indoor environments.  For 

example, the GPS is designed for location finding applications in the open 

environments where direct visual contact exists between the GPS receiver device and at 

least four GPS satellites, and the GPS signals are not designed to penetrate into most of 

the constructions on the ground.  Also, indoor geolocation systems are very different 

from the traditional location finding systems such as the GPS and the E-911 in many 

aspects, including application scenarios, operating environments, system requirements, 

and performance requirements.  Therefore, there is a need for new location finding 

techniques to provide accurate location estimation in indoor environments, which are 

specifically designed for indoor applications to cope with the unique challenges and to 
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exploit the unique features therein.  The indoor geolocation is emerging as a new 

important field for research and development. 

In the past a few years, many researchers have worked on various aspects of the 

indoor geolocation.  With the wide spread use of the traditional geolocation systems 

such as the GPS, location finding techniques have been studied for many years and now 

there is a rather rich literature on this subject.  But very few of the existing studies on 

the location finding techniques are specific to indoor applications.  Also, a large amount 

of research work has been conducted on the application layer aspects of indoor 

geolocation in the context of location-awareness and context-awareness of mobile 

computing devices by researchers with computer science background without too much 

concern about the underlying location finding systems, such as [Bac97, Ban02].  Many 

relevant references in the literature related to various aspects of the indoor geolocation 

will be surveyed in details and referred in later chapters where it is appropriate.  In 

addition to the ever increasing interests in indoor geolocation in research community, a 

variety of the first generation indoor location finding products have been emerging into 

the market, such as those reported in [Wer98, Fon01] (search with Google for more 

relevant products with key words such as indoor geolocation and local positioning).  In 

[Pah98], it was shown that the radio propagation channel characteristics have 

tremendous effects on the accuracy of the location estimation in indoor environments, 

which necessitates a devoted study on the location finding techniques for indoor 

applications.  To help the growth of the emerging industry of the indoor geolocation, 
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there is a need for a scientific framework to lay a foundation for the design and 

performance evaluation of such systems.   

This thesis is concerned with accurate location finding techniques and systems 

for applications in indoor environments, where the traditional geolocation systems 

cannot operate properly to provide accurate location estimation.  In this thesis, we 

intend to conduct an in-depth study of the location finding techniques and systems, 

especially the time-of-arrival (TOA) estimation techniques, in order to provide a 

fundamental understanding of various issues related to indoor geolocation, and to 

provide a basic foundation for the design and performance evaluation of indoor 

geolocation systems.  Detailed description of the objectives of this thesis is presented in 

the next section. 

 

1.2 Objectives of the Thesis 

As discussed in last section, the indoor geolocation system has different 

application scenarios and different system requirements than the traditional systems, 

and the traditional geolocation systems such as the GPS do not work properly in indoor 

environments.  Also some unique features of indoor applications can be exploited to 

develop new techniques, which can be used to significantly improve the performance of 

the location finding systems in indoor environments.  Therefore, there is a need for new 

and innovative techniques to handle the location finding problems in indoor 

environments.  However, the indoor geolocation is a new emerging research field, and 

there is still no scientific framework to apply for the design of indoor location finding 
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systems.  As part of the research project Indoor Geolocation Science funded by the 

National Science Foundation (NSF), the principal goal of this work is to provide a 

fundamental understanding of the issues related to the indoor geolocation techniques 

and systems, and to establish a foundation for the design and performance evaluation of 

indoor geolocation systems. 

More specifically, three objectives are identified for this research work as 

explained in details in the following.  The first objective is to conduct a systematic 

study of the location finding techniques and systems to identify the unique features and 

the challenging issues related to indoor geolocation, and to provide a fundamental 

understanding of this new emerging field.  The research work presented in this thesis is 

only concerned with radiolocation systems.  In radiolocation systems, the location 

coordinate of a target mobile unit is estimated from the location related characteristics 

of the radio signals communicated between spatially separated units.  As a result the 

radio propagation channel has significant impacts on the performance of the location 

finding techniques and systems.  To achieve the first objective, the system architectures 

and radiolocation techniques that can be used for indoor applications will be studied as 

well as the effects of indoor radio propagation channel characteristics on the 

performance of the location finding techniques and systems.   

As we will present in Chapter 2, a location finding system consists of three 

functional modules, including location sensing, positioning, and display elements (or 

location-based applications).  The location sensing devices measure the location metrics 

such as the time of arrival (TOA) and the angle of arrival (AOA) directly from the 
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received radio signals, which are related to the relative position of a mobile terminal 

with respect to a remotely located reference point with known location coordinate.  As 

the second objective of this thesis, we intend to conduct comprehensive study of the 

technical aspects of the TOA-based location sensing techniques and their applicability 

to indoor applications.  The TOA estimation techniques have been widely used in a 

number of traditional location finding systems such as radar, sonar, and the GPS.  In 

this thesis, we first examine the existing TOA estimation techniques and study the 

applicability of these techniques to indoor applications.  As we will present in this thesis, 

the unique characteristics of indoor radio propagation channels make it very challenging 

to accurately estimate the TOA with the traditional estimation techniques in indoor 

environments.  Therefore, significant amount of efforts have been devoted in this thesis 

to explore new signal processing techniques to accurately estimate the TOA in indoor 

environments, including super-resolution techniques and diversity techniques.  The 

super-resolution TOA estimation techniques are designed by applying the super-

resolution spectrum estimation algorithms to the estimated frequency response of the 

multipath indoor radio propagation channels.  The diversity techniques are used to 

further improve the performance of the super-resolution TOA estimation techniques in 

indoor environments. 

Performance study, including comparative performance study and performance 

benchmarking among others, is one of the most important issues encountered in the 

design of signal processing techniques and systems.  The performance study of the TOA 

estimation techniques in the realistic application scenarios provides an insight into the 
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achievable accuracy of indoor geolocation system.  Therefore, as another objective we 

explore the channel measurement data based simulation methods to compare the 

performance of various TOA estimation techniques presented in this thesis and to 

provide a performance benchmark of various techniques that can be achieved in typical 

indoor application environments.  The channel frequency response can be readily 

measured with a frequency-domain channel measurement system so that the channel 

measurement data based simulation method presented in this thesis provides a 

convenient means to establish performance benchmarks when designing super-

resolution TOA estimation based indoor location finding systems. 

 

1.3 Contributions of the Thesis 

The indoor geolocation is a new emerging research field, and is concerned with 

accurate location finding techniques and systems in indoor environments, where the 

traditional geolocation systems do not work properly.  The original work presented in 

this thesis has made contributions to the literature of this new emerging field in the 

following aspects.  First, an overview of a wide variety of technical aspects and 

challenging issues of indoor geolocation is presented, which provides a basic foundation 

for the design and performance evaluation of indoor geolocation systems, and forms a 

basis for further research work in this field.  The original work in this regard is 

presented in Chapter 2 and has been published in [Pah02b].   

Second, the traditional TOA and TDOA (time-difference-of-arrival) estimation 

techniques are presented, and the impacts of indoor radio propagation channels on the 
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performance of traditional techniques are studied in details.  It is shown that due to the 

complexity of the multipath indoor radio propagation channels, dramatically large 

estimation errors may occur with the traditional estimation techniques, and the Cramer-

Rao lower bound (CRLB) derived for the traditional application scenarios is no longer 

applicable in indoor environments.  Our research provides a fundamental understanding 

of the challenging issues involved in the TOA estimation in indoor environments.  

Relevant results are presented in Chapter 3, and have been published in [Li02].   

Third, for the dedicated geolocation systems, the TOA can be easily measured 

with a synchronized transceiver method or a round-trip TOA method, but direct 

application of these simple methods is difficult for overlaid systems.  A non-

synchronized method is designed to measure TOA/TDOA with the WLAN (wireless 

local-area network) signals, which is presented in Chapter 3 and has been published in 

[Li00a, Li00b].  Such a method can be used to overlay the geolocation functionality 

onto the existing wireless LANs without significant modification to the existing 

infrastructure and signaling formats.   

Forth, the super-resolution spectral estimation techniques are applied to the 

TOA estimation in the multipath channels on the basis of the frequency-domain 

representation of the multipath channel models.  The issues in the practical 

implementation of the super-resolution TOA estimation techniques are studied and 

several improvement techniques including diversity techniques are proposed to improve 

the performance of the super-resolution techniques.  Diversity techniques and two 

diversity combing schemes are presented and studied for use with the super-resolution 
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techniques.  The effects of the frequency diversity techniques are analyzed, and it is 

shown that frequency diversity can further improve the performance of the super-

resolution techniques.  The original work in this regard is presented in Chapter 4, and 

has been published in [Li01a, Li01b].   

Fifth, a channel measurement data based performance evaluation method is 

proposed and employed in this thesis to compare and benchmark various TOA 

estimation techniques in typical indoor application environments.  There is no suitable 

indoor radio propagation channel model available in the literature to evaluate the 

performance of the TOA estimation techniques in indoor environments.  In our research, 

the super-resolution and the diversity techniques are evaluated and compared with the 

traditional techniques using the computer simulations based on the empirical channel 

measurement data.  Our simulation results provide a clear insight into the achievable 

performance of various TOA estimation techniques in the realistic indoor application 

environments, while the CRLB performance bound obtained for the traditional 

applications cannot be used to benchmark the performance of the TOA estimation 

techniques in indoor environments due the existence of the no-line-of-sight (NLOS) 

situations.  The measurement data based simulation method that we employed can be 

used in practice to establish empirical performance benchmarks for the real 

implementation of the super-resolution TOA estimation based indoor geolocation 

systems.  The relevant results in this regards are presented in Chapter 5 and have been 

published in [Li01b, Li02]. 
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1.4 Outline of the Thesis 

The rest of the thesis is organized as follows.  In Chapter 2, we present a brief 

overview of a wide variety of the technical aspects and challenging issues involved in 

the design and performance evaluation of indoor geolocation systems, which provides a 

fundamental understanding of indoor geolocation systems, and forms a basis for the 

research work presented in the later chapters.  In Section 2.1, an introduction of 

geolocation methods and system architectures is first presented.  Then the technical 

aspects, challenging issues, and potential research topics related to radio propagation 

channels, location sensing techniques, and positioning algorithms for indoor 

geolocation applications are discussed in details in the following three sections, 

respectively. 

This thesis is mainly concerned with the TOA-based radiolocation techniques 

and systems for indoor applications so that starting from Chapter 3 we will focus on the 

TOA estimation techniques.  In Section 3.1 and 3.2, we first present the maximum 

likelihood TOA estimation techniques and the CRLB, respectively, which are derived 

for the traditional applications by modeling the radio propagation channel as the single-

path AWGN channels.  Since the indoor radio propagation channel is known as severe 

multipath channel, in Section 3.3 we study the effects of the multipath propagation on 

the performance of the TOA estimation techniques in indoor environments.  The TDOA 

is another time delay-based location metrics that can be used in place of the TOA.  In 

traditional applications both location metrics have similar estimation techniques and 

performance.  Therefore, in Section 3.4 we also briefly study the estimation techniques 
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as well as the performance of the TDOA estimation in single-path and multipath 

channels.  Our preliminary analysis will show that the TDOA becomes less appropriate 

than the TOA in the multipath channels.  At last, in Section 3.5, the issues involved in 

the practical measurement of the TOA with spatially separated mobile units are 

discussed and the techniques for synchronizing and coordinating the remotely located 

transmitter and receiver to measure the TOA/TDOA are presented for both dedicated 

and overlaid location finding systems. 

In Chapter 4, we study the super-resolution techniques that can be used in the 

multipath indoor radio propagation channels to more accurately estimate the TOA than 

the traditional techniques.  In this chapter, the background and theoretical development 

of the MUSIC super-resolution TOA estimation technique are first presented in Section 

4.1 and 4.2, respectively.  Then in Section 4.3 we present the issues in the practical 

implementation of the super-resolution techniques, and analyze the effects of several 

techniques that can be used in practice to improve the performance of the super-

resolution techniques.  At last, in Section 4.4 diversity techniques and diversity 

combing schemes are introduced and analyzed.  From the analysis it is shown that the 

frequency diversity technique can significantly enhance the performance of the super-

resolution TOA estimation techniques.  To keep the presentation of this chapter concise 

and easy to follow, some detailed mathematical derivation is omitted from the main 

content, but presented in the appendix at the end of the chapter. 

In Chapter 5, we evaluate the performance of various TOA estimation 

techniques presented in Chapter 3 and 4 with the computer simulations based on 
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channel measurement data, which is collected in typical indoor application 

environments.  The channel measurement system is first introduced in Section 5.1, 

followed by a description of the performance evaluation method employed in this thesis.  

In Section 5.3, several super-resolution techniques presented in Chapter 4 are evaluated 

and compared with simulation results.  In Section 5.4, to demonstrate the usefulness of 

the super-resolution techniques, the super-resolution techniques are compared with two 

conventional TOA estimation techniques.  At last, the effects of the time and frequency 

diversity techniques are evaluated in Section 5.5 and 5.6, respectively.  A description of 

the measurement sites and scenarios are presented in Appendix 5.A, and the cumulative 

distribution functions of the ranging errors with different TOA estimation techniques 

are presented in Appendix 5.B for the reference purposes. 

At last, the thesis is concluded with conclusions and a discussion of future work 

in Chapter 6. 
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Chapter 2 

Technical Aspects of Indoor 

Geolocation 
 

In recently years, there are increasing interests in location-based applications in 

indoor environments.  Location finding systems such as the GPS have been widely used 

for many years.  The traditional geolocation systems are not designed for indoor 

application, and they cannot provide accurate location estimation in indoor 

environments.  As compared with the traditional systems, the indoor geolocation 

systems have different application scenarios, operating environments, system 

requirements, and performance requirements, among many others.  Currently, there 

exists a rich literature on location finding techniques.  But unfortunately, very few of 

the existing studies on this subject are specific to indoor applications.  The indoor 

geolocation is emerging as a new important field for research, which deserves a devoted 

in-depth study.  In this chapter we present a brief overview of a wide variety of the 

technical aspects and challenging issues involved in the design and performance 

evaluation of indoor geolocation systems, which provides a fundamental understanding 

of indoor geolocation systems, and forms a basis for the research work presented in the 
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later chapters.  In Section 2.1, we first present an introduction of geolocation methods 

and system architectures.  Then technical aspects, challenging issues, and potential 

research topics related to radio propagation channels, location sensing techniques, and 

positioning algorithms for indoor geolocation applications are discussed in details in the 

following three sections, respectively. 

 

2.1 Introduction 

2.1.1 Geolocation Methods 

The geolocation method, that is, the method used by geolocation systems to find 

the location of a mobile terminal (MT), can be classified into three categories: dead-

reckoning, proximity method, and radiolocation method [Caf99].  The dead-reckoning 

method is based on accurate measurement of the MT’s acceleration, velocity, and 

direction of movements using various inertial sensors of the MT, including gyroscopes, 

accelerometers, and magnetic compasses among others.  Given a known starting 

position of the MT, the trajectory of the MT can be easily determined with continuous 

accurate measurement of the acceleration, velocity, and movement direction of the MT.  

Since the dead-reckoning method relies on accurate update of the MT’s location 

coordinates with respect to the previous location estimates, the estimation error tends to 

accumulate.  With proximity location method, the MT’s location is roughly determined 

to the proximity of the nearest fixed reference points (RP).  The detection of proximity 

to a fixed RP can be accomplished through a large variety of techniques including 

magnetic sensors and conventional radio transmitters and receivers.  The performance 
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of the proximity method depends on the coverage of each fixed RP as well as the 

density of the RP infrastructure network.  The radiolocation system estimates the MT’s 

location by measuring various characteristics, such as received signal strength (RSS), 

angle of arrival (AOA), and time of arrival (TOA) that we will discuss later in this 

chapter, of the radio signals transmitted between the MT and a number of fixed RPs.  

This thesis is mainly focused on the radiolocation related techniques and systems for 

indoor geolocation applications. 

 

RP 1

RP 2

RP 3

MT

1d

2d

3d

 

Figure 2.1: Distance-based geolocation method.  The radius of the dotted-line 

circle is the real distance between the MT and the RP; the radius of the solid-line 

circle is the estimated distance between the MT and the RP.  

 

The radiolocation method can be further categorized into two classes: distance-

based method and direction-based method.  The distance-based method relies on the 
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estimation of the distance between the MT and a number of fixed RPs.  As shown in 

Fig. 2.1, each distance measurement will geometrically determine a circle, centered at 

the RP, which indicates possible location of the MT.  Accurate distance measurements 

from the MT to a minimum of three RPs provide a position fix and given the location 

coordinates of the RPs, the MT’s location coordinate can be easily determined.  

Usually, the distance estimates based on the TOA measurements in radiolocation 

system are larger than the true distance between the transmitter and the receiver 

[Mor95], in which case three distance measurements determine a region of the possible 

MT locations as depicted in Fig. 2.1, which is known as the region of uncertainty 

[Tek98].  Otherwise, if the estimated distance is smaller than the real distance, three 

distance measurements may not be able to provide a position fix nor a region of 

uncertainty.  As a result, more than three RPs are normally needed to improve the 

location accuracy. 

 

1α

2α

MT

RP 1

RP 2

sθ2

 

Figure 2.2: Direction-based geolocation method. The accuracy of the direction 

measurement is sθ± . 
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The direction-based radiolocation method uses simple triangulation to locate the 

transmitter as shown in Fig. 2.2.  Each RP measures the arrival direction of the received 

signals, i.e., the angel of arrival (AOA), from the MT, which is indicated by the dashed 

line connecting the MT and the RP in the diagram in Fig. 2.2.  Accurate direction 

measurements from the MT to a minimum of two RPs provide an exact position fix and 

given the location coordinates of the RPs, the MT location coordinate can be easily 

determined.  If the accuracy of the direction measurement is sθ± , AOA measurement at 

the RP receiver will restrict the MT position inside the beam around the dashed line-of-

sight (LOS) signal path with an angular spread of sθ2 .  The AOA measurements at two 

RP receivers will provide a position fix within the overlapping region of the two beams 

as illustrated in Fig. 2.2.  We can clearly observe that given the accuracy of the AOA 

measurement, the accuracy of position estimation degrades with increasing distance 

between the RP and the MT.  On the other hand, the accuracy of the position estimation 

depends upon the MT position with respect to the RPs.  For example, when the MT lies 

between the two receivers, two AOA measurements will not be able to provide a 

position fix.  As a result, more than two RPs are normally needed to improve the 

location accuracy.  The techniques and the performance of the TOA-based distance 

estimation and the AOA-based direction estimation will be further discussed later in this 

chapter in Section 2.3. 
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Figure 2.3:  Functional block diagram of wireless geolocation systems. 

 

2.1.2 System Architecture 

Figure 2.3 illustrates the functional block diagram of a wireless geolocation 

system.  The main elements of the system are a number of location sensing devices that 

measure/estimate the metrics related to the relative position of a given MT with respect 

to a known RP, a positioning algorithm that processes the metrics reported by location 

sensing elements to estimate the location coordinate of the MT, and a display system 

that illustrates the location of the MT to users.  The location metrics may indicate the 

approximated arrival direction of the signal or the approximated distance from the MT 

to the RP to be used in the direction-based or the distance-based geolocation methods, 

respectively, which are discussed in the previous section.  The angle of arrival is the 

common metric used in the direction-based systems.  The received signal strength, the 

carrier signal phase, and the time of arrival of the received signal are the metrics used 

for the estimation of the distance.  As the measurement of the metrics becomes less 

reliable, the complexity of the positioning algorithm increases.  The display system can 
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simply show the coordinates of the MT or it may identify the relative location of the 

MT in the layout of an area.  This display system could be a software residing in a 

private PC or a mobile location-finding unit, or a locally accessible software in a local 

area network (LAN) or a universally accessible service on the web.  Obviously, as the 

horizon of the accessibility of the information increases the design of display systems 

becomes more complex.  

The overall architectures of geolocation systems can be generally grouped into 

two categories: mobile-based architecture and network-based architecture.  For both 

cases, multiple RPs are needed to geometrically locate a MT based on the 

measurements of relative distance or direction from the MT to the RPs as we presented 

in the previous section.  With mobile-based architecture, the MT performs all three 

functions shown in Fig. 2.3, i.e., location sensing, positioning, and display.  The MT 

extracts location metrics from the received radio signals that are transmitted by the RPs, 

calculates its own location coordinate, and then displays it to the MT user.  The mobile-

based architecture is used when the location information is mainly used by the MT user 

as in most of the GPS-based applications.  But if needed, the MT’s location coordinate 

can also be forwarded to a central site, such as Geolocation Control Station (GCS), to 

provide other location-based applications and services.  With network-based 

architecture, the RP performs location sensing by measuring received radio signal from 

the MT.  Then the RPs report location metrics to the GCS, where the MT’s location 

coordinate is estimated using a positioning algorithm.  The selection of the geolocation 

system architecture depends on where the geolocation information is needed, i.e., in the 



 20

MT or in the GCS, and some other implementation considerations for specific 

application scenarios.  For example, with network-based architecture, the MT can be 

implemented much simpler than with mobile-based architecture since the MT does not 

need to perform location sensing and positioning functions with the network-based 

architecture. 

There are two basic approaches to design a wireless geolocation system.  The 

first approach is to develop new signaling system and network infrastructure of the 

location sensors focused primarily on location-finding applications.  The second 

approach is to use an existing wireless network infrastructure to locate the MT.  The 

advantage of the first approach is that physical specification, and consequently the 

quality of the location sensing results, is under the control of designers.  With this 

approach, the MT can be designed as a very small wearable tag or a sticker and the 

density of sensor infrastructure can be adjusted to the required accuracy of location-

finding applications.  The advantage of the second approach is that it avoids the 

expensive and time-consuming deployment of the sensor infrastructure, and no 

significant change to the physical layer hardware component is needed.  Such a system, 

however, needs to use more intelligent positioning algorithms at the application layer to 

compensate for the low accuracy of the measured location metrics.  Both approaches 

have their own markets, and design work on both technologies has been pursued in the 

past a few years [Caf98, Pah02a, Wer98, Bah00]. 

From the Fig. 2.3, we can observe that the performance of wireless geolocation 

systems, that is the accuracy of the estimate of location coordinates, are determined by 
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the quality of the received radio signal, the performance of the location sensing 

elements, and the performance of the positioning algorithms in sequence.  The indoor 

radio propagation channel characteristics are very different from that of the channels 

encountered by the traditional wireless geolocation systems including the GPS, sonar, 

radar, and etc.  Thus the location sensing techniques used in the traditional wireless 

geolocation systems may not provide the optimum performance in indoor environments 

and on the other hand, the radio propagation channel models used in developing 

location sensing techniques for the traditional applications are not suitable for indoor 

applications.  To design optimum location sensing techniques and to examine the 

performance of different signaling techniques and geolocation approaches, the indoor 

radio propagation channel needs to be studied and modeled through empirical channel 

measurements. 

As we just mentioned, the performance of location sensing elements is largely 

determined by the radio propagation channel characteristics.  Thus in indoor application 

environments the estimates of location metrics, that is the output of location sensing 

elements, show different statistical characteristics as compared with the traditional 

geolocation systems.  As a result, traditional positioning algorithms may not provide 

optimum performance in indoor environments, which necessitates the design of new 

positioning algorithms for indoor geolocation systems.  In the next three sections, we 

address with more details the technical issues related to channel measurement and 

modeling, location sensing techniques, and positioning algorithms, respectively, for 

wireless indoor geolocation systems.  
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2.2 Channel Characteristics for Indoor Geolocation 

In order to design better techniques and evaluate system performance, we need 

to study, by measurement and modeling, how channel characteristics would affect the 

accuracy of location sensing elements and positioning algorithms.  In this section we 

briefly review the effects of indoor radio propagation channel characteristics on the 

estimation of location metrics, and the methods for measurement and modeling of 

indoor radio propagation channels for geolocation applications.  More detailed 

discussion about the effects of channel characteristics on the estimation of location 

metrics is deferred and will be presented in Section 2.3. 

 

2.2.1 Impacts of Channel Charactristics 

The indoor radio propagation channel is normally characterized as severe 

multipath, low availability of line of sight (LOS) signal propagation path between the 

transmitter and the receiver, and site-specific [Pah95].   

Figure 2.4 shows a simulation result of indoor radio propagation using ray-

tracing software.  In ray-tracing simulations of radio propagation channels, the radio 

signal is modeled as rays as in the study of optics.  Rays of radio signal emanated from 

the transmitter reach the receiver after transmission through and reflection from walls, 

or other signal scattering objects, while scattering objects have different signal 

attenuation parameters for transmission and reflection.  As a result a large number of 

rays of radio signal will arrive at the receiver with varying arrival time and signal power 
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through different propagation path.  This propagation phenomenon is known as 

multipath propagation.   

 

 

Figure 2.4: Simulation result of indoor radio propagation using ray-tracing 

software.  The location of transmitter is designated by a circle mark, and the 

location of receiver by a cross mark. 

 

In geolocation application, we are only interested in estimating the arrival time 

or the arrival direction of the signal arriving through the direct line-of-sight (DLOS) 

radio propagation path for distance-based or direction-based geolocation methods, 

respectively, which were discussed in Section 2.1.  But in severe multipath propagation 

conditions, the multipath components will interfere with the DLOS signal, which makes 

the accurate measurement of location metrics a very challenging task.  Normally large 

estimation errors of location metrics are resulted from multipath interferences.  When 
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the DLOS is not detectable, which is known as no-LOS (NLOS) situations, dramatically 

large errors occur in location sensing results since the arrival time of a multipath 

component is detected erroneously as the arrival time of the DLOS signal.  The NLOS 

situation can be resulted from a number of different conditions.  For example, if the 

DLOS signal path between the transmitter and the receiver is obstructed when 

measuring the TOA, low receiver sensitivity and small receiver dynamic rage may 

easily result in the NLOS situation [Pah98].  Thus two major sources of errors in the 

measurement of location metrics in indoor environment are the multipath interference 

and the NLOS situation. 

In addition, the site-specific nature and the time dependent fading effect, which 

is caused by random movement of scattering objects (such as people) in the application 

environment, of the indoor radio propagation channels make it difficult to model and 

simulate the channel and also makes the geolocation sensor network infrastructure ad 

hoc in nature.  The site-specific sensor network infrastructure is generally difficult to 

deploy, which necessitates an in-depth study of the system architectures and the 

practical deployment methods and rules for the ad hoc sensor networks in indoor 

application environment. 

 

2.2.2 Measurement and Modeling of Indoor Channels 

Empirical channel measurement is essential to study and model the radio 

propagation channel and to check the validity of the modeling results.  In the literature 

various measurement results of indoor radio propagation channel have been reported for 
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frequencies from 1 to 60 GHz for telecommunications applications [Pah95].  The same 

channel measurement systems can be used for geolocation applications, but the 

measurement results collected for telecommunications applications cannot be used 

directly for geolocation applications because they do not have a well-calibrated estimate 

of the AOA, RSS, and/or TOA of the DLOS signal, and an accurate measurement of the 

physical direction and/or distance from the transmitter to the receiver.  A new set of 

short-range wide-band measurement data of indoor radio propagation channel has been 

collected and calibrated in CWINS for the TOA-based geolocation applications 

[Ben99], which is used in this thesis to evaluate the performance of the TOA estimation 

techniques.  More indoor radio propagation channel measurements are needed to study 

and model the channel for wireless indoor geolocation systems using different location 

sensing techniques including the RSS, TOA, and AOA as well as different 

combinations of these techniques. 

Radio propagation channel models are developed to provide a means to analyze 

the performance of a wireless receiver.  Performance criteria for telecommunication and 

geolocation systems are quite different as discussed in [Pah98].  The performance 

criterion for telecommunication systems is the bit error rate (BER) of the received data 

stream while for geolocation systems performance measure is the accuracy of the 

estimated location coordinates.  The accuracy of location estimation is a function of the 

accuracy of location sensing and the accuracy of positioning.  Thus channel models for 

geolocation applications have to reflect the effects of channel behavior on the estimated 
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value of the location metrics at receivers, such as the RSS, TOA, AOA, or any 

combination of these metrics. 
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Figure 2.5:  Multipath profile of indoor radio propagation channel.  

 

While we do not have any good models for the multipath characteristics of the 

indoor radio propagation channels for geolocation applications, three classes of recent 

statistical modeling approaches can be employed to develop reliable models in the 

future, which are the wideband 2D multipath modeling, the 3D geometrical statistical 

modeling, and the 3D measurement-based statistical modeling [Pah02b].  In the 

measurement-based 2D statistical modeling, the measurement data are used to define a 

discrete multipath profile similar to the one shown in Fig. 2.5, which is expressed 

mathematically in the following form 
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where pL  is the number of multipath components, and kj
kk e φαα =  and kτ  are the 

complex amplitude and the propagation delay of the kth path, respectively.  The 
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measurement systems for this approach are the same as the measurement systems used 

for telecommunication applications [Pah98, Ben99].  However, these systems are 

calibrated for accurate measurement of the arrival time of the DLOS signal path and for 

each measurement the physical distance between the transmitter and the receiver is 

accurately recorded.  Preliminary measurement and modeling work in this field is 

reported in [Kri99, Ben99]; larger calibrated measurement databases and more practical 

multipath models need further investigation. 

In the 3D modeling, the mathematical model of the multipath radio propagation 

channel is represented by 
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where θk is the arrival direction of the kth path [Tin01].  While in the 2D modeling each 

path was associated with an arrival time, in the 3D modeling each path is associated 

with an arrival time and an arrival direction.  The 3D models can be developed either 

based on the geometrical statistical analysis of the arrival paths from different directions 

or based on empirical 3D channel measurement data.  The 3D geometrical statistical 

models, developed for smart antenna applications, use an analytical approach to relate 

propagation parameters to the structure of scattering in the application environment 

[Has02].  In this approach, a mathematical description of radio propagation based on 

statistical building features and a geometric optics approximation of Maxwell’s 

equations is employed to derive the relevant radio propagation models such as the 

distributions of the arrival time, direction, and strength of arriving paths.  Further 

research in this area is needed to develop statistical models for the arrival time of the 
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DLOS path and its relation with respect to other paths to make them useful for the 

performance analysis of geolocation systems. 

In the 3D measurement-based statistical modeling, results of the measured 

characteristics of radio propagation channels are used to develop models suitable for the 

performance evaluation of the geolocation systems based on the AOA, TOA and RSS.  

The major challenge for this approach is the implementation of a system to measure the 

3D characteristics of radio channels.  Recently, two techniques have been studied for 

this purpose.  Using the first technique, a directional antenna is mechanically rotated to 

measure the strength of the signal arriving from different directions, while using the 

second technique, a set of eight channel impulse responses are measured using an 

antenna array and the AOA are calculated using signal processing techniques [Tin01].  

Preliminary 3D modeling of an indoor radio propagation channel using a limited 

database in a building is available in [Tin01].  More extensive measurement and 

modeling in this field are needed to develop reliable channel models for indoor 

geolocation applications.  

 

2.3 Location Sensing Techniques 

As we discussed in Section 2.1, the location sensing elements measure the RSS, 

AOA and TOA as location metrics.  The indoor radio propagation channel suffers from 

severe multipath propagation and heavy shadow fading condition so that the 

measurements of the RSS and AOA provide a less accurate metrics than that of the 

TOA [Pah02a].  As a result, similar to the GPS systems, independent systems designed 
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for indoor geolocation normally employ the more accurate TOA as the location metric.  

Systems using existing infrastructures installed for wireless LAN or the 3G indoor 

systems may use the measurements of RSS, AOA, TOA, or any combination of these 

metrics to fully exploit the existing hardware/software implementation designed for the 

traditional telecommuncation applications [Bah00].  For example, in wireless 

communication systems, the RSS information is usually easily accessible, thus it makes 

sense to find ways to exploit the RSS information to further improve the geolocation 

performance.  As a result, although this thesis is focus on the TOA-based geolocation 

techniques, issues related to the estimation of the RSS and AOA are briefly dissucssed 

in the following together with the isssues related to the estimation of the TOA. 

 

2.3.1 Received Signal Strength (RSS) 

The received signal strength (RSS), i.e., the received signal power, can be easily 

measured at the receiver.  The RSS is related to the distance between the transmitter and 

the receiver mathematically in the form of path loss models [Pah95].  The path loss 

model characterizes the signal power attenuation level as the signal travels from the 

transmitter to the receiver.  Assuming the path loss model is known a priori, with the 

knowledge of the transmitted signal power at the receiver the distance between the 

transmitter and the receiver can be calculated at the receiver from the known path loss 

model by measuring the received signal strength.  Such a distance estimation method is 

known as the RSS-based ranging technique.  The same as the TOA-based geolocation 

method that we presented in Section 2.1, the RSS-based estimation of the distances 
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between a mobile terminal and a minimum of three reference points can be employed to 

estimate the position of the mobile terminal. 

A wide variety of path loss models have been developed for different 

environments, each with different values of model parameters or different parameters 

and mathematical function forms [Pah95].  In indoor envrionment the path loss model is 

highly site-specific.  For example, the value of power-disatnce gradient, which is a 

parameter of path loss models, vary in a wide range between 15-20 dB/decade and a 

value as high as 70 dB/decade [Pah95].  Also the received signal strength of radio 

signals demonstrates fast-fading phenomenon caused by multipath propagation with for 

example as large as 30 dBm fluctuation in small local movement, and time-dependent 

fading phenomenon caused by dynamically changing channel conditions, such as 

random movement of people over time in the application environments, with for 

example as large as 20 dBm fluctuation in seconds [Ber99].  As a result of the 

complexity of the indoor radio propagaion channel, in practice using the RSS-based 

geolocation method necessitates the estimation of the path loss model of the specific 

application environment during the system installation or the initializatin phase to 

compensate for the site-specific nature of the indoor radio propagation channel, and 

frequent reestimation of the path loss model to cope with the dynamically changing 

environment.  Thus an immidiate conclusion is that the RSS-based geolocation method 

is not a suitable choice for accurate indoor location finding systems. 

Some authors have studied various techniques to improve the performance of 

the RSS-based geolocation method including the fuzzy logic algorithms [Son94] and 
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the premeasurement-based pattern regnitioin techniques [Bah00].  In essence, all these 

improvement techniques try to improve the location accuracy by designing more 

intellegent yet more complex positioning algorithms to combat the large distance 

estimation errors resulted from the RSS-based ranging technique.  More details on the 

intellegent RSS-based geolocation methods will be presented later in this chapter in the 

context of positioning algorithms. 

 

2.3.2 Angle of Arrival (AOA) 

The AOA is usually measured using directional antennas or more often times 

using antenna arrays.  In mobile radio systems, the antenna arrays are typically located 

only at base stations (BS), because of the difficulties to employ antenna arrays in a 

mobile station or mobile handset.  Therefore, the AOA location metric is normally 

employed in network-based location finding systems.  A variety of signal processing 

techniques are available for AOA estimation using antenna arrays, including maximum 

likelihood estimator, minimum variance method, and super-resolution sub-space 

techniques; details of these techniques can be found in [Caf99, Tin00] and many other 

references therein. 
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(a)                                                             (b) 

Figure 2.6: Radio transmission in the envrionment of  (a) macrocell and (b) 

microcell.  All primary scatters, which cause multipath transmission, are assumed 

located inside the region of scatters. 

 

In general, the accuracy of the AOA estimation largely depends upon the radio 

propagation environments.  Figure 2.6 illustrates two scenarios of radio transmission, 

i.e., the transmission in macrocell environment and the transmission in microcell 

environment, respectively.  The primary scattering objects, i.e., the scatters, which 

cause multipath transmission, are assumed all located inside the region of scatters 

shown in the diagram [Jak94].  Then for macrocell environment where the primary 

scatters are located around the transmitter and far away from the receivers, the AOA 

method can provide acceptable location accuracy [Caf99] since the received signal 

roughly all coming from the direction of the transmitter.  But in microcell situation 

where the primary scatters are located around the receiver, received signals could be 
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coming from any direction around the receiver.  Thus in microcell environment, 

dramatically large AOA estimation errors will occur if the LOS signal path is blocked 

and a scattered signal component is used for the AOA estimation.  The indoor radio 

propagation environment, where the LOS signal path is usually blocked by surrounding 

objects or walls, can be readily modeled as the microcell environment.  Even when a 

strong LOS signal is detectable in indoor environments, strong multipath signals may 

introduce considerable interference to the AOA estimation, resulting in large AOA 

estimation errors.  As a result, the AOA-based geolocation method is not preferred in 

indoor severe multipath environments for accurate indoor location finding systems.  

 

2.3.3 Time of Arrival (TOA) 

In indoor areas, due to the obstruction and the scattering of radio signals by 

walls, ceilings, or other objects, the DLOS propagation path is not always the strongest 

path and even in some occasions, for example the NLOS coditions, the DLOS signal 

may not be detectable with a specific receiver implementation [Pah98].  In such cases, 

dramatically large errors occur in the TOA estimation.  To accurately estimate the TOA 

in indoor areas, we need to resort to different and more complex signaling formats, 

frequency of operation, and signal procssing techniques that can resolve the problems. 

The TOA-based systems measure the distance based on an estimate of the signal 

propagation delay, i.e., the TOA, between a transmiter and a receiver since in free space 

or in air, radio signals travel at the constant speed-of-light (see Section 3.1 for more 

rigorous definition of the TOA estimation problem).  The TOA can be measured either 
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by measuring the phase of the received narrowband carrier signal or by directly 

measuring the arrival time of a wideband pulse.  The wideband pulases for measuring 

the TOA can be generated either directly with the ultra-wide band signals [Fon01] or by 

using spread spectrum signals [Wer98].  In the following subsections, we present these 

techniques in three classes: narrowband, wideband, and ultra wideband techniques. 

 

2.3.3.1  Narrowband Signals and Phase Measurement for TOA Estimation 

In narrowband ranging technique, the phase difference between the received and 

the transmitted carrier signals is used to measure the distance between the transmitter 

and the receiver.  The phase of a received carrier signal, φ , and the TOA of the signal, 

τ , are related by cωφτ /= , where cω  is the carrier frequency in radian.  In application 

scenarios of the GPS where the DLOS signal path is always present, measurement of 

carrier phase may be helpful to improve the location accuracy.  But in the indoor 

geolocation environments, the severe multipath propagation condition causes 

substantial errors in the narrowband phase measurements.  When a narrowband carrier 

signal is transmitted in a multipath environment, the composite received carrier signal is 

the sum of a number of carriers, arriving along different paths, of the same frequncy but 

different amplitude and phase.  The frequency of the composite received signal remains 

unchanged but the phase will be different from that of the DLOS signal as shown in Fig. 

2.7 [Pah95].  An immediate conclusion is that the phase-based distance measurement 

using narrowband carrier signal cannot provide accurate estimate of the distance in the 

heavy multipath indoor environments. 
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Figure 2.7:  Phasor diagram for narrowband signaling on a multipath channel. 

 

2.3.3.2  Wideband Signals and Super-resolution Techniques for TOA Estimation 

The direct-sequence spread-spectrum (DSSS) wideband signal has been used in 

ranging systems for many years [Kap96].  In such a system, a signal coded by a known 

pseudo-reandom (PN) sequence is transmitted by a transmitter.  Then a receiver 

crosscorrelates the received signal with a locally generated PN sequence using a sliding 

correlator or a mathched filter [Wer98, Kap96].  The distance between the transmitter 

and the receiver is determined from the arrival time of the first correlation peak.  

Because of the processing gain of the correlation process at the receiver, the DSSS 

ranging system performs much better than other competing systems in supressing 

interference from other radio systems operating in the same frequency band.  More 

details of the wideband signal-based TOA estimation techniques will be presented in 

Chapter 3. 
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Due to the scarcity of the available bandwidth in practice, in some indoor 

geolocation applications, the DSSS ranging systems may not be able to provide 

adequate accuracy.  On the other hand, it is always desirable to achieve higher ranging 

accuracy using the same bandwidth.  Inspired by high resolution spectram estimation 

techniques, a number of researcheres have studied super-resolution techniques for time-

domain analysis such as [Pal91].  A frequency-domain super-resolution technique can 

be used to determine the TOA with high resolution from the estimted frequency channel 

response.  In this thesis, Chapter 4 is devoted to the super-resolution TOA estimation 

techniques including the basic theories and the issues in practical implementation. 

 

2.3.3.3  Ultra Wideband (UWB) Approach for TOA Estimation 

As we mentioned earlier, the signal bandwidth is one of the key factors that 

affect the TOA estimation accuracy in the multipath propagation environments.  The 

larger the bandwidth, the higher the ranging accuracy.  The UWB system, which 

exploits bandwiths in excess of one GHz, have attrracted considerable attention as a 

means of accurately measuring the TOA for indoor geolocation applications [Fon01].  

Due to the high attenuation associated with the high-frequency carrier, the frequency 

band considered for UWB system is typically focued on 2 - 3 GHz on the unlicensed 

basis.  With results of propagation measurement in a typical modern office building, it 

has been shown that the UWB signal does not suffer multipath fading [Win98], which is 

desirable for accurate TOA estimation in indoor areas.  The actual deployment of the 

UWB systems in the US is subject to the FCC approval.  The main concern of the FCC 
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authorities is the interference of the UWB devices to, among other licensed services, the 

GPS systems that operate approximately at 1.5 GHz frequncy band.  Similar to the 

spread spectrum signals, the UWB signal has low, flat, and noise-like power spectrum.  

But given the weak satellite signals that must be processed by the GPS receivers, the 

noise-like UWB signal is still harmful to the GPS systems in close vicinity.  A 

significant amount of research work is under way to assess the effect of the UWB 

interference on the GPS receivers. 

 

2.4 Positioning Algorithms 

As we discussed before, the measurement accuracy of the location metrics in 

indoor areas depends on the accuracy of the location sensing technologies and the site-

specific indoor radio propagation channel conditions.  Due to the imperfect 

implementation of the location sensing techniques, the lack of bandwidth, and the 

complexity of the multipath indoor radio propagation channels among other factors, 

there are always varying errors associated with the measurements of the location 

metrics.  To achieve high positional accuracy when the measurements of location 

metrics are unreliable, the errors encountered in the location sensing process have to be 

mitigated in the positioning process.  In the next two subsections we discuss the 

traditional positioning algorithms used with the reliable measurements of the location 

metrics and the more intelligent pattern recognition techniques that can be used to 

improve the positioning performance when the measurements of the location metrics 

are unreliable. 
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2.4.1 Traditional Techniques 

In indoor radio propagation channels, it is difficult to accurately measure the 

AOA, RSS and carrier signal phase so that most of the independent indoor positioning 

systems mainly use the TOA-based techniques.  With the reliable TOA-based distance 

measurements, simple geometrical triangulation methods can be used to find the 

location of the MT as presented in Section 2.1 [Caf98].  But due to the estimation errors 

of the distances at the RP receivers, caused by the inaccurate TOA measurement, the 

geometrical triangulation technique can only provide a region of uncertainly, instead of 

a single fix of position coordinates, for the estimated location of the MT.  To obtain an 

estimate of the location coordinates in the presence of the measurement errors of the 

location metrics, a variety of direct and iterative statistical positioning algorithms have 

been developed to solve the problem by formulating it into a set of non-linear equations 

[Caf98]. 

In some indoor geolocation applications, the purpose of the positioning systems 

is to provide a visualization of the possible mobile locations instead of an estimate of 

the location coordinates [Wer98].  On the other hand, the positional accuracy is not 

constant across the area of coverage and the poor geometry of relative position of the 

MT and the RP can lead to a high geometric dilution of precision [Tek98].  The output 

of the statistical methods is an estimate of the mobile location coordinates, and the 

changes of the shape of the region of uncertainty are not revealed by this method.  
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When the region of uncertainty information as well as the estimate of the location is 

needed, both the geometric and the statistical triangulation algorithms are used [Tek98]. 

For the traditional outdoor geolocation systems, the intelligent techniques, such 

as the Kalman filter based techniques for tracking and fusion of multiple metrics, are 

normally used to improve the positioning performance [Kap96].  In essence, these 

techniques are readily applicable to indoor geolocation systems.  However, indoor 

application environments have some unique features, discussed in the next section, 

which makes the traditional positioning algorithms less attractive.  On the other hand, 

the unique features of indoor applications enable the design of the intelligent 

positioning algorithms that can significantly improve the positioning performance in 

indoor areas. 

 

2.4.2 Pattern Recognition Techniques 

For indoor geolocation applications, the service area is restricted to the inside 

and the close vicinity of a building while nowadays the building floor plan is normally 

accessible as an electronic document.  The availability of electronic building floorplan 

is one of the features of indoor applications that can be exploited in the positioning 

algorithms.  For example, while tracking a mobile terminal in buildings, with the aid of 

the building floorplan, the situations involving crossing the walls or jumping through 

the floors can be easily identified and eliminated.  Another unique feature of indoor 

applications is that the size of the coverage area is much smaller than outdoor 

applications.  This makes it possible to conduct comprehensive study and planning of 



 40

the deployment of the sensor infrastructure network.  Careful planning of the sensor 

infrastructure network can significantly reduce the estimation errors of the location 

metrics caused by the NLOS propagation condition.  The structural information of the 

sensor network can also be easily employed in the intelligent positioning algorithms in a 

way similar to the use of building floorplans.  The small coverage of indoor geolocation 

systems, as compared with outdoor systems, also makes it possible to conveniently 

conduct extensive pre-measurement in the areas of interest for deployment.  As a result, 

the pre-measurement based location pattern recognition, also known as location 

fingerprinting, technique is attracting significant attention for indoor applications 

[Bah00].  On the other hand, in most of the indoor applications, including finding the 

equipments in-demand or locating the personnel in critical condition such as 

unconscious firefighter inside the building on fire, the MT to be located is usually in 

quasi-stationary situations.  For such quasi-stationary application scenarios, the pattern 

recognition algorithms are more promising than the traditional techniques and the 

Kalman filter based tracking techniques. 

The basic operation of the pattern recognition positioning algorithms is simple.  

Each building is unique in its signal propagation characteristics; each location spot in a 

building would have a unique signature in terms of the RSS, TOA, and/or AOA, 

observed from different sensors in the building.  A pattern recognition system 

determines the unique pattern features, i.e., the location signature, of the area of interest 

in an initial training process, and then this knowledge is used to develop the rules for 

recognition.  The challenge for such algorithms is to distinguish the locations with 
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similar signature.  To build the signature database, a terminal is carried through the 

service area transmitting signals to a monitoring site through the location sensing 

elements of all reference points.  The service area is divided into the non-overlapping 

zones or grids, and a pattern recognition training algorithm analyzes and compiles the 

received signal patterns in terms of the RSS, TOA, AOA, or any combination of these 

metrics to derive a unique location signature for each zone. 

For quasi-stationary applications, the simplest way for pattern recognition is 

using the nearest-neighbor method on the basis of premeasurement and training.  With 

such a method, a location signature database is first developed; then in regular operation 

the Euclidean distance measure is calculated between the measured metrics, RSS, TOA, 

or AOA and all entities in the signature database.  The location estimate is determined 

to be the one associated with the minimum Euclidean distance [Bah00].  Experimental 

results are available in the references [Bah00, Pah02b].  A simple experiment conducted 

in the Center for Wireless Communications, the University of Oulu, Finland, shows that 

the standard deviation of the positioning errors, using the nearest-neighbor pattern 

recognition method, is 2.4 m and at about 80% locations the positional error was less 

than 3 m [Pah02b].  But it is worth to note that due to the site-specific and the 

dynamically varying nature of indoor radio propagation environments as we discuss in 

Section 2.2, the performance result reported may not applied to other application 

environments or for other time period in the same building. 

When the area of coverage becomes large and a large number of sensors are 

involved, the size of the location signature database increases dramatically, which 
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makes the use of the simple nearest-neighbor pattern recognition technique 

computationally cumbersome.  More complex algorithms, including the fuzzy logic, 

neural network, subspace techniques, and hidden Markov model based techniques 

among others, are being investigated to reduce the overall computational complexity 

and to improve the performance.  When the 3G systems using the spread spectrum 

signals and the RAKE receivers are employed for indoor geolocation, it’s possible to 

use the measured time and signal strength of all fingers in place of RSS to improve the 

positioning performance.  Even though building and updating the signature database are 

much easier in indoor environments than in wide urban areas, the major drawback of 

the pattern recognition techniques still lies in the substantial efforts needed in the 

generation and maintenance of the signature database in the view of the fact that the 

application environments of indoor geolocation systems are dynamically changing 

constantly.  

 

2.5 Summary and Conclusions 

Indoor geolocation is an emerging research and engineering field that needs a 

scientific foundation.  In this chapter we presented a brief overview of a wide variety of 

the technical issues involved in the design and performance evaluation of indoor 

geolocation systems.  To provide a scientific foundation for indoor geolocation, 

significant research work needs to be conducted in all aspects of this new field.  We 

need to characterize the indoor radio propagation channels that impact the performance 

of the indoor geolocation systems, based on the RSS, AOA, TOA, or any combination 
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of these location metrics, through empirical channel measurement and modeling; we 

need to design new location sensing techniques to provide accurate estimate of the 

location metrics in the complex indoor multipath environments; we need to design new 

positioning algorithms to compensate for the erroneous estimates of the location metrics 

resulted from the multipath propagation, to fuse the measurements of several location 

metrics to improve the positioning performance, and to exploit the unique features of 

indoor applications; we also need to study the system architectures and the practical 

deployment methods and rules for location sensor infrastructure networks to achieve the 

optimum system performance in the ad hoc indoor application environments. 

Two classes of indoor geolocation systems are emerging nowadays.  The first 

class has the dedicated infrastructure for location finding applications, employ complex 

signaling formats, location sensing techniques and positioning algorithms, such as the 

wideband and the UWB signals, and the super-resolution techniques.  The challenge for 

such systems is to develop a signaling system and infrastructure that is inexpensive to 

design and deploy, complies with the frequency regulations, and provides a 

comprehensive coverage for the accurate ranging.  The second class system overlays the 

location finding functionality onto the existing wireless systems deployed for the 

telecommunication and broadband data applications, including the wireless LAN 

systems and the cellular networks.  The overlaid system can only obtain less reliable 

estimate of location metrics using the existing physical layer signaling format and 

infrastructure networks, but improves positioning performance by employing the pre-

measurement data and the complex positioning algorithms at the higher application 
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layer such as the pattern recognition techniques.  In general, both techniques 

demonstrate promising positioning performance for emerging markets for indoor 

geolocation applications.  In the next chapter we present the TOA estimation techniques 

in details. 



 45

 

Chapter 3 

TOA Estimation for Indoor 

Geolocation 
 

The TOA estimation techniques have been widely used for many well-known 

traditional location finding applications, including the GPS, radar, and sonar systems.  

In essence the same TOA estimation techniques developed for the traditional 

applications can be applied to the emerging indoor location finding systems.  However, 

because the severe multipath indoor application environment is very different from that 

of the GPS, radar, or sonar systems, the performance of the traditional TOA estimation 

techniques degrades significantly when applied to indoor systems.  In this chapter we 

first present the maximum likelihood technique for the TOA estimation, which was 

derived for the traditional location finding applications, and the Cramer-Rao lower 

bound for the TOA estimation errors, which provides a means to predict and bound the 

accuracy of the TOA estimation techniques.  Then we will study in details the impacts 

of indoor multipath radio propagation channel on the performance of the TOA 

estimation techniques.  The time-difference-of-arrival (TDOA) is another time delay 

based location metric that can be used in place of the TOA in location finding systems.  
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In traditional applications, the estimation techniques as well as the performance of the 

TDOA and the TOA are very similar, but in the multipath indoor radio propagation 

channels the TDOA location metric becomes less appropriate than the TOA due to an 

inherent ambiguity in the estimation technique.  So we will briefly look into this issue 

by studying the impacts of multipath propagation on the TDOA estimation techniques.  

At last, the issues in the practical measurement of the TOA location metric with 

spatially separated mobile units are discussed and techniques for synchronizing and 

coordinating the remotely located transmitter and receiver to measure the TOA and the 

TDOA are presented. 

 

3.1 Maximum Likelihood Estimation of TOA 

The time delay estimation problem is defined as follows.  A known radio signal 

is emanated from a transmitter and the signal is monitored at a spatially separated 

receiver.  The receiver estimates the arrival time of the radio signal, i.e., the time-of-

arrival (TOA), arriving from the transmitter.  Assuming the transmitter and the receiver 

are synchronized in time and the transmission time of the radio signal is known to the 

receiver, the receiver can easily convert the arrival time estimation to the time delay 

estimation, i.e., the propagation delay of the signal from the transmitter to the receiver.  

Then since in free space the radio signal propagates at the well-known constant speed-

of-light, the propagation delay of the radio signal can be easily converted to the distance 

between the transmitter and receiver, which is used in the distance-based geolocation 

method, presented in Section 2.1, for location finding purposes.  In the literature as well 
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as in this thesis for the ease of analysis it is usually assumed that the spatially separated 

transmitter and receiver are synchronized, and the transmission time of the radio signal 

is known to the receiver if not declared otherwise, even though it needs special 

treatment to achieve in practice.  Thus the acronym TOA, which is the arrival time of 

radio signal in strict sense, often also refers to the propagation delay of radio signal 

from transmitter to receiver where actual meaning should be clear from the context.  

Issues and techniques to synchronize or coordinate the spatially separated transmitter 

and receiver to measure the TOA location metric are discussed in Section 3.5. 

The estimation of TOA falls into the field of signal parameter estimation.  The 

signal parameter estimation concerns with finding the optimum measurement of a set of 

unknown parameters ]...,,,[ 21 Mψψψ=ψ  contained in a signal );( ψts  by observing 

the signal in the presence of the additive noise )(tn .  Usually, for the ease of analysis, 

the additive noise )(tn  is assumed to be additive white Gaussian noise (AWGN) with 

two-sided power spectral density 2/0N .  The observed signal )(tx  is expressed as, 

)();()( tntstx += ψ .                                                   (3.1) 

There are basically two criteria that are widely used in signal parameter 

estimation: maximum-likelihood (ML) criterion and maximum a posteriori probability 

(MAP) criterion.  In the MAP criterion, the signal parameter vector ψ  is modeled as a 

vector of random variables, and characterized by a joint a priori probability density 

function (PDF) )(ψp .  In the ML criterion, the signal parameter vector ψ  is treated as 

deterministic but unknown [Pro95]. 
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By performing an orthonormal expansion of )(tx  using N  orthonormal 

functions }1),({ Nltfl ≤≤ , we may represent )(tx  by a vector of coefficients 

]...,,,[ 21 Nxxx=x .  The joint PDF of the random variables }...,,,{ 21 Nxxx  in the 

expansion can be expressed as )|( ψxp .  Then the ML estimate of ψ  is the value that 

maximizes )|( ψxp .  On the other hand, the MAP estimate is the value of ψ  that 

maximizes the a posteriori PDF of ψ  

)(
)()|()|(

x
ψψxxψ

p
ppp = .                                               (3.2) 

We note that if there is no prior knowledge of the parameter vector ψ , we may 

assume that it is uniformly distributed over a given range of the values of the 

parameters.  In such a case, the value of ψ  that maximizes )|( ψxp  also maximizes 

)|( xψp  so that the MAP and the ML estimates are identical. 

In our treatment of the parameter estimation given below, we view the 

parameters as unknown, but deterministic.  Hence, we adopt the ML criterion for 

estimation of these parameters.  In the ML estimation of the signal parameters, we 

require that the receiver extract the estimate by observing the received signal over a 

time interval 0T , which is called the observation interval.  The estimates obtained from 

a single observation interval are sometimes called one-shot estimates.  In practice, 

however, the estimation is performed on a continuous basis by using tracking loops 

(either analog or digital) that continuously update the estimates.  

If we assume the additive noise )(tn  is white and zero-mean Gaussian 
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),0(~)( 2
nNtn σ ,                                                      (3.3) 

the joint PDF )|( ψxp  can be expressed as 
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and 0T  represents the integration interval in the expansion of )(tx  and );( ψts .  We note 

that by substituting (3.5) into (3.4), we can easily derive that  
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where 2
0 2/ nN σ=  is the two-sided power spectral density of the white noise )(tn .  

Now, the maximization of )( ψ|xp  with respect to the signal parameter ψ  is 

equivalent to the maximization of the likelihood function 
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or the log-likelihood function 

∫ −−=Λ
0

2

0
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T

dttstx
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To apply the ML estimator to the time delay estimation, we first assume that the 

radio propagation channel between the transmitter and receiver is single-path and 
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disturbed only by additive white Gaussian noise, which is usually referred to as the 

AWGN channel.  This means that the received signal encounters a constant propagation 

delay D , which is the TOA to be estimated, and a constant signal strength attenuation 

α  so that the radio propagation channel between the transmitter and receiver is modeled 

by  

)()( Dtth −= δα ,                                                       (3.9) 

and the received signal is given by 

)()(
)()()()(

tnDts
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+−=
+⊗=

α
                                                (3.10) 

where )(tn  is additive white Gaussian noise. 

To obtain the maximum likelihood time delay estimate, the function to be 

maximized is the likelihood function given in (3.7) or equivalently (3.8) with the time 

delay parameter τ  substituted for ψ , that is 
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Following the necessary condition for a maximum 
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we can obtain that 
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reflecting the fact that the translation of the integrand on the right-hand side does not 

render the integral a function of τ  and hence the right-hand side equals to zero.  The 

correlation function of the received signal and the transmitted signal is defined as 

)()(

)()()(
0

ττα

ττ

vDr

dttstxr

ss

Txs

+−=

−= ∫                                               (3.14) 

where )(τssr  is the auto-correlation function of the transmitted signal and )(τv  is the 

additive noise term given by 
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By substituting (3.14) into (3.13) 
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we can observe that the ML estimate of the propagation delay can be obtained by 

finding the value of τ  that maximizes the correlation function )(τxsr  as shown in Fig. 

3.1.  The received signal is cross-correlated with a delayed version of the transmitted 

signal and a variety of possible delay values D̂  are tried until the peak detector detects 

a peak.   

The correlation function )(τxsr , which is a function of delay, is referred to as 

delay profile while the function 2)(τxsr  is referred to as power delay profile.  In 

practice, the delay profile can be measured at receiver using a sliding correlator or a 

matched filter [Pah95].  If the transmitter and the receiver are synchronized to the same 
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time reference, the propagation delay can be estimated by measuring the delay of the 

peak of the delay profile or the power delay profile with respect to the time reference.  

Time delay estimation can also be accomplished using tracking loops, which 

continuously update the estimates [Pro95].  The time synchronization between spatially 

separated transmitter and receiver is hard to achieve in practice.  The alternatives of the 

TOA measuring methods are presented in Section 3.5.  The next section discusses the 

performance of the TOA estimation in the AWGN channels. 
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Figure 3.1:  The ML estimation of time delay by cross-correlation. 

 

3.2 Cramer-Rao Lower Bound for TOA Estimation 

The quality of a signal parameter estimate is usually measured in terms of the 

estimate bias and its variance.  In order to define these terms, we assume that there is a 

data vector T
Nxxx ]...,,,[ 21=x , with the conditional PDF )|( ψxp , from which we 

extract an estimate of a parameter ψ .  The bias of an estimate ψ̂  is defined as  

ψψ −= )](ˆ[bias xE ,                                                     (3.17) 
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where ψ  is the true value of the parameter.  When ψψ =)](ˆ[ xE , we say that the 

estimate is unbiased.  The variance of the estimate )(ˆ xψ  is defined as  
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In general 2
ψ̂σ  may be difficult to compute.  However, a well-known result in 

parameter estimation is the Cramer-Rao Lower Bound (CRLB) on the mean square 

error defined as [Van68] 
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When the estimate is unbiased, that is ψψ =)](ˆ[ xE , the numerator of (3.19) is unity and 

the bound becomes a lower bound on the variance 2
ψ̂σ  of the estimate )(ˆ rψ , i.e., 
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consider that )|(ln ψxp  differs from the log-likelihood function )(ln ψΛ  by a constant 

factor independent of ψ .  Thus it follows that  
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This lower bound provides a benchmark for the variance of any practical estimate.  Any 

estimate that is unbiased and whose variance attains the lower bound is called an 

efficient estimate.  In general, efficient estimate is rare.  When they exist, they are 

maximum likelihood estimates. 

The Cramer-Rao lower bound (CRLB) of the varience of TOA estimation errors 

about the true time delay can be derived by assuming ∞→0T  as follows, 
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where )(wS  is the Fourier transform of the signal )(ts .  For the ease of analysis, here 

we assume 1=α  in the signal model in (3.10), or equivalently assume the signal 

attenuation factor are estimated before the cross-correlation operation so that the signal 

)(ts  is the signal at the input of the receiver instead of the transmitted signal.  Thus, 
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π
 is the energy of the signal.  As shown in 

[Rae97], it can be proved that the variance of the ML estimate of the delay estimation in 

the neighborhood of the true delay value attains the CRLB as the observation time 0T  

tends to infinity.  

If we assume that the signal spectrum is two sided and extends from 1f  to 2f  

Hz (and also from 1f−  to 2f−  Hz) with constant energy spectral density 2/0S  W/Hz, 

the CRLB in (3.23) can be simplified as follows [Qua81].  With the aforementioned 

assumptions, 
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and 
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where the signal energy 0TPE ss = , sP  is the mean signal power, 0T  is the observation 

time, the mean noise power, i.e., the variance of the noise, )( 120
2 ffNn −=σ  since the 

power spectral density of the white noise is 2/0N , and the signal-to-noise power ratio 

(SNR) 2/SNR nsP σ= .  Equation (3.26) may also be written in terms of the signal 

bandwidth B  and the center frequency 0f  as  
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π

σ                                          (3.27) 

where 12 ffB −=  and 2/)( 120 fff += .  We can observe that the bound is inversely 

proportional to the SNR, the product of signal bandwidth, and the observation time, and 

is inversely related to the square of the carrier frequency and the signal bandwidth. 
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Figure 3.2: Numerical results of the CRLB of TOA estimation errors with 

different values of bandwidth and the product of bandwidth and observation time 

with respect to signal-to-noise power ratio (SNR).  The carrier frequency is zero. 

 

Figure 3.2 shows some numerical results of the CRLB of the TOA estimation 

errors obtained from (3.27) with different values of bandwidth and the product of 

bandwidth and observation time with respect to the signal-to-noise power ratio while 

assuming the frequency is zero, i.e., the cross-correlation is performed in baseband.  

The ML estimate of the TOA is unbiased and the variance of the estimation errors is 

lower bounded by the CRLB.   

So far the maximum likelihood estimation of time delay, determined by (3.16), 

and the CRLB of the variance of time delay estimation errors given by (3.23) and (3.26) 

are all derived for the single-path AWGN channels.  But the indoor radio propagation 
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channel is multipath channel.  As shown in the next section, the multipath propagation 

of radio signals has tremendous impacts on the performance of the TOA estimation.  In 

indoor multipath environments, the TOA estimation techniques derived for the single-

path AWGN channel model can no longer achieve good performance and the CRLB 

presented in this section no longer closely bounds the TOA estimation errors in 

multipath channels. 

 

3.3 TOA Estimation in Multipath Channels 

In deriving the ML estimation method, we assumed the radio propagation 

channel between the transmitter and the receiver is single-path and disturbed only by 

the additive white Gaussian noise.  In such a channel, the received signal is given by 

(3.10), which is 

)()()( tnDtstx +−=α ,                                                 (3.28) 

where the parameter D  is the signal propagation delay, α  is the complex signal 

strength attenuation parameter, and )(tn  is the additive white Gaussian noise.  And the 

delay profile is given by (3.14) 

)()()( ττατ vDrr ssxs +−= ,                                              (3.29) 

where )(τssr  is the auto-correlation function of the transmitted signal and )(τv  is the 

additive noise term given by (3.15).  However, when the signal is transmitted through a 

multipath channel which is mathematically modeled as 
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where pL  is the number of multipath components, kα  and kτ are the complex 

amplitude and propagation delay of the kth path, respectively, the received signal 

becomes 
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For geolocation applications, the propagation delay of the DLOS path 0τ  needs to be 

estimated.  So that in this thesis the term TOA is used to only refer to the propagation 

delay of the DLOS path in multipath channels if not declared otherwise. 

Using the same correlation receiver shown in Fig. 3.1, the delay profile 

measured in multipath channels is given by 
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We note that in contrast to that in the single-path channels, in the multipath channels the 

measured delay profile is a weighted sum of multiple shifted auto-correlation functions 

of the transmitted signal.  In general, the same correlation technique can be used for the 

TOA estimation in multipath channels.  As discussed in [Pah98], whether the 

propagation delay of the DLOS is detectable or not largely depends on the 

instantaneous channel profile between the transmitter and the receiver and the 

characteristics of the ranging systems such as the signal bandwidth, the receiver 

sensitivity, and the receiver dynamic range.  The receiver sensitivity specifies the 

minimum power level of a signal that can be detected and the receiver dynamic range 
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defines the difference in the power level of the strongest and the weakest detectable 

signals.  According to the detectibility of the DLOS path, the radio propagation channel 

profiles are classified into three categories for the TOA estimation in indoor geolocation 

applications [Pah98].  The first category is the dominant direct path (DDP) case, in 

which the DLOS path is detectable by measurement systems and it is the strongest path 

in the channel profile.  The second category is the non-dominant direct path (NDDP) 

case, where the DLOS path is detectable by measurement systems but it is not the 

dominant path in the channel profile.  The third category is the undetected direct path 

(UDP) case where measurement systems cannot detect the DLOS path.  The channel 

profiles can also be grouped simply into DLOS and NLOS (no-LOS) cases according to 

whether the DLOS path is detectable or not [Pah02]. 

In general, signals of any format can be employed for the TOA estimation using 

the ML estimation technique.  But the wideband DSSS signal is widely used for the 

TOA-based ranging systems because of several advantages as compared with other 

alternatives.  From (3.27), we note that the performance of the TOA estimation 

improves as the bandwidth increases.  As a result, one advantage of using the DSSS 

signal for the TOA estimation is its large bandwidth, which also helps to resolve 

multipath signals as we present in the following.  Another advantage is that because of 

the processing gain of the correlation process in the receivers, the DSSS signal-based 

ranging system performs much better than the competing systems in suppressing 

interference from other radio systems operating in the same frequency band.  The same 

ML estimator can be used in the implementation of the TOA estimation systems using 
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DSSS signaling, where the delay profile is first measured and then the TOA is 

determined by finding the delay value that maximizes the measured delay profile.   
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Figure 3.3: Power delay profiles with different channel profiles.  (a) Single-path 

channel with propagation delay cTD ×= 2 ;  (b) two-path channel with signal 

attenuation parameters 10 αα = , and propagation delays cT×= 20τ  and cT×= 51τ ;  

(c) two-path channel with signal attenuation parameters 10 6.0 αα ×= , and 

propagation delays cT×= 20τ , and cT×= 5.21τ . 

 

Figure 3.3 presents the power delay profiles obtained using DSSS signals with 

three different channel profiles.  In measuring the delay profiles using DSSS signals, a 
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maximal-length shift register sequence (m-sequence) is commonly used as a PN 

sequence.  The auto-correlation function of the m-sequence is a triangular function 

similar to the one shown in Fig. 3.3a with a spread of cT±  around the correlation peak, 

where cT  is the chip interval of the sequence.  The spread of the correlation peak 

depends on the signal bandwidth since the bandwidth of the baseband DSSS signals 

equals to cT/1  without pulse shaping.  When the channel has a single-path profile given 

by (3.9), the propagation delay D  can be determined using the ML estimator by finding 

the delay value that corresponds to the peak of the power delay profile shown in Fig. 

3.3a and the variance of the estimate is bounded by the CRLB in (3.23).   

When a radio signal is passed through a multipath channel, the delay profile 

consists of multiple copies of the delayed version of the auto-correlation function of the 

transmitted signal as given by (3.32).  Figure 3.3b shows the power delay profile 

obtained in a two-path channel.  We can observe that when the difference between the 

adjacent path delays is greater than cT×2 , clearly separated correlation peaks appear in 

the power delay profile so that the delay of the DLOS can be determined by finding the 

delay value that corresponds to the first peak.  When the first peak is the strongest one 

of the delay profile, the channel belongs to the DDP category.  When the first peak is 

not the strongest one but it is detectable with the given receiver sensitivity and receiver 

dynamic range, it falls into the NDDP case.  If the strength of the first peak is below the 

receiver sensitivity or the difference between the strength of the first peak and the 

strongest peak exceeds the receiver dynamic range, the DLOS path is not detectable so 
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that the channel profile falls into the UDP category.  In this case, dramatically large 

TOA estimation errors may occur. 

When the difference between the adjacent delays is smaller than cT×2 , the two 

delayed correlation functions overlap.  Due to the construction and deconstruction 

effects between the two overlapped correlation functions, as shown in Fig. 3.3c large 

delay estimation error occurs if the TOA is estimated by detecting the first peak of the 

power delay profile.  Increasing signal bandwidth reduces the spread of the correlation 

peak and helps to resolve the DLOS path.  However, it is practically impossible to 

increase the signal bandwidth freely due to the regulations on frequency spectrum usage 

posed by the FCC.  An alternative way of increasing the resolution lies in the 

application of advanced signal processing techniques, which is the main subject of 

Chapter 4.   

From the previous discussion we can conclude that if the same ML estimator 

designed for the AWGN channels is used in the multipath channels, the performance of 

the TOA estimation degrades significantly, depending on the characteristics of the 

ranging system and the instantaneous channel profile that the radio signal encounters.  

In summary, the following general principles can be used to improve the TOA 

estimation in multipath channels: 

•  Increase the receiver dynamic range and the receiver sensitivity, 

•  Increase the resolution of estimation techniques by increasing the signal 

bandwidth or by employing advanced signal processing techniques, 
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•  Place the ranging transmitter and receiver, or deploy the reference points of 

indoor geolocation systems, in a way to minimize the occurrence of the 

NLOS propagation scenarios between the transmitter and the receiver. 

The CRLB in (3.23) is derived for the single-path AWGN channel and it is the 

variance of the ML delay estimate in the neighborhood of its true value.  However, in 

multipath channels the CRLB is not directly applicable because dramatically large TOA 

estimation errors occur when the DLOS path is undetectable.  There are no suitable 

indoor radio propagation channel models for performance evaluation of the TOA 

estimation techniques.  Consequently, in the literature, in designing the TOA estimation 

techniques for multipath channels, the performance evaluation is usually conducted by 

studying the resolution of the estimation techniques based on computer simulations with 

a simple two-path channel model [Pal91].  As we discussed previously, in addition to 

the resolution of the estimation techniques, the radio channel characteristics has 

tremendous effects on the performance of the TOA-based ranging systems in real 

application scenarios.  So that in indoor areas, performance of TOA estimation 

techniques can be measured more appropriately by computer simulations based on 

channel measurements, by conducting field measurement using prototype systems, or 

by using the ray-tracing software to simulate the site-specific indoor radio channels.  

Due to the complexity of the indoor radio propagation channels, the performance study 

based on these methods reveals much more realistic statistical results than the resolution 

study of the estimation techniques with the simple theoretical channel models. 
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3.4 Estimation of TDOA 

The time-difference-of-arrival (TDOA) is an alternative location metric, which 

is a time delay based location metric similar to the TOA.  Instead of measuring the 

arrival time, or equivalently the distance, as in the TOA-based approach, in the TDOA-

based approach the time difference of arrival, or equivalently the distance difference, 

from a MT to two RPs are measured.  A minimum of two TDOA measurements, which 

requires a minimum of three RPs, can be used to provide a position fix of the MT 

similar to the distance-based geolocation method presented in Section 2.1.  In this thesis 

details of TDOA-based location method is not discussed; interested readers are referred 

to [Caf99, Kap96] and references therein.  In traditional location finding applications, 

the estimation techniques as well as the performance of the TDOA and the TOA are 

closely related and very similar, but in the multipath indoor radio propagation channels 

the TDOA location metric becomes less appropriate than the TOA due to an inherent 

ambiguity in the estimation technique.  In this section we will briefly look into this issue 

by studying the impacts of multipath propagation on the TDOA estimation techniques, 

which is closely related to the delay estimation technique used for the TOA estimation. 

The problem of the TDOA estimation is generally modeled as follows.  A signal 

is transmitted from a remote source and is monitored at two spatially separated 

receivers.  When the radio propagation channel between the transmitter and the receiver 

is assumed to be single-path and disturbed only by the additive white Gaussian noise, 

the received signals at the two receivers can be mathematically represented by 
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where α  is the amplitude ratio of the signals observed at the two receivers and D  is the 

difference in the arriving time of the signals observed at the two receivers.  The noises 

)(1 tn  and )(2 tn  are jointly independent stationary random process, and the transmitted 

signal )(ts  is assumed to be uncorrelated with the noises.  The receivers are 

synchronized in time so that the TDOA to be estimated is the time delay D .  Normally 

a cross-correlation technique, similar to the one that is used in estimating the TOA, is 

used to estimate the TDOA.  First the delay profile, which is the cross-correlation 

function of the two received signals, is obtained, 
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where the 0T  represents the observation time interval, the auto-correlation function of 

the transmitted signal )(τssr  is the same as in (3.15), and the additive noise term is 

given by 
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Then the TDOA is estimated by finding the value of the delay that maximizes the delay 

profile in (3.34).  A generalized correlation method can also be used in estimating the 

TDOA, where each of the two received signals is pre-filtered.  With proper choice of 



 67

the pre-filters, the estimation of the TDOA can be improved using the generalized 

correlation method presented in [Kna76]. 

The CRLB can be derived for the variance of the TDOA estimate about the true 

value [Kna76, Qua81].  With some simplification assumptions similar to those used in 

deriving (3.26), at low SNR (SNR<<1) the CRLB for the TDOA estimation can be 

determined as [Qua81] 
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while at high SNR (SNR>>1) it is given by [Qua81] 
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Comparing (3.36) and (3.37) with (3.26), we note that in general the estimate of the 

TDOA is less accurate than that of the TOA.  This observation can be intuitively 

justified since in the case of the TDOA estimation, both signals are corrupted by noise, 

but in the case of the TOA estimation a clean reference signal is available for 

correlation. 

When the transmitted signal )(ts  is propagated through multipath channels, the 

received signals at the two receivers are given by, 
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where the two sets of parameters },,{ 111 kkpL τα , 10 pLk ≤≤ , and },,{ 222 llpL τα , 

20 pLl ≤≤ , define the multipath channels between the transmitter and the two receivers, 

respectively.  Then the cross-correlation function of the two received signals becomes 
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where the additive noise term is given by 

.)()(1

)()(1)()(1)(

1

0
212

0

1

0
211

0
21

0

2

0

1

00

∑ ∫

∑ ∫∫
−

=

−

=

−−+

−−+−=

p

p

L

l
T ll

L

k
T kkT

dttstn
T

dttnts
T

dttntn
T

v

ττα

τταττ
            (3.40) 

We can observe that similar to the case of the TOA estimation in multipath channels, 

the delay profiles for the TDOA estimation consists of multiple copies of the auto-

correlation function of the transmitted signal with different delays.  In multipath 

channels, the TDOA to be measured is the time difference between the propagation 

delays of the two DLOS paths 

2010 ττ −=TDOA .                                                   (3.41) 

From (3.39) we can observe that the TDOA cannot be detected by finding the delay 

value that corresponds to the first peak of the delay profile since the first occurring 

correlation function in the delay axis does not necessarily corresponds to the delay 

value )( 2010 ττ − .  On the other hand, following a discussion similar to that in section 

3.3, we can deduce that in multipath channels, the delayed copy of the correlation 

function corresponding to the delay value )( 2010 ττ −  is not necessarily the strongest one 

in the delay profile given by (3.39).  This means that in multipath channels there is 
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ambiguity in detecting the TDOA from the delay profiles since the correlation peak to 

be detected is neither the strongest one nor the first one for sure.  An intuitive 

conclusion following this fact is that in multipath channels the estimation of the TDOA 

is much harder than the estimation of the TOA.  Moreover, the CRLB in (3.36) and 

(3.37) are no longer applicable for the estimate of the TDOA for the same reason 

discussed in Section 3.3 for the TOA estimation, and dramatically large errors occur in 

the TDOA estimation due to the complexity of the multipath indoor radio propagation 

channels. 

Since in geolocation applications, the ranging signal )(ts  transmitted by a MT is 

usually known to the RPs, a more obvious method of estimating the TDOA for the 

signal received by two spatially separated RP receivers is to calculate the difference of 

the TOA estimates measured by the two receivers.  This method avoids the ambiguity in 

estimating the TDOA from the delay profile (3.39) that we just mentioned, but it 

requires the synchronization between the transmitter and both of the receivers while the 

direct measurement of TDOA by the cross-correlation method only requires the 

synchronization between the two receivers.  More issues in the measurement methods 

of the TOA and the TDOA will be discussed in the next section. 

 

3.5 TOA/TDOA Measurement Methods 

In essense, the TOA estimation techniques that we discussed in the previous 

sections, concern with the estimation of the arrival time of a radio signal.  To convert 

the arrival time estimation to the signal propagation delay estimation for the purpose of 



 70

geolocation, the spatially seperated transmitter and receiver need to be synchronized in 

time and the transmission time of the radio signal needs to be known to the receiver.  

Thus the process of the TOA measurement involes coordination between a pair of the 

spatially separated tranmiter and receiver.  In this section, we discuss the coordination 

methods that are needed to form a TOA or a TDOA estimate from the arrival time 

estimation. 

In general, there are two basic measurement methods to measure the TOA from 

radio signals: the synchronized transceiver method and the round-trip TOA method.  To 

measure the TOA using the synchronized transceiver method, the remotely located 

transmiter and receiver are synchronized to a common time reference.  If the 

transmission time of the radio signal is sent to the receiver as a timestamp while the 

arrival time of the signal is estimated at the receiver, the TOA can be easily calculated 

as the difference of the arrival time and the transmission time of the signal. 

The accurate synchronization between remotely located terminals are usually 

very difficult to achieve in practical application scenarios where they are physically 

separated and randomly located.  To avoid the synchronization requirement, a round-

trip TOA method can be employed to measure the TOA.  Using the round-trip TOA 

method, a terminal A sends a radio signal to a second terminal B.  Then terminal B 

simply echoes the received signal back to terminal A using a different carrier frequency, 

or using the same carrier frequency but after waiting for a known time period, for 

proper operation of the two RF transceivers.  Terminal A measures the arrival time of 

the signal received from terminal B.  The time delay between transmission time 0t  and 
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the arrival time 1t  of the signal at terminal A includes the round-trip propagation delay 

τ2 , i.e. the round-trip TOA, and a processing delay pτ  that is encountered in the two 

transceivers.  The processing delay pτ  can be easily measured during the system 

initialization or calibration period and can be readily compensated.  Consequently, the 

TOA estimate is obtained as 

][
2
1

01 pttTOA τ−−= .                                            (3.42) 

There are two basic ways to measure the TDOA: the direct cross-correlation 

method and the indirect TOA-based method.  With the direct method, two receivers are 

synchronized to a common time reference.  The synchronized receivers receive a radio 

signal from a transmitter, then the received signal is digitized and forwarded to a central 

station to perform cross-correlation to estimate the TDOA as presented in Section 3.4.  

With the indirect method, transmitter needs to be synchronized to the same time 

reference of the receivers.  Each receiver measures the TOA independently and the 

estimates of the TOA are forwarded to a central station to form an estimate of the 

TDOA.  It is noted that both methods require the synchronization among several 

physically separated terminals.  In the next section, we present a non-synchronized 

TDOA measurement method which exploits the architecture and signaling system of 

wireless LAN (WLAN) systems based on IEEE 802.11 standards. 

For the dedicated geolocation systems, the simple approaches that we just 

discussed can be easily applied.  But for the overlaid geolocation systems, the direct 

application of these methods is challenging because the geolocation function is overlaid 
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onto a wireless network without significant modifications to the existing infrastructure 

and hardware as well as the physical layer signaling formats.  In the following we 

explore the TOA/TDOA measurement methods for the overlaid geolocation systems. 

 

3.5.1 TOA/TDOA Measurement Methods for Overlaid Systems 

With the wide deployment of the wireless LAN systems in indoor areas, 

implementing geolocation functions in the WLANs has received considerable attention 

in the recent years [Pah00b, Li00a, Li00b, Bah00].  The geolocation functions and 

services can be either integrated into the next generation WLANs or overlaid in the 

existing systems.  In this section we focus on the TOA/TDOA measurement methods 

that can be used in the overlaid systems without concerning about the signal format and 

the detailed time delay estimation techniques. 
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Figure 3.4:  Inter-frame spacing and medium access priorities. 

 

As we will describe in details shortly, some features of the MAC layer protocols 

of the IEEE 802.11 standards can be exploited in measuring the TDOA for geolocation 

purposes.  To ease the discussion, some relevant materials of the standard are briefly 

reviewed first.  Three basic access mechanisms are defined in the 802.11 MAC layer 
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specifications: the mandatory basic method based on the CSMA/CA, an optional 

RTS/CTS method to avoid the hidden terminal problem, and a contention-free polling 

method for the time-bounded service [Iee99].  There are three important parameters for 

controlling the waiting time before accessing the medium, i.e. the SIFS (Short inter-

frame spacing), the PIFS (PCF inter-frame spacing) and the DIFS (DCF inter-frame 

spacing).  These three parameters define the priorities of the medium access as shown in 

Fig. 3.4.  The medium can be busy due to the transmission of data frames or other 

control frames.  During a contention phase, several nodes try to access the medium.  

The parameter SIFS denotes the shortest waiting time and thus the highest priority for 

medium access.  The DIFS is used for asynchronous data service, the PIFS is used for a 

time-bounded service and the SIFS is defined for the short control messages such as 

acknowledgements for data packets or polling responses.  The unicast data transfer 

mode defined in the standard is illustrated in Fig. 3.5.  A terminal accesses the medium 

and transmits a data frame.  Once the receiver receives the data, it replies directly with a 

short acknowledgement message ACK after waiting for a short SIFS duration.  Since 

the waiting time SIFS is the shortest and other stations can only access the medium after 

a longer waiting period, no other stations can access the medium in the meantime to 

cause a collision.  This mechanism ensures the proper transmission and reception of the 

ACK message. 

If the time durations of the SIFS and the data frame are known accurately, the 

round-trip TOA method can be easily applied by measuring the time interval between 

the transmission time of a data frame and the arrival time of the ACK frame.  However, 
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according to the standard, in a real implementation, the accuracy of the time spacing 

between frames that are defined to be separated by a SIFS time is only within sµ2 , 

which corresponds to a maximum ranging error of 600m.  Apparently, this method is 

not appropriate for indoor geolocation applications since the coverage of WLANs is 

usually below 100m for most of the application scenarios.  But if significant 

modifications are made in the design of mobile terminals and access points to ensure 

accurate estimate of the time delays, this method is still applicable. 
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Figure 3.5:  Unicast data transfer mode for IEEE 802.11. 

 

Instead of measuring the TOA, the TDOA can be measured in the overlaid 

systems as shown in Fig. 3.6.  Here we assume the overlaid geolocation system consists 

of a Geolocation Control Station (GCS) and a number of Geolocation Reference Points 

(GRP) operating around the AP of the WLAN networks.  The geolocation service is 

first initiated by a MT or the GCS.  Suppose the AP sends a data frame to the MT at the 
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time 0t and MT replies with an ACK message after it receives the data.  Meanwhile the 

GRPs monitor the communication traffic between the AP and the MT to measure the 

time delays between the arriving time of the data frame and the ACK message, i.e., 11τ  

and 21τ  shown in Fig. 3.6.  The GRP1 and GRP2 receive the data frame at 10t  and 20t , 

and ACK message at 11t  and 21t , respectively.  The durations 10τ  and 20τ  denote the 

propagation delays from the AP to GRP1 and GRP2 while 1τ  and 2τ  denote the 

propagation delays from the MT to GRP1 and GRP2, respectively.  Since the distance 

from the AP to each of the GRP can be assumed known a priori, the propagation delays 

from the AP to the GRPs, 10τ  and 20τ , can be accurately estimated.  Therefore, the 

TDOA from the MT to the GRP1 and the GRP2 can be obtained as follows: 
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Using this method, the GCS acts as a master that collects the measurements of the time 

delays 11τ  and 21τ  to form the estimate of the TDOA.  Since the measurement at each 

GRP is the time delay not the timestamp with respect to a common time reference, the 

GRPs are not necessarily to be synchronized.  Thus this method can also be referred to 

as non-synchronized TDOA measurement method.  But it is worth to note that the 

GRPs need to be able to estimate time delay accurately. 
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Figure 3.6:  GRP-based TDOA method for IEEE 802.11 wireless LAN. 

 

The non-synchronized TDOA measurement method can be used for systems 

using the optional RTS/CTS mechanism.  Utilizing RTS/CTS for geolocation purpose 

might be a more appropriate choice than using the unicast mode of the mandatory 

CSMA/CA mechanism since the RTS message can also act as a request for geolocation 

services to reserve a time period for geolocation only.  Furthermore, the fragmentation 

mode defined by the standard shown in Fig. 3.7 can be used to improve the performance 

in measuring the TDOA by averaging multiple consecutive measurements. 
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Figure 3.7:  Fragmentation mode of IEEE 802.11. 

 

Another major WLAN standard is the HIPERLAN standards, which is a 

collective reference name to the high performance radio local area networks standards 

developed by ETSI (European Telecommunications Standards Institute) project BRAN 

(Broadband Radio Access Networks).  The same non-synchronized TDOA 

measurement method can be used in the overlaid geolocation systems in the 

HIPERLAAN/2 WLANs as discussed in details in [Li00a]. 

 

3.6 Summary and Conclusions 

The TOA-based radio ranging technique has been widely employed in the 

traditional location finding (or positioning and tracking) systems, including radar, sonar, 

and the GPS.  As a result, a large amount of research work has been devoted in the 

study of the TOA estimation techniques.  The maximum-likelihood TOA estimation 

technique was derived for the applications where the radio propagation channel can be 

simply modeled as single-path AWGN channel.  The CRLB of the TOA estimation 

errors about the true time delay provides a benchmark for the variance of any practical 
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estimator.  In practice, the performance of the ML TOA estimation technique in the 

traditional location finding systems is quite closely bounded by the CRLB.  However, in 

indoor geolocation applications, due to the complexity of the multipath indoor radio 

propagation channels, dramatically large TOA estimation errors may occur and the 

CRLB derived for the traditional application scenarios is no longer suitable for 

benchmarking the performance of practical indoor geolocation systems.  In general, in 

multipath channels, the performance of the TOA estimation can be improved by 

increasing the receiver dynamic range and the receiver sensitivity; increasing the time-

domain resolution of the estimation techniques; placing the ranging transmitter and 

receiver in a way to minimize the occurrence of the NLOS scenarios.  While the CRLB 

cannot directly apply to indoor environments, the performance of the TOA estimation 

can be benchmarked using the computer simulations based on empirical channel 

measurement data; conducting field measurement with prototype systems; and using the 

computer simulations based on ray-tracing software to simulate the site-specific indoor 

radio propagation channels. 

The time difference of arrival (TDOA) is another time delay-based location 

metric that can be used in place of the TOA.  In the single-path AWGN channels, the 

techniques and the performance of the TDOA estimation are very similar to that of the 

TOA estimation.  But as explained in this chapter, in multipath channels, the TOA is 

more appropriate due to an ambiguity in the TDOA estimation with the ML cross-

correlation technique.   
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For the dedicated geolocation systems, the simple synchronized transceiver 

method or round-trip TOA method can be easily employed.  But for the overlaid 

geolocation systems, the direct application of these methods is challenging because the 

geolocation function is overlaid onto a wireless network system without significant 

modifications to the existing infrastructure and hardware as well as physical layer 

signaling formats.  A non-synchronized TDOA measurement method is designed for 

overlaying the geolocation functionality onto the existing wireless networks such as the 

WLAN systems.  

In the next chapter, the super-resolution TOA estimation techniques will be 

presented, which can be used to improve the performance of the TOA estimation in the 

multipath indoor radio propagation channels. 
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Chapter 4 

Super-Resolution TOA Estimation 

Techniques 
 

In last chapter we have shown that the TOA estimation techniques derived for 

the traditional location finding applications is not suitable for indoor applications since 

the radio propagation channel of the traditional application environment can be readily 

modeled as the single-path AWGN channel while the application environment of indoor 

geolocation systems is severe multipath channel.  The two major sources of the TOA 

estimation errors in indoor environment are the multipath interference and the NLOS 

condition.  As discussed in Section 3.3 one way to improve the performance of the TOA 

estimation in indoor multipath environment is to increase the resolution of the 

estimation techniques by increasing the signal bandwidth or by employing advanced 

signal processing techniques.  In this chapter, we present an investigation of the 

frequency-domain super-resolution TOA estimation technique designed by applying the 

super-resolution spectrum estimation techniques to the frequency-domain channel 

response, which can be modeled as a harmonic signal model.  In the following we first 

present the theoretical background and the development of the basic algorithm for the 
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TOA estimation.  Then we present and evaluate the issues and techniques, including 

diversity techniques, which should be considered in the practical implementation of the 

algorithm for indoor geolocation applications.  Two diversity combining schemes for 

the super-resolution TOA estimation techniques are presented and the effects of the 

diversity techniques are analyzed based on these two schemes.  The quantitative 

performance evaluation of the super-resolution techniques is deferred until next chapter, 

where the empirical channel measurement data based computer simulation method is 

used to compare and evaluate the performance of various TOA estimation techniques 

presented in this chapter. 

 

4.1 Introduction 

With the emergence of the location-based applications and the next generation 

location-aware wireless systems, location finding techniques are becoming increasingly 

important [Pah02a].  As discussed in the preceding chapters, location finding based on 

the TOA is the most popular method for accurate positioning systems.  The basic 

problem in TOA-based techniques is to accurately estimate the propagation delay of the 

radio signal arriving from the transmitter through the direct line-of-sight (DLOS) radio 

propagation path.  However, as presented in Chapter 2 and 3, in indoor environments 

due to the severe multipath condition and the complexity of radio propagation, the 

DLOS signal cannot always be accurately detected [Pah98, Pah02].  Among other 

techniques presented in Section 3.3, increasing the time-domain resolution of the 

channel response to resolve the DLOS path improves the performance of the location 
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finding systems employing the TOA estimation techniques.  Thus in this chapter we 

develop and investigate the super-resolution as well as the diversity techniques that can 

be used to improve the time-domain resolution of the channel response. 

The super-resolution algorithms have been widely studied in the field of the 

model-based parametric spectral estimation for a variety of applications [Man00].  

Recently, a number of researchers have applied the super-resolution spectral estimation 

techniques to the time-domain analysis for different applications.  These applications 

include electronic devices parameter measurement [Bey01, Yam91] and multipath radio 

propagation studies [Lo94, Mor98, Pal91, Dum94, Saa97].  In [Lo94], the super-

resolution technique was employed in the frequency domain to estimate the multipath 

time dispersion parameters such as the mean excess delay and the RMS delay spread.  A 

similar method was used in [Mor98] to model indoor radio propagation channels with 

the parametric harmonic signal models.  Here we address the application of the super-

resolution techniques to the accurate TOA estimation for indoor geolocation 

applications.  In the literature, the time delay related estimation problems have been 

studied with a variety of super-resolution techniques, such as the minimum-norm 

[Pal91], the root-MUSIC [Dum94] and the TLS-ESPRIT [Saa97].  It is worth to note 

that while the super-resolution techniques can increase the time-domain resolution as 

well as the location finding performance, it also increases the complexity of the system 

implementation.  But the studies of the complexity and the cost of the practical 

implementation of the super-resolution techniques are beyond the scope of this research.  

Here we focus on the development of the theoretical foundation of the super-resolution 



 83

TOA estimation techniques, and issues as well as techniques to address the limitations 

posed by indoor geolocation applications, which is different from the spectral 

estimation applications.  Also in this chapter we study the diversity techniques and the 

diversity combining schemes for the super-resolution techniques to further improve the 

performance of the TOA estimation in indoor geolocation applications. 

 

4.2 Super-Resolution Techniques 

The multipath indoor radio propagation channel is normally modeled as a 

complex, low-pass equivalent impulse response given by (2.1), that is 

∑
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where pL  is the total number of multipath components, and kj
kk e θαα  =  and kτ  are 

the complex attenuation and the propagation delay of the kth path, respectively.  The 

multipath components are indexed so that the propagation delays kτ , 10 −≤≤ pLk , are 

in ascending order.  As a result, the parameter 0τ  in the model denotes the propagation 

delay of the shortest path, i.e., the DLOS path, and it needs to be detected for the 

purpose of the TOA estimation.  Taking Fourier transform of (4.1), the frequency-

domain channel response can be obtained as 
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When modeling the multipath indoor radio propagation channels, the parameters kα  

and kτ  are random time-variant functions because of the motion of people and other 
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objects in and around buildings.  However, since the rate of their variations is very slow 

as compared with the measurement time interval, these parameters can be treated as the 

time-invariant random variables [Sal87].  The phase of the complex attenuation kθ  is 

normally assumed random from one snapshot to another with a uniform probability 

density function (PDF) )2,0( πU  [Pah95].  On the other hand, these parameters are 

frequency-dependent since they are related to the radio signal characteristics such as the 

transmission and reflection coefficients.  However, as shown in [Yan94], for the 

frequency bands used in this paper these parameters can be assumed frequency-

independent. 

In practice, the discrete samples of the frequency-domain channel response can 

be obtained by sweeping the channel at different frequencies [How90], by using a 

multi-carrier modulation technique such as OFDM, or in a DSSS system by 

deconvolving the received signal over the frequency band of high signal-to-noise ratio 

[Pal91, Dum94, Lo94, Saa97].  In this thesis, we consider the super-resolution TOA 

estimation based on the frequency-domain measurement of indoor channel response.  In 

Chapter 5, we will study the performance of the super-resolution TOA estimation 

techniques with the computer simulations based on empirical frequency-domain 

channel measurement data, which were obtained by sweeping the channel at different 

frequencies with a standard frequency-domain channel measurement system. 

If we exchange the role of the time and the frequency variables in (4.2), we can 

observe that it becomes the harmonic signal model  
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which is well known in the model-based parametric spectral estimation field [Man00].  

Consequently, in essence any spectral estimation techniques that are suitable for the 

harmonic signal model can be applied to the frequency response of the multipath indoor 

radio channel to perform the time-domain analysis.  In this section, we apply the 

MUSIC algorithm, which was first introduced in [Sch81], as an example of the super-

resolution algorithms, to the TOA estimation for indoor geolocation applications. 

The discrete measurement data are obtained by sampling the channel frequency 

response (or frequency-domain channel response) )( fH  at L  equally spaced 

frequencies.  Considering the additive white noise in the measurement process and 

representing the estimated channel frequency response in noise with )(ˆ fH , the 

sampled discrete frequency-domain channel response is given by 
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where 1- ..., 1, 0, Ll =  and )(lw  denotes the additive white measurement noise with the 

mean zero and the variance 2
wσ .  We can then concisely write the signal model in (4.4) 

in the following vector form 

,wVawHx +=+=                                              (4.5) 

where 
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and the superscript T denotes the matrix transpose operation.   

The MUSIC super-resolution techniques are based on the eigen-decomposition 

of the auto-correlation matrix of the preceding signal model in (4.5), 

,
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where  

}{ HE aaA = ,                                                    (4.7) 

and I  is the identity matrix while the superscript H denotes the conjugate transpose 

operation, i.e., the Hermitian, of a matrix.  Since the propagation delays kτ  in (4.1) can 

be readily assumed all different, the matrix V  has full column rank, i.e., the column 

vectors of V  are linearly independent.  If we assume the magnitude of the parameters 

kα  is constant and the phase is a uniform random variable in ]2,0[ π , the pp LL ×  

covariance matrix A  is non-singular.  Then from the theory of linear algebra, it follows 

that assuming pLL > , the rank of the matrix HVAV  is pL , or equivalently, the pLL −  
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smallest eigenvalues of xxR  are all equal to 2
wσ .  The eigenvectors corresponding to 

pLL −  smallest eigenvalues of xxR  are called noise eigenvectors while the 

eigenvectors corresponding to the pL  largest eigenvalues are called signal eigenvectors.  

Thus the L-dimensional subspace that contains the signal vector x  can be split into two 

orthogonal subspaces, known as signal subspace and noise subspace, by the signal 

eigenvectors and the noise eigenvectors, respectively.  Assuming the eigenvectors are 

all normalized, we have  

IQQ =w
H
w ,                                                     (4.8) 

where  

]...[ 11 −+= LLLw pp
qqqQ  

and kq , 1−≤≤ LkLp , are the noise eigenvectors.  Then the projection matrix of the 

noise subspace can be readily determined as (see the definition of the projection matrix 

in the reference [Man00]) 
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Since the vector )( kτv , 10 −≤≤ pLk , must lie in the signal subspace and the signal 

subspace is orthogonal to the noise subspace, we have 

0)( =kw τvP ,                                                    (4.10) 

that is, the vector )( kτv , 10 −≤≤ pLk , must be orthogonal to the noise subspace.  

Thus the multipath delays kτ , 10 −≤≤ pLk , can be determined by finding the delay 

values at which the time-domain MUSIC pseudospectrum, defined as 
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achieves the maximum value.  The derivation in (4.11) is apparent by noticing that  
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i.e., the projection matrix is idempotent [Man00]. 
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Figure 4.1: The functional block diagram of the receiver of super-resolution 

TOA estimation systems.  )(ˆ fH  is the estimated channel frequency response, 

which is defined in (4.4). 

 

Figure 4.1 shows a functional block diagram of the receiver of the super-

resolution TOA estimation systems.  The received signal is first used to estimate 

channel frequency response, which is modeled as (4.4) and (4.5).  Then a super-

resolution algorithm, such as the MUSIC algorithm presented in this section, is used to 
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transform the channel frequency response to the time-domain pseudospectrum, which is 

defined in (4.11).  The estimate of the TOA is then obtained by detecting the first peak 

of the pseudospectrum along the delay axis.   
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Figure 4.2: The time-domain MUSIC pseudospectrum, obtained with a sample 

frequency-domain channel measurement data.  The estimate of the TOA 

corresponds to the first peak of the pseudospectrum, marked by a small circle sign 

as shown on the plot. 

 

Figure 4.2 shows a sample result of the time-domain MUSIC pseudospectrum 

obtained by applying the MUSIC algorithm to an empirical frequency-domain channel 

measurement data.  The simulation method as well as the descriptions of the channel 

measurement system and the measurement data is presented in Chapter 5.  The TOA is 



 90

estimated by searching for the first peak of the pseudospectrum, which corresponds to 

the arrival time of the signal arriving from the DLOS path.  In geolocation applications, 

we are only interested in the arrival time of the first DLOS signal path, but if needed the 

arrival times of all the paths in the multipath channel model in (4.1) can be estimated by 

identifying delay values corresponding to all the significant peaks of the 

pseudospectrum using peak detection algorithms.  It should be emphasized here that 

there is no quantitative relationship between the magnitude of the peaks of the 

pseudospectrum and the values of the attenuation parameters of the multipath channel 

model, that is, the attenuation parameters of the multipath channel model cannot be 

estimated from the magnitude of the pseudospectrum peaks.  The attenuation 

parameters of the multipath channel model is normally estimated from the measured 

time-domain or frequency-domain channel response and the estimates of arrival times 

using least-square algorithms [Pal91, Man94, Mor98].  In the next section issues in the 

practical implementation of the super-resolution TOA estimation techniques are 

presented. 

 

4.3 Issues in Practical Implementation 

Note that in the analysis in last section, which led to the MUSIC TOA 

estimation algorithm, we considered the theoretical or the true correlation matrix xxR .  

In practice, the correlation matrix must be estimated from the measured data samples.  

Figure 4.3 illustrates a functional block diagram of the super-resolution TOA estimation 

algorithms.  The input data vector, i.e., the estimate of channel frequency response 



 91

given in (4.5), is first used to estimate the correlation matrix xxR .  Then the eigenvalues 

as well as the corresponding eigenvectors of the correlation matrix are computed.  The 

parameter pL  is determined through the analysis of the eigenvalues and eigenvectors of 

the correlation matrix, which is discussed in details later in this section.  Finally, the 

pseudospectrum is obtained using (4.11).   

If we have P snapshots of the measurement data, the estimate of the correlation 

matrix is obtained from 

∑
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)()(1ˆ xxR .                                          (4.12) 

But if only one snapshot of the measurement data of length N is available, the data 

sequence is divided into M  consecutive segments of length L  and then the correlation 

matrix is estimated as  
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where  

TLkxkxk ])1(...)([)( −+=x  

and 1+−= LNM .  In this section we will focus on the second method, where only 

one snapshot of measurement data is used in estimating the data correlation matrix as in 

(4.13).  Methods based on multiple snapshots will be discussed in the next section for 

application with the diversity techniques. 
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Figure 4.3: The functional block diagram of super-resolution TOA estimation 

algorithms.  xxR̂  is the estimated correlation matrix, pL  is the estimated total 

number of multipath components defined in (4.1), and )(τS  is the time-domain 

pseudospectrum defined in (4.11). 

 

As we mentioned earlier, for the super-resolution TOA estimation techniques, 

the measurement data vector x  is obtained by sampling channel frequency response 

uniformly over a given frequency band.  In order to avoid aliasing in the time domain, 

similar to the time-domain Nyquist sampling theorem, the frequency-domain sampling 

interval f∆  is determined so as to satisfy the condition max2/1 τ≥∆f , where 

)max( 1max −=
pLττ  is the maximum delay of the measured multipath radio propagation 

channel.  For example, for indoor geolocation applications, the frequency sampling 

interval f∆  is normally set to be 1 MHz, which accommodates application scenarios 

where the maximum delay maxτ  is less than 500 ns or equivalently the maximum length 

of the multipath signal propagation path is less than 150 m.  Thus with a bandwidth of 

20 MHz, the length of one measurement data sequence is 21, which is far too short to 

accurately estimate the correlation matrix.  This is very different from the situation in 
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the spectrum estimation applications, where the super-resolution algorithms are widely 

used.  In the spectrum estimation applications, the super-resolution algorithms are used 

to convert the time-domain measurement data of a random signal to frequency domain 

to estimate the spectrum of the signal.  Thus in the spectrum estimation applications, 

more measurement data or longer measurement data vector x , which is the input of the 

super-resolution algorithms and is used to estimate the correlation matrix, can be 

obtained by simply extending the observation time of the random signal.  With longer 

measurement data, the correlation matrix can be estimated more accurately using (4.13), 

which leads to better performance of the super-resolution algorithm.  But in the TOA 

estimation applications, the super-resolution algorithm is used to convert the 

measurement data, which is the estimate of channel frequency response, from frequency 

domain to time domain as illustrated in Fig. 4.1 to estimate the arrival time of the DLOS 

signal.  Thus, in TOA estimation applications, the length of the measurement data 

equals to the ratio of the measured signal bandwidth and the frequency sampling 

interval.  With the frequency sampling interval fixed, determined by the sampling 

theorem that we just discussed, increasing the length of the measurement data means an 

increase in the signal bandwidth.  In practice, the national/international frequency usage 

regulation rules, such as regulations by the Federal Communications Commission 

(FCC), pose a limitation on available signal bandwidth.  As a result, in applying the 

super-resolution algorithms to the TOA estimation applications we will face the issue of 

having short limited length measurement data that we cannot increase freely.  Thus in 

the TOA estimation applications it is important to find ways to ensure the proper 
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operation of the super-resolution algorithms with short limited measurement data.  As 

presented in the following a number of techniques can be used to improve the 

performance, including the forward-backward estimation method for correlation matrix 

estimation and the eigenvector method in this section, and the diversity techniques in 

the next section.  In this section methods to estimate the total number of multipath 

components are also presented in details. 

 

4.3.1 Improved Estimation of Correlation Matrix with Limited 

Measurement Data 

The measurement data x  in (4.5) and Fig. 4.3 are normally assumed stationary.  

Thus the correlation matrix of the data xxR  is Hermitian, i.e., conjugate symmetric, and 

Toeplitz, i.e., having equal elements along all diagonals.  However, in practice the 

estimate of the correlation matrix xxR̂  based on the actual measurement data of small 

finite length N  is not Toeplitz.  The estimate of the correlation matrix can be improved 

using the following forward-backward correlation matrix (FBCM), 

)ˆˆ(
2
1ˆ *)FB( JRJRR xxxxxx +=                                         (4.14) 

where the superscript * denotes conjugate, superscript FB stands for the forward-

backward estimation,  and J  is the LL ×  exchange matrix, defined as 
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It can be easily shown that the matrix )FB(ˆ
xxR  is persymmetric, that is  

*)FB()FB( ˆˆ
xxxx RJRJ = ,                                              (4.15) 

and its elements are conjugate symmetric about both main diagonals.  This technique is 

widely used in the spectral estimation applications with the name modified covariance 

method [Man00], in the linear least-square signal estimation with the name forward-

backward linear predication (FBLP) [Man00], and in the antenna array signal 

processing with the name modified spatial smoothing preprocessing [Wil88, Yam91].  

In contrast to the forward-backward correlation matrix in (4.14), here we call the 

correlation matrix in (4.13) the forward correlation matrix (FCM). 

In our development of the basic theories, we assumed that the magnitude of the 

parameters kα , 10 −≤≤ pLk , in (4.1) are constant and the phase kθ , 10 −≤≤ pLk , 

are independent uniformly distributed random variables.  With such assumptions it can 

be shown that the correlation matrix A , defined in (4.6), is full-rank, i.e., non-singular.  

But if the phase kθ , 10 −≤≤ pLk , are non-random, which is true if only one snapshot 

of the measurement data is used in estimating the correlation matrix xxR , the rank of 

the correlation matrix A  tends to degrade to 1 and the matrix tends to singular.  In such 

a situation, the MUSIC algorithm does not work properly.  But fortunately, for the 

signal model in (4.4), the estimation of data correlation matrix using (4.13) has 

decorrelation effects as explained below.  The decorrelation effects in forward and 

forward-backward correlation matrices were analyzed in [Red87, Wil88, Yam91].  

Following the definition in [Red87], the correlation coefficient for the forward 
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estimation method in (4.13) between 'iα  and 'jα , i.e., the ith and jth element of the 

multipath model parameter vector a  defined in (4.5), can be derived as 

φρ j
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and ijA  is the thji ),(  element of the parameter correlation matrix A  defined in (4.7).  

From (4.16) it is noted that the decorrelation effects of the forward estimation method 

depend on the number of segments M , the frequency sampling interval f∆ , and time 

delay difference )( ji ττ − .  Similarly, the correlation coefficient of the forward-

backward estimation method in (4.14) can be readily derived as  

2/)FBCM( )2/cos( ψψφρ j
ij eK += ,                                   (4.17) 

where  

)()1(2 jifL ττπψ −∆−= , 

and K  and φ  are the same as in (4.16).  Detailed derivation of (4.16) and (4.17) can be 

found in the Appendix 4.A.  From (4.17) it is clear that the correlation coefficient of the 

forward-backward estimation method depends on the length of the segments L , the 

phase difference of parameters )( ji θθ − , and the lowest frequency of the spectrum 0f , 

in addition to M , f∆ , and )( ji ττ −  as in (4.16).   



 97

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of segments M

| ρ
 |

FCM 

FBCM 

 

Figure 4.4: Correlation coefficients of forward and forward-backward 

correlation matrices, with MHz1=∆f , ns15)( =− ji ττ , 0)( =− ji θθ , 

MHz9000 =f , and 13=L . 

 

From (4.16) and (4.17) it can be readily shown that  

)2/cos()FCM()FBCM( ψφρρ +×= ijij .                                 (4.18) 

Thus we can clearly observe that the forward-backward correlation matrix has better 

decorrelation effect than the forward correlation matrix, that is, 

)FCM()FBCM(
ijij ρρ ≤                                               (4.19) 

since 1)2/cos( ≤+ψφ .  Figure 4.4 and Fig. 4.5 show examples of the decorrelation 

effects, calculated from (4.16) and (4.17), versus the number of segments and the delay 

difference, respectively.  The results in Fig. 4.4 and 4.5 clearly verify the relation in 
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(4.19), that is, the forward-backward correlation matrix has better decorrelation effect 

than the forward correlation matrix. The better decorrelation effect leads to potentially 

better performance of the super-resolution algorithm.  In Chapter 5 we compare the 

performance of the forward and the forward-backward estimation methods with 

computer simulation results.  In next section we address the issue of the estimation of 

pL  in practice, i.e., the total number of the multipath components. 

 

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(τ i - τ j)  (ns)

| ρ
 |

FCM 

FBCM 

 

Figure 4.5: Correlation coefficients of forward and forward-backward 

correlation matrices, with the parameters 9=M , MHz1=∆f , 0)( =− ji θθ , 

MHz9000 =f , and 13=L . 
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4.3.2 Determination of Parameters L  and pL  

If we use only one measurement data snapshot of N  samples to estimate the 

TOA using super-resolution algorithms, the first step is to determine the value of L  for 

the estimation of xxR̂  as in (4.13).  With large values of L , the potential for higher 

resolution of the MUSIC algorithm increases, which is similar to that in array signal 

processing where increasing L  means an increase in subarray aperture and thus an 

increase in resolution capability [Tuf82, Kri96].  On the other hand, from (4.13), we can 

see that for a fixed value of N , the value of M decreases as L  increases.  The decrease 

in M increases fluctuations in the matrix xxR̂  resulting in large perturbations of the 

eigenvalues and eigenvectors of xxR̂ , and reduces the number of coherent kα  that can 

be detected [Kri96, Lib99].  Consequently, the value of L  needs to be selected so that it 

provides a balance between resolution and stability of the algorithm.  Different values 

of L have been used in the literature, for example [Lan80] used 2/N  and 3/N , [Tuf82] 

used 4/3N , and [Pal91] adopted 5/3N .  In this paper we use a value of 3/2N , which 

was determined through computer simulations. 

Another parameter that needs to be determined in using a super-resolution 

technique is the total number of multipath components pL .  If the true correlation 

matrix xxR  is available, pL  can be easily determined by observing eigenvalues of the 

correlation matrix since in theory, the pLL −  smallest eigenvalues of xxR  are all equal 

to 2
wσ , and the remaining pL  eigenvalues are all larger than 2

wσ .  But in practical 
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implementation, especially when the correlation matrix is estimated from a limited 

number of data samples, the noise eigenvalues are all different, which makes it 

challenging to clearly distinguish signal eigenvalues and noise eigenvalues.  In [Wax85], 

the information theoretic criteria for model selection, including Akaike information 

theoretic criteria (AIC) and Rissanen Minimum Descriptive Length criteria (MDL), are 

applied to this problem.  The MDL criterion for estimation of pL  is used in this paper, 

which is given in [Wax85] 
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where iλ , 10 −≤≤ Li , are the eigenvalues of correlation matrix in descending order.  

The estimate of pL  is determined as the value of ]1,0[ −∈ Lk  for which the MDL  is 

minimized.  In the reference [Xu94], authors showed that when the forward-backward 

estimation method is used, the MDL criteria in (4.17) cannot directly apply and the 

second term of the criteria must be modified to MkLk log)12()4/1( +− , that is  
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4.3.3 Eigenvector Method 

One implicit assumption in the MUSIC method is that the noise eigenvalues are 

all equal, i.e., 2
wk σλ =  for 1−≤≤ LkLp , that is, the noise is white.  However, as we 

just discussed, when the correlation matrix is estimated from a limited number of data 
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samples in practice, the noise eigenvalues are not equal.  A slight variation on the 

MUSIC algorithm, known as the Eigenvector (EV) method, can be used to account for 

the potentially different noise eigenvalues [Man00, Joh82].  The pseudospectrum of the 

EV algorithm is defined as  

∑
−

=

= 1
2|)(|1

1)( L

Lk

H
k

k

EV

p

S
τ

λ

τ
vq

,                                            (4.22) 

where kλ , 1−≤≤ LkLp , are the noise eigenvalues.  In effect, the pseudospectrum of 

each eigenvector is normalized by its corresponding eigenvalue.  If the noise 

eigenvalues are equal, the EV method and the MUSIC method are identical.  The 

performance of the MUSIC and EV methods were compared in [Joh82] and it was 

shown that the EV method is less sensitive to inaccurate estimate of the parameter pL , 

which is highly desirable in a practical implementation.  As presented in the next 

chapter, the EV method is shown by computer simulations to have slightly better 

performance than the MUSIC method.  In the next section, we investigate diversity 

techniques that can be used to further improve the performance of super-resolution 

TOA estimation techniques. 

 

4.4 Diversity Techniques 

Diversity techniques such as time diversity, space diversity, and frequency 

diversity are widely utilized in wireless communication systems to improve link 

performance [Pah95, Rap96, Pah02a].  Diversity techniques take advantage of the 
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random nature of the radio propagation channel by finding and combining uncorrelated 

signal paths.  In essence, all diversity techniques used for wireless communication 

systems can be used for TOA estimation systems with the general structure shown in 

Fig. 4.6, where the diversity system has P  diversity branches.  The TOA is estimated 

independently at each diversity branch of receiver, and then a combining algorithm is 

used to process the TOA estimates from all branches to obtain an optimum estimate.  A 

variety of different combining algorithms can be designed for different diversity 

techniques.  The simplest one is the equal-gain combining algorithm given by 

∑
=

=
P

k

k

P 1

)(
00 ˆ1ˆ ττ .                                                         (4.23) 

In some cases, more complex variable-gain combining is also possible, where 

the estimate of each diversity branch is weighted with a coefficient that reflects the 

quality of time delay estimation at each branch.  More research work is needed to 

design optimum combining algorithms for diversity techniques for TOA estimation 

applications. 
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Figure 4.6: General structure of TOA estimation with diversity techniques, 

general diversity combining scheme (GDCS). 
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For the super-resolution TOA estimation techniques presented in this paper, 

diversity techniques can also be applied as shown in Fig. 4.7.  Instead of combining 

independent time delay estimates as in Fig. 4.6, the measurement data at diversity 

branches are combined to estimate the correlation matrix using the formula in (4.12).  

For the convenience of referencing, we call the structure in Fig. 4.6 a general diversity 

combing scheme (GDCS), and the structure in Fig. 4.7 a correlation matrix-based 

diversity combing scheme (CMDCS).  In super-resolution TOA estimation techniques, 

the major computational load is in the eigen-analysis, i.e., computation of the 

eigenvalues and eigenvectors, of the correlation matrix.  As a result, CMDCS is 

computationally superior to GDCS since the CM-based scheme performs eigen-analysis 

only once, but the general scheme needs to perform independent eigen-analysis P  

times. 
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Figure 4.7: Estimation of correlation matrix with diversity techniques for super-

resolution TOA estimation, correlation matrix based diversity combining scheme 

(CMDCS). 

 

On the other hand, by applying the CMDCS scheme, the underlying assumption 

concerning the radio propagation channel is that the amplitude attenuation and the time 
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delay for each path, and the number of signal paths are the same from the transmitter to 

all diversity branches of the receiver.  This restricts CMDCS to only quasi-stationary 

scenarios, where the channel structure remains unchanged while the P  diversity 

measurement data are collected.  This is one disadvantage of the CM-based scheme as 

compared with the general scheme, which has no such restriction in application.  This 

condition for applicability also makes it challenging to use CMDCS for space diversity 

since in space-diversity situations, the radio propagation channel from the transmitter 

and diversity branches of the receiver are most likely not the same.  Similarly, CMDCS 

is not suitable for time diversity.  As we discussed in the preceding section, the super-

resolution technique cannot work properly when the phase of each signal path remains 

unchanged together with the amplitude attenuation and time delay for each path, and the 

total number of signal paths.  For quasi-stationary scenarios, it is unknown whether the 

phase is random or not for repeated measurements while the number of signal paths and 

the amplitude attenuation and time delay for each path all remain unchanged.  But 

simulation results based on measurement data collected on indoor radio channels, which 

will be presented in the next chapter, show that time-diversity with CMDCS yields 

almost no improvement over non-diversity techniques.  In contrast, frequency-diversity 

can be well fitted into CMDCS.  By using frequency-diversity, the thk  measurement 

data vector )(kx , Pk ≤≤1 , are obtained using thk  carrier frequency.  A quantitative 

relationship between the improvement of TOA estimation accuracy and frequency 

diversity is not known, but the effects of frequency diversity can be conveniently 
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analyzed using the correlation coefficients similar to the way by which we analyzed the 

forward and the forward-backward correlation methods in the last section. 

For frequency diversity, if the carrier frequency 0f  is uniformly distributed, i.e. 

)2/,2/(~0 FfFfUf cc ∆+∆− ,                                           (4.24) 

where cf  is center frequency and F∆  is the range of the frequency distribution, the 

correlation coefficient between 'iα  and 'jα  can be derived as 
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where the superscript FD stands for frequency diversity, and the sinc function is defined 

as xxx /)sin()sinc( = .  Similarly, if the frequency diversity method is used for the 

forward correlation matrix, the correlation coefficient becomes 

')FDFCM,( ' φρ j
ij eK −= ,                                                    (4.26) 

where  
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and that for forward-backward correlation matrix becomes 

2/)FDFBCM,( )
2

'cos(' ψψφρ j
ij eK += ,                                        (4.27) 
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where 'K  and 'φ  are the same as in (4.26).  Details of the derivation of (4.25), (4.26), 

and (4.27) are presented in Appendix 4.A.  We notice that by using the frequency 

diversity method, the coherence between multipath components is decoorrelated 

according to the sinc finction as F∆  and absolute value of delay difference )( ji ττ −  

increase.   
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Figure 4.8: Correlation coefficient with frequency diversity, with parameters 

ns15)( =− ji ττ , 0)( =− ji θθ , and Hz1Gfc = . 

 

Figure 4.8 shows an example of the decorrelation effect of frequency diversity, 

calculated from (4.25), versus the range of the frequency distribution.  Figure 4.9 and 

Fig. 4.10 shows correlation coefficients of forward and forward-backward correlation 

matrices with frequency diversity, calculated from (4.26) and (4.27), using the same 
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parameters as in Fig. 4.4 and Fig. 4.5.  We can clearly observe that the frequency 

diversity technique further improves the decorrelation effects in both forward and 

forward-backward correlation matrices.  In Chapter 5, we compare and evaluate the 

performance of diversity techniques using computer simulations based on empirical 

frequency-domain indoor radio propagation channel measurement data. 
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Figure 4.9: Correlation coefficients of FCM and FBCM with and without 

frequency diversity, with parameters MHz1=∆f , ns15)( =− ji ττ , 0)( =− ji θθ , 

Hz1Gfc = , 13=L , and MHz100=∆F . 
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Figure 4.10:  Correlation coefficients of FCM and FBCM with and without 

frequency diversity, with parameters 9=M , MHz1=∆f , 0)( =− ji θθ , Hz1Gfc = , 

13=L , and MHz100=∆F . 

 

4.5 Summary and Conclusions 

In this chapter, we have presented super-resolution TOA estimation techniques.  

The super-resolution spectral estimation algorithms are applied to the TOA estimation 

applications on the basis that the frequency representation of the multipath radio 

propagation channel model can be viewed as the harmonic signal model, which is well 

known in the spectral estimation field.  After forming the signal model based on the 

frequency-domain channel response, the MUSIC super-resolution TOA estimation 

algorithm is derived in the same way as in the spectral estimation applications. 
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In the TOA estimation applications, the super-resolution algorithm is used to 

convert the measurement data, which is the estimate of the channel frequency response, 

from frequency domain to time domain to estimate the arrival time of the DLOS signal 

in contrast to the spectrum estimation applications, where the super-resolution 

algorithms are used to convert time-domain measurement data of a random signal to 

frequency domain to estimate the spectrum of the signal.  Thus in spectrum estimation 

applications, more measurement data can be obtained by simply extending the 

observation time of the random signal, while in the TOA estimation applications 

increasing the length of the measurement data means an increase in the signal 

bandwidth.  With longer measurement data, the correlation matrix can be estimated 

more accurately, which leads to the better performance of the super-resolution 

algorithm.  The practical limitation on the available signal bandwidth poses a limitation 

on the length of the channel measurement data in the TOA estimation applications.  

Thus in this chapter several techniques are presented, including the forward-backward 

estimation of correlation matrix, eigenvector method, and diversity techniques, which 

can be used to improve the performance of the super-resolution TOA estimation 

algorithms when the length of the frequency-domain channel measurement data is short.   

Also in this chapter, the effects of the forward estimation of correlation matrix, 

the forward-backward estimation of correlation matrix, the frequency diversity 

techniques, the FCM with frequency diversity, and the FBCM with frequency diversity 

techniques are analyzed with the correlation coefficients.  The detailed derivation of the 

correlation coefficients is presented in the appendix of this chapter.  From the analysis 
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we can conclude that the forward-backward estimation method has better decorrelation 

effects, which leads to the better performance of the super-resolution TOA estimation 

techniques, and diversity techniques, especially the frequency diversity technique, 

further improve the decorrelation effects of the correlation matrix.  Two diversity 

combining schemes, i.e., the GDCS and CMDCS diversity combining schemes, are 

proposed for the super-resolution TOA estimation techniques.  It is shown that the 

CMDCS is computational superior than the GDCS, and the CMDCS is well suited for 

the frequency diversity techniques, which can significantly improve the decorrelation 

effects of the correlation matrix of the channel measurement data. 

In the next chapter we compare and evaluate the performance of various super-

resolution TOA estimation techniques presented in this chapter with the computer 

simulations based on empirical frequency-domain channel measurement data. 
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Appendix 4.A Derivation of Correlation Coefficients 

In order to keep the main content of this chapter concise and easy to follow, the 

detailed derivation of the correlation coefficients in (4.16), (4.17), (4.25), (4.26), and 

(4.27) is presented in this appendix. 

 

4.A.1 Correlation Coefficients using Forward Estimation Method 

The parameter correlation matrix of the multipah channel model is defined in 

(4.5) as 

}{ HE aaA = .                                                          (4.A.1) 

while the parameter vector a  is defined in (4.5).  Thus using the forward estimation 

method defined in (4.13), the th),( ji  element of the correlation matrix A  can be 

obtained as 
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and it easily follows that  

2
iiiA α=                                                     (4.A.3) 
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where ij
ii e θαα =  as defined in (4.1).  From the definition of the correlation coefficient 

between ith and jth parameters, defined as [Red87], we can easily obtain that  
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4.A.2 Correlation Coefficients using Forward-backward Estimation 

Method 

The forward-backward correlation matrix is defined in (4.14), 

)ˆˆ(
2
1ˆ *)FB( JRJRR xxxxxx +=                                           (4.A.5) 

where xxR̂  and JRJ *ˆ
xx  are forward and backward correlation matrices, respectively.  

The backward correlation matrix can be equivalently calculated using (4.13) with the 

data vector 

HxLxLx ])0(...)2()1([ −−=x                                 (4.A.6) 

which is reversed version of the original data vector defined in (4.5), so that the element 

of the parameter vector a  defined in (4.5) becomes 

kfLfj
kk e τπαα ))1((2* 0' ∆−+= .                                              (4.A.7) 
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Thus using the backward estimation method, the th),( ji  element of the parameter 

correlation matrix can be obtained as 
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where ijA  is given by (4.A.2).  Then the th),( ji  element of the parameter correlation 

matrix using the forward-backward estimation method can be obtained as 
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Finally the correlation coefficient between ith and jth parameters can determined by 

2/

)(

)FB(
)FBCM(

)2/cos(

)(
2
1

||||

ψ

ψφφ

ψφ

αα
ρ

j

jj

ji

ij
ij

eK

KeKe

A

+=

+=

=

+−                                  (4.A.10) 

where 
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and K  and φ  are the same as in (4.A.4). 
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4.A.3 Correlation Coefficients with Frequency Diversity 

For frequency diversity, we assume the carrier frequency is uniformly 

distributed as given in (4.24).  The elements of the parameter correlation matrix are 

derived as follows: 
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and the correlation coefficient is easily obtained: 
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where the sinc function is defined as xxx /)sin()sinc( = . 

The correlation coefficients of forward estimation methods, given in (4.26) are 

easily obtained by noticing that  
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where  
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and the statistical expectation }{⋅E  is performed with respect to the uniformly 

distributed carrier frequency 0f , which is defined in (4.24).  Similaryly, the correlation 

coefficients of forward-backward estimation methods, given in (4.27) are obtained as 

follows,  
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where 'K  and 'φ  are the same as in (4.A.13), and ψ  is the same as in (4.A.10). 
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Chapter 5 

Performance Evaluation Based on 

Channel Measurements 
 

In the previous chapters we have presented the traditional TOA estimation 

techniques, developed for the single-path AWGN channels, and the super-resolution 

TOA estimation techniques as well as the diversity techniques developed on the basis of 

the frequency-domain representation of the multipath radio propagation channel models.  

The super-resolution techniques can increase the resolution of the time-domain channel 

response in multipath channels, which helps to accurately estimate the arrival time of 

the DLOS signal, and thus improves the performance of the TOA estimation in indoor 

multipath radio propagation channels for geolocation applications.  In Chapter 4, the 

performance of various super-resolution and diversity techniques has been evaluated 

and compared theoretically by comparing the correlation coefficients of the estimated 

channel parameter correlation matrix since better decorrelation effect in the channel 

parameter correlation matrix leads to better performance of the super-resolution 

techniques.  However, there is no theoretical way to quantitatively compare the 

performance of various super-resolution techniques, and the super-resolution techniques 
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with the traditional TOA estimation techniques.  As a result, in this chapter we further 

investigate the performance of super-resolution and diversity techniques for TOA 

estimation applications by the computer simulations based on the measured frequency-

domain response of indoor radio propagation channels.  In this chapter, the channel 

measurement system and measurement scenarios are described first in Section 5.1, 

followed by a description of the performance evaluation methodology in Section 5.2 

that is employed in our research.  Then various super-resolution techniques are 

evaluated and compared based on computer simulation results in the rest of this chapter.  

For reference purposes, a description of the measurement sites and scenarios are 

presented in Appendix 5.A, and the cumulative distribution functions of the ranging 

errors with different TOA estimation techniques are presented in Appendix 5.B. 

 

5.1 Frequency-Domain Channel Measurement 

The frequency response of indoor radio propagation channel can be directly 

measured with a frequency-domain channel measurement system reported in [How90, 

Pah95].  Figure 5.1 shows the block diagram of the frequency-domain channel 

measurement system.  The main component of the measurement system is a network 

analyzer that generates a swept frequency signal and analyzes the resulting received 

signal to estimate the amplitude and phase fading effects of the radio propagation 

channel of interest at each specific frequency.  The network analyzer is controlled by a 

laptop through the HP’s version of a general purpose instrumentation bus (GPIB).  The 

laptop initializes the network analyzer preceding each measurement, and collects the 
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data at the completion of each measurement.  The magnitude and phase of the measured 

channel frequency response are stored for each measurement.  A variety of signal 

processing techniques can be applied to the frequency-domain channel measurement 

data collected with this measurement system to obtain the time and frequency responses 

of the radio propagation channel, to estimate various channel characteristics, and to 

conduct statistical channel modeling as presented in [How92, Pah05]. 
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Power amplifier

TX RX

Attenuator

Preamplifier

Laptop Computer

GPIB Bus

HP-85047A
S-Parameter Test Set

 

Figure 5.1:  Block diagram of the frequency-domain channel measurement system. 

 

The indoor radio propagation channel measurement data reported in [Ben99], 

collected with the measurement system shown in Fig. 5.1, is used in our research to 

evaluate the performance of super-resolution TOA estimation techniques as explained 

in details in the next section.  The magnitude and phase measurements of radio 
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propagation channel were performed at the center frequency 1 GHz with a bandwidth of 

200 MHz.  The measurements were conducted at three different buildings that represent 

highly likely places for deployment of indoor geolocation systems, including a 

manufacturing building at the Norton Co., Worcester, MA, a modern academic 

building, the Fuller Laboratory at WPI, and a residential house, the Schussler House at 

the WPI.  Thirty locations were selected at each site for measurement at the places 

where indoor geolocation systems will be likely used.  At each receiver location, four 

consecutive snapshots of radio propagation channel were taken while preventing 

movement around the vicinity of the antennas of the transmitter and receiver.  During 

the measurement, the transmitter antenna was fixed at one location while the receiver 

antenna was moved around.  The measurement locations were distributed so as to 

include three different radio propagation scenarios, that is, indoor-to-indoor, outdoor-to-

indoor, and outdoor-to-second floor communications.  For each measurement location, 

the physical distance between the antennas of the transmitter and receiver were 

determined and recorded either directly or indirectly from the blueprint of the building 

floorplans.  The detailed description of measurement sites and measurement locations 

are presented in Appendix 5.A.  After the measurement process, the frequency domain 

measurement data were calibrated to remove the effects of the system and antenna gains 

and delays as described in the reference [How90]. 
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5.2 Performance Evaluation Method 

The super-resolution TOA estimation techniques are developed on the basis of 

the frequency-domain representation of the multipath radio propagation channel model, 

which can be equivalently viewed as the harmonic signal model that is well known in 

parametric spectral estimation field.  As presented in Section 4.2 and 4.3, the input of 

the super-resolution algorithm in the TOA estimation is the estimated discrete channel 

frequency response.  The frequency response of indoor radio propagation channel can 

be directly measured with a network analyzer as described in Section 5.1.  Thus in this 

thesis, we evaluate the super-resolution TOA estimation techniques with empirical 

frequency-domain channel measurement data as the input of the algorithm, without 

concerning about issues in the channel frequency response estimation in the practical 

implementation of the TOA estimation systems.  The techniques and performance of 

channel frequency response estimation, i.e., the first functional block in Fig. 4.1, 

deserves a separate study and is beyond the scope of this thesis. 

The purpose of the performance evaluation in this chapter is to compare various 

TOA estimation techniques, and to evaluate and benchmark the perormance of super-

resolution techniques in realistic indoor application environments.  As we discussed in 

Chapter 3, the CRLB presented therein is derived for the single-path AWGN channels 

and it is the variance of the ML delay estimate in the neighborhood of its true value.  

However, in multipath channels the CRLB is not directly applicable because 

dramatically large TOA estimation errors occur when the DLOS path is undetectable.  

The effects of channel characteristics on the performance of the TOA estimation has not 
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yet been well studied and modeled.  There are no suitable indoor multipath radio 

propagation channel models available in the literature for the performance evaluation of 

the TOA estimation techniques.  Consequently, in designing TOA estimation techniques 

for multipath channels, the performance evaluation is usually conducted by studying the 

resolution of the estimation techniques based on computer simulations with a simple 

equal-gain two-path channel model as used in [Pal91].  In addition to the resolution of 

the estimation techniques, the radio channel characteristics such as multipath fading and 

shadow fading aomong others have tremendous effects on the performance of the TOA-

based ranging systems in real application scenarios as we discussed in Chapter 3.  The 

two-path channel model does not incorporate any of the complex characteristics of 

indoor radio propagation channels.  Therefore, while the two-path channel model is 

useful in preliminary study of the multipath-resolving capability of the TOA estimation 

techniques, it is impossible to compare the traditional TOA estimation techniques and 

the super-resolution techniques, and to provide performance benchmarks in real 

application environments with the simple two-path model.  In indoor environments, the 

performance of the TOA estimation techniques can be measured and benchmarked 

more appropriately by the computer simulations based on empirical channel 

measurement data, by conducting field measurement using prototype systems, or by 

using the ray-tracing software to simulate the site-specific indoor radio propagation 

channels.  The performance study based on these methods reveals much more realistic 

statistical results than the resolution study of the estimation techniques with the simple 

two-path channel model.  On the other hand, as noted in the beginning of this section, 
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the frequency-domain channel measurement data can be readily incorporated in the 

super-resolution TOA estimation techniques.  As a result, in this chapter we evaluate 

the performance of various TOA estimation techniques, inlcuding traditional 

techniques, super-resolution techniques, and diversity techniques, through computer 

simulations based on empirical frequency-domain indoor radio propagation channel 

measurement data, which can be obtained with the frequency-domain channel 

measurement system presented in Seciton 5.1.  Such a measurement-based simulation 

method can be employed in practice to conviently establish empirical performance 

benchmarks when designing the TOA estimation systems. 

Extensive channel measurement data are colleted at spacially widely distributed 

locations where indoor geolocaiton systems are most likely deployed and used.  During 

the measurement, the physical distance between the transmiter and receiver antennas of 

the measurement system is measured either directly or indirectly from the blueprint of 

building floorplans, to determine the expected TOA for each measurement location.  

Through the computer simulations based on channel measurement data, the statistical 

results of ranging errors are determined such as mean, standared deviation (STD), and 

cumulative distribution funciton (CDF).  Various TOA estimation techniques are 

compared based on these statistical simulation results obtained from the same set of 

measurement data described in Section 5.1 and Appendix 5.A.  It is important to note 

that due to the site specific nature and the complexity of indoor radio propagation 

channels, as presented in Chapter 2 and 3, the computer simulations based on different 

set of channel measurement data may reveal varying statistical results so that the 
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quantitative peformance comparison of different TOA estimation techniques is 

meaningful only with the same set of measurement data.  

The signal bandwidth is one of the key factors affecting the accuracy of the 

TOA estimation in the multipath propagation environments as pesented in Chapter 3 

and the reference [Pah02].  Therefore, in this chapter we comapre different TOA 

estimation techniques with various bandwidths to observe the effect of signal 

bandwidth.  To study the performance of the TOA estimation using signals of various 

bandwidths, in our simulations we use only a segment of each frequency-domain 

measurement data to reflect the band-limitation effects.  For example, with a 1 MHz 

frequency-domain sampling interval, a data segment of 21 samples of each 

measurement data, centered at 1 GHz, is used in the simulations for a signal bandwidth 

of 20 MHz. 

In the following sections, various perforamnce evaluation results are presented, 

which are obtained from the channel measurement data based simulations that are 

outlined in this section, to evaluate and to benchmark the performance of various TOA 

estimation techniques in indoor application environments. 

 

5.3 Performance of Super-resolution Techniques 

The purpose of this section is to compare the performance of various super-

resolution TOA estimation techniques presented in Section 4.2 and 4.3 with the 

measurement data based simulations outlined in Section 5.2.  As discussed in Section 

5.2, instead of estimating from the received signal as shown in Fig. 4.1, the channel 
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frequency response is directly obtained using the frequency-domain channel 

measurement system shown in Fig. 5.1.  A sample measured channel frequency 

response is shown in Fig. 5.2, which is obtained at the center frequency of 1 GHz with a 

frequency bandwidth of 200 MHz and a frequency sampling interval of 1 MHz.  The 

super-resolution TOA estimation algorithm shown in Fig. 4.2 is implemented to 

estimate the TOA.  In this section the input data correlation matrix xxR  is estimated 

using the forward estimation technique given in (4.13) and the forward-backward 

estimation technique given in (4.14) while in Section 5.5 and 5.6 the correlation matrix 

is estimated using the diversity techniques given in (4.12) together with the forward and 

forward-backward estimation techniques.  In our simulations, as discussed in Section 

4.3.2 the length of segments 3/2NL = , which is defined in (4.13), and the total 

number of the multipath components pL  is determined using the MDL criteria given in 

(4.20) and (4.21) for forward and forward-backward estimation methods, respectively. 

As we discussed earlier in Section 4.3.3, the Eigenvector (EV) method is a 

variant of the MUSIC method and it is preferred when the correlation matrix is 

estimated from a limited number of data samples.  To compare the performance of the 

EV and MUSIC methods, both algorithms are applied to the same set of the measured 

data described in Section 5.1 and Appendix 5.A, with the forward-backward estimation 

of the correlation matrix.  In Section 4.3.1, we have theoretically analyzed the forward 

(FCM) and forward-backward (FBCM) estimation techniques for super-resolution TOA 

estimation through the decorrelation effects in the estimated correlation matrix.  Since 

there is no analytical way to quantitatively relate the improvement in the accuracy of the 
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TOA estimation to the correlation matrix estimation techniques, in this section we also 

compare these two methods using statistical simulation results.   

 

900 920 940 960 980 1000 1020 1040 1060 1080 1100
-130

-120

-110

-100

-90

-80

-70

frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

noi: 14    1  160   40

 

Figure 5.2: Frequency-domain channel measurement data obtained using the 

measurement system in Fig. 5.1. 

 

Figure 5.3 presents the mean of the ranging errors versus signal bandwidth using 

various super-resolution TOA estimation techniques.  The vertical line corresponds to 

plus and minus one standard deviation about the mean.  To clearly relate the results to 

geolocation applications, time delay τ  is converted to distance d  by the relation 

τ×= cd , where m/s103 8×=c  is the constant speed-of-light in free space.  The results 

for different techniques are slightly shifted in the x-axis for better observation.  From 

the results in Fig. 5.3, we can observe that both mean and standard deviation of the 
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ranging errors decrease as the bandwidth increases for all techniques.  The statistical 

performance of the MUSIC and EV algorithms with the FBCM, i.e., MUSIC/FBCM 

and the MUSIC/FCM, is very close to each other.  However, the EV method has 

slightly better performance than the MUSIC for low signal bandwidth in terms of 

smaller standard deviation of estimation errors.  Without further comparison of the 

MUSIC and EV algorithms, in the following we use the EV algorithm for further 

investigation of the FCM, FBCM, and the diversity techniques. 
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Figure 5.3: Mean of ranging errors using the MUSIC and EV algorithms with 

the forward (FCM) and forward-back (FBCM) estimation of correlation matrix.  

The vertical line corresponds to plus and minus one standard deviation of the 

ranging errors about the mean. 
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Figure 5.3 also presents the simulation results for the EV algorithm with the 

FCM (EV/FCM).  Comparing the EV/FBCM and the EV/FCM, it is clear that the 

FBCM based method performs much better than the FCM based method in terms of 

smaller mean and standard deviation of the estimation errors for the same simulation 

scenarios, which is consistent with the analysis in Section 4.3.1.  For example, the 

EV/FBCM has about 1 m’s smaller mean and about 2 m’s smaller standard deviation 

than the EV/FCM for a bandwidth of 20 MHz.  It is also noted that both techniques 

have similar performance when the signal bandwidth is large, e.g., when the bandwidth 

is larger than 120 MHz. 

 

5.4 Comparison of Super-resolution and Conventional 

Techniques 

In order to demonstrate the usefulness of the super-resolution technique, we 

compare its performance with two conventional time delay estimation techniques.  In 

the first of the other two techniques, the frequency-domain channel response is 

converted directly to time domain using the inverse Fourier transform (IFT) and then 

the propagation delay of the DLOS signal is detected.  Since indoor radio propagation 

channels have limited multipath delay spread and here we are only interested in the 

arrival time of the DLOS signal, partial time-domain channel response will suffice for 

the TOA estimation.  If partial time response is desired when converting the frequency 

response to time domain, the chirp-z transform (CZT) is preferred that provides 

flexibility in the choice of time-domain parameters with the cost of longer 
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computational time as compared with the IFFT [Ulr86].  The time-domain resolution 

with the CZT is the same as with the inverse FFT.  On the other hand, a proper window 

function is needed to avoid leakage and false peaks by reducing the sidelobes of the 

time-domain response, which is resulted from finite bandwidth, with the cost of reduced 

time-domain resolution.  In our simulations, we employ the CZT with the Hanning 

window to convert frequency channel response to time domain, though on the figures of 

our simulation results such a technique is still denoted by IFT. 

The second technique uses the traditional cross-correlation technique with the 

direct-sequence spread-spectrum (DSSS) signals, designated as DSSS/xcorr on the 

figures of the simulation results.  To simulate the DSSS signal-based cross-correlation 

technique using the frequency-domain channel measurement data, the frequency 

response of a raised-cosine pulse with a rolloff factor of 0.25 is first applied to the 

frequency channel response as a combined response of the band-limitation pulse-

shaping filters of the transmitter and the receiver.  Then the resultant frequency 

response is converted to time domain using the inverse Fourier transform for the TOA 

estimation.  The use of such a simulation technique is easily justified since the delay 

profile obtained using the DSSS signal-based ranging technique is the channel impulse 

response convolved with the pulse shape of a single chip of the spread spectrum signal.  

Interested readers can refer to the references [Rap96, Cox72] for more detailed 

discussion on this issue. 
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Figure 5.4: Normalized time-domain channel responses obtained using three 

different techniques.  The vertical dash-dot line denotes the expected TOA.  The 

estimated TOA is marked on the time-domain channel response for each of the 

three techniques. 

 

Figure 5.4 shows the normalized time-domain channel responses obtained from 

the simulations using three different techniques, i.e., the IFT and DSSS/xcorr 

techniques described in this section and the EV/FBCM described in Section 5.3, using a 

sample frequency-domain channel measurement data with a bandwidth of 40 MHz.  

The vertical dash-dot line on the figure denotes the position of the expected TOA 

(obtained by measuring physical distance between the transmitter and receiver 

antennas) and the estimated TOA is marked on the time-domain channel response for 

each of the estimation techniques.  We can clearly observe that the EV/FBCM super-
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resolution technique shows much higher time-domain resolution than the other two 

techniques and it accurately detects the arrival time of the DLOS path with 2.7 ns 

estimation error, while the other two show much larger estimation errors of about 35 ns.   

Figure 5.5 presents the mean and the standard deviation of ranging errors versus 

signal bandwidth using the same techniques as in Fig. 5.4.  Figure 5.6 presents the 

probabilities of the channel measurement locations where the absolute ranging errors 

are smaller than 3 m.  From these results we can observe significant difference between 

the super-resolution technique and the other two TOA estimation techniques, especially 

when the signal bandwidth is relatively small.  With a signal bandwidth of 20 MHz, the 

mean of ranging errors with the super-resolution technique is about 2 m’s smaller than 

that of the DSSS/xcorr technique, and about 4 m’s smaller than that of the IFT 

technique.  On the other hand, with 20 MHz bandwidth, using the super-resolution 

technique we can estimate distance within 3 m’s accuracy at about 25% more locations 

than by using the other two techniques.  It is also noted that the performance difference 

decreases as the signal bandwidth increases. 

From the simulation results presented above, we can conclude that in general, 

the super-resolution technique has the best performance and it is especially preferred 

when the signal bandwidth is small.  On the other hand, it should also be noted from the 

simulation results that while using the super-resolution technique and larger bandwidth 

can improve the statistical performance of the TOA estimation, it cannot eliminate large 

estimation errors at some locations.  For example, from Fig. 5.6 we can observe that 

even with a bandwidth of 160 MHz there are still around 15% of the total measurement 
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locations showing larger than 3 m’s ranging errors.  This is because of the high 

probability no-LOS (NLOS) situation in indoor environments between the transmitter 

and receiver antennas that we discussed previously in Section 3.3.  The large TOA (or 

distance) estimation errors due to the NLOS condition need to be dealt with in the 

positioning process to achieve high positional accuracy in indoor geolocation systems 

as presented in Section 3.3 and Section 2.4.   
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Figure 5.5: Mean of the estimation errors using three different techniques.  The 

vertical line corresponds to plus and minus one standard deviation. 
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Figure 5.6: Percentages of the measurement locations where absolute ranging 

errors are smaller than 3 meters with three different TOA estimation techniques. 

 

The exact comparison of our simulation results with the CRLB presented in 

Section 3.2 is not possible because our simulation results show the mean and standard 

deviation of the TOA estimation errors over a larger number of different locations but 

the CRLB is the lower bound of the TOA estimation errors caused by additive white 

noise at one location.  However, since the CRLB is the lower bound of the variance of 

TOA estimation errors about the true time delay, the existence of the NLOS situations, 

which is apparent from our simulation results, makes it impossible to benchmark the 

performance of the TOA estimation techniques in indoor environments with the CRLB.  

For the same reason, the TOA estimation in the multipah indoor radio propagation 

channels has non-zero mean of estimation errors, that is, the estimation is biased as 
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shown in the Fig. 5.5; and the variance of the TOA estimation errors is much larger than 

the CRLB obtained with the single-path AWGN channel shown in Fig. 3.2. 
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Figure 5.7: Mean and standard deviation of ranging errors without time 

diversity (EV/FBCM), with time diversity using the CMDCS (EV/FBCM/TD4-

CMDCS) and GDCS schemes (EV/FBCM/TD-GDCS). 

 

5.5 Effects of Time Diversity 

In Section 4.4 we have discussed diversity techniques for the TOA estimation 

applications, including time, space, and frequency diversities.  In this section we study 

the effects of time diversity with the two diversity combining schemes that we 

presented in Section 4.4, i.e., the GDCS and CMDCS diversity combining schemes.  In 

our channel measurement data based simulations, the time diversity is simulated by 



 134

running simulations with the four snapshots of the channel frequency response collected 

consecutively at each location while stopping movement in the vicinity of the 

transmitter and receiver antennas during the measurement.  This represents the situation 

in which the system is used for quasi-stationary applications with four time diversity 

branches.   

Figure 5.7 shows simulation results for the EV/FBCM technique with time 

diversity using two different diversity combining schemes, i.e., using the CMDCS 

(EV/FBCM/TD4-CMDCS) and using the GDCS (EV/FBCM/TD-GDCS).  The 

simulation results for the EV/FBCM method without time diversity are also presented 

on the figure as a reference for comparison and it is referred to as non-diversity method 

in the following.  From the results, we can observe that there is no significant difference 

in the mean of the ranging errors with the three techniques for all bandwidth values.  

But the CMDCS based method has slightly worse performance in terms of larger 

standard deviation of ranging errors than the non-diversity method, which justifies the 

analysis and conclusion in Section 4.4 that the CMDCS diversity combining scheme is 

not suitable for the time diversity techniques.  However, the GDCS based method has 

consistently better performance than the non-diversity method for all bandwidth values 

in terms of smaller standard deviation of ranging errors.  For example, as compared 

with the non-diversity technique the GDCS based method has 1 m’s smaller standard 

deviation of ranging errors with 20 MHz bandwidth, and about 0.5 m’s smaller standard 

deviation with 40 MHz bandwidth.  Therefore, the same as in Section 4.4 we can 

conclude that the GDCS diversity combining scheme can be used in time diversity 
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systems to improve the performance of the TOA estimation, while the CMDCS 

diversity combining scheme is not suitable for the time diversity technique.  In the next 

section, we evaluate the performance of frequency diversity techniques with simulation 

results. 

 

5.6 Effects of Frequency Diversity 

Through the analysis of the correlation coefficients of the estimated channel 

parameter correlation matrix, it is shown in Section 4.4 that the CMDCS diversity 

combining scheme is well suited for the super-resolution TOA estimation techniques 

with frequency diversity technique.  The frequency diversity with the CMDCS can 

significantly reduce the correlation coefficients of the estimated channel parameter 

correlation matrix, and thus improves the performance of the super-resolution 

algorithms.  But the theoretical quantitative relation between the improvement in the 

TOA estimation results and the parameters of frequency diversity technique, such as the 

number of the diversity branches, is not known.  Therefore, in this section we evaluate 

the effect of frequency diversity on the super-resolution TOA estimation techniques 

with the channel measurement data based simulation results.  

The use of frequency diversity technique is simulated by running simulations 

with a number of different segments of data samples from one snapshot of the 

frequency-domain channel response in a way similar to the data segmentation method 

used in (4.13).  Each frequency-domain channel measurement data, i.e., each snapshot 

of the frequency-domain channel response, is divided into a number of equally spaced 



 136

segments, so that each segment of the data has different center frequency.  Since the 

measurement data at each location are of 200 MHz bandwidth, to avoid overlapping 

among diversity segments, the effect of frequency diversity is evaluated only for a 

bandwidth of 20MHz in this section.  But it should be noted that in real implementation, 

overlapping segments can be used for frequency diversity.  In our simulations, the 

overlapping is avoided only in order to avoid the correlation between measurement 

noises in the overlapping segments since the segments are obtained from the same 

snapshot of the frequency-domain channel response.  Four equally spaced segments are 

first used for each measurement data sequence to compare the frequency and time 

diversity techniques using the same number of diversity branches.  Both the GDCS and 

CMDCS diversity combining schemes are used for the EV/FBCM with frequency 

diversity, i.e., the EV/FBCM/FD4-GDCS and the EV/FBCM/FD4-CMDCS as shown in 

Fig. 5.8a, and the results are compared with that of the non-diversity technique 

EV/FBCM and the time-diversity technique EV/FBCM/TD-GDCS.  Since we only have 

simulation results for one bandwidth values, here we could use the cumulative 

distribution function (CDF) of the absolute ranging errors for comparison, which 

provides much more performance information than the mean and the standard deviation 

measures.  From Fig. 5.8, we can observe that all three diversity techniques perform 

better than the non-diversity technique EV/FBCM and the CMDCS-based frequency 

diversity technique EEV/FBCM/FD4-CMDCS has the best performance. 

In order to examine the effects of the number of diversity branches, we increase 

the number of diversity branches to 10, which is the maximum number of segments of 
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20 MHz bandwidth that we can achieve from 200 MHz channel measurement data 

without overlapping segments.  The simulation results of the GDCS and the CMDCS 

based frequency diversity techniques with 10 diversity branches are compared, i.e., the 

EV/FBCM/FD10-GDCS and the EV/FBCM/FD10-CMDCS in Fig. 5.8b, respectively, 

with that of the non-diversity technique EV/FBCM and the frequency diversity 

technique EV/FBCM/FD4-CMDCS, the latter of which has the best performance in Fig. 

5.8a.  From the results, it is clear that the EV/FBCM/FD10-CMDCS technique has the 

best performance and even the EV/FBCM/FD4-CMDCS technique has slightly better 

performance than the EV/FBCM/FD10-GDCS technique, although it has a smaller 

number of diversity branches.  Consequently, from the simulation results we can 

conclude that frequency diversity techniques can significantly improve the ranging 

performance and for frequency diversity, the CMDCS diversity combining scheme is 

strongly preferred to the GDCS scheme by considering the computational superiority, 

discussed in Section 4.4, that the CMDCS-based super-resolution techniques has over 

the GDCS-based super-resolution techniques. 
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(b) 

Figure 5.8: Cumulative distribution function of the absolute ranging errors for a 

bandwidth of 20MHz with frequency diversity. 
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5.7 Summary and Conclusions 

The super-resolution TOA estimation technique needs to first estimate channel 

frequency response and then convert the channel frequency response to time domain to 

estimate the arrival time of the first peak of the time-domain pseudospectrum.  

Therefore, the empirical frequency-domain channel measurement data can be very 

conveniently integrated into the super-resolution techniques to study the performance of 

the TOA estimation in indoor environments.  In this chapter we have evaluated the 

performance of various super-resolution TOA estimation techniques, which are 

presented in Chapter 4, with the computer simulations based on a set of measured 

channel frequency response.  The indoor radio propagation channel measurement data is 

collected with a frequency-domain channel measurement system. 

From our simulation results, it is clearly observed that the super-resolution 

techniques can significantly improve the performance of the TOA estimation in indoor 

multipath channels as compared with the conventional techniques including the direct 

IFT and the DSSS signal-based cross-correlation techniques.  The improvement 

techniques can further improve the TOA estimation performance, including the EV 

method, the forward-backward estimation of the correlation matrix, time diversity 

techniques, and frequency diversity techniques.  Two diversity combining schemes, i.e., 

the GDCS and CMDCS schemes, are studied for the time and frequency diversity 

super-resolution techniques.  The simulation results show that for the time diversity 

techniques the GDCS diversity combining scheme is preferred while for the frequency 

diversity techniques the CMDCS is strongly preferred. 
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It is also observed from the simulation results presented in this chapter that the 

signal bandwidth has great impacts on the performance of the TOA estimation 

techniques in the multipath indoor radio propagation channels.  For each of the 

techniques, the larger the bandwidth is, the better the performance.  This observation is 

consistent with our analysis presented in Chapter 3.  Also the super-resolution TOA 

estimation techniques and the improvement methods for the super-resolution techniques 

all provide significant performance improvement when the signal bandwidth is small, 

but as the bandwidth increases there tends to be less significant difference between 

different estimation techniques.  It is also noted that because of the possibility of the 

NLOS condition between the transmitter and receiver antennas in indoor environments, 

using the super-resolution technique and the large signal bandwidth cannot eliminate 

the large ranging errors at some locations.  The large TOA estimation errors due to the 

NLOS condition need to be dealt with in the positioning process, which follows the 

process of the TOA estimation, to achieve good performance of the location finding 

systems.  It is worth to mention that due to the site specific nature and the complexity of 

indoor radio propagation channels, the simulations based on channel measurement data 

may reveal varying statistical results so that quantitative performance comparison 

between different TOA estimation techniques is meaningful only with the same set of 

measurement data. 

There is no suitable multipath channel model available in the literature for the 

performance evaluation of the TOA estimation techniques in indoor environments.  The 

CRLB derived for the traditional applications is not applicable for indoor applications 
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due to the existence of the NLOS situation, which can be easily verified with our 

simulation results.  The results obtained from the empirical channel measurement data 

based simulations provide an insight into the achievable performance in realistic indoor 

application environments.  The measurement data based simulation methods presented 

in this chapter can be used in practice to conveniently establish the performance 

benchmarks of the TOA estimation systems in indoor application environments.   

In the next chapter we conclude this thesis with a summary of conclusions, and 

discussions of future work. 
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Appendix 5.A Measurement Sites and Scenarios 

Descriptions of the measurement sites and measurement scenarios are presented 

in this section for the ease of reference, more details can be found in [Ben99c].  The 

measurements were conducted at three different buildings, including a manufacturing 

building at the Norton Co., Worcester, MA, a modern academic building, the Fuller 

Laboratory at WPI, and a residential house, the Schussler House at WPI.  Thirty 

locations were selected at each site for measurement, including indoor-to-indoor, 

outdoor-to-indoor, and outdoor-to-second floor communication scenarios.   

 

5.A.1 Descriptions of Measurement Sites 

Norton company is a manufacturer of welding equipment and abrasives for 

grinding machines.  The building selected for measurement is Plant 7 that is a large 

building with dimensions on the order of a few hundred meters.  This building is 

connected to a five floor brick building and to another manufacturing floor through a 

long corridor.  The rest of Plant 7 is mainly surrounded by open areas and small 

buildings.  The building is used for manufacturing abrasives and inside the building are 

huge ovens, grinding machines, transformers, cranes and other heavy machinery.  The 

building includes a set of partitioned offices with brick external walls, metallic windows 

and doors attached to the main huge open manufacturing area with steel sheet walls of a 

height of around seven meters and small metallic windows close to the ceiling.  In 

addition to the fluorescent lights, many utility pipes and metallic support beams hang 

from the ceiling.  A snapshot of the interior view of the building is shown in Fig. 5.A.1. 
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Figure 5.A.1:  A snapshot of Plant 7, Norton Co., Worcester, MA. 

 

Fuller Laboratories at WPI is a modern building that houses the Computer 

Science department at WPI and has been selected as the site for measurements related to 

office areas.  The dimensions of this building are on the order of a few tens of meters.  

It is surrounded on two sides by older WPI buildings (the Atwater Kent Laboratories 

and the Gordon Library) and by roads on the other two sides.  One of the road is an 

internal WPI campus road on the other side of which is the Salisbury Laboratories.  The 

other road is a main road with an open park on the other side.  The external walls of 

Fuller Laboratories are made of brick with some aluminium siding on two sides, 

metallic window frames and doors.  Within the building are several computer labs, 

department offices, offices of faculty and graduate students, lecture halls, and 

classrooms.  The walls are made of sheetrock and in some offices, soft partitions divide 

the room into cubicles.  Most of the rooms have furniture such as tables, chairs and 

desks as well as computers.  Some conference rooms have glass walls mounted in 

metallic frames.  Figure 5.A.2 shows an exterior view of the building. 
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Figure 5.A.2:  A snapshot of the Fuller Laborotories, WPI, Worcester, MA. 

 

Schussler house is a part of the residences available at WPI for visitors.  This is 

a fairly big residential house with wooden exterior walls and sheetrock interior walls.  

The house is however very old and some portions of the external walls are made of 

stone as shown in Fig. 5.A.3.  The house is located in a fairly open area with a few 

buildings of similar features located nearby.  Some trees and a parking lot surround 

other sides of the house.  Inside, there are several rooms that are furnished (with 

couches, tables, chairs etc.).  Some rooms have brick fireplaces.  Rooms have 

dimensions on the order of a few meters. 

 

Figure 5.A.3  A snapshot of Schussler house, WPI, Worcester, MA. 
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5.A.2 Descriptions of Measurement Scenarios 

Building layouts with transmitter and receiver locations at the three different 

measurements sites are illustrated in Fig. 5.A.4, Fig. 5.A.5, and Fig. 5.A.6.  Thirty 

locations are selected at each site for measurement including indoor-to-indoor, outdoor-

to-indoor, and outdoor-to-second floor scenarios.  Four consecutive snapshots of the 

radio channel were taken at each receiver location while preventing movement around 

the vicinity of the antennas of transmitter and receiver.  During the measurement, 

transmitter was fixed at one location while receiver was moved around.  For each 

measurement location, the physical distance between the antennas of transmitter and 

receiver were determined either directly or indirectly from the blueprint of the building 

floorplans. 
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Figure 5.A.4: Building layout with transmitter and receiver locations at the 

ground level of Plant 7, Norton Co., Worcester, MA. 
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(a) 

 

(b) 

Figure 5.A.5: Building layout with transmitter and receiver locations at Fuller 

Laboratories, WPI, (a) for indoor-to-indoor and outdoor-to-indoor scenarios, (b) 

for outdoor-to-second floor scenarios. 
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(a) 

 

(b) 

Figure 5.A.6: Building layout with transmitter and receiver locations at Schussler 

house, WPI, (a) for indoor-to-indoor and outdoor-to-indoor scenarios, (b) for 

outdoor-to-second floor scenarios. 
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Appendix 5.B Cumulative Distribution Functions of the 

Ranging Errors 

In this appendix, the cumulative distribution functions (CDF) of the ranging 

errors with different TOA estimation techniques are presented for the reference 

purposes.  The results are organized in subsections to match the results presented in 

Section 5.3, Section 5.4, Section 5.5, and Section 5.6, respectively.  Each figure 

illustrates the CDF of several TOA estimation techniques for a specific value of signal 

bandwidth as noted in the title and the legend of the figure. 
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5.B.2 Comparison of Super-resolution and Conventional Techniques 
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5.B.3 Effects of Time Diversity 
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5.B.4 Effects of Frequency Diversity 
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Chapter 6 

Conclusions and Future Work 
 

6.1 Conclusions 

In this section we briefly summarize the conclusions drawn from our research 

work presented in this thesis.  More detailed discussions can be found in the previous 

chapters, especially in the last section of each chapter, which specifically summarizes 

and concludes each chapter. 

In recent years, there are great interests in the location-based applications and 

the location-awareness of mobile wireless systems in indoor areas, which necessitate 

accurate location estimation in indoor environments.  The traditional geolocation 

systems such as the GPS cannot provide accurate location estimation in indoor 

environments, so that the indoor geolocation is emerging as a new important research 

field.  In this thesis, we have presented an in-depth study of the location finding systems 

and techniques, especially the TOA estimation techniques, for indoor applications.  The 

original work presented in this thesis has made contributions in various aspects of this 

emerging field, which provides a basic foundation for the design and performance 

evaluation of the indoor geolocation systems.  
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An overview of a wide variety of the technical issues involved in the design and 

performance evaluation of the indoor location finding systems have been presented.  It 

is shown that a large amount of research opportunities exist in this new field.  First, 

there is a need for the measurement and modeling of the multipath indoor radio 

propagation channels for the design and performance evaluation of various location 

sensing techniques.  Second, we need to design new location sensing techniques for the 

accurate estimation of various location metrics to overcome the challengers caused by 

the complex indoor radio propagation channels, and new positioning algorithms to 

compensate for the erroneous estimations of location metrics, to fuse multiple location 

metrics, and to exploit the unique features of indoor applications.  Third, we also need 

to study the system architectures and the practical deployment methods for the location 

sensor infrastructure networks in the ad hoc indoor application environments.  

The maximum-likelihood TOA estimation technique is studied in details, which 

was derived for the traditional location finding applications such as the GPS, sonar, and 

radar.  It is shown that in indoor multipath environments due to the complex channel 

characteristics, dramatically large estimation errors may occur with the traditional TOA 

estimation techniques, and the CRLB derived for the traditional applications is no 

longer applicable.  The alternative time delay-based location metric TDOA is briefly 

studied.  It is shown that in indoor environments the TOA is more appropriate than the 

TDOA due to an ambiguity in the TDOA estimation in the multipath channels.  The 

issues involved in the practical measurement of the TOA with spatially separated 

mobile units are discussed, and the techniques for synchronizing and coordinating the 
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remotely located transmitter and receiver are studied.  A non-synchronized TOA/TDOA 

measurement method is designed for overlaying geolocation functionality onto the 

existing wireless networks without significant modification to the existing system 

infrastructures and signaling formats. 

The MUSIC super-resolution spectral estimation algorithm is applied to the 

TOA estimation applications, on the basis that the frequency representation of the 

multipath channel model can be viewed as the harmonic signal model.  The super-

resolution TOA estimation techniques require the estimation of channel frequency 

response.  The practical limitation on the available signal bandwidth poses a limitation 

on the length of the channel measurement data in the TOA estimation applications.  

Therefore several techniques are presented to improve the performance of the super-

resolution TOA estimation techniques when the channel measurement data is short in 

length, including the Eigenvector method, the forward-backward estimation of 

correlation matrix, and diversity techniques.  The decorrelation effects of the channel 

parameter correlation matrix are analyzed for the forward and forward-backward 

correlation matrix estimation methods and for the frequency diversity techniques.  From 

the analysis we can conclude that the forward-backward estimation method has better 

decorrelation effects, which leads to the better performance of the super-resolution TOA 

estimation techniques, and diversity techniques, especially the frequency diversity 

technique, further improve the decorrelation effects of the correlation matrix.  Two 

diversity combining schemes are proposed for the super-resolution TOA estimation 

techniques, including the GDCS and CMDCS diversity combining schemes.  It is 
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shown that the CMDCS is computational superior than the GDCS, and the CMDCS is 

well suited for the frequency diversity techniques, which can significantly improve the 

decorrelation effects of the correlation matrix. 

Since the super-resolution TOA estimation techniques require the estimation of 

channel frequency response, the empirical frequency-domain channel measurement data 

can be conveniently employed to study the performance of the super-resolution TOA 

estimation techniques.  Thus, various TOA estimation techniques presented in this 

thesis are evaluated with the computer simulations based on a set of the measured 

channel frequency response collected in typical indoor application environments.  From 

our simulation results, it is clearly observed that the super-resolution techniques can 

significantly improve the performance of the TOA estimation in indoor multipath 

channels as compared with the conventional techniques including the direct IFT and the 

DSSS signal-based cross-correlation techniques, and the improvement techniques can 

further improve the TOA estimation performance, including the EV method, the 

forward-backward estimation of correlation matrix, and the time and frequency 

diversity techniques.  Also, it is shown that for the time diversity techniques the GDCS 

diversity combining scheme is preferred while for the frequency diversity techniques 

the CMDCS is strongly preferred. 

From the simulation results it is observed that the larger the signal bandwidth, 

the better the performance of the TOA estimation techniques in the multipath indoor 

radio propagation channels.  Also, the super-resolution TOA estimation techniques and 

the improvement methods for the super-resolution techniques all provide significant 
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performance improvement when the signal bandwidth is small, but as bandwidth 

increases there tends to be less significant difference between different estimation 

techniques.  It is noted that because of the possibility of the NLOS condition between 

the transmitter and receiver antennas in indoor environments, using the super-resolution 

technique and large signal bandwidth cannot eliminate the large ranging errors at some 

locations.  

There is no suitable multipath channel model available in the literature for the 

performance evaluation of the TOA estimation techniques in indoor environments.  The 

CRLB derived for the traditional applications is not applicable for indoor applications 

due to the existence of the NLOS situation, which can be easily verified with our 

simulation results.  The results obtained from the empirical channel measurement data 

based simulations provide an insight into the achievable performance in the realistic 

indoor application environments.  The measurement data based simulation methods 

presented in this chapter can be employed in practice to conveniently establish the 

performance benchmarks of the TOA estimation systems in indoor application 

environments.   
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6.2 Future Work 

As we discussed in Chapter 2, the indoor geolocation is a new research field 

where many research topics remains to be investigated, including channel measurement 

and modeling, design of new location sensing techniques and positioning algorithms, 

study of the practical deployment method for the ad hoc location sensor infrastructure, 

and etc.  Since the emerging indoor location-based applications are largely diversified 

in terms of application environments, application scenarios, accuracy requirements, and 

system requirements among many other considerations, it is foreseeable that a single 

technology or system could not fit for the requirements of all location-based 

applications.  This makes the research in the field of indoor geolocation more 

complicated and more interesting. 

The following two specific projects can be conducted as a continuation of the 

research work on the super-resolution TOA estimation techniques that are presented in 

this thesis.  First, more channel measurement data could be collected to do more site-

specific and application-specific performance evaluation of the super-resolution TOA 

estimation techniques.  In this thesis, the channel measurement data used in the 

performance evaluation simulations were collected from several different buildings for 

several different application scenarios, but due to the limited number of the 

measurement data for each measurement scenario, in this thesis the performance 

evaluation is conducted without classifying the measurement data into different 

measurement scenarios.  It will be interesting and important to study and compare the 
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performance of the TOA estimation techniques in different application environments 

and different application scenarios. 

Second, study and compare the TOA estimation techniques in terms of 

performance and implementation complexity.  The complexity of the super-resolution 

TOA estimation techniques may limit its use in some applications.  Therefore, it is 

important to study the implementation complexity and the tradeoffs between the 

performance and the cost of the practical implementation through theoretical studies 

and the implementation of a prototype system. 
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