Performance Benchmark of Parallel SiC and Hybrid GaN-SiC Power Switches

Table of Contents

- 1. Wide Bandgap Semiconductors(WBGs)
- 2. Buck Converters
- 3. Objectives of the Project
- 4. Methods to Achieve the Objectives
- 5. GaN-SiC vs SiC Parallel results
- 6. Findings: Synthesis and Analysis
- 7. PCB Design
- 8. Recommendations
- 9. Acknowledgments
- 10. Thank you

Wide Bandgap Semiconductors

- Due to recent advancements, the Si has approached its limit for power application, which require higher blocking voltages, switching frequencies, efficiency, and reliability.
- WBGs has become the focus of study in the search of a replacement for the Si semiconductors.
- Candidates for these devices are Silicon Carbide(SiC), Gallium Nitride(GaN) and Diamond.

Wide Bandgap Semiconductors

Silicon Carbide

Gallium Nitride

Buck Converters

A buck converter is a DC-DC converter that steps down the voltage.

Figure 6. Supply current I₂, diode current I_D, inductor current I, and inductor voltage V_L waveforms respectively (buck converter)

Objectives of the Project

 Measure the GaN SiC Hybrid configuration efficiency compared to the SiC in parallel configurations

Develop a PCB setup for further testing

Methods to Achieve Our Objectives

 Method 1: Develop a buck converter setup to compare the power efficiency SiC in parallel and the GaN-SiC Hybrid.

 Method 2: Developing a PCB capable of the standalone and parallel configurations analysis

Methods to Achieve Our Objectives

-Hybrid GaN-SiC -SiC Parallel

GaN-SiC vs SiC Parallel results

Efficiency comparison at 50kHz

GaN-SiC vs SiC Parallel results

Efficiency comparison at 100V & 45 Ohm Load

Efficiency comparison at 100V & 25 Ohm Load

Coclusion: Synthesis and Analysis

 The Hybrid GaN-SiC switch was more effective than the SiC in parallel when in came to power loss at different frequencies and loads.

Recommendations

- Conduct research on **GaN** in Parallel.
- Conduct Double Pulse Test on the three circuits.
- Conduct Thermal Analysis
- Introduce a more efficient **heat sink**
- Conduct a similar research using the PCB shown below.

PCB Design

Acknowledgments

- Professor Alberto Castellazzi
- Mr. Lee Yonghwa
- Dr. Jaedon Kwak

Thank Uou!

Questions?

Double Pulse Test(DPT)

DPT is a tool that allows a power stack under worst-case operating conditions.

$$I = \int \frac{V}{L} dt$$

Transistors used:

SCTW35N65G2V

IGO60R070D1

PCB Materials

T3P-L214-ST-BK