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ABSTRACT 

 

 The production of monoclonal antibodies (mAbs) is fast becoming a staple of 

pharmaceutical development. Understanding how differing feeds and bioreactor setups 

affects the production of mAbs is important for improving yields. In the process of 

manufacturing mAb IPTG1, an anti-phosphotyrosine antibody produced at Millipore, this 

project monitored cell viability and secreted antibody yields under a variety of culture 

conditions, including different media feeds and different gas spargers. 
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BACKGROUND 
 

 

 Since the development of the first cultured mammalian cell line in 1952, cell 

culture and the bioprocess industry have grown enormously. Increased knowledge of 

biology has facilitated pharmaceutical advancements and scientific research, especially in 

the production of monoclonal antibodies (mAbs) for targeting specific proteins (Bakalar, 

2012).  The cells, methods, and biological products are all important aspects of the 

process of bioproduction.   

 

Bioprocessing 

 According to the Commission on Life Sciences (1992), Bioprocess engineering 

can be defined as “…the sub-discipline within biotechnology that is responsible for 

translating the discoveries of life science into practical products, processes or systems 

that can serve the needs of society.”  A wide variety of products have been manufactured 

using bioprocess engineering, but the best characterized is the biopharmaceutical. The 

FDA first approved a biopharmaceutical created from mammalian cells in1986 for 

Muromonab CD3, an immunosuppressant drug given to reduce acute rejection in patients 

with organ transplants (Emmons and Hunsicker, 1987). 

Bioprocessing begins with the adaptation of a specific biological function to 

produce a protein or other biological molecule of choice. Today, a common method of 

bioproduction is to attach a gene of interest to a selectable marker, such as an antibiotic 

resistance gene or dihydrofolate reductase, to allow the selection of cells containing the 

recombinant DNA (rDNA). Cells that have not successfully integrated the gene of 

interest usually do not survive the selection agent (Chusainow et al., 2009).  Once a stable 
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cell clone has been developed containing the rDNA, the cells are expanded to produce the 

molecule of interest.  The expansion usually begins in a simple flask, and then proceeds 

to larger scale bioreactors – devices designed to grow larger cultures of cells to produce 

significant amounts of the product (Bioreactor, 2013). 

 

Bioreactors 

Bioreactors are used to grow large amounts of cells in a controlled environment 

produce a product. The modern bioreactor comes in sizes ranging from benchtop 3 liter 

reactors, to industrial reactors that can hold over 10,000 liters of culture (Plunkett, 2011). 

All bioreactors have a few basic requirements: a sterile environment, a way to provide 

necessary cellular nutrients, a system to monitor the conditions inside a culture, and a 

means to stimulate the cells to produce product. 

 First and foremost, a sterile environment is very important to the health of the 

culture. Mammalian cells are grown in a rich medium that is highly susceptible to 

contamination by outside organisms. These contaminants will deprive nutrients from the 

growing cells, either making it more difficult to produce the protein product needed or 

choking out the productive cells. Most reactors are sterilized before use by autoclaving, 

however some companies have moved on to single-use reactors to remove that necessity.  

Nutrients and gases are also added to the reactor using a sterile approach. Necessary 

gasses depend on the type of cell, but often include: air, oxygen, or nitrogen for cell 

health, and carbon dioxide to help control the pH of the reactor. Gases typically pass 

through sterile filters on their way into the reactor, and will also often pass through a type 

of sparger to release gases into the culture itself, rather than direct absorption through the 
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liquid surface. Two common sparger types are sintered and open pipe; each has their pros 

and cons. Sintered spargers release smaller bubbles which allow faster absorption, 

however the size of the bubbles produced can be fatal to cells. Open pipe spargers require 

more gas flow for oxygen absorption, but they tend to produce less cell shear (Sieblist et 

al., 2011).  

Cells are sometimes provided with nutrients or glucose feeds during bioreactor 

runs. These depend on the process and are developed based on the needs of the cells. The 

addition of gasses and nutrients to a reactor, and the growth of the cells, changes the 

conditions inside the vessel. The changing environment must be monitored.  Bioreactor 

systems are connected via computers and probes to monitor pH, dissolved oxygen, 

temperature, and other variables.   

Finally, depending on the type of cultured cell, reactors may need to be agitated to 

prevent clumping, cell death, and lackluster growth. There are a variety of ways to 

accomplish this, however the most common uses a stirred tank reactor. Using an agitator, 

a stirred tank reactor allows for equal distribution of nutrients and cells, and prevents the 

clumping of suspension culture (Sieblist et al., 2011). 

 A variety of different strategies are used to ensure bioreactors produce the highest 

levels of protein possible. The most basic of these is the feed strategy.  

 

Feed Strategies 

There are three major feed strategies for bioprocess in bioreactors: batch culture, 

fed-batch culture, and perfusion (Hu et al., 2011).  The batch culture strategy provides all 

nutrients in the initial media provided to the cells. While this makes the process much 
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simpler than fed-batch or perfusion and reduces the risk of contamination to the reactor, 

the limited amount of nutrients prevents the cells from achieving their maximum 

production ability. Fed-batch cultures allow a set amount of nutrients added to the 

cultures as they are growing which allows for cells to grow to higher densities and to 

increase product yield (Hu et al., 2011).  Fed-batch is much simpler than perfusion 

culture. Perfusion culture completely replaces the media of the reactor with a continuous 

feed throughout the growth process. This allows the reactor to be run indefinitely, 

however it is not a simple or realistic approach for labs with limited resources. It is also 

more difficult to scale up (Whitford, 2006).  Often the conditions in a bioreactor are 

initially simulated in a shake flask study to determine the optimal feed strategy and 

expected growth of the cells.  

Once the reactors are grown to the optimum cell density, the protein product of 

interest is purified from the culture or medium.  This is known as downstream bio-

proccessing. But before this process can begin, there needs to be confirmation of the 

protein being produced.  

 

Chinese Hamster Ovary Cells 

Chinese Hamster Ovary (CHO) cells are a widespread cell type frequently used in 

mammalian cell culture and bio-production. These cells were first isolated for use in 

mammalian culture from an ovary of a Chinese hamster in 1957 by Dr. Theodore T. 

Puck. Since then, they have widely been utilized to produce antibodies and other proteins 

for therapies of a variety of different ailments (Jayapal et al., nd). In fact, 70% of 

therapeutic recombinant proteins on the market have been estimated to be made in CHO 
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cells (Kim et al., 2012).  These cells are advantageous for many reasons, including their 

resiliency and ability to grow in both suspension and adherent cultures. However, what 

may be their most valuable characteristic is the DHFR gene deficiency in some mutant 

strains (Wurm and Hacker, 2011).  The purpose of the DHFR gene (dihydrofolate 

reductase) is to convert dihydrofolate to tetrahydrofolate, allowing CHO cells to 

synthesize specific amino acids (NCBI, 2013).  In some CHO cell lines, the DHFR gene 

is inactive, making it difficult for the cells to effectively utilize such nutrients as purine, 

pyrimidine, or glycine. When rDNA encoding a desired product is transformed into 

DHFR-mutant cells, the gene of interest is attached to a DHFR gene.  Only cells 

receiving WT DHFR from the rDNA construct will be survive on the selection medium 

(Camire, 2000).  This method of selection provides a powerful way for scientists to 

transform DNA into cells and select for the recombinants.  

 

Monoclonal Antibodies 

 Antibodies are an essential part of the mammalian immune system. These proteins 

bind to foreign proteins and cells such as bacteria and viruses, and trigger an immune 

response throughout the body. Each antibody detects a specific antigen, thus allowing for 

a very precise response (Bakalar, 2012).  The monoclonal antibody (mAb) is a very 

common product of mammalian cell culture and bioproduction. The term monoclonal 

antibody refers specifically to an antibody derived from a single B-cell clone, so it has 

one type of specificity.  mAbs are made in a laboratory. The first mAbs designed 

specifically for treatment of human diseases were developed in the early 1980s (Emmons 

and Hunsicker, 1987).  Since then, the mAb industry has grown exponentially.  As of 
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2010, there were seven approved mAb drugs on the market and over 130 more in clinical 

trials. The current approved mAbs treat diseases ranging from rheumatoid arthritis and 

lupus to melanomas (Nelson et al., 2010).  mAbs are not just used for treating diseases 

however, they can also be used for diagnostic tests, and biological study.  

 The structure of the mAb (Figure-1) is very important for understanding how to 

use and confirm the presence of an antibody in a bioprocess culture. Antibodies are made 

of two identical strands known as heavy chains (green in the figure) and two identical 

light chains (yellow). These chains are bound together with disulfide bonds.  

 
 

 

 

 

 

 

 

 

Figure-1: Diagram of a Typical Antibody.  The structure is composed of two heavy chains 

(green) and two light chains (yellow), held together by disulfide bonds.  (Janeway et al., 2001) 

 

 Y-shaped structure is integral to the functioning of each antibody, as it allows for 

binding to a specific antigen, while also permitting the antibody to bind to other 

antibodies and molecules to make higher order complexes.  This characteristic is often 

exploited for scientific research and other applications (Janeway et al., 2001). Protein-A, 

a surface protein found in specific bacteria, readily binds to antibodies, so scientists 

frequently use Protein-A to both purify and quantify antibodies.  
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PROJECT PURPOSE 

 

The purpose of this project is to prove that altering bioreactor feeds based on the 

analysis of cells and byproducts can increase the yield of a test mAb (IPTG1) being 

produced at Millipore Corp.  This goal was accomplished by comparing cell viability and 

secreted antibody titers for various bioreactor feeds and gas spargers.  
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METHODS 

 

Bioreactor Setup 

CHO cells were thawed two weeks prior to use in Cellvento 200 chemically 

defined culture medium (Merck Millipore) supplemented with 4 mM glutamine and 20 

μM puromycin. The puromycin is used as a selection agent to ensure all the cells are 

producing the desired antibody. Cells were passaged twice a week until they reached the 

necessary density, carefully keeping the cells in growth phase during this time, as 

overgrown cells tend to lag once added to a reactor.  

The setup of a single-use stirred tank bioreactor varied from process to process. 

The reactors used were Mobius CellReady 3L single-use bioreactors. Reactors were 

completely set up the night before with 2 liters of Cellvento 200 medium and 4 mM 

glutamine. All the settings used for each reactor run are shown below in the table.  

 
Temperature 

 

Agitator 

Speed 

pH Set 

Point 

DO Set 

Point 
Sparger 

Air Flow 

Rate 

Oxygen 

Flow 

Rate 

Run 1 36.8°C 180 RPM 7 50% Open Pipe 
0-100 

mL/min 

0-100 

mL/min 

Run 2 36.8°C 180 RPM 7 50% Open Pipe 
0-100 

mL/min 

0-100 

mL/min 

Run 3 36.8°C 180 RPM 7 50% 
Sintered 

Sparger 

0-100 

mL/min 

0-25 

mL/min 

 

 

The setup serves two purposes: 1) bring the medium up to running temperature and O2 

concentration, and 2) ensure the medium in the reactor was not contaminated by poor 

autoclaving of the DO or pH probes. The following day, the reactors were seeded at 0.5 x 

10
5 

cells per ml. Prior to being added to the reactor, cells were counted using a Beckman 

Coulter ViCell.  



13 

 

 

Feed Strategy 

The bioreactors were fed according to the CellVento 200 guidelines. This requires 

three different feeds per reactor: a CellVento feed, a mixed supplements feed, and a 

cystine tyrosine feed.  All reactors were fed on days 3, 5, 7 and 10 with all three feeds. 

Glucose was checked and supplemented when needed to maintain a concentration of 4 

grams per liter. Over the course of the experiment, both the CellVento feed and the 

cystine tyrosine feed were modified to produce better growth and mAb titers in the 

reactors.  

 CellVento 200 Feed 
Mixed Supplements 

Feed 

Cystine/Tyrosine 

Feed 

Day 3 30 ml/L 3 ml/L 5.3 ml/L 

Day 5 60 ml/L 6 ml/L 5.3 ml/L 

Day 7 60 ml/L 6 ml/L 5.3 ml/L 

Day 10 60/ml/L 6 ml/L 5.3 ml/L 

 

Bioreactor Sampling  

Reactors were sampled twice a day.  A 3 milliliter purge was done using the 

sampling port and then 5 milliliter sample was withdrawn.  This sample is immediately 

run on the Nova Biomedical BioProfile FLEX analyzer to accurately measure the carbon 

dioxide and oxygen concentrations. Following that, the sample was diluted 1 to 2 with 

accumax de-clumping agent, and the sample was run on the vicell in order to accurately 

count cell density and viability. The remaining portion of sample was spun down at a 

high speed for 5 minutes, and the supernatant which contained the secreted mAb product, 

was collected then placed in a -20°C freezer until titer measurements could be completed. 



14 

 

 

Measurement of mAb Titer 

 The antibody titer of the reactors was measured after each run was completed. 

This was measured using a ForteBio Octet instrument which uses Protein A sensors to 

quantify the amount of antibody present in the supernatant. First, medium was added to 

all the wells in column A of a 96 well plate to serve as a blanking solution for the assay. 

An antibody standard curve was created in the next two rows with known concentrations 

of IPTG antibody which was purified in-house. The medium samples were diluted and 

added to the wells. This assay was run using protein-A sensors and the direct 

quantification program on the instrument.  
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RESULTS 

 

 

This project investigated whether altering bioreactor feeds based on the analysis 

of cells and by-products can increase the amount of a test mAb (IPTG1) produced.  This 

was accomplished by comparing various bioreactor feeds while monitoring cell viability 

and antibody titers.  Single-use 3-liter stirred tank bioreactors were used.  Reactors 1 and 

2 were set up identically (duplicates) at 36.8°C, 180 rpm stirring, 7.0 pH set point, 

dissolved O2 set at 50%, Open pipe type gas sparger, 0-100 ml/min air flow rate, and 0-

100 ml/min O2 flow rate. 

Using the commercially available feeds and growth medium discussed in 

Methods, a control run of reactors 1 and 2 was completed.  Figure-2 shows the cell 

viability and viable cell yield, while Figure-3 shows the antibody yields.  This initial run 

was performed to serve as a baseline in order to optimize cell viability and density for 

future runs with modified feeds. The data indicate that the cell viability, viable cell 

density, and antibody yields were very consistent between the two identical runs.  Cell 

viability (solid curves) remained near 100% until around day-10 and then dropped 

slightly.  Viable cell density peaked around day-6 at approximately 12 million cells per 

ml.  IPTG antibody yields increased consistently throughout the runs, and peaked around 

days 10-11 at approximately 0.27 mg/ml. 
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Figure-2: Plot of Cell Viability and Viable Cell Density for 11 Days. Although the viability 

(solid lines) for both reactors 1 and 2 drops considerably at day 7, the viable cell density (dotted 

lines) reached above 12 million cells per milliliter at peak.  

 

 

 
Figure-3: Plot of Antibody Yield (mg/ml).  The yield was measured using a protein sensor in 

the octet assay. Both reactors reached a high of around 0.27 mg/ml of IPTG antibody.  
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Following the initial set of baseline reactors, a series of five different reactors 

were run with changes to their feeds: one control reactor, two reactors with a modified 

version of the CellVento 200 feed (referred to as modified feed A), and two reactors with 

a modified version of the CellVento 200 feed (referenced as modified feed B) (Figures 4 

and 5).  The reactors with the modified feeds were also run with double the normal 

amount of the cystine and tyrosine feed.   The viable cell density was highest for the 

control reactor, peaking at approximately 17 million cells per ml.  All other feed 

conditions produced approximately equal viable cell densities, slightly underneath the 

control reactor.  The antibody yields were also highest for the control reactor, reaching 

0.30 mg/ml at day-12.  Feed-B produced the next highest yield at around 0.25 mg/ml at 

day-10. 

 

 
Figure-4: Plots of Cell Viability and Viable Cell Density For Reactors With Different Feeds.  

The viable cell density (dotted lines) reached much higher in the control reactors as it did in the 

reactors with variable feeds.  
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Figure-5: Plot of Antibody Yields (mg/ml) For Runs with Different Feeds.  This graph of the 

reactor titer over tie also shows the control reactor made significantly more titer over time as 

well.  

 

 

During the final days of this second set of reactors, crystals of unknown origin 

were seen while running cell counts. These crystals are shown in Figure-6.  Because of 

the high levels of cystine added in the modified cystine tyrosine feeds, it was proposed 

that these crystals were cystine crystals forming after the nutrient had fallen out of 

solution. The presence of these crystals could explain the slower growth and lower 

viability of these reactors as the cells would be unable to take up the cystine in 

crystallized form. The crystals may also trap cells, killing them, which could have caused 

the lower viability. 
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Figure-6: Photo of Presumed Cystine Crystals.  Show is a photograph of crystals believed to 

be cystine precipitating out of the culture due to its high concentration. This picture is from Feed-

A Reactor-2, however similar crystals were found in all reactors besides the control reactor. Photo 

taken using Beckman Coulter Vicell.  

 

 

Another possible cause of the observed decreased viability and cell density of this 

reactor run was the high levels of carbon dioxide measured after the addition of the feeds 

(Figure-7). The cystine tyrosine feed reactor in particular had a very high pH, so CO2 

was added to the reactors to lower the pH, and was unable to be stripped away.   This 

resulted in a high percent CO2 in the reactors, seen in the figure. 
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Figure-7: Measured Percent CO2 in the Reactors With Different Feeds.  CO2 was added to 

lower the pH of the reactor. It was very high in the experimental reactors but remained at a 

reasonable level in the control reactor (blue dotted line).  

  

 

One final set of reactors was run with a control reactor and two different modified 

feed reactors all with the normal concentration cystine/tyrosine feed, and one reactor with 

normal feeds but a low concentration of cystine/tyrosine. A different gas strategy was 

tested using a sintered-type gas sparger instead of an open pipe to remove the carbon 

dioxide faster from the culture (Figures-8 and 9). As shown in Figure 8, the cell 

viability and viable cell density of all these reactors with the sintered sparger were lower 

than the previous runs with the pipe sparger, including in the control reactor. The mAb 

titer of the reactor (Figure 9) is also low, likely reflecting the low growth of the cells.  
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Figure-8: Plot of Cell Viability and Viable Cell Density Using a Sintered Type Gas Sparger.  

The solid lines measure the percentage of viable cells in the reactor, while the dashed lines 

measure the viable cell density.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure-9: Plot of Antibody Yields Using a Sintered Type Gas Sparger.  The mAb yields were 

lower than with the other runs, most likely due to the low cell density caused by the sintered 

sparger.  
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DISCUSSION 

 

 Over the course of three sets of reactor runs, it can be seen that small changes in 

media feed or in CO2 content can make a great difference in the viability of the cells and 

the mAb yields.  The dramatic effect of changing the gas strategy using different spargers 

was unexpected. While the effect of sparger type has been seen previously in reactors, it 

had not been evaluated with this cell line in this media (Chalmers, 1994). Adding the 

high concentration of cystine tyrosine to the feed also had a drastic effect on the growth 

of the culture. This feed had a high pH, so it was added much slower than the other feeds 

to prevent cell death. However, the amount of CO2 added to counter the high pH was 

most likely more detrimental to the cells than the pH change would have been.  

In future runs, less CO2 will be added during feeding times, and the feeds will be 

added over the course of two hours rather than just one hour. This will hopefully allow 

less CO2 build-up in the reactor, as the pH will be less dramatic during feeds. The data 

gathered from the high cystine tyrosine run may not be as accurate as the other runs since 

nutrients were precipitating out of the media as crystals. A change in titer growth due to 

changes in feeds cannot be proven if the nutrients are not in solution.  

After optimizing the yield of antibody, in the future, western blots will be used to 

verify the produced antibody interacts with its cognate antigen and retains sufficient 

structure to be functional.   This will also help ensure that the reactor processes and the 

feed changes have not negatively affected the functional domains of the antibody.  
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