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Organization of the Report 
This MQP report consists of a 20 page conference paper in which fire test performance of FRP’s 

with varying amounts of fire retardant ratios where compared using a flammability parameter. 

The flammability parameter is then followed by two screening tools that can be used to predict a 

materials fire performance within an ASTM E84 and NFPA 285 fire tests. This is then followed 

by multiple briefs included within the appendices where more in depth information regarding the 

flammability parameter and screening tools can be found. All results and data collected from the 

cone and various calculations can also be found in the appendices. 
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Abstract 
 

The use of Fiber Reinforced Polymers (FRPs) for architectural applications in the construction 

industry is subjected to several requirements of the International Building Code: ASTM E84 and 

NFPA 285. These large scale tests can be costly and failure can be detrimental for the 

development of new FRP systems.  These FRP systems use differing ratios of resin and fire 

retardant additives.  How these differing ratios affect performance in ASTM E84 and NFPA 285 

is investigated by further developing a set of screening tools based on flame extension and flame 

spread models to predict fire performance.  These tools use data from the bench scale Cone 

Calorimeter to measure material fire characteristics.  These characteristics are then used as input 

for the screening tools to estimate ASTM E84 and NFPA 285 performance.  The predicted 

changes in performance based on changes in resin to fire retardant additive ratios is reported for 

each FRP tested.   
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Prediction of Fire Test Performance Based on Varying 

FRP Resin/Fire Retardant Additive Ratios 

Introduction 
The use of fiber reinforced polymers (FRPs) in nowadays construction industry has 

increased due to the material’s corrosive resistant properties, low manufacturing costs, and ease 

of molding for architectural applications. As an interior finish or exterior wall assembly, it is 

subjected to several requirements of the International Building Code (IBC)
 1

. The IBC is often 

referenced in the United States to establish safety requirements for new constructions. Chapter 8 

of the IBC requires interior wall and ceiling finishes to be classified by standardized test: ASTM 

E84
2
 commonly referred at the Steiner Tunnel Test. It classifies the materials by flame spread 

and smoke production. This classification will determine where the material can be used inside 

the building. The IBC also requires all materials that contain combustible components (i.e. FRPs) 

to pass NFPA 285
3
, the Multi-Story Building test. These tests are both time consuming and 

costly for the company. If the desired result is not attained, the material developer must make 

changes and submit the material for retesting. The additional testing imposes a potentially 

significant economic penalty for material development. 

Currently, there are a number of correlations and models developed to assess 

performance in full‐scale tests based on economical bench-scale standardized tests such as the 

Cone Calorimeter (ASTM E 1354)
4
. However these models are limited because they were 

developed to for specific types of products. To help address this problem, this project further 

develops a set of bench scale screening tool to predict the thermal behavior of several Fiber 

Reinforced Polymers (FRP) samples varying in composition ratios of aluminum trihydrate 

(ATH) and Sand. Specifically, this project further develops models to determine modifying the 

additive ratios in the composite will affect the performance in the full-scale assembly test based 

on the Cone Calorimeter results.  

A flame length screening tool is used to determine the class rank from the Tunnel Test. 

The screening tool uses the equations developed by Acosta et al
5
 to determine the flame spread. 

For the smoke developed index, the tool adapts Janssens’ model
6
 to find the transmission 

percentage to relate cone results to the Tunnel Test. A flame height equation for wall fires is 
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derived based on research done on small pool fires. This model is able to use input parameters 

derived from cone calorimeter to calculate the length of flame spread in the NFPA 285 test. This 

Exterior Screening Test will provide data to determine whether or not a material will pass or fail 

NFPA 285. The success of both models would allow material developers to run multiple bench-

scale tests to refine their materials before spending time, money, and resources on a both large-

scale test. 

Materials Description: 

Fiber Reinforced Polymers (FRP) are composite materials based on thermoplastic and 

thermoset resins in a heterogeneous mixture of two or more compounds bonded together with 

fillers, additives and fibers that enhance the mechanical, electrical and thermal properties as 

shown in Appendix MS.  Given the multifunctional properties of FRPs with lightweight and high 

strength, FRPs are extremely attractive for architectural applications. This project analyzes the 

fire characteristics of two fire retardant composites described in  

Table 1: Hetron 650 T20 developed by Ashland Performance Materials which is an 

unsaturated polyester resin that contains different percentages by weight (wt%) of Aluminum 

Trihydrate (ATH) in different mixtures with varying glass content. ATH is a crystalline, water-

insoluble powder obtained chiefly from bauxite, an aluminum ore.  

The second FRP is Fireblock gel-coat manufactured by Composites Creating Progress, 

which has a polymer concrete coating based on Fireblock resin and a sand aggregate over a FRP 

substrate; the Fireblock resin and sand ratios are varied as shown in Table 2. Concrete polymers 

have some special features that are described in Appendix CP.  

 

Table 1: Composition of Hetron Systems 

Composite  ATH Ratio (wt%) Glass % Assigned Name 

Hetron 650 T20 100:00 41.86 HR-0 

Hetron 650 T20 100:33 51.11 HR-33 

Hetron 650 T20 100:66 60.37 HR-66 

Hetron 650 T20 100:100 67.32 HR-100 

Hetron 650 T20 100:130 71.65 HR-130 
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Table 2: Composition of Fireblock Systems 

Composite Sand Ratio % Glass % Assigned Name 

CCP Fireblock Gelcoat 100:00 30.95 FB-0 

CCP Fireblock Gelcoat 70:30 36.5 FB-30 

CCP Fireblock Gelcoat 60:40 36.5 FB-40 

CCP Fireblock Gelcoat 50:50 36.5 FB-50 

CCP Fireblock Gelcoat 40:60 36.5 FB-60 

Cone Testing  

To get all the information that was needed from each of the FRP sample, a cone calorimeter 

was used to test each sample. The Cone Calorimeter is a device that is used to study the fire 

behavior of small samples around a maximum size of 100 mm by 100 mm. The cone calorimeter 

works by inducing an incident heat flux onto the samples surface and recording a variety of 

information on the various analyzers on the machine during the burning of the sample.                                                                                

In order for the cone calorimeter to determine the heat release rate, it uses the principle of 

oxygen consumption calorimetry. 

 The principle of oxygen consumption calorimetry is the backbone of the cone 

calorimeter. Oxygen consumption calorimetry is the determination of the heat release rate of a 

material based on the amount of oxygen that is being burned during the test. By measuring the 

depletion of oxygen in the exhaust gases, this information can be used along with a general 

assumption of the amount of heat that is released during the burning of oxygen to determine the 

heat release rate from a specific material. Full information about the cone calorimeter and how it 

works can be found in Appendix Cone. 

 To allow for the best representation of our data within the ASTM E84 and the NFPA 285 

tests, the samples would have to be run at a range of heat fluxes. An initial heat flux of 50 kW/m
2
 

was used in order to develop a baseline data set for the materials. Additional tests were 

conducted at incident heat flux of 75 kW/m
2 
along with additional tests being run at incident heat 

fluxes of 25 and 40 kW/m
2
.  Typical results from the cone testing for heat release rate and 

specific extinction area are shown below in Figure 1. All other cone testing results can be seen in 

Appendix Graphs. 
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Figure 1: HRRPUA and SEA for hetron 100:0 at IHF of 40 kW/m
2
 

Flammability Parameter 

In order to compare the basic fire characteristic of each Kreysler system when the 

addictive ratio changes, one of the most relevant indicators is the potential for propagating flame 

spread. The flammability parameter indicates how easily the material will burn or ignite based on 

key constraints that control the flame spread. This analysis uses the theoretical considerations of 

Mowrer and Williamson
7 
that evaluates the flammability parameter from small-scale heat release 

measurements. Mowrer and Williamson used a model based on the upward flame spread theory 

developed by Cleary and Ouintiere
8
 which describes the concurrent flame spread model where 

the flame spreads in the same direction as the flow; this is the behavior seen in the ASTM E84 

test and the NFPA 285 test. The schematic of the model is shown in Figure 2.    

 

Figure 2: Schematic of flame spread mode1
7
 

According to Mowrer and Williamson and based on Cleary and Quintiere model, the net 

rate flame propagation equals the difference between the pyrolysis front velocity and the burnout 

front velocity, defined by the following equation:  
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( )                                                                  
   

  
 

  ( )    ( )

  
 

As result, after various integrations before and after burnout commences, the potential for 

acceleratory spread depends on three major parameters: 

 Heat release rate per unit area    ̇  

 Flame spread time     

 Burning duration      

According to this model, acceleratory spread is predicted when: 

 ( )                                                                          ̇  
  

   
   

For simplicity, the above inequality can be represented and rearranged as: 

( )                                                                    ̇  
  

   
   

Where    is the time the material takes to heat to the point where ignition is possible. It is 

measured directly in the cone as the time when the test sample ignites under the imposed heat 

flux. The complete derivation of the model can be found in Appendix FP.  

 Flammability parameter calculations 

Since the flammability parameter is in terms of the heat release rate per unit area from the 

Cone testing, a simple use of equation (3) can yield the flammability behavior of each system. 

The first set of tests was run at an incident heat flux of 50 kW/m
2
 and three to four tests were 

performed for each Hetron and each Fireblock system. This study used three different 

approaches for the inputs in equation (3) using different interpretations for the Heat Released 

Rate and the burnout time, as shown in Appendix AVG. Each method was used to compute the 

flammability parameter for each test run to obtain systematic results. From these calculations, an 

average was computed for each system and the uncertainty of the calculations was computed 

using the pooled variance theory
9
 to account for the possible error of each measurement, as 

shown in Appendix AVG.  

Negative values for the flammability parameter show decelerating spread, while positive 

values show an accelerating flame spread behavior. Table 33 shows the results for the ten systems 

evaluated with an uncertainty level of ±0.403. A first screening suggests all Hetron samples are 
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not expected to have an acceleratory flame spread behavior while two Fireblock samples 

registered positive values which might suggest an acceleratory flame spread behavior. However, 

those positive values are really small, closer to zero than to 1 which in principle means Fireblock 

Systems are not expected to have an accelerator behavior either.  

Table 3: Average Flammability Parameter values 

Composite Average Flammability Parameter 

Hetron 100:00 -0.442 ± 0.403 

Hetron 100:33 -0.561 ± 0.403 

Hetron 100:66 -0.577 ± 0.403 

Hetron 100:100 -0.667 ± 0.403 

Hetron 100:130 -1.478 ± 0.403 

Fireblock 100:00  0.441 ± 0.403 

Fireblock 70:30  0.123 ± 0.403 

Fireblock 60:40  -0.146 ± 0.403 

Fireblock 50:50  -0.332 ± 0.403 

Fireblock 40:60  -0.345 ± 0.403 

 

 

Figure 3: Average flammability parameter per composite 

From Figure 3, looking at the data for Hetron Systems and taking into account the 

uncertainty level which is represented by the error bars, the flammability parameter for Hetron 

samples tends to be the same at approximately -1 for an ATH ratio from 0 to 100. When the 

ATH ratio increases to 130, there is a significant drop in the parameter to approximately twice 
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the value. On the other hand, Fireblock Systems do not show any visible trend in terms of what 

happens when the ratio of the sand additive decreases. At Fireblock 50:50 it seems that the 

flammability parameter reaches a steady value of -0.7.  

Flammability parameter under different incident heat fluxes: 

 The same procedure used in the previous section was used to compute the flammability 

parameter for selected Hetron and Fireblock systems under 25, 40 and 75 kW/m
2
. The results 

obtained for each system are summarized in Table 4.   

Table 4: Flammability parameter for different incident heat fluxes 

Composite 25 kW/m2  40 kW/m2 50 kW/m2 75 kW/m2 

Hetron 100:00 -1.346 -0.397 -0.442 0.235 

Hetron 100:100 -3.015 -2.594 -0.666 -1.171 

Hetron 100:130 -4.800 -3.273 -1.477 -1.021 

Fireblock 100:00 -2.131 -0.008 0.440 0.465 

Fireblock 60:40 -1.748 -0.027 -0.146 0.645 

Fireblock 40:60 -1.996 -0.172 -0.346 0.587 

 

 

Figure 4: Flammability parameter for different incident heat fluxes 

Figure 4, shows a direct relationship between the flame spread behavior and an increasing 

incident heat flux, which is expected that a higher incident heat flux the material tends to exhibit 

an acceleratory behavior. Similarly, this graph confirms the initial suggestion that after a ratio of 
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100:130 ATH there is a significant non-acceleratory flame spread behavior under all incident 

heat fluxes applied.  

 

Figure 5: Flammability Parameter for Fireblock Systems 

Figure 5, shows the flame spread behavior of Fireblock Systems which show a direct 

relationship between the incident heat flux and the flame spread behavior which increases with a 

higher IHF. Other than this, there is not a difference between the amount of sand in the 

composite and its flame spread behavior. For all three systems, the values for the flammability 

parameter yields values extremely close at all IHF. These results confirm the initial suggestion 

that the variation of sand does not seem to have a significant influence in the fire performance of 

the composite.   

ASTM E84 Screening Tool 
ASTM E84 is an assembly test that provides flame spread and smoke production data 

form wall and ceiling lining materials. Commonly referred to as the “Tunnel Test,” ASTM E84 

determines the flame spread and the smoke production of the material tested. ASTM E84 test 

requires the test chamber to be approximately 25 feet long and a chamber that is approximately 

17 inches wide and 12.5 inches in-depth. This test is only used for screening or ranking purposes 

that classifies materials into: 

 Class A: flame spread index from 0 to 25 and smoke developed index less than 450 

-2.500

-2.000

-1.500

-1.000

-0.500

0.000

0.500

1.000

25 kW/m2               40 kW/m2                50 kW/m2                  75 kW/m2 

Flammability Fireblock Systems 

FB-0

FB40

FB-60



 
 

9 
 

 Class B: flame spread index from 26 to 75 and smoke developed index less than 450 

 Class C: flame spread index from 76 to 200 and smoke developed index less than 450  

Flame length screening tool 

The flame spread index is an integration over time of the flame extension produced by 

the material, which was found using the model developed by Acosta et al. The basic assumption 

for this model states that the heat release rate per unit area of the specimen and the burners in the 

tunnel act as a line fire point source that also accounts for a point source that moves as the 

specimen burns in the tunnel.  

Based on this model, the authors developed two set of equations for flame length 

screening tool, one that uses multiple incident heat fluxes and one that uses a single incident heat 

flux. For more information please refer to Appendix FLST. 

The flame length screening tool used in this analysis is based on the single incident heat 

flux model from Acosta et al, which yields two main equations for an incident heat flux of 40 

kW/m
2
. The two equations are: 

 ( )                                         (       (
      ̇    

    
)

      

 )       

( )                                               (        (
      ̇    

    
)

      

)        

Where    ̇  is heat release rate per unit area from the cone data, for which it is necessary to 

multiply it by 0.6 which would represent the pyrolysis area at the tunnel. The constant 88 (kW) 

accounts for the heat release by the burners and implies a flame extension of zero before ignition. 

The uncertainty of this model was reported to be ±30 by Acosta et al. The following graph, 

Figure 6, shows the typical curve obtained for flame extension of Fireblock samples. 
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Figure 6: Flame Extension Hetron Samples for an IHF of 40 kW/m2 

Data interpretation: 

In order to use equations (11) and (12), an aggregate heat release rate per unit area was 

obtained by averaging the heat release rate for each second of the test of each when there was 

more than one trial per composite. The procedure followed to find the flame length and the 

curves obtained for each composite is shown in Appendix FLST. The flame spread index was 

computed for an incident heat flux of 50 kW/m
2
 for all of the Kreysler composites, and for the 

optimal incident heat flux of 40 kW/m
2 
for a selected number of systems. The results obtained 

are summarized in Table 55.  

Table 5: Flame Spread Index predicted values 

Composite FSI (50 kW/m2) FSI (40 kW/m2) Classification 

Hetron 100:00 23 18 A 

Hetron 100:33 18 --------- A 

Hetron 100:66 14 12 A 

Hetron 100:100 13 --------- A 

Hetron 100:130 16 9 A 

Fireblock 100:00 41 41 B 

Fireblock 70:30 46 --------- B 

Fireblock 60:40 43 39 B 

Fireblock 50:50 39 --------- B 

Fireblock 40:60 46 46 B 
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As Table 5 shows, all Hetron Systems have a flame spread index less than 25, which 

means that based on this model the composites will be classified as Class A indicating that they 

will not spread the fire beyond the vicinity of the origin. On the other hand, for Fireblock 

Systems the model predicts that they would be classified as Class B which is associated with a 

flame spread at a relatively low rate. Some small variance between the values estimated for an 

IHF of 50 and for a 40 IHF is noticeable, but it can be justified by the fact that the model used 

was developed for an IHF of 40 kW/m
2 

which simulates better the thermal environment in the 

tunnel test. Nevertheless, the values obtained are in right range.  

Smoke developed Index  

From the ASTM E84 standard, the smoke developed index is a ratio of the area under the 

curve of the light transmission versus time of the sample being tested and a standard reference of 

red oak light transmission, defined by the following equation: 

( )                                           

(∫ (      
      

 
)  )

             

(∫ (      )
      

 
)
       

     

In order to be able to use the heat release rate per unit area obtained from the cone in a 

model that predict the smoke developed index in the tunnel test some correlations needed to be 

done, shown in  Appendix SDI. These correlations used the light transmission model presented 

by Janssens and adapted to predict the heat release rate in the tunnel described by the following 

equation: 

( )                                                      ̇       (       ̇
    )     

The heat release rate per unit area from the cone needs to be multiplied by 0.6 which is 

the exposed pyrolysis area in the tunnel. Finally, it needs to account for the heat generated by the 

burners in the tunnel so 88 kW are added.   

Then, by using and adapting Janssens model the light transmission in the tunnel is defined by:  

( )                                                   ( )  
   

    (
        

(           )       
)
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The transmission percentage curve obtained from Fireblock systems under an incident 

heat flux of 40 kW/m2 is displayed in Figure 7.   

 

Figure 7: Light Transmission percent of Fireblock samples under an IHF of 40 kW/m
2
 

Data interpretation: 

Similar to the procedure followed for the flame spread index, in order to find the 

aggregate heat release rate per unit are, all the data points each second of the test. In this case, an 

aggregate of the specific extension coefficient (k) was also found following the same approach, 

which is described in Appendix SDI. The smoke developed index was compute for an incident 

heat flux of 50 kW/m
2
 for all Kreysler composites, and for an optimum incident heat flux of 40 

kW/m
2 

for a number of selected systems.  

Table 6: Smoke Developed Index for 50 kW/m
2
 and 40 kW/m

2
 

Composite SDI (50 kW/m2) SDI (40 kW/m2) Class 

Hetron 100:00 153 234 A 

Hetron 100:33 201 ------- A 

Hetron 100:66 217 105 A 

Hetron 100:100 130 ------- A 

Hetron 100:130 48 40 A 

Fireblock 100:00 96 145 B 

Fireblock 70:30 122 ------- B 

Fireblock 60:40 98 140 B 

Fireblock 50:50 213 ------- B 

Fireblock 40:60 226 242 B 
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As Table 6 shows, all the values obtained from the smoke developed index for Hetron 

Systems and Fireblock Systems are under the maximum possible value of 450. Based on this 

screening tool, all Kreysler composites will pass the ASTM E84 standard with values for smoke 

transmission under the maximum limit. The results obtained are also subject of some level of 

uncertainty which was found to be ±17 by using the theory of propagation of uncertainty because 

the transmission percentage is dependent of other two equations as described in Appendix UNC. 

It is also possible to visualize a decrease in the smoke generated by Hetron samples as the ATH 

and glass content increases (Fiber Reinforced Polymers (FRP) are composite materials based on 

thermoplastic and thermoset resins in a heterogeneous mixture of two or more compounds 

bonded together with fillers, additives and fibers that enhance the mechanical, electrical and 

thermal properties as shown in Appendix MS.  Given the multifunctional properties of FRPs 

with lightweight and high strength, FRPs are extremely attractive for architectural applications. 

This project analyzes the fire characteristics of two fire retardant composites described in  

Table 1: Hetron 650 T20 developed by Ashland Performance Materials which is an 

unsaturated polyester resin that contains different percentages by weight (wt%) of Aluminum 

Trihydrate (ATH) in different mixtures with varying glass content. ATH is a crystalline, water-

insoluble powder obtained chiefly from bauxite, an aluminum ore.  

The second FRP is Fireblock gel-coat manufactured by Composites Creating Progress, 

which has a polymer concrete coating based on Fireblock resin and a sand aggregate over a FRP 

substrate; the Fireblock resin and sand ratios are varied as shown in Table 2. Concrete polymers 

have some special features that are described in Appendix CP.  

 

Table 1). On the other hand, there is an increment in the smoke developed in Fireblock 

samples as the sand ratio increases; referring back to the composition of Fireblock, the glass 

content remains the same as the sand ratio increases. This suggests a further analysis of the 

influence of glass content in the fire characteristics of Fireblock samples.   

Limitations of the screening tool  

The major limitation of this screening tool relies on the fact that the tunnel test is 

designed to last 10 minutes. The flame spread index and smoke developed index are time 

dependent integrals with limits from time equals zero minutes to time equals 10 minutes. 
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Nevertheless, most of the tests performed did not last up to ten minutes, and in case they did, the 

useful data was taken only until edge burning. Therefore, the time integrals were computed using 

the data available and not until 10 minutes as the standard defines. Similarly, for light 

transmission calculations, some values for the specific extinction coefficient were recorded as 

negative values; these negative values were ignored and taken as zero. A negative value for the 

extinction coefficient means that the beam intensity with smoke is greater than the beam 

intensity without smoke, and since the beam intensity without smoke is assumed to be an 

intensity of 100%, a negative value means that the beam intensity with smoke is somehow 

greater than 100%, which is physically inconsistent. An extinction coefficient of zero will 

represent an obscuration percentage of zero assuming that there is no smoke produced. As a 

result, the values obtained might not be a perfect representation of the performance of these 

composites in the tunnel test, but they serve as a solid prediction of the possible values that 

Hetron and Fireblock Systems will tend to produce.  

Comparison of Kreysler Composites with Commercial FRPs 
Hetron 650-T20 was presented in winter 2012 as a new strategy for Fiber Reinforced 

materials presented by Ashland Inc. It was introduced as a high strength fire retardant resin with 

less volatile pricing. It belongs to the Hetron family that share many characteristics with the 

Modar family of fire retardant resins. From the technical datasheet
10

, Modar 814A is described as 

an acrylic polymer resin with low viscosity which is able to achieve a flame spread index <25 

and smoke generation <100. Similar to Hetron family, it also contains ATH as the fire retardant 

agent in a ratio of 150 and 20% glass content. Since Hetron is a halogenated polyester resin it 

can be rendered fire retardant through the use of additives or by grafting fire retardant materials 

onto the backbone of the resin.  

The main reasons why modified resins are entering the market is because costs and 

regulations of some materials are increasing. In order to achieve the same performance level, 

options are typically higher in cost because without them, the performance is less effective. In 

cases where premium corrosion resistance and lower prices are desired, costumers are encourage 

to use Hetron 650 T20. The fire characteristics of Hetron samples in this analysis registered 

sound values compared to what commercial FRPs reported in terms of flame spread index (FSI) 

and smoke developed index (SDI). Modar 814 has a bigger ATH ratio than the Hetron tested in 
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this project, as predicted, with a ration of ATH of 130 or larger the FSI is less than 25 and the 

SDI is less than 100.  

 For Fireblock Systems, the screening tool to predict the performance in the ASTM E84 

Test suggests that these composites will be ranked as Class B material with a smoke developed 

index between 100 and 250. Some commercially available gel-coat composites reported to have 

flame spread index of less than 25 and smoke developed index less than 300
11

. Comparing these 

values with what was obtained in this analysis, it seems that this screening tool yields similar 

values to what is expected from gel-coat composites. Even though, this screening tool ranked 

Fireblock Systems as Class B with flame spread indexes between 41 and 46 which are not 

significantly far from an index of 25. At this point, it is important to highlight that the glass 

content percentage in commercially available gel-coat composites is between 20% and 26% 

whereas the glass content for the Fireblock tested in this project is 36.5%. This fact suggests the 

future study about the glass content in this type of composites since it might be the reason why 

modeling predicted different values for the fire characteristics of Fireblock versus what is 

reported in the market.     

NFPA 285 Screening Tool 
Modern building codes have included requirements for fire testing of all combustible 

materials for decades. In recent years, similar fire testing has become a requirement for Fiber 

Reinforced Polymers. The use of FRP’s in exterior wall systems means that it is subjected to the 

requirements of the Energy Conservation Code (IECC).The International Building code (IBC) 

requires exterior wall assembly testing in accordance with National Fire Protection Association 

(NFPA) 285 – Standard Fire Test Method for Evaluation of Fire Propagation Characteristics of 

exterior Non-Load-Bearing Wall Assemblies Containing Combustible components.  NFPA 285 

typically tests all combustible used in exterior wall of Types I through IV. Construction type 

definitions and typical wall systems are defined in the IECC and IBC regarding requirements for 

continuous insulation and large-scale fire testing. 

To compare the results that are being obtained from the cone calorimeter to the NFPA 

285 standard, this analysis looks specifically at the flame height that the specific sample might 

experience. Based on the NFPA 285 standard, the vertical flame height should not exceed a 
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height of about 3.05 meters or 10 feet. Using the flame height form proposed by Mowrer and 

Williamson and flame height models correlated from pool fire research, a series of flame height 

equations were determined that could be used to determine the dynamic flame height to compare 

with the NFPA 285 standard.  

In order to be able to compare the results obtained from the cone calorimeter, a flame 

height equation for wall fires is needed to relate to the NFPA 285 standard. The problem that was 

determined while researching wall fires was that there was very limited research into flame 

heights of small fires (specifically under 100 kW/m
2
). However, a large amount of research has 

been done on pool fires when the heat release rate per unit area is small. Research and 

correlations were done for small pool fires and the system of equations that roughly represents 

pool fires is shown below in equations (9) and (10). The full pool fire model can be seen in 

Appendix POOL. 

(9)  
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      ̇ 

      (          ) 

(10) 
  

 
      ̇ 

 
 

        ̇ 
                   (                 ) 

 The system of equations for pool fires was used to help further develop a similar system 

of equations that could represent that of changing wall fires sizes. By assuming that wall fires 

would experience a similar flame height drop off to that of the pool fire, a system of flame height 

equations could be developed. To be able to assume a similar drop off in wall fires, any wall fire 

data that was researched had to show some signs of a drop off at the end of their data set when 

the heat release rate per unit area is small. By using the data sets from Delichatsios
12

 and King-

Mon Tu
13

, a system of equations were developed for wall fires to represent small fires and large 

fires. The flame height equations are shown below in equations (11) and (12). The full wall fire 

model can be seen in Appendix WALL.  

(11) 
  

  
   ( ̇  
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       (                   ) 

(12) 
  

  
     ( ̇  
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       ̇  

       (            ) 

Once the system of flame height equations for wall fires had been developed, a dynamic 

analysis of the cone data had to be done using the above equations. In order for a dynamic 

analysis to be done, the flame height equations had to be reformatted into a form that could be 
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easily used in the Runge-Kutta 4
th

 order method. The flame height equations were written into a 

form similar to that from Mowrer and Williamson. The rewriting of the equations into the 

Mowrer and Williamson form is shown in full detail in Appendix RK4. The reformatted 

equations in the Mowrer and Williamson resulted in two flame height equations and two change 

of the pyrolysis length equations shown below in equations (13), (14), (15), and (16). 

(13)    ( )(       √ )
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In order to run the above equations within the Runge-Kutta method, an assumption of the 

pyrolysis length and limits of the small wall fire equation had to be determined. One of the first 

assumptions made was for the initial pyrolysis length. For solving of the Runge-Kutta, an initial 

pyrolysis length of 0.5 meters was chosen. The initial pyrolysis length was chosen based on the 

average heat flux from the calibration for the NFPA 285 test from the Kreysler Reports
14, 15

. The 

pyrolysis length was chosen to be 0.5 meter was based on the height above the window where 

the highest heat flux averages appear during the calibration of the NFPA 285 test rig. In addition, 

the initial pyrolysis length was also chosen based on the limits shown below, because 0.5 meters 

allowed for more room for the small wall fire equation to be used.  

Next, the lower limits of the flame height equations had to be determined. The lowest 

limit of the allowable heat release rate per unit is based on the Mowrer and Williamson model. 

From the model, the flame height must always be greater than the pyrolysis length. Using 

equations (11) and (12), the dimensionless heat release rate  ̇  
   was solved for when the flame 

height over the pyrolysis length is equal to one and then the heat release rate per unit area was 

determined from that. The full process can be seen in appendix WALL. The limits of the heat 

release rate per unit area based on the pyrolysis length are shown below. 

Table 7: Heat Release Rate per Unit Area Limits 

Xp (m) HRRPUA (kW/m
2
) 

0.1 30.88507787 

0.5 69.06113361 

1 97.66719178 
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1.5 119.6173922 

2 138.1222672 

Once both of the equations were reformatted into the Mowrer and Williamson form  and 

all assumptions formed, both equations (15) and (16) were run through a Runge-Kutta 4
th

 order 

method that allowed for the dynamic solving of the flame height and change in pyrolysis length 

throughout each test.  The entire Runge-Kutta 4
th

 order process can be seen in Appendix RK4. 

After running the samples through the Runge-Kutta at two different incident heat fluxes, 

the results are pretty conclusive. For the samples at the incident heat flux of 50 kW/m
2
, the 

results for the pass or fail of each sample are shown in Table 8 below. Also, a typical result from 

running the Runge-Kutta solution is shown below in Figure 8.  

 

 

Table 8: Flame Lengths at IHF of 50 kW/m
2
 

Results from Samples at Incident Heat Flux of 50 kW/m
2
 

Sample name Allowable Flame height Flame Height Measured Pass/Fail 

Hetron 100:00 3.05 meters 0.927 meters Pass 

Hetron 100:33 3.05 meters 0.509 meters Pass 

Hetron 100:66 3.05 meters N/A N/A 

Hetron 100:100 3.05 meters N/A N/A 

Hetron 100:130 3.05 meters 0.949 meters Pass 

Fireblock 100:00 3.05 meters 3.799 meters Fail 

Fireblock 70:30 3.05 meters 3.093 meters Fail 

Fireblock 60:40 3.05 meters 2.949 meters Pass 

Fireblock 50:50 3.05 meters 1.648 meters Pass 

Fireblock 40:60 3.05 meters 2.334 meters Pass 

Epoxy 3.05 meters 0.854 meters Pass 
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Figure 8: Hetron 100:0 Flame Height and Pyrolysis Length at IHF of 50 kW/m
2 

From the results shown in Table 8, it is shown that two of the samples will fail the NFPA 

285 test based on the overall flame height. The samples that fail are both Fireblock samples with 

ratios of 100:0 and 70:30. In addition to this, two of the Hetron samples were unable to be used 

in this Runge-Kutta method due to limitations of the model. Figure 8: Hetron 100:0 Flame Height 

and Pyrolysis Length at IHF of 50 kW/m2shows the flame height and the change of the pyrolysis 

length during the entirety of the test. The flame height reaches a certain point where the height 

become constant while the pyrolysis length increases until it reaches the flame height. The flame 

height become constant because that is the point where the flame becomes cellular due to the 

heat release rate per unit are becoming small. The rest of the graphical results from the Runge-Kutta are 

shown in Appendix RK4. The results for the incident heat flux of 40 kW/m
2
 are shown in Table 9 below.  

Table 9: Flame Heights at IHF of 40 kW/m
2
 

Results from Samples at Incident Heat Flux of 40 kW/m2 

Sample name Allowable Flame height Flame Height Measured Pass/Fail 

Hetron 100:00 3.05 meters 1.179 meters Pass 

Hetron 100:100 3.05 meters 0.877 meters Pass 

Hetron 100:130 3.05 meters 0.565 meters Pass 

Fireblock 100:0 3.05 meters 2.138 meters Pass 

Fireblock 60:40 3.05 meters 2.369 meters Pass 

Fireblock 40:60 3.05 meters 1.942 meters Pass 
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From the results of the incident heat flux of 40 kW/m
2
, all of the tested samples will pass 

the NFPA 285 test based off the flame heights. Unlike the samples at incident heat flux of 50 

kW/m
2
, none of the samples fail the test because of the limitation of the flame height model.  

Although the results from the flame height equations look reasonable and good, the flame 

height model is very crude and is limited in the scope of what it can determine. There were a 

number of assumptions made for the development of the system of equations for wall fires and in 

the solving of the Runge-Kutta equations. The results shown for both incident heat fluxes could 

vary depending on how well refined the system of equations for the flame heights and the 

Runge-Kutta equations are. With our simple model, these results are the best we can get for now. 

The other limitation of the flame height model is that at a certain point for the lower heat release 

rate per unit area where the model makes no physical sense. The two Hetron Systems with 

additive ratios of 100:66 and 100:100 both had average heat release rate per unit area lower than 

the critical value.  

Conclusions  
 Being able to predict fire test performance of FRPs with varying Fire retardant ratios is 

very helpful to the construction industry in decreasing the cost of material testing. With accurate 

predictions of fire behavior, a company can reduce the number of full scale fire tests that would 

be have to be performed in order to determine how the varying of the fire retardant ratios 

affected the material. A flammability parameter taken from the works of Cleary and Ouintiere, 

which was used in order to determine that for the Hetron samples, the propagation of the flame 

would decrease drastically when the ratio rises above 100:130, while flame propagation in the 

Fireblock samples remained nearly identical. 

 The varying of the materials fire retardant ratio means that the new material must be run 

through both the ASTM E84 and the NFPA 285 tests before the material is allowed for use in 

buildings. Having to repeat the ASTM E84 or the NFPA 285 tests can results in frustration along 

with large cost in repeating the tests. Two screening tools were further developed to determine 

how the variation of the material’s fire retardant ratio would affect their performance in each of 

the tests.  As a result of the screening tool for the ASTM E84, all of the Hetron samples would be 

classified as a class A material while all of the Fireblock samples would be classified as a class B 

material. Nevertheless, some further analysis should be performed to determine the influence of 
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glass content in the generation of smoke for Fireblock samples.  For the NFPA 285 screening 

tool, all of the Hetron that fit within the limitations of the screening tool would pass the test, 

while the Fireblock all pass the NFPA 285 except for Fireblock 100:00 and Fireblock 70:30 at an 

incident heat flux of 50 kW/m
2
. More research should be done into the NFPA 285 flame height 

model and confirmation of the result should be done before the model is confirmed. 
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Appendix-Materials Section (MS) 
Primary Author-Cristina Herrera 

Secondary Author-None 

 

Fiber Reinforced Polymers (FRP) are composite materials known as Fiber-reinforced 

polymers based on thermoplastics and thermoset systems. The general definition of a composite 

describes it as a heterogeneous mixture of two or more compounds bonded together. Typically, 

the composition of FRP consists of a polymer matrix or resin reinforced with fibers; these fibers 

are typically glass, carbon or aramid. Other materials such as fillers and additives can be added 

but they are not an essential part. The material for the matrix can be any plastic; in general, it is a 

syrupy liquid which combined with a hardener forms a cross-linked solid. The composite is 

ready after adding fibrous material to the matrix in the form of a cloth and letting the resin to 

cure. This process takes place in a closed or open mould. The addition of fibrous materials 

enhances the strength and elasticity of the resultant polymer. Nevertheless, the properties of the 

final material depend on the mechanical properties of the matrix and the fiber, their ratio, and the 

length and orientation of fibers in the matrix.  The most common combination of polymer 

matrices and reinforcing fibers is shown in Figure 1.  

Composites are anisotropic materials, which mean properties change according the 

structural configuration of each part of the material. For example, their strength is different in 

any region of the whole structure. In general, their stress-strain behavior is linearly elastic to the 

point of fracture even when the resin in the composite consists of viscous fluids and elastic. In 

general, composites have great mechanical properties such as high strength, fatigue endurance, 

light weight, material toughness, among others. Depending of the additives used in the 

composite, some other qualities can be achieved, such as high resistance to elevated temperature 

and resistance to corrosion. The properties of the final composite can be enlarged or reduced by 

altering the geometric shape of the material.  
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Figure 9: Common polymer matrices and fibers 

 

Resins  

There are two classes of resins, thermoplastics and thermosets; thermoplastics resins do 

not cure permanently because the mers in the backbone do not cross-link, this means that at room 

temperature it will remain a solid but melts when heated and solidifies again after cooling. On 

the other hand, thermosets cure permanently by an irreversible cross-link at high temperatures; 

this makes thermosets ideal for structural applications. Thermosets are particularly attractive to 

many applications since “compared with metals, they possess corrosion resistance, lighter 

weight, and sound and thermal insulating properties and they can be processed at lower pressures 

and temperatures.” (ASM Desk Editions: Engineered Materials Handbook). Hetron systems and 

Fireblock systems are both made of polyester resins.   

Polyester resins 

According to the Federal Highway administration, polyesters are probably the most 

commonly used of polymeric resin materials, up to 75% of all resins. One of the main 

advantages of polyesters is their good compatibility with fibres due to low viscosities. In 

addition, polyesters are easy to manufacture, they cure over a wide range of temperatures and 

under moderate pressures. They are produced by the condensation polymerization of 

dicarboxylic acids and dihydric alcohols resulting in a relatively low molecular weight 

unsaturated polyester chain as shown in Figure 2.  One of the less attractive characteristics of 
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polyesters is that during processing, curing reactions are highly exothermic with a resulting 

excessive heat generated.  

  Nevertheless, their dimensional stability and affordable cost make polyesters great 

candidates for composites matrices which can result high corrosion resistant and fire retardants 

formulations.  

 

Figure 10: Polyester molecular configuration 

 

Fibers  

Fibers are the central compounds of most composites enhancing the material mechanical 

performance. They are fibrous materials that usually occupy from 30% to 70% of the matrix 

volume. They are processed with other materials such as starch, gelatin, oil or wax to improve 

the bonds. The main objective regarding the use of fibres is to place them in positions and 

orientations in which they are able to contribute efficiently to the load-carrying abilities of the 

final composite. Recall that FRP are anisotropic materials where the orientation of the molecular 

components is extremely important to determine the mechanical properties of the material. 

Different layers with different orientation can be used to create equal properties in all directions 

of the whole structure. Some of the most common fibers used in the industry are: 

 Glass fibers (SiO2)  

 Carbon fibers 

 Aramid fibers  

 Boron fibers 

 Aluminia fibers 
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Fiberglass composites are the least expensive and carbon-fiber composites are the most 

expensive. In terms of fire performance, “all the fibres used for composites except Ultra High 

Molecular Weight PE are relatively nonflammable” (Horrocks, 187) but at high temperatures 

they soften or melt depending of their glass transition temperature.  

Fillers 

Fillers are added to lower the consumption of expensive resins for the matrix. They are a 

way to control the cost and slightly modify the final mechanical properties of the composite. The 

most common fillers used are calcium carbonate, kaolin, and alumina trihydrate (Tang, 7). 

Depending on how one or more fillers are added to the matrix, the use of fillers result in low 

shrinkage, low thermal expansion, fire and creep resistance.  

 

Additives 

 When a polymer is used as the matrix of the composite, it is known that are highly 

flammable in comparison with metals such as aluminum or steel. That is why additives are 

significantly important to modify the final properties of the composite. In general, additives are 

used for further improvement of material properties, aesthetics, and manufacturing process. 

Depending on the final desirable properties there are millions of additives used in the industry. 

Composites are widely used in the construction and architectural fields performing many 

different tasks. Some of the most relevant additives used in FRP for architectural applications 

can be found in the Additives Reference Guide 2013 by V, Koleske and are presented in the 

following list:   

 Fire resistance: additives such as bromine, chlorine, borate and phosphorous are used to 

enhance combustion resistance of composites.  

 Flame retardants: this additives retard the flame spread or flammability. These 

compounds should decompound by heat into nonflammable pieces, the most common are 

magnesium hydroxide, boric acid, phosphonic acid esters and chlorinated paraffins. 

There are many commercial flame retardant additives designated to specifically meet the 

building requirement for fire and safety.  

 Air release agents: additives to improve the processability of resins. Polyesters resins 

tend to trap air during processing and application and using these additives insure a 

proper fiber wet-out.  
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 Viscosity control: dispersion of fillers in the resin matrix is really important, for which it 

is crucial to have low and workable viscosity levels. 

 Electrical conductivity: in general, most composites do not conduct electricity and by 

adding nano metal particles, carbon particles or conductive fibers some level of 

conductivity can be achieved.  

 Antioxidants: these additives in polymers retard the overall oxidation and degradation of 

the polymer.  

 Antistatic agents: additives used to avoid or reduce the tendency of some polymers to 

attract electrical charge, especially during processing and application.   

 Heat stabilizers: additives used to reduce the degradation resulted from the exposure of 

heat. They are commonly added to thermoplastic resins.  

 Ultraviolet stabilizers: added to minimize the negative effects of UV radiation. UV 

absorbers are used to mitigate the loss of gloss, chalking, discoloration, change in 

electrical properties and disintegration due to UV radiation.  

 Colorants: additives used to provide a specific color to the whole system. They can be 

added as part of the resin or later on in the molding process of the final product. Mostly 

used in decorative purposes.  

 Release agents: since many FRP are manufactured by mold injection, release agents are 

additives that facilitate the removal of the final product from the molds. They can be 

applied to the resins, and the most common agent is zinc stearate. On the other hand, 

release agent can be applied to the surface of the molds using waxes and silicones.  
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Appendix- Concrete Polymer (CP) 
Primary Author-Cristina Herrera  

Secondary Author-None 

 

This type of composite was designed to meet most of the requirements in the construction 

industry without compromising the chemical durability and strength of the material. The binder 

in this composite is a completely synthetic organic polymer, which can be a thermoplastic or 

thermoset type of resin. There are five used monomers to produce concrete polymers: epoxy, 

carbamide, acryl metyl methacrylate, furfuryl alcohol and polyester. Similarly, there are various 

fillers that can be added to this resin; this includes granite, quartz, clay, expanded glass, sand and 

many others. “When sand is used as filler, the composite is referred to as a polymer mortar” 

(Figovsky, 4) where carbon or glass fibers are used to enhance the mechanical properties of the 

composite. The concrete polymer provided by CCP is a polyester resin that uses sand as the 

major binder and it reinforced with a glass content of 36%.  Glass fibers are noncorrosive and 

nonconductive, which increases the toughness of the composite.  

Concrete polymer based on polyester is a type of thermosetting resins obtained by 

polycondensation. According to Figovsky and Dimitri, these resins have low viscosity, high 

mechanical and electrical insulating properties, high resistance to acids and oil, and good 

adhesion to many construction materials.      

Reference 

 Figovsky, O. and Dimitry, B. Advanced Polymer Concretes and Compounds: State of the 

Art in Polymer Concrete. Taylor & Francis, 2013. Print.  
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Appendix- Cone Background and Verification (Cone) 
Primary Author-Daniel Morgan 

Secondary Author-None 

Background 

The Cone Calorimeter is a device that is used to study fire behaviors of small samples 

(maximum size of 100 mm x 100 mm x 50 mm).The raw data that is collected from the various 

parts of the cone is recorded in either a DC voltage or a temperature. The DC voltage is 

converted into engineering units using different conversions. The engineering units are then put 

through a program or macro to reduce the data and perform the calculations. The reduced data is 

recorded and is used to produce graphs for the different properties. The graphs show a material 

property versus time. The data from the cone calorimeter test are used to model fires, predict real 

scale fire behavior, ranking multiple materials based on their fire performance, how a material 

reacts to a fire (swell, shrink, melt), and to determine if a material passes or fails tests. The cone 

test usually lasts until the material being tested has burned out. 

Oxygen consumption calorimetry measures the amount of oxygen that is consumed 

during the burning of the material. It determines the amount of oxygen consumed during a burn 

by measuring the depletion of oxygen in the exhaust gases. Using the oxygen consumption data, 

the cone calorimeter can determine the heat release rate and cumulative heat released. We can 

determine the heat released because the amount of heat that is released when burning oxygen is 

relatively linear. 

The ASTM E1354 test is a standard to determine a material's response to controlled 

levels of radiant heating either with or without an external ignition source. The use for the 

ASTM E1354 test is to determine the materials properties (stated below), and how a material 

reacts to different levels of radiant heat. The scope of the ASTM E1354 test is to determine the 

ignitability, heat release rates, mass loss rates, effective heat of combustion, and visible smoke 

development of materials and products.  

Data Collected 
The cone calorimeter collects a large assortment of material properties and other data. 

The data that is collected from the cone calorimeter test include peak rate and average rate of 

heat released by the material, heat release rate per unit area, the total heat released from the 

material, the effective heat of combustion, the specific extinction area, exhaust flow rate, mass 
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loss rate of the material, initial and final mass of the material, time required to get a sustained 

ignition, the amount of carbon dioxide and carbon monoxide released from the material burning, 

the oxygen concentration amount, and the smoke density, etc. 

Parts of the Cone 

The cone calorimeter consists of six parts. The separate parts are a conical radiant electric 

heater, specimen holder, exhaust gas system with measuring tools, ignition spark source, data 

collector and analyzer, and a load cell to measure material mass. The conical radiant heater is the 

source of heat that will cause the material to ignite. The conical heater can provide a range of 

heat fluxes from 0 to 100 kW/m
2
K. The specimen holder is a metal container whose job is to 

hold the material in place during the testing. Next is the exhaust system with the measuring tools.  

The measuring tools inside the duct include an oxygen, carbon monoxide, and carbon dioxide 

analyzers, thermocouple for measuring exhaust temperatures, orifice plate for measuring the 

pressure differential to determine the exhaust flow rate, and helium-neon laser for determining 

smoke obscuration. The ignition spark source is a spark that is placed above the material to allow 

for it to ignite. The data collector and analyzer is the computer and software that is used for 

storing and analyzing the data collected from the various components. The load cell is used to 

record the mass of the material during the data and that data is used to find the mass loss rate 

during combustion.  

 

 

Figure 11: Cone Calorimeter 
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Direct/Indirect Measurements 
The cone calorimeter records and determines two types of measurements, either direct or 

indirect measurements. Direct measurements are measurements that the cone calorimeter makes 

directly, such as a time or mass. The direct measurements that the cone calorimeter records 

during operation is the time to ignition, sample mass (load cell), oxygen, carbon monoxide, and 

carbon dioxide concentrations (gas analyzers), and the stack temperature (thermocouple). The 

other type of measurement recorded is indirect measurements. Indirect measurements are 

measurements that are taken that doesn’t directly correlate to the property we are looking for, the 

measurement taken is used in a calculation to then determine the property we are looking for. 

The indirect measurements taken by the cone calorimeter are heat release rate, heat release rate 

per unit area, effective heat of combustion, specific extinction area, smoke production rate and 

obscuration, exhaust flow rate, mass loss rate, peak and total heat release rate, differential 

pressure, and the different yield amounts (oxygen, carbon monoxide, carbon dioxide, and smoke 

yields).    

Oxygen Consumption Calorimetry (kJ/kg or MJ/kg) 

    Oxygen consumption calorimetry is the main backbone behind the cone calorimeter. 

Oxygen consumption calorimetry is based on the fact that heat released for the burning of most 

polymers is relatively constant.  The amount of heat released for the burning of 1 kg of oxygen is 

roughly 13.1 MJ of heat, within plus or minus 5 percent. Using the 13.1 MJ is generally a good 

estimate of the heat to be released for burning of a material, unless the actual amount of heat 

released is known. The equation that is shown below is a way to determine the heat released for a 

material if the materials chemical makeup is known. 

   

 

 

   Δhc (kJ/kg) is the heat of combustion of the material that is being tested. np (mol) and Mp 

(g/mol) are the number of moles and molecular weight of the material being tested. nO2 (mol) and 

MO2 (g/mol) are the number of moles and molecular weight of the oxygen being consumed. 
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Verification 
 To obtain a good understanding of how a cone calorimeter works, an attempted to 

reproduce the data that is calculated by the cone VI. The raw data that was measured from the 

cone testing and attempted to reproduce the final results that were calculated by the VI as 

accurately as we possibly could.  To reproduce the data, a wide assortment of equations was 

needed to reproduce the data. With the equations that were needed and the raw data that was 

recorded from the cone calorimeter, a reproduction of the cone data could be performed. Since 

the raw data is recorded only in units of voltages and temperatures, a conversion between the raw 

data and engineering units needed to be made. All of the conversions are laid out in the 

appropriate sections below. Once the equations were performed, the separate data points were 

graphed in excel in order to compare with the actual data. The samples that we attempted to 

reproduce were the FRP sample and the PMMA sample (sample 4) of thickness 23.3 mm 

Heat Release Rate per Unit Area 
 The first reproduction that was done was for Heat Release Rate per unit area, the two 

equations that were needed to determine the HRR per unit area are listed below. The first 

equation is used to determine the Heat release rate for the material. Since the material that was 

being testing is small, the heat release rate per unit area needed to be used. This allows for data 

to be scaled up to larger sizes. The second equation is a division of equation 1 over the area 

testing.   

(1)  ̇( )        √
  

 
(

   
     

            
) 

(2)  ̇ ( )  
 ̇( )

  
 

From the two equations above, there are a total of 4 constants and 3 measured values that 

are taken from the raw data. The first constant is E, which is the amount of energy released from 

the burning of one kilogram of oxygen. The value for E is 13,100,000 Joules, unless this value is 

known for the material. The second constant is C, which is the C factor. The C factor is 

determined from calibration of the cone calorimeter, the value usually ends up around 0.042. The 

third constant is X
o
O2, which is the initial oxygen concentration, which is usually around 20.9%. 

However, this value may need adjusting depending on whether there was any drifting in the 

oxygen analyzer. To adjust this value, you would look at the oxygen concentration in the raw 
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data prior to the start of the burn and use that value. That value would need to be converted into 

engineering units, which will be explained in the next paragraph. The fourth constant is As, 

which is the area of the material testing, which will always be 0.01 m
2
. The raw data that is 

needed are the differential pressure (ΔP), the stack temperature (T), and the oxygen 

concentration (XO2).   

The raw data that is measured will be in units measured in either a voltage (V) or a 

temperature (C). The voltages needed to be converted into engineering units so that they can be 

used to reproduce the calculations. The first conversion is for the differential pressure to go from 

volts to a pressure (Pa). To convert this, all that is needed to be done is to multiply by 100 Pa per 

volt. Doing so will convert the voltage into a pressure. The next conversion is for the stack 

temperature which needs to go from temperature in Celsius and convert into a temperature in 

Kelvin. For this, all you need is to add 273 to Celsius temperature. The final conversion is for the 

oxygen concentration, which needs to be converted from a voltage into a % concentration. To do 

this, a conversion factor needed to be determined to convert the voltage to a percent 

concentration per volt. The calibration data from the cone was taken for oxygen, which for the 

FRP is 0.209 at a voltage of 6.986644 volts. It was then divide by 0.209 by the voltage to obtain 

a conversion that would allow us to convert a voltage into a percent concentration. Using this 

conversion factor, it was multiplied by the oxygen voltage to get an oxygen concentration. The 

conversed voltages into engineering units was used in the above equations. 

Graphical Comparison 

Using the equations mentioned above, the equations were plotted into excel and 

compared it to the actual data that was directly from the cone calorimeter. The top pictures are 

the reproduction while the bottom ones are the actual data. 
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Figure 12: Heat Release Rate per Unit Area Comparison 

Mass Loss Rate 
The next reproduction calculation that was done was the mass loss rate calculation. The 

five equations below are used to determine the mass loss rate during the testing. These equations 

can be found in the ASTM E1354 standard for the cone calorimeter. The mass loss rate is 

determined from a set of scans of the material masses, the equation that is used is determined 

from what calculation number you are doing. The first equation is used for the very first set of 

data, or scan that is done. The second is used for the second, while the third is used for all other 

calculations up until the final two. Equations 4 and 5 are used for the second to last and the final 

calculations receptively.  
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; Final scan 

 From the above equations, there is one constant and one measured value taken from the 

raw data. The only constant is the Δt, which is the time step for the data recording, which is 1 in 

this case. The data that is needed is mass voltages from the raw data. A conversion factor is 

needed to determine the mass from the voltages that are given from the cone calorimeter. To 

determine the conversion factor, we look at the calibration data for the mass. The calibration data 

was determined from a set of 5 different weights placed on the load cell and their recorded 

voltages. It was then took the mass that was placed on the load cell and divide it by the voltage 

that was recorded. We repeat this for the other mass/voltage combinations and average out all of 

the numbers to obtain a conversion factor. To convert the voltages to a mass, all that was needed 

was to multiply the conversion factor and the mass voltages that are in the raw data. The 

converted numbers were used in the above equations. 

 Once the calculations have been done, the mass loss rate graph that was produced is very 

noisy and jumps around a lot. This is due to noise in the recording of the mass voltages. To 

obtain smoother graph and smoother values, the data from the cone calorimeter was truncated 

and then a five point moving average was performed that smoothed out the graph. The smoothed 

graph is a better comparison to the actual data, and provides nicer numbers to use in the other 

calculations. Another five point moving average could have been used to smooth the graph even 

more, but was not needed in this case. 

Graphical Comparison 

Using the equations mentioned above, the equations were plotted into excel and 

compared it to the actual data that was directly from the cone calorimeter. The top pictures are 

the reproduction while the bottom ones are the actual data. 
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Figure 13: Mass Loss Rate Comparison 

Heat Released 
The next calculation that was done was to determine the heat released from the material 

during testing. To determine the heat released, an integral needed to be performed on the heat 

release rate, which is equation number (1) in the heat release rate section. The integral is being 

performed to determine the heat released because the heat released in just the summation of all 

the heat release rates at each time step. This summation ends up being the area under the curve of 

the heat release rate. To determine the area under the curve in excel, the trapezoid rule needs to 

be used, since excel does not have an integral function. The two below equations are the 

equations that were used to determine the heat released. 

( )        
(     )( ̇   ̇ )

 
 

( )                ∑       
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 From the equations above, there are no constants and one set of data that is taken from 

the determination of the heat release rate.  There are also no conversion that are needed in the 

equation. The only data set needed for this calculation is the heat release rate ( ̇), since t2 minus 

t1 is always 1. To determine the heat release during each time step, the two heat release rates are 

added together and divided by 2. This procedure is performed for all of the heat release rate 

values and finally, all of the traps are summed for each time step together in order to find our 

heat released. 

 Graphical Comparison 

Using the equations mentioned above, the equations were plotted into excel and 

compared it to the actual data that was directly from the cone calorimeter. The top pictures are 

the reproduction while the bottom ones are the actual data.

 

Figure 14: Heat Released Comparison 

Heat of Combustion 
 The next calculation performed was for the heat of combustion. The only equation that is 

needed to determine the heat of combustion is shown below.  

(1)     
 ̇

 ̇
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The equation for the heat of combustion has only two variables that were determined 

previously. The data sets needed are for this calculation are the Heat release rate ( ̇) and the 

mass loss rate ( ̇) that were previously determined. There are no needed conversions for this 

calculation, since they were performed when determining the other data sets. Calculation the heat 

of combustion is just dividing the heat release rate by the mass loss rate. 

Graphical Comparison 

Using the equations mentioned above, the equations were plotted into excel and 

compared it to the actual data that was directly from the cone calorimeter. The top pictures are 

the reproduction while the bottom ones are the actual data. 

 

Figure 15: Heat of Combustion Comparison 

 

Extinction Coefficient 
 The next equation that was used was to determine the extinction coefficient. The only 

equation that was needed to determine the exaction coefficient is below. 
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From the above equation, there is one constant and 2 sets of data that is needed from the 

raw data. The only constant is L, which is the exaction beam length, whose value is 0.114 

meters. The two data sets that are needed are for main (Ii) and Comp (Ioi). In the raw data, both 

of these data sets are recorded in voltages, so a conversion factor needs to be determined for the 

data sets. To obtain the conversion factors, the calibration data for the laser is used for the 

determination of the calibration factor. There are 3 points of obscurity for both the main and 

comp diodes, and their respective voltages. The obscurity needs to be divided by the voltage to 

get a conversion factor. This is done for all the different obscurities for both diodes and average 

the conversion factors for each diode to obtain the two conversion factors needed. This is then 

used in the above equation to find our extinction coefficient. 

Graphical Comparison 

Using the equations mentioned above, the equations were plotted into excel and 

compared it to the actual data that was directly from the cone calorimeter. The top pictures are 

the reproduction while the bottom ones are the actual data. 

 

Figure 16: Extinction Coefficent Comparison 

Smoke Production Rate 
 The next equation that was used was to determine the smoke production rate. The only 

equation that is used is shown below.  

(1)       ̇ 
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From the above equation, we have no constants and we have two variables. The first 

variable is the extinction coefficient (k), which was determined in the above section. The second 

variable is the volumetric flow rate ( ̇). The volume flow rate is found in the summary section of 

the data. There are no needed conversion for this calculation. Calculating the smoke production 

rate is multiplying the exaction coefficient by the volume flow rate. 

Graphical Comparison 

Using the equations mentioned above, the equations were plotted into excel and 

compared it to the actual data that was directly from the cone calorimeter. The top pictures are 

the reproduction while the bottom ones are the actual data. 

 

Figure 17: Smoke Production Rate Comparison 

 

Specific Extinction Area 

 The next equation that was used was to determine the specific extinction area. The only 

equation that is needed is shown below. 

( )      
   

 ̇
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 The above equation has no constants and has only two variables. The first variable is the 

smoke production rate (SPR), which was calculated in the above section. The second variable is 

the mass loss rate ( ̇), which was determined in a previous section. Since both of the variable 

are already calculated, we do not need any conversion factors. Calculating the specific extinction 

area is just dividing the smoke production rate by the mass loss rate. 

Graphical Comparison 

Using the equations mentioned above, the equations were plotted into excel and 

compared it to the actual data that was directly from the cone calorimeter. The top pictures are 

the reproduction while the bottom ones are the actual data. 

 

Figure 18: Specific Excitation Area Comparison 

Smoke Yield 
 The next equation that was used was to determine the smoke yield. The only equation 

that was used is shown below. 
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 The above equation has one constant and one variable. The only constant is the Specific 

extinction area of smoke (SEAsmoke), which has a value of 7.6 m
2
/g. The only variable is the 

specific extinction area (SEA) that was determined from the above equations. There is no 

conversion factors that are needed for this equation. Calculating the smoke yield is just dividing 

the specific extinction area by the specific extinction area of the smoke.   

Graphical Comparison 

Using the equations mentioned above, the equations were plotted into excel and 

compared it to the actual data that was directly from the cone calorimeter. The top pictures are 

the reproduction while the bottom ones are the actual data. 

 

Figure 19: Smoke Yield Comparison 

CO Production Rate 
 The next equation that was used was to determine the CO production rate. The equation 

that was used is shown below. The CO production rate or generation rate is taken from the SFPE 

handbook. 
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( )          
 ̇    

 
 

 In the above equation, there are two constants and three variables. The first constant is 

the density of the carbon monoxide (ρ), which is 1.15 kg/m
3
. The second constant is the area of 

the specimen (A), which is 0.01 meters squared. The first variable is the volume flow rate ( ̇), 

which is taken from the summary section of the data. The second variable is the CO 

concentration (XCO). Since the CO concentration is recorded in voltage, a conversion factor 

needs to be determined. To determine the conversion factor, the calibration data for the CO 

sensor needs to be used. The concentration is taken from the calibration (0.089 in our case) and 

divide it by the voltage that is given with that concentration. The converted numbers were used 

in the above equations. 

Graphical Comparison 

Using the equations mentioned above, the equations were plotted into excel and 

compared it to the actual data that was directly from the cone calorimeter. The top pictures are 

the reproduction while the bottom ones are the actual data. 

 

Figure 20: CO Rate Comparison 

CO Yield 

 The next equation that was used was to determine the CO yield. The only equation that 

was needed is shown below. 
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( )           
       

 ̇
  

 The above equation has only two variables. The first variable is the CO rate, which was 

determined in the previous section. The second variable is the mass loss rate ( ̇), which was 

determined in a previous section. There are no conversion factors that are needed for the 

calculation of the CO yield. To calculate the CO yield, we divided the CO rate by the mass loss 

rate.  

Graphical Comparison 

Using the equations mentioned above, the equations were plotted into excel and 

compared it to the actual data that was directly from the cone calorimeter. The top pictures are 

the reproduction while the bottom ones are the actual data. 

 

Figure 21: CO Yield Comparison 

CO2 Production Rate 
The next equation that was used was to determine the CO2 production rate. The equation 

that was used is shown below. The CO2 production rate or generation rate is taken from the 

SFPE handbook. 
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( )           
 ̇     

 
 

 In the above equation, there are two constants and three variables. The first constant is 

the density of the carbon dioxide (ρ), which is 1.8 kg/m
3
. The second constant is the area of the 

specimen (A), which is 0.01 meters squared. The first variable is the volume flow rate ( ̇), which 

is taken from the summary section of the data. The second variable is the CO2 concentration 

(XCO). Since the CO2 concentration is recorded in voltage, a conversion factor needs to be 

determined. To determine the conversion factor, the calibration data for the CO2 sensor needs to 

be used. The concentration is taken from the calibration (2214 in our case) and it is divided by 

one thousand times the voltage, since this voltage is given in millivolts. This will give the correct 

conversion factor, and then it is multiplied by the conversion factor to get the CO2 concentration. 

Graphical Comparison 

Using the equations mentioned above, the equations were plotted into excel and 

compared it to the actual data that was directly from the cone calorimeter. The top pictures are 

the reproduction while the bottom ones are the actual data. 

 

Figure 22: CO2 Rate Comparison 

CO2 Yield 
The next equation that was used was to determine the CO2 yield. The only equation that 

was needed is shown below. 
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( )            
        

 ̇
  

 The above equation has only two variables. The first variable is the CO2 rate, which was 

determined in the previous section. The second variable is the mass loss rate ( ̇), which was 

determined in a previous section. There are no conversion factors that are needed for the 

calculation of the CO2 yield. To calculate the CO2 yield, we divided the CO2 rate by the mass 

loss rate.  

Graphical Comparison 

Using the equations mentioned above, the equations were plotted into excel and 

compared it to the actual data that was directly from the cone calorimeter. The top pictures are 

the reproduction while the bottom ones are the actual data. 

 

Figure 23: CO2 Yield Comparison 
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Appendix- Graphs (Graphs) 

Primary Author-Jerome Anaya, Daniel Morgan 

The following data are the measurements from the Cone Calorimeter for each sample. They are 

given in the following order: heat release per unit area, mass loss rate, specific extinction area, 

extinction coefficient, and smoke production rate. The samples of the same composition are 

given on the same graph for comparison. 

50 kW Test 

Hetron with ATH Ratio 100:0 
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Hetron with ATH Ratio 100:33 

 

 

 



 
 

52 
 

 

 

Hetron with ATH Ratio 100:66 
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Hetron with ATH Ratio 100:100 
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Hetron with ATH Ratio 100:130 
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Fireblock with Sand Ratio 100:0 
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Fireblock with Sand Ratio 70:30 
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Fireblock with Sand Ratio 60:40 
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Fireblock with Sand Ratio 50:50 
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Fireblock with Sand Ratio 40:60 
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Epoxy 100:0 

 

 

 



 
 

67 
 

 

 

25 kW Heat Flux Test 

Hetron with ATH Ratio 100:0 
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Hetron with ATH Ratio 100:100 
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Hetron with ATH Ratio 100:130 
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Fireblock with Sand Ratio 100:0 
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Fireblock with Sand Ratio 60:40 
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Fireblock with Sand Ratio 40:60 
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40 kW Heat Flux Test 

Hetron with ATH Ratio 100:0 
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Hetron with ATH Ratio 100:100 
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Hetron with ATH Ratio 100:130 
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Fireblock with Sand Ratio 100:0 
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Fireblock with Sand Ratio 60:40 
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Fireblock with Sand Ratio 40:60 
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75 kW Heat Flux Test 

Hetron with ATH Ratio 100:0 
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Hetron with ATH Ratio 100:100 
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Hetron with ATH Ratio 100:130 
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Fireblock with Sand Ratio 100:0 
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Fireblock with Sand Ratio 60:40 
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Fireblock with Sand Ratio 40:60 
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Appendix- Flammability Parameter (FP) 
Primary Author-Cristina Herrera 

Secondary Author-None 

This is a simple model of upward flame spread for thin interior materials. The analysis 

uses Cone Testing information and data points to describe a model with specific parameters to 

predict pyrolysis front propagation. The model takes into account the pyrolysis front at ignition 

time and the burnout front that starts afterwards. The proposed theory describes the key 

parameters controlling the flame spread process based on the upward flame spread model 

developed by Cleary and Quintiere
1
.  The schematic modelling in shown in Figure 24.  

 

Figure 24: Schematic of Flame Spread Model
2 

According to Mowrer and Williamson
2
 and based on the above model, the net rate flame 

propagation equals the difference between the pyrolysis front velocity and the burnout front 

velocity. 

In this way, the rate of pyrolysis front advance is defined by:  

( )             
   

  
 

  (    )   ( )

  
 

  ( )    ( )

  
 

Model flame spread time calculated for heating inert wall with constant properties  

( )                [
(      )

   ̇
]

 

 



 
 

99 
 

 

Where:  

                    

   ̇            

Likewise, the rate of fuel burnout is defined by the following equation: 

( )             
   

  
 

  (     )    ( )

   
 

  ( )    ( )

   
 

At this point, Mowrer and Williamson made a distinction between the flame length before and 

after burnout commences. Flame length before burnout commences is defined by the ratio of the 

flame zone and the pyrolysis zone:  

( )         
  

  
    ̇

   

Where: 

 ̇                                 

On the other hand, after burnout begins, flame length becomes:   

( )          
(     )

(     )
    ̇

   

It is possible to assign a known value to the flame length parameter (  ) as an assumption from 

Cleary and Quintiere, which is:  

( )                   
  

  
 

By using equation (6), the flame length equation before burnout, the rate of pyrolysis becomes: 

( )         
   

  
 (       ̇ )

  

  
 

At the same time, it can be integrated with the following limits: 
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The result becomes: 

(  )                 [
(       ̇ ) 

  
] 

Before burnout, the flame spread rate will be acceleratory if       and deceleratory if       

if        ̇  when:      

The net rate of flame propagation can be expressed as the difference between the pyrolysis front 

velocity and the burnout front velocity. 

(  )           ( )    ( )  
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Using the dimensionless flame length from equation (5):  
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(  )         
 

  
(     )   (     ) [

(     ̇   )      

     
] 

It can be integrated with the following limits: 

(     )  (       )             

(     )   (     )             

The equation becomes:  

(  )         ∫ ( (     ))
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   ∫ [
(     ̇   )      

     
]

 

  

   

(  )          (     )    (       )   (
(     ̇   )      

     
)   (

(     ̇   )      

     
)    

(  )             
(     )

(       )
  (
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(22)           (     )   (       ) 
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As result, the potential for acceleratory spread depends on three major parameters: 

 Heat release rate per unit area    ̇  

 Flame spread time     

 Burning duration      

In this way, acceleratory spread is predicted when: 

(  )                ̇  
  

   
   

For simplicity, the above inequality can be represented and rearranged as: 
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(  )                  ̇  
  

   
      

   is the time that the material takes to heat to the point where ignition is possible, it is measured 

directly in the cone as the time when the test sample ignites under the imposed heat flux.  

On the other hand,     can be interpreted as the time during the test where burnout is clearly 

identified,  it can be the time from ignition to the time of the peak heat release rate, or it can be 

calculated from the test data as: 

(25)                 
   

   ̇  

Where:     is the total energy released during the test. 

As a result, Mowrer and Williamson found two main equations: one that represents the 

flame spread before burnout commences equation (12) and after burnout commences equation 

(22). Based in these derivations, an acceleratory flame spread behavior is predicted by equation 

(24) when the result yields positive numbers. This factor is also known as the B parameter used 

to interpret the flammability nature of the material.     

Nomenclature: 
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   ̇                      (  ) 
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Subscripts: 

b - Burnout zone 

bo - Burning duration  

e - External  

f - Flame zone  

ig - Ignition  

p - Pyrolysis zone  

s - Surface  

Flammability Parameter References 

1. Cleary, T., and J. Quintiere. "A Framework For Utilizing Fire Property Tests."Fire Safety 

Science 3 (1991): 647-56. Print 

2. Mowrer, F., and R. Williamson. "Flame Spread Evaluation For Thin Interior Finish 

Materials."Fire Safety Science 3 (1991): 689-98. Print.  
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Appendix- Flammability parameter Average per composite (AVG) 
Primary Author-Cristina Herrera  

Secondary Author-None 

 

Method one: Peak Heat Release Rate per Unit Area  
The equation to find the flammability parameter or “B parameter” depends on three main 

factors, ignition time, burnout time and heat released rate based on the representation developed 

by Mowrer and Williamson
1
. The first approach for the heat releases rate is to use the value of 

the peak (maximum) HRRPUA during the test and the burnout time is the time between ignition 

and flame out (or burning duration),  

Burnout time is defined as the time between ignition and edge burning (when possible) 

since that would be the total pyrolysis time of interest. When edge burning occurs, after that 

point, the data obtained from the cone is not useful for our analysis anymore since the cone 

works in just one dimension (x axis) and edge burning in principle occurs in three dimensions. 

The data obtained after edge burning will yield wrong information; therefore edge burning time 

was set as the time when burnout takes place. The procedure followed to obtain the flammability 

parameter using this approach is outlined as follows:  

Procedure: 

1. Identify the time of ignition from the cone data summary and subtract the time of 

shutter open to obtain a time from cero (when the sample was exposed to a heat 

flux) to the time where the sample hit ignition point.  

2. Identify at what time edge burning occurs and record that time (subtracting the 

time at which the shutter opened) to have a reference point of where the burning 

(or the useful data from the cone) ends.  

3. Find the maximum HRRPUA from the data summary page and identify at what 

time that peak occurred (again subtract the time at which the shutter was opened 

to be consistent and have a time from cero time when the sample was exposed to 

the heat flux) 

4. Compare the time at which the peak occurred and the ignition time to verify that 

the peak heat released rate occurs after ignition. It is not physically consistent if 
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the peak happens before ignition. If there is any sample where the peak HRRPUA 

occurs before ignition, ignore that peak and take the next peak HRRPUA after 

ignition and before edge burning.  

5. Record all the times and the maximum HRRPUA in a spreadsheet and solve for 

equation to compute the flammability parameter.   

6. Compute the standard deviation for each composite.  

7. Find the overall uncertainty for this method by using the pooled variance theory
2
.  

Results Method one: Peak HRRPUA 

Table 10:Flammability parameter values method one 

Composite Average B parameter 

Hetron 100:00 0.9628 ± 0.7773 

Hetron 100:33 -0.043 ± 0.7740 

Hetron 100:66 -0.0552 ± 0.0895  

Hetron 100:100 -0.0627 ± 0.1273 

Hetron 100:130 -1.7584 ± 1.2130 

Fireblock 100:00  1.2302 ± 0.2948 

Fireblock 70:30  0.2516 ± 0.1919 

Fireblock 60:40  -0.2761 ± 0.4593 

Fireblock 50:50  -0.2707 ± 0.4228 

Fireblock 40:60  -0.7080 ± 0.0528 

 

 

Figure 25: Flammability parameter method one 
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Since 3 and 4 trials were performed per composite to obtain systematic results, the standard 

deviation per composite was calculated as shown in Table 10. However, in order to better 

understand the uncertainty of method one, a method to estimate the overall standard deviation 

was used to find only one value that accounts for the error measurements. The pooled variance 

theory was applicable to this analysis because the data consists of different populations with 

different average values but the variance of these populations in assumed to be the same because 

it used the same instrumentation for all test (cone calorimeter) and the precision is assumed to be 

the same. The value obtained is the uncertainty for method one and in represented in Figure 25 in 

the error bars.  

  
  

(    )  
  (    )  

    (    )  
 

            
 

  
 

 
 (      )   (      )   (      )   (      )   (       )   (       )     (      ) 

                      
 

  
  

      

  
 

  
          

  
 
 is the pooled variance, and the square root of a pooled variance is the pooled standard 

deviation.  

                                 

Method two: Average Heat Released Rate per Unit Area 

The second method used to calculate the flammability parameter for all samples was 

really similar to the first method since both are derived from the same model. Instead of using 

the peak Heat Released Rate per Unit Area, the second method uses the average heat released 

rate from ignition to edge burning. The ignition time and the burnout time are the same as in 

method one; therefore, the procedure followed for method two is almost identical to the 

procedure of method one.  
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Procedure:  

1. Identify the time of ignition from the cone data summary and subtract the time of 

shutter open to obtain a time from cero (when the sample was exposed to a heat 

flux) to the time where the sample hit ignition.  

2. Identify at what time edge burning occurs and record that time (subtracting the 

time at which the shutter opened) to have a reference point of where the burning 

(or the useful data from the cone) ends.  

Calculate the average HRRPUA from ignition to edge burning.  

3. Record all the times and the average HRRPUA in a spreadsheet and solve for 

equation to compute the flammability parameter. 

4. Find the standard deviation for each composite.  

5. Find the overall uncertainty of this method by using the pooled variance theory.  

  Results method two:  

Table 11: Flammability Parameter method two 

Composite Average B parameter 

Hetron 100:00 -0.4836 ± 0.7245 

Hetron 100:33 -0.5919 ± 0.4583  

Hetron 100:66 -0.5995 ± 0.1553 

Hetron 100:100 -0.7192 ± 0.0524 

Hetron 100:130 -2.2500 ± 0.9331 

Fireblock 100:00 0.3313 ± 0.0233 

Fireblock 70:30 -0.0493 ± 0.3539 

Fireblock 60:40 -0.4574 ± 0.4610 

Fireblock 50:50 -0.5308 ± 0.3401 

Fireblock 40:60 -0.6568 ± 0.1639 

 

Table 11 show average flammability parameter for each systems and the corresponding standard 

deviation.  
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Figure 26: Flammability Parameter method two 
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 is the pooled variance, and the square root of a pooled variance is the pooled standard 

deviation.  

                                 

Figure 26 shows the values obtained for each systems and the uncertainty of the method used is 

represented by the error bars.  
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Method three: calculated burnout time  

The third method used to compute the flammability parameter is slightly different from 

the other two methods in the sense that this method calculates a burnout time instead of assume 

that the burn out time is when edge burning starts.  

This last computation for the flammability parameter uses the average heat release rate and the 

ignition time that can be directly retrieved from the cone data summary. For the burnout time 

(tbo) it applied the formula presented by Mowrer and Williamson
1
 where: 

    
   

   ̇
 

    is the total energy released during the test in kJ and    ̇  is the average energy release rate 

which is in kW.  

By simplifying the units in this operation (Joules and Watts) the result obtained is seconds (s) 

which is the unit desired to correctly determine this value as the burnout time (time at which the 

sample was consumed).  

  

  
 

(    ) (
     

  )

(    ) (
     

  )
 

  

  
   

Procedure:  

This analysis followed the same step by step computation has in method one and two:  

1. Identify the time of ignition from the cone data summary and subtract the time of shutter 

open to obtain a time from cero (when the sample was exposed to a heat flux) to the time 

where the sample hit ignition.  

2. Find the total heat release (kJ) during the entire test. 

3. Find the average heat released rate (kW) for each test.  

4. Solve for the burnout time. 

5. Record all the values in a spreadsheet and solve for equation to compute the B parameter. 

6. Find the standard deviation for each composite.  

7. Find the overall uncertainty of this method by using the pooled variance theory.  
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Results method three: calculated burnout time 

Table 12: Flammability Parameter method three 

Composite Average B parameter 

Hetron 100:00 -0.3995 ± 0.6820  

Hetron 100:33 -0.5298 ± 0.4051  

Hetron 100:66 -0.5547 ± 0.1766 

Hetron 100:100 -0.6126 ± 0.0461 

Hetron 100:130 -0.7048 ± 0.2031 

Fireblock 100:00  0.5495 ± 0.1262 

Fireblock 70:30  0.2960 ± 0.2686 

Fireblock 60:40  0.1654 ± 0.1816 

Fireblock 50:50  -0.1329 ± 0.2372 

Fireblock 40:60  -0.0342 ± 0.1208 

 

Table 12 shows the average flammability parameter calculated with method three and the 

correspondent standard deviation.  

 

Figure 27: Flammability parameter method three 
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 is the pooled variance, and the square root of a pooled variance is the pooled standard 

deviation.   

                                 

The uncertainty for method three is represented in Figure 27 with the error bars.  

The burnout time calculated in each test is slightly higher than the time we recorded as edge 

burning time (the time at which edge burning was visually evident, and this marked the end of 

the test). Therefore, if the burnout time is higher than the time we took as the end of term some 

inconsistency might alter the final results for the flammability parameter.   

Nevertheless, the values obtained with this approach are more sound but they do vary slightly 

with the flammability parameter values computed with method one and method two. This visible 

difference can be explained by some factors in the data acquisition and data interpretation.  

The visually assumption of edge burning tome might not be completely accurate, something that 

is expected in an experimental procedure such as the cone calorimeter testing.  

The values for energy released rate (kW) sometimes register negative values, something that is 

physically inconsistent   

Error of the measurements devices and the calibration process might have some influence in 

those negative values that are idiosyncrasies of the machine and the process but those values do 

not mean that during that period of time no energy was released, when we used the numerical 

average of the energy release rate during the test those negative value might affect the total 

result. The same circumstance takes place with the measures of total energy released (kJ) where 

the summary page of the cone data have a column to display the heat released summed and it 

also takes into account the negative values recorded.   
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Average flammability parameter of the three methods 

After computing the average flammability parameter using three different methods, method two 

and method three yield similar results, while method one yields values very different specially 

for Hetron Samples (Fireblock samples are more volatile regardless the method used) as shown 

in Table 13. The fact that method two and method three yield closer values can be justified by the 

fact that both method use the average heat release rate per unit area while method one uses the 

peak HRRPUA. At this point it is important to highlight that using a peak value for HRRPUA 

might not be the most suitable model for the type of graphs obtained for HRRPUA, where there 

is not a distinctive peak. In some cases the peak HRRPUA happened before or right at ignition 

time, which made the calculations more difficult. On the other hand, method two and three are 

more consistent and their calculations did not any major problem.  

Table 13: Summary Table Flammability Parameter 

Composite Peak HRRPUA Average HRRPUA Burnout time 

Hetron 100:00 0.963 -0.484 -0.399 

Hetron 100:33 -0.043 -0.592 -0.529 

Hetron 100:66 -0.055 -0.599 -0.555 

Hetron 100:100 -0.063 -0.719 -0.613 

Hetron 100:130 -1.758 -2.25 -0.705 

Fireblock 100:00  1.230 0.331 0.549 

Fireblock 70:30  0.252 -0.049 0.296 

Fireblock 60:40  -0.276 -0.457 0.165 

Fireblock 50:50  -0.271 -0.531 -0.133 

Fireblock 40:60  -0.708 -0.657 -0.034 

 

Given this discrepancy between method one and the other two methods, and in order to provide a 

final flammability parameter value for each composite, an average was obtained from method 

two and method three as shown in Table 14: 
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Table 14: Averaged Flammability Parameter 

Composite Average B parameter 

Hetron 100:00 -0.441 

Hetron 100:33 -0.561 

Hetron 100:66 -0.577 

Hetron 100:100 -0.666 

Hetron 100:130 -1.477 

Fireblock 100:00  0.440 

Fireblock 70:30  0.123 

Fireblock 60:40  -0.146 

Fireblock 50:50  -0.332 

Fireblock 40:60  -0.345 

 

 

Figure 28: Averaged Flammability Parameter 

As shown in Figure 28: Averaged Flammability ParameterFigure 28, according to the negative 

values for the flammability parameter, all Hetron samples are not expected to have an 

acceleratory flame spread behavior while two Fireblock samples registered positive values which 

might suggest an acceleratory flame spread behavior; however, those positive values are really 

small, they are closer to zero than to 1 so in general terms we can say that Sand samples are not 

expected to have an acceleratory flame spread behavior either.  
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Looking at the data for Hetron samples, the flammability parameter values for Hetron 100:00 to 

Hetron 100:100 are really close values while for Hetron 100:130 it increases to more than twice 

the value. A ratio of ATH greater than 130 definitely makes a significant different in the 

composite, for ratios below that there is no a significant change in the behavior of the material 

overall.  

On the other hand, Fireblock samples do not shown a visible trend in terms of what happen when 

the ratio of Sand decreases. At Fireblock 50:50 it seems that the flammability parameter reaches 

a steady value of -0.7.  

The overall uncertainty for these values was calculated to be ±0.4033 which is represented by the 

error bars. 
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Appendix- Flame length screening tool (FLST) 
Primary Author-Cristina Herrera 

Secondary Author-None 

 

The model developed by Acosta et al. used the idea of static concurrent flame lengths; this 

means that the pyrolysis zone (burn area) does not change as the specimen burns and the flame is 

extending in the direction in which the air is moving. This statement is assumed to be correct 

because limited pyrolysis movement is a characteristic of specimens with a flame spread rating 

of less than 25 (Class A materials). All the samples analyzed in this project (Hetron and 

Fireblock systems) are assumed to be Class A because they were developed as fire retardant and 

thermal resistance composites. Nevertheless, this assumption will be verified or re-stated after 

computing the flame spread index for all samples.  

Since this model was developed to correlate cone calorimeter data with tunnel test 

performance, the second assumption states that “there is an imposed air flow in the tunnel test of 

1.25 m/s in the direction which the flame propagates.”
1
. The final model developed is described 

by the following equation: 

   (   )   ̇   

The basic assumption for this model states that the heat release rate of the specimen and the 

burners in the tunnel act as a line fire point source that also accounts for a point source that 

moves as the specimen burns in the tunnel. Gama and beta are the constants that accounts for 

these two basic assumptions. Beta (β) would be the constant responsible for creating a flame 

length of 4.5 feet (when the burners are on), and Gama (γ) represents the fire scenario after 

ignition by using an ignition delay from the cone test. Similarly,   ̇  is the heat release rate per 

unit width of the heat generated by the sample plus the heat generated by the burners. Finally, n 

is a constant that correlates different models to predict the flame length in the tunnel.  

Based on this model, two set of equations were developed for flame length screening tool, one 

that uses multiple incident heat fluxes and one that uses a single incident heat flux. The first 

model is an accurate representation of the tunnel test environment using heat release rate from 

the cone calorimeter. The incident flux at which the sample is exposed in the tunnel is not 

constant, and according to William Parker
2
, the incident heat flux changes as the distance and the 

time increase. Therefore, the total length of the tunnel is divided into three main areas that 
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represent three different scenarios along the tunnel. The tunnel schematic is represented in Figure 

29.  

 

Figure 29: Tunnel Schematic-Areas from Acosta et al. 

Cone tests were performed with three incident heat fluxes (20 kW/m
2
, 30 kW/m

2
, 40 kW/m

2
) to 

better describe the thermal environment along the tunnel.   

Model for multiple incident heat fluxes 

After some readjustments, the final model is driven by the two main equations that have the 

same physical interpretation but are applicable to two different cases (coated and non-coated 

FRPs): 

 ( )                            (       ( ̇        )
      

 )      

( )                          (       ( ̇        )
      

 )        

This equation yields the flame extension at the tunnel test (after the 4.5 foot generated by the 

burners), where   ̇  is an aggregate heat release rate per unit width (compound of the three HRR 

curves from the three different heat fluxes)  

The width of the Steiner tunnel is known to be 0.43 m.  

In other to find the compound heat release per unit width it is necessary to combine all the heat 

release rate curves obtained for each trial of the same composite by: 

 Averaging the heat release rate per unit area if there is more than one trial per sample for 

each incident heat flux (for each second of the test).  
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 Taking into account that the total length of 4.5 is divided in three equal areas, each heat 

release rate per unit area curve is only applied to the section of the burn area that is 

affected by that incident heat flux. This means that the heat release rate needs to be 

multiplied by 0.20 m
2 

 which is the pyrolysis area.  

 Adding all the three heat release rate curves will yield the total HRR. 

 Multiplying  HRR by 0.43m to obtain the heat release rate per unit width.  

 204.47 kW/ m
2
 is added to account for the heat generated by the burners (also expressed 

as HRR per unit width).  

This model applies a flame extension of zero before the ignition time.  

Single incident heat flux model: 

Governed by the same previous model, another set of equations is derived for a simplest 

case where just one incident heat flux is used. After some rearrangements to the model to 

account for air velocity, ignition delay, and flame lengths according to several correlations, the 

final model seems to be less accurate than the first model presented but it can be applicable as a 

quick screening of how the specimen would perform in tunnel testing. The best incident heat flux 

was found to be 40 kW/m
2
. Following the same analysis as before, the two new equations are: 

 ( )                                  (       (
      ̇    

    
)

      

 )       

( )                             (        (
      ̇    

    
)

      

)        

 Where    ̇  is heat release rate per unit area from the cone data (therefore it needs to be 

multiplied by 0.6 which would represent the pyrolysis area at the tunnel because with this model 

does not divide the length of the tunnel into sub-area; instead, it takes 4.5 foot as the total 

pyrolysis length since there is just one representative incident heat flux)  

The constant 88 (kW) accounts for the heat release by the burners.  

Similar to the first set of equations, this model applies a flame extension of zero before ignition.  

For the purpose of this project, case stone coating will predict the behavior of gel-coat Fireblock 

samples. On the other hand, the equation for non-coated FRPs will predict the behavior of 

Hetron samples (unsaturated polyester).  
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After obtaining the flame extension for the specimen using either of the two set of equations, that 

data can be used to obtain the flame spread index by using the following equation presented in 

the ASTM E84
3
 standard for tunnel test: 

( )                                     

( )            
    

      
                  

Where AT is a single value equal to the total area under the curve of flame extension versus time.  

Data interpretation: 

This analysis used the single incident heat flux model as a quick screening to predict how 

Hetron and Fireblock samples would behave at tunnel testing under an incident heat flux of 50 

kW/m
2
 for all 10 systems, and under an incident heat flux of 40 kW/m

2
 for selected systems. The 

analysis method followed is outlined step by step in the following list: 

 Average the heat release rate per unit area (HRRPUA) of all the trials per composite to 

obtain a single representative value for HRRPUA.  

 Use HRRPUA values from ignition until edge burning. Recall that before ignition, the 

flame extension is zero according to the model. Similarly, edge burning is the limit of 

useful data from the cone.  

 Use equation (3) to solve for the flame extension for Hetron samples or use equation (4) 

for Fireblock samples, both equations assume a flame extension of zero before ignition.  

 Based on the flame extension obtained, analyze whether or not the values obtained are 

sound. For example, it is not physically consistent if the flame extension obtained as time 

increases is smaller than the flame extension obtained at ignition. It is not possible that 

the flame shrinks at any point after the test started. Therefore, if this seems to be the case, 

use an “if condition” in the spreadsheet to ensure that the next value for flame length is 

not smaller than the one obtained previously.    

 Plot the graph of flame extension versus time to obtain the area under the curve, AT.  

 Use the trapezoid rule for approximating integrals. 

Figure 30 and 32 show the flame extension curves obtained for Hetron Systems at an incident 

heat flux of 50 kW/m
2
 and 40 kW/m

2
 respectively. Figure 31 and 33 show the flame extension 

for Fireblock Systems at an incident heat flux of 50 kW/m
2  

and 40 kW/m
2 

respectively.  
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Figure 30: Flame extension Hetron Samples an IHF of 50 kW/m
2 

 

Figure 31: Flame extension Fireblock Samples an IHF of 50 kW/m
2 
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Figure 30 and Figure 31 show the flame extension for Hetron and Fireblock samples at an 

incident heat flux of 50 kW/m
2 

where Fireblock samples tends to exhibit a larger flame extension 

compared to Hetron samples, it is almost twice the value of Hetron flame extension.  As the 

ATH ratio increases in Hetron samples, the flame extension decreases but at a ratio of 130 ATH 

is increases again. On the other hand, for Fireblock samples there is no a visible trend of the 

flame extension as the sand ratio varies.  

 

Figure 32: Flame Extension of Hetron Samples at IHF of 40 kW/m
2
 

 

 

Figure 33: Flame Extension for Fireblock Samples at IHF of 40 kW/m
2
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Figure 32 and 33 show the flame extension of Hetron and Fireblock at an incident heat flux of 40 

kW/m
2 

where there is a more visible influence of the additive ratio in both composites. As the 

ATH ration increases in Hetron samples, the flame extension tends to decrease. A similar 

behavior is observed for Fireblock samples, as the sand ratio increases the flame extension 

decreases. The influence of ATH is more perceptible than the influence of sand because the 

flame extension in Fireblock samples decreases by a very little amount.     
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Appendix- Smoke developed Index (SDI) 
Primary Author-Cristina Herrera 

Secondary Author-None 

  
In order to be able to use the heat release rate obtained from the cone in a model that predict 

the smoke developed index in the tunnel test some correlations need to be done. First, the main 

variables from the cone are described as: 

1. Heat release rate per unit area (kW/m
2
): 

( )         ̇ ( )  
 ( )

̇

  
 [

  

  
] 

2. Specific extinction area (m
2
/g): 

( )       
 ̇   

     
  

  ̇

 ̇
 

   

 ̇
 

 

[

  

  
 
   

 
]  [

  

 
]  [
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]  [

  

 
 
 

]  [
  

 
] 

 

3. Extinction coefficient (1/m): 

( )      
 

 
   

  
 

 

Where: 

 L=extinction beam path, m.  

 l= actual beam intensity  

 lo= beam intensity with no smoke  

 

4. Effective heat of combustion (kJ/g): 

( )          
 ( )

̇   

     
 [

    

 
]  [

  

 
] 
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Rearranging this expression:  

(     )

  
       ̇( ) 

 ̇        ( )
̇  

( )          
 ̇( )

 ̇
 [

  
 
 

]  [
  

 
] 

With these same parameters it is possible to relate the smoke production rate in the tunnel in 

terms of the heat release rate predicted in the tunnel and the cone data: 

(  )              
 ̇              

    
 

Where the predicted heat release rate in the tunnel is described by the following equation: 

(  )    ̇       (       ̇
    )     

 

The previous equation describes a transformation of the heat released rate per unit area from the 

cone into a heat release rate per unit width, by multiplying the    ̇  by 0.6 which is the exposed 

pyrolysis area in the tunnel, in a two dimensions representation. This term was then added to 88 

kW to account the heat generated by the burners at the tunnel.  

This analysis leads to a relation between the extinction coefficient and the SPR in the tunnel:  

            ̇ 

Where: 

   
         

 ̇
 

Now, using Janssens’ model
1
: 

(  )      ( )          (
       ( )   

  ̇  ( )
) 

The light transmission at the tunnel can be compute after obtaining the SPR at the tunnel and 

rearranging Janssens’ model: 

(  )      ( )          (
           

  ( )
) 

Where Te is the temperature in the exhaust duct and can be computed using the following 

equation from Parker’s analysis
2
: 
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(  )                   [      ̇      ] 

The transmission percentage equation can be rearranged as:  

(  )        ( )  
   

    (
           

      (     (    (  
    
̇    ))

)

 

Then, the transmission percentage is a measurement based on two independent variables: k and 

Qcone  

(  )         ( )  
   

    (
        

(           )       
)
 

 

Finally, from the ASTM E84
3
 the smoke developed index is a ratio of the area under the curve of 

the light transmission versus time of the sample being tested and a standard reference of red oak 

light transmission: 

(  )         

(∫ (      
      

 
)  )

             

(∫ (      )
      

 
)
       

     

By applying the light transmission equation and the SDI presented in the standard, a quick 

screening to determine the smoke index of Hetron and Fireblock samples was computed 

following a step by step procedure outlined as: 

 Clean all noise from the data obtained from the cone. 

 Average the heat release rate per unit area of all the trials corresponding to same sample 

to create a composite Heat Released Rate. 

 Average the extinction coefficient of all the trials corresponding to the same sample. At 

this point make sure that all extinction coefficient data points are sound values, this 

means, do not consider any negative value. In case the raw data yields negative extinction 

coefficient values, assumed they are zero. It is safe to assume them to be zero because a 

negative value for the extinction coefficient means that the Beam intensity with smoke is 

greater than the beam intensity without smoke, and since the beam intensity without 

smoke is assumed to be an intensity of 100%, a negative value means that our beam 

intensity with smoke is somehow greater than 100%, which is physically inconsistent. An 
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extinction coefficient of zero will represent an obscuration percentage of zero, assuming 

that there is no smoke produced.  

 Convert the HRRPUA into a heat release rate representative of the tunnel environment by 

using equation 11.  

 Use all the data collected up to this point to solve for the temperature in the exhaust duct 

of the tunnel by applying equation 14.  

 Use equation 13 to find the light transmission of each sample. 

 Finally, apply equation 17 to solve for the smoke developed index for each sample.  

The reference point in equation 17 corresponds to the obscuration percentage of Red Oak. From 

the graph of red oak in the ASTM E84 standard, a reproduction of the obscuration versus time 

graph is shown in the following graph: 

 

Figure 34: Obscuration Percentage Red Oak 

The above graph shows the obscuration percentage of Red Oak, from which after applying the 

trapezoidal rule for approximating integral in a Matlab program, the area under the curve was 

found to be 54.07. After obtaining this constant and by applying equation (15), the obscuration 

percentage was found for each sample under an incident heat flux of 50 kW/m2 and for selected 
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samples under an incident heat flux for 40 kW/m2. Figure 3535 and Figure 3636 show the results 

obtained for Hetron systems, while Figure 3737and Figure 3838 show the results obtained for 

Fireblock samples under two different incident heat fluxes.  

 

Figure 35: Obscuration Percentage Hetron Samples under an IHF of 50 kW/m2 
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Figure 36: Obscuration Percentage Hetron Samples under an IHF of 40 kW/m2 

 

Figure 37: Obscuration Percentage for Fireblock Samples under an IHF of 50 kW/m2 



 
 

128 
 

 

Figure 38: Obscuration Percentage for Fireblock samples under an IHF of 40 kW/m2 

 

By looking at Figure 3535 and Figure 37, it is clear in both graphs that the time of duration 

of the tests was not until 10 min as the ASTM E84 standard requires, because the variables used 

in this model were obtained from the cone calorimeter test where the test last until flame out no 

matter how long it takes. Even though the ASTM E84 test is supposed to for 10 min, it is not 

recommendable to propagate the data until 10 min because the each system recorded a very 

different last value for the obscuration percentage. If the last point is taken to be constant until 

the end of the test (10 minutes) that would overestimate the value obtained for smoke developed 

index and that would make it unsound to compare all systems based on overestimated results.  

The best option to predict the thermal behavior of each system in the tunnel test was to 

assume that the values for obscuration would hit zero following the same decreasing profile 

obtained in the last seconds of each test. Therefore, after obtaining the last value for obscuration 

percentage, 20 seconds were added to the each system to allow the data to reach zero.   Equation 

15 was applied even though the integral limit for time was not 10 minutes in any case; in fact, the 

time limits for each test were different as all four graphs show. All integrals were solved based 
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on the data available and using the same mathematical approach in an attempt to mitigate any 

discrepancy in the data interpretation.  

Table 15:Smoke Developed Index for Hetron and Fireblock Samples under 50 and 40 kW/m2 

Composite Obscuration % 50 IHF SDI 50 IHF Obscuration % 

IHF 

SDI 40 IHF 

Hetron 100:00 83.759 153 128.240 243 

Hetron 100:33 109.973 201 ------------- --------- 

Hetron 100:66 118.872 217 ------------- --------- 

Hetron 100:100 70.898 130 57.595 105 

Hetron 100:130 26.484 48 21.668 40 

Fireblock 100:00 52.336 96 79.432 145 

Fireblock 70:30 66.788 122 ------------- --------- 

Fireblock 60:40 53.447 98 76.649 140 

Fireblock 50:50 116.662 213 ------------- ---------- 

Fireblock 40:60 123.457 226 132.358 242 

 

As Error! Reference source not found. shows, the smoke released from Hetron samples 

decreases as the ATH ratio increases while for Fireblock samples the smoke released tends to 

increase as the sand ratio increases.  
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Appendix- Uncertainty for the Smoke Developed Index (UNC) 
Primary Author-Cristina Herrera 

Secondary Author-None 

 

Since the model this paper uses to estimate the transmission percentage and the smoke 

developed by each composite is based on the experimental measurements of the cone testing, it is 

assumed that the results yield a “true value” that falls within a range that take into account 

random fluctuations that might took place during data acquisition. In order to account for this 

discrepancy, the uncertainty in the measurements of a large collection of data points can be 

calculated using the standard deviation:    

   √
∑(   ̅) 

   
 

Where:  

 ̅                  

                         

It is important to highlight that all the data points obtained from the cone tests correspond 

to data at each second while the sample was burning. Therefore, at each trial, data points are 

usually above 300 data points which are enough to describe the data as large populations.   

Since the obscuration percentage is a measurement in terms of two independent variables: 

heat released rate per unit area and the extinction coefficient, the individual uncertainty of each 

term is needed to find the uncertainty of the transmission percentage using the law of 

propagation of uncertainty, which is defined by the following equation:   

    (
  

  
)
 

(  )  (
  

  
)
 

(  )  (
  

  
)
 

(  )  

Where: 

              are the individual uncertainties of each variable, which can be represented as 

the standard deviation of each variable.  

The equation for transmission percentage is defined by: 

  ( )          (
           

  ( )
) 
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Where the term Te is dependent of the heat released rate in the tunnel test, which is defined as:  

         [      ̇      ] 

At the same time, the heat released rate (Q) in the tunnel can be obtained by the following 

equation that uses the heat release rate obtained from the cone:  

 ̇       (       ̇
    )     

Taking into account these relations, the transmission percentage equation can be rearranged as:  

  ( )  
   

    (
           

      (     (    (  
    
̇    ))

)

 

Then, the transmission percentage is a measurement based on two independent variables: k and 

Qcone  

  ( )  
   

    (
        

(           )       
)
 

In order to apply the propagation of law, let’s set the extinction coefficient (k) as x and the heat 

release rate (Q) as y for simplicity in the partial derivatives computations,  

 (   )  (
   

    (
       

(      )       
)
) 

Where the partial derivatives are: 
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Finally, the propagation of uncertainty is defined by: 
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By applying the previous equation to all the sets of data obtained from cone testing corresponding 

to the 10 composite systems analyzed throughout the paper, the uncertainty for the transmission model 

was found for each composite as the following table shows:  

Table 16: Uncertainty values for Hetron and Fireblock Systems 

Composite  Coeff. (X) HRR (Y) error X error Y R^2 Uncertainty 

Hetron 100:00 2.944743 91.98126 2.947684 76.31081 663.733 25.7630167 

Hetron 100:33 2.322324 75.47866 1.710902 42.12931 275.8028 16.6073113 

Hetron 100:66 1.664159 59.01628 1.284545 31.98523 199.392 14.1206243 

Hetron 100:100 0.970806 53.07076 1.228257 41.08733 227.2655 15.0753291 

Hetron 100:130 0.691896 41.53556 1.076879 45.706 205.4095 14.3321138 

Fireblock 100:00 2.264548 141.7811 1.902473 85.34508 261.1937 16.1614887 

Fireblock 70:30  2.480783 139.9463 1.943675 77.3902 261.9598 16.1851733 

Fireblock 60:40 2.293132 123.8909 2.128662 84.35112 349.986 18.7079131 

Fireblock 50:50  2.447957 115.0955 1.81644 58.8425 252.9758 15.905214 

Fireblock 40:60  2.4784 90.02738 2.281076 73.02219 451.9064 21.2580904 

 

As this table shows, the uncertainty obtained for each composite yield between 15% to 

20% for all samples except for the first system which has an uncertainty of 26%. This outlier 

corresponds to Hetron 100:100 system; let’s recall that this was the very first system to be tested 

so a larger uncertainty is expected due to lack of practice with the equipment used. In order to 

find a combined uncertainty for the entire model, the best that can be done taking into account 

that the individual uncertainties are in a relatively close range, the average of all the 10 

uncertainties was computed to serve as the uncertainty of the transmission percentage. In this 

way, the approximated final uncertainty is ±%17. It is possible to average all the uncertainties of 

each sample since all measurements and variables were taken using the same equipment (cone 

calorimeter), and the model used to define the transmission percentage was the same for all 

samples.     
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Appendix- Pool Fires (POOL) 
Primary Author-Daniel Morgan 

Secondary Author-None 

 

 In order to be able to compare our cone calorimeter data to the NFPA 285 standard, we 

need a way to determine the height of the flame against a wall. The problem with that is that vary 

little research has been done for smaller flames on walls, especially those below 100 kilowatts 

per meters squared. Fortunately, pool fires have been research much more at lower heat release 

rates. By using the information learned from pool fires, a relation pool fires to wall fires, which 

can be used estimate how a wall fire will react at lower values of heat release rates.  

 Research on pool fires for smaller heat release rates has been done by several people, the 

most notable of which are Heskestad, Zukoski, and Wood et al.  These three groups of people 

and their respective research are where we focused our attention. The measure that most the pool 

fire research has been done was using the quantity,  ̇ 
      ̇ . This quantity is the dimensionless 

Froude number defined as:  

 ̇ 
  

 ̇

(  )(  )(  )(    )   
 

 The first paper that was researched was the paper “Characteristics of Pool Fire Burning” 

by Anthony Hamins, Takashi Kashiwagi, and Robert Burch for the National Institute of 

Standards and Technology
1
. This paper brought together the workings of Heskestad and Zukoski 

and the relations to flame heights that each of the correlated. The first flame height correlation 

that was shown was Heskestad correlation. The Heskestad correlation was correlated to a power 

law in the terms of  ( ̇) is defined as: 

  

 
             ( ̇)

   
 

Where  ( ̇) is defined as: 
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Since the focus was more on the smaller flames, we need to define a point at which the 

pool fire is considered small. The paper mentioned above defined three points where various 

researchers considered the pool fire small.  

 

 

Figure 39: Heskestad Correlation 

In the above graph (Figure 39: Heskestad CorrelationFigure 39), the normalized flame 

height is shown for a range of  ( ̇) at differing pool diameters, ranging from 0.1m to 1.0 m. 

Four different correlations are added to the graph, three of which are from Zukoski and one is 

from Heskestad. The Heskestad correlation is the closest fit to the flame length data, except for 

C2H2 at higher values of  ( ̇). The four correlations are a close match when the  ( ̇) is above 

a value of 10^-4. However, at lower ( ̇) values, the Zukoski correlations falls off while 

Heskestad follows the data. 



 
 

135 
 

Examining the Heskestad correlation and the way the data reacts, it seems that as the pool 

fires becomes small, the flame height seems to drop off more rapidly. Using that information, if 

we can determine that the flame heights of wall fires act in a similar way, it can assume that the 

wall flames will also experience a similar drop off the flame height as it becomes small.  

The next correlation that was made using the same data field as shown in Figure 39 was 

done by Zukoski. He attempted to split the data field up into three separate sections, one for large 

pool fires, a one for intermediate fires, and one for the small fires. Zukoski then correlated a two 

flame height equations for the large and intermediate pool fires.  

 

 

 

 

Figure 40: Zukoski Correlation 
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  Figure 40 shows the Zukoski correlation that was mentioned above, along with a best fit 

curve. From examining the above graph, we can see that the Zukoski Correlation does not fit 

very well with the data. The best fit curve does fit the data relatively well. This best fit curve was 

not mentioned in detail in the paper, so we need to curve fit it to be able to determine what the 

equation is. This will be done later on along with several others as well.  

 The next place that was researched was a paper by Zukoski named “Fluid Dynamic 

Aspects of Room Fires” from the First Symposium of Fire Safety Science. In part of this paper, 

Zukoski breaks down the Flame height versus fuel flow rate into five sections. The five sections 

are shown in Figure 41 below. 

 

Figure 41: Flame height vs. Fuel flow rate 

 The regime that we are focused on is the first regime. This first regime represents the area 

where the small pool fires occur. In this regime, Zukoski observes that the flamelets roughly 

become independent of the diameter of the fire and is dependent on the heat release rate per unit 

area. Unlike the first paper, Zukoski proposes an equation that represents the flame height for the 

small pool fires. The equation he proposes is defined as: 

  

 
 (        )  (  )    

 By using the data from three different sources, Zukoski determines that the constant for 

the above equation is equal to either 40 or 15. The constant of 40 comes from the data of Wood 

et al
2
, while the constant of 15 comes from the data of Cox and Chitty

3
. The difference between 
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the two constants is not certain, but Zukoski is much fonder of the constant of 40 from Wood et 

al. One reason behind this difference is that the constant determine by Cox and Chitty only go 

down to a  ̇ 
  value of 0.13, while other sets of data go as low as 0.037. 

 From Zukoski paper in the First Symposium, he collected several sets of data from a 

range of  ̇ 
  from 0.02 to 10. The data he used were taken from papers by Wood et al (1971), 

Cetegen et al (1985), and Alvarez (1985). Using the data, Zukoski set two different curves, one 

representing higher values of  ̇ 
 , greater than about 0.2, and the other curve for  ̇ 

  of less than 

0.2. The data sets that are involved with the first curve are mostly from Wood et al. The figure 

below shows the collection of data and the two curves. Although the data is more spread apart 

from the curve, it is a relatively good representation of the data. 

 

Figure 42: Flame lengths for small Q* 

Curve Fitting 

 For the figures (Figures 39-42) above that show the correlations, a curve fit was desired 

for all of the small pool fire regions to not only verify that the correlation that each person or 

group made was correct, but to determine some of the curves that were not given in the 
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respective papers. The first graph that was curve fitted was the graph of the Heskestad 

Correlation (Figure 39). This was curve fitted using a free curve fitting software since getting an 

accurate curve fit using excel was troublesome. 

 

Figure 43: Heskestad Curve Fit 

 From the message box in the above figure, the Flame height equation that we curve fit 

was: 

  

 
               ( )        

 Comparing this to the actual Correlation that was shown earlier, the curve fit equation is 

very close to the correlated one.  

 The second figure that was curve fit to determine the equation was that from Zukoski. 

The part of the graph that is shown below is for the region that is  ̇ 
  of less than 0.1, the point at 

which pool fire become small. The curve fit from this graph is being compared to the constants 

that Zukoski determined from the first symposium
4
. One thing to note is that since the points 

being put into excel where determined by looking at the graph, any inaccuracies that arise from 

this can have a large impact on the curve fit equation. 
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Figure 44: Zukoski Small Pool Fires 

 From examining the above curve fit, the equation that was determined to be: 

  

 
         ̇ 

       
 

Comparing this to the constant that Zukoski proposed in the First Symposium (ref), is it 

somewhat close to the 40 that he suggested, but more proof is needed before we can say that the 

constant is indeed 40. 

 The next figure that was curve fit was Figure 41 from Zukoski in the First Symposium
4
. In 

this figure, we only focused on the first Regime. This is the area that represents small pool fires 

and the curve fit should resemble the one shown above. The curve fit from the first regime is: 

y = 53.475x1.8789 
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Zf/D for small pool fires (Q*<0.1) 
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Figure 45: Regime I from Zukoski First Symposium 

 From the curve fit, the equation for the First Regime is: 

  

 
         ̇ 

       
 

 Comparing the curve fit to both Figure 45 curve fit and what Zukoski suggest as the 

constant, it looking much more certain that the constant is 40. However, this is only two cases by 

the same person, so we need to compare the final figure to see what the curve fit is. 

 The final figure that was curve fit was Figure 42. This figure was a collection of data from 

a couple a sources. All of the separate points were plotted all of the separate points that were 

used for the curve fitting that Zukoski did, which was all points lower than  ̇ 
  of about 0.12. A 

curve fit was applied to the data and this was the result: 

y = 31.616x1.9747 
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Figure 46: Curve fit for Wood et al, Cetegen et al, and Alvarez data. 

 From the curve fit for the above figure, the equation is: 

  

 
         ̇ 

       
 

 Compiling all of the curve fits shown above with that from figures 44, 45, and 46, it is 

shown that the constant seems that it is very reasonable that the constant should be about 40. All 

of the curve fits done above seem to agree with Zukoski suggestion that the constant should be 

40. 

Results 

 From doing all of the research and curve fitting all of the graphs, shown below is a 

system of equations that can represent the flame height of a pool fires ranging in all sizes. 
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y = 35.089x1.8893 
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Relation to our Data 

 In order to be able to relate the correlations and the equations to the data that was 

collected from the cone calorimeter, a relation was needed to be able to relate the   ̇ 
  equations 

to the heat release rate per unit area that is given from the cone. The way to relate  ̇ 
  to our data 

is to convert that equation to use a heat release rate per unit area, instead of a heat release rate. 

The way we converted it is as follows: 

             ̇ 
  

 ̇

(  )(  )(  )(    )   
      ̇   ̇                  

             ̇ 
   

 ̇       

(  )(  )(  )(   )   (  )
 

             ̇ 
   

 ̇ ( )

(  )(  )(  )(   )   ( )
 

 The first step that was taken was to define all equations and define the heat release rate 

and the area of the pool. The second step was to substitute the values into the  ̇ 
  equation and to 

pull out the    from under the square root. The final step was to cancel all similar quantities and 

simplify the equation as much as possible. 

 Another Important part that was needed was to know the range of heat release rate per 

unit area that our small pool fire equations is valid for. To do this, the values in the equations 

needed to be defined and also needed to be rearranged the equation to solve for the heat release 

rate. The method that was used is shown below: 

 ̇ 
  

 ̇

      (   )   
      ̇   ̇               ̇ 
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 Upper Limit 

 ̇  (  )  ((      )(    )(   )(    ( ) )   )         

 ̇  
 ̇

  ( ) 

 

 
   

  ( ) 

 

    
  

  
 

 Lower Limit 

 ̇  (    )  ((      )(    )(   )(    (  ) )   )          

 ̇  
 ̇

  ( ) 

 

 
   

  (  ) 

 

      
  

  
 

The first thing that was done was to define the values from the equation and reordering 

the equation to solve for the heat release rate. The properties were determined at the ambient 

temperature of 20 degrees Celsius, while the pool fire diameter was given in the charts. Once the 

properties and diameters were defined, the values were plugged into the equations and solved for 

the heat release rate. To then solve for the heat release rate per unit area, we then divided the heat 

release rate determined earlier by the area of the pool to get the heat release rate per unit area. 

This process was repeated for the lower limit. The range of heat release rate per unit area of 

small pool fires is from a minimum of about     
  

   to a maximum of    
  

  . 
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Appendix- Wall Fire Model (WALL) 
Primary Author-Daniel Morgan 

Secondary Author-None 

 

Since very little information is known about wall fires that are at lower HRRPUA values, 

it is hard to predict what the flame height will be when it gets small. Fortunately, pool fires have 

been studied at lower HRRPUA ranges. We will assume that wall fires at lower ranges will act 

similarly to that of the pool fires. From pool fires research, there are three outlining flame height 

equations that can be used. These equations are as follows: 

(1) 
  

 
     ̇ 

  
      ̇ 

                           

(2) 
  

 
      ̇ 

 
 

        ̇ 
                                                

(3) 
  

 
      ̇ 

 
 

         ̇ 
                                         

 From Delichatsios
1
 and Ming-Mon Tu

2
, both of their flame height equations that they 

calculated resulted in an exponent of 2/3. If both of their data sets appear to have a drop off as 

their heat release rate decreases similar to what is experience with pool fires, it can be assumed 

that the exponent for a wall fire with a low heat release rate is 2. It can also be assumed that the 

wall fires will become cellular at a similar point as they do in pool fires. So it is assumed that at a 

value of  ̇  
   of about 0.1, the heat release rate for wall fires will be small. The constant can be 

determined from the data sets of Delichatsios and King-Mon Tu. In order to compare the two 

data sets together, both need data sets need to be in the same units for comparison. To do this, all 

heat release rates were converted to a dimensionless heat release rate similar to the form from 

Yuan and Cox
3
. The dimensionless heat release rate form is shown below in equation (4). 

(4)  ̇  
   

 ̇ 

      √       

 

Once both of the data sets were converted to a form similar to the Yuan and Cox form, 

both data sets where plotted together on the same graph and a curve fit was applied to determine 

the constant of the wall fire equation. The graph and message box below in Figure 47 are the 
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curve fit for the combination of the two data sets. The equation for wall fires with higher heat 

release rates is shown below. 

(5) 
  

  
   ( ̇  

  )
 

         ̇  
       (                ) 

 

Figure 47: Combination of Delichatsios and King-Mon Tu Data sets 

 From the graph above, towards the end of the data sets nearing about 0.1, there appears to 

be a slight drop off in the data sets. By assuming that the data would in fact drop off when the 

dimensionless heat release rate goes below 0.1, it can be assumed that the exponent for a wall 

fire equation for low values of the dimensionless heat release rate will be 2. To determine the 

constant for the small wall fire equation, the large wall fire equation (equation 5) was set equal to 

the small wall fire equation format at a dimensionless heat release rate of 0.1 to solve for the 

constant.  

(6)  ( ̇  
  )

 

   ( ̇  
  )

 
   (   )

 

   (   )        

Now that the constant for the small wall fire equation is solved for, the system of 

equations for wall fires of all sizes is shown below in equations (7) and (8). 
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(7) 
  

  
  ( ̇  

  )
 

         ̇  
       (                ) 

(8) 
  

  
    ( ̇  

  )
 
        ̇  

       (                ) 

The above system of equations was plotted to determine that there was no discontinuity 

between the two equations and that the drop off as the dimensionless heat release rate gets 

smaller is similar to that from pool fires. 

 

Figure 48: Flame heights of wall fires 

 Once it was determined that the system of equations that were developed would work, the 

equations where then adapted to determine the flame height in the NFPA 285 Standard. 

 The wall fire equations are limited on the allowable range of heat release rates per unit 

area that they work in. While there is no foreseeable upper limit on the heat release rate from the 

research, there are however limits on the lower heat release rates. The lowest limit of the 

allowable heat release rate per unit is based on the fact that from Mowrer and Williamson
28

 

Model, the flame height must be greater than or equal to the pyrolysis length. This is because the 

overall flame height measurement includes the pyrolysis length. So if the value of the flame 

height over the pyrolysis length becomes less than 1, the model fails. To solve for the lower limit 

of the model, the small wall fire equation was used to determine what value of the dimensionless 

heat release rate would result in a value of 
  

  
 equal to one. 
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(9) 
  

  
     ( ̇  

  )
 
       ̇  

       (            ) 

(10)       ( ̇  
  )

 
     ̇  

         

 

Using the lowest value of dimensionless heat release rate which was about 0.088, we can 

calculate the lowest value of HRRPUA at differing pyrolysis lengths where the Mowrer and 

Williamson
28 

form will not be applicable. Using values of pyrolysis length of 0.1 m, 0.5 m, 1 m, 

1.5 m, and 2 m, the lowest value of the heat release rate per unit area can be determined. 

(1)  ̇  
   

 ̇   

       √   

 
 

                           

(2)  ̇  ( ̇ 
  )(       √ √  )       ̇  (    )((    )(    )(   )(   )

 

  (  )
 

 ) (
    

      
)   

(3)  ̇       
  

   

 Repeating the above steps, we get values for the rest of the Pyrolysis Lengths shown below: 

Xp (m) HRRPUA (kW/m2) 

0.1 30.88507787 

0.5 69.06113361 

1 97.66719178 

1.5 119.6173922 

2 138.1222672 
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Appendix- Runge-Kutta 4
th

 Order Method Process (RK4) 
Primary Author-Daniel Morgan 

Secondary Author-None 

 

Once the wall flame height equations were verified that they are continuous and 

experienced a drop off similar to pool fires, it is then applied to the NFPA 285 standard to 

determine the flame height. To do this, the wall fire equations needed to be converted to a form 

that can easily be dynamically solved for using the Runge-Kutta 4
th

 order method. The wall fires 

equations were converted to the form from Mowrer and Williamson shown below in equation 

(1). 

(1) 
   

  
 

     

   
 

The first step that was taken was to rewrite each of the wall flame height equations into 

the Mowrer and Williamson form was to fully define the dimensionless heat release rate 

variable  ̇  
  . 

(2) 
  

  
   (

 ̇   

       √   

 
 

)

 

 

 

 The next step was to simplify both sides of the equation and to rearrange the left side of 

equation so that    is by itself. The final wall flame height equation can be seen in equation (5). 

(3) 
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       √ 
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(4) 
  

  
 ( )(       √ )
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 (  )
 

 

  

(5)    ( )(       √ )
 

 

 ( ̇ )
 

 (  )
 

  

The above process of rearranging the equation was repeated for the small wall fire 

equation. Equation (6) below is the small fire equation rearranged. One thing to note for the 

small wall fire equation is that when it is rearranged, the pyrolysis length drops out due the 

exponent being two. 
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(6)    (   )(       √ )
  

( ̇ )
 
 

The final step was the plug in equations (5) and (6), into equation (1). The resulting 

equations are in the final Mowrer and Williamson
28

 form. 
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Once both of the equations were reformatted into the Mowrer and Williamson, both 

equations (7) and (8) were run through a Runge-Kutta 4
th

 order method that allowed for the 

dynamic solving of the flame height and change in pyrolysis length throughout each test. The 

first step in running the Runge-Kutta 4
th

 order method was to arrange equation (7) into the 

Runge-Kutta form. The Runge-Kutta form for the large wall fires is shown below in equation 

(9). The Runge-Kutta form for the small wall fires is shown below in equation (10). 

(9) 
   

  
  (  )  

  (  )
 
 
 (  )

 
 (  )

 
  (  )

  
 

(10) 
   

  
  (  )  

  (  )  (  )  (  )

  
 

Where the values of C1, C2, C3 and C4 are 

                                                                                

          √                                  

                                    

                     

 The next step is to break down equation (9) into the four k values shown in equations 

(11), (12), (13) and (14).  

(11)      [
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The previous steps were repeated for the small fire equation (10), and the resulting k 

values are shown below in equations (15), (16), (17) and (18).  

(15)      [
  (  )  (  )  (  )

  
]    

(16)      [
  (  )  (  )  (   
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(17)      [
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(18)      [
  (  )  (  )  (       )

  
]    

Once all k values have been defined, it is possible to solve for the value of the pyrolysis 

length at each time step using equation (19) below. 

(19)    
 

 
(      (    )   (    )      ) 

Now that all of the Runge-Kutta equations have been defined above, the equations can 

now be solved for. In order to be able to solve the Runge-Kutta equations, a set of initial 

parameters and a “switch” had to be set up to switch from the large fire equations to the small 

fire equations. The initial parameters that are needed for the solving of the Runge-Kutta 

equations is the time to ignition of the sample and the heat release rate per unit area. The time to 

ignition was determined to be the average time to ignition between all of the sample tests at a 

certain additive ratio. As for the heat release rate per unit area, the average value of the heat 

release rate per unit area was used because if the heat release rate per unit area at each time step 
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is used, the pyrolysis area is being counted twice at each time step, which would result in false 

values.  

The last item that was addressed before the equations were solved for was to develop a 

“switch”, where the solution would be changed from large wall fire equation to small fire 

equation. The “switch” was based off of the dimensionless heat release rate  ̇  
  . The equation 

for  ̇  
   is shown below in equation (20).  

(20)  ̇  
   

 ̇   

       √   

 
 

 

From the pool fire model in Appendix POOL, the dimensionless heat release rate where 

pool fire changes from intermediate to small fires is 0.1. After looking at the data sets from both 

Delichatsios and King-Mon Tu, the lowest values of their dimensionless heat release rates is in 

fact close to 0.1. This was the point at which it was assumed that wall fires would change from 

larger fires to smaller fires, and thus changing from equation (9) to equation (10). With the heat 

release rate per unit area being assumed to be constant, the “switch” is based solely on the 

pyrolysis length. With the “switch” and the initial parameters are defined, equations (11) through 

(19) were solved for each of the different additive ratios at both the incident heat flux of 50 

kW/m2 and 40 kW/m2.  

Results 

The below figures show the resulting dynamic solution of the flame height and the 

pyrolysis length. For the samples of Hetron 100:66 and Hetron 100:100, the average heat release 

rate per unit area is lower than the lowest allowable heat release rate per unit area, so both of 

those graphs make no physical sense. 
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Results from testing at Incident Heat Flux of 50 kW/m
2 

 

Figure 49: Hetron 100:0 at IHF of 50kW/m
2
 

 

Figure 50: Hetron 100:33 at IHF of 50kW/m
2
 

 

Figure 51: Hetron 100:130 at HF of 50 kW/m
2
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Figure 52: Fireblock 100:0 at IHF of 50 kW/m
2
 

 

 

Figure 53: Fireblock 70:30 at IHF of 50 kW/m
2
 

 

Figure 54: Fireblock 60:40 at IHF of 50 kW/m
2
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Figure 55: Fireblock 50:50 at IHF of 50 kW/m
2
 

 

 

Figure 56: Fireblock 40:60 at IHF of 50 kW/m
2
 

 

Figure 57: Epoxy at IHF of 50 kW/m
2
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Results from Testing at Incident Heat Flux of 40 kW/m
2 

 

Figure 58: Hetron 100:0 at IHF of 40 kW/m
2
 

 

Figure 59: Hetron 100:100 at IHF of 40 kW/m
2
 

 

Figure 60: Hetron 100:130 at IHF of 40 kW/m
2
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Figure 61: Fireblock 100:0 at IHF of 40 kW/m
2 

 

Figure 62: Fireblock 60:40 at IHF of 40 kW/m
2
 

 

Figure 63: Fireblock 40:60 at IHF of 40 kW/m
2
 

 


