
An Exploration in Predicting the Price of a

Stock

An Interactive Qualifying Project Report

submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By:

Sahawat Amonlikitsin

Matthew Beader

Stephanie Martin

Submitted to:

 Mayer Humi, PhD

March 3, 2017

ii

Abstract

Mastering the art of the stock market is a goal of many, but none have a perfect model to fit its

chaotic nature. In this project, we explored different methods of modeling the stock market to

predict future stock prices and examined how to measure stock volatility to gain more accurate

predictions. In addition, our stock portfolios made between an 8% and 39% profit. We believe

our model can help investors choose profitable stocks like we did in our portfolios.

iii

Executive Summary

 Investing in the stock market is a dance with risk. Prices can rise or fall significantly in a

matter of a day. In some cases the cause of a sharp change in price is a concrete event, such as

the release of a new product, company scandals, or product recalls. In other cases, the cause is a

mixed bag of economic deterioration or prosperity, consumer confidence, and other unknown

factors. The key to being successful in the stock market is to avoid the declines and profit from

the inclines. It is nearly impossible to successfully avoid every drop in price, but knowing which

stocks have a high chance of remaining stable and increasing with time lowers the risk of

encountering more substantial price drops.

 This Interactive Qualifying Project (IQP) focused on optimizing a stock market model

developed in previous IQP projects as well as finding a way to measure a stock’s volatility. The

goal was to increase the accuracy of future stock price predictions and to determine which stocks

the model would predict best. Successfully doing so would allow investors of all levels to

minimize the risk of investing in the market by detecting which stocks are the least likely to

cause significant losses of profit. This would be especially helpful for people new to investing

and for those who cannot afford to have large deficits in their portfolios.

 At the start of the project, each team member chose five stocks within a sector of the

stock market to follow and test the model with throughout A-term. The model transformed over

the course of the term through additions and optimizations. The base model used a Fourier Series

and least-squares linear regression to analyze stock prices over the past year and predict prices

30 days into the future. If a stock was relatively volatile, or had many dips and peaks in its

iv

prices, the model struggled to produce and accurate prediction. To combat this issue, the team

added moving averages to the equation, which smoothed a stock’s price data before processing it

through the rest of the model. The final addition to the model was exchange indices. The index

changed depending on the stock, but if the two had a strong correlation in terms of price

movement, it generally improved the prediction of the stock’s prices.

 At the end of the term, the model was far from perfect, so the team adjusted various

parameters within the model to see if they could be optimized. Those parameters included

window size for moving averages, length of historical price data, and autocorrelation values. The

overall findings resulted in the conclusion that each stock had its own optimal values, but those

values fall within a certain range depending on the parameter.

 The second term marked a change in the direction of the project. The team researched the

concept of using Lyapunov exponents to determine a stock’s overall volatility. The advisor of the

project, Professor Humi, suggested a program called TISEAN to find the largest Lyapunov

exponent of each stock, where a larger exponent indicated greater volatility. The goal was to see

if a stock was too much of a risk to invest in and if it would work better with the model. Stocks

with higher volatility tended to have poorer predictions.

 In addition to exploring volatility, each member of the team chose 5 to 10 new stocks to

“invest” in with $100,000 of virtual money with the hopes of making a profit. Each stock’s

profitability was monitored into the final term of the project, with profit margins moving with the

market, which at the time was on the rise. These stocks also became the new test subjects of the

model, with many of them achieving better predictions than the industry stocks. The majority of

the project’s final data comes from testing done with the new stocks.

v

Table of Contents

Abstract ... ii

Executive Summary ... iii

Table of Contents .. v

List of Figures ... vii

List of Tables .. x

Introduction ... 1

Background ... 2

Time Series and the Stock Market .. 2

Autocorrelation ... 3

Least-Squares Linear Regression .. 4

Fourier Series .. 5

Moving Averages .. 6

Exchange Index ... 8

Volatility ... 8

Lyapunov Exponents .. 8

Methodology ... 10

Choice of Stocks ... 10

Linear Regression and Fourier Series Analysis .. 12

Moving Averages .. 15

Exchange Index ... 16

TISEAN .. 17

Results ... 19

Linear Regression and Fourier Series ... 19

Moving Averages .. 23

vi

Parameter Adjustments ... 29

Exchange Index ... 35

Choices for Implementation: Mutual Information or Correlation .. 39

TISEAN .. 42

Stock Portfolios ... 46

Model Predictions of Portfolio Stocks .. 51

Conclusion .. 67

Recommendations: .. 67

References ... 70

Appendix: Matlab Code .. 72

vii

List of Figures

Figure 1. Graph of autocorrelation for SAFT. .. 13

Figure 2. Trend line for SAFT .. 13

Figure 3. Fourier fit for SAFT .. 14

Figure 4. Noise graph for SAFT ... 15

Figure 5. Moving averages curve fit for BHI ... 16

Figure 6. Scaled prices for NYSE and SAFT ... 17

Figure 7. Noise graph for BRK-B ... 19

Figure 8. Fourier prediction for BRK-B ... 20

Figure 9. Fourier prediction for FAF .. 20

Figure 10. Fourier prediction for MU ... 21

Figure 11. First Fourier prediction for MSFT ... 22

Figure 12. Second Fourier prediction for MSFT .. 22

Figure 13. Moving averages prediction for BRK-B ... 23

Figure 14. Moving averages prediction for SAFT .. 24

Figure 15. Moving averages prediction for FAF .. 24

Figure 16. Moving averages prediction for FAF with window size 25 .. 25

Figure 17. Moving averages prediction for TRV with window size 25 26

Figure 18. Moving averages prediction for TRV with window size 30 26

Figure 19. FCAU smoothed predictions for window sizes 1-50 .. 27

Figure 20. NVDA smoothed predictions for window sizes 1-50.. 28

Figure 21. TXN smoothed predictions for window size 1-50 .. 29

Figure 22. TXN Fourier series with residuals ... 29

Figure 23. Prediction for Google with default value .. 30

Figure 24. Prediction for Google with offset adjustment ... 31

Figure 25. Comparison of standard derivation values .. 32

Figure 26. Comparison of absolute mean values .. 32

Figure 27. First-zero autocorrelations of Google .. 33

Figure 28. Fourier prediction for BHI ... 36

Figure 29. BHI prediction with NYSE ... 37

Figure 30. Fourier prediction for MSFT ... 38

viii

Figure 31. MSFT prediction with NASDAQ .. 38

Figure 32. Comparison of models with mean - GOOG .. 40

Figure 33. Comparison of models with standard deviation - GOOG ... 41

Figure 34. Prediction errors over sets of 5 days after 11/15/2016 .. 44

Figure 35. Lyapunov exponents at varying dimensions (11/15/16 as day before future)............. 45

Figure 36. Lyapunov exponent vs. error for seven stocks at both 3 and 4 dimensions 45

Figure 37. NASDAQ from 10/01/2016 to 2/01/2017 ... 51

Figure 38. NYSE from 10/01/2016 to 2/01/2017 ... 51

Figure 39. Fourier prediction for AMZN .. 52

Figure 40. Fourier prediction with NASDAQ for APC .. 52

Figure 41. Fourier prediction for CNQ ... 53

Figure 42. Fourier prediction with NASDAQ for COG ... 53

Figure 43. Fourier prediction for COP .. 54

Figure 44. Fourier prediction for GOOG .. 54

Figure 45. Fourier prediction with index for TSLA ... 55

Figure 46. Fourier prediction for YHOO .. 55

Figure 47. Fourier prediction for ABEO ... 56

Figure 48. Fourier prediction for AKAM ... 56

Figure 49. Fourier prediction for AKAM with NASDAQ ... 57

Figure 50. Fourier prediction for BHI ... 57

Figure 51. Fourier prediction for BHI with NYSE ... 58

Figure 52. Fourier prediction for EXPE ... 58

Figure 53. Fourier prediction for EXPE with NASDAQ .. 59

Figure 54. Fourier prediction for LNTH ... 59

Figure 55. Fourier prediction for LNTH with NASDAQ ... 60

Figure 56. Fourier prediction for MSFT ... 60

Figure 57. Fourier prediction for MSFT with NASDAQ ... 61

Figure 58. Fourier prediction for MTL ... 61

Figure 59. Fourier prediction for MTL with NYSE ... 62

Figure 60. Fourier prediction for VNTV .. 62

Figure 61. Fourier prediction for VNTV with NYSE ... 63

ix

Figure 62. Fourier prediction for FCAU ... 63

Figure 63. Fourier prediction for HMC .. 64

Figure 64. Fourier prediction for AMAT .. 64

Figure 65. Fourier prediction for AMD .. 65

Figure 66. Fourier prediction for MU ... 65

Figure 67. Fourier prediction for NVDA .. 66

Figure 68. Fourier prediction for TXN ... 66

x

List of Tables

Table 1. Lengths of historical data for AMZN ... 34

Table 2. Lengths of historical data for GOOG ... 34

Table 3. Lengths of historical data for EBAY .. 34

Table 4. Lengths of historical data for FCAU .. 34

Table 5. Lengths of historical data for TXN ... 34

Table 6. Lengths of historical data for AMD .. 35

Table 7. Lengths of historical data for NVDA ... 35

Table 8. Lengths of historical data for MSFT... 35

Table 9. Lengths of historical data for COP ... 35

Table 10. Mean and standard deviations - GOOG .. 41

Table 11. Mean and standard deviations - MSFT ... 41

Table 12. Mean and standard deviations - TSLA ... 41

Table 13. Mean and standard deviations - AMC .. 41

Table 14. Mean and standard deviations - AMZN ... 42

Table 15. Lyapunov exponents at varying dimensions 11/1/16 ... 43

Table 16. Lyapunov exponents at varying dimensions 11/15/16 ... 44

Table 17. Stock Portfolio A .. 47

Table 18. Stock Portfolio B - February 1st ... 48

Table 19. Stock Portfolio B - November 28th .. 49

Table 20. Stock Portfolio C .. 50

1

Introduction

 In an ocean full of sharks, it is difficult to survive as a small fish. The stock market is full

of professional investors, the sharks, who have numerous tools and insider information at the tips

of their fingers, giving them lucrative intel on which stocks will make the most profit.

Meanwhile, amateurs and casual investors alike, the small fish, swim on the outside with little

more than the recommendations of experts and their own intuition to help them invest in the

market with confidence. The goal of this Interactive Qualifying Project was to develop a tool for

less experienced investors to predict the profitability of stocks.

 The project focused on two areas of weakness for the amateur investor: predicting a

stock’s future price and determining if a stock is risky. To predict a stock’s price, the team

further developed and optimized a model created by a previous IQP team. Different aspects of

the model were tested in order to find the best suited parameters, and new methods were added to

improve the prediction accuracy. In theory, all stocks are risky investments, but some are more

volatile than others. The team used TISEAN software to determine the volatility, and thus the

riskiness, of stocks.

 With small investors in mind, the team sought to combine the two tools to provide

guidance in choosing potentially profitable stocks. Ideally one would first see if a stock is

volatile and then use the model to predict the stock’s future prices. The predictions have a

general window of error but still show the overall trend of the stock, which can be positive,

negative, or stagnant. For the safer investors who are just poking their heads into the stock

market, this project would help them identify stable stocks with positive trends, which in turn

would provide a profit.

2

Background

Time Series and the Stock Market

A stock’s price data is recorded at some specific time (end of the day). According to

Brockwell, the stock market is a discrete-time series, a discrete set of recorded observations Xt at

specific time t.

To analyze a time series, we use the classical decomposition process, a modeling process

which separates a time series Xt into 3 components as shown below:

𝑋𝑡 = 𝑚𝑡 + 𝑠𝑡 + 𝑌𝑡 – (Brockwell, 22)

Where those variables -- 𝑚𝑡, 𝑠𝑡 , 𝑎𝑛𝑑 𝑌𝑡 -- can be described as the following:

a) Long-term Trend (mt)

A long-term trend is the direction in which all of the observed data is heading towards,

either increasing or decreasing. The relationship of the variables in the observed data that

have a long term trend does not have to be linear, only that the data has to be fluctuating

in the same direction.

b) Seasonal Component (st)

A seasonal component is a pattern in the observed data and exists throughout the data.

The cause of a seasonal component comes from many factors such as season changes,

quarter of the year, etc.

c) Irregular Component or random noise component (Yt)

After subtracting the long-term trend and seasonal component from the data, the leftover

term is defined as an irregular component. The irregular component is random and can

cause sudden changes in the observed data. The expected value of the irregular

component is zero.

3

Autocorrelation

An autocorrelation function of a time series Xt is a function which indicates correlation or

similarity between Xt and its own lagged version Xt-L. The value of autocorrelation ranges

between -1 and 1. A value of 1 means those two points or set in the time series fluctuates

perfectly in the same direction, while a value of -1 represents the opposite. To find the

autocorrelation we use the process described below:

1) Suppose there exists a time series data set Xt which consists of K observations. We

create a lagged version of the time series, Xt-L, by choosing data (L-1)th to Kth of Xt. Xt-L

is preferred as the time series Xt with lag L.

2) The autocorrelation of Xt with lag L can be calculated using the formula below:

𝐴𝐶𝐹 =
𝐶𝑂𝑉(𝑋𝑡 ,𝑋𝑡−𝐿)

𝐶𝑂𝑉(𝑋𝑡 ,𝑋𝑡)
 - (S. Bisgard and M.Kuanchi, 51-52)

 Where ACF is the autocorrelation function

 COV is the covariance function

 Xt is the total observations

 Xt – L is the observations with lag L

According to Bisgard, the amount of data Xt considered good should be more than 50 and

the value of lag we are using should not be more than one fourth of the total amount of

data we have.

In our model, ACF is used for choosing a period of data in which a long-term trend exists. Such

a period of data is expected to have only positive ACF due to some degree of similarity which

exists throughout the data set.

4

Least-Squares Linear Regression

Least-squares linear regression is a common and versatile modeling method. It’s used to

find the trend component (mt) to determine the line of best fit for a set of data. Linear regression

uses an independent variable to predict the path of a dependent variable. For our model, we

assume that the trend component depends on time (t):

𝑚𝑡 = 𝛽1 ∗ 𝑡 + 𝛽0 - (G. James et al. 61)

Where mt is the trend component

 t is the time variable

 𝛽0 , 𝛽1 are constants

Both constant 𝛽0 𝑎𝑛𝑑 𝛽1 can be estimated using a method of ordinary least square (OLS). Least-

squares calculates the distance between a regression line and a data point, then squares that

value. The Residual Sum of Squares (RSS) is the sum of the squared residuals (ei):

𝑅𝑆𝑆 = ∑ 𝑒𝑖
2𝑛

𝑖=1 – (G. James et al. 62)

OLS states that the values of 𝛽0 𝑎𝑛𝑑 𝛽1 for the best fitting trend line should provide the least

RSS. According to (G. James et al. 62), those value of 𝛽0 𝑎𝑛𝑑 𝛽1 can be calculated using

equation as shown below:

𝛽1 =
∑ (𝑡𝑖 − 𝐸(𝑡𝑖))(𝑥𝑖 − 𝐸(𝑥𝑖))𝑛

𝑖=1

∑ (𝑥𝑖 − 𝐸(𝑥𝑖))
2𝑛

𝑖=1

𝛽0 = 𝐸(𝑥𝑖) − 𝛽1 ∗ 𝐸(𝑡𝑖)

Where xi is the ith observed value of time series Xt

 ti is the time at which xi appears

5

 E(xi), E(ti) are the means of xi and ti respectively

For further details on how to find 𝛽0 𝑎𝑛𝑑 𝛽1, we recommend viewing chapter 3 of “An

Introduction to Statistical Learning: with Applications in R” by G. James et al.

The line created by the least-squares linear regression contains the minimized sum of the

squared values, producing a line that represents the overall trend of the data being modeled. It is

the base for the model in this project, as it provides a sense of the direction of the stocks’ prices

over a period of time.

Fourier Series

The Fourier series is a series of the periodic functions sine and cosine, which can be used

to represent any function f(x) on a specific interval. A Fourier series of a function f(x) on the

interval [-L,L] can be represented as

𝑓(𝑥) = 𝑎0 + ∑ 𝑎𝑖 cos (
𝑛𝜋

𝐿
𝑥) + 𝑏𝑖sin (

𝑛𝜋

𝐿
𝑥) ∞

𝑛=1 - (E.Kreyszig 483)

Where 𝑎0 =
1

2𝐿
∫ 𝑓(𝑥)𝑑𝑥

𝐿

−𝐿

𝑎𝑛 =
1

𝐿
∫ 𝑓(𝑥)cos (

𝑛𝜋

𝐿
𝑥)𝑑𝑥

𝐿

−𝐿

𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑥)sin (

𝑛𝜋

𝐿
𝑥)𝑑𝑥

𝐿

−𝐿

A Fourier series is usually used to approximate a periodic function. We call the approximation

method a harmonic regression which, for some reference, is referred to as “Fourier fitting” or

“Trigonometric fitting.”

The seasonal component (st), which shows patterns over time, can be approximated using

harmonic regression. With Fourier approximation, the seasonal component is as shown below:

6

𝑠𝑡 = 𝑎0 + ∑ 𝑎𝑖 cos (
𝑛𝜋

𝐿
𝑥) + 𝑏𝑖sin (

𝑛𝜋

𝐿
𝑥)

𝑁

𝑛=1

Note that parameter L is half of the period of the seasonal component and the constant 𝑎𝑖 𝑎𝑛𝑑 𝑏𝑖

can be approximated by using a least-squares method.

The stock market tends to cycle in a periodic fashion, making Fourier series a viable

option to model stock price data. In this project, second and third order Fourier series were used,

which correlates to two sine and two cosine terms or three sine and three cosine terms,

respectively. The equation for a second order Fourier series in Matlab is:

Y = a0+a1*cos(x*p)+b1*sin(x*p)+a2*cos(2*x*p)+b2*sin(2*x*p)

Where p = 2*/(max(xdata)-min(xdata)). The Fourier series uses the equations above comprised

of sines and cosines to model a set of data with a curve.

Moving Averages

According (Abraham 174), moving average is a seasonal adjustment, a method for

removing a seasonal (st) and irregular (Yt) component out of a time series. The method works as

described below:

Suppose that we have a time series Xt and its equation is shown below:

𝑋𝑡 = 𝑚𝑡 + 𝑠𝑡 + 𝑌𝑡

And the time series Wt is linear-filtered Xt . Wt can be described as

𝑊𝑡 =
1

2𝑞 + 1
∑ 𝑋𝑡+𝑖

𝑞

𝑖= −𝑞

7

 =
1

2𝑞 + 1
[∑ 𝑚𝑡 +

𝑞

𝑖= −𝑞

∑ 𝑠𝑡 +

𝑞

𝑖= −𝑞

∑ 𝑌𝑡

𝑞

𝑖= −𝑞

]

Since st is a periodic function and the expected value of the irregular component is zero,

the mean value of st and Yt is expected to be close to zero. Moreover, as a linear function,

𝑚𝑡 =
1

2𝑞 + 1
∑ 𝑚𝑡+𝑖

𝑞

𝑖= −𝑞

Therefore, 𝑊𝑡 ≈ 𝑚𝑡

With the ability to subtract linear independent variables from a function, MA is called a

Linear Filter. There are two types of commonly used MA:

a) Simple moving average

b) exponential moving average

Although, MA is a very effective tool for subtracting trend components out of a time

series, we still have to be cautious while choosing a window size of (2q+1), as the trend line

component may be a linear function.

 The method of calculating a moving average can be explained in simpler terms. Choosing

a window size of 10, the first new data point calculated would be the average of the first 10 data

points, the second an average of data points 2-11, and so on. The resulting line comprises of each

data point created by calculating the moving averages. The goal of using moving averages in the

project is to smooth stock data to cut down on noise produced by frequent price fluctuations.

8

Exchange Index

 A stock market index is some measurement of the value of some portion of the market.

By weighting the individual prices of stocks, the performance of the market can be quantified

and tracked. The resulting index is usually a good representation of the overall trend of the

market indexed. Since stocks are not traded in their own universe, they all provide their own

influence on the market and are in turn influenced by the market. A technology stock that

follows the overall trend of the market, for example, may be highly correlated with the

NASDAQ Composite. The peculiarities and noise of the stock’s price changes would be

smoothed by the overall market trend, producing a prediction more resistant to oddities. The

movement of the index and its own prediction could be used to improve the prediction of the

stock alone.

Volatility

 Volatility is the amount of variation over time of a time series. For stocks, volatility is a

measure of risk and typically calculated by taking the standard deviation of the logarithmic

returns. A highly volatile stock is often subject to frequent and significant price changes. These

types of stocks are more difficult to predict, as the changes are more often influenced by outside

factors and specific events, such as investors’ opinions and press releases, and less by market

trends and company performance. The price of a more nonvolatile stock would be more

accurately predicted than that of a highly volatile stock.

Lyapunov Exponents

In the project, to determine how predictable a stock price system is, Lyapunov exponents

were utilized. These exponents characterize the chaos of a system through infinitesimal

9

perturbations. As a result of being computed with a specified embedding dimension, there is a

spectrum of Lyapunov exponents representative of the number of dimensions. These other

exponents may be spurious, as the embedding space does not necessarily represent the actual

space, thus the largest exponent, the Maximal Lyapunov Exponent (MLE), can be considered as

the only relevant exponent. When the MLE is negative, points converge and there is minimal

chaos. Conversely, when the MLE is positive, points diverge. For a prediction, exponents closer

to a negative value would mean that system is more easily predicted, while more positive

exponents are less easily predicted.

10

Methodology

Choice of Stocks

At the beginning of the project, each member chose a sector of the stock market to

research: oil, automobiles, and finance, specifically insurance companies. Each member then

chose five stocks in their respective sector. These stocks became the first sources of test data in

the early stages of the model. They were chosen based both on interest and potential profitability.

The finance sector is traditionally stable, but can vary by company and overall market

stability. The 2007 stock market collapse known as the Great Recession exemplifies a time

where certain industries in the finance sector, such as banks, did not fare well in the market,

while others were able to remain in the black or suffered small losses in comparison. The

automobile sector was on the rise recently as newer technology in self-driving cars and

automated driver assistance boomed, and plummeting oil prices fueled a resurgence in consumer

interest. While the oil industry was in a lull, stock prices were at their lowest, meaning they were

cheap to buy and would eventually go up again. However, the industry was not profitable at the

time of the project, which prompted changes in industry choice a few weeks into A-term.

At the end of A-term, each member chose seven or eight new stocks for both testing and

to build a stock portfolio. Each member was given $100,000 of “virtual” money to purchase

shares of the stocks and to track the progress of their investments for the rest of the project. The

goal was to choose stocks that would make a profit over time. Each member of the team chose

their stocks in a different manner. Creating a stock portfolio helped realize potential risks in the

stock market and furthered the team’s understanding of how the market operates.

For Portfolio A, some of the oil stocks from A-term stayed while new stocks were also

added to diversify the portfolio. The oil stocks from A-term were tested with the model, and the

11

ones with the best predictions, Canadian Natural Resources Limited (CNQ), Cabot Oil & Gas

Corporation (COG), Anadarko Petroleum Corporation (APC), and ConocoPhillips (COP), stayed

in the portfolio. In addition, four other stocks were added: Google (GOOG), Tesla (TSLA),

Amazon (AMZN), and Yahoo (YHOO). Historically stable stocks, these were chosen based on

comfort and familiarity with the companies, rather than their potential profits. However, with the

exception of financial woes and product blunders, these companies tend to rise as the market

rises, and thus still could make a profit in a bullish market.

To determine the best stocks to invest in for Portfolio B, websites such as The Street,

Motley Fool, and Investopedia were used to view a stock's price history, gain advice on which

stocks were good buys, and see projections of how certain market sectors would behave in the

future. For example, Motley Fool provides advice from veterans of the market about which

stocks, based on consumer confidence, market movement, and company success and product

releases, have the most potential for profit in the near future. With this in mind, some of the

stocks chosen were little known companies with low stock prices, such as Abeona Therapeutics

Inc. (ABEO), Lantheus Holdings, Inc. (LNTH), and Mechel PAO (MTL). These stocks offered

wiggle room in terms of profit losses and gains - a large price jump would lead to a significant

profit, while a drop would lead to minimal losses since the price could only drop so far. A

weekly article post from the Motley Fool about the top ten stocks to buy in October included

Vantiv, Inc. (VNTV), Akamai Technologies, Inc. (AKAM), and Baker Hughes Incorporated

(BHI) in the rankings. Meanwhile, Expedia, Inc. (EXPE) and Microsoft Corporation (MSFT)

were slated to have upticks in the prices of their stocks based on consumer confidence and

product releases.

12

For Portfolio C, the automotive manufacturers were replaced by computer hardware

manufacturers. However, the two auto stocks that best fit the model, Honda (HMC) and Fiat-

Chrysler (FCAU), were kept. To determine what stocks looked like decent investments, a list

was first compiled of well-known brands. This list was further narrowed down to only public

companies traded on either the NYSE or the NASDAQ, then expanded to include other

companies found on these exchanges, and finally were compared against each other. Of these,

both NVIDIA Corporation (NVDA) and Advanced Micro Devices, Inc. (AMD) had been

performing well and had numerous positive news. The two competitors both had been widely

projected to continue increasing. Texas Instruments Incorporated (TXN) was chosen after having

recently released a strong earnings report. Micron Technology, Inc. (MU) and Intel Corporation

(INTC) on the other hand, did not seem to have much going for either stock. The model was

applied to both stocks over the time period of A Term, resulting in a near perfect prediction for

MU. INTC’s recent performance also weighed against it and as a result was not chosen. While

attempting to determine why the prediction for MU was so good, Applied Materials, Inc.

(AMAT), another high volume stock, was added.

Linear Regression and Fourier Series Analysis

The initial model involved auto-correlating exactly one year of historical stock closing

prices to determine the period where these prices were considered relevant to the current price.

The autocorrelation for the stock Safety Insurance Group, Inc. (SAFT) was 78 days, the point at

which the red line crosses zero, as shown in Figure 1.

13

Figure 1. Graph of autocorrelation for SAFT.

A least-squares linear regression was performed on the resulting set of data, represented by the

green line in Figure 2.

Figure 2. Trend line for SAFT

14

The residuals from this regression were then fit to either a two or three term Fourier series. A

Fourier three fit was used for SAFT in Figure 3.

Figure 3. Fourier fit for SAFT

The prediction curve was then generated by taking the sum of the regression line and the Fourier

curve. To provide a reasonable range around the prediction curve allowing any potential noise to

be accounted for, the mean of the absolute value of the difference between the residuals and the

Fourier series was taken. The graph of the noise for SAFT is presented in Figure 4.

15

Figure 4. Noise graph for SAFT

This model served as a basis for every other model used.

Moving Averages

The first modification of the model was the employment of moving average smoothing.

Prior to calculating the regression line, the raw relevant closing prices were smoothed by

averaging a chosen number of previous data points, typically around 25, also known as the

window size. There was not a set value for the window size, so the team chose one that was

popularly used by others doing similar research. This new set of smooth data, free of any sharp

spikes, was then used in the calculation of the regression line and only in this calculation, the rest

of the model was performed as before. Using moving averages produced a lag in the data

proportional to the window size, so a larger window size did not necessarily mean higher

accuracy. An example of the lag produced can be seen in Figure 5:

16

Figure 5. Moving averages curve fit for BHI

The shape of the curve created by the moving averages lags behind the shape of the raw data. In

an attempt to compensate for the loss of data points in the first 25 days, a for loop was written to

calculate a moving average with one less day in the window size, so for day 24 the window size

would be 24, etc. The goal of using moving averages was to provide data with less noise so the

Fourier fit would be less erratic.

Exchange Index

The model was further modified by implementing a stock market index. For this model,

prediction curves were calculated as before for both the stock's and the index's closing prices.

Autocorrelation, however, was not performed for the index. Instead the autocorrelation period of

the stock was used, as the stock is our chief interest and the time periods used must match. In

order to combine these prediction curves, both curves must be on the same scale, thus the curves

were normalized by their respective price on the day before the future, as seen in Figure 6.

17

Figure 6. Scaled prices for NYSE and SAFT

The resultant prediction was the weighted sum of the individual prediction curves. To

determine how to weight each curve, the correlation between the stock closing prices and the

index closing prices over the relevant period was taken. The index was weighted by the

correlation value, while the stock was weighted by one minus the correlation. This way, the final

prediction is not significantly larger or smaller than the original curves, as the weights sum to

one, and the index only contributes as much as it associates with the stock. Finally, the summed

prediction was rescaled back by the same amount the stock was originally normalized by to get

the final combined prediction curve.

TISEAN

Using the delay and lyap_spec programs found in the TISEAN package, historical prices

were divided into columns determined by the autocorrelation, then used to calculate leading

exponents at various dimensions, such that each dimension would use that many autocorrelations

18

of data, e.g. an autocorrelation of 40 would use 80 points for a dimension of two. This was done

by executing the following:

./delay <data file> -d <autocorrelation period> -m <dimension> -o

./lyap_spec <delay output file> -m <dimension>,<dimension> -o

where the dimensions in the lyap_spec options are always equal. An ideal dimension would not

include so many days of data that prices would not at all be relevant, as well as not have any

extreme leading exponent, whether positive or negative. Typically, at most two years of

historical data would be considered, restricting the use of dimensions above five for anything but

small autocorrelation periods. To determine whether Lyapunov exponents could be used to

indicate whether a stock was a good fit for the model, the exponents were compared against the

absolute error between the predicted price and the actual price. If lower exponents correlated

with lower error, Lyapunov exponents could indicate that the stock could ultimately be more

accurately predicted.

19

Results

Linear Regression and Fourier Series

 The combination of linear regression and Fourier series was the simplest model and led to

a variety of results. Some stocks had accurate predictions, while others were only successful for

one or two days. As was a common trend throughout the project, the model tended to work best

with stocks that were more stable and had less noise. One of the stocks chosen in A-term,

Berkshire Hathaway Inc. (BRK-B), before the team knew how stock volatility affected the

accuracy of the model, had noise represented by Figure 7, which is quite significant compared to

more stable stocks, which generally have a noise below 1.0.

Figure 7. Noise graph for BRK-B

The prediction for BRK-B was more accurate the further into the future it went, as shown in

Figure 8.

20

Figure 8. Fourier prediction for BRK-B

For most stocks this was not the case. For example, First American Financial Corporation (FAF)

had the opposite happen, as shown in Figure 9.

Figure 9. Fourier prediction for FAF

21

 After discovering the issue with volatility near the end of A-term, the team chose new

stocks, not only ones that would make a profit but also ones which were more stable. Since the

stock market fluctuated due to the presidential election, even some notoriously stable stocks had

sharp price changes. The model, however, fared better overall with the new stocks, even going as

far as a near perfect prediction over 25 days (Figure 10).

Figure 10. Fourier prediction for MU

One stock, Microsoft (MSFT), still fell victim to volatility, causing the model to only be

accurate until the stock’s price spiked quickly, as shown in Figure 11.

22

Figure 11. First Fourier prediction for MSFT

A prediction of MSFT calculated a few weeks later was more successful with less error (Figure

12).

Figure 12. Second Fourier prediction for MSFT

23

These results exemplify why the stock market cannot be predicted with 100% accuracy, as entire

sectors or the market as a whole can rise or fall sharply with little to no warning. The linear

regression and Fourier series model had room for improvement, which led the team to further

expand the model.

Moving Averages

Success with using moving averages to smooth data was a mixed bag. For some stocks,

the prediction improved, while for others there was little change or it was worse. The window

size was a parameter of guess, as each stock had one that worked best. For example, the moving

averages prediction for Berkshire Hathaway Inc. (BRK-B) in Figure 13 and Safety Insurance

Group, Inc. (SAFT) in Figure 14 use the group standard window size of 25, while the prediction

for First American Financial Corporation (FAF) in Figure 15 uses a window size of 38.

Figure 13. Moving averages prediction for BRK-B

24

Figure 14. Moving averages prediction for SAFT

Figure 15. Moving averages prediction for FAF

25

With the standard window size of 25, the prediction for FAF was much worse, as seen in Figure

16 below.

Figure 16. Moving averages prediction for FAF with window size 25

For The Travelers Companies, Inc. (TRV), the moving averages prediction with window size 25

missed the mark completely, as shown in Figure 17. With an adjustment to the window size to

30, however, the prediction improved (Figure 18).

26

Figure 17. Moving averages prediction for TRV with window size 25

Figure 18. Moving averages prediction for TRV with window size 30

These results exemplify why the optimal window size for moving averages varies between

stocks. In response to these findings, the team attempted to discover an optimal window size or

range for predicting a stock’s price. We discovered that each stock had an optimal window size

27

between 10 and 50. Any higher or lower and the results were worse, rather than better. For

example, in Figure 19 and Figure 20, all prediction curves with a smoothing window from 1 to

50 were graphed together, where a pure red (RGB #FF0000) line indicates a window of 1, pure

green (RGB #00FF00) a window a 25, and pure blue (RGB #0000FF) a window of 49. A

window closer to 25 was clearly better than one closer to either extreme.

Figure 19. FCAU smoothed predictions for window sizes 1-50

28

Figure 20. NVDA smoothed predictions for window sizes 1-50

Moving averages have the power to completely change the prediction curve with a

singular step increase in window size. Following the same format as the previous graphs, Figure

21 shows such a change. For all window sizes of 21 and below, the prediction curves were

exactly the same, diverging from both the rest of the curves and the actual stock price. The single

step from 21 to 23 caused the fitted Fourier series to have a complete change in behavior, from

two critical points to four. In the case that this does occur, one of the two Fourier series forms

will always cause a prediction curve to unrealistically approach +/- infinity. If this occurs when

smoothing is not used, moving averages will likely improve the model.

29

Figure 21. TXN smoothed predictions for window size 1-50

Figure 22. TXN Fourier series with residuals

Parameter Adjustments

Zeroth Date Price Offset Adjustment:

 The graph of the model prediction with the default value is shown in Figure 23. The

zeroth-date prediction is not the same as the actual stock price.

30

Figure 23. Prediction for Google with default value

The prediction should start at the same point as the actual price. If the model starts with an error,

it is likely that the second half of the model will have more error than necessary. Therefore, we

adjusted our prediction by subtracting the offset of the prediction so the zeroth-date prediction

would be the same as the actual price. The result after the adjustment is shown in Figure 19.

Please note the value of the offset.

31

Figure 24. Prediction for Google with offset adjustment

In comparing Figures 23 and 24, the result of the model with the offset adjustment

performed is better than the one with no offset adjustment: the model with the offset adjustment

had the actual price closer to the prediction than the others.

 For more solid evidence, we created 2 sets of prediction models, offset and non-offset

adjustments, to predict the actual price for 10 days. The start date ranged from October 01, 2016

to Nov 01, 2016. We found the standard deviation of the residuals and absolute value of the

mean of the residuals for each of the models from each of the sets. The results are shown below:

32

Figure 25. Comparison of standard derivation values

Figure 26. Comparison of absolute mean values

From Figures 25 and 26, the standard derivative of both sets of predictions have the same

standard derivative, but have different graphs for the absolute value of their means. Therefore,

adjusting the offset of the prediction by equalizing the prediction and actual price at the zeroth

33

date can lead to a prediction with a better direction, but the overall error will still the be same as

both of the prediction sets have the same standard derivative but the offset-adjusted predictions

have lower absolute mean value.

Autocorrelation and total amount of data used to analysis:

Figure 27. First-zero autocorrelations of Google

 Figure 27 shows that the different lengths of historical data used in the model provide

different results. This is because different lengths of data have different autocorrelations.

Moreover, for almost every lag, there exists a length historical data corresponding to such a lag

(this case can only be applied to a small amount of the historical data). This implies that we can

use any lag number to create the best prediction model, which is false since using a different

first-zero autocorrelation provides a different model with different performance. Therefore, it is

necessary to choose a length of historical data in order to have the first autocorrelation that

provides the best prediction.

34

To consider the proper length of historical data for our model, we created a set of 10-day

prediction models for 9 stocks on November 1, 2016 and a set of prediction models for each

stock with varying lengths of data. To test the performance of each prediction, we found the

standard derivation and mean of error for each prediction. The resulting means and standard

derivations are shown below:

AMZN
Amount of The Historical Data Used

100 300 500 700 900 1100

Standard Derivation 53.7376 29.1489 19.7317 18.2121 20.6674 20.9298

Mean -76.6463 36.7305 -12.1744 -9.0863 21.3682 21.9294

Table 1. Lengths of historical data for AMZN

GOOG
Amount of The Historical Data Used

100 300 500 700 900 1100

Standard Derivation 17.7396 20.7924 14.6934 14.77 22.7987 22.9309

Mean 25.907 26.9657 7.4313 7.6817 29.4946 29.7686

Table 2. Lengths of historical data for GOOG

EBAY
Amount of The Historical Data Used

100 300 500 700 900 1100

Standard Derivation 0.3189 0.7358 0.979 0.2208 0.2231 0.2274

Mean -0.2029 1.3021 -1.157 0.0614 0.0639 0.0473

Table 3. Lengths of historical data for EBAY

FCAU
Amount of The Historical Data Used

100 300 500 700 900 1100

Standard Derivation 0.3295 0.2581 0.6322 0.2137 0.2508 0.3792

Mean -0.0874 -0.0848 -0.524 0.1465 0.0657 -0.1947

Table 4. Lengths of historical data for FCAU

TXN
Amount of The Historical Data Used

100 300 500 700 900 1100

Standard Derivation 0.6888 0.7854 0.7582 0.6967 1.4382 0.7826

Mean 0.6308 0.8531 1.5267 0.6413 -0.799 0.6414

Table 5. Lengths of historical data for TXN

35

AMD
Amount of The Historical Data Used

100 300 500 700 900 1100

Standard Derivation 0.3607 0.2973 0.2682 0.2798 0.2728 0.2682

Mean 0.5743 0.6032 0.4484 0.4796 0.4624 0.4491

Table 6. Lengths of historical data for AMD

NVDA
Amount of The Historical Data Used

100 300 500 700 900 1100

Standard Derivation 10.306 7.0216 6.796 6.9485 7.3275 7.9403

Mean -11.0053 -2.874 -2.3298 -2.6961 -3.3754 -4.5713

Table 7. Lengths of historical data for NVDA

MSFT
Amount of The Historical Data Used

100 300 500 700 900 1100

Standard Derivation 0.9722 23.0696 1.9108 0.8131 0.7847 0.824

Mean 1.4492 -23.324 2.5145 0.6641 0.3185 0.6337

Table 8. Lengths of historical data for MSFT

COP
Amount of The Historical Data Used

100 300 500 700 900 1100

Standard Derivation 1.2517 1.4913 1.0482 0.7494 0.6615 0.6618

Mean 1.1573 -0.6667 -1.0002 0.7643 0.282 0.3519

Table 9. Lengths of historical data for COP

From the tables above, the length of the historical data to be used, ranging from 500 – 900,

usually at 700, can provide predictions with the best performance (low magnitude in both

standard derivation and mean). Therefore, we chose to use 700 days for the length of the data.

Exchange Index

 Some stocks follow the price patterns of the exchange index they are traded in, providing

an opportunity to improve the accuracy of the model for stocks falling under that category. As all

the stocks chosen for the project fell under either the NASDAQ or the NYSE, it was obvious

some stocks were better fit for this type of model, as not all the NASDAQ or NYSE stocks had

36

the same price patterns as their counterparts. Another influence in the accuracy of the exchange

index model was if the index’s stock had a good prediction, since the model predicts both the

stock and the index and then adds weighted versions of the two together. If the index’s prediction

was poor, the combined prediction would then be inaccurate because of the index rather than the

stock.

 For some stocks, the addition of the exchange index improved the prediction accuracy.

For others it remained similar to using just the linear regression and Fourier series model. (BHI)

had the accuracy of its prediction go from 9 days to 16 days after incorporating its exchange

index, the NYSE. Figure 28 and 29 compare the two models:

Figure 28. Fourier prediction for BHI

37

Figure 29. BHI prediction with NYSE

While the index model was less accurate in predicting the first few days, it was more accurate

further into the future. When investing in stocks for longer than a few days, knowing the future

price 16 days in advance is more useful than five days.

 Meanwhile, Microsoft (MSFT) was an example of how the exchange index (NASDAQ)

model was relatively the same in accuracy as the linear regression and Fourier series model, but

the further the predictions went into the future, the more the two differed (Figures 30 and 31).

38

Figure 30. Fourier prediction for MSFT

Figure 31. MSFT prediction with NASDAQ

The correlation between MSFT and NASDAQ was close to .5, meaning the two had some

similarities in their price patterns. When weighting the two prediction curves in the model, they

39

received almost equal weight since the correlation was close to half of one. The combined

prediction curve would then depend on the accuracy of the NASDAQ prediction. The NASDAQ

prediction worked well with the autocorrelation of MSFT, so there was a relatively accurate

combined prediction curve.

 In general, the stocks that either had close to a correlation of 0.5 with their exchange

indices or a negative correlation fared the worst with this model. There were some exceptions,

such as MSFT, which had accurate predictions on both ends. However, usually a negative

correlation would lead to weight being put on the exchange index even though the two price

patterns had little similarities. The stocks with a correlation close to 0.5 had a prediction curve

skewed towards the index more than needed, resulting in an over or under estimate of the stock’s

price, depending on where the index’s prediction curve fell.

Choices for Implementation: Mutual Information or Correlation

As previously shown, index implementation can result in improved stock predictions.

Another way to implement the index to the model uses Mutual Information. The concept of

correlation is similar to that of mutual information. While correlation is referred as the linear

relationship between two sets of variables, mutual information between x and y is a “reduction in

uncertainty of x by virtue of being told by y” (Bishop (2013), Page 57). In other words, mutual

information shows how close the two sets of data are to each other.

To implement mutual information into our model, we use the same method as when we

implement correlation to the model:

1) We find mutual information between a stock and its index. In this model, we use the

approach of vanilla kde by A. Tsanas.

2) Create a new prediction by using the mutual information value as a ratio to combine

the stock and index together

40

To test the new approach for implementing the index into the model, we find the mean and root

mean square for a year (October 16, 2015 – October 16, 2016) for various stocks using three

different approaches:

a) Non-index implementation

b) Index implementation using correlation

c) Index Implementation using mutual information

Graphs of the results from one of the stocks, Alphabet Inc. or GOOG, are shown below:

Figure 32. Comparison of models with mean - GOOG

41

Figure 33. Comparison of models with standard deviation - GOOG

For a better analysis, we find the mean of both the mean and root mean square of the error. The

results are shown in the tables below:

GOOG Non Corr Mutual

Mean -2.0083 -2.2821 -1.9047

STD 13.7834 14.13 13.3134
Table 10. Mean and standard deviations - GOOG

MSFT Non Corr Mutual

Mean -0.2006 -0.0554 -0.1555

STD 1.0651 0.9831 1.0181
Table 11. Mean and standard deviations - MSFT

TSLA Non Corr Mutual

Mean 0.7573 0.1582 0.3796

STD 10.4983 8.4532 9.3816
Table 12. Mean and standard deviations - TSLA

AMC Non Corr Mutual

Mean -0.1929 -0.2412 -0.2121

STD 0.9763 0.9072 0.9397
Table 13. Mean and standard deviations - AMC

42

AMZN Non Corr Mutual

Mean 1.0039 -2.8218 -1.3362

STD 16.8398 15.7457 16.2134

Table 14. Mean and standard deviations - AMZN

From the tables above, except for GOOG, the performance of the implementation of the

index using correlation provides better performance (lower mean of mean and root mean square)

than the other two, followed by implementation using mutual information and non-

implementation.

Therefore, we would recommend the user to use correlation to implement mutual

information as using the correlation will more likely get a better prediction, but keep in mind that

there are some stocks in which mutual information alone would produce a better prediction.

TISEAN

Finding Lyapunov exponents involved the dual task of determining a reasonable

embedding dimension and matching the values of the exponent to the amounts of prediction

error. As mentioned before, such a dimension would not include so many days that some would

be irrelevant to how the stock currently performs or be an extreme value of either sign. To avoid

the issue of determining a proper market index for every stock, the market indices were left out

of the model for the implementation of Lyapunov exponents.

 For two auto manufacturer and five computer hardware company stocks, taking

November 1st as the last day before the future, the majority of Lyapunov exponents of dimension

2 were negative, while all became positive for dimensions 3 and 4, as shown in Table 15.

Comparing these exponents with the normalized absolute errors of both all 20 days and the first 5

days showed very little relationship between the exponents and the error for any dimension with

either day range. This time period, however, was a very turbulent time for the stock market, as

many stocks saw sharp price changes over a short period of time, particularly NVIDIA. Across

43

the board, the prediction curves were only reasonably accurate for around eight days. There may

also have been effect from the 2016 Presidential Election.

Table 1. Lyapunov exponents at varying dimensions (11/1/2016 as the day before the future)

Stock 2 3 4

HMC -0.023 0.085 0.282

FCAU -0.196 0.242 0.044

NVDA -0.089 0.174 0.176

TXN -0.113 0.047 0.209

MU -0.145 0.101 0.062

AMD 0.118 0.121 0.191

AMAT 0.007 0.215 0.209

Table 15. Lyapunov exponents at varying dimensions 11/1/16

 As a result, November 15th was chosen as the new last day before the future. This change

resulted in slight changes to the length of the autocorrelation period, ranging from 0-8 days

difference. Over the now 15 trading days, no prediction curve was stellar. Both Honda and Fiat-

Chrysler, however, both were reasonable. The prediction for AMD had a very large amount of

error and may be an outlier. This can be seen in Figure 34.

44

Figure 34. Prediction errors over sets of 5 days after 11/15/2016

As shown in Table 16 and depicted in Figure 35, the exponents again were mostly

negative for a dimension of 2 and began increasing significantly starting with dimension 5. Also,

as shown in Figure 36, both dimensions 3 and 4 displayed a relationship between the Lyapunov

exponent and the error. For example, in both cases, the stock with the least error, Honda, had the

lowest exponent and as either error or exponent increased, the other tended to increase likewise.

Table 2. Lyapunov exponents at varying dimensions (11/15/2016 as the day before the future)

Stock 2 3 4 5 6 7 8

HMC -0.04 -0.02 0.04 1.37 2.98 3.02 4.71

FCAU -0.24 -0.01 0.09 1.29 2.86 4.01 3.98

NVDA -0.05 0.13 0.15 0.60

TXN 0.02 0.10 0.13 0.37 2.35

MU -0.24 0.15 0.06 0.32 2.60 3.99

AMD -0.05 0.14 0.37 0.31 2.41

AMAT 0.06 0.26 0.25 0.29

Table 16. Lyapunov exponents at varying dimensions 11/15/16

45

Figure 35. Lyapunov exponents at varying dimensions (11/15/16 as day before future)

Figure 36. Lyapunov exponent vs. error for seven stocks at both 3 and 4 dimensions

46

Stock Portfolios

 Each team member compiled a stock market portfolio at the beginning of B-term. The

portfolios exemplified how the stock market fluctuates over several months. All three team

members made a profit with their portfolios, but the margins varied. In the time between October

2016 and February 2017, the stock market took multiple hits due to the presidential election and

typical January fluctuations as companies’ year-end profit data was released. As a result, some

stocks saw a decline in prices, while others saw increases, especially at the end of January.

 Portfolio A, shown in Table 17, bought stocks on November 1st, 2016. As of February

1st, 2017, the portfolio obtained an 8.45% profit totaling $8,445.70. Only one stock, Canadian

Natural Resources Limited (CNQ), resulted in a negative profit. Google (GOOG) and Cabot Oil

& Gas Corporation (COG) made small profits, while Tesla (TSLA) made the largest with

$3,507. The other stocks, Anadarko Petroleum Corporation (APC), ConocoPhillips (COP),

Amazon (AMZN), and Yahoo (YHOO) had modest gains. Half of the stocks in the portfolio

were in the oil industry, which was still on a slow climb from when oil prices plummeted earlier

in 2016. Thus, the profits from those companies varied significantly based on their ability to

recover.

47

Company Start Price End Price Shares Cost Profit

CNQ 31.65 30.13 300 9495 -456

COG 20.54 20.77 300 6162 69

TSLA 190.79 249.24 60 11447.4 3507

APC 59.95 68.36 200 11990 1682

COP 43.54 48.5 300 13062 1488

GOOG 783.61 795.7 20 15672.2 241.8

AMZN 785.41 832.35 20 15708.2 938.8

YHOO 41.33 43.78 398 16449.34 975.1

Total

1598 99986.14 8445.7

Table 17. Stock Portfolio A

 Portfolio B, shown in Table 18, bought stocks on October 1st, 2016. As of February 1st,

2017, the portfolio obtained a 17.2% profit totaling $17,114.70. Again, only one stock, Abeona

Therapeutics Inc. (ABEO), resulted in a negative profit. Lantheus Holdings, Inc. (LNTH) and

Expedia, Inc. (EXPE) made small profits, while Mechel PAO (MTL) made the largest with

$9,420, a 109% profit. The other stocks, Microsoft Corporation (MSFT), Vantiv, Inc. (VNTV),

Akamai Technologies, Inc. (AKAM), and Baker Hughes Incorporated (BHI), had modest to

large gains, ranging from $1,196 to $3875.20. The stocks were from a variety of sectors in the

stock market in order to minimize the effects of sector-specific crashes.

48

Company Start Price End Price Shares Cost Profit

LNTH 8.28 8.55 2000 16560 540

MTL 2.86 6 3000 8580 9420

MSFT 57.6 63.58 200 11520 1196

VNTV 56.27 62.25 200 11254 1196

ABEO 6 4.65 2000 12000 -2700

AKAM 52.99 68.7 200 10598 3142

BHI 50.47 62.58 320 16150.4 3875.2

EXPE 116.72 120.77 110 12839.2 445.5

Total

8030 99501.6 17114.7

Table 18. Stock Portfolio B - February 1st

One of the portfolio’s best performances, presented in Table 19 was selling the stocks on

November 28th, 2016, with a 22.7% profit totaling $22,608. On that date, all eight stocks had

made positive gains.

49

Company Start Price End Price Shares Cost Profit

LNTH 8.28 9.6 2000 16560 2640

MTL 2.86 6.22 3000 8580 10080

MSFT 57.6 60.61 200 11520 602

VNTV 56.27 58.18 200 11254 382

ABEO 6 6.9 2000 12000 1800

AKAM 52.99 66.17 200 10598 2636

BHI 50.47 61.27 320 16150.4 3456

EXPE 116.72 125.92 110 12839.2 1012

Total

8030 99501.6 22608

Table 19. Stock Portfolio B - November 28th

 Portfolio C, shown in Table 20, bought stocks on November 1st, 2016. As of February

1st, 2017, the portfolio obtained a 39.6% profit totaling $39,609.46. All seven stocks had

positive gains. Honda Motor Co., Ltd. (HMC) had a small profit, while NVIDIA Corporation

(NVDA) had the largest at $13,021. Micron Technology, Inc. (MU) and Advanced Micro

Devices, Inc. (AMD) also had large gains at $9090.90 and $8786.96 respectively. The other

stocks, Fiat Chrysler Automobiles N.V. (FCAU), Texas Instruments Incorporated (TXN), and

Applied Materials, Inc. (AMAT) made modest profits. Five of the stocks fell under the

technology sector, while the other two were in the automobile sector.

50

Company Start Price End Price Shares Cost Profit

HMC 29.03 29.96 260 7547.8 241.8

FCAU 7.24 10.98 1030 7457.2 3852.2

NVDA 69.05 113.95 290 20024.5 13021

TXN 69.44 76.27 290 20137.6 1980.7

MU 16.98 24.75 1170 19866.6 9090.9

AMD 7.09 12.06 1768 12535.12 8786.96

AMAT 28.9 35.03 430 12427 2635.9

Total

5238 99995.82 39609.46

Table 20. Stock Portfolio C

The profit margins for these portfolios were significant in comparison to the general

market’s performance. From October 1st to February 1st, the NASDAQ Composite (^IXIC,

Figure 37) increased by 5.8% and the NYSE Composite (^NYA, Figure 38) by 4.3%, while

Portfolio B made a 17.2% profit in the same time frame. From November 1st to February 1st, the

NASDAQ Composite increased by 8.7% and the NYSE Composite by 7.1%, while Portfolio A

made an 8.45% profit and Portfolio C made a 39.6% profit. This concludes that while the market

increased overall during the time span of the portfolios, stocks in Portfolios B and C saw greater

gains the market average.

51

Figure 37. NASDAQ from 10/01/2016 to 2/01/2017

Figure 38. NYSE from 10/01/2016 to 2/01/2017

Model Predictions of Portfolio Stocks

 The following are prediction graphs produced by the model for the stocks in the team’s

three portfolios.

Portfolio A

52

Figure 39. Fourier prediction for AMZN

Figure 40. Fourier prediction with NASDAQ for APC

53

Figure 41. Fourier prediction for CNQ

Figure 42. Fourier prediction with NASDAQ for COG

54

Figure 43. Fourier prediction for COP

Figure 44. Fourier prediction for GOOG

55

Figure 45. Fourier prediction with index for TSLA

Figure 46. Fourier prediction for YHOO

56

Portfolio B

Figure 47. Fourier prediction for ABEO

Figure 48. Fourier prediction for AKAM

57

Figure 49. Fourier prediction for AKAM with NASDAQ

Figure 50. Fourier prediction for BHI

58

Figure 51. Fourier prediction for BHI with NYSE

Figure 52. Fourier prediction for EXPE

59

Figure 53. Fourier prediction for EXPE with NASDAQ

Figure 54. Fourier prediction for LNTH

60

Figure 55. Fourier prediction for LNTH with NASDAQ

Figure 56. Fourier prediction for MSFT

61

Figure 57. Fourier prediction for MSFT with NASDAQ

Figure 58. Fourier prediction for MTL

62

Figure 59. Fourier prediction for MTL with NYSE

Figure 60. Fourier prediction for VNTV

63

Figure 61. Fourier prediction for VNTV with NYSE

Portfolio C

Figure 62. Fourier prediction for FCAU

64

Figure 63. Fourier prediction for HMC

Figure 64. Fourier prediction for AMAT

65

Figure 65. Fourier prediction for AMD

Figure 66. Fourier prediction for MU

66

Figure 67. Fourier prediction for NVDA

Figure 68. Fourier prediction for TXN

67

Conclusion

Through research of the stock market and time signal analysis, the team modified and

improved a tool for investors to choose potentially profitable stocks. The tool used input of

historical price data for stocks and exchange indexes to predict a stock’s future price. The

accuracy of the model varied based on the volatility of the stock, which led to the addition of

Lyapunov exponents to determine a stock’s volatility before testing it with the model. Overall,

stocks with lower volatility had the best predictions. However, only a small amount of testing

was done with Lyapunov exponents, so the data is not yet strong enough to say they are a

reliable way to measure volatility.

 The team tested the model with their stocks from A-term and kept the stocks with the best

predictions for their B-term investment portfolios. Out of the six stocks kept, four from the oil

industry and two from the auto industry, all but one increased in price from November 1st, 2016

to February 1st, 2017. This showed the model’s ability to predict a stock’s overall price trend

with moderate accuracy. In a bullish market, the team had great success with their investment

portfolios as a whole, with profit margins ranging from 8.45% to 39.6%. While the model did not

predict such success for every stock, the knowledge of being in a bull market paired with the

model predictions fared well overall.

Recommendations:

 Three academic terms is a limited amount of time when taking on a project as significant

as trying to predict stock prices. There are a few topics the team wanted to delve deeper into but

time restrictions did not allot for it. Below are some recommendations for future research on

modeling the stock market:

1. Further Explore Volatility

68

 We recommend looking into the effects of volatility on a stock’s performance and

also on the model’s ability to predict a stock’s price. There are several ways of measuring

volatility, and some methods may be more successful than the Lyapunov exponents used

in this project. Another possible research topic is figuring out why the model works with

some stocks better than others. Our conclusions found volatility as part of the solution,

but other factors are likely to play a role in the inconsistency of the model across a

variety of stocks.

2. Extensively Test Lyapunov Exponents

 Using Lyapunov exponents to determine the volatility of a stock has a lot of

potential, and this project only grazes upon its surface. We recommend researching a way

to measure the accuracy of how well the Lyapunov exponents determine a stock’s

volatility. Accomplishing this requires a lot of data and analysis, which is why it would

work well for a future project. With such results, a comparison could be made between

the model’s performance and a stock’s Lyapunov exponents.

3. Explore Other Market Areas

 There are many more components of the stock market that affect a stock’s price

than what is explored in this project. We recommend examining other possible

contributors to market performance. This could include both global and local factors, i.e.

those that affect the market on a global scale and those that affect stocks individually.

Some possible topics of research include:

 A stock’s sector’s performance, volatility, and model prediction in addition to its

exchange index

 External factors such as inflation and interest rates

69

 Economic trends in foreign markets

 Individual stock statistics such as volume, 52 week range, dividend & yield

70

References

1.1 - What is Simple Linear Regression? (n.d.). Retrieved February 15, 2017, from

https://onlinecourses.science.psu.edu/stat501/node/251

Abraham, B., & Ledolter, J. (1983). Statistical methods for forecasting. New York: Wiley.

Bisgaard, S., & Kulahci, M. (2011). Time series analysis and forecasting by example. Hoboken,

NJ: Wiley.

Bishop, C. M. (2013). Pattern recognition and machine learning. New Delhi: Springer.

Bloomberg.com. (n.d.). Retrieved Fall, 2016, from https://www.bloomberg.com/

Boeing, G. (2016). Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-

Similarity and the Limits of Prediction. Systems, 4(4),

Brockwell, P. J., & Davis, R. A. (2002). Introduction to time series and forecasting. New York:

Springer.

E. (n.d.). Moving average. Retrieved February 15, 2017, from https://ec.europa.eu/eurostat/sa-

elearning/tags/moving-average

Fuller, W. A. (1996). Introduction to statistical time series. New York: John Wiley & Sons.

Hegger, R., Kantz, H., & Schreiber, T. (1999). Practical implementation of nonlinear time series

methods: The TISEAN package. CHAOS, 9, 413.

Investopedia - Sharper Insight. Smarter Investing. (n.d.). Retrieved Fall, 2016, from

http://www.investopedia.com/

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning:

with applications in R (6th ed.). New York: Springer.

Kreyszig, E., & Kreyszig, H. (2011). Advanced engineering mathematics: tenth edition.

Hoboken, NJ: Wiley.

The Motley Fool. (n.d.). Retrieved Fall, 2016, from https://www.fool.com/

Stein, R. A., Harmonic Regression. Personal Collection of Stein, R. A., University of

Pennsylvania, Philadelphia, PA

Stein, R. A. Regression Method. Personal Collection of Stein, R. A., University of Pennsylvania,

Philadelphia, PA

TheStreet. (n.d.). Retrieved Fall, 2016, from https://www.thestreet.com/

71

Tsanas, A., Accurate telemonitoring of Parkinson’s disease symptom severity using nonlinear

speech signal processing and statistical machine learning, D.Phil. thesis, Oxford Centre for

Industrial and Applied Mathematics, University of Oxford, UK, 2012

W. Toporowski. Smooting Method [PDF Format] Retrieved from Lecture Notes Online Web

site: http://www.statoek.wiso.uni-goettingen.de/veranstaltungen/graduateseminar/

SmoothingMethods_Narodzonek-Karpowska.pdf

Winner, L. (2004). Course Notes - Part 2 - Summer 2004 (PDF format). Personal Collection of

Winner, L., University of Florida, Gainesville, Florida

Yahoo Finance - Business Finance, Stock Market, Quotes, News. (n.d.). Retrieved Fall, 2016,

from https://finance.yahoo.com/

72

Appendix: Matlab Code

Program A:

%%--

% Creates the prediction for a given stock/index combination

% data must be same size

% takes name, actual data, prediction line, and bound for both sets,

% plus future and graphlevel, and date of day zero

%%--

function [sum, bound, r] = createCombinedPrediction(stockname, stockdata,

stockP, stockB, indexname, indexdata, indexP, indexB, future, graphlevel,

zerodate)

% setup vars

dayzero = size(stockdata,2)-future;

relstock = stockdata(1:dayzero); %relevant data arrays

relindex = indexdata(1:dayzero);

startindex = dayzero; %start and end indices for future

endindex = dayzero+future;

days = builddayarray(dayzero, future);

% get correlation

r = corrcoef(relstock, relindex);

r = r(2,1);

fprintf('%s corr with %s:\t%.2f\n', stockname, indexname, r);

% normalize

stockPnorm = stockP / relstock(dayzero);

indexPnorm = indexP / relindex(dayzero);

stockBnorm = stockB / relstock(dayzero);

indexBnorm = indexB / relindex(dayzero);

% combine with weight

% weight1 * index + weight2 * stock

sumc = r * indexPnorm + (1-r) * stockPnorm;

boundc = r * indexBnorm + (1-r) * stockBnorm;

% rescale

sum = sumc*relstock(dayzero);

bound = boundc*relstock(dayzero);

% graph

if graphlevel >= 1

 ti = [stockname '+' indexname ' Prediction'];

 v = figure('Name', ti, 'NumberTitle', 'off');

 hold on

 plot(days(startindex:endindex), stockdata(startindex:endindex),

'b')

 plot(days(startindex:endindex), sum(startindex:endindex), 'r')

 plot(days(startindex:endindex), sum(startindex:endindex) + bound,

'k--')

 plot(days(startindex:endindex), sum(startindex:endindex) - bound,

73

'k--')

 legend('Data', 'Prediction', 'Noise')

 hold off

 title(ti)

 xlabel(['Day (from ' zerodate ')'])

 ylabel('Price ($)')

 saveas(v, [ti '.png']);

end

%functions

 % builds the day arrays

 function days = builddayarray(dayzero, future)

 days = zeros(1,dayzero+future);

 for i = 1:(dayzero)

 days(i) = -1*(dayzero-i);

 end

 for i = 1:future

 days(dayzero+i) = i;

 end

 end

end

%%--

% Creates the prediction for a given stock/index

% name, data, future days, graph level, smoothspan, fouriertype,

% relevant past range, date of day zero

%%--

function [P, bound, validdays] = createPrediction(name, data, future,

graphlevel, smoothspan, fouriertype, range, zerodate)

dayzero = size(data, 2) - future; %get position of day zero

if range == 0

 % run autocorrelation to get num relevant days

 validdays = doAuto(data(1:dayzero),dayzero,name);

else

 % otherwise use given range

 validdays = range;

end

startindex = validdays+1; %start and end indices for future

endindex = validdays+future+1;

reldata = data(dayzero-validdays:dayzero); %split off relevant data

sd = smooth(reldata, smoothspan); %smooth data

smoothdata = reshape(sd.',1,[]); %reshape

days = builddayarray(validdays, future);

% find least squares regression/trendline

reg = doRegression(days, startindex, smoothdata, name);

% take difference between data and trendline

resid = reldata - reg(1:validdays+1);

% fourier series of difference

74

fs = doFourier(days, startindex, resid, name);

% add trendline and fourier series for prediction

P = reg(:) + fs;

% subtract fourier series from difference for noise

noise = resid(:) - fs(1:validdays+1);

% get bounds from noise

bound = mean(abs(noise));

% graphs

if graphlevel >= 1

 ti = [name ' Prediction'];

 v = figure('Name', ti, 'NumberTitle', 'off');

 hold on

 plot(days(startindex:endindex), data(dayzero:dayzero+future), 'b')

 plot(days(startindex:endindex), P(startindex:endindex), 'r')

 plot(days(startindex:endindex), P(startindex:endindex) + bound, 'k-

-')

 plot(days(startindex:endindex), P(startindex:endindex) - bound, 'k-

-')

 legend('Data', 'Prediction', 'Noise')

 hold off

 title(ti)

 xlabel(['Day (from ' zerodate ')'])

 ylabel('Price ($)')

 saveas(v, [name '.png']);

end

if graphlevel >= 3

 ti = [name ' Prediction'];

 figure('Name', ti, 'NumberTitle', 'off')

 hold on

 plot(days(1:startindex), data(dayzero-validdays:dayzero), 'b')

 plot(days(1:startindex), P(1:startindex), 'r')

 plot(days(1:startindex), P(1:startindex) + bound, 'k--')

 plot(days(1:startindex), P(1:startindex) - bound, 'k--')

 legend('Data', 'Prediction', 'Noise')

 hold off

 title(ti)

 xlabel(['Day (from ' zerodate ')'])

 ylabel('Price ($)')

end

%functions

 % builds the day arrays

 function days = builddayarray(validdays, future)

 days = zeros(1,validdays+future+1);

 for i = 1:(validdays+1)

 days(i) = -1*(validdays-i+1);

 end

 for i = 1:future

 days(validdays+1+i) = i;

 end

 end

75

 % run autocorrelation, return amount of days into the past that are

relevant

 function vdays = doAuto(data, dayzero, name)

 %autocorrelation

 if graphlevel >= 2

 figure('Name', [name ' Autocorrelation'], 'NumberTitle', 'off')

 autocorr(data, dayzero - 1)

 title([name ' Autocorrelation']);

 end

 acf = autocorr(data, dayzero - 1);

 %get valid days

 i = 1;

 while(acf(i) > 0)

 i = i+1;

 end

 vdays = i - 2;

 end

 % runs linear regression, returns trendline's y values

 function y = doRegression(days, dayzero, relevantdata, name)

 p = polyfit(days(1:dayzero), relevantdata, 1);

 y = polyval(p, days);

 if graphlevel >= 5

 figure('Name', [name ' Regression'], 'NumberTitle', 'off')

 hold on

 plot(days(1:dayzero), relevantdata, 'b')

 plot(days(1:dayzero), y(1:validdays+1), 'r')

 title([name ' Regression'])

 xlabel(['Day (from ' zerodate ')'])

 ylabel('Price ($)')

 legend('Data','Regression')

 hold off

 end

 end

 % runs fourier series, returns values for each day

 function f = doFourier(days, dayzero, resid, name)

 pdays = days(1:dayzero);

 fourier = fit(pdays(:), resid(:), fouriertype);

 f = feval(fourier,days);

 if graphlevel >= 5

 figure('Name', [name ' Fourier series with residuals'],

'NumberTitle', 'off')

 plot(fourier, pdays, resid)

 title([name ' Fourier series with residuals'])

 xlabel(['Day (from ' zerodate ')'])

 ylabel('Residual')

 end

 end

end

76

%%--

 %{

 % stocks in stocks.xlsx file: GOOG

 % indices in indices.xlsx file: NASDAQ

 % graph level: 0-none 1-pred 2-pred+auto 3-pred+hist+auto 5-all

 % smoothspan - span to smooth, 1-no smoothing

 % useindex - nonzero to use index

 %}

%%--

stock = {'GOOG';};

index = {'NASDAQ';};

indexindex = 1; %index choice

graphlevel = 1;

fouriertype = 'fourier2';

smoothspan = 25;

useindex = 1;

stockdatapath = 'stocks.xlsx'; %path to data spreadsheets

indexdatapath = 'indices.xlsx';

future = 30; %amount of future data points

datasize = 253; %amount of historical data points

totalsize = datasize+future;

period = zeros(1, size(stock, 1));

% load index data

if useindex ~= 0

 [~,~,raw] =

xlsread(indexdatapath,char(index(indexindex)),'A1:F290','basic');

 indexdata = cell(1, totalsize);

 for i = 0:(totalsize-1)

 indexdata(i+1) = raw(totalsize+1-i,5);

 end

 indexdata = cell2mat(indexdata);

end

% main loop

for n = 1:size(stock,1)

 % load stock data

 [~,~,raw] = xlsread(stockdatapath,char(stock(n)),'A1:F290','basic');

 dates = cell(1,totalsize);

 close = cell(1, totalsize);

 for i = 0:(totalsize-1)

 dates(i+1) = raw(totalsize+1-i,1);

 close(i+1) = raw(totalsize+1-i,5);

 end

 zerodate = datestr(cell2mat(dates(datasize-1)),'mm/dd/yy');

 close = cell2mat(close);

 % do the model for the stock

 [sP,sB,period(n)] =

createPrediction(char(stock(n)),close(1:totalsize),future,graphlevel,smoot

hspan,fouriertype,0,zerodate); % default P

77

 s=size(sP,1)-future; %beginning of future

 if useindex ~= 0

 % do the model for the index

 [iP,iB,~] =

createPrediction(char(index(indexindex)),indexdata(1:totalsize),future,gra

phlevel,smoothspan,fouriertype,period(n),zerodate);

 % do the combined model

 [cP,cB,~] = createCombinedPrediction(char(stock(n)),close(datasize-

period(n):totalsize),sP,sB,char(index(indexindex)),indexdata(datasize-

period(n):totalsize),iP,iB,future,graphlevel,zerodate);

 %graphComparison(['with '

char(index(indexindex))],cP(s:s+future),cB,'without',sP(s:s+future),sB,cha

r(stock(n)),close(totalsize-future:totalsize),1,zerodate);

 end

 %[unsmoothP,unsmoothB,~] =

createPrediction(char(stock(n)),close(1:totalsize),future,graphlevel,1,fou

riertype,0,zerodate); % unsmooth P

 %graphComparison('Smooth',sP(s:s+future),sB,'Unsmooth',unsmoothP(s:s+fu

ture),unsmoothB,char(stock(n)),close(totalsize-

future:totalsize),1,zerodate); % smooth and unsmooth comp

end

for n = 1:size(stock,1)

 sdate=datestr(cell2mat(dates(datasize-period(n)-1)),'mm/dd/yy');

 edate=zerodate;

 fprintf('%s: %i days from %s through %s\n', char(stock(n)),

period(n)+1, sdate, edate);

end

%%--
 % graphs two prediction lines

 % takes name, prediction and bound for two predictions, plus actual

 % data and its name along with dayzero point and the date of day

 % zero

%%--

function graphComparison(name1, P1, B1, name2, P2, B2, dataname, data,

dayzero, zerodate)

days = builddayarray(dayzero, size(data,2));

ti = [dataname ' ' name1 ' + ' name2 ' Predictions'];

v = figure('Name', ti, 'NumberTitle', 'off');

hold on

 plot(days, data, 'b')

 plot(days, P1, 'r')

 plot(days, P2, 'm')

 plot(days, P1 + B1, 'r--')

 plot(days, P2 + B2, 'm--')

 plot(days, P1 - B1, 'r--')

 plot(days, P2 - B2, 'm--')

legend('Data', ['P ' name1], ['P ' name2], [name1 ' Noise'], [name2 '

Noise'])

78

hold off

title(ti)

xlabel(['Day (from ' zerodate ')'])

ylabel('Price ($)')

saveas(v, [dataname ' ' name1 '.png']);

%functions

 % builds the day arrays

 function days = builddayarray(dayzero, length)

 days = zeros(1,length);

 for i = 1:(dayzero)

 days(i) = -1*(dayzero-i);

 end

 for i = dayzero:length

 days(i) = i-dayzero;

 end

 end

end

Program B:
(This program requires Matlab’s DataFeed_Toolbox which is not included in WPI’s academic

license)

Functions:

%%--

%Function: stock_model_func
%%--

function x =

stock_model_func(stname,pred_date,pred_period,data_period,winsize,pred_zer

o_match)

%%
%Call the observed data of the stock
st_data_p = call_data(stname, pred_date,data_period,'pst');
st_price_p = st_data_p(:,2);

%%
%Find Trend Component of the stock

%Find autocorrelation of the stock
 %Find total number of data and collect it in row
 row = size(st_price_p,1);

 %Find the autocorrelation of the close price.
 %Note: We use all of data to cinsider the autocorrelation
 auto_cor = autocorr(st_price_p,row-1);

 %The first Zero Correlation date will be keep in pos
 pos = find_corr_date(auto_cor);

79

%Specify a period for the model according to autocorrelation and adjust
%order of the data from new-old to be old-new
 st_price_p = st_price_p(1:pos+1);

 st_price_p = flipud(st_price_p);

%Find Trend line
 %Variable for time

 t = (-pos:0)';

 %Filter the actual price and put the data into filt_price
 filt_price = smooth(st_price_p,winsize,'moving');

 %Find trendline using polyfit and collect in variable m
 const= polyfit(t,filt_price,1);

 %Put Trendline data into variable tL
 tL = const(1)*t+const(2);

%%
%Find Seasonal Component
 %Find difference between raw data and trendline and put into variable

diff
 diff = st_price_p - tL;

 %Find the seasonal component using fourier fitting
 f = fit(t,diff,'fourier3');

%Find the rest of componets of the model
 noise = diff - f(t);

%%

%Create Prediction Model from the components

 %Time for overall model (Seperated into three parts: Overall

period,forcasting period and fitting purpose period)

 %Overall period
 t = (-pos:pred_period)';
 %Fitting Period

 tp = (-pos:-1)';
 %Foreccast Period
 tf = (0:pred_period)';

 %Trend Component
 mp = const(1)*tp+const(2);
 mf = const(1)*tf+const(2);

 %Seasonal Component
 sp = f(tp);
 sf = f(tf);

80

 %Prediction Model
 p_model = [mp;mf]+[sp;sf];

 %Set the acutual price and the prediction to match as the user
 %indicated

 offset = 0;

 if pred_zero_match == 1
 offset = noise(end);
 end

 predict_m = p_model(pos+1:end)+ offset;

 %%
%Prepare the actual data after the zeroth day

 %Call data after the zeroth day
 st_data_f = call_data(stname, pred_date,pred_period,'fut');
 st_price_f = st_data_f(:,2);

 %Adjust order of the data from new-old to be old-new

 st_price_f = flipud(st_price_f);

 x = [st_price_f, predict_m]

%%--
 %Function: call_data
 %Input: stock name, start date, total data required and option, either
 %future(fut) or past(pst)
 %Output: Close Price data with total amount as required
%%--

function x = call_data(name_stock, str_date,period,opt)

%Set variable period
period = period+1;

%Change the choosen option into number ('fut' = 1 , 'pst' = -1)and input

%the number into variable opt

if opt =='fut'
 opt = 1;

elseif opt =='pst'
 opt = -1;
end
%Change str_date into datetime typed variable
str_date = datetime(str_date,'InputFormat','dd-MMM-yyyy');

%estr_date is the shifted str_date to either future or past, depending on
%the choosed option
estr_date = dateshift(str_date,'start','day',ceil(period*7/5*opt));

%Call close price data from yahoo.finance

81

x = fetch(yahoo,name_stock,'Close',str_date,estr_date,'d');

%In case that not enough total data the estr_date will be further shifted
%untill the amount of data is more or equal to required amount of data
if size(x,1)< period
 estr_date = dateshift(str_date,'start','day',ceil((2*period-

size(x,1)+5)*7/5*opt));
 x = fetch(yahoo,name_stock,'Close',str_date,estr_date,'d');
end

 while (size(x,1)>period)
 if opt ==1
 x = x(2:end,:);

 else
 x = x(1:end-1,:);
 end

end

%%--
 %Function: find_corr_date
 %Input: autocorrelation of a set of observed data
 %Output: Lag of the first zeroth autocorrelation
%%--

function pos = find_corr_date(auto_cor)

%Define later use variable i as a empty set
i ='No data';

%Get the size of the auto_corr
 row = size(auto_cor,1);

%Find the zero correlation by compaing a pair of the data, starting from

%the most recent date

 for k = 1:row-1

 if auto_cor(k)>0 & auto_cor(k+1)<0
 i = k;
 break
 end

 end

%If there are no zero correlation, return error massage.
%Else Comparing the two cross date to find the closest date

 if i == 'No data'
 error('Not enough data');
 else
 pos = i-1;
 end
end
%Note:The start date in this auto corr start with zero but our data number

start

82

%with 1. So just return the number we have is find

Main Code:

%%--

%Code to determine autocorrelation

%%--

stname = 'GOOG'
str_date = '01-Nov-2016'

pred_period = 15;

winsize = 21;

autocorr_set = [];

st_data = call_data(stname, str_date,2000,'pst');
st_price = st_data(:,2);

for i = 100:2000

 st_price_p = st_price(1:i);

 %Find total number of data and collect it in row
 row = i;

 %Find the autocorrelation of the close price.

 %Note: We use all of data to cinsider the autocorrelation
 auto_cor = autocorr(st_price_p,row-1);

 %The first Zero Correlation date will be keep in pos

 pos = find_corr_date(auto_cor);

 autocorr_set = [autocorr_set pos];
end

figure(1)
grid on
plot(100:2000,autocorr_set,'*');
xlabel('Total Amount of the Observed Data Used');
ylabel('The First Zero-Autocorrelation Position');
title(['The Position of the first zero-Autocorrelation of Stock Google at

Nov 01,2016',...

'with Different Amount of the Observed Data Used']);

%%--

%Index Model

%%--

%%
clc;clear;

%Input Data box

%Default Value

83

default = {'^IXIC','GOOG','1000','21','3','1','1'};

%Input Dialog box
input = inputdlg({'Name of Index in Abbreviation (Ex.^IXIC)','Name of

Stock to implement in Abbreviation',...
 'Total amount of Observed Data Used to Predict',...
 'Smooth Window Size','Graph Option(1:Autocor 2:Both

Observed and Prediction)',...
 'Zeroth Day Actual Price and Prediction Match?(Yes:1

No:0)',...
 'Percent Confidental of Error (Put 0 if no error

percentage)'},...
 'Input Data for index Model', [1 45],default);

%%
%%Import data form the input dialog box

%index name
%State in index abrreveated name format Ex. 'GOOG' for google
indname = char(input(1,:));

%%Stock name that will implement
stname = char(input(2,:));
stock_data = load([stname '_data']);

%State the date that will be the date before the first date to start

prediction in format 'dd-mmm-yyyy'
%Note: close price after the date is the data we attempt to predict
pred_date = stock_data.pred_date;

%Total day you want to predict after the stated start date.
pred_period = stock_data.pred_period;

%State total previous date that will be acquired for data analysis

data_period = str2double(cell2mat(input(3,:)));

%Window size for Moving Average
%Note: If no moving average, set winsize to be 1

winsize = str2double(cell2mat(input(4,:)));

%%Plot Option(Set only one plot at a time)
%Available option: 1: Autocorrelation

% 2: Plot both model past and future graph
% 3: Plot only the future
% 0: if no plot
plot_graph = str2double(cell2mat(input(5,:)));

%Other Analysis Option

%Set close price of the predcition model at pred_date to

%equal to the actual price
%Available option: 0: Don't match
% 1: Match
pred_zero_match = str2double(cell2mat(input(6,:)));

84

%In case that the noise match is set, state the percent of the noise limit
%below in percentage (The value must be positive)
noise_percent = str2double(cell2mat(input(7,:)));

%%
%Call the observed data of the index
ind_data_p = call_data(indname, pred_date,data_period,'pst');
ind_date_p = datestr(ind_data_p(:,1));
ind_price_p = ind_data_p(:,2);

%%
%Find Trend Component of the index

%Find autocorrelation of the index

 %The first Zero Correlation date will be keep in pos
 pos = stock_data.pos;

%Specify a period for the model according to autocorrelation and adjust
%order of the data from new-old to be old-new
 ind_price_p = ind_price_p(1:pos+1);
 ind_date_p = ind_date_p(1:pos+1,:);

 ind_price_p = flipud(ind_price_p);

 ind_date_p = flipud(ind_date_p);
%Find Trend line
 %Variable for time
 t = (-pos:0)';

 %Filter the actual price and put the data into filt_price
 filt_price = smooth(ind_price_p,winsize,'moving');

 %Find trendline using polyfit and collect in variable m

 const= polyfit(t,filt_price,1);

 %Put Trendline data into variable tL
 tL = const(1)*t+const(2);

%%
%Find Seasonal Component
 %Find difference between raw data and trendline and put into variable

diff
 diff = ind_price_p - tL;

 %Find the seasonal component using fourier fitting
 f = fit(t,diff,'fourier3');
%%
%Find the rest of componets of the model
 noise = diff - f(t);

 if noise_percent ~=0
 mx_noise = noise_percent/100*ind_price_p(end);
 mn_noise = noise_percent/100*ind_price_p(end);

85

 else
 mx_noise =0;
 mn_noise =0;
 end
%%

%Create Prediction Model from the components

 %Time for overall model (Seperated into three parts: Overall

period,forcasting period and fitting purpose period)

 %Overall period
 t = (-pos:pred_period)';

 %Fitting Period
 tp = (-pos:-1)';
 %Foreccast Period
 tf = (0:pred_period)';

 %Trend Component
 mp = const(1)*tp+const(2);
 mf = const(1)*tf+const(2);

 %Seasonal Component
 sp = f(tp);
 sf = f(tf);

 %Prediction Model
 p_model = [mp;mf]+[sp;sf];

 %Set the acutual price and the prediction to match as the user
 %indicated
 if pred_zero_match == 1
 offset = noise(end);
 else
 offset = 0;
 end

 %Add offset to the model

 p_model(pos+1:end) = p_model(pos+1:end)+ offset;

 %Maximum and Minimum Boundary of preditcion
 mx_bound = mx_noise+mf+sf+ offset;
 mn_bound = -mn_noise+mf+sf+ offset;

%%
%Prepare the actual data after the zeroth day

 %Call data after the zeroth day
 ind_data_f = call_data(indname, pred_date,pred_period,'fut');

 ind_date_f = datestr(ind_data_f(:,1));
 ind_price_f = ind_data_f(:,2);

 %Adjust order of the data from new-old to be old-new

86

 ind_price_f = flipud(ind_price_f);
 ind_date_f = flipud(ind_date_f);

%%
%Plot graph

 % Combine all of the actual price and date
 ind_price = [ind_price_p;ind_price_f(2:end)];
 ind_date = [ind_date_p;ind_date_f];

 %Adjust Variable according to the setting
 auto_corr_graph = 0;
 Overall_graph = 0;
 Predict_graph = 0;

 if plot_graph ==1
 auto_corr_graph = 1;
 else if plot_graph ==2
 Overall_graph = 1;
 elseif plot_graph ==3
 Predict_graph = 1;

 else
 error('Please set the proper "plot_graph" variable')
 end

 %Graph Plotting
 %Graph plotting for autocorrelation
 if auto_corr_graph ==1
 figure(1)
 autocorr(flipud(ind_price_p),row-1);

 %Graph plotting for overall graph
 elseif Overall_graph == 1

 hold on
 grid on

 %Plot the actual price
 plot(t,ind_price,'r');
 %Plot the main prediction model
 plot(t,p_model,'k');
 %Plot the maximum prediction

 plot(tf,mx_bound,'b:','LineWidth',2);
 %Plot the minimum prediction
 plot(tf,mn_bound,'m:','LineWidth',2);
 %Set title
 title(['Raw Data and Prediction of ' indname ' (Zeroth

datet:' pred_date ')']);
 %Set x-axis label
 xlabel(['Date']);

 %Set y-axis label
 ylabel('Price($)');
 %Set graph legend

87

 legend('Raw Data','Model Data','Upper Bound','Lower

Bound');
 hold off

 elseif Predict_graph == 1

 hold on
 grid on

 %Plot the actual price
 plot(t,ind_price,'r');
 %Plot the main prediction model
 plot(t,p_model,'k');

 %Plot the maximum prediction
 plot(tf,mx_bound,'b:','LineWidth',2);
 %Plot the minimum prediction
 plot(tf,mn_bound,'m:','LineWidth',2);
 %Set axis of the graph
 axis([0 max(t) -inf inf]);
 %Set title
 title(['Raw Data and Prediction of ' indname ' (Zeroth

datet:' pred_date ')']);
 %Set x-axis label
 xlabel(['Date']);
 %Set y-axis label
 ylabel('Price($)');
 %Set graph legend
 legend('Raw Data','Model Data','Upper Bound','Lower

Bound');

 hold off
 end
 end

%Save data into file__

ind_price_f = ind_price(end-pred_period:end);
p_model = p_model(end-pred_period:end);

%Save the data into file with name in format " (stockname)_data"
save([indname

'_data'],'p_model','pred_date','pred_period','ind_price_p','ind_price_f','

mx_bound','mn_bound');

%%--

%Offset and No Offset Comparison
%%--

stname = 'GOOG'
pred_period = 15;
data_period = 1000;
winsize = 21;

data = fetch(yahoo,stname,'Close','01-Oct-2016','01-Nov-2016','d');

88

pred_date_datetime = [data(:,1)];
pred_date = datestr(pred_date_datetime);

std_no_off = [];
mean_no_off=[];

std_off =[];
mean_off=[];

for i = 1:size(pred_date,1)

 x =

stock_model_func(stname,pred_date(i,:),pred_period,data_period,winsize,0);
 row = size(x,1);

 resd = x(2:end,2)- x(2:end,1);
 rm = mean(resd);

 standv = std(resd);

 std_no_off = [std_no_off standv];
 mean_no_off= [mean_no_off rm];
end

for i = 1:size(pred_date,1)

 x =

stock_model_func(stname,pred_date(i,:),pred_period,data_period,winsize,1);
 row = size(x,1);

 resd = (x(2:end,2)- x(2:end,1));

 rm = mean(resd);
 standv = std(resd);

 std_off = [std_off standv];
 mean_off= [mean_off rm];
end

figure(1)
grid on
hold on
plot(pred_date_datetime,abs(mean_off));
plot(pred_date_datetime,abs(mean_no_off));

datetick('x','dd-mmm','keepticks');
xlabel('Date');
ylabel('Absolute Mean Value')
title('Absolute Mean Value offset-adjusted and non-offset-adjusted

prediction with start date form Oct 01,2016 - Nov01,2016');
legend('Absolute Mean of offset-adjusted prediction','Absolute Mean of no-

offset-adjusted prediction');
hold off

figure(2)
grid on
hold on

89

plot(pred_date_datetime,std_off);
plot(pred_date_datetime,std_no_off);
datetick('x','dd-mmm','keepticks');
xlabel('Date');
ylabel('Standard Derivation Value')

title('Standard Derviation Value offset-adjusted and non-offset-adjusted

prediction with start date form Oct 01,2016 - Nov01,2016');
legend('Standard Derviation of offset-adjusted prediction','Standard

Derviation of no-offset-adjusted prediction');
hold off

%%--

%Prediction Difference for Amount of Historical Data Used
%%--

stname = 'SAFT'
pred_date = '01-Nov-2016'
pred_period = 10;
pred_zero_match = 1;
winsize = 21;

st_price = [];
std_st = [];
mean_st=[];

for i = 100:10:1100

x =

stock_model_func(stname,pred_date,pred_period,i,winsize,pred_zero_match);
st_price= [st_price, x(:,2)];

e = x(:,2)-x(:,1);
std_st_n = std(e);
mean_st_n = mean(e);

std_st = [std_st std_st_n];
mean_st=[mean_st mean_st_n];
end

% st_price = [x(:,1) st_price];
%
% t = 0:10;
%
% grid on
%

plot(t,st_price(:,1),t,st_price(:,2),t,st_price(:,3),t,st_price(:,4),t,st_

price(:,5),t,st_price(:,6),t,st_price(:,7));

% xlabel('Days After the prediction start');
% ylabel('Price($)');
% title(['The graph of the actual price and prediction with different

amount of oberserved data used of ,',stname,' (Zeroth date: Nov-01-

2016)']);
% legend('The Observed Data', 'Prediction with 100 data','Prediction with

300 data','Prediction with 500 data',...

90

% 'Prediction with 700 data','Prediction with 900

data','Prediction with 1100 data')

%%--

%Stock Index Implementation
%%--

clc;clear;

%%Variables for Control
%Default Value
default = {'GOOG','^IXIC'};

%Input Dialog box
input = inputdlg({'Abbreviated Stock Name (Ex.GOOG)','Abbreviated Index

Name(Ex.^IXIC)'},...
 'Input Data', [1 45],default);

%Stock name
stname = char(input(1,:));
st_data = load([stname '_data']);

%index name
%^IXIC NASDAQ, ^DJI Dow Jones, ^GSPC S&P500, CL=F Light Sweet Crude Oil

Futures
indname = char(input(2,:));
ind_data = load([indname '_data']);

%%Plot Option(Set only one plot at a time)
%Available option: 1: Plot both model past and future graph
% 2: Plot only the future
% 0: if no plot

plot_graph = 2;

%%Operation___

%Call

Data___

%Load Stock Data

st_price_p = st_data.st_price_p;
st_p_model = st_data.p_model;
st_min = st_data.mx_bound;

st_max = st_data.mn_bound;

%Set variable according to stock data
pred_date = st_data.pred_date;
pred_period = st_data.pred_period;

%Load Index Data

91

ind_price_p = call_data(indname, pred_date,size(st_price_p,1)-1,'pst')
ind_price_p = flipud(ind_price_p(:,2));

ind_p_model = ind_data.p_model;
ind_min = ind_data.mx_bound;
ind_max = ind_data.mn_bound;

%Data

Analysis___

%find the correlation coefficient by using the provided data from stock

and
%index data
coreff = corrcoef(ind_price_p,st_price_p);
coreff = coreff(1,2);

%Implement index and stock in for the part that occurs from the pred_date
%of the stock to the end
im_pred_af = (coreff*ind_p_model/ind_p_model(1) + (1-

coreff)*st_p_model/st_p_model(1))*st_p_model(1);
im_max = (ind_max/ind_p_model(1)*coreff + (1-

coreff)*st_max/st_p_model(1))*st_p_model(1);
im_min = (ind_min/ind_p_model(1)*coreff + (1-

coreff)*st_min/st_p_model(1))*st_p_model(1);

st_future = st_data.st_price_f;

%Plot Graph
 hold on
 grid on

t = 0:pred_period;

%Plot n_closep or the actual closep
 plot(t,st_future,'r');
%Plot the main prediction model
 plot(t,im_pred_af,'k');
%Plot the maximum prediction

 plot(t,im_max,'b:','LineWidth',2);
%Plot the minimum prediction
 plot(t,im_min,'m:','LineWidth',2);
%Set axis of the graph
 axis([0 t(end) -inf inf]);
%Set title
 title(['Raw Data and Prediction of ' stname ' with index '

indname(2:end) ' implement(Prediction Start:' pred_date ')']);

%Set x-axis label
 xlabel(['Date: start from ' pred_date]);
%Set y-axis label
 ylabel('Price($)');
%Set graph legend
 legend('Raw Data','Model Data','Upper Bound','Lower Bound');
 hold off

92

%%--
%Main Stock Model

%%--

%%
clc;clear;

%Input Data box

%Default Value
default = {'AMZN','01-Nov-2016','10','700','22','3','1','1'};

%Input Dialog box
input = inputdlg({'Name in Abbreviation (Ex.GOOG)','Start Date in dd-mmm-

yyyy(Ex.01-Nov-2016)',...
 'Total Days to Predict','Total amount of Observed Data

Used to Predict',...
 'Smooth Window Size','Graph Option(1:Autocor 2:Both

Observed and Prediction)',...

 'Zeroth Day Actual Price and Prediction Match?(Yes:1

No:0)',...
 'Percent Confidental of Error (Put 0 if no error

percentage)'},...
 'Input Data for Stock Model', [1 45],default);

%%
%%Import data form the input dialog box

%Stock name
%State in stock abrreveated name format Ex. 'GOOG' for google
stname = char(input(1,:));

%State the date that will be the date before the first date to start

prediction in format 'dd-mmm-yyyy'
%Note: close price after the date is the data we attempt to predict
pred_date = char(input(2,:));

%Total day you want to predict after the stated start date.
pred_period = str2double(cell2mat(input(3,:)));

%State total previous date that will be acquired for data analysis
data_period = str2double(cell2mat(input(4,:)));

%Window size for Moving Average

%Note: If no moving average, set winsize to be 1
winsize = str2double(cell2mat(input(5,:)));

%%Plot Option(Set only one plot at a time)
%Available option: 1: Autocorrelation

% 2: Plot both model past and future graph

93

% 3: Plot only the future
% 0: if no plot
plot_graph = str2double(cell2mat(input(6,:)));

%Other Analysis Option

%Set close price of the predcition model at pred_date to
%equal to the actual price
%Available option: 0: Don't match
% 1: Match
pred_zero_match = str2double(cell2mat(input(7,:)));

%In case that the noise match is set, state the percent of the noise limit
%below in percentage (The value must be positive)
noise_percent = str2double(cell2mat(input(8,:)));

%%
%Call the observed data of the stock
st_data_p = call_data(stname, pred_date,data_period,'pst');
st_date_p = datestr(st_data_p(:,1));
st_price_p = st_data_p(:,2);

%%
%Find Trend Component of the stock

%Find autocorrelation of the stock
 %Find total number of data and collect it in row
 row = size(st_price_p,1);

 %Find the autocorrelation of the close price.
 %Note: We use all of data to cinsider the autocorrelation
 auto_cor = autocorr(st_price_p,row-1);

 %The first Zero Correlation date will be keep in pos
 pos = find_corr_date(auto_cor);

%Specify a period for the model according to autocorrelation and adjust
%order of the data from new-old to be old-new
 st_price_p = st_price_p(1:pos+1);
 st_date_p = st_date_p(1:pos+1,:);

 st_price_p = flipud(st_price_p);

 st_date_p = flipud(st_date_p);
%Find Trend line
 %Variable for time
 t = (-pos:0)';

 %Filter the actual price and put the data into filt_price
 filt_price = smooth(st_price_p,winsize,'moving');

 %Find trendline using polyfit and collect in variable m
 const= polyfit(t,filt_price,1);

 %Put Trendline data into variable tL

94

 tL = const(1)*t+const(2);

%%
%Find Seasonal Component
 %Find difference between raw data and trendline and put into variable

diff
 diff = st_price_p - tL;

 %Find the seasonal component using fourier fitting

 f = fit(t,diff,'fourier3');
%%
%Find the rest of componets of the model
 noise = diff - f(t);

 if noise_percent ~=0
 mx_noise = noise_percent/100*st_price_p(end);
 mn_noise = noise_percent/100*st_price_p(end);
 else
 mx_noise =0;
 mn_noise =0;
 end

%%

%Create Prediction Model form the components

 %Time for overall model (Seperated into three parts: Overall

period,forcasting period and fitting purpose period)

 %Overall period
 t = (-pos:pred_period)';

 %Fitting Period
 tp = (-pos:-1)';
 %Foreccast Period
 tf = (0:pred_period)';

 %Trend Component
 mp = const(1)*tp+const(2);
 mf = const(1)*tf+const(2);

 %Seasonal Component
 sp = f(tp);
 sf = f(tf);

 %Prediction Model
 p_model = [mp;mf]+[sp;sf];

 %Set the acutual price and the prediction to match as the user
 %indicated
 if pred_zero_match == 1
 offset = noise(end);
 else
 offset = 0;
 end

95

 %Add offset to the model
 p_model(pos+1:end) = p_model(pos+1:end)+ offset;

 %Maximum and Minimum Boundary of preditcion
 mx_bound = mx_noise+mf+sf+ offset;

 mn_bound = -mn_noise+mf+sf+ offset;

%%
%Prepare the actual data after the zeroth day

 %Call data after the zeroth day
 st_data_f = call_data(stname, pred_date,pred_period,'fut');

 st_date_f = datestr(st_data_f(:,1));
 st_price_f = st_data_f(:,2);

 %Adjust order of the data from new-old to be old-new
 st_price_f = flipud(st_price_f);
 st_date_f = flipud(st_date_f);

%%

%Plot graph

 % Combine all of the actual price and date
 st_price = [st_price_p;st_price_f(2:end)];

 st_date = [st_date_p;st_date_f];

 %Adjust Variable according to the setting
 auto_corr_graph = 0;
 Overall_graph = 0;
 Predict_graph = 0;

 if plot_graph ==1
 auto_corr_graph = 1;
 elseif plot_graph ==2
 Overall_graph = 1;
 elseif plot_graph ==3
 Predict_graph = 1;

 else
 error('Please set the proper "plot_graph" variable')
 end

 %Graph Plotting
 %Graph plotting for autocorrelation
 if auto_corr_graph ==1
 st_price_p_auto = st_data_p(:,2);
 row = size(st_price_p_auto,1);
 autocorr(flipud(st_price_p_auto),row-1);

 %Graph plotting for overall graph

 elseif Overall_graph == 1

 hold on
 grid on

96

 %Plot the actual price
 plot(t,st_price,'r');
 %Plot the main prediction model
 plot(t,p_model,'k');

 %Plot the maximum prediction
 plot(tf,mx_bound,'b:','LineWidth',2);
 %Plot the minimum prediction
 plot(tf,mn_bound,'m:','LineWidth',2);
 %Set title
 title(['Raw Data and Prediction of ' stname ' (Zeroth

datet:' pred_date ')']);
 %Set x-axis label

 xlabel(['Date']);
 %Set y-axis label
 ylabel('Price($)');
 %Set graph legend
 legend('Raw Data','Model Data','Upper Bound','Lower

Bound');
 hold off

 elseif Predict_graph == 1

 hold on
 grid on

 %Plot the actual price
 plot(t,st_price,'r');
 %Plot the main prediction model

 plot(t,p_model,'k');
 %Plot the maximum prediction
 plot(tf,mx_bound,'b:','LineWidth',2);
 %Plot the minimum prediction
 plot(tf,mn_bound,'m:','LineWidth',2);
 %Set axis of the graph
 axis([0 max(t) -inf inf]);
 %Set title
 title(['Raw Data and Prediction of ' stname ' (Zeroth

datet:' pred_date ')']);
 %Set x-axis label
 xlabel(['Date']);
 %Set y-axis label
 ylabel('Price($)');
 %Set graph legend
 legend('Raw Data','Model Data','Upper Bound','Lower

Bound');

 hold off
 end
%Save data into file__

st_price_f = st_price(end-pred_period:end);
p_model = p_model(end-pred_period:end);

%Save the data into file with name in format " (stockname)_data"

97

save([stname

'_data'],'p_model','pred_date','pred_period','st_price_p','st_price_f','mx

_bound','mn_bound','pos');

Program C:

%%--

%Code for Stock Model. Comments apply to all stocks, as code is same

%for each. The stock used in the code below is UNH with index NYSE.
%%--

clear all; close all; clc; %Clear and close everything each run

%Variables for files to load

F1 = load('UNH.dat'); %load data file
F2 = load('UNHf.dat'); %Load file holding future data
F3 = load('NYSE.dat'); %Load New York Stock Exchange Index data
F4 = load('NYSEf.dat'); %Load future exchange data

ac = 53; %Autocorrelation value/number or relevant data days
pd = 30; %Number of days of future data

%Orignal Data Fitting
p1 = F1(:,1); %Get daily stock price data from 1st column in file
plot(p1) %Plot stock prices
title('Stock Prices');
pause
autocorr(p1,252); %Autocorrelate data and output plot
title('Autocorrelation');
pause
p2=p1(1:ac); %Cut data to the past ac number of days

for i=1:ac
 x(i)=i; %Create a 1 to ac double array of days/x values
 y(i)=p2((ac+1)-i); %Create a 1 to ac double forstock prices/y values
end
poly=polyfit(x,y,1); %Fit data
for i=1:ac
 lst(i)=poly(1)*i+poly(2); %Create trend/fit line based on polyfit
end

plot(x,y,'r'); %Plot stock prices
hold
plot(x,lst,'g'); %Plot trend/fit line
hold
title('Trend Line');
pause
ffit=fit(x',(y-lst)','Fourier3'); %Fourier fit data minus linear fit
for i=1:ac

yh(i)=lst(i)+ffit(i); %Add line of fit to fourier fit
end
plot(x,y,'--r'); %Plot stock prices
hold

98

plot(x,yh,'b'); %Plot Fourier Fitted Data
hold
title('Fourier Fit');
pause
Diff=y-lst; %Take diffference between data and linear fit

noise=Diff'-ffit(x); %Calculate noise at each stock price
mnoise=mean(abs(noise)); %Find mean of noise
plot(x',noise,'b'); %Plot noise
title('Noise');
pause

%Moving Averages Fitting
mavg = tsmovavg(y,'s',25,2); %Calculate moving averages
for i=1:ac
 if i<25 %Calculate values of moving averages for endpoints
 mav(i)=sum((y(1:i)))/(i);
 else %Once window size hit set to calculated mavg above

 mav(i)=mavg(i);
 end
end
poly2=polyfit(x,mav,1); %Poly fit moving averages
plot(x,mav,'c'); %Plot moving averages fit
hold
plot(x,y,'--r'); %Plot stock prices
hold

title('Moving Averages');
pause
for i=1:ac
 smt(i)=poly2(1)*i+poly2(2); %Calulate trend/fit line for moving avg.
end
plot(x,y,'r'); %Plot stock prices
hold
plot(x,smt,'g'); %Plot moving averages trend/fit line
hold

title('Moving Averages Trend');
pause
mfit=fit(x',(y-smt)','Fourier3'); %Fourier fit moving averages
for i=1:ac
ym(i)=smt(i)+mfit(i); %Add trend/fit line to fourier fit
end
plot(x,y,'--r'); %Plot stock prices
hold

plot(x,ym,'b'); %Plot Fitted moving averages
hold
title('Moving Averages Fourier Fit');
pause
Diff=y-smt; %Subtract linear fit/trend from stock prices
noisem=Diff'-mfit(x); %Calculate noise for moving averages
mnoisem=mean(abs(noisem)); %Calculate mean noise
plot(x',noisem,'b'); %Plot moving averages noise

title('Moving Averages Noise');
pause

%Future Data Predictions for Orignal Data and Moving Averages

99

for i=ac+1:ac+31 %Predict 30 days from Oct. 1st.
 x(i)=i; %Expand x array to hold future days
 yh(i)=poly(1)*i+poly(2)+ffit(i); %Predict using original data
 nu(i)=yh(i)+mnoise; %Add mean noise to prediction line
 nd(i)=yh(i)-mnoise; %Subtract mean noise from prediction line

 ym(i)=poly2(1)*i+poly2(2)+mfit(i); %Predict using moving averages
 num(i)=ym(i)+mnoisem; %Add mean noise to prediction line
 ndm(i)=ym(i)-mnoisem; %Subtract mean noise from prediction line
end
pf=F2(:,1); %Get future stock prices from 1st column in file
for i=1:ac+pd
 yf(i)=pf((ac+pd+1)-i); %Create array with future data included
end

%Prediction Plotting
plot(x,yh,'b'); %Plot fourier fitted original data prediction
hold on

plot(ac+1:ac+31,nu(ac+1:ac+31),'--k'); %Noise up
plot(ac+1:ac+31,nd(ac+1:ac+31),'--k'); %Noise down
plot(x(ac+1:ac+pd),yf(ac+1:ac+pd),'r'); %Plot Actual Future Data
title('Fourier Prediction and Future Data');
pause
hold off
plot(ac+1:ac+31,nu(ac+1:ac+31),'--k'); %Noise Up
hold on

plot(ac+1:ac+31,nd(ac+1:ac+31),'--k'); %Noise Down
plot(x(ac+1:ac+31),yh(ac+1:ac+31),'b'); %Zoomed Fourier Fit Prediction
title('Zoomed Fourier Prediction and Future Data');
plot(x(ac+1:ac+pd),yf(ac+1:ac+pd),'r'); %Actual future data
pause
hold off %Plot difference between actual data and prediction
plot(x(ac+1:ac+pd),yf(ac+1:ac+pd)-yh(ac+1:ac+pd),'m');
title('Difference Between Fourier Prediction and Data');
pause

plot(x(ac+1:ac+31),ym(ac+1:ac+31),'b'); %Plot moving averages prediction
hold on
plot(ac+1:ac+31,num(ac+1:ac+31),'--k'); %Noise up
plot(ac+1:ac+31,ndm(ac+1:ac+31),'--k'); %Noise down
plot(x(ac+1:ac+pd),yf(ac+1:ac+pd),'c'); %Actual future data
title('Moving Averages Prediction and Future Data');
pause
hold off

plot(ac+1:ac+31,num(ac+1:ac+31),'--k'); %Noise up
hold on
plot(ac+1:ac+31,ndm(ac+1:ac+31),'--k'); %Noise down
plot(x(ac+1:ac+31),ym(ac+1:ac+31),'r'); %Zoomed Mavg Prediction
plot(x(ac+1:ac+pd),yf(ac+1:ac+pd),'c'); %Actual future data
title('Zoomed Moving Averages Prediction and Future Data');
pause
hold off %Plot Difference between Prediction and actual data

plot(x(ac+1:ac+pd),yf(ac+1:ac+pd)-ym(ac+1:ac+pd),'m');
title('Difference Between Moving Averages Prediction and Data');
pause

100

%Exchange Index
pe1 = F3(:,1); %Get prices from file
en = ac; %Number of days from Stock data autocorrelation
for h=1:en
 xe(h)=h; %Create a 1 to en double array of days/x values

 ye(h)=pe1((en+1)-h); %Create a 1 to en double for prices/y values
end
polye=polyfit(xe,ye,1); %Poly fit the index data
for l=1:en
 lste(l)=polye(1)*l+polye(2); %Linear fit the data from polyfit
end
fefit=fit(xe',(ye-lste)','Fourier3'); %Fourier fit the data
for i=1:en

 yhe(i)=lste(i)+fefit(i); %Add linear fit to fourier fit
end
for j = 1:en %Scale stock and exchange data to start at 1
 excut(j) = pe1((en+1)-j); %Cut data size to en days
 exscaled(j) = excut(j)./ye(1); %Divide by most recent index day's price
 sscaled(j) = y(j)./y(1); %Divide by most recent day's price for stock
end
Diffe=(ye-lste); %Take difference of price and linear fit

enoise=Diffe'-fefit(xe); %Calculate noise
menoise=mean(abs(enoise)); %Calculate mean noise
plot(xe',enoise,'b'); %Plot noise of index
title('NYSE Noise');
pause
plot(xe,ye,'--r') %Plot exchange data
hold on
plot(xe,yhe,'b') %Plot Fourier fitted exchange data

title('NYSE Index and Fourier Fit');
hold off
pause
plot(xe(1:en),exscaled) %Plot scaled exchange data
hold on
plot(x(1:en),sscaled,'-r') %Plot scaled stock data
title('Scaled Prices');
legend('NYSE','UNH','Location','northwest');
hold off

pause
for i=en+1:en+31
 xe(i)=i; %Add future days to days data array
 exscaled(i)=((polye(1)*i)+polye(2)+fefit(i))./ye(1); %Predict future
 neu(i)=exscaled(i)+menoise./ye(1); %Noise up
 ned(i)=exscaled(i)-menoise./ye(1); %Noise down
end

%Exchange Predictions
pef=F4(:,1);
for k=1:en+pd
 yef(k)=pef((en+pd+1)-k); %Create array with future data included

end
plot(x(en+1:en+31),exscaled(en+1:en+31),'b'); %Plot exchange prediction
hold on
plot(en+1:en+31,neu(en+1:en+31),'--k'); %noise up

101

plot(en+1:en+31,ned(en+1:en+31),'--k'); %noise down
plot(x(en+1:en+pd),yef(en+1:en+pd)./ye(1),'r'); %Actual future data
title('NYSE Prediction');
hold off
pause

c = corrcoef(y(1:en),ye(1:en)); %Correlation between stock and exchange

data
for i=en+1:en+31 %Combine original prediction with exchange prediction
 xe(i)=i; %Future days
 exf(i) = exscaled(i)*(c(2,1)) + yh(i)./y(1)*(1-c(2,1)); %Combined

Prediction
 nefu(i)=exf(i)+((mnoise./y(1))+(menoise./ye(1))); %noise up
 nefd(i)=exf(i)-((mnoise./y(1))+(menoise./ye(1))); %noise down

end
plot(x(en+1:en+31),exf(en+1:en+31)*y(1),'b'); %Plot Combined prediction
hold on
plot(en+1:en+31,nefu(en+1:en+31)*y(1),'--k'); %Noise up
plot(en+1:en+31,nefd(en+1:en+31)*y(1),'--k'); %Noise down
plot(x(en+1:en+pd),yf(en+1:en+pd),'r'); %Actual future data of stock
title('UNH Prediction with NYSE - 4 days');
hold off

%%--

%Code for Finding Lyapunov Exponents with lyap_spec’s built-in delay
%%--

%Set path for functions in TISEAN
tiseanpath = 'C:\Users\Stephanie\Documents\MATLAB\Tisean_3.0.0\bin\';

x = load('MSFT.dat'); %Load stock file

y = mean(x); %Take mean of stock prices
New = x/y; %Divide by mean to scale down numbers

save new.dat New -ASCII %Save new data file with scaled values

%Run TISEAN function lyap_spec for dimensions 1-4
system([tiseanpath, 'lyap_spec -m1,4 -ospec1.dat new.dat']);

system([tiseanpath, 'lyap_spec -m1,5 -ospec2.dat new.dat']);
system([tiseanpath, 'lyap_spec -m1,6 -ospec3.dat new.dat']);
system([tiseanpath, 'lyap_spec -m1,7 -ospec4.dat new.dat']);

%Import reults and locate largest exponent
file1 = importdata('spec1.dat');
data1 = file1(1,2);
file2 = importdata('spec2.dat');
data2 = file2(1,2);
file3 = importdata('spec3.dat');
data3 = file3(1,2);
file4 = importdata('spec4.dat');

data4 = file4(1,2);

%Place largest exponents into array
data = [data1,data2,data3,data4];

102

dim = [4,5,6,7];

plot(dim,data) %Plot

%%--

%Code for Finding Lyapunov Exponents with TISEAN’s delay function
% with dimension set to 4

%%--

%Map path to TISEAN functions
tiseanpath = 'C:\Users\Stephanie\Documents\MATLAB\Tisean_3.0.0\bin\';

x = load('BHI.dat'); %Load stock data

y = mean(x); %Take mean of stock prices
New = x - y; %Subtract mean from each price to scale down

d = 42; %delay to use

new4 = New(1:4*d); %Create data 4 times the length of the delay

save new4.dat new4 -ASCII %Save to new data file

%Create delay columns
system([tiseanpath, 'delay -d42 -m4 -odel1.dat new4.dat']);

%Use lyap_spec
system([tiseanpath, 'lyap_spec -m4,4 -ospec1.dat del1.dat']);

file1 = importdata('spec1.dat'); %Import results
data1 = file1(1,2); %Find largest exponent

