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ABSTRACT 
 

A wireless, battery operated pulse oximeter system with a forehead mounted optical sensor was 

designed in our laboratory. This wireless pulse oximeter (WPO) would enable field medics to 

monitor arterial oxygen saturation (SpO2) and heart rate (HR) information accurately following 

injuries, thereby help to prioritize life saving medical interventions when resources are limited. 

Pulse oximeters developed for field-based applications must be resistant to motion artifacts since 

motion artifacts degrade the signal quality of the photoplethysmographic (PPG) signals from 

which measurements are derived. This study was undertaken to investigate if accelerometer-

based adaptive noise cancellation (ANC) can be used to reduce SpO2 and HR errors induced by 

motion artifacts typically encountered during field applications. Preliminary studies conducted 

offline showed that ANC can minimize SpO2 and HR errors during jogging, running, and 

staircase climbing. An 8
th
 order LMS filter with µ = 0.01 was successfully implemented in the 

WPO’s embedded microcontroller. After real-time adaptive filtering of motion corrupted PPG 

signals, errors for HR values ranging between 60 – 180BPM were reduced from 12BPM to 

6BPM. Similarly, ambient breathing SpO2 errors were reduced from 5% to 2%. 
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1. INTRODUCTION 
 

Monitoring of oxygen supply is critical as death results from lack of oxygen supply. Pulse 

oximeters use optical means and photoplethysmography to extract continuous arterial oxygen 

saturation (SpO2). Photoplethysmography is advantageous because it can be used to measure 

other vital physiological parameters from a single compact sensor. Such data include heart rate 

(HR), heart rate variability (HRV) and respiration rate (RR). These physiological parameters 

may provide an early indication of cardiovascular condition in case of physical injury or shock. 

Physiological measurements from a single sensor allow wearable monitoring devices to be 

miniaturized for portability and field use.  

 

Pulse oximeters would allow combat medics to continuously monitor the physiological status of 

soldiers, thereby potentially reducing the medical response time and improve remote triage [1]. 

During battlefield missions, specifically the Vietnam conflict, 67% of casualties occurred within 

10 minutes from the onset of injury, the remaining 33% could have benefited from advanced 

diagnostic devices [2]. Wearable pulse oximeters will allow medical personnel to monitor 

several individuals simultaneously, thereby prioritizing medical intervention when resources are 

limited.  

  

Commercial off-the-shelf pulse oximeters are impractical for field applications as they are 

typically designed for clinical purposes where the patient remains mostly motionless. In addition, 

the constraining wires can limit a subject’s mobility and interfere with regular activities. Hence, 

a wireless pulse oximeter (WPO) has been designed in our laboratory. As shown in Figure 1.1, 

the WPO consists of a forehead worn optical sensor and a USB receiver. 
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Figure 1.1: Wireless pulse oximeter (WPO) designed in our laboratory. 

 

The WPO consists of two light emitting diodes (LED). These LEDs transmit light at two 

wavelengths – Red and Infrared (IR). When light is incident on the forehead, some portion of the 

incident light is absorbed by blood and other tissues, while the rest is reflected back to the 

sensor. The reflected light is detected by a photodetector and is used to generate 

photoplethysmographic (PPG) signals. Dedicated algorithms are used to filter the reflected PPG 

signals and compute HR and SpO2 based on the relative amplitude and frequency content of the 

PPG signals. A tri-axial MEMS-type accelerometer (ACC) is embedded within the optical sensor 

to measure physical activities. The ACC is capable of detecting 3G motion along all three axes. 

Posture and motion signals, combined with physiological measurements, are valuable indicators 

to assess the status of an injured person.  

 

Pulse oximeters are highly reliable when used in motionless situations. Pulse oximeters 

developed for field applications must be resistant to the effects of motion artifacts which are 

known to considerably degrade the signal-to-noise ratio (SNR) of PPG signals from which the 

physiological values are derived. Implementation of a robust pulse oximeter for field 

applications requires sophisticated noise cancellation algorithms to eliminate erroneous readings 

and false alarms. 

 

Several research groups have suggested use of an ACC-based adaptive noise cancellation (ANC) 

algorithm [3-9]. These groups have demonstrated that ANC is feasible for reducing the effects of 

motion artifacts on PPG signals acquired during jogging. However, they have not presented data 

showing the effectiveness of ANC in real-time implementation within a µC. Therefore, the main 

focus of this thesis was to determine the feasibility of ANC for real-time implementation in 

Wireless Pulse Oximeter USB Receiver 

6 cm 

3.5 

cm 
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terms of accuracy, processing time and memory efficiency. The most efficient and feasible 

algorithm will be implemented in future generations of the WPO for real-time filtering of motion 

corrupted PPG signals. Employing such a robust signal processing algorithm to reduce the 

effects of motion artifacts would provide a more suitable platform for field applications. 

 

This thesis begins by discussing the basic principles of pulse oximetry. The effects of motion 

artifacts and methods to reduce these effects are described in the following chapters. Several 

ANC algorithms are explained, followed by a brief explanation of the signal processing 

algorithm utilized to compute HR and SpO2 values from raw PPG signals. The later part of this 

thesis outlines the experiments conducted to demonstrate how ANC improves the morphology of 

PPG signals during various physical activities. Next, the results of several ANC algorithms are 

discussed and compared with the goal of selecting a single motion tolerant algorithm that can be 

implemented in the current version of the WPO. 
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2.  BACKGROUND 
 

2.1. Photoplethysmography (PPG) 

 

A pulse oximeter is a physiological monitoring system that noninvasively measures Heart Rate 

(HR) and arterial hemoglobin oxygen saturation (SaO2). The concept of pulse oximetry is based 

on Beer-Lambert’s law, which states that the concentration of an unknown solute in a solvent can 

be determined by light absorption. 

  

Oxyhemoglobin (HbO2) absorbs less red (R) light (λ = 660nm) than reduced hemoglobin (Hb) 

[10],  whereas HbO2 absorbs more infrared (IR) light (λ = 940nm) compared to Hb. The 

difference in optical absorbance of HbO2 and Hb forms the basis of oxygen saturation 

measurement, as illustrated in Figure 2.1. By measuring the relative absorption of IR and R light, 

the concentration of oxygenated arterial blood can be determined noninvasively [10, 11]. 

Measurement of SaO2 by two wavelength pulse oximetry is termed SpO2 [7]. 

 

 

Figure 2.1: Optical absorbance spectra of HbO2 and Hb [12].  

HbO2 

Hb 

Absorption 
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A pulse oximeter sensor consists of R and IR light emitting diodes (LED’s) and a photodetector. 

When light is incident on the skin, some portion of the light is absorbed by body tissues while 

the remaining light is transmitted/reflected back to the photodetector. The light detected by the 

photodetector depends on skin opacity, reflection by bones, tissue scattering, and the amount of 

blood present in the vascular bed [13]. In this process, a constant amount of light is absorbed by 

tissue, bones, skin, non-pulsatile arterial and venous blood, generating a DC signal. Contrarily, 

the amount of light attenuated by the arterial blood varies according to the pumping action of 

heart [13]. As the arterial blood volume increases during systole, a greater portion of the incident 

light is absorbed causing a rapidly alternating signal [13]. The signal produced by this process is 

known as a photoplethysmographic (PPG) signal. Figure 2.2 explains the composition of the 

PPG signal generation process and Figure 2.3 depicts a typical sinusoidal-shaped PPG signal.  

 
Figure 2.2: Variations in light attenuation by tissue, illustrating the PPG signal generation [13].  
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Figure 2.3: Typical PPG signal acquired during rest.  

2.2. Operating modes and measurement sites 
 

PPG signals can be obtained utilizing either transmittance mode or reflection mode optical 

transducers. As illustrated in Figure 2.4, in transmittance mode, the pulsating arterial bed is 

positioned between the LEDs and photodetector. The photodetector measures the portion of light 

that is transmitted in the forward direction. The main advantage of this mode is that it yields PPG 

signals with high SNR. Typical measurement sites utilized for transmittance mode oximetry are 

the ear lobes and finger tips. 

 

Figure 2.4: Operating modes of a pulse oximeter. 
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In reflectance mode, also illustrated in Figure 2.4, the LEDs and photodetector are placed side-

by-side facing the skin. In this mode, the detector measures the reflected or backscattered light. 

For a pulse oximeter that employs a reflection mode, the optical sensor is usually attached to the 

forehead or templates with double-sided adhesive tapes [10]. A headband is often used to hold 

the sensor in position and minimize interference from the external light. 

In clinical applications, PPG signals are normally acquired from the fingers. For field 

applications, such as physiological monitoring of soldiers or firefighters, it is more practical to 

implement a forehead-mounted sensor rather than finger-worn sensor. This would enable 

unrestricted hand movements. Moreover, the PPG signals acquired from the forehead generally 

have better SNR in the presence of motion artifacts [14, 15]. Therefore, we used a forehead 

mounted optical sensor. 

 

2.3. Noninvasive arterial oxygen saturation (SpO2) measurement 

 

2.3.1. Significance 
 

Pulse oximeters have various clinical applications in anesthesia, surgery, critical care, exercise 

and other fields. For a healthy person breathing atmospheric air, SpO2 readings typically range 

from 96% to 100%. Among the main advantages of a pulse oximeter is its ability to indicate a 

desaturation trend [10]. It is used to monitor a lack of O2 supply to the cells. This is crucial as 

prolonged anoxia can result in serious brain damage and can be fatal.  
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2.3.2. Measurement Theory 

 

As mentioned previously, SpO2 values are based on the difference in optical absorbance of HbO2 

and Hb.  Assuming that thoroughly hemolyzed blood consists of HbO2 and Hb, and that light 

absorbance by the mixture of these two components is additive, the SpO2 values can be derived 

from the following equations [10]:  

 

SpO2 = A – B * þ 2.1 

 

 
2.2 

 

In Equation 2.1, A and B are derived during empirical calibration of a pulse oximeter using the 

calibration curve shown in Figure 2.5.  

 

 

Figure 2.5: Empirical relationship between SaO2 and the normalized R/IR ratio [10]. 
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2.4. Heart Rate (HR) 

 

2.4.1. Significance 
 

In addition to SpO2 values, pulse oximeters also measure HR. HR readings provide an early 

indication regarding the subject’s health and indicate changes in the sympathetic nervous system. 

 

2.4.2. Measurement Theory 

 

The AC component of the PPG signal, presented in Figure 2.3, has characteristics of a sinusoidal 

waveform. Each peak in PPG signal corresponds to one cardiac beat. The time interval between 

two consecutive peaks is used to extract HR readings [1]. Specifically, if T (seconds) 

corresponds to the time interval between two consecutive peaks, then instantaneous HR (BPM) is 

calculated using Equation 2.3. 

 

HR = 60 / T 2.3 

 

2.5. Limitations to Pulse Oximeter 

 

Although pulse oximeters are highly accurate and reliable when used during rest, numerous 

factors have been shown to negatively affect the SNR of pulse oximeters. Factors affecting the 

absorbance characteristics include low pulsatile signals (e.g. low perfusion index), noise (e.g. 

stray lights, electromagnetic interference), and motion artifacts [3, 4, 6, 7, 10, 11, 13]. The worst 

case is a combination of the two factors – low perfusion index along with significant motion 

artifacts.  

 

The problem of low perfusion index is biological and can be solved by the use of vasodilating 

drugs to enhance blood perfusion [10].  Some manufacturers take intermittent optical 

background readings and then subtract these from the photodetector measurements to minimize 

background light interference. These background readings are acquired when both the LEDs in 

the sensor are turned off. This greatly reduces the effects of bright light and electromagnetic 
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interferences [10]. Of all the factors, motion artifact has been the most troublesome in pulse 

oximetry.  
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3. MOTION ARTIFACT 
 

3.1. Effects of Motion Artifacts 

 

One of the primary factor limiting the use of pulse oximetry for real-time physiological 

monitoring of soldiers and firefighters is its poor reliability during motion [6]. Motion affects the 

measurement accuracy of pulse oximeter in several ways.  

 

Langton and Hanning correlated the force required to displace the optical sensor with the degree 

of motion-induced artifacts [16]. They showed that motion artifacts have the same effect on the 

R and IR PPG signals. When motion amplitude is very large, it masks the biological signal. 

These motion induced signals produce a þ-value (Equation 2.2) that approximately equals one. 

As per the empirical calibration curve (Figure 2.5), a unity R-value produces SpO2 values in the 

range of 80% to 85%. This theory explains the sudden erroneous drop in SpO2 values to 80-85% 

during motion. However, it fails to explain false desaturations below 50%, also observed in the 

presence of motion. Additionally, the theory was not able to explain situations where the motion 

artifacts decrease þ-value (Equation 2.2) to produce SpO2 values greater than 100.  

 

One assumption in pulse oximetry is that the only pulsating component is due to arterial blood. 

Motion introduces additional pulsatile movements in venous blood [7, 16-18].  The pulsatile 

component of the PPG signal is then composed of more than just arterial blood. Contribution of 

deoxygenated venous blood to PPG signals reduces the final SpO2 measurements [7]. These 

errors induced by venous blood pulsation cannot be eliminated by PPG signal processing.  

 

Motion artifacts also affect HR measurements since they introduce false peaks and/or attenuate 

the cardiac peaks. If motion artifact mimics the PPG signals, the device will be unable to 

differentiate between false motion peaks and true cardiac peaks, thereby producing erroneous 

HR readings. Such errors in HR measurements can be minimized by utilizing advanced signal 

processing methods.  
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A typical PPG waveform acquired during rest is plotted in Figure 3.1. Figure 3.2 shows the AC 

component of an IR PPG signal along with the reference tri-axial ACC signal acquired 

simultaneously during motion. An ECG waveform acquired by a Holter monitor is plotted for 

comparison. During motion, we can observe that the IR PPG waveform does not appear as 

periodic as it was during rest (see Figure 3.1). Furthermore, the amplitude of the IR PPG signal 

in Figure 3.2 varies to a large extent when compared to the resting state PPG signal shown in 

Figure 3.1. The PPG signal during rest has nearly constant amplitude. Whereas, the PPG signal 

presented in Figure 3.2 is distorted due to the presence of motion artifacts. 

134 135 136 137 138 139

-300

-200

-100

0

100

200

300

Time (sec)

R
e
la

ti
v
e
 A

m
p
lit

u
d
e

 

 

NO-ANC

X+Y+Z

ECG

 

Figure 3.1: IR PPG signal during rest. 
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Figure 3.2: IR PPG signal affected by motion artifact. ● PPG peaks detected by the WPO (9-

peaks), and ● R-waves detected from the ECG waveform (9-peaks). 

 

To compute HR and SpO2 values, the IR and R PPG signals are processed by our custom signal 

processing algorithm discussed later in chapter 5. The yellow markers in Figure 3.2 indicate the 

peaks detected by our signal processing algorithm. These peaks are assumed to represent true 

cardiac beats. As both ECG and PPG signals were recorded simultaneously, cardiac peaks from 

the two waveforms must be closely correlated. This is apparently not true for the PPG signal 

shown in Figure 3.2. 

 

As seen in Figure 3.2, both the Holter monitor and our signal processing algorithm detected 9 R-

waves from the ECG waveform. However, there was no correlation between the location of some 

of the R-waves and PPG peaks. Consider for example the 3
rd
 and 4

th
 R-waves in the ECG 

waveform. According to the Holter monitor, t1 corresponds to the time interval between the 3
rd
 

and 4
th
 cardiac peaks. Due to large fluctuations in the peak-to-peak amplitude seen in the PPG 

signal, our signal processing algorithm did not detect any PPG peaks corresponding to the 3
rd
 and 

4
th
 R-waves. Hence, the time interval between the 3

rd
 and 4

th
 PPG peaks (t2) was larger than the 

actual time period (t1). Thus, the HR value computed based on t2 is lower than the HR value 

computed based on t1. Similarly, for the 6
th
 and 7

th
 R-waves, our signal processing algorithm 
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overestimated HR values due to the shorter time period between the two PPG peaks. This 

resulted in an inaccuracy when HR values were determined from the motion corrupted PPG 

signal. Figure 3.3 represents a typical data set demonstrating the effect of motion artifacts on HR 

values.  
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Figure 3.3: Effect of motion artifacts on HR measurements. 

 

As explained earlier, Langton and Hanning theory quotes that if motion affects the IR and R PPG 

signals equally, the þ -value (Equation 2.2) is approximately equal to 1 and SpO2 values during 

such time instants drop towards 80-85%. As seen in Figure 3.4, such motion peaks produce an 

erroneous drop in SpO2 values. Consider three PPG peaks; two are true and one produced by 

motion. The true cardiac peaks produce a SpO2 value of 98% each, while the motion peak 

produces a SpO2 value of 85%. The average of these three peaks will result in a SpO2 value of 

93%, which is below the normal physiological range. Such erroneous drops should be eliminated 

by the use of a more robust signal processing algorithm(s). 
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Figure 3.4: Effects of motion artifacts on SpO2 measurements. 

 

To determine the effects of motion artifacts, PPG signals were analyzed in the frequency domain. 

For this representative trial, HR readings were in the range of 70 BPM to 150 BPM (see Figure 

3.3). In the frequency domain, the FFT of the PPG signals should therefore have peaks in the 

range of 1Hz to 2.5Hz, respectively. However, the frequency spectra of the IR and R PPG signals 

(shown in Figure 3.5 and Figure 3.6 respectively) consist of additional frequency components 

between 2.5Hz to 3Hz. These frequency components are due to motion artifacts and result in 

measurement inaccuracies. The frequency spectra of the PPG and tri-axial accelerometer signals 

have the same dominant motion peaks in 2.5Hz to 3Hz range. Both frequency spectra have the 

same motion peaks. Conclusively, these acceleration signals carry motion frequency information 

corrupting the PPG signals.  

 

As illustrated above, motion artifacts can drastically affect HR and SpO2 measurement 

accuracies. To minimize these motion artifacts and recover cleaner PPG signals, a new signal 

processing approach is needed. This will make the WPO more motion tolerant and improve 

measurement reliability. 

Erroneous drop in SpO2 
due to motion  

Rest Rest Motion 
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Figure 3.5: Frequency spectrum of IR PPG and reference ACC signals acquired during motion. 
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Figure 3.6: Frequency spectrum of R PPG and reference ACC signals acquired during motion. 
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3.2. Reducing the effects of motion artifacts 

 

Removing motion artifacts from PPG signals is one of the primary challenges to be tackled 

before using pulse oximeters for field applications. The dominant frequency range of motion 

corrupting the PPG signal can overlap with the fundamental cardiac frequency range of 0.5Hz 

(40BPM) to 3Hz (180BPM). Hence, conventional fixed filters (LPF and HPF) cannot be used to 

minimize the effects of motion artifacts. Moreover, the design of fixed filters is based on prior 

knowledge of the noise signal – which is unknown and unpredictable. Therefore, sophisticated 

signal processing algorithms must be employed to reduce the effects of body motion on PPG 

signals. 

 

To overcome the effects of motion artifact, several advanced signal processing techniques have 

been suggested in the literature. Kim and Yoo [19] used independent component analysis with a 

preprocessor to suppress the noise signals. This method assumes that motion artifacts and the 

PPG signal are independent, which is not true. Also, the complexity of the algorithm limits the 

feasibility of its real-time implementation in an embedded µC [4, 6]. Some authors suggested the 

use of three wavelength pulse oximetry to recover a clean PPG from motion corrupted PPG 

signals [20]. This technique has its own limitations since the absorption properties of the third 

wavelength must be independent of changes in arterial blood volume. This methodology assumes 

that motion artifacts result from small changes in the optical path. Also, a 3
rd
 LED will increase 

the power consumption and affect the battery life. This rule outs the use of this technique for 

field applications which involve larger sensor movements. The technique to be used for PPG 

signal processing (for our application) has to be simple, robust and must quickly adapt to the 

changing noise frequency. 

  

Adaptive noise cancellation (ANC) seems to be the most promising approach to minimize the 

effects of motion artifacts on PPG signals. This method uses a primary input containing the 

corrupted signal and a reference input containing noise that is correlated in some way with the 

primary source of noise [21]. The reference input is adaptively filtered and subsequently 

subtracted from the primary input to obtain the desired signal estimate [21]. Employing ACC 
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signals for adaptive filtering of motion corrupted PPG signals has been suggested by several 

investigators [3, 4, 6, 9, 21].  
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4. ADAPTIVE NOISE CANCELLATION 
 

4.1. Background 
 

The common method of eliminating additive noise from a signal is to pass the signal through a 

digital filter with fixed coefficients. Ideally, the filter attenuates the noise leaving the desired 

signal relatively unchanged [21]. Fixed digital filter design is based on prior knowledge of both 

the signal and noise. On the other hand, adaptive filter design requires little prior knowledge of 

the input signals [21].  They adjust filter parameters automatically depending upon the reference 

noise input. Hence, adaptive filters can be used to recover PPG signals that are corrupted by 

body motion. 

 

4.2. Principle of ANC 
 

Figure 4.1 presents an adaptive noise canceller that can be used for adaptive filtering of a PPG 

signal. The PPG signal (s) corrupted by motion (n0) forms the primary input signal (s + n0) to the 

canceller. The signal (n1) that is uncorrelated with the desired signal (s), but correlated with the 

noise signal (n0), is used as a reference noise input. Figure 3.5 and Figure 3.6 demonstrate that 

motion signal (X+Y+Z) from the tri-axial ACC is correlated to motion corrupting the PPG 

signals. Hence, the ACC (X+Y+Z) signals are used as a reference input to the adaptive noise 

canceller. The adaptive filter modifies the noise (n1) to produce an output (y) as close a replica as 

possible of the primary noise (n0) [21]. This filter output (y) is subtracted from the primary input 

(s+n0) to produce a system output (z = s + n0 - y) [21]. The adaptive process is accomplished by 

feeding the system output (e = z) back to the adaptive filter and adjusting filter parameters to 

minimize noise (n0) in the desired signal (s) [21].  The system output (z) is also processed for HR 

and SpO2 estimation. 
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Figure 4.1: The adaptive noise cancellation concept [21]. 

 

4.3. Different types of ANC 
 

The characteristics of any adaptive noise canceller primarily depend on the type of algorithm 

used to adjust the filter parameters. For adaptive filtering of PPG signals, we have implemented 

and analyzed five different types of adaptive algorithms. These include the (1) Least Mean 

Square (LMS), (2) Time Varying LMS (TV-LMS), (3) Normalized LMS (NLMS), (4) Modified 

Normalized LMS (MNLMS), and (5) Recursive Least Squares (RLS) algorithms. These 

algorithms are briefly discussed below. 

  

The LMS algorithm is a well-known adaptive estimation and prediction technique. The 

conventional LMS algorithm is a stochastic implementation of the steepest descent algorithm. In 

the LMS algorithm, the adaptive filter output (y) depends on the reference input signal (x) and 

filter weights (ω) (also known as filter parameters or filter coefficients). Starting with arbitrary 

initial filter weights, the LMS algorithms will converge in order to minimize the total output 

power, thus causing the system output (y) to be a best least square estimate of the desired signal. 

The LMS algorithm equations are summarized in Table 4.1. Detailed explanation and derivation 

for LMS algorithm can be found in [21, 22]. 
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Table 4.1: LMS equations [22] 

 
Equations 

Number of 

Multiplications 

Number of 

Additions 

Equation 

Number 

System output y(n) = d(n)  –  ù
H
(n) *  ref(n) 

(1x1)        (1x1)           (1xM)           (Mx1) 
M M (1) 

Constant Constant = ì * y(n) 1 0 (2) 

Update 

weights 

ù(n+1) = ù(n) + Constant * ref(n) 
(Mx1)          ( Mx1)          (1x1)         ( Mx1) M M (3) 

 Total 2M + 1 2M  

 

Parameter Definition 

y(n) Filter output 

d(n) Primary input signal corrupted by noise 

ref(n) Reference noise signal 

ù(n) Array coefficients 

H Hermitian property 

ì Filter step-size 

M Filter order 

 

 

The performance of the LMS algorithm is highly dependent on the selected convergence 

parameter (µ) and filer order (M) [4]. A large µ value leads to faster convergence rate, whereas, 

smaller values produce better accuracy [23, 24]. While selecting µ for a conventional LMS 

algorithm, a compromise is made between the convergence rate and estimation accuracy. Hence, 

either the filter responds slowly to the changes in noise frequency or inaccurately estimates 

system output. This limitation is overcomed by the TV-LMS algorithm [23, 24]. 

 

The main idea of the TV-LMS algorithm is to set µ to a large value initially to speed up the 

algorithm convergence. As time progresses, µ is adjusted to a smaller value so that the adaptive 

filter will have a smaller mean-squared error (MSE) [23, 24]. The TV-LMS algorithm is 

summarized in Table 4.2. Lau, Hussian and Harris derived the TV-LMS equations and explained 

it in greater detail [23, 24]. 
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Table 4.2: TV-LMS equations [23, 24] 

 
Equations 

Number of 

Multiplications 

Number of 

Additions 

Equation 

Number 

System output y(n) = d(n)  –  ù
H
(n) *  ref(n) 

(1x1)        (1x1)           (1xM)           (Mx1) 
M M (1) 

Constant Constant = ìn * y(n) 1 0 (2) 

Update ìn ìn = án * ìo 1 0 (3) 

Update án án = C^[1/(1+an
b
)] 4 1 (4) 

Update 

weights 

ù(n+1) = ù(n) + Constant * ref(n) 
(Mx1)          ( Mx1)          (1x1)         ( Mx1) M M (5) 

 Total 2M + 6 2M + 1  

 

Parameter Definition 

y(n) Filter output 

d(n) Primary input signal corrupted by noise 

ref(n) Reference noise signal 

ù(n) Array coefficients  

H Hermitian property 

ì0 Filter step-size 

M Filter order 

a, b, c Constant 

án Step-size variation parameter 

 

Another drawback of the conventional LMS algorithm is its sensitivity to scaling of the reference 

input (ref). This makes it very hard to choose a learning rate µ that guarantees stability of the 

algorithm. The normalized least mean square algorithm (NLMS) is a variant of the LMS. The 

NLMS algorithm solves the scaling problem by normalizing µ with the energy of the reference 

signal. Table 4.3 summarizes the NLMS algorithm equations. In these equations, µ represents the 

adaptation constant, || x(n) ||
2
 is the energy of the input reference signal, and δ is a constant used 

to avoid divide-by-zero error. Setting µ according to equation (3) may be viewed as using a time 

varying convergence factor. The interesting point about NLMS is that it exhibits potentially 

faster rate of convergence than the standard LMS algorithm [22, 25]. 
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Table 4.3: NLMS equations [22, 25] 

 
Equations 

Number of 

Multiplications 

Number of 

Additions 

Equation 

Number 

System output y(n) = d(n)  –  ù
H
(n) *  ref(n) 

(1x1)        (1x1)           (1xM)           (Mx1) 
M M (1) 

Constant Constant = ìn * y(n) 1 0 (2) 

Update ìn ìn =  ì / [|| ref(n) ||
2
 + ä] M+1 M (3) 

Update 

weights 

ù(n+1) = ù(n) + Constant * x(n) 
(Mx1)          ( Mx1)          (1x1)         ( Mx1) M M (4) 

 Total 3M + 2 3M  

 

Parameter Definition 

y(n) Filter output 

d(n) Primary input signal corrupted by noise 

ref(n) Reference noise signal 

ù(n) Array coefficients  

H Hermitian property 

ì Filter step-size 

M Filter order 

|| ref(n) ||
2
 Energy of reference noise signal 

ä Constant to avoid divide-by-zero error 

 

 

The MNLMS algorithm is a modified version of the NLMS algorithm that was developed in 

Matlab. In this approach, µ is always normalized by (|| x(n) ||
2
+ δ). For the MNLMS algorithm, µ 

is normalized only if the energy of the reference signal is greater than 1. If the condition is not 

true, µ is kept constant. This is the only difference between the NLMS and MNLMS algorithms.  



24 

 

 

Table 4.4: MNLMS equations 

 
Equations 

Number of 

Multiplications 

Number of 

Additions 

Equation 

Number 

System 

output 

y(n) = d(n)  –  ù
H
(n) *  x(n) 

(1x1)        (1x1)           (1xM)           (Mx1) M M (1) 

Constant Constant = ìn * y(n) 1 0 (2) 

Update ìn ìn =  ì / [|| x(n) ||
2
] 

M+1 M 
(3) 

Update ìn ìn =  ì (4) 

Update 

weights 

ù(n+1) = ù(n) + Constant * x(n) 
(Mx1)          ( Mx1)          (1x1)         ( Mx1) M M (5) 

 Total 3M + 2 3M  

 

Parameter Definition 

y(n) Filter output 

d(n) Primary input signal corrupted by noise 

ref(n) Reference noise signal 

ù(n) Array coefficients  

H Hermitian property 

ì Filter step-size 

M Filter order 

|| ref(n) ||
2
 Energy of reference noise signal 

ä Constant to avoid divide-by-zero error 

 
All of the LMS algorithms discussed above are finite-impulse-response (FIR) filtering 

algorithms. Kwan and Tao [26] have shown that the adaptive infinite-impulse-response (IIR) 

based algorithms can provide significantly better performance than that of an adaptive FIR filter 

having the same filter order. The RLS filter is an IIR-based algorithm that is widely used for 

adaptive filtering, summarized in Table 4.5 [22]. The performance of the RLS algorithms 

primarily depends on filter order (M) and its forgetting factor (λ). 
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Table 4.5: RLS equations [22] 

 Equations 
Number of 

Multiplications 

Number of 

Additions 

Equation 

Number 

System 

output 
y(n) = d(n)  –  ù

T
(n) *  ref(n) 

(1x1)        (1x1)           (1xM)           (Mx1) 
M M (1) 

Constant ð(n) = P(n-1) * ref(n) 
(Mx1)        (MxM)        (Mx1) 

M
2
 M

2
 – M (2) 

Constant k(n) = [ ð(n) ] / [ ë + x
H
(n)* ð(n)] 

(Mx1)         ( Mx1)        ( 1x1)    ( 1xM)      (Mx1) 
2M M (3) 

Constant P(n) = ë-1[ P(n-1) – k(n) * refH(n) * P(n-1)] 
(MxM)    (1x1)    ( MxM)       ( Mx1)       ( 1xM)      (MxM) 

3M
2
 2M

2 
– M (4) 

Update 

weights 
ù(n) = ù(n-1) + y(n) * k(n) 
(Mx1)          ( Mx1)          (1x1)      ( Mx1) 

M M (5) 

 Total 4M(M+1) 3M(M+1)  

 

Parameter Definitions 

y(n) Filter output 

d(n) Primary input signal corrupted by noise 

T Transpose of an array 

ref(n) Reference noise signal 

ë Forgetting factor 

M Filter order 

P Matrix of size M-by-M. Initially an identity matrix 

ð Constant  

k Constant  

ù(n) Filter coefficients 
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5. SIGNAL PROCESSING ALGORITHMS 
 

The WPO sensor operates at an 80Hz sampling frequency. Hence, every 500msec, 40 new data 

samples of IR PPG, R PPG, and tri-axial body acceleration signals are acquired.  These signals 

are processed to estimate HR and SpO2 values. Figure 5.1 summarizes the signal processing 

algorithm. 

 

 
Figure 5.1: PPG signal processing flowchart. 
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Raw signals from the WPO are digitally filtered to separate their AC and DC components. Figure 

5.2 shows the digital filtering algorithm. A 4
th
 order band-pass Butterworth filter, having pass-

band frequency ranging from 0.5Hz to 3.0Hz, was used to obtain the AC components. A 2
nd
 

order low-pass Butterworth filter with a cut-off frequency of 0.05Hz was used for DC signal 

extraction. 

 

Signals from the tri-axial accelerometer were filtered using the same BP and LP filters. The AC 

components corresponding to body acceleration were used to determine the subjects’ activity 

level. Body orientation was determined using the DC components of the acceleration signals. In 

addition to providing activity and orientation information, the AC components were used as 

reference noise inputs in the ANC algorithm. Instead of using the accelerometer signals directly 

for adaptive filtering, these signals were pre-processed by an ANC-triggered signal processing 

algorithm. 

 

 
Figure 5.2: Digital filtering flow chart 
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The proposed ANC-triggered algorithm, shown in Figure 5.3, helped to reduce the µC processing 

time by avoiding unnecessary signal processing during rest. The energy of the reference signal, is 

equal to || x(n) ||
2
, where x(n) represents the reference signal. Thus, when the energy is low, it can 

be assumed that the motion sensor (accelerometer) is at rest. On the other hand, a higher energy 

indicates that the motion sensor is detecting movements. Hence, the energy of the accelerometer 

signal was used as a trigger to auto-start ANC when the energy of the ACC signal is above a 

certain threshold level. The ANC-triggered algorithm outputs a reference noise signal if energy is 

above certain threshold level; if not, the output is zero. 

 

Filtered IR and R PPG signals are used for HR and SpO2 estimation. However, to eliminate 

motion artifacts, the AC components of the IR and R PPG signals are pre-processed by the ANC 

algorithm. HR and SpO2 values are then computed from the adaptively filtered PPG signals. 

 

 
Figure 5.3: Proposed ANC-triggered algorithm.  
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The WPO’s HR and SpO2 estimation algorithms are based on signal processing methods 

described by Johnston [1]. The algorithms designed by Johnston were modified to improve their 

noise rejection capabilities and measurement accuracy. Figure 5.4 shows the modified HR and 

SpO2 estimation algorithms. 

  

In the HR and SpO2 estimation algorithms, HR values are solely derived from the AC component 

of the IR PPG signal. SpO2 values are estimated from the AC and DC components of the 

corresponding IR and R PPG signals. For each data sample, the algorithm calculates all the 

values of block 1 in Figure 5.4. The calculation process is interrupted if IR PPG slope toggles 

from a positive to a negative value, i.e. it crosses the zero-line, representing a cardiac beat. The 

time interval between two consecutive cardiac beats is inversely proportional to HR. False peaks 

are excluded from the calculation process by using several threshold conditions. A peak is 

considered as a true heart beat if it satisfies all the threshold conditions.  
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Figure 5.4: HR and SpO2 estimation algorithm. 
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After zero-crossing detection, if the amplitude of the IR PPG slope is greater than a certain 

threshold level, Th1, then the algorithm calculates the IHR, ISpO2 and IR peak-to-peak 

amplitude. As depicted in Table 5.1, the Th1 value is determined based on the average of 

previous 10 amplitudes of the IR PPG slope. To preclude sudden changes in ISpO2 and IHR 

values, two new threshold conditions (labeled Th2 and Th4 in Figure 5.4) are included in the 

algorithm. An ISpO2 (and IHR) value, significantly (as illustrated in Table 5.1) lower or higher 

than the average SpO2 (and HR) value is discarded in the averaging process. These modifications 

report more accurate SpO2 and HR values. 

 

Typically, PPG signals exhibit a sinusoidal characteristic having similar amplitude variations 

(see Figure 2.3). Rapid fluctuations in the peak-to-peak amplitude are generally induced due to 

artifacts and may result in erroneous measurements. Threshold conditions based on amplitude 

variations are utilized to minimize the detection of spurious cardiac peaks. These threshold 

conditions (Th3A and Th3B) reject false peaks to improve the estimation of HR and SpO2 values. 

Additionally, PPG data analysis showed that in the current version of the WPO, the typical 

amplitude of PPG signals ranges between 30 to 5000 units (relative amplitude). Thus, as an extra 

precautionary step, peaks with peak-to-peak amplitude outside this range were not included in 

HR and SpO2 estimations.  

 

Table 5.1: Threshold condition used in HR and SpO2 estimation algorithm 

Threshold 

Condition 
Formula Effects 

Th1 60% * Average of previous 10 peak-to-peak amplitude of IR PPG slope HR and SpO2 

Th2 Average SpO2 values ± 10 SpO2  

Th3A 40% * Average of previous peak-to-peak amplitude IR PPG HR and SpO2 

Th3B 200% * Average of previous peak-to-peak amplitude IR PPG HR and SpO2 

Th4 Average HR values ± 20 HR and SpO2  
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All of the threshold conditions affirm that only true cardiac peaks are used in HR and SpO2 

estimation. False peaks, due to motion artifacts, would not satisfy these threshold requirements 

and will thus be attenuated. As the physiological characteristics differ from person to person, the 

threshold values cannot be static. Therefore, the threshold conditions devised in our signal 

processing algorithm are dynamic, so the values adapt according to the user. This makes the 

WPO system user compatible, robust and more reliable. Several experiments were conducted to 

assess the accuracy of our signal processing algorithm and are discussed in the later part of this 

thesis.  
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6. RESEARCH OBJECTIVES 
 

The goal of this research was to investigate if adaptive filtering using a tri-axial accelerometer 

can be employed in a real-time pulse oximetry system to improve HR and SpO2 measurement 

accuracy during motion. The specific research objectives were: 

 

Objective 1: To validate the accuracy of HR and SpO2 estimation algorithm used by the WPO 

under resting conditions and compare its performance with the MPO.  

 

Objective 2: To evaluate in Matlab conventional LMS, time-varying LMS, normalized LMS, 

modified-normalized LMS and RLS algorithms, and compare these ANC algorithms in terms of 

accuracy and processing time. 

 

Objective 3: To implement the best ANC algorithm in a TI-MSP430 µC for real-time filtering of 

motion-corrupted PPG signals utilizing reference signals obtained from a tri-axial accelerometer. 

 

Objective 4: To verify the functionality of an ANC-triggered algorithm developed to improve 

power consumption by avoiding unnecessary signal processing. 
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7. EXPERIMENTAL SETUP 
 

7.1. Resting Experiments 

 

A few indoor experiments were conducted to verify the WPO’s measurement accuracy during 

rest. Three apparently healthy male individuals volunteered for this study. All subjects were non-

smokers with age ranging from 22-25 years.  

 

Data were collected from a forehead-mounted WPO developed in our laboratory. Raw IR PPG, 

R PPG and tri-axial body acceleration (X, Y, and Z) signals were collected from the WPO using 

a Bluetooth enabled serial port. A custom program was utilized to store the 16-bit digital data 

sampled at 80Hz. For validation, reference SpO2 and HR values were obtained from a fore-head 

worn Masimo Pulse Oximeter (MPO).  

 

We have used the MPO as a reference pulse oximeter as it employs advanced signal extraction 

technology (SET) for SpO2 and HR estimation. Details on how SET processes incoming signals 

are not available because SET algorithm is highly proprietary. But, as per the specification sheet, 

the MPO provides accurate HR and SpO2 readings with ± 2BPM and ± 2% error during rest. 

 

Figure 7.1 shows the experimental setup for the initial bench testing of the WPO. To assess the 

correlation between the reference and measured HR & SpO2 values, subjects were instructed to 

perform a breath-holding maneuver to induce hypoxemia. SpO2 values were monitored during 

each hypoxic maneuver to ensure a detectable drop in oxygen level. If a significant drop was not 

induced, the datum was discarded and the experiment was repeated. Additionally, in some trials 

individuals were instructed to hyperventilate in an attempt to increase their HR values. This 

allowed comparing the values over a wide physiological range. A total of 12 successful data sets 

were recorded for about 3 minutes; 9 with breath-holding maneuver and 3 with hyperventilation. 
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Figure 7.1: Experimental setup for initial bench testing of the WPO. 

 

Next, in an effort to understand and develop means to reduce the effects of motion artifacts, data 

sets were collected while subjects were performing various physical activities. For these 

experiments, reference HR readings were acquired from a 3-lead Holter ECG monitor. Alcohol 

prep pads were used to cleanse the skin before attaching the ECG electrodes. The ECG signals 

were processed in Matlab to detect each R-wave and accurately calculate HR values. 

 

The optical sensor of the MPO was placed on the right index finger to obtain reference SpO2 

values. During data collection, subjects were asked to keep their index finger as stationary as 

possible so that the reference readings from the MPO were not affected by motion. No additional 

constraints were imposed on other body parts. In some trials, the MPO reported sudden 

erroneous drops in SpO2 values due to heavy motion. For such trials, SpO2 readings recorded at 

the start of motion were used as a reference. This approach of data holding is acceptable for this 

study as there should be no drop in SaO2 due to physical activities performed during this study. 

Additionally, HR readings recorded from the MPO were also included to show that even the 

signal extraction technique (SET) employed by Massimo to process noisy PPG signals failed to 
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produced accurate readings in the presence of motion artifacts. The experimental setup is 

illustrated in Figure 7.2. 

 

 

Figure 7.2: Experimental setup for data acquisition 
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7.2. Sitting Experiments 

 

Physical activities such as running and staircase climbing were used to mimic typical activities 

performed by a soldier or firefighter. Along with rapid chages in HR, these activities also 

introduce motion artifacts. To determine the effects of motion artifacts on WPO accuracy, 9 data 

sets were collected from 3 subjects (3 trials per subject) while they were sitting on a chair. The 

experimental setup is shown in Figure 7.3. 

 

 

Figure 7.3:  Experimental setup for data collection (sitting position). 

 

During data collection, subjects were instructed to sit upright and breathe spontaneously. To 

induce motion artifacts, subjects were asked to perform three kinds of head movements. For the 

initial 30 seconds, subjects sat straight without any head movement. Next, subjects were asked to 

perform horizontal, vertical and rotational head movement for a period of 30 seconds each. This 

allowed us to evaluate the effects of motion on the PPG signals along all three possible axes. The 

timings for the sitting experiments are given in Table 7.1. 
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Table 7.1: Time frame for sitting experiments (one set) 

Phase Time Subjects status 

1 0 – 30 seconds Resting 

 

2 

 

30 – 60 seconds Horizontal head movement 

60 – 90 seconds Vertical head movement 

90 – 120 seconds Rotational head movement 

3 120 – 150 seconds Resting 

 

7.3. Cycling Experiments 

 

Data were collected from subjects while they were performing cycling exercises on a stationary 

bicycle. Cycling on a stationary bike hardly involves any head movement. Therefore, the 

collected PPG signals were affected only by rapid HR changes. This enabled us to determine if 

rapid HR changes affected the measurement accuracy of the WPO. 
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Figure 7.4: Experimental setup for cycling experiments. 

 

For cycling experiments, 6 data trials were collected from 3 subjects. During the data collection 

process, subjects were seated comfortably on a stationary bicycle as illustrated in Figure 7.4. 

Initially, subjects were asked to sit still for 60 seconds. Subsequently, subjects were asked to 

perform cycling exercise for a period of 60 seconds. This again was followed by a 60 seconds of 

rest. The time frames for the cycling experiments are given in Table 7.2. 

 

Table 7.2: Time frame for cycling experiments (one set) 

Phase Time Subjects status 
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7.4. Treadmill Jogging, Outdoor Running and Staircase Climbing Experiments 

 

We also collected data during treadmill jogging, outdoor running and staircase climbing as these 

activities mimic, more realistically, the type of motion artifacts produced during field operations. 

For treadmill jogging experiments, 9 trials were collected from 3 subjects. Subjects were asked 

to run at 2mph and 4mph. Figure 7.5 shows the experimental setup for data collection during 

treadmill jogging. The timings for the treadmill jogging experiments are tabulated in Table 7.3. 

 

Figure 7.5: Experimental setup for data collection during treadmill jogging. 

 

Table 7.3: Time frame for treadmill jogging experiments (one set) 

Phase Time Subjects status 

1 0 – 30 seconds Resting 

2 30 – 90 seconds Running @ 2mph 

3 90 – 180 seconds Running @ 4mph 

4 180 – 240 seconds Running @ 2mph 

5 240 seconds onwards Resting 
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Similarly, 9 data sets were collected from 3 subjects while they were running outdoors. PPG data 

were acquired from subjects during 60 seconds of running framed by 60 seconds of resting. 

Table 7.4 shows the timings for the running experiments. 

 

Table 7.4: Time frame for running experiments (one set) 

Phase Time Subjects status 

1 0 – 60 seconds Resting 

2 60 – 120 seconds Running 

3 120 – 200 seconds Resting 

 

Finally, 6 data sets were collected from 3 subjects (2 trials each) while running up and down a 

staircase. Subjects were asked to run up and down the staircase for a period of 60 seconds. The 

timings for the staircase climbing experiments are given in Table 7.5. 

 

Table 7.5: Time frame for staircase experiments (one set) 

Phase Time Subjects status 

1 0 – 60 seconds Resting 

2 60 – 120 seconds Staircase climbing 

3 120 – 200 seconds Resting 

 

7.5. Real-Time ANC 

 

As the focus of this research was to investigate the feasibility of implementing an ANC 

algorithm in a real-time pulse oximeter, a few data sets were collected from the WPO that was 

programmed with ANC. As seen in Figure 7.6, two WPO sensors were mounted side-by-side on 

the subjects’ forehead. One of the two WPOs had an ANC algorithm to minimize the effects of 

motion artifacts, whereas, the other WPO was without an adaptive filtering algorithm. The HR 

and SpO2 estimation algorithms were the same in the two WPOs. 
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To evaluate the performance of the ANC, 6 data sets were collected in a sitting position and 9 

data sets were collected during treadmill jogging. These data sets were acquired from 3 subjects. 

Raw PPG data were not collected for these 15 trials due to processing time constraints in the 

current WPO version. Instead, final HR and SpO2 values were recorded at the rate of one value 

per second. The timings for the sitting and treadmill jogging experiments are given in Table 7.1 

and Table 7.3, respectively. 

  

 

Figure 7.6: Experimental setup for data collection while testing real-time adaptive filtering. 
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8. RESULTS 
 

8.1. Resting Experiments 

 

HR and SpO2 values were derived from IR and R PPG signals utilizing a custom signal 

processing algorithm explained in chapter 5. Figure 8.1 shows representative HR readings 

obtained during rest followed by a voluntary hypoxic period. HR readings recorded during 

hyperventilation are plotted in Figure 8.2. These figures demonstrate that HR readings obtained 

from the WPO and reference readings recorded from the MPO followed a similar trend. Figure 

8.3 confirmed that SpO2 values reported by the WPO closely track the readings obtained from 

the MPO. 
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Figure 8.1: Typical HR measured simultaneously from the WPO (blue) and MPO (green) during 

a resting experiment. 
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Figure 8.2: Typical HR measured simultaneously from the WPO (blue) and MPO (green) during 

a resting experiment. The highlighted region marks the period of hyperventilation that resulted in 

increase in HR values. 
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Figure 8.3: Typical SpO2 measured simultaneously from the WPO (blue) and MPO (green) 

during a resting experiment. The highlighted region marks the breath holding episodes to induce 

hypoxia. 
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Regression analysis was performed to estimate the correlation between the WPO and MPO. The 

regression plot for HR values obtained from the WPO and MPO is presented in Figure 8.4. The 

CC between the WPO and MPO readings was 0.99. Figure 8.5 and Figure 8.6 plots the 

differences in HR and SpO2 readings obtained from the WPO and MPO. The WPO – MPO 

difference is plotted against the reference readings from the MPO. For SpO2 readings, the mean 

difference between the WPO and MPO was approximately 1%. Results for individual trials are 

summarized in Table 8.1. These results indicate that HR and SpO2 values estimated by our signal 

processing algorithm using the WPO are in close agreement with the readings obtained from the 

MPO. 

 

In regression plots, the color chart on the right represents the frequency of data points. The 

vertical bars indicate ±1 SD. Additionally, the regression line (solid black) and the line of 

identity (dashed-black trace) are plotted for direct comparison of values obtained from the WPO 

and MPO.  
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Figure 8.4: Comparison of HR values measured by the WPO and MPO during rest. The color 

chart on the right represents the frequency of data points. 
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Figure 8.5: Difference between HR readings from the WPO and MPO plotted against MPO 

values. The red lines indicate µ ± 2SD values.  

 

84 86 88 90 92 94 96 98 100
-6

-4

-2

0

2

4

6

8

10

MPO SpO
2
 (%)

S
p
O

2
 D

if
fe

re
n
c
e
 (
%

)

 

 

Mean = 1.00

SD = ±1.00

N = 3398 100

200

300

400

500

600

700

 
Figure 8.6: Difference between SpO2 readings from the WPO and MPO plotted against MPO 

values. The red lines indicate µ ± 2SD values. 
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Table 8.1: Comparison of HR and SpO2 values obtained from the WPO and MPO during rest. 

  Heart Rate (BPM) SpO2 (%) 

Trials MSE SD R
2
  MSE SD 

1 1 1 1 1 1 

2 3 1 1 6 2 

3* 4 2 1 1 1 

4 9 2 1 10 2 

5 8 2 1 3 1 

6* 1 1 1 0 0 

7 2 1 1 1 1 

8 1 1 1 11 2 

9* 0 1 1 1 1 

10 1 1 1 1 1 

11 1 1 1 3 1 

12 0 1 1 1 1 

Average 3 1 1 3 1 

 

Note: * Represents hyperventilation trial. 

 

 

8.2. LMS Algorithm 

 

8.2.1. Step-size (µ) selection 
 

For a conventional LMS algorithm, selection of a constant µ is critical since it controls the 

stability and speed of convergence. A small µ leads to slow convergence rate; conversely, a large 

µ leads to large errors. In order to find an optimal µ value, several PPG data sets were processed 

by the LMS filter in Matlab. Data were analyzed with a LMS filter having a fixed order (M) and 

variable µ. µ was incremented from 0 to 0.05 in steps of 0.002. A 16
th
 order LMS filter was 

chosen for this study as Comtois [4] showed that improvements in HR and SpO2 values were 

almost constant for M ≥ 16. 

 

A similar method was used by Comtois [4] to determine µ, but his study comprised of motion 

generated only during jogging.  This study is based on motion artifacts generated during 

treadmill jogging (7 tests), outdoor running (6 tests), staircase climbing (5 tests), cycling on 

stationary bicycle (6 tests), and head movements (7 tests). Hence, the µ value found from the 
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above tests is more representative and can be used for ANC during various physical activities 

rather than just jogging.  

 

The effectiveness of the LMS algorithm with varying µ was determined based on improvements 

in the MSE for HR and SpO2 estimations. Percentage improvement graphs for HR and SpO2 

values are plotted in Figure 8.7 and Figure 8.8, respectively. HR errors were greatly reduced 

when 0 < µ < 0.03. Adaptive filtering reported an average improvement of 40% in SpO2 readings 

over the entire range of µ values. Given the similar performance, a larger µ value was selected to 

achieve faster adaptation rate. An LMS algorithm having a constant µ of 0.01 was selected for 

adaptive filtering of the PPG signals because this step-size significantly reduced the errors in HR 

and SpO2. 
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Figure 8.7: Average MSE improvement in HR for a 16

nd
 order LMS filter with varying step-size 

(µ). The error bars indicate ± 1SD. The shaded region corresponds to µ value that was selected 

for further study. 
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Figure 8.8: Average MSE improvement in SpO2 for a 16

nd
 order LMS filter with varying step-

size (µ). The error bars indicate ± 1SD. The shaded region corresponds to µ value that was 

selected for further study. 

 

8.2.2. Filter Order (M) selection 

 

After estimating an optimal µ value, the next step in the LMS filter design was to select the filter 

order (M). To determine an optimal filter order, an approach similar to the one used for 

estimating µ value was followed. A LMS filter with a constant µ of 0.01 and varying M was 

studied in Matlab. M was varied from 0 to 32, where M = 0 implies no adaptive filtering. 

 

For different M values, the percent improvements in HR and SpO2 are graphically shown in 

Figure 8.9 and Figure 8.10, respectively. The results confirmed that HR and SpO2 values 

estimated after adaptive filtering were more accurate compared to the values estimated before 

adaptive filtering. With a 16
th
 order ANC filter, HR and SpO2 errors were reduced by 50% and 

40%, respectively. These improvements were relatively constant for M > 16. 
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Figure 8.9: Average MSE improvement in HR for a LMS filter with a µ = 0.01 and varying filter 

order (M). The error bars indicate ± 1SD. The shaded region corresponds to M that was selected 

for further study. 
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Figure 8.10: Average MSE improvement in SpO2 for a LMS filter with a µ = 0.01 and varying 

filter order (M). The error bars indicate ± 1SD. The shaded region corresponds to M that was 

selected for further study. 
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8.2.3. LMS – Sitting Experiments 

 

Figure 8.11 to Figure 8.13 show the AC component of typical IR PPG signals, the reference 

acceleration signal from the ACC, and an ECG signal obtained during one of the sitting 

experiments. During the resting phase of the experiment (Phase-1 and Phase-3), it is evident that 

the number of cardiac peaks detected by the WPO matches the number of R-waves in the ECG 

waveform. This again verifies the ability of the WPO to report accurate readings in the absence 

of motion artifacts.  
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Figure 8.11: Typical IR PPG signals during rest (Phase-1 of sitting experiment), before (Blue) 

and after (Red) ANC. Note that the blue and red traces completely overlap in this figure. ■ marks 

PPG peaks detected by the WPO after ANC (6-peaks) and ● denotes R-waves detected from the 

ECG waveform (6-peaks).  
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Figure 8.12: Typical IR PPG signals during Phase-2 of sitting experiment, before (Blue) and 

after (Red) ANC. The arrows indicate the additional peaks that were detected only after adaptive 

filtering. ■ marks PPG peaks detected by the WPO after ANC (9-peaks), ● denotes PPG peaks 

detected without ANC (7-peaks), and ● represents R-waves detected from the ECG waveform 

(9-peaks). 
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Figure 8.13: Typical IR PPG signals during rest (Phase-3 of sitting experiment), before (Blue) 

and after (Red) ANC. Note that the blue and red traces completely overlap in this figure. ■ PPG 

marks peaks detected by the WPO after ANC (4-peaks), and ● represents R-waves detected from 

the ECG waveform (4-peaks). 
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During rest, the motion signals from the tri-axial ACC have relatively low amplitude. Hence, the 

adaptive LMS filter has no significant effect on the PPG signals. During the 2
nd
 phase of the 

experiment, the tri-axial ACC generates high amplitude signals corresponding to the voluntary 

head movements. These motion signals, when used as reference noise, result in effective filtering 

of the motion corrupted PPG signals. In Figure 8.12, the arrows indicate the extra peaks that 

were detected by the WPO after adaptive filtering of the PPG signal. These peaks were not 

included in the HR and SpO2 estimation before adaptive filtering due to large variations in the 

PPG amplitude during motion. The results demonstrate that the LMS algorithm was effective in 

recovering the clean PPG signal from the motion corrupted signal. 

 

The frequency spectra of the AC components of IR and R PPG signals are shown in Figure 8.14 

and Figure 8.15, respectively. Since the subject’s HR for this particular trial was in the range of 

70BPM – 75 BPM, the PPG frequency spectra showed a dominant cardiac peak between 1Hz 

and 1.3Hz. Some additional frequency components, between 0.25Hz and 1Hz, are observed in 

the frequency spectra of the unprocessed PPG signal (blue trace). The body acceleration signal 

(black trace) verifies that the dominant motion frequency corresponds with the dominant noise 

frequency present in the PPG signal. Therefore, the primary cause of the reduced measurement 

accuracy during head motion is due to the contribution of the body acceleration signals to the 

spectral content of PPG signal. In order words, the adaptive filter attenuated these noise 

frequencies without distorting the cardiac frequency components, thereby improving the PPG 

signals quality. 
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Figure 8.14: Characteristic frequency spectrum of an IR PPG signal during a sitting experiment. 
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Figure 8.15: Characteristic frequency spectrum of an R PPG signal during a sitting experiment. 
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HR readings obtained from the WPO, MPO and Holter monitor are compared in Figure 8.16. 

During rest (phase-1 and phase-3), HR values estimated from the WPO closely matches the HR 

values obtained from the other two reference sources, whereas during head movements, the 

WPO underestimates the reference HR. This is mainly due to the additional (lower than cardiac 

frequency) frequency components induced in the PPG signals during head movements. ANC was 

effective in attenuating these additional frequency components and successfully recovered the 

cardiac peaks from the motion corrupted PPG signals. Thus, HR errors were significantly 

reduced by adaptive filtering of the PPG signals.  
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Figure 8.16: HR measurements without and with ANC during a sitting experiment. The green 

highlighted region shows the improvement in HR estimation after ANC.  

 

Figure 8.17 shows SpO2 values reported by the WPO and MPO. It is evident that SpO2 measured 

from the WPO tend to match SpO2 acquired from the MPO with an acceptable error of ± 1%. For 

this particular trial, motion did not produce significant drop in SpO2 values. As a result, there 

was no significant effect of ANC on SpO2 for this trial. 
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Figure 8.17: SpO2 values without and with ANC during a sitting experiment. 

 

 

The regression plot between HR readings obtained from the WPO and Holter monitor before 

ANC is shown in Figure 8.18. Figure 8.19 shows the regression plot for the same data set after 

ANC. These figures confirmed that ANC improved the correlation coefficient from 0.57 to 0.91, 

an improvement of 37% in HR estimation.  

 

Figure 8.20 and Figure 8.21 show the differences between HR values obtained from the WPO 

and Holter monitor. The differences are plotted against reference readings from the Holter ECG 

monitor. The mean difference before adaptive filtering was 3BPM with SD corresponding to 

5BPM. Interestingly, ANC filtering of PPG signals produced mean difference of 2BPM with SD 

of 2BPM. 

 

Figure 8.22 and Figure 8.23 illustrate the differences in SpO2 readings obtained from the WPO 

and MPO plotted against readings obtained from the MPO. From these two figures it can be 

observed that the mean SpO2 difference is reduced from 2% to 1% due to adaptive filtering.  
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Figure 8.18: Comparison of HR measured by the WPO and an ECG as a reference source, before 

ANC (sitting experiment). 
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Figure 8.19: Comparison of HR measured by the WPO and an ECG reference source after ANC 

(sitting experiment). 
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Figure 8.20: Difference in HR readings measured by the WPO and the ECG Holter Monitor 

without ANC (sitting experiment). The red lines indicate the µ ± 2SD values.  
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Figure 8.21: Difference in HR readings measured by the WPO and the ECG Holter Monitor with 

ANC (sitting experiment). The red lines indicate the µ ± 2SD values. 
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Figure 8.22: Difference between SpO2 readings acquired from WPO and MPO plotted against 

MPO values without ANC (sitting experiment). The red lines indicate the µ ± 2SD values. 
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Figure 8.23: Difference between SpO2 readings acquired from WPO and MPO plotted against 

MPO values with ANC (sitting experiment). The red lines indicate the µ ± 2SD values. 
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The results from each trial are summarized in Table 8.2. From these experiments it was found 

that ANC reduces the average HR errors by 56%, whereas the SD and R
2
 were improved by 27% 

and 44%, respectively. Similarly, for SpO2 values the MSE and SD were reduced by 7% and 

36% respectively. 

 

Table 8.2: Comparison of HR and SpO2 values obtained after and before LMS type ANC. 

M =16 and µ = 0.01 (Sitting experiments) 

Trial 

% Improvement 

ECG - HR MPO SpO2  Change in 

SpO2  MSE SD R
2 MSE SD 

1 0 0 -0.41 0 0 NC 

2 33 0 3.69 0 0 NC 

3 67 0 16.05 0 100 <2% 

4 50 0 10.20 0 100 <2% 

5 70 50 100.00 0 0 NC 

6 93 75 100.00 0 0 <2% 

7 83 67 80.55 47 50 <2% 

Average 56 27 44.30 7 36   
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8.2.4. LMS – Cycling Experiments 

 

Results from cycling experiments showed that PPG signals (Figure 8.24 to Figure 8.26) hardly 

differ from the signals obtained during rest. The only noticeable difference is that cycling PPG 

signals have a higher frequency content compared to resting signals. Since cycling on a 

stationary bicycle does not involve head movements that distort the PPG signals, the increased 

cardiac frequency is not associated with motion artifacts.  
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Figure 8.24: Typical IR PPG signals during Phase-1 of cycling experiment, before (Blue) and 

after (Red) ANC. Note that the blue and red traces completely overlap in this figure. ■ marks 

PPG peaks detected by the WPO after ANC (5-peaks), and ● represents R-waves detected from 

the ECG waveform (5-peaks). 

 

Since minimal sensor motion was observed during cycling, the acceleration signals have very 

low amplitude and thus the morphology of the PPG signals was not affected. This is noticeable 

in Figure 8.25 which shows that the PPG waveform has a similar morphology before and after 

ANC.  
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Figure 8.25: Typical IR PPG signals during Phase-2 of cycling experiment, before (Blue) and 

after (Red) ANC. Note that the blue and red traces overlap in this figure. ■ marks PPG peaks 

detected by the WPO after ANC (9-peaks), ● denotes PPG peaks detected without ANC (9-

peaks), and ● represents R-waves detected from the ECG waveform (9-peaks). 
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Figure 8.26: Typical IR PPG signals during Phase-3 of cycling experiment, before (Blue) and 

after (Red) ANC. Note that the blue and red traces overlap in this figure. ■ marks PPG peaks 

detected by the WPO after ANC (8-peaks), and ● represents R-waves detected from the ECG 

waveform (8-peaks). 
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The frequency plots, shown in Figure 8.27 and Figure 8.28, indicate that the frequency of the 

PPG signal obtained during cycling were free from motion artifacts. As shown in these figures, 

the red and blue traces completely overlap, further verifying that ANC has no significant effect 

on the PPG signals during cycling. Results obtained from these cycling experiments suggest that 

adaptive filtering of the PPG signals during no/minimal head motion is not required.  
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Figure 8.27: Typical frequency spectrum of an IR PPG obtained during cycling. Note that the red 

and blue traces overlap completely. 
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Figure 8.28: Typical frequency spectrum of an R PPG obtained during cycling. Note that the red 

and blue traces overlap completely. 

 

Since there was no change in the PPG signal during cycling, HR and SpO2 measurements 

remained unaltered after ANC. Figure 8.29 and Figure 8.30 verify that HR and SpO2 values 

obtained from the WPO closely matched the measurements from the reference sources, hence no 

further improvements were needed.  

 

The high CC values obtain from the regression analysis confirmed that measurements obtained 

from the WPO produced accurate estimation of HR & SpO2 values and can also track rapid 

changes in these parameters. The results of the regression analysis are plotted in Figure 8.31 to 

Figure 8.36. 
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Figure 8.29: HR measurements without and with ANC during cycling. Note that the red and blue 

traces overlap completely. 
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Figure 8.30: SpO2 measurements without and with ANC during cycling. Note that the red and 

blue traces overlap completely. 
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Figure 8.31: Comparison of HR measured by the WPO and reference source during cycling 

before ANC. 
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Figure 8.32: Comparison of HR measured by the WPO and reference source during cycling after 

ANC. 
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Figure 8.33: Difference in HR readings measured by the WPO and ECG Holter Monitor during 

cycling without ANC. The red lines indicate the µ ± 2SD values. 
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Figure 8.34: Difference in HR readings measured by the WPO and ECG Holter Monitor during 

cycling with ANC. The red lines indicate the µ ± 2SD values. 
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Figure 8.35: Difference in SpO2 measured by the WPO and MPO during cycling without ANC. 

The red lines indicate the µ ± 2SD values. 
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Figure 8.36: Difference in SpO2 measured by the WPO and MPO during cycling with ANC. The 

red lines indicate the µ ± 2SD values. 
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Results of individual tests are summarized in Table 8.3. The table shows that even without 

adaptive filtering, measurements obtained from the WPO are of high accuracy in the absence of 

motion artifacts. There were no significant differences in HR and SpO2 values before and after 

adaptive filtering. Therefore, physical activities involving little/no head motion do not affect the 

accuracy of our WPO. 

 

Table 8.3: Comparison of HR and SpO2 values obtained before and after ANC using a 

LMS filter. M =16 and µ = 0.01 (cycling experiments) 

Trial 

% Improvement 

ECG - HR MPO SpO2  Change in 

SpO2 MSE SD R
2 MSE SD 

1 0 0 -0.01 0 0 NC 

2 0 0 0.01 0 0 NC 

3 0 0 0 0 0 NC 

4 0 0 0 0 0 NC 

5 8 0 0.78 6 33 <2% 

6 36 0 0.33 0 0 NC 

Average 7 0 0.19 1 6   

 

Note that in trial#6, the subject was moving a lot while cycling. Due to excessive motion, the 

ACC generated high amplitude signals and the LMS filter had a noticeable effect on the 

morphology of the PPG signals. As seen in Figure 8.37, ANC improved HR values by 36% for 

trial #6. Also, note that the MPO reported false HR readings for this trial due to excessive finger 

movements. 
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Figure 8.37: HR readings for trial#6. 

  

8.2.5. LMS – Treadmill Jogging Experiments 

 

Figure 8.38 to Figure 8.42 summarize the experimental results of a typical data set obtained 

during treadmill jogging. These figures include the AC component of the IR PPG signals, ACC 

signals and the output of the LMS adaptive filter during different phases of the experiment. 

 

During rest (phase-1 and phase-5) it was found that the PPG signals were not contaminated by 

motion, thus HR and SpO2 readings were accurate. Jogging at 2mph (phase-2 and phase-4) 

increased the amplitude of the accelerometer signals. From Figure 8.39 and Figure 8.41 it was 

observed that motion induced by jogging at 2mph had an insignificant effect on the shape and 

frequency of the PPG waveform. Hence, jogging at low speeds such as 2mph did not degrade the 

SNR of the PPG signals and did not affect the accuracy of the WPO.  

  

PPG signals acquired during running at 4mph (phase-3) are presented in Figure 8.40. It was 

observed that before ANC, the PPG signal had 6 noticeable peaks; each peak corresponds to one 

heart beat. After ANC, the same signal processing algorithm detected 9 cardiac peaks, matching 

the number of R-waves in the ECG waveform. The three peaks were recovered due to adaptive 

Rest Cycling Rest 
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filtering of the PPG signals. Thus, adaptive filtering while jogging was shown to improve the 

SNR of the PPG signals. 

 

30.5 31 31.5 32 32.5

-100

-50

0

50

100

150

200

250

Time (sec)

R
e
la

ti
v
e
 A

m
p
lit

u
d
e

 

 

NO-ANC

ANC

X+Y+Z

ECG

 
Figure 8.38: Typical IR PPG signals during Phase-1 of treadmill jogging experiment, before 

(Blue) and after (Red) ANC. Note that the blue and red traces completely overlap in this figure. 

■ marks PPG peaks detected by the WPO after ANC (5-peaks), and ● represents R-waves 

detected from the ECG waveform  (5-peaks). 
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Figure 8.39: Typical IR PPG signals during Phase-2 of treadmill jogging experiment, before 

(Blue) and after (Red) ANC. Note that the blue and red traces completely overlap in this figure. 

■ marks PPG peaks detected by the WPO after ANC (8-peaks), ● denotes PPG peaks detected 

without ANC (8-peaks), and ● represents R-waves detected from the ECG waveform (8-peaks). 
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Figure 8.40: Typical IR PPG signals during Phase-3 of treadmill jogging experiment, before 

(Blue) and after (Red) ANC. ■ marks PPG peaks detected by the WPO after ANC (9-peaks), ● 

denotes PPG peaks detected without ANC (9-peaks), and ● represents R-waves detected from 

the ECG waveform (9-peaks). 
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Figure 8.41: Typical IR PPG signals during Phase-4 of treadmill jogging experiment, before 

(Blue) and after (Red) ANC. Note that the blue and red traces overlap. ■ marks PPG peaks 

detected by the WPO after ANC (9-peaks), ● denotes PPG peaks detected without ANC (9-

peaks), and ● represents R-waves detected from the ECG waveform (9-peaks). 
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Figure 8.42: Typical IR PPG signals during Phase-5 of treadmill jogging experiment, before 

(Blue) and after (Red) ANC. Note that the blue and red traces completely overlap in this figure. 

■ marks PPG peaks detected by the WPO after ANC (9-peaks), and ● represents R-waves 

detected from the ECG waveform (9-peaks). 
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The frequency spectra of the signals (Figure 8.43 and Figure 8.44) clearly show an additional 

frequency component induced by motion artifacts. Note that the amplitude of this motion 

induced frequency is higher than the frequency corresponding to the cardiac activity. This leads 

to measurement errors when the algorithm calculates SpO2 and HR values. The figures also 

illustrate that the ANC algorithm was able to remove the dominant frequency components 

corresponding to motion artifacts. The red trace shows that the cardiac spectrum was not 

distorted by the ANC. 
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Figure 8.43: Frequency spectrum of IR PPG during treadmill jogging. 
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Figure 8.44: Frequency spectrum of Red PPG during treadmill jogging. 

 

 

HR readings obtained from one of the jogging tests are plotted in Figure 8.45. After ANC the HR 

values from the WPO closely match the readings from the reference Holter monitor. This was 

due to the additional peaks that were detected only after adaptive filtering.  

 

Similarly, tests revealed that the performance of the ANC-based SpO2 algorithm was improved 

compared to the performance of the non-ANC algorithm. Figure 8.46 shows the results of 

representative tests in which the non-ANC SpO2 values dropped to 65% due to body motion. 

Post adaptive filtering values were closer to the normal physiological range of 96-98%.  Hence, 

the analysis confirmed that measurements obtained after adaptive filtering are more accurate than 

measurements obtained from non-ANC signals. This was further confirmed by the regression 

results. 
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Figure 8.45: HR measurements during treadmill jogging without and with ANC. 
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Figure 8.46: SpO2 values during treadmill jogging without and with ANC. 
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HR values measured by the WPO were plotted against reference HR values (Figure 8.47 and 

Figure 8.48). We found that the CC between HR values obtained from the WPO and reference 

HR values was improved from 0.87 to 0.97 after adaptive filtering. The residual HR plots, shown 

in Figure 8.49 and Figure 8.50, illustrate that the mean difference was reduced from 7 BPM to 3 

BPM after adaptive filtering. Similar improvements were also observed for SpO2 measurements. 

As plotted in Figure 8.51 and Figure 8.52, the mean SpO2 difference reduced from 3% to 2% 

after ANC.  

 

90 100 110 120 130 140 150 160 170

90

100

110

120

130

140

150

160

170

ECG HR (BPM)

W
P
O

 H
R

 (
B
P
M

)

 

 

R2 = 0.87

y = 0.89 x + 17.17

N = 2063

0

10

20

30

40

50

60

70

 
Figure 8.47: Comparison of HR measured during treadmill jogging by the WPO and reference 

source before ANC. 

 



78 

 

90 100 110 120 130 140 150 160 170

90

100

110

120

130

140

150

160

170

ECG HR (BPM)

W
P
O

 H
R

 (
B
P

M
)

 

 

R2 = 0.97

y = 0.92 x + 11.16

N = 2063

0

10

20

30

40

50

60

70

 
Figure 8.48: Comparison of HR measured during treadmill jogging by the WPO and reference 

source after ANC. 
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Figure 8.49: Difference in HR readings measured by the WPO and the ECG Holter Monitor 

without ANC (treadmill jogging). The red lines indicate the µ ± 2SD values. 
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Figure 8.50: Difference in HR readings measured by the WPO and the ECG Holter Monitor with 

ANC (treadmill jogging). The red lines indicate the µ ± 2SD values. 
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Figure 8.51: Difference in SpO2 readings measured by the WPO and MPO without ANC 

(treadmill jogging). The red lines indicate the µ ± 2SD values. 
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Figure 8.52: Difference in SpO2 readings measured by the WPO and MPO with ANC (treadmill 

jogging). The red lines indicate the µ ± 2SD values. 

 

Table 8.4 summarizes analysis results for each trial. These HR data confirmed that ANC 

improved the MSE by 71%, the SD was improved by 51% and R
2
 was improved by 11%. For 

SpO2, the error was reduced by 50%, whereas SD was improved by 27%. 

 

Table 8.4: Comparison of HR and SpO2 values obtained before and after a LMS type 

ANC. M =16 and µ = 0.01 (treadmill jogging) 

Trial 

% Improvement 

ECG - HR MPO SpO2  Change in 

SpO2  MSE SD R
2 MSE SD 

1 72 57 5.98 0 0 NC 

2 93 75 14.38 85 67   

3 54 0 -0.59 100 0   

4 88 71 7.51 83 50   

5 93 77 35.43 0 0 <2% 

6 84 50 12.26 0 0 NC 

7 13 25 0.85 83 71   

Average 71 51 10.83 50 27   
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8.2.6. LMS – Outdoor Running Experiments 

 

The results of outdoor running experiments were similar to the results of the treadmill jogging 

experiments. Table 8.5 summarizes the results for all running tests. In case of HR estimation, it 

was found that adaptive filtering yields better results in terms of MSE, SD and CC. Post adaptive 

filtering results showed an improvement of 35% for MSE, 31% for SD and 8% for R
2
 values. 

SpO2 measurement accuracy was also improved by adaptive filtering. An average improvement 

of 12% was noted for SpO2 values. 

 

Table 8.5: Comparison of HR and SpO2 values obtained before and after a LMS type 

ANC. M =16 and µ = 0.01 (outdoor running) 

Trial 

% Improvement 

ECG – HR MPO SpO2 Change in 

SpO2  MSE SD R
2 MSE SD 

1 59 40 3.01 50 0 NC 

2 13 33 2.17 -100 -100   

3 69 56 23.17 43 0   

4 60 40 8.89 17 0   

5 15 20 3.25 57 0  

6 -4 0 8.00 7 0 <2% 

Average 35 31 8.08 12 -17   

 

 

In trial#2, we noticed that ANC degraded the SpO2 measurement accuracy. HR and SpO2 plots 

corresponding to trials#2 are shown in Figure 8.53 and Figure 8.54, respectively. After adaptive 

filtering, SpO2 values dropped to 91%. Also, there was no significant change in the HR values 

due to adaptive filtering. The ability of the ANC to improve HR measurements, but degrade the 

SpO2 accuracy, is not yet understood and is therefore a potential issue that requires further 

studies.  
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Figure 8.53: HR readings for trial#2 during outdoor running. 
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Figure 8.54: SpO2 readings for trial#2 during outdoor running. 
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8.2.7. LMS – Staircase Climbing Experiments 

 

PPG waveforms collected during staircase experiments are shown in Figure 8.55 to Figure 8.57. 

During rest (phase -1 and phase-3), there are no motion artifacts to cause PPG signal distortions. 

Hence, the adaptive filtering has no effect on the PPG waveform. However, staircase climbing 

induces motion artifact to cause significant PPG distortions, thus degrading measurement 

accuracy. Figure 8.56 highlights the peak that was successfully recovered by adaptive filtering. 
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Figure 8.55: Typical IR PPG signals during Phase-1 of staircase climbing, before (Blue) and 

after (Red) ANC. Note that the blue and red traces overlap in this figure. ■ marks PPG peaks 

detected by the WPO after ANC (5-peaks), and ● represents R-waves detected from the ECG 

waveform (5-peaks). 
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Figure 8.56: Typical IR PPG signals during Phase-2 of staircase climbing experiment, before 

(Blue) and after (Red) ANC. ■ marks PPG peaks detected by the WPO after ANC (8-peaks), ● 

denotes PPG peaks detected without ANC  (7-peaks), and ● represents R-waves detected from 

the ECG waveform  (8-peaks). 

 

144.5 145 145.5 146 146.5 147

-150

-100

-50

0

50

100

150

200

Time (sec)

R
e
la

ti
v
e
 A

m
p
lit

u
d
e

 

 

NO-ANC

ANC

X+Y+Z

ECG

 
Figure 8.57: Typical IR PPG signals during Phase-2 of staircase climbing experiment, before 

(Blue) and after (Red) ANC. Note that the blue and red traces overlap in this figure.  ■ marks 

PPG peaks detected by the WPO after ANC (8-peaks), and ● represents R-waves detected from 

the ECG waveform (8-peaks). 
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Frequency analysis of PPG signals collected during staircase climbing experiments illustrate that 

several motion induced peaks were present. These peaks yielded inaccurate HR and SpO2 

measurements. Figure 8.58 and Figure 8.59 demonstrate that ANC was able to successfully 

attenuate these frequencies. The two figures also demonstrate that ANC is effective in filtering 

several motion frequencies, and hence can be used for real-time applications where generally 

more than one motion frequency component can affect the PPG quality. 
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Figure 8.58: Frequency spectrum of IR PPG during staircase climbing. 
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Figure 8.59: Frequency spectrum of Red PPG during staircase climbing. 

 

Unprocessed PPG signals, used for HR measurements, produced erroneous results because the 

algorithm detects false peaks and /or missed some true cardiac peaks during motion. Figure 8.60 

shows HR readings estimated from pre and post adaptively filtered PPG signals. At the 

beginning of the adaptation process, the adaptive filter weights are zero and start to change 

according to the motion frequency. Since the adaptation takes time, initially, the HR values do 

not match the reference HR readings. Once the filter weights are adapted to the motion 

frequency, HR readings become more accurate and closely match the actual HR. Similar 

observations were made for SpO2 measurements. 
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Figure 8.60: HR measurements without and with ANC during a staircase climbing experiment. 
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Figure 8.61: SpO2 measurements without and with ANC during a staircase climbing experiment. 
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Plots of regression analysis are shown in Figure 8.62 and Figure 8.67. The results indicate that 

ANC improves the HR CC by 8%. The mean difference between HR values measured by the 

WPO and actual HR values was improved by 52%. The mean difference in SpO2 was improved 

by 17%. Table 8.6 summarizes the results for each trial. From this table, it can be concluded that 

ANC helps to improve the accuracy of pulse oximeters during staircase climbing. 
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Figure 8.62: Comparison of HR measured during staircase climbing by the WPO and reference 

source before ANC. 
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Figure 8.63: Comparison of HR measured during staircase climbing by the WPO and reference 

source after ANC. 
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Figure 8.64: Difference in HR readings measured by the WPO and the ECG Holter Monitor 

without ANC (staircase climbing). The red lines indicate the µ ± 2SD values. 
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Figure 8.65: Difference in HR readings measured by the WPO and the ECG Holter Monitor with 

ANC (staircase climbing). The red lines indicate the µ ± 2SD values. 
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Figure 8.66: Difference in SpO2 readings measured by the WPO and MPO without ANC 

(staircase climbing). The red lines indicate the µ ± 2SD values. 
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Figure 8.67: Difference in SpO2 readings measured by the WPO and MPO with ANC (staircase 

climbing). The red lines indicate the µ ± 2SD values. 

 

Table 8.6: Comparison of HR and SpO2 values obtained before and after a LMS type 

ANC. M =16 and µ = 0.01 (Staircase climbing experiments) 

Trial 

% Improvement 

ECG - HR MPO SpO2 Change in 

SpO2 MSE SD R
2 MSE SD 

1 92 60 33.61 40 0   

2 68 25 2.16 46 25   

3 0 0 -0.26 0 0 <2% 

4 43 33 0.30 0 0 <2% 

5 57 30 6.21 0 0 NC 

Average 52 30 8.40 17 5   
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8.3. Conventional LMS Results Summary 

 

The results obtained from this study revealed that processing motion corrupted PPG signals by 

conventional LMS improves HR and SpO2 accuracy. ANC can improve the MSE for HR values 

by a factor of 54%. The CC for HR measurements was improved by 19%. Similarly, an 

improvement of 35% was observed in SD. MSE and SD for SpO2 measurements were improved 

by 22 % and 15%, respectively.  

 

8.4. TV-LMS  

 

8.4.1. Step-Size Selection 
 

The TV-LMS algorithm is similar to the conventional LMS algorithm, except for a time 

dependent convergence parameter [23]. In the TV-LMS algorithm, the µ is initially set to a large 

value in order to speed up the convergence. As time progresses, the parameter is adjusted to a 

smaller value to decrease the MSE. 

 

The initial µ value was determined based on the results of the 31 data sets. These are the same 

data sets that were used to estimate µ for the conventional LMS filter. Data were analyzed by a 

16
th
 order TV-LMS filter with a variable µ. µ was varied from 0 to 0.05 in steps of 0.002. Table 

4.2 summarizes the TV-LMS equations. The constants C, a, and b are set to 2, 0.01 and 0.7 

respectively [23]. These parameters determine the magnitude and rate of αn decrease.  

 

The effectiveness of the TV-LMS filter, with varying µ, was determined based on the 

improvement in HR and SpO2 errors. Figure 8.68 and Figure 8.69 show the calculated MSE ± 1 

SD for HR and SpO2. MSE improvement in HR was noticeable for 0 < µ < 0.03. For µ > 0.03, 

the improvements were insignificant. Similarly, maximum MSE improvement for SpO2 was 

observed for 0.008 < µ < 0.012. Maximum improvements for HR and SpO2 were observed for µ 

= 0.01. 
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Initial value of filter order (M = 16) was kept the same as in the conventional LMS filter 

because, as stated previously, the only difference between LMS and TV-LMS is the use of a 

dynamic µ in the latter algorithm.  Hence, a 16
th
 order TV-LMS filter with a µ of 0.01 was 

implemented in Matlab. 
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Figure 8.68: Average MSE improvement in HR for a 16

nd
 order TV-LMS filter with varying 

step-size (µ). The error bars indicate ± 1SD. The shaded region corresponds to µ value that was 

selected for further study. 

 



94 

 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

20

40

60

80

100

Step-Size (µ)

Im
p
ro

v
e
m

e
n
t 
in

 M
S

E
 (
%

)

 
Figure 8.69: Average MSE improvement in SpO2 for a 16

nd
 order TV-LMS filter with varying 

step-size (µ). The error bars indicate ± 1SD. The shaded region corresponds to µ value that was 

selected for further study. 

 

8.4.2. Results of TV-LMS filter 

 

Data collected during sitting experiments, treadmill jogging, outdoors running and staircase 

climbing were adaptively filtered using a 16
th
 order TV-LMS algorithm. The results obtained 

after adaptive filtering demonstrated that the TV-LMS is also effective in reducing the effects of 

motion artifacts. HR data analysis showed that the MSE was improved by 56%, SD by 35% and 

CC by 19%. In the case of SpO2, MSE was improved by 25%, whereas SD was improved by 

23%. 

 

8.5. NLMS and MNLMS  

 

8.5.1. Step-Size and Filter Order Selection 
 

In NLMS, the gradient step factor µ is normalized by the energy of the reference input signal. 

The NLMS equations are given in Table 4.3. To find an ideal value for µ, NLMS was 

implemented in Matlab and was used to filter all 31 data sets. The filter order was kept constant 

at 16, whereas µ was varied from 0 to 0.05 in steps of 0.002.  
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The results, depicted in Figure 8.70 and Figure 8.71, indicate that the NLMS filter produced 

better performance when µ = 0.006. Similar data analysis showed that a 16
th
 order NLMS filter 

having a convergence parameter of 0.006 produced the most accurate HR and SpO2 

measurements during motion. Figure 8.72 and Figure 8.73 show that, for HR, the NLMS 

algorithm with M = 16 improved the MSE by 50%, whereas for SpO2, MSE was improved by 

40%. Since the MNLMS algorithm is a modified version of the NLMS algorithm, the same filter 

parameters were selected for implementing the MNLMS algorithm. 
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Figure 8.70: Average MSE improvement in HR for a 16

nd
 order NLMS filter with varying step-

size (µ). The error bars indicate ± 1SD. The shaded region corresponds to µ value that was 

selected for further study. 
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Figure 8.71: Average MSE improvement in SpO2 for a 16

nd
 order NLMS filter with varying step-

size (µ). The error bars indicate ± 1SD. The shaded region corresponds to µ value that was 

selected for further study. 
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Figure 8.72: Average improvement in HR MSE for a NLMS filter with a constant µ = 0.006 and 

varying filter order (M). The error bars indicate ± 1SD. The shaded region corresponds to M 

value that was selected for further study. 
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Figure 8.73: Average improvement in SpO2 MSE for a NLMS filter with a constant µ = 0.006 

and varying filter order (M). The error bars indicate ± 1SD. The shaded region corresponds to M 

value that was selected for further study. 

 

8.5.2. Results of NLMS and MNLMS filter 

 

Data analysis confirmed that the performance of the NLMS and MNLMS algorithm were similar 

to the results obtained by the conventional LMS filter. For HR estimation, MSE was improved 

by 60% by both algorithms. SD and R
2
 showed an improvement of 42% and 13%, respectively. 

For SpO2 estimations, both algorithms increased the MSE accuracy by 22% and SD by 21%. 
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8.6. RLS Algorithm 

 

8.6.1. Forgetting factor and Filter Order Selection 
 

RLS filter output solely depends on the filter order (M). The forgetting factor (λ) is generally 

kept constant (close to 1). To determine an ideal filter order, the MSE performance of the RLS 

filter was observed as the filter order (M) was varied from 0 to 32 with a constant λ = 1. 

 

Figure 8.74 and Figure 8.75 show improvement in MSE for HR and SpO2 values due to RLS 

adaptive filtering with various filter orders. Results show that for HR and SpO2, a 4
th
 order RLS 

filter produced a 55% and 35% improvement in MSE, respectively. This suggests that a 4
th
 order 

RLS algorithm with λ = 1 could be implemented to improve measurement accuracy during 

motion. This filter was implemented in Matlab for further analysis. 
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Figure 8.74: Average MSE improvement in HR for a RLS filter with λ = 1 and varying M. The 

error bars indicate ± 1SD. The shaded region corresponds to M value that was selected for data 

analysis. 
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Figure 8.75: Average MSE improvement in SpO2 for a RLS filter with λ = 1 and varying M. The 

error bars indicate ± 1SD. The shaded region corresponds to M value that was selected for data 

analysis. 

 

8.6.2. Results of RLS filter 
 

Adaptive filtering using 4
th
 order RLS algorithm resulted in 50% improvement in the MSE for 

HR values along with a 30% improvement in the SD and a 16% improvement in the R
2
 value. 

SpO2 estimation also showed a 24% and 5% improvements in the MSE and SD, respectively. 

  

Analysis showed that all of the ANC algorithms helped to improve the accuracy of the WPO. 

Processing the motion corrupted PPG signals by each algorithm produced slightly different 

improvements. Given similar performances, it is important to take into consideration the 

complexity of the adaptive algorithms before implementing ANC in real-time. A comparative 

study between these algorithms will suggest which algorithm should be implemented for real-

time adaptive filtering.  
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8.7. Comparative Study of Different ANC Algorithms 

 

The principle goal of this research was to implement ANC to improve the performance of our 

customed WPO during motion. This will make the WPO more robust against motion induced 

disturbances. An ideal algorithm must be fast enough to quickly adapt to changes in motion 

frequencies and must provide significant improvement in HR and SpO2 accuracy. At the same 

time, it must be efficient in terms of algorithmic complexity and computation time. Table 8.7 

summarizes the results of different ANC algorithms, and also compares them in terms of 

algorithmic efficiency. The LMS algorithm was selected because of its simplicity and reasonable 

performance. 

  

Table 8.7: Comparison of different ANC algorithms 

 
 LMS RLS 

TV-

LMS 
NLMS 

M-

NLMS 

H
R
 (
B
P
M
) 

MSE 

improvement  
54% 50% 56% 60% 60% 

SD improvement 35% 63% 35% 42% 42% 

R
2
 improvement 19% 16% 19% 13% 13% 

S
p
O

2
 (
%
) MSE 

improvement 
22% 24% 25% 22% 22% 

SD improvement 15% 5% 23% 21% 21% 

F
il
te
r 
P
a
ra
m
et
er
s 

Number of 

Additions 
2M 3M(M+1) 2M+1 3M 3M 

Number of 

Multiplications 
2M+1 4M(M+1) 2M+6 3M+2 3M+2 

Ideal filter 

parameter value 
ì = 0.01 ë = 1 ì = 0.01 ì = 0.006 ì = 0.006 

Ideal Filter 

Order 
M = 16 M = 4 M = 16 M = 16 M = 16 
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8.8. Accelerometer Axis selection  

 

In order to determine the potential effect of ACC axis selection on measurement accuracy, the 

collected data sets were adaptively filtered (16
th
 order LMS filter) using each axis as a reference 

noise signal. Improvements in HR and SpO2 errors were obtained by utilizing each acceleration 

axis separately as well as the summed combination of the three axes (X+Y+Z). Additionally, a 

multi-noise input adaptive filter was also studied and implemented in Matlab. 

 

The results summarized in Table 8.8 show that for all the data sets the MSE for HR was 

improved by approximately 30% irrespective of the axis that was used as a reference noise input. 

It was found that the best performance was obtained by the summation of all reference signals 

(X+Y+Z). For HR and SpO2, a MSE improvement of 46% and 13% was noticed, respectively. 

Thus, results indicate that using the additive X+Y+Z axis signals as noise reference inputs 

provided significant improvement in measurement accuracy. These results are in agreement with 

Comtois [4].  

 

Table 8.8: Percentage improvement in HR and SpO2 after adaptive filtering using different 

reference noise signals. 

  HR (BPM) SpO2 (%) 

Axis MSE SD MSE SD 

X 39 26 15 6 

Y 26 15 18 13 

Z 32 24 10 9 

X,Y,Z 26 12 11 4 

X+Y+Z 46 29 13 13 
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8.9. Validation of Real-time ANC  

 

Results from a series of indoor and outdoor experiments revealed that a conventional LMS 

algorithm can considerably improve the WPO’s measurement accuracy during motion. Hence, 

for real-time application, the LMS algorithm was implemented in the embedded TI-MSP430 µC.  

 

To validate the functionality of the LMS algorithm in the TI-MSP430 µC, adaptively filtered and 

unfiltered IR PPG data were collected. Due to processing time limitations in the current version 

of the hardware, a 4
th
 order LMS filter was implemented in the µC. Raw IR PPG data were 

processed (offline) in Matlab utilizing the built-in 4
th
 order LMS-ANC algorithm. Typical PPG 

signals processed in real-time by ANC algorithm and offline using the same processing are 

shown in Figure 8.76. The figure revealed that the two PPG waveforms matched exactly, 

verifying the functionality of the LMS algorithm implemented inside the TI-MSP430 µC.  
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Figure 8.76: PPG waveforms obtained from a 4

th
 order LMS adaptive filter implemented in real-

time. Note that the Matlab (green) and µC (red) outputs overlap completely. 
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8.10. ANC Processing Time 

 

The current version of the WPO receives a raw PPG data packet (80 sample vector) from the 

optical sensor every 500msec. Hence, signal processing must be completed in less than 500msec 

before the µC receives a new data packet. Table 8.9 summarizes the execution time for different 

sections of the signal processing algorithm. According to the timing shown in the table, the 

adaptive filtering process must be fast enough to be completed in less than 210msec. Processing 

time associated with various filter orders were recorded. In general, we observed that processing 

time increases linearly with the filter order. As shown in Figure 8.77, with the current hardware 

version of the WPO, an 8
th
 order LMS filter can be implemented. Hence, an 8

th
 order LMS filter 

having a step-size of 0.01 was implemented in the final version of the WPO.  

 

Table 8.9: Execution time of the signal processing algorithm inside the WPO 

Process Time (msec) 
IR and R PPG –LPF 38.0 

IR and R PPG –BPF 60.0 

ACC signals –BPF 30.0 

HR and SpO2 estimation 12.0 

Other signal processing 150 

Total 290 

Processing time for ANC  500-290 = 210 

*Note: Times were measured at a 4MHz clock frequency. 
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Figure 8.77: LMS filter processing time for various filter orders inside the TI-MSP430 µC. 

 

8.11. Auto-triggering of ANC  
 

From Table 8.9 and Figure 8.77, it is observed that adaptive filtering increases the processing 

time of the system. As explained in the signal processing flowchart, the energy of the 

accelerometer signal is used as a trigger to start ANC when the energy of the ACC signal is 

above a certain threshold level. 

 

In real-time implementation, the energy threshold value was set to 100. This value was chosen 

based all the collected data sets. In the real-time system implementation, the triggering method 

activated the ANC only when there was sufficient sensor motion. For example, in one of the 

jogging trails (shown in Figure 8.78), ANC process was inactive during resting state and was 

automatically activated during jogging at 4mph. Due to mixed energy levels during low motion 

activities, the ANC trigger algorithm did not work effectively. It triggers ANC for short periods 

of time and then deactivates it, as observed in Figure 8.78. However, as explained earlier, ANC 

has no effect on measurement accuracy during low motion activities like jogging at 2mph. Thus, 

short activation period of ANC has no effect on HR and SpO2 measurement accuracy of the 

WPO.  
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Figure 8.78: Auto-triggering of ANC in one of the jogging tests. 

 

The proposed method to trigger ANC reduces unnecessary signal processing in the µC and thus 

reduces the processing time. During resting conditions, the auto-trigger ANC saves about 110 

milliseconds. This will eventually increase the battery life. The processing timings for WPO are 

summarized in Table 8.10.  

 

Table 8.10: Processing time of the auto-triggered ANC method.  

LMS (8
th
 order, ì = 0.01) Constantly ANC Auto-triggered ANC 

Rest 130msec 14msec 

Motion 130msec 130mec 

 

2mph 4mph 2mph Rest 

ANC ON 
ANC  

OFF 

E
n
er
g
y
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8.12. Real-time ANC results  

 

The final ANC algorithm implemented in real-time consisted of an 8
th
 order LMS filter with µ = 

0.01. Additionally, auto-triggering of the ANC was also implemented to reduce the processing 

time during low motion conditions.  

 

Figure 8.79 and Figure 8.80 show the experimental tests during which HR measurements 

reported significant improvement due to adaptive LMS filtering during motion. In these tests, the 

ACC-based ANC algorithm provided more accurate measurements than the non-adaptively 

filtered signals. Percentage improvements in MSE for HR values are summarized in Table 8.11 

and Table 8.12.The results revealed that HR errors are reduced by 81% during head motion and 

by 37% during treadmill jogging. 
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Figure 8.79: HR measurements with and without ANC from one of the head motion experiments.  
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Figure 8.80: HR measurements with and without ANC from one of the jogging tests. 

 

Table 8.11: Percentage improvement in WPO measurement accuracy after ANC  

(Head Movement) 

Trial 
HR (BPM) SpO2 (%) 

MSE SD R
2 MSE SD 

1 95 70 43 33 50 

2 96 80 -2 43 0 

3 96 80 3 39 0 

4 83 57 -6 45 67 

5 64 41 29 73 75 

6 51 33 5 96 86 

Average 81 60 12 55 46 

 

Table 8.12: Percentage improvement in WPO measurement accuracy after ANC  

(Treadmill Jogging) 

Trial 
HR (BPM) SpO2 (%) 

MSE SD R
2 MSE SD 

1 55 33 -3 92 50 

2 46 43 2 87 50 

3 9 -6 -1 55 11 

4 85 64 17 43 50 

5 10 0 1 72 33 

6 16 0 1 85 60 

Average 37 22 3 72 42 

Rest Rest Jogging 

4mph 2mph 2mph 
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Similar improvements were also observed for SpO2 measurements during motion. The results are 

summarized in Figure 8.81 and Figure 8.82.  For head motion tests, an average improvement of 

55% was observed. During treadmill jogging, the MSE was improved by 72%. All of the results 

verified that ANC improved SpO2 accuracy in the presence of motion artifacts. 

 

Note that in Figure 8.82 a 5% drop in SpO2 was observed around 200 seconds post adaptive 

filtering. We speculate that this drop was due to distortion of the PPG signals during frequency 

overlap lasting for a few seconds. 
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Figure 8.81: SpO2 measurements with and without ANC from one of the head motion 

experiments. 
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Figure 8.82: SpO2 measurements with and without ANC from one of the jogging tests. 

 

 

8.13. Limitation of ANC 

 

In pulse oximetry, the adaptively filtered PPG signals could remain distorted when the cardiac 

and motion frequencies overlap. Consider for example a subject having an initial HR of 60BPM 

(cardiac frequency of 1Hz). Next, the subject starts exercising and produces 1.33Hz motion 

artifacts. The cardiac frequency will gradually increase to meet the additional oxygen demand 

due to increased physical activity, as illustrated in Figure 8.83. As the HR increases from 1Hz to 

1.33Hz, at time t1, the cardiac frequency will overlap with the motion frequency.  Hence from 

time t1, adaptive filtering would distort the PPG signals, resulting in erroneous HR and SpO2 

measurements. The worst case occurs when the two signal components are of opposite phase 

[26]. This suggests that adaptive filtering should be avoided when the frequency of the reference 

signal coincides with the cardiac frequency. 

 

4mph 2mph 2mph 
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Figure 8.83: Cardiac and motion frequency overlap. 

 

 

In our studies, the frequency overlap data consisted of 2 treadmill jogging tests, 3 outdoor 

running tests, and 1 staircase climbing trial. In case of real-time adaptive filtering, frequency 

overlaps were observed in 3 out of 9 treadmill jogging tests. Figure 8.84 shows typical IR PPG 

signals before and after ANC during frequency overlap. Before adaptive filtering, the frequency 

of the IR PPG signal (blue trace) closely matches the frequency of the reference motion signals 

from the tri-axial accelerometer (black trace). Hence, adaptive filtering techniques results in 

distortion of the IR PPG signals. Distortion of the PPG has a significant negative effect on 

measurement accuracy, as observed in Figure 8.85 and Figure 8.86. 
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Figure 8.84: Effects of ANC process in case of frequency overlap. 
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Figure 8.85: Effect of frequency overlap on HR measurements. 
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Figure 8.86: Effect of frequency overlap on SpO2 measurements. 
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9. DISCUSSION 
 

9.1. Resting Experiments 

 

Physiological information from a WPO can help to keep track of soldiers and firefighters vital 

signs, allowing continuous real-time monitoring by medical experts. This section describes the 

initial bench testing of a WPO and compares its performance with that of the MPO.  

 

Figure 8.1 and Figure 8.2, illustrate that average steady-state difference between HR values 

recorded from the WPO and MPO are within an acceptable clinical range of ±2% [27]. During 

rest, the WPO was able to accurately track changes in HR values that took place during hypoxia 

and hyperventilation. Similarly, the transient SpO2 changes recorded by our WPO during breath 

holding maneuver matched the readings from the MPO.  

 

The regression plot in Figure 8.4 demonstrates that the HR measured by the WPO and MPO are 

closely correlated between 65BPM – 95BPM. However, the variations are comparatively large 

for HR values greater than 95BPM, but the number of data points showing large variations is 

very small. The main reason for this disagreement is sensor movement during data collection. In 

order to induce hypoxia, subjects were requested to perform a breath holding maneuver which 

resulted in some sensor movements. Additionally, motion artifacts were also induced during 

hyperventilation. Sensor motion, induced during hypoxia and hyperventilation, resulted in small 

HR discrepancies.  
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9.1.1. Systolic versus diastolic peak detection  
 

The first sentence is obvious! 

HR and SpO2 measurements can be obtained by identifying either the systolic or diastolic peaks 

in the PPG, as shown in Figure 2.3. Figure 9.1 and Figure 9.2 confirms that HR and SpO2 

computed from either peak produce similar readings. To assess whether the mean readings 

produced are statistically different, a t-test was performed for each measurement. The high p-

value of 0.58 for HR and 0.28 for SpO2 confirmed that there was no significant difference 

between the two methods. The results are summarized in Table 9.1. Therefore, only diastolic 

peaks were used to estimate HR and SpO2 in this thesis.   
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Figure 9.1: HR estimated from systolic and diastolic peaks during one of the jogging trials. 
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Figure 9.2: SpO2 estimated from systolic and diastolic peaks during one of the jogging trials. 

 

 

Table 9.1: Data analysis for HR and SpO2 values computed from systolic and diastolic peaks. 

` HR (BPM) SpO2 (%) 

 Systolic Diastolic Systolic Diastolic 

Mean 116 116 98 98 

SD 29 29 4 4 

p-value 0.52 0.28 

Rest Rest Motion 
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9.2. LMS Algorithm 

 

9.2.1. Step-size (µ) selection 
 

The main design parameter for a LMS algorithm is the selection of the step-size, µ. A small 

value for µ is desirable since this provides an LMS algorithm with a relatively low error [22]. 

However, a small µ value yields a slower convergence rate. A faster convergence rate (or 

adaptation factor) can be achieved by utilizing a larger value of µ, but at the expense of a larger 

adjustment error [22]. Thus, selection of a constant µ value for a conventional LMS algorithm is 

a tradeoff between convergence rate and reduction in adjustment errors. 

 

The data analysis results in section 8.2.1 showed that for HR values, the improvement in the 

MSE were significant for 0 < µ < 0.03. These values provide an improvement of 30% to 50% in 

the presence of motion artifacts. The improvements in the MSE for HR values were found to be 

insignificant for µ > 0.03. This verifies that the adjustment error increases with larger µ values. 

Improvement in the MSE for SpO2 did not vary significantly as a function of µ. These results 

concur with similar observations by Comtois [4, 6]. 

 

The results also indicate that the adaptive filters have a greater effect on HR than SpO2 values. 

HR values are estimated based on time demarcations coinciding with PPG peaks. Hence, even 

slight PPG signal modification due to adaptive filtering can have a prominent effect on the 

instantaneous HR values. On the contrary, SpO2 values are based on averaged values of the 

respective AC and DC components of the IR and R PPG signals. Averaging minimizes the direct 

qualitative effect of adaptive filtering on SpO2 calculations. Hence, in general we observe that 

the adaptive filtering algorithms have a more significant effect on HR as compared to SpO2 

measurements.  

 

9.2.2. Filter Order (M) selection 

 

The performance of any filter depends on the number of coefficients utilized in the computation 

process, i.e. filter order (M). Filter order not only affects the measurement errors but also the 
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required computational time. Computational time increases with increase in the filter order [4, 6, 

22].  

 

To find an ideal value of M for a conventional LMS algorithm, M was varied while µ was kept 

constant at 0.01. For different values of M, Figure 8.9 and Figure 8.10 show the average 

improvement in MSE for HR and SpO2 values, respectively. From these figures we found that 

the degree of improvement depends on the filter order. The highest improvement observed was 

for M = 16. We also found that the mean improvement diminishes for M > 24. These results are 

in agreement with Comtois [4, 6].  

 

Data indicate that a 16
th
 order conventional LMS adaptive filter with µ = 0.01 can significantly 

reduce HR and SpO2 estimation errors. Hence, this filter was selected for further evaluations. 

 

9.2.3. LMS – Sitting Experiments 

 

Motion artifacts are known to be the primary contributor to errors and high rates of false alarm in 

pulse oximeters. To understand the effects of motion artifacts on PPG signals and pulse oximetry 

accuracy, a series of head movement experiments were performed. The main purpose behind 

carrying out these experiments was to better understand the effects related exclusively to sensor 

movement. 

 

During the resting phase of the experiment, when the head remained still, there were no motion 

artifacts that corrupted the PPG signals. The PPG signals depicted in Figure 8.11 and Figure 8.13 

have cardiac peaks that exactly match the R-waves in the ECG waveform. The difference in time 

response is due to different sampling frequency of the WPO and Holter monitor. Moreover, the 

two recordings were supposed to start simultaneously, but this did not occur due to human error. 

This adds on the time difference between the two waveforms. However, PPG signals are not 

contaminated by any artifacts during rest.  

 

During rest, the adaptive filtering had no significant effect on the morphology of the PPG signals 

as the motion signals had significantly low amplitude. Nonetheless, irrespective of whether 

adaptive filtering was implemented or not, HR and SpO2 measurements during rest were in 
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complete agreement with readings obtained from the reference sources. The data confirmed that 

the adaptive filtering algorithm has no effect on pulse oximetry accuracy in the absence of 

motion artifacts. Thus, processing clean PPG signals with ANC is an unnecessary waste of µC 

processing time and battery power.  

 

During phase 2 of the sitting experiment, morphological distortions of the underlying PPG 

waveform begin with head movements. The peak-to-peak amplitude variation increases 

significantly in the presence of motion artifacts. Distortion of the PPG signals, from which HR 

and SpO2 values are derived, leads to measurement errors and frequent dropouts when subjects 

remain active. From Figure 8.16, it is evident that the WPO (blue trace) underestimated HR 

while the subject was performing head movements. We also noticed pronounced fluctuations in 

SpO2, although to a lesser extent, that was recorded by the WPO during motion. The effects of 

motion artifacts are also visible in the frequency spectra of the IR and R PPG signals.  

 

To improve the performance of the WPO during motion, we have investigated the effectiveness 

of an ACC-based adaptive LMS algorithm. The morphology of an adaptively filtered PPG signal 

appeared to have more consistently shaped peaks as compared to a PPG signal before adaptive 

filtering (blue trace). Figure 8.12 shows that the noisy portion of the IR PPG appeared to be 

corrected such that the peak (marked by an arrow) was identified as a cardiac peak in the 

adaptively filtered signal (red trace).  

 

The frequency spectra of the IR and R PPG showed that the LMS algorithm was effective in 

attenuating the frequency associated with body motion. Thus, it increases the SNR of the PPG 

signals. Analysis of HR and SpO2 data acquired during sitting experiments showed that the LMS 

algorithm improves considerably the accuracy of the WPO, as highlighted in Figure 8.16 and 

Figure 8.17. 

 

The regression plot of HR readings before and after adaptive filtering, depicted in Figure 8.31 

and Figure 8.32, clearly demonstrate the effectiveness of ANC. Before adaptive filtering, the 

points on the regression plot were scattered away from the regression line, producing a CC of 

0.57. Adaptive algorithm shifted the HR data points towards the linear regression line, showing 
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an improvement of 40% in the CC. SpO2 regression plots were not studied as the range of values 

was very small (95% to 100%). The residual plots for SpO2 values depict that utilizing LMS 

adaptive filtering can minimize the mean difference between the WPO and MPO. 

 

Since, head movements varied from trial to trial, the improvements in HR and SpO2 varied as 

well. In some trials, the improvement was as high as 90%, whereas in other trials the 

improvement was insignificant. We believe that this was caused by the variable nature of the 

motion artifacts that corrupted the PPG signals. If the motion involved is periodic, the adaptive 

filter will adjust its coefficients precisely at the motion frequency and will have a more 

significant effect on the PPG signal. On the contrary, if the motion frequency varies 

instantaneously, the adaptive filter cannot fully adapt to rapidly changing frequencies and will 

therefore not be efficient. Thus, in some cases, the adaptive filtering of the PPG signals yielded 

more than 70% improvement, while in other cases the improvement was clinically insignificant. 

Since the extent of motion corrupting the PPG signals cannot be predicted, the improvement due 

to adaptive filtering can never be predicted in real-time pulse oximetry. This is true for all the 

experiments included in this study. However, the results from Table 8.1 indicate that ANC using 

a LMS algorithm can help to improve the accuracy of the WPO in the presence of motion 

artifacts.  

 

9.2.4. LMS – Cycling Experiments 

 

The purpose of this study was to determine the effects of rapid changes in HR on the accuracy of 

the WPO. The experimental results showed that the morphology of the PPG signals obtained 

during stationary bicycling and rest were very similar. As mentioned earlier, the only difference 

was the increase in the cardiac frequency to meet the additional oxygen demand by the body. 

  

From the frequency spectra of the IR and R PPG, the dominant frequency components are in the 

range of 1.6Hz – 2.8Hz, which corresponds to HR values between 100BPM – 170BPM. Since 

cycling on a stationary bicycle causes negligible head motion, the PPG signal did not contain any 

spectral band outside the dominant cardiac frequency range. When compared to the frequency 

spectra of the ACC signals acquired during head motion, the ACC signal during cycling 
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consisted of low energy. This suggests that the degree of movement occurring during stationary 

bicycling was significantly smaller compared to head motion. 

  

During cycling, the signal processing algorithm was able to accurately locate all of the cardiac 

beats that matched the R-waves from the Holter monitor. The plots in Figure 8.29 and Figure 

8.30 suggest that accurate HR and SpO2 readings can be acquired during stationary cycling. 

 

HR regression plots confirmed that the HR acquired from the WPO and Holter monitor are in 

complete agreement (CC of 1.00). The results for the resting experiments (section 8.1) and 

cycling experiments proved that the WPO is capable of measuring accurate HR values over a 

range of 65BPM to 170BPM when subjects remain at rest.  

 

We also noticed that, PPG signals associated with cycling on a stationary bicycle were not 

affected by motion artifacts but rather by changes in the physiology. This suggests that while 

performing any physical activity, PPG signal distortions are primarily caused by body motion 

rather than rapid changes in HR. Additionally, the analysis showed that there is no need to apply 

adaptive filtering during activities involving no/little head movements, such as cycling. By 

avoiding ANC processing when the sensor remains stationary, battery life can be extended.  

 

9.2.5. LMS – Treadmill Jogging Experiments 

 

During rest, due to lack of head movements, the PPG signals were not contaminated by artifacts. 

These PPG signals tend to produce accurate HR and SpO2 readings that are in close agreement 

with the HR and SpO2 values recorded from the Holter monitor and MPO, respectively. LMS 

adaptive filtering has no significant effect on measurement accuracy during rest as motion 

detected by the tri-axial ACC produced very low amplitude signals. As soon as a subject starts 

walking at the speed of 2mph, we noted an increase in the amplitude of the ACC signals. 

 

Although the amplitude of the motion signal increased while the subject was jogging at 2mph, 

the motion was sufficiently low to produce any discernable distortion of the PPG signals. As 

shown in Figure 8.39 and Figure 8.41, the PPG signals before and after the application of LMS 

filtering have similar characteristics including the number and location of the cardiac peaks. This 
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suggest that HR and SpO2 derived from unprocessed (non adaptive) PPG signals remain 

accurate. HR and SpO2 plots during phase-2 and phase-4 of the experiment, as illustrated in 

Figure 8.45 and Figure 8.46, confirmed these results since the HR and SpO2 readings from the 

WPO and reference overlap. 

 

We also notice that the IR PPG signal acquired during jogging at 4mph, shown in Figure 8.40, 

has an inconsistent morphology due to motion artifacts. The large peak-to-peak amplitude of the 

ACC signal indicates the presence of heavy motion artifacts during phase-3 of the experiment. 

These motion signals, when used as reference noise during adaptive filtering, help to recover 

clean PPG signals. It should be emphasized that before adaptive filtering, the signal processing 

algorithm was not able to differentiate between true cardiac peaks and motion induced peaks due 

to large variations in peak-to-peak amplitude. Adaptive filtering produced cleaner PPG signals, 

such that the peaks were easily identified by the signal processing algorithm.  

 

In the frequency domain, the FFT of IR and R PPG signals revealed that the PPG signals during 

phase-3 of the experiment were dominated by frequencies corresponding with body acceleration 

(i.e. 2.8Hz). These additional motion induced frequency components are the primary cause for 

reduced measurement accuracy. We found that LMS adaptive filtering was effective in removing 

the motion related frequency corrupting the PPG signals. This also demonstrated that signals 

obtained from the integrated ACC were effective as a noise reference input to the adaptive LMS 

algorithm.  

 

The effectiveness of the LMS filtering routine is clearly observed in Figure 8.45 and Figure 8.46. 

It is evident that HR readings before ANC were higher as the motion related spectral components 

were in the higher frequency range. These figures also revealed that the MPO, which employs 

advanced signal extraction technology (SET) designed to greatly extend its utility into high 

motion environments [27], was clearly unable to accurately track HR values while the subject 

was jogging at 4mph. HR readings derived from the ECG waveform were comparatively more 

reliable. Even in the presence of motion artifacts, R-waves were distinctly visible in the ECG 

waveform, as evident in Figure 8.40. Hence, HR readings computed based on the ECG 

waveform were used as a standard reference.  
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The percent improvements in HR and SpO2 (Table 8.4) support the observation made in section 

9.2.3. We found that the improvements are significantly greater for some tests, whereas in other 

trials the results produced by adaptive filtering were not clinically significant. As mentioned 

earlier, the improvements depend on the nature of the motion artifacts. Overall analysis suggests 

that ANC is effective in increasing the accuracy of the WPO when motion artifacts are present.  

 

9.2.6. LMS – Outdoor Running Experiments 

 

Running outdoors is similar to running/jogging on a treadmill. Thus, the LMS algorithm should 

have a similar effect on the PPG signals during outdoor running as it did during indoor treadmill 

jogging. The results from section 8.2.5 confirmed that HR readings during outdoor running were 

improved by 35%, while SpO2 values were improved by 12%.  

 

We noticed that the mean percentage improvement for running experiments was very low 

compared to improvement during treadmill jogging. The frequency of motion induced during 

jogging/running on a treadmill was relatively constant. This frequency depends on the speed and 

to a very large extent on running style. Treadmill experiments involve running at a constant 

speed, and hence we generally can see a single dominant motion frequency in the frequency 

spectrum of the PPG. In Figure 8.43, the dominant motion frequency was around 2.8Hz. On the 

contrary, speed does not remain constant while outdoors running. Thus, the motion affecting the 

PPG signal quality is not centered at a single frequency. As shown in Figure 9.3, the motion 

frequency cannot be easily identified by looking at the FFT of a motion corrupted signal. Since 

the motion frequency is not constant and can vary rapidly while running outdoors, the adaptive 

filter never fully adapts to the motion frequency. Hence, noise attenuation is reduced and the 

mean percentage improvement is not as high as during treadmill jogging. Still, utilizing LMS 

adaptive filtering was helpful to minimize some motion artifacts.  

 

Out of the 6 experimental tests, we noticed that trial#2 displayed a different behavior. For this 

particular trial, the HR values were improved by 12%, while there was degradation in SpO2 

accuracy. This behavior is not fully understood and requires further investigations.  
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Figure 9.3: Frequency spectrum of IR PPG waveform during outdoor running. 

 

9.2.7. LMS – Staircase Climbing Experiments 

 

Soldier and firefighters often have to climb up and down stairs during routine missions. 

Therefore it is important to better understand the behavior of the WPO during stair climbing. We 

noticed that the motion affected the PPG signals and deteriorated the WPO’s accuracy. Once 

again, the application of LMS algorithm was beneficial in recovering clean PPG signals. Post 

adaptive filtering produced more accurate HR and SpO2 readings. 

 

The FFT of PPG and ACC signals during staircase experiment revealed another interesting 

aspect of ANC. According to the HR values in Figure 8.60, the HR corresponds to frequencies 

between 1.1Hz – 2.5Hz. All frequencies outside this range are considered noise signals mainly 

contributed by motion artifacts. The frequency spectra of the PPG and motion signal consist of a 

band of motion frequencies between 2.5Hz – 3Hz. These additional frequencies were 

successfully attenuated by the LMS algorithm. Hence, the ANC is capable of eliminating several 

motion related frequency components that occur simultaneously.  
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9.3. TV-LMS  

 

The conventional LMS algorithm works effectively in reducing the effects of motion artifacts. 

However, the performance of this algorithm is highly dependent on the selected convergence 

parameter, µ. Lau and Hussain have devised a novel approach for the LMS estimation algorithm 

[23, 24]. This approach utilizes a time-varying convergence parameter rather than using a fixed 

µ. The developed algorithm is known as a Time-varying LMS (TVLMS) algorithm. In their 

study [23], the TVLMS showed better performance than the conventional LMS algorithm. To 

determine if the TVLMS algorithm is better than the conventional LMS for pulse oximetry 

applications, we implemented the TVLMS in Matlab. The first step in the implementation was to 

determine an initial value for µ.  

  

9.3.1. Step-Size Selection 
 

The TVLMS and LMS algorithms work similarly, except for a time varying convergence factor, 

µn, which is used in the TVLMS algorithm [23]. In the TVLMS approach, the convergence 

parameter is set to a large value in the initial state in order to speed up the algorithm 

convergence. Then, the value convergence parameter is reduced as the time progresses to 

produce a smaller mean-squared error [23, 24]. The equations and formulas for the TVLMS are 

summarized in Table 4.2.  

 

The steps involved in estimating an ideal starting value, µ0, is explained in section 8.4.1. The 

results in Figure 8.68 and Figure 8.67 are similar to the results in section 8.2.1. The plots indicate 

that the mean improvement in HR and SpO2 is best for µ0 = 0.01. Therefore, this value was 

chosen for further evaluation. For proper comparison, we use the same filter (M = 16) order for 

the two LMS algorithms.  

 

9.3.2. Results of TV-LMS filter 

 

The collected PPG data sets were adaptively filtered using the TVLMS algorithm. Both 

algorithms provided similar results. We found that the TVLMS algorithm performed slightly 

better than the conventional LMS algorithm. The LMS provided mean percentage improvements 

of 54% and 22% for HR and SpO2, respectively. On the other hand, the TVLMS algorithm 
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provided HR and SpO2 improvements of 56% and 25%, respectively. However, the additional 

2% improvement is clinically insignificant. Since both algorithms produced similar 

improvements, implementation of a conventional LMS algorithm is preferred since it is simpler 

and requires fewer operations. 

 

9.4. NLMS and MNLMS  

 

The conventional LMS algorithm having a constant µ produced acceptable results. However, it 

has a shortcoming. Usually the signal conditions are not static and vary with time. In such cases, 

the filter will not have enough time to adapt at constant convergence rate. That is, the 

convergence parameter must be varied depending on the input signal. The NLMS is a variant of 

the conventional LMS that deals with this shortcoming more effectively since it introduces a 

variable adaptation rate as explained previously in section 4.3.  

 

The MNLMS algorithm is a slightly modified version of the NLMS algorithm. In the NLMS 

algorithm, to avoid a divide-by-zero error, a small delta value is added. To avoid error induced 

by this delta, the MNLMS algorithm was implemented. In the MNLMS algorithm, the delta is 

added only if the energy of the input reference signal is zero. This is incorporated to reduce the 

adaptation error when the reference energy is non-zero. All the other equations and parameters of 

the MNLMS algorithm are the same as the NLMS algorithm. 

  

9.4.1. Step-Size and Filter Order Selection 
 

Although the convergence parameter is variable in the NLMS algorithm, a constant µ value has 

to be selected. The ideal µ value was estimated by analyzing the data sets with a variable µ and a 

constant M of 16. The results in section 8.5.1 show that the best percentage improvements are 

obtained with µ = 0.006. For µ values greater than 0.035, the improvements in HR were 

insignificant. These results are similar to the LMS algorithm. The NLMS filter order was also 

determined in a similar way. µ was kept constant and M was varied to obtained the best 

performance. The best performance was observed for M = 16. Thus, we implemented a 16
th
 

order NLMS filter having a µ of 0.006 and compared its performance with that of other adaptive 

algorithms. 
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Since the MNLMS algorithm is the same as the NLMS algorithm, it was implemented with the 

same filter parameters i.e. µ = 0.006 and M = 16. The results for the NLMS and MNLMS 

algorithm are discussed below. 

 

9.4.2. NLMS and MNLMS filter results 

 

PPG signals processed using the NLMS and MNLMS algorithms produced better results than the 

LMS and TVLMS algorithms. Due to faster convergence rates of the NLMS and MNLMS 

algorithms, HR values showed an improvement of 60% during motion. SpO2 values were 

improved by 22%. These results confirmed that varying µ yielded better performance during 

real-time implementation. However, the processing required in calculating the reference energy 

signal increases the computational complexity of the signal processing algorithm. The NLMS 

and MNLMS algorithms require M additional computations than the LMS algorithm in its basic 

form.  

 

9.5. RLS Algorithm 

 

The RLS algorithm is one of the two most popular adaptive filtering algorithms. The RLS 

algorithm has a fast convergence rate compared to the LMS algorithm [22]. Being an IIR filter, 

the RLS filter is not always stable and this limits its applications compared to the LMS filter. 

However, by selecting proper filter parameters, a stable RLS filter can be implemented.  

 

9.5.1. Forgetting factor and filter order selection 
 

The performance of the RLS adaptive algorithm is highly dependent on its filter order M. It also 

dependents on the forgetting factor λ [22]. Specifically, for the RLS algorithm, 0.99999 < λ < 1 

is typically utilized. Relente and Sison suggest using this range to reduce the effects of motion on 

the PPG [8]. For this thesis, we used λ = 1. 

 

The execution time of the RLS algorithm increases more rapidly with filter order than any other 

LMS algorithms [4, 6, 22, 23]. As the execution time of the RLS algorithm increases non-

linearly with filter order, the selection of filter order is based on a trade-off between the 

performance and execution time. Our data showed that improvement in HR and SpO2 by the 
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RLS algorithm was steady for M > 4. Hence, a 4
th
 order RLS algorithm with λ = 1 was 

implemented. 

  

9.5.2. Results of RLS filter 
 

The ANC implemented using the RLS algorithm helped to significantly improve the accuracy of 

the WPO during motion. We found that the performance of a 4
th
 order RLS algorithm was 

similar to that of a 16
th
 order LMS filter. Still, the processing time of the LMS algorithm is faster 

than the RLS algorithm. For example, a 16
th
 order LMS filter requires 32 additions and 33 

multiplications, whereas a 4
th
 order RLS filter requires 60 additions and 80 multiplications. 

Hence, the implementation of a LMS algorithm is preferred over a RLS algorithm. 

9.6. Comparative Study of Different ANC Algorithms 

 

This study was designed to investigate the performance of different ANC algorithms to minimize 

HR and SpO2 errors induced by movements. The results revealed that adaptive filtering of 

motion corrupted PPG signals can effectively reduce motion-induced HR and SpO2 errors.  

 

HR and SpO2 measurements estimated from adaptively filtered PPG signals have a lower MSE 

and SD than unfiltered PPG signals (see Table 8.7). Every adaptive algorithm produced similar 

improvements in HR and SpO2 during motion. While implementing an adaptive algorithm in 

real-time, we have to compromise between the mean percent improvements in measurement 

accuracy, convergence rate and filter order. For example, the performance of a 4
th
 order RLS 

algorithm is very similar to a 16
th
 order LMS filter. Additionally, the RLS algorithm has a faster 

convergence rate compared to the LMS algorithm which is essential in real-time applications. 

However, this comes at the expense of a longer computation time since the RLS algorithm 

requires M
2
 (M is filter order) operations per iterations. 

  

The literature shows that the performance of the TV-LMS [23, 24], NLMS [22, 25], and RLS 

[22, 26] algorithms is better than a conventional LMS algorithm. For real-time adaptive filtering 

of PPG signals, Table 8.7 reveals that a conventional LMS algorithm will be the best choice in 

terms of performance, computation and simplicity. Hence, a conventional LMS algorithm was 

implemented in the TI-MSP430 µC for real-time adaptive filtering.  
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9.7. Accelerometer Axis selection  

 

Selection of an appropriate reference noise is crucial for adaptive filtering of PPG signals. Many 

research groups have demonstrated the use of tri-axial accelerometer signals as an effective 

reference noise for pulse oximeters [3, 4, 6, 8]. This study was carried out to determine which 

axis out of the three should be used as a reference input to the adaptive filter. Although Comtois 

showed that utilizing the summation signals (X+Y+Z) yield best results in terms of MSE 

performance, his study was limited to motion artifacts generated from treadmill jogging [4]. This 

included data collected from head motion along all the three axes, treadmill jogging, outdoor 

running and staircase climbing. Additionally, we evaluated the performance of a multi-input 

adaptive filter using motion signals along all three axes simultaneously.  

 

The results in section 8.8 illustrate that the X-axis (vertical) was the most dominant plane of 

acceleration. This was expected since sensor motion associated with head movement is mainly in 

the vertical direction. The data indicated that the X-axis motion provided the most significant 

improvement in HR and SpO2. The next major contributor to accuracy improvement was the Z-

axis signal, and the Y-axis contributed the least.  

 

Data analysis revealed that the combination X+Y+Z provided the best results in terms of MSE 

improvement. These results are in agreement with Comtois [4]. The results obtained from the 

multi-input ANC were not as significant as the combination of X+Y+Z. With multi-input ANC, 

an improvement of 26% and 13% was observed for HR and SpO2 values, respectively. Thus, we 

used the summation of all tri-axial signals as a reference noise input to the ANC algorithm. 

  

However, using the summation of all tri-axial signals for ANC has one disadvantage since the 

energy and morphology of the reference signal becomes phase dependent. Hence, if two or more 

signals are out of phase, they will cancel each other. In that case, the adaptive filtering will not 

be very effective and it could also negatively affect the PPG signals. This is a potential area for 

future work. In spite of this limitation, it would be advantageous to utilize the summation of the 

tri-axial ACC signals as a reference noise input for ANC.  
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9.8. Validation of Real-time ANC algorithm 

 

After choosing the adaptive LMS filter for real-time implementation in TI-MSP430 µC, its 

performance was tested by comparing the results with the Matlab’s LMS filter. As the main was 

to validate the C-code, comparison of HR and SpO2 values before and after ANC was not 

necessary. 

 

The waveforms plotted in Figure 8.76 show that the PPG waveform processed by the µC and 

offline matched completely. The 4
th
 order LMS filter implemented in real-time successfully 

attenuated the motion peaks. Processing using the same input signals by Matlab’s LMS filter 

yielded the same results.  

 

9.9. ANC processing time 

 

The main focus of this thesis was the real-time implementation of an ANC algorithm for 

minimizing the effects of motion artifacts. After testing each adaptive algorithm, it was found 

that the LMS algorithm is the most optimal algorithm for real-time implementation. We also 

found that a LMS algorithm with µ = 0.01 would produce the best results in terms of reducing 

HR and SpO2 errors. Moreover, a 16
th
 order filter should be implemented for real-time ANC. 

However, some time constraints restrict implementation of a 16
th
 order LMS filter in the current 

version of the WPO sensor.  

 

Table 8.9 shows the execution time required by the TI-MSP430 µC to estimate HR and SpO2. 

Accordingly, the LMS algorithm must complete processing within 210msec. As per the 

processing time chart (Figure 8.77) the projected execution time for a 16
th
 order LMS filter is 

260msec. This is beyond the available processing time. Hence, an 8
th
 order LMS filter was 

implemented in the current WPO sensor.  

 

9.10. Auto-triggering of ANC 
 

Auto-triggering of the ANC algorithm was proposed to avoid unnecessary processing during rest 

and thus save battery power. The explanation presented in section 8.11 clearly highlights the 
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simplicity of the proposed algorithm. If the motion signal has high amplitude, it will have high 

energy and will automatically start the adaptive processing.  

 

The application of this method results in saving 110msecs of processing time for an 8
th
 order 

LMS algorithm. Normally, an 8
th
 order LMS algorithm, if processed continuously, consumed 

130msec out of the 500msec processing time. With the application of the proposed method, 

during low head movements, the ANC process consumed only 14msec. This time is required to 

compute the energy of the motion signal. There was no reduction in the percentage of HR and 

SpO2 improvement as the ANC process was initiated when heavy motion was detected. Due to 

its effectiveness in avoiding unnecessary signal processing, this method was also implemented in 

the WPO.  

 

9.11. Real-time ANC results 

 

Several groups have suggested the use of ANC based on a noise reference signal obtained from 

an ACC that is integrated into the sensor to represent body movements [3, 4, 6, 8, 9]. These 

groups have demonstrated promising feasibility for motion induced artifact rejection. These 

groups have presented results based on offline processing of PPG data acquired using their 

custom pulse oximeters. They did not present quantifiable data showing whether ACC-based 

ANC resulted in more accurate estimation of HR and SpO2 during real-time applications.  

 

A series of head motion and jogging experiments were performed to compare the benefits of 

ANC using two WPO sensors placed side-by-side on the forehead. The sensor with ANC 

estimated HR and SpO2 values that were more accurate compared to values obtained from the 

reference sources. Figure 8.79 and Figure 8.80 showed that a traditional non-adaptive signal 

processing algorithm overestimated HR values when motion artifacts were present. 

 

During the initial phase of the experiments, while the subjects were at rest, HR and SpO2 values 

from the two sensors matched closely within ± 2%. These small errors are acceptable as the two 

sensors were placed side-by-side rather than at the same position. Once the physical activities 

were completed, the two sensors must report approximately the same HR and SpO2 values. 
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However, there was a certain time delay before the values from the two sensors matched. This 

delay is due to the processing time involved in computing the average HR and SpO2 values.   

 

To conserve battery life, an auto-triggered algorithm was also implemented inside the µC. 

Percentage improvements shown in Table 8.11 and Table 8.12 validated the functionality of the 

algorithms. The percentage improvements varied significantly for each trial as the nature of 

motion was different in each trial. These results clearly highlight the effectiveness of ANC for 

real-time pulse oximetry. Data from this study were limited to head movements and treadmill 

jogging only. Further studies must be conducted to assess potential of the ANC for obtaining 

more accurate readings during other types of activities. It would be more beneficial to test the 

WPO on the field during more rigorous training exercises.  

 

9.12. Limitation of ANC 

 

Our results clearly demonstrate the advantages of using ANC in real-time pulse oximetry. 

However, ANC also has some drawbacks. Wood & Asada [9] and Comtois [4] have shown that 

spectral overlap between ACC and motion corrupted PPG signals could reduce the effectiveness 

of the ACC-based ANC. ANC-based filtering implements an adaptive notch filter with a notch 

frequency corresponding to the motion frequency. Hence, overlap of cardiac and movement-

induced motion frequencies attenuates the fundamental cardiac frequency, and also reduces HR 

and SpO2 accuracy.  

 

According to Comtois [4], spectral overlap cannot have a significant effect on the accuracy of 

HR and SpO2 during motion since there was a low probability that the PPG and acceleration 

signals overlap during movement. Therefore, there should be no negative effect when ANC is 

utilized. However, the results presented in this thesis contradict his findings. Our results clearly 

demonstrate the negative effect of adaptive filtering on HR and SpO2 measurements when 

frequency overlap was present. The data also showed that HR values are more prominently 

affected in trials where body motion and cardiac signals are synchronized.  

 

Methods to overcome this basic limitation must be devised in order to make the system more 

robust. An algorithm that can determine phase difference between PPG signals reference motion 
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signals should be investigated. However, such an algorithm will consume more µC processing 

time and will further the battery life. More studies must be in future to develop a time-efficient 

digital phase detector that avoids adaptive filtering in the case of spectral overlap.  
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10. CONCLUSION  
 

Remote physiological monitoring of individuals working in dangerous and high-risk 

environments may provide a valuable means for saving their life in critical conditions. It would 

also help medical personnel and first responders to better prioritize medical intervention when 

the sources are limited. 

 

Pulse oximeters can measure arterial oxygen saturation (SpO2) along with heart rate (HR), heart 

rate variability (HRV) and respiration rate (RR) noninvasively. However, commercially available 

pulse oximeters are not reliable in the presence of motion artifacts that are expected in field 

applications. Hence, a motion tolerant battery-operated wireless pulse oximeter (WPO) has been 

developed. The main goal of this thesis was to implement an adaptive filtering technique for real-

time pulse oximetry to minimize HR and SpO2 errors during motion. A tri-axial accelerometer 

(ACC) was integrated into our WPO to capture motion signals that diminished the accuracy of 

the WPO. The motion signals acquired from the ACC were used to determine body activity and 

orientation. 

 

To investigate the effects of motion artifacts on Photoplethysmograph (PPG) signals, several 

experiments were conducted during rest, cycling, treadmill jogging, outdoor running and 

staircase climbing exercises. These experiments were performed since intense motion artifacts 

are known to affect the performance of a pulse oximeter. 

 

The results from the cycling experiments proved that the inaccuracies are attributed mainly to 

sensor movement rather than rapid changes in HR values. First, it was determined that the WPO 

was able to accurately measure HR and SpO2 during rest and cycling on a stationary bicycle. 

During physical activities, motion contributes directly to the degradation of the infrared (IR) and 

red (R) PPG signals. Hence, HR and SpO2 errors increase during movements. Generally, sudden 

drastic drops were observed in SpO2 readings. We found that HR values were either 

overestimated or underestimated depending on the extent of motion.  
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To attenuate the motion induced noise, various ANC algorithms were implemented in Matlab. 

These included the LMS, TVLMS, NLMS, MNLMS and RLS algorithms. A summation of 3 

planar acceleration signals (X+Y+Z) were used as a reference input for the adaptive filters as 

they provided the best results. This suggests that ANC can be used to extract more accurate 

readings from the WPO during motion.   

 

For a 16
th
 order conventional LMS algorithm with a step-size (µ) of 0.01, HR and SpO2 values 

showed a mean percent improvement of 55% and 22%, respectively. Variants of the LMS 

algorithm also showed similar improvements. A 4
th
 order RLS filter with a forgetting factor (λ) 

equal to 1 improved the WPO performance similar to a 16
th
 order LMS filter. A comparative 

study was performed to select an appropriate algorithm for real-time implementation. The RLS 

algorithm has a faster adaptation rate and requires a lower filter order which is essential in real-

time applications. However, it comes at the expense of a longer computational time. Thus, the 

conventional LMS algorithm is more appropriate for real-time adaptive filtering since it requires 

significantly less operations. 

 

A 16
th
 order LMS algorithm with µ = 0.01 proved to be the best algorithm for recovering clean 

PPG signals. However, due to processing time constraints in the current hardware version, a 

lower order LMS filter was implemented inside the TI-MSP430 µC. The final algorithm that was 

developed for minimizing the effects of motion artifacts comprised an 8
th
 order LMS filter with µ 

= 0.01 along with an auto-triggering algorithm. The auto-triggering algorithm was devised to 

initiate ANC only when motion signals were above a certain threshold level. This algorithm 

avoids unnecessary PPG processing during little motion and extends battery life. 

  

Unlike processing time, program memory does not appear to be a limiting factor. The PPG 

signals required for adaptive filtering are already stored in memory for subsequent calculation of 

HR and SpO2. Additional memory is required to store the motion signals that are used as 

reference noise signals by the ANC algorithm. Since the sample frequency of our WPO is 80Hz, 

forty 16-bit digital samples of motion signal must be stored in the RAM of the µC. This requires 

approximately 160 bytes of RAM. On average, the implementation of the noise cancellation 



135 

 

algorithm will require approximately 500 bytes for storing the vectors used in the calculation 

process. This memory requirement would not limit the feasibility of implementing this adaptive 

noise cancellation algorithm since 10KB of RAM is typically available in the TI-MSP430F1611 

µC.  

 

As a final test, a few data sets were collected with the real-time ANC routine while the subjects 

performed various head movements and treadmill jogging exercises. HR and SpO2 values were 

recorded from two WPOs placed side-by-side on the subject’s forehead. With ANC, we found 

that HR errors were reduced from 12BPM to 6BPM for reading ranging between 60 to 180BPM. 

Similarly, SpO2 errors were reduced from 5% to 2% during ambient breathing. These 

improvements clearly demonstrated that HR and SpO2 measurements are more reliable from an 

ANC-based WPO during motion.  

 

Despite these promising results, the effectiveness of the ACC-based adaptive filtering technique 

is limited to certain activities and depends on the type of motion artifacts. Reduction of noise 

could be limited during motions that are less repetitive. Moreover, if the motion frequency shifts 

rapidly over a wide spectral band, the adaptive filter would be less effective due to a slower 

adaptation rate. ANC might also deteriorate measurement accuracy when cardiac and motion 

frequencies overlap. 
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11. FUTURE RECOMMENDATIONS 
 

The studies conducted in this thesis evaluated the effectiveness of adaptive filtering during head 

movement, cycling on a stationary bicycle, treadmill jogging, outdoor running, and staircase 

climbing. Although these activities represent typical movements that are commonly associated 

with field operations, additional studies must be conducted to confirm the effectiveness of the 

ANC algorithms.  Specifically, the results presented demonstrated the effectiveness of the ANC 

algorithm during short periods of movements. It would be useful to determine the feasibility of 

these algorithms during longer durations. 

 

 Furthermore, the results showed that cardiac and movement induced spectral overlap limits the 

effectiveness of the ANC algorithm. It could be reasonable to develop additional software 

routines that prevent PPG signal processing in case of frequency overlap. For example, a digital 

phase detector as shown in Figure 11.1 can be used to determine the phase difference between 

the PPG and motion signals. If the two signals are in phase or 180
o
 out of phase, adaptive 

filtering should be avoided. 
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Figure 11.1: Implementation of a phase detector algorithm to bypass ANC during frequency 

overlap. 

 

Although previous results presented in this thesis suggest that the use of tri-axial acceleration 

(X+Y+Z) signals are appropriate, there are some limitations in using all three axes as a reference 

noise signal for adaptive filtering. For instance, our adaptive filtering algorithm will fail if two or 

more signals are out of phase as they will tend to cancel each other. We also assume that each 

axis contributes equally towards the distortion of the PPG signal which is not always true. 

Hence, more effective methods should be developed to determine proper reference signals 

depending on the type of motion involved. 

  

SpO2 measurements are computed based on the AC and DC components of the IR and R PPG 

signals. Although it was shown that ANC algorithms were effective in improving SpO2 

measurements during motion, these improvements were limited to adaptive filtering of the AC 

components of each PPG signal. No signal processing has been applied to minimize the effects 

of artifacts on the corresponding DC components. Additional signal processing algorithms could 

be designed to minimize the effects of motion artifacts on the DC components, as this may lead 

to further improvements in SpO2 measurements. 
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Finally, PPG signals used to estimate HR and SpO2 can also be used predict respiration rate (RR) 

and heart rate variability (HRV). This thesis investigated the effects of ANC to improve HR and 

SpO2 during motion. Further studies should be conducted to determine the effects of ANC on RR 

and HRV measurements.  
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