
Nuances in Efficacy of
Computer-Based Learning

Platforms
Understanding the Interplay between

Instructional Design, Engagement, and
Learning

Dissertation

Kirk P. Vanacore

Dissertation Committee:

Adam Sales, Worcester Polytechnic Institute (Chair)
Neil Heffernan, Worcester Polytechnic Institute
Erin Ottmar, Worcester Polytechnic Institute
Stacy Shaw, Worcester Polytechnic Institute
Ken Koedinger, Carnegie Mellon University

School of Arts and Sciences
Worcester Polytechnic Institute

Worcester
August 20, 2024





Contents

Abstract 1

1 Introduction 3
1.1 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Programs and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Beyond Performance Analytics** . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Heterogeneous Effects for Disengaged Students 45
2.1 Effect of Assistance on Gaming The System** . . . . . . . . . . . . . . . . . 45
2.2 Effect of Gamification on Gaming the System** . . . . . . . . . . . . . . . . 57

3 The Effect of Game-Based Failure on Productive Persistence 87
3.1 Effect of Game-Based Failure on Productive Persistence* . . . . . . . . . . 87

4 The how Game-Based Failure can Productive Persistence 133
4.1 Benefit of Gamification for Persistent Learners** . . . . . . . . . . . . . . . 133
4.2 How Behavioral Tendencies Towards Persistence Moderates the Effectiveness

of Computer-Based Learning Platforms . . . . . . . . . . . . . . . . . . . . 144

5 Conclusion 199
5.1 Engagement Dichotomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5.2 Behavior-Moderated Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Bibliography 207
∗ ∗∗

∗Submitted Works
∗∗Published Works

i





Abstract

Assessing the impact of educational programs on student learning is a vital part of
educational and learning sciences research. Randomized control trials are often employed
to evaluate the effectiveness of these programs, with results typically presented in binary
terms – effective or ineffective. However, programs and practices may be effective for some
students and not for others, with the program’s impact possibly dependent on specific
implementation parameters and students’ attributes. One under-explored dimension that
likely influences the efficacy of educational programs is student engagement.

This dissertation presents research on two opposing engagement behaviors – gaming
the system and productive persistence – commonly exhibited in computer-based learning
platforms. The studies included in this dissertation explore how programs’ instructional
designs can influence students’ behavior and how students’ behavioral tendencies moderate
the programs’ efficacy. For students who game the system, The evidence suggests that the
most argent ‘gamers’ may benefit from delayed access to hints and feedback, with mixed
evidence on the impact of gamification. Although one gamified CBLP likely negatively
impacted ‘gamers’ learning, another had no interaction with students’ propensity to game
the system, indicating a complex relationship between disengagement and instructional
designs. On the other end of the spectrum, gamified performance-based feedback positively
affected students’ productive persistence behaviors. Furthermore, the impact of various
programs differed based on students’ tendencies toward engaging in productive persistence.
This finding suggests that the ways in which programs allow for and encourage productive
persistence may influence whether and how students learn.

Overall, this work highlights the need to consider behavior heterogeneity —- how a
program’s effect varies based on participants’ behavioral tendencies -— when evaluating
whether and for whom programs are impactful. If a program’s impact depends on students
having propensities towards or away from specific behaviors, instructional designers should
consider how programs can be developed to increase positive learning behaviors and provide
students with the educational experiences that will benefit them most.
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Chapter 1

Introduction

Researchers, governments, and funding agencies have put substantial effort and resources
into assessing the impact of educational programs on student learning [16,19,24,39,43].
Typically, this involves running efficacy studies.∗ Randomized control trials have been
lauded as the best study design for evaluating effectiveness as randomization allows for
estimating unbiased and unconfounded treatment effects [7,38]. The results of these studies
are often presented as a binary. An educational program may be effective or ineffective. A
teaching practice works, or it does not work. However, some programs and practices are
effective for some students and not for others [18,40]. Furthermore, a program’s impact
may depend on specific implementation parameters [15,28]. Effectiveness may also vary
continuously along measures of participants’ attributes, like students’ prior knowledge of
the content [13]. Therefore, to have a clear understanding of efficacy, we must consider
many possible dimensions in which a program can be more or less impactful [8, 10].

Engagement is one understudied dimension that likely influences the impact of an
educational program. Figure 1.1 presents a conceptual model of how student engagement
is involved in mediating and moderating the effects of a program on learning outcomes.
In this heuristic, the program components are divided into two aspects: the content that
is being taught and the design of the program that delivers the content. Instructional
designs can include different problem types, adaptive features, on-demand assistance, and
various forms of gamification. Both aspects influence students’ in-program processes. These
behaviors include how students attend to the learning activity (i.e., engagement) and their
cognitive processes underlining improvements in understanding and abilities that occur
while students are using the programs (i.e., cognitive processes). Engagement behaviors
such as diligence or persistence may manifest as continued work within a learning activity
even after low performance [25] or appropriate pauses for thinking [12, 27]. Conversely,
students may display disengagement by quitting an activity early (i.e., stopout [9]) or
progressing through an activity without learning (i.e., gaming the system [3]). Notably,
students’ engagement may influence their cognitive processes. For example, attentiveness to
aspects of the program may be required for certain learning gains. The cognitive processes
may be indirectly observed through behaviors such as performance and, when it is available,
shown work (e.g., math deviations, open response explanations). Yet cognitive processes

∗Throughout this paper, I use the words efficacy and effectiveness to mean the same thing: whether
a program has the intended impact on participants. The nuanced distinctions between efficacy and
effectiveness are beyond the scope of this paper, but broadly speaking, the methods involved in this work
could apply in both contexts.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Conceptual model for how program components impact learning outcomes
through in-program processes.

are internal and are therefore unobservable for researchers. Though these processes may
be latent, learning can be estimated through measures of retention and transfer [44].

This model displays how adjustments in the instructional design may influence learning
in two ways. First, they can directly affect students’ cognitive processes through which
learning occurs. For example, including illustrative diagrams of complex concepts as part
of the instructional design may help students understand those concepts, thus directly
impacting the students’ cognitive processes. Alternatively, the instructional design may
influence students’ cognitive processes by first impacting the way those students engage
with the content. Providing gamified rewards, for example, may increase persistence, giving
students more learning opportunities and thus influencing their cognitive processes and, by
proxy, their learning outcomes. The following work presents studies that delve into these
indirect paths by evaluating how engagement interacts with the effects of institutional
design on learning.

The following studies and proposed analyses address two juxtaposed behaviors characteristic
of different qualities of engagement: gaming the system and productive persistence. Gaming
the system is the act of attempting to progress through a learning activity in a CBLP
by leveraging the features of that CBLP, such as hints and feedback, to submit correct
responses [3]. Alternatively, productive persistence is the effortful continuance of a learning
activity to overcome difficulties or misunderstandings. Often, this requires students to
deliberately engage in one learning task while intentionally delaying their progress in the
program, ostensibly to ensure they have mastered the underlying skills [21,32]. Notably,
these behaviors are orthogonal – one cannot engage in one while also engaging in the
other – and they represent two ends of the spectrum of engagement. When students
game the system, they exhibit minimal engagement beyond aimless clicking or leaving the
activity altogether. Therefore, gaming the system behaviors represent the bottom of the
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engagement spectrum. On the other hand, when students display productive persistence,
they work at the top of the engagement spectrum, as productive persistence requires
effortful conscientiousness [32].

Computer-based learning platforms (CBLPs) employ various instructional designs,
in part, to help maximize student engagement with learning activities Many programs
embed instruction, feedback, and assistance into problem sets to make the content more
accessible to students with a wide range of prior knowledge and abilities [11, 29, 30, 35, 42].
Gamification – the inclusion of game-like features into traditionally non-game activities –
can increase engagement by making content and concepts more amenable to students who
are likely to dislike and even avoid the learning tasks [14, 26]. According to [6]’s taxonomy
of game attributes, games generally include action language, assessment, conflict/challenge,
control, environment, game fiction, human interaction, immersion, and rules/goals. The
definitions of game features can be obtuse, such as features that induce a ”series of
interesting choices” [37] to those that inspire challenge, curiosity, control, and fantasy [31].
Generally, the role of gamification is to make an activity fun and engaging, thus changing
students’ behaviors and attitudes [26].

In theory, instructional design decisions may affect students differently based on their
engagement tendencies. For example, a student who is likely to disengage from a static
problem set may be inspired to engage in a problem set if there are hints and feedback
that make the problems understandable and accurately attainable. Alternatively, levels of
assistance that are misaligned with a student’s abilities may shield students from the need
to participate with the requisite amount of struggle for learning [23]. Furthermore, students
who are likely to be disengaged by abusing those hints and feedback could alternatively
immerse themselves in a learning game [36]. Thus, the effect of these methods may vary
by, or even be continent upon, students’ engagement profiles.

Despite the focus on educational efficacy studies from researchers and policymakers
[16,19,24,39,43] as well as the immense effort to predict and understand students’ learning-
related behaviors within CBLPs (e.g., [2, 5, 17]), there is a gap in understanding the
nuanced relationship between how students engage with CBLPs and CBLPs’ effectiveness.
The following work includes a series of studies that address some of the ways in which
engagement interacts with instructional designs within CBLPs, thus potentially influencing
their efficacy. As stated above, I focus on two components of engagement—gaming the
system and productive presence—in the context of CBLPs with differing instructional
designs involving varying forms of assistance delivery and levels of gamification. This
work will contribute to our growing understanding of the underlying learning mechanisms
as students use CBLPs. For example, if a CBLP only impacts students when they
engage with that program in a specific way, that pattern of behaviors and the program
features that support them likely represent a learning mechanism. Understanding the
interaction between engagement and efficacy can help learning experience designers build
more impactful programs by developing features that help students engage in behaviors
associated with learning. Furthermore, the heterogeneity identified by these analyses
suggests personalized differential impact patterns; some students will benefit from one
instructional design, whereas others will benefit from an alternative design. Thus, the
analyses point toward the need for dynamic personalization, while also providing some
indicators of which students might benefit from which design.

Beyond the theoretical and practical implications, there are methodological components
of this work relevant to the field of learning sciences and the study of CBLPs. Each analysis
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CHAPTER 1. INTRODUCTION

utilizes a causal methodology that allows for nuanced inferences about how CBLPs impact
students. May of the following analyses include on a method of causal moderation known
as Fully Latent Principal Stratification (FLPS) that allows for the interactions between
treatment assignment and latent states that emerge after the intervention begins. I also
use a method for analyzing regression discontinuity designs (RDDs), Limitless RDD, to
estimate causal effects when treatment assignment is determined by a cutpoint on some
scale, even when that scale is not continuous and the outcome is binary. Throughout this
proposal, I discussed the implications of how these methods can be used in various contexts
to further our understanding of how students learn through CBLPs.

1.1 Dissertation Overview

The following document consists of four sections presenting multiple published and
unpublished works, culminating in the proposal of new work. Each work represents
a stand-alone manuscript. Therefore, although I have taken steps to prevent self-plagiarism,
the descriptions of the study design, data, and methods are, at times, similar or redundant
across these documents.

Beyond providing a brief preface to the topic of CBLP effect heterogeneity based on
engagement, the Introduction (Chapter 1) includes a book chapter published in Perspectives
on Learning Analytics for Maximizing Student Outcomes, in which I, along with my
coauthors, present work that looks beyond performance orientation of learning analytics
towards process base orientation to understanding and impacting student learning. In
this work, I discuss the need to consider the impact of CBLP in the context of students’
engagement as a part of their learning processes.

In Chapter 2, I present two studies analyzing the effect heterogeneity of CBLPs based
on students’ tendencies towards gaming the system (i.e., ‘gamers’) using FLPS. The
first study (Section 2.1), The Effect of Assistance on Gamers: Assessing The Impact of
On-Demand Hints & Feedback Availability on Learning for Students Who Game the System,
focuses on how the availability of assistance while solving problems interacts with students’
propensity to game the system. The second study (Section 2.2), Effect of Gamification
on Gamers: Evaluating Interventions for Students Who Game the System, considers the
extent to which ‘gamers’ would benefit from a gamified design. I find that the most ardent
‘Gamers’ may benefit from delayed access to hints and feedback and less. Furthermore, I
found mixed evidence for how ’gamers’ are affected by gamification. One of the studied
gamified CBLPs likely negatively impacted ‘gamers’ learning. Yet assignment to another
gamified CBLP did not interact with students’ propensity to game the system. Overall,
these interactions suggest a nuanced relationship between disengagement and each of the
CBLPs’ instructional designs.

Chapter 3 involves two studies of productive persistence: one estimates the effect of a
specific feature within a gamified CBLP on a productive persistence behavior, and another
evaluates the effect of the CBLP varies based on the behavior. The first study (Section
3.1), Effect of Game-Based Failure on Productive Persistence, examines how gamification
can help students respond to failures productively. Although failure typically precedes
disengagement in traditional learning environments [1], in the context of games, failure can
create experiences of ”pleasant frustration” that engage players to continue attempting to
succeed [20]. Using Limitless RDD, I find that game-based failure has a positive impact on
students’ likelihood to display productive persistence by reattempting problems on which
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1.2. PROGRAMS AND DATA

they have performed poorly. Overall, this finding suggests that gamification may be used
to help students overcome the typically demotivating nature of failure experiences.

In the final Chapter (Chapter 4), I explore how students’ propensity to display
productive persistence by reattempting problems after sub-optimal performance is associated
with differences in the effectiveness of CBLPs. Using a Fully Latent Principal Stratification
(FLPS) model on data from three CBLPs, results show that while reattempting problems
boosts performance, its impact varies depending on the CBLP’s instructional design. The
findings emphasize the importance of designing educational technologies that not only
promote persistence but also offer multiple problem-solving opportunities to cater to diverse
student needs.

1.2 Programs and Data
As mentioned above, the studies presented in Chapters 2 and 3 and those proposed in
Chapter 4 use data from an efficacy study, which evaluated the impact of three CBLPs
— ASSISTments, From Here to There (FH2T), and DragonBox-12 (DragonBox) – on US
middle school students’ algebraic understanding. The study results are reported in [13],
and a full description of the data can be found in [33]. Each manuscript presented in this
paper provides relevant details of the study design and the data used.

1.3 Beyond Performance Analytics**
See manuscript below.
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Abstract

To meet the goal of understanding students' complex learning processes and maximizing their

learning outcomes, the field of Learning Analytics delves into the myriad of data captured as

students use computer-assisted learning platforms. Although many platforms associated with

Learning Analytics focus on students' performance, performance on learning-related tasks is a

limited measure of learning itself. In this chapter, we review research that leverages data collected

in programs to understand specific learning processes and contribute to a robust vision of

knowledge acquisition. In particular, we review work related to two important aspects of the

learning process: students' problem-solving strategies and behavioral engagement, then provide an
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example of an effective math program that focuses on the learning process over correct or

incorrect responses. Finally, we discuss ways in which we can incorporate findings from this

research into the development and improvement of computer assisted learning platforms, with the

goal of maximizing students' learning outcomes.

1. Introduction

Learning is a complex process that requires exposure to content, thought, struggle, and

memory (Bjork & Bjork, 2020; Koedinger et al., 2023; Lynch et al., 2018; Okano et al., 2000). To

have learned something, a student must not only be able to perform a task during or directly after

instruction; they must demonstrate that they can retain the information or skill and apply it to new

situations (Soderstrom & Bjork, 2015). Learning systems in which students encounter desirable

difficulties (Bjork & Bjork, 2020) – such as varying presentation of content (Smith et al., 1978;

Smith & Handy, 2014), interweaving knowledge components instead of presenting them

sequentially (Rohrer et al., 2014), spacing content delivery (Cepeda et al., 2006) and retrieval

practice (Karpicke & Zaromb, 2010) – increase the likelihood of learning. Yet, when desirable

difficulties are designed into learning activities, students' performance often suffers, even as these

design choices can positively affect learning as measured by distal outcomes (Roediger &

Karpicke, 2006; Shea & Morgan, 1979; Smith & Rothkopf, 1984).

Despite the potential incongruence between performance and learning, Computer Assisted

Learning Platforms (CALP) often rely heavily on students' performance within learning activities

as the primary measure to evaluate students. The instructional design in these CALPs may vary

greatly; some incorporate game-based learning (Siew et al., 2016), puzzles (Rutherford et al.,

2010), and simulations (Martens et al., 2004; McCoy, 1996), while others focus on more

traditional problem sets with tutorial instruction (Heffernan & Heffernan, 2014). While specific

2
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design and difficulty within these instructional methods may also differ, many of these CALPs use

mastery learning (Barnes et al., 2016; Heffernan & Heffernan, 2014; Macaruso & Hook, 2007;

Ritter et al., 2016). Mastery learning is based on the premise that students must master a

knowledge component prior to progressing to new content (Bloom, 1968). Mastery of a skill is

often determined using students' performance within the activities, either by modeling student

knowledge or using simple criteria, such as solving three problems correctly in a row (Corbett &

Anderson, 1994; Kelly et al., 2015; Reich, 2020; Yudelson et al., 2013). Early education

technologies relied on modified versions of Rasch models which estimated the probability a

student will get a problem correct based on a function of a problem's difficulty and a student's

ability (Reich, 2020). Alternatively, knowledge tracing – which seeks to predict the probability

that a student has mastered a knowledge component – has emerged as one of the main methods for

assessing students' mastery of learning within a problem set (Corbett & Anderson, 1994; Yudelson

et al., 2013). Furthermore, mastery learning systems often include interactive elements that

provide assistance, which may further boost performance by reducing the mental effort necessary

to produce correct responses, while potentially hindering learning (Koedinger & Aleven, 2007;

Koedinger et al., 2008). Overall, these systems rely on students' performance data, most often

represented by their binary outcomes on problems within an activity, to evaluate student learning

and determine whether students should progress on to the next knowledge component.

Furthermore, a portion of Learning Analytics (LA) research also relies on proximal

performance within a program. For example, A/B tests, which are commonly used in LA research

both to evaluate features and to study learning mechanisms, often use proximal performance as an

outcome measure. A/B tests are experiments that test the effect of conditions on a desired outcome

through random assignment to a treatment (e.g., access to feature) and control (e.g., no feature

access). They have commonly used the impact of evaluate features - such as hints, feedback, and

3
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reward systems - on student learning. Some of these tests rely solely on the students' performance

directly after the problem to estimate the effects of features and interventions (Haim et al., 2022;

Patikorn & Heffernan, 2020; Prihar et al., 2021; 2022), while others use a variety of performance

and behavioral outcomes that were generated during or directly after the experimental problem set

(Gurung, Baral, et al., 2023; Vanacore et al., 2023).

Many mastery learning programs are effective at improving students' learning outcomes,

and analyses of performance have advanced our understanding of parts of the learning process

(Anderson et al., 1995; Hurwitz & Vanacore, 2022; Kulik et al., 1990; Roschelle et al., 2016). Yet,

there is evidence that alternative approaches to mastery learning, such as emphasizing students'

learning processes as they solve problems, may have a greater impact on learning

(Decker-Woodrow et al., 2023). For LA to fulfill the goal of understanding student learning and

optimizing instructional systems (Long et al., 2011), the field has probed deeper into students'

behaviors in CALP as they solve problems while incorporating this understanding into the

development of learning systems. This process leverages different problem types which can range

from traditional multiple-choice or fill-in-the-answer problems to more complex puzzles and

games that provide different data about how students engage with the content. This undertaking

requires analyzing and utilizing more than the proximal performance measures within the data,

and focusing on the learning processes by which students arrive at the answers they submit.

Our chapter presents various LA research that goes beyond performance measures to

understand students' learning processes as they solve problems in various CALP. The chapter is

divided into two sections (Sections 2 and 3). In Section 2, we provide examples of research on

both mastery learning programs and programs that use alternatives to proximal correctness when

evaluating student learning, and explore how the field is moving toward a more nuanced

understanding of learning. In Section 3, we provide an example of a program, which focuses on

4
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students' problem-solving processes, effort, and engagement, and discuss its impact on student

learning.

To frame Section 2, we present a conceptual model (presented in Figure 1) in which data

generated by CALP are used to understand how constructs that underlie students' learning

processes lead to robust learning defined by retention and transferability. This model is not

comprehensive, but it is a useful framework for understanding LA research. Studies in LA use a

wide variety of log data collected in CALP. For the purpose of this chapter, we have grouped data

into two general categories: action data and time data. Action data varies depending upon the

program, but may include log-in/out data, attempts to solve problems, submitted answers, use of

hints embedded within the programs, and steps students take to solve the problem (i.e.,

derivations). Time data can be aggregated at different levels to include students' response time for

each action, the time taken to complete a problem, or their total time using the program. Section 2

focuses on how various data from CALP is being used in LA research to study two key constructs

of learning: problem-solving strategies and behavioral engagement.

5
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Figure 1. Conceptual model of the components of learning analytics research which include the data
captured in CALP systems, the components of the learning process, and learning outcomes. Lines represent

the interconnected nature of the components across the model's levels.

In Section 3, we use an online learning game, From Here To There! (FH2T) as an example

of how systems that emphasize the learning processes can effectively promote students'

mathematical learning. We outline the theoretical basis for FH2T and discuss evidence of its

efficacy. Finally, we discuss new causal research on understanding key mechanisms and behaviors

that drive the efficacy of FH2T as well as ways in which we can encourage effective learning

behaviors within learning systems. As a whole, FH2T, and its associated research base, illustrate

how CALP can improve our understanding of students' learning processes while positively

impacting those processes by looking beyond performance.

2. Beyond Performance: Studying Learners' Problem-solving Strategies

and Engagement

2.1 Problem-solving Strategies

In order to solve problems, students need to engage in cognitive processing to understand a

problem, derive a solution, and conduct a sequence of steps to arrive at their answers. In many

CALP, this process is unobserved, as programs simply ask the students to select or input their final

answers into the system. In these cases, possible problem-solving paths may be inferred by

speculating plausible processes for incorrect answers. While incorrect answers can help provide

cues about student errors and inform targeted feedback and guidance, the variability in correct

approaches or multiple strategies that students use while problem-solving is largely invisible in the

data.

6
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In traditional mastery learning CALP, researchers have attempted to derive students'

processes from their given solution. For example, in a series of studies, Gurung and colleagues

(2023A; 2023B) had teachers examine common wrong answers in a CALP, speculate how students

would produce those answers, and then create automated feedback that directs toward the

estimated paths. The feedback had mixed success in affecting students' performance, which may

indicate that the teacher's speculations were at times incorrect. Notably, this system only works for

incorrect answers and does not accommodate multiple paths to any solution. Furthermore, the

students' true path to their solution remains unobserved.

Alternatively, when online learning programs focus on students' problem-solving processes

or strategies rather than performance on tasks (i.e., producing correct answers), researchers can

utilize observable students' actions in the form of log data collected in CALP to unpack

traditionally unobserved cognitive processes (Rowe et al., 2021; Shute et al., 2016; Sun et al.,

2022). For example, Shute and colleagues (2016) applied data mining methods to use student

in-game action data as an indicator of problem-solving skills in an online mathematics learning

game called "Use Your Brainz". The goal of this game was not just to produce a correct answer,

but students needed to apply various problem-solving skills to achieve the goal (i.e., planting

special plants on a lawn to prevent zombies from invading their houses). In this study, the authors

divided students' use of problem-solving strategies into four sub-constructs: analyzing givens and

constraints, planning a solution pathway, using tools and resources effectively, and monitoring and

evaluation process. Then, they identified 32 students' in-game actions logged in the system (e.g.,

planting over three flowers before the zombies arrive), mapped them into each sub-construct of

problem-solving skills (e.g., analyzing givens and constraints), and implemented this

problem-solving model in the game using Bayesian networking. The results revealed that the

in-game indicators of problem-solving skills significantly correlated with the results of two

7
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external tests of problem-solving skills, suggesting that the problem-solving skills assessment

using in-game metrics is valid.

In another study, Rowe and colleagues (2021) used classification algorithms to create

automated detectors of students' implicit problem-solving processes based on gameplay behaviors

in an online mathematics game called "Zoombinis." Similar to Shute's (2016) study, they divided

students' problem-solving strategies into four different phases (i.e., trial and error, systematic

testing, systematic testing with a partial solution, implementing with a full solution) and used both

raw log data (e.g., overall gameplay data) collected in the game system and hand-labeled data

from observations of students gameplay (e.g., problem decomposition, pattern recognition) to

build over 100 features (i.e., detectors) that might be indicative of these strategies. Then, they

examined the relationships between these detectors and external post-assessment scores for

validation and found that most of the detectors were significantly associated with the

post-assessment scores.

Further, when in-game action data is combined with other types of data obtained from

external sources (e.g., interaction among students), researchers can measure more complex

learning processes, such as how a group of students uses their knowledge and skills to solve

complex problems collaboratively. For example, Sun and colleagues (2022) investigated the

relationship between collaborative problem-solving behaviors and solution outcomes in a physics

learning game, "Physics Playground." They conducted qualitative coding of students’ utterances

during their gameplay and identified 19 indicators of collaborative problem-solving skills (e.g.,

constructing shared knowledge, negotiation). Then, they examined the relationship between these

indicators and in-game performance (e.g., problem-solving efficiency) measured by action data.

The results indicated that “proposing solution ideas contributed to desirable outcomes” was the

most influential predictor of in-game performance out of 19 indicators of collaborative

8
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problem-solving, suggesting that collaborative problem-solving requires individual contributions

as well as collective interactions.

The game-based algebraic CALP From Here To There! (FH2T;

https://graspablemath.com/projects/fh2t), which was developed by Ottmar and colleagues (2015)

utilizes a slightly different approach by directly logging sequences of students' problem-solving

steps. In each problem of the game, students are asked to transform an algebraic expression or

equations (e.g., "11+55+y+89+45" in Figure 2) into a mathematically equivalent but perceptually

different goal state (e.g., "100+y+100" in Figure 2) using permissible touch-screen or

mouse-based gesture-actions. The sequence of steps a student makes to reach the goal state (e.g.,

Figure 2a through f) is captured along with its timestamp in the system, allowing researchers and

learning analysts to study students' various pathways to reach the solution.

Figure 2. A sample problem in FH2T in which shows the steps students take to manipulate the equation
from the start to the goal state.

In contrast to traditional mastery learning programs, FH2T does not evaluate students by

producing answers to math problems but by how efficiently they reach the specified goal state in

the game. For example, if a student reaches the goal state with the fewest steps possible to

9
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complete the problem (i.e., also called the "optimal step") using a two steps strategy (Student A in

Figure 3: [start state: 11+55+y+89+45] → [step 1: 11+100+y+89] → [step 2: 100+y+100]), three

clovers (i.e., rewards in the game) are given, and an efficiency score (optimal step count/total step

count) of 1 is assigned. However, the number of clovers they receive is deducted if the students

exceed the minimum required number of steps to reach the goal state (e.g., Student B and Student

C in Figure 3). As such, there is no correct/incorrect dichotomy in the game, but there are several

different pathways to solve the problems, which allows researchers to explore variations of

students' mathematical approaches and problem-solving processes to reach the solution.

Using the data collected in FH2T, we applied data visualization techniques and explored

students' algebraic problem-solving processes in the game (Lee, Stalin, et al., 2022). Specifically,

the study visualized individual students' step-by-step information about the problem-solving

process (e.g., math strategies used, time spent between each action) using Indivisualizer (See

Figure 3) and created Sankey diagrams (See Figure 4) to investigate how the productivity of the

first step influenced the overall efficiency of problem-solving. The results showed a large variation

in students' use of mathematical strategies to solve the problems, with some approaches being

more efficient than others, and the productivity of the first step significantly predicted the overall

efficiency of problem-solving. The findings suggested that these data visualizations depicting

students’ problem-solving processes can help unpack individual students’ cognitive processing as

well as variability in overall students’ mathematical problem-solving strategies.
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Figure 3. An example of the Indivisualizer

Figure 4. An example of a Sankey diagram showing all student pathways for a given problem

In this case, it is also possible to utilize time data to estimate processes, such as the amount

of thought a student might be applying to the problem before they produce a solution. Using action

data can help us grasp the invisible cognitive processes; however, there is always an amount of

11

CHAPTER 1. INTRODUCTION

18



thinking ascribed to the action. In order to solve problems properly or efficiently, a student needs

to examine a problem, pause, and strategically think about what to do next rather than rushing

through the problem. Some studies have used "think aloud" methods to explore students' thinking

and pause time (Charters, 2003), but these methods can be time-consuming to collect the data

individually for each student. Time data automatically collected in CALP also can be used as a

potential indicator of students' cognitive processing. As an example, we used time data to measure

students' thinking and pausing before problem-solving in FH2T (Chan, Ottmar, et al., 2022). By

computing the time students spent before making a first action on each problem, we found that

students' pre-solving pause time was positively associated with strategy efficiency, which suggests

that pause time may be a proxy indicator of students' strategic planning (i.e., thinking about

pathways and solutions to the specific problem). Note that more details about FH2T are discussed

in the later section.

2.2 Students' Behavioral Engagement

Another important aspect of the learning process is students' behavioral engagement,

which is generally defined as the student's involvement in one's own learning or academic tasks

(Sinatra et al., 2015). In classrooms, researchers often measure students' behavioral engagement

through class attendance and participation in activities, attentiveness, effort, persistence toward the

tasks, or self-directed information-seeking actions when facing obstacles (Sinatra et al., 2015).

Studies have found that students' behavioral engagement is significantly associated with positive

proximal and distal learning outcomes, such as knowledge gain, better performance (Ladd &

Dinella, 2009; Rohrer et al., 2014; Rutherford et al., 2014), and a lower probability of dropout

(Archambault et al., 2009).

As with students' problem-solving strategies, behavioral engagement is often observed

indirectly in CALP. In mastery learning CALP, LA researchers use process data to assess
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behavioral engagement, often by attempting to predict whether students will display suboptimal

behavioral patterns. For example, researchers have exerted extensive effort to discern whether

students are “gaming the system,” which is attempting to succeed by exploiting properties of the

system (e.g., requesting all the hints available) instead of actively engaging with the material being

taught (Baker et al., 2008). For example, Baker and colleagues (2006) built a detector that

identifies students' gaming behaviors using data collected through field observations and students'

in-game action data. Alternatively, Paquette and colleagues (2018) identified 13 action patterns of

gaming behaviors. Using these patterns, they identified gaming the system behaviors in several

learning contexts and platforms with a satisfactory level of reliability. Notably, much of this work

focuses on predicting rather than understanding learning behaviors, and when researchers have

tried to understand why students game the system, they have looked into self-reports as opposed to

utilizing within-program process data (Baker et al., 2008).

There are other examples of using process data to understand behavioral engagement (or

disengagement) within mastery learning CALP. For example, “Wheel-Spinning” – spending a

substantial amount of time struggling to learn a subject without achieving mastery (Beck & Gong,

2013). As with gaming the system, most of this work has focused on predicting rather than

understanding the behavior (Botelho et al., 2019A; Gong & Beck, 2015; Mu et al., 2020; Zhang et

al., 2019). Another example is Botelho and colleagues (2019B) exploration of a behavior they

called “stopout,” for when students refuse to complete a problem. They used action data prior to

the stopout behavior to understand its antecedents.

Although much of behavioral engagement research on mastery learning CALP focuses on

negative behaviors of unproductive persistence or disengagement, some researchers have used

students’ response time data to estimate attentiveness to problems and hints. One example is

Gurung and colleagues (2021) exploration of students’ effort in ASSISTments - a math-focused
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CALP that includes mastery learning and traditional problem sets with immediate feedback. They

estimated whether students exerted effort after requesting a hint by analyzing students' response

times immediately after seeking help in combination with their subsequent action – which they

refer to as “response time decomposition.” Shih and colleagues (2008) also examined response

times to estimate the time students spent thinking about bottom-out hints (i.e., worked examples

that include problems’ answers). Both of these analyses found that more time spent between

accessing hints and the student’s next action (requesting another hint or submitting an answer) was

associated with better performance, thus they deduced that time to be an indicator of thoughtful

effort.

Contrary to much of the research on mastery learning CALP, LA research on behavioral

engagement with CALP that focuses on learning processes is often aimed to understand desirable

behavioral engagement. Similar to the works of Gurung and Shih, we examined the relationship

between pause time and problem solving efficiency in FH2T (Chan et al., 2022). Using students’

response times in conjunction with their derivations, we found that students who spent a higher

proportion of pausing time before making a first action used more efficient problem solving

strategies.

Another aspect of behavioral engagement explored in LA research is productive

persistence in problem-solving. For example, Ventura and Shute (2013) used students’ time on

problems to assess their persistence within the physics game, Newton’s Playground, which they

validated using an external measure of persistence administered outside of the program. Another

way of measuring persistence is to examine how frequently students replay problems.

Replayability, which is a feature embedded within many CALP, provides students an opportunity

to engage in several attempts to solve problems, often after they have achieved suboptimal

performance on prior attempts (Boyce et al., 2011; Liu et al., 2017; Shang et al., 2006).

14

1.3. BEYOND PERFORMANCE ANALYTICS**

21



In FH2T, for example, multiple attempts at each problem are appropriate because there are

many different pathways to each solution, and some paths are more optimal than others. This has

allowed us to evaluate students’ persistence. As mentioned earlier, students receive clovers upon

completing a problem, which shows how efficient their solution was, and students are encouraged

to replay that problem if their path is suboptimal. Our earlier work found that replaying a problem

is associated with a higher likelihood of having optimal performance on the next problem (Liu et

al., 2022) and also significantly predicts learning gains (Lee, Chan, et al., 2022).

Further, using FH2T data, we investigated whether specific types of feedback were

associated with the number of optional replays students made to solve the problem (Liu et al.,

2022; Vanacore, Sales, et al., 2023). In FH2T, students can attempt to make incorrect arithmetic

operations or can provide inefficient solutions to the problem. In the first case, the system provides

students with error-feedback by shaking the number that the student was trying to put into the

incorrect place. In the second case, reward-based feedback – the number of clovers given to

students after problem completion – indicates the efficiency of their solution. Our analyses suggest

that reward-based feedback can motivate students to attempt problems more than once.

Other studies have used replay behaviors to understand behavioral engagement with the

program. For example, Liu and colleagues (2017) examined the relationship between students'

replay patterns and their learning gains in a puzzle-like online mathematics game, ST Math. The

results provide a nuanced picture of the association between replay behavior and learning.

Students who replayed problems immediately after completing the level demonstrated the highest

in-game performance, whereas those who replayed problems within their current level had lower

learning gains. Similarly, Clark and colleagues (2011) used data on students’ replaying levels to

understand the nuances of the effects of the physics game on student learning and affect. Notably,
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they did not find significant correlations between replay behaviors and any of their learning or

affective outcomes.

In sum, the studies reviewed in Section 2 provide examples of how LA researchers can use

data collected in CALP to understand not only whether the student gets an answer correct but also

how the student arrives at a particular solution. When CALP is created to emphasize the process of

problem-solving, as opposed to the performance of answering problems, data are produced in a

way that helps unpack students' complex cognitive processes when solving problems. Analyses

focused on how students arrive at a solution can provide valuable information and insights about

implicit students' learning processes.

3. Impact of Focusing on Learning Processes Rather than Mastery: What

Works and Why

3.1 Example of Impact: FH2T Efficacy Studies

Throughout the previous section, we have touched upon how LA can help us unpack

complexities in students' learning processes using data from both mastery learning and alternative

CALP. For this section, we use FH2T as an example of how a CALP focused on students' learning

processes has been shown to outperform more traditional methods of instruction focused on

mastery learning and performance in improving algebraic knowledge.

As mentioned above, FH2T is a game-based educational technology that aims to improve

algebraic understanding (Ottmar et al., 2015). FH2T was developed based on theories of

perceptual learning and embodied cognition. Perceptual learning theory posits that algebraic

reasoning is inherently perceptual, which involves visual processing: seeing expressions or

equations as structured objects, identifying symbols, and organizing them into groups (e.g.,

parsing 2 × a + b × 3 as (2 × a) + (3 × 4)) (Goldstone et al., 2010). Embodied cognition theories
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suggest that students' physical experiences influence their thinking and reasoning in mathematics

(Abrahamson et al., 2020). Integrating these theories into the game, FH2T made implicit

mathematical metaphors and symbols into visual and tactile virtual objects. In this way, students

can easily identify implicit algebraic structures through manipulation and transformations of the

objects (e.g., touching and moving the symbols) in the game. While many math instructions tend

to focus on memorizing abstract and seemingly arbitrary rules (e.g., multiplication and division

before addition and subtraction), FH2T provides perceptual-motor experiences that help students

acquire not only algebraic knowledge but also appropriate perceptual processing skills essential

for fluency in algebraic problem-solving.

One of the integral parts of the game is that students can use any mathematically valid

action, resulting in various strategies or pathways to solve each problem. Although there are the

most efficient ways that students can solve the problem using the fewest steps possible, students

can reach the goal state in a numerous number of mathematically valid ways. In this way, they

have the freedom to think flexibly and creatively and realize that math problems can be solved in a

large number of ways. Through these interactions, students experience dynamic algebraic

transformations, rather than a series of static equations. In sum, FH2T emphasizes the process of

arriving at a mathematical solution over the correctness of answers or completion of the

problems, by providing students with a rich experience with puzzle-like problems that go beyond

submitting or selecting correct or incorrect answers.

A number of Randomized Control Trials (RCT) consistently showed that students in the

FH2T condition outperformed on algebra assessments compared to students who completed online

problem sets, including multiple choice and fill-in-the-blank problem sets with automated hints

and feedback (Chan, Lee, et al., 2022; Decker-Woodrow et al., 2023; Hulse et al., 2019).

Recently, Decker-Woodrow et al. (2023) conducted a large-scale efficacy RCT to examine
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whether FH2T improves 7th-grade students' (N = 1,850) algebraic understanding more than two

other CALPs: a game-based learning program DragonBox (Kahoot!) and more traditional algebra

problems sets presented with hints and immediate feedback (administered through ASSISTments).

These conditions were all compared to the active control of traditional algebra problem sets with

delayed feedback (also administered through ASSISTments). The results showed that students in

the two game-based learning conditions (i.e., FH2T, DragonBox) showed larger learning gains in

algebraic understanding compared to the control condition after 4.5 hours of intervention sessions,

even after controlling for prior knowledge and demographic variables.

These results indicate that game-based programs which focus on the process of learning

have benefits beyond providing more insight into students' learning processes; they also benefit

students’ learning. Notably, the availability of immediate hints and feedback did not produce

significant differences in algebraic knowledge compared with the active control. This may be

because hints can alleviate difficulties in the learning process, thus impacting students'

performance (Patikorn & Heffernan, 2020; Prihar et al., 2021), while not impacting learning, due

to a phenomenon known as the Assistance Dilemma (Koedinger & Aleven, 2007). Alternatively,

programs that focus on the learning process through game-based tasks may help students engage

in productive struggle, by allowing them to explore potential solutions to each problem and seek

multiple paths to a solution. Thus, the emphasis on the learning process may create the condition

which optimizes learning.

3.2 Providing a Deeper Understanding of Impact

Due to the rich problem-solving data produced as students use FH2T, the data from large

efficacy studies provide opportunities to look beyond average treatment effects and understand the

causal mechanisms driving these effects. Leveraging quasi-experimental methods, it is possible to

use what we have learned about students' processes in correlational research to understand the
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causal relations between program features and desirable student behaviors as well as between

those behaviors and their outcomes. This burgeoning area of work will lead to a better

understanding of why some programs outperform others, why some students benefit more than

others, and how we might improve programs to maximize learning for all students.

One example of how process data can be used to study the mechanisms of learning is

through conducting research on replay behaviors. As explained above, students in FH2T are

encouraged to replay problems when they have suboptimal performance, and this behavior is

associated with a higher likelihood of performance within the game (Chen et al., 2020; Liu et al.,

2022). To go beyond evaluating the association between behaviors and performance, we applied a

quasi-experimental method – fully latent principal stratification (Sales & Pane, 2019) – to FH2T

efficacy study data in order to estimate the effects of FH2T for students with a high propensity to

replay problems (Vanacore et al., 2023). We found that the effect of FH2T was about twice as

large for students with a high propensity to replay. This suggests that the ability to replay problems

in FH2T is a key mechanism in the effectiveness of the program. Notably, the process orientation

of FH2T allows for the replay feature. Unlike traditional mastery learning programs in which

students can submit one correct answer, FH2T allows students to take multiple correct paths to the

answer. Those who take this opportunity benefit more from the program.

The obvious next step is to understand how to effectively encourage students to replay

more problems. To this end, we evaluated the impact of the performance-feedback based systems

in FH2T on students' likelihood of replaying each problem after they have suboptimal

performance using another quasi-experimental method, regression discontinuity design (Vanacore,

Ottmar, et al., 2023). We found that when students received the lowest level performance feedback

(a score of one out of three) based on their performance, they were more likely to replay a problem

than when they received higher performance feedback (a score of two out of three). We speculate
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that the students view receiving the lower performance feedback as a game-based -failure, which

motivates them to retry the problems. This suggests that adjusting performance-based feedback

systems to communicate game-based failures while also providing opportunities to reattempt the

problems can encourage students towards productive persistence.

In sum, we have identified a feature of the program (e.g., ability to replay problems)

which, when coupled with a behavior (e.g., replaying problems), increases the impact of the CALP

on students’ learning. Then, we have studied how to influence this behavior within the program. In

the future, we can adjust the program in order to encourage replay behavior and test whether this

improves the program's efficacy. Thus, this serves as an example of how understanding the

learning process can lead to an interactive cycle of improving CALP to help students learn.

4. Conclusions and Future Directions

In order to understand the complexity of students' learning processes, LA has turned to rich

data sources produced by CALP to study students' learning processes, including their

problem-solving strategies and behavioral engagement. Furthermore, to maximize student

outcomes, CALP has provided robust learning environments that go beyond submitting or

selecting answers to statically presented problems towards creating dynamic and interactive

learning environments. This chapter provided examples of how LA can be used to reveal learning

processes and learning-related behaviors. The knowledge gained through this research is then

leveraged to create programs that optimize systems for student learning.

Yet to be truly meaningful, this research area must grow in two ways. In their article

describing the importance of LA, Wise and colleagues (2021) suggest that impactful LA should

focus on (1) "closing the loop" by connecting the learners to actionable interventions through data

collection and analyses and (2) creating an iterative cycle which integrates research findings into
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improving learning systems. They also emphasize that understanding the process of learning using

data from programs that emphasize that process is only the beginning for LA. The research on the

learning process needs to be connected to interventions for learners and used to improve the

programs themselves.

"Closing the loop" involves going beyond learners using a CALP, data collection within

the CALP, and analysis/metricization of the data from the CALP. This loop is incomplete without

using the analyses and metrics to drive interventions (Clow, 2012). The research presented above

does not utilize the analysis of the learning process to differentiate instruction within the programs

or help teachers do so in their classrooms. Using our understanding of students' learning processes

to drive dynamic systems that tailor instruction to their needs is the necessary and logical next step

of this work. Furthermore, helping teachers access understandable data and metrics about their

students' strategies and behaviors will help them address their students' misconceptions and

provide informed feedback as they teach.

The learning analytics cycle also requires a feedback loop of program improvement (Wise

et al., 2021). This is still missing from much of the research on students' learning processes. The

field has identified some strategies and behaviors associated with better learning outcomes, and we

have started to pinpoint causal factors that connect these strategies with greater impact on

learning. Yet, more work should be done to understand how to guide students toward better

learning strategies and higher engagement. In Section 3.3, we present one example of a behavior –

replaying problems after suboptimal performance – which is both associated with positive

outcomes and influenced by a program feature. More work must be done to close the loop between

identifying positive learning strategies and behaviors and influencing students such that they

develop better strategies and behaviors.

21

CHAPTER 1. INTRODUCTION

28



Notably, we focused on problem-solving strategies and behavioral engagement as key

constructs of the learning process, as we point out in the introduction, they are not the only

relevant constructs. For example, students' affect and mindsets influence how they engage with

learning tasks and can be added to the conceptual model proposed in Figure 1. Both of these have

been studied at length in LA (e.g., Andres et al., 2019; Baker et al., 2021.; Dillon et al., 2016;

Stone et al., 2019; Vanacore et al., 2023; Wang et al., 2015). For example, Baker and colleagues

(2012) detected students’ affect using derivations of students’ action and time data. As with

problem-solving strategies and behavioral engagement LA, more work must be done to discern

students' affect and mindsets, as well as understand how we might positively influence these

aspects of learning.

In conclusion, LA is a field of iterative design and evaluation with the aim of improving

learning environments. Researchers and educators know that learning is complex and nuanced. To

effectively meet the aim of LA, we must continue to focus on studying learning as a nuanced and

complex process. This focus will help researchers and educators understand students as they learn,

and ensure that systems are optimally designed to assist the process of learning.

5. Definitions

Action data. Data on the actions students take within a program, including, but not limited to their

submission of answers to questions or problems, use of hints and scaffolding, and derivations in

problem-solving. These data will vary based upon the actions available in the program.

Computer-assisted learning platforms (CALP). Programs that provide automated learning content

and/or problems with the goal of students gaining knowledge or skills. These can include
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programs with varying levels of adaptivity from intelligent tutors with automated targeted

feedback to digitally presented problems.

Desirable difficulties. Elements of learning programs, systems, or courses that create conditions

for productive struggle which improve learning.

Learning. Permanent changes in abilities or knowledge, including long term retention of

information and transferability of skills outside of the direct context in which they were learned.

Performance. Execution of a task during the learning activity, including whether a problem was

answered correctly or a task completed sufficiently.

Randomized Control Trial. A research design in which units (often students) are randomized into

conditions, allowing for an evaluation of the effect of those conditions in the unit.

Time data. Data on the time it takes a student to take an action or series of actions.

Quasi-experimental studies. Research designs that estimate the effects of a condition, though the

units are not randomized into conditions. This must be done by accounting for confounding that

occurs, which influences what units experience what conditions. Common quasi-experimental

methods include propensity score matching and regression discontinuity design.
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ABSTRACT
Gaming the system, characterized by attempting to progress through
a learning activity without engaging in essential learning behaviors,
remains a persistent problem in computer-based learning platforms.
This paper examines a simple intervention to mitigate the harmful
effects of gaming the system by evaluating the impact of imme-
diate feedback on students prone to gaming the system. Using a
randomized controlled trial comparing two conditions - one with
immediate hints and feedback and another with delayed access to
such resources - this study employs a Fully Latent Principal Strati-
fication model to determine whether students inclined to game the
system would benefit more from the delayed hints and feedback.
The results suggest differential effects on learning, indicating that
students prone to gaming the system may benefit from restricted
or delayed access to on-demand support. However, removing im-
mediate hints and feedback did not fully alleviate the learning
disadvantage associated with gaming the system. Additionally, this
paper highlights the utility of combining detection methods and
causal models to comprehend and effectively respond to students’
behaviors. Overall, these findings contribute to our understanding
of effective intervention design that addresses gaming the system
behaviors, consequently enhancing learning outcomes in computer-
based learning platforms.
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1 INTRODUCTION
Researchers in Learning Analytics (LA) and associated fields have
exerted immense effort to identify students’ latent states as they
use computer-based learning platforms (CBLP). For example, LA
researchers often seek to determine when students are gaming
the system – attempting to progress through a learning activity
without learning [11, 19, 44–46]. Furthermore, extensive literature
exists on understanding why students exhibit these behaviors [7–9].
Other studies have evaluated interventions that may reduce the
frequency andmigrate the effects of gaming to the system behaviors
[10, 40, 53, 62, 64]. However, many of these interventions focus on
changing game behaviors instead of improving learning outcomes.
Thus, it is unclear which interventions help students who tend to
game the system to engage with and learn from CBLPs.

In the current paper, we seek to isolate the learning impact
of immediate feedback on students who game the system. More
specifically, this study addresses whether students who game the
system in a traditional CBLP that includes multiple-choice and
open-response questions with immediate hints and feedback would
respond differently to a CBLP in which they do not have access
to those hints and feedback while solving problems. Furthermore,
the paper provides an example of incorporating predictions from
detection models into causal models. The combination of detection
and causal models allows us to go beyond identifying and under-
standing behaviors towards knowing how to respond in a way that
positively impacts learning.

2 BACKGROUND
2.1 Gaming The System
Gaming the system behavior is defined as "attempting to succeed
in an educational environment by exploiting properties of the sys-
tem rather than by learning the material and trying to use that
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knowledge to answer correctly" [8]. This behavior is associated
with reduced performance within CBLP [9] and poor learning out-
comes [17]. It is also predictive of poor distal outcomes such as
state test performance [48] and low college enrollment [2].

The two key behaviors indicative of gaming the system are
rapid and repeated requests for help (hint abuse) and submission
of answers in a systemic way (guess-and-check) [8, 62]. In sum,
these behaviors suggest that a student is trying to get the answer to
individual problems and progress through the assignment without
employing the requisite effort to learn from the activity. Gaming
the system tends to be associated with student frustration rather
than general disengagement [8], as it is not correlated with off-task
behavior [9].

Some research indicates that specific program features may cause
gaming behaviors [7]. Such findings suggest that students move
from states of confusion and frustration towards gaming the system
behaviors because the CBLP’s features do not adequately address
their learning needs [7, 54]. Ambiguity and abstractness within
CBLP’s activities are critical factors associated with gaming behav-
iors [7]. This evidence, combined with research suggesting that
frustration may be causing students to game the system, suggests
reducing problem difficulty and adding supports to alleviate frus-
tration may reduce gaming behaviors [8]. Alternatively, additional
assistance features, such as hints and feedback, may provide more
opportunities to abuse assistance features, further dissuading some
students from engaging in a learning process requiring persistence
and effort.

2.2 Mitigating Gaming the System Behaviors
Attempts to mitigate gaming behavior generally fall into either
proactive or reactive categories. Proactive interventions include
dissuading students from unnecessary hint usage [3, 40] or pro-
viding visualizations that allow students to see and interpret their
behaviors [62, 64]. Reactive options implementation interventions
after the gaming behavior has been identified [10].

Research suggests that proactively dissuading students from
unnecessarily requesting hints may be too blunt to address a prob-
lem from one population of students. Telling students that they
should only use hints if they truly needed them while slightly de-
laying hint availability (10-second pause) reduced hint usage for all
students and did not improve overall performance [40]. However,
this method may have improved the performance of the lowest-
knowledge students; the sample size was small, and the effect was
marginally insignificant. Nevertheless, the finding is suggestive
that manipulating access to hints could help students who game
the system.

In theory, presenting students with information about their
gaming-related behaviors can have two potential effects. It can
indicate to the student that the system is logging their behaviors,
thus creating "panopticon-like paranoia" of constant awareness of
potential observation [62]. Visualizing the student’s actions may
also nudge students to reflect on their learning behaviors [64]. Two
studies found that presenting students with graphical representa-
tions of their behaviors can reduce gaming the system behaviors
[62, 64]. However, neither of these studies evaluated whether their

intervention improved students’ learning. Furthermore, since stu-
dents are likely to game the system to progress through learning
activities, it is unclear that they will not also game the system to
manipulate the outputs of the visualizations.

As a reactive option, [10] placed students who had previously
gamed the system on specific content into an intervention focused
on that content. In this intervention, students saw an animated dog
that displayed emotions that aligned with the student’s learning-
related behaviors. The animation served as a primitive mirror of
emotions that a human tutor might display while working alongside
a student (e.g., excitement and positivity if a student exerted effort
or frustration if a student gamed the system). The intervention
reduced students’ gaming behaviors and positively affected their
learning outcomes as measured by a post-test compared to a control
group who did not have access to the animated dog.

Overall, directly dissuading students from gaming behaviors like
hint abuse may have adverse effects on the students’ learning in
general while potentially benefiting lower-performing students.
Alternatively, presenting visualizations that represent students’ ac-
tions may reduce their gaming behaviors. However, the learning
impact of this method has not been explored. Notably, only the
study that imposed a direct content-specific intervention showed
a significant impact on learning [10]. Thus, none of these stud-
ies connected the prevention of gaming behaviors with learning
outcomes.

2.3 Immediate Assistance in CBLPs
Immediate assistance meant to provide "just in time" instruction to
students is a cornerstone of many CBLPs. The efficacy of immediate
hints and feedback has been studied extensively. Timely feedback
and support during learning activities benefit students’ learning out-
comes [14, 56]. Studies suggest that receiving feedback immediately
after giving responses or completing problem sets might be effec-
tive for improving students’ procedural and conceptual knowledge
[18, 22, 50]. In CALPs, often, this assistance takes the form of hints
and feedback accessible on demand as students work on problems,
which can vary in form and focus. Common hints and feedback
modes include presenting general topical information [4], worked
examples where a student is shown a complete solution to a similar
problem [38], providing the complete solution to the given prob-
lem [63], being shown similar examples done incorrectly [1, 38],
being given targeted feedback based on a students’ common wrong
answers [27, 28], and being given a series of step-by-step hints [24].
One study found that worked examples improved students’ efficacy
in learning but not overall learning outcomes [38]. Another study,
which used machine learning to generate explanations and deploy
them to learners, found that students performed better when pre-
sented with explanations as opposed to only receiving the answer
[63].

Beyond the benefits to academic performance, optional tutoring
strategies in intelligent tutoring systems have the added benefit
of encouraging help-seeking behaviors, which can increase stu-
dents’ autonomy and control of their learning [3, 5]. However, the
efficacy of optional assistance is contingent upon students hav-
ing the requisite metacognitive skills to evaluate when they need
help. One study found that access to general information aimed
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at helping students learn concepts, such as a glossary, was often
ignored; students prefer specialized hints that focus on their current
problem [4]. These findings suggest that students are not focused
on learning the broad skills associated with the individual tasks
but on getting the information they need to improve immediate
performance. Another study found that students required support
to utilize on-demand learning assistance but failed to find learning
gains even when this support was given [5].

Overall, on-demand instruction is a common component of in-
telligent tutoring systems, with varied implementations and var-
ied levels of efficacy. Tutoring strategies, which provide targeted
support for specific problems, are effective at improving student
performance [49, 51]. Research has also shown that this feedback
is most effective if provided as the student is answering questions
[37]. Although there is ample research on how type and focus influ-
ence immediate hints and feedback efficacy, more work is needed
to understand who benefits from these resources. Furthermore, the
interplay between access to on-demand learning supports, how
students use these supports, and learning outcomes has not been
fully explored.

3 CURRENT STUDY
The problem of hint abuse and guess-and-check behaviors suggests
that some students are not benefiting from the availability of hints
and feedback commonly embedded in problems in many CBLPs.
However, the solution to this problem is unclear as other research
suggests that providing on-demand assistance may alleviate frustra-
tion, an ostensible root cause of gaming the system, thus mitigating
the behavior [8]. Alternatively, frustration and confusion may be
precursors to learning as they represent a student’s awareness that
they have yet to master the knowledge component being taught.
Thus, gaming the system behaviors could be a crutch for some
students that allows them to avoid the productive struggle nec-
essary to learn. If this hypothesis is true, removing the program
features that allow for hint abuse and guess-and-check may help
some students who would have gamed the system engage with the
content and learn.

The current study seeks to address this issue directly using a
subset of data from a randomized controlled trial that compared
methods of teaching pre-algebra concepts of expression equiva-
lence to test whether the effect of feedback varies based on students
gaming the system behavior [20]. Our work focuses on two condi-
tions: traditional multiple-choice and open-response problem sets
with immediate or delayed hints and feedback (Immediate Condi-
tion and Delayed Condition). In the Immediate Condition, students
had access to hints and could see whether their submitted answers
were correct while completing the problem sets. In the Delayed
Condition, students could only access the hints and feedback after
they completed each problem set. (Section 4.1 contains complete
descriptions of these conditions.)

This study aims to test whether students who game the system
when they access immediate hints and feedback behavior would
benefit from delaying access to those resources until they complete
the entire problem set. Essentially, the delayed condition removes
students’ abilities to engage in hint abuse because they did not see
the hints during the activity and guess-and-check because they

could only submit their answers once. We hypothesize that stu-
dents with a high propensity to game the system in the Immediate
Condition will employ better learning behaviors in the Delayed
Condition and thus learn more in that condition. This research
question and hypothesis, as well as the methods we employ to an-
swer them, were preregistered on OSF1. We will test our hypothesis
by estimating whether the effect of immediate feedback varies by
student propensity to game the system using a Fully Latent Prin-
cipal Stratification (FLPS) model, which estimates causal effects
for subgroups that emerge during an intervention of a randomized
controlled trial [35, 61].

This work provides two contributions to the LA community. First,
it addresses when and for whom hints and feedback are effective.
Second, the work provides an example of combining the detection
of students’ behaviors with causal inference in a way that may be
leveraged for effective personalization in the future. As the field
continues to use artificial intelligence and machine learning to
detect and predict students’ latent states (e.g., affect, knowledge
component mastery, wheel-spinning, etc.), we must also consider
how to adjust learning systems based on these predictions. This
objective requires understanding which conditions will positively
impact students when they are determined to be gaming the system,
wheel spinning, confused, etc. Thus, the combination of methods
used in this paper, discussed in detail below, may be deployed to
help future researchers understand what actionable steps will be
impactful after detecting and predicting students’ latent states.

4 METHOD
4.1 Conditions
The two conditions included in this paperwere administered through
ASSISTments [30], an online homework system that provides feed-
back to students as they solve traditional textbook problems. The
problem sets in ASSISTments are adapted from open-source curric-
ula, thus resembling problems students encounter in their textbooks
and homework assignments. ASSISTments presents students with
problems one at a time on their screen. Each condition included
218 problems of the same problems selected from three curricula
– EngageNY, Utah Math, and Illustrative Math – to address spe-
cific algebra skills related to procedural knowledge, conceptional
knowledge, and flexibility. The problems were divided into nine
problem sets and administered in nine half-hour sessions during
school hours.

4.1.1 Immediate Feedback and Hints (Immediate Condition). In the
Immediate condition, students could request three hints and receive
feedback on whether their answers were correct immediately after
submitting each answer. Each problem contained a series of hints
with a similar structure. An example problem is displayed in Figure
1. The first hint gave the students the first step for answering the
problem. The second hint gave the student a worked example of
a similar problem. The final hint was a bottom-out hint, which
provided the student with the steps to complete the problem as well
as the problem’s solution. Students could submit as many answers

1https://osf.io/jf25x/; This paper only includes one of the analyses/hypotheses included
in the preregistration. We are still testing the other hypotheses.
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as needed but could not move on until they entered the correct
answer.

Figure 1: Immediate Feedback Condition Example

4.1.2 Problem Sets With Post-Assignment Feedback (Delayed Condi-
tion) . The Delayed Condition provided post-assignment feedback
rather than immediate hints and feedback. Figure 2 presents an
example problem from the Delayed Condition. In this condition,
problem sets were administered in “test mode,” so students did not
receive any feedback or hints during problem-solving. They could
only submit one answer and progressed through the problem set
without any feedback on their performance. Students received a re-
port with feedback on their accuracy at the end of each problem set,
through which they could review their responses, revisit problems,
and request hints.

4.2 Analysis Plan
The fundamental question of this paper – whether the student who
game the system in one condition will benefit from the other con-
dition – poses a methodological difficulty because the conditions
likely confound the behavior of gaming the system. In fact, we
hypothesize that students who game the system in the Immediate
Condition will not game the system in the Delayed Condition and
thus benefit from learning when they engage with content. To ad-
dress this methodological problem, we propose that students have a

Figure 2: Delayed Feedback Condition Example

In the delayed feedback condition, hints and correctness feed-
back were not provided during the problem set. The students in
this condition were provided with a report at the end of each
problem set through which they had access to their accuracy
and hints on the problems.

baseline propensity to game the system in the Immediate Condition
that exists prior to randomization, regardless of whether it can
manifest itself after treatment assignment. Because it is considered
a baseline covariate and potential moderator, similar to students’
pretest knowledge, it is independent of the random treatment as-
signment. However, unlike pretest knowledge, only students in the
treatment condition have the opportunity to display the behavior;
therefore, its value in the control condition is unknown. Neverthe-
less, once this latent propensity to game the system is estimated,
we can also estimate whether and to what extent it moderates the
treatment effect of the various interventions.

Our analyses require two key steps, which are described in depth
below. First, we identify instances where students are gaming the
system within the Immediate Condition. Then, we use the causal
method of Fully Latent Principal Stratification (FLPS), which will
allow us to estimate the effect heterogeneity of each condition
based on students’ latent propensity to game the system [55]. These
methods are delineated in the sections below.

4.2.1 Implementation of Gaming The System Detector. This pa-
per employs the rule-based gaming detectors originally proposed
by [47] to identify gaming behavior among students working on
algebra problems. To the best of the authors’ knowledge, this Cogni-
tive Model developed by [47] was the first of its kind as the detector
was transferable across intelligent tutoring systems from Cognitive
Tutor Algebra (CTA) to ASSISTments. The rule-based detector was
initially engineered to detect gaming in CTA [12]. [44] extended the
implementation of the rule-based gaming detector by relying on hu-
man judgments through text replays of logged learner actions [13].
The insights garnered from this cognitive model were subsequently
used to develop gaming detectors for CTA and validate the trans-
ferability of rule-based gaming detectors by implementing them
onto ASSISTments.

We employed the rule-based Cognitive Model for identifying
gaming behavior as these models mitigate key challenges such as
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enhancing generalizability and controlling for detector rot. Un-
like other system specific gaming detectors, the rule-based model
demonstrated cross system generalizability, underscoring its adapt-
ability and reliability in different contexts [47]. Detector rot is a
phenomenon that refers to the gradual decline in a model’s perfor-
mance over time. Prior studies have reported that more complex
models, using more advanced Machine Learning and Deep Learn-
ing algorithms, are more prone to this phenomenon than their
simpler counterparts [34, 36]. Given that many gaming the system
detection models were developed years before our study, they are
at a higher risk of experiencing detector rot. Therefore, we opted
for the rule-based detector, in light of its potential for sustained
generalizability and resistance to detector rot due to its simple yet
effective detection of gaming behavior.

We employed the rule-based detector to identify gaming behavior
among students using the Immediate Condition. The rule-based
detector system uses log-filed data aggregated in twenty-second
clips (Section 5.1 describes the variables used) and indicates whether
students were gaming during each time clip. We then used these
indicators in the FLPS model described below.

4.2.2 Estimating Effects Using Fully Latent Principal Stratification.
FLPS is a variant of Principal Stratification, a causal inference
method used in randomized controlled trials for estimating the
intervention effects on subgroups that emerge after the treatment
has begun [25, 43]. Traditional estimation of effects for subgroups
requires that these subgroups are defined before intervention and
be independent of any treatment. For instance, in the case of pretest
knowledge, simply interacting the treatment with the pretest knowl-
edge score provides information about how the treatment effect
varies across subgroups of students with similar prior knowledge.
However, subgroups defined based on students’ interactions with a
treatment program cannot be observed at baseline and are never
observed for students randomized to the control condition. Of-
ten, program implementation consists of a complex sequence of
users’ behaviors or choices. FLPS models these behaviors as mani-
festations of latent student characteristics, which are not directly
observed for students randomized to the treatment condition either
but must be estimated.

This method is particularly relevant in CBLPs, in which students
may display an array of behaviors during the program such as
meeting implementation goals [21, 60], productive persistence [61],
mastering knowledge components in mastery learning [55], and
gaming-the-system behaviors that may be viewed as indicators of
latent student characteristics (i.e., high fidelity users, persistent
learners, mastery users, gamers). These behaviors are unobserved
for the control groups who do not have the same opportunity to
use, game, or master as they did not interact with the same CBLP.
When observable, they are confounded by the students’ condition.
Therefore, their underlying latent student characteristics can be
interpreted as explaining students’ behaviors if randomized to the
treatment condition. For example, [55] determined whether the
effect of Cognitive Tutor Algebra I on students varies based on
whether students were likely to master knowledge components
by estimating the likelihood of mastering knowledge components
for the treatment group as a latent variable. In the current study,
we evaluate whether the effect of the Immediate Condition differs

based on students’ latent propensity to game the system had they
been assigned to that condition.

Let 𝜏𝑖 be subject 𝑖’s individual treatment effect: the difference
between what 𝑖’s posttest score would be if 𝑖 were randomized to
treatment and their score if randomized to control. Since students’
gaming the system behavior was detected in the Immediate Con-
dition, our goal is to know how students with a high propensity
to game the system would fare if placed in the Delayed Condition.
For simplicity, we refer to the Immediate Condition as the treat-
ment and the Delayed Condition as the control. Let T and C be the
samples of students randomized to treatment and control, respec-
tively. Let 𝛼𝑡𝑖 be 𝑖’s propensity to game the system if randomized
to the treatment condition. 𝛼𝑡𝑖 is defined for 𝑖 ∈ C, as students
in the control condition still had a potential to game the system
had they been randomized to treatment, even if this potential was
never realized. Therefore, 𝛼𝑡𝑖 is estimated from gaming the system
behavior for T and 𝛼𝑡𝑖 is imputed for C.

The principal effect is the treatment effect for the subgroup of
students with a particular value for 𝛼𝑡 :

𝜏 (𝛼) = 𝐸 [𝜏 |𝑎𝑡 = 𝛼] (1)

To estimate the function 𝜏 (𝛼), we (1) estimate 𝛼𝑡 for T as a
function of pre-treatment covariates observed in both groups, (2)
use that model to impute 𝛼𝑡 for C, (3) estimate 𝜏 (𝛼) by including
a treatment interaction in a linear regression model. The models
are estimated using iterations through these steps in a Bayesian
principal stratification model with a continuous variable consisting
of measurement and outcome submodels, as outlined by [31] and
[42].

4.2.3 Measurement Submodel: Modeling Gaming the System Behav-
ior. First, we estimate 𝛼𝑡 by running a multilevel logistic submodel
predicting whether the gaming detector identified the students in
the treatment condition to have gamed the system on each twenty-
second time clip as delineated in the equation 2. Let𝐺𝑐 𝑗𝑖 be a binary
indicator of whether student 𝑖 gamed the system during time-clip 𝑐
when working on problem 𝑗 . Let 𝑃𝑘𝑖 be covariate predictor 𝑘 of 𝐾
student-level predictors, which are measured at baseline for both
T and C (described in section 5.2). Let the random intercepts be 𝜇 𝑗
for problems, 𝜇𝑖 for students, 𝜇𝑡 for teachers, and 𝜇𝑠 schools, each
modeled as independent and with normal distributions with means
of 0 and standard deviations estimated from the data.

𝑙𝑜𝑔𝑖𝑡 (𝐺𝑐 𝑗𝑖 ) = 𝛾0 +
𝐾∑︁
𝑘=1

𝛾𝑘P𝑘𝑖 + 𝜇 𝑗 + 𝜇𝑖 + 𝜇𝑡 + 𝜇𝑠 (2)

Using the parameters from equation 2, students’ propensity to
game the system is defined as

𝛼𝑖 =

𝐾∑︁
𝑘=1

𝛾𝑘P𝑘𝑖 + 𝜇𝑖 + 𝜇𝑡 + 𝜇𝑠 (3)

We impute 𝛼𝑖 for C with random draws from a normal distri-
bution with mean

∑
𝑘 𝛾𝑘P𝑘𝑖 + 𝜇𝑡 [𝑖 ] + 𝜇𝑠 [𝑖 ] , where 𝜇𝑡 [𝑖 ] and 𝜇𝑠 [𝑖 ]

are the random intercepts for student 𝑖’s teacher and school, re-
spectively, and standard deviation equal to the estimated standard
deviation of 𝜇𝑖 . Note that randomization occurred at the student
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level (i.e. teachers had students in the treatment and control in their
classes). Therefore, we include the random intercepts for schools
and teachers from submodel 2 in valuation for 𝛼𝑡𝑖 for students in
the control. However, 𝜇𝑖 is unknown for C, but we can assume
its distribution is the same in the two conditions because of the
randomization.

4.2.4 Outcomes Submodel: Modeling Posttests 𝜏 (𝑎). To estimate
the treatment effect for students with differing propensities to game
the system, we run a multilevel linear regression predicting stu-
dent’s post-test algebraic knowledge (𝑌𝑖 ). The submodel includes
interaction between 𝛼𝑐𝑖—estimated for T and randomly imputed
for C—and 𝑍𝑖 , an indicator of being in the treatment condition
(Immediate Condition). Let the random effects for teacher be 𝜈𝑡 and
for school be 𝜈𝑠 .

𝑌𝑖 = 𝛽0 + 𝛽1Z𝑖 + 𝛽2𝛼𝑡𝑖 + 𝛽3𝛼𝑡𝑖Z𝑖 +
𝐾∑︁
𝑘=1

𝜆𝑘P𝑘𝑖 + 𝜈𝑡 + 𝜈𝑠 + 𝜖𝑖 (4)

Using the parameters from the submodel 4, the treatment effect
for students with a particular propensity to game the system is
modeled as

𝜏 (𝛼) = 𝛽1 + 𝛽3𝛼 (5)
Submodels (2) and (4) together formed a FLPS model, which we

fit using the Stan Markov Chain Monte Carlo software through
STAN [6].

5 DATA & VARIABLES
The data for this study exists at two different levels. There are
student-level variables, including the student-level predictors and
the learning outcome. Alternatively, the data used in gaming the
system detector and the detector’s output is aggregated in twenty-
second clips of the students usage of the program. Only time-clip
data from the Immediate Condition is used. All data from the study
are available through OSF2 and a full explanation of the data can
be found in [41].

The sample consists of 779 students: 394 in the Immediate Con-
dition and 385 in the Delayed Condition. The students were taught
by 34 teachers, in 9 schools. In the Immediate Condition, students
completed 96,311 problems across 107,577 clips.

5.1 Gaming the System Detector Data and
Output

Gaming labels were generated by adopting the methodology de-
scribed by [47] to produce action clips for the gaming detector, as
explained in Section 4.2.1. These clips capture sequences of actions
taken by students in ASSISTments. Each clip contains unique iden-
tifiers: the student working on the problem, the problem(s) being
worked on, the skill associated with the problem, and the prob-
lem type. Additionally, the clips detail the start and end times of
actions, their total duration, and, for attempts, the action’s correct-
ness and the student’s answer. Supplementary data within the clips
include indicators for hint requests, the number of hints requested
during the clip, the total hints available for the problem, the use
2https://osf.io/r3nf2/

of a ‘bottom-out’ hint, and the total attempts by the student. It is
important to note that the dataset had an indicator for scaffolding
support as well; however, the problems analyzed in our study did
not implement scaffolding support. Gaming labels produced by the
Cognitive Model detector were generated based on instances where
students’ actions in the clip met one or more rules indicative of
gaming system behavior.

5.2 Pretreatment Predictors
To estimate students’ propensity to game the system, we used de-
mographic data and data from assessments administered prior to
their use of their assigned condition. Pretest scores were collected
by the original studies’ researchers: algebraic knowledge, math
anxiety, and perceptual processing skills. Algebraic knowledge was
measured using a variant of the learning outcome described below
(Section 5.3). The math anxiety assessment was adapted form from
the Math Anxiety Scale for Young Children-Revised [16], which as-
sessed negative reactions towards math, numerical inconfidence,
and math-related worrying (Cronbach’s 𝛼=.87; see the items on
OSF3). Five items adapted from the Academic Efficacy Subscale of
the Patterns of Adaptive Learning Scale to assess math self-efficacy (
[39] Cronbach’s 𝛼 = .82; see items on OSF4). The perceptual process-
ing assessment evaluates students’ ability to detect mathematically
equivalent and nonequivalent expressions as quickly as possible
[23, 32] (see item on OSF5). Log forms of assessment test times were
also included in the models. We included polynomials of the pretest
scores when they improved model fit. The school district in which
the original study was conducted provided students’ demographic
data—race/ethnicity, individualized education plan status (IEP), and
English as a second or foreign language (ESOL) status. The district
also provided students’ most recent standardized state test scores in
math. Race and ethnicity were dummy-coded, with white students
as the reference category. We standardized (z-score) all continuous
scores to improve model fit and ease interpretation. Missing data
were imputed using singly-imputation with the Random Forest
routine implemented by the missForest package in R [52, 59]. The
number of missing data for each student was included as a predictor
in each submodel.

5.3 Learning Outcome
The learning outcome for the study is students’ algebraic knowl-
edge, which was assessed using ten multiple-choice items from a
previously validated measure of algebra understanding (Cronbach’s
𝛼 = .89; see the items on OSF6) [58]. Four of the items focused on
conceptual understanding of algebraic equation-solving (e.g., the
meaning of an equal sign), three focused on procedural skills of
equation-solving (e.g., solving for a variable), and three focused
on flexibility of equation-solving strategies (e.g., evaluating differ-
ent equation-solving strategies). These ten items together assessed
students’ knowledge in algebraic equation-solving, the improve-
ment of which was the goal of the interventions. The assessment

3https://osf.io/rq9d8
4https://osf.io/rq9d8
5https://osf.io/r47ev
6https://osf.io/uenvg
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was taken before and after the intervention. Students’ scores were
standardized to ease model fit and interpretation.

6 RESULTS
6.1 Gaming Detector
The students in the Immediate feedback condition produced 89,960
twenty-second clips of data. The gaming detector estimated that
students gamed the system during 4.62% of the clips. A majority
of students (94.18%) gamed the system at least once. Overall, stu-
dents averaged two gaming clips (mean = 5.85, SD = 4.11), but the
distribution is skewed, such that 39.05% of the total gaming system
behavior was attributed to the students in the upper quartile of
gaming frequency. This suggests that some students have a higher
propensity to game the system than others.

Notably, there were many problems (74.35%) in which no student
gamed the system at all. There was a small significant negative cor-
relation between the gaming rate on each problem and the average
accuracy on the problem (r = -0.21, p < 0.001). Furthermore, some
problem types had significantly higher rates of gaming behaviors
than others (F[2,244] = 4.69 p < 0.001). Students were more likely
to game the system on ’check all that apply’ problems compared
with problems they had to submit a number (p < 0.001), variable
(p = 0.038), an algebraic expression (p = 0.044), or submit an open
response (p < 0.029). Students were also more likely to game the
system on a multiple choice question than problems in which they
had to submit a numeric answer (p = 0.035). Because the problems
without gaming behavior would not be informative for assessing
students gaming the system, we did not include these problems in
the measurement model.

6.2 Fully Latent Principal Stratification
We ran 11,000 iterations of FLPS models using Markov chain Monte
Carlo chains calling Stan through rstan [57] in R; code is posted on
GitHub7. We evaluated convergence using trace plots and 𝑅. The
maximum 𝑅 for estimated parameters was 1.01. Table 1 provides
parameter estimates and relevant statistics for the measurement
and outcome submodels.

6.2.1 Measurement Submodel. Prior to the simultaneous estima-
tion of the FLPS sub-models in STAN, we ran the measurement
model using the stan_glmer function from the rstanarm package
[26] with different combinations and transformations of the pretest
predictors and demographic variables to find a suitable model for
the analysis. While building the measurement model, we split the
data into training (80%) and testing (20%) data sets. The model per-
formed best when pretest sub-scores from the tests were included,
so we included many pretest sub-scores in the final model. Our
final model produced an acceptable AUC of 0.87 on the training
data set.

The measurement model provides some notable predictors of
gaming the system behavior. Students with lower scores on the
math section of the state test were more likely to game the system
(𝛾17 = -0.31, 𝑃 (< 0) = .99). This effect was consistent with the albeit
smaller associationswith the algebraic knowledge sub-scores. There
was a nonlinear association between math anxiety and gaming
7https://github.com/kirkvanacore/FLPS_GamingTheSystem

behavior. Students with higher math anxiety were also less likely
to game the system (𝛾6 = -0.23, 𝑃 (< 0) = .97) and this effect became
greater in magnitude as high math anxiety increased, as shown the
effect associated with the math anxiety squared (𝛾7 = -0.04, 𝑃 (< 0)
= .92). Students with a higher negative reaction toward math (𝛾8 =
0.19, 𝑃 (> 0) = .99) and with higher numeric confidence (𝛾9 = 0.13,
𝑃 (> 0) = .96) were more likely to game the system. Times on the
algebraic knowledge test and the perceptual sensitivity learning sub-
tests were all predictive of gaming the system behavior. Students
who took less time on these tests were more likely to game the
system.

6.2.2 Outcomes Submodel. The outcomesmodel provided evidence
of an interaction between gaming behavior and the feedback condi-
tions, suggesting that while feedback is likely effective for students
with a low propensity to game the system, it is likely ineffective for
those with a high propensity to game the system. The main effect
for the Immediate Condition was likely positive (𝛽1 = 0.06, 𝑃 (> 0)
= .90). Notably, the effect was small – 6% of a standard deviation –
suggesting that while hints and feedback play a role in the effec-
tiveness of CBLP other program components also contribute to its
effectiveness. As expected, students with a high propensity to game
the system performed substantially worse than those with a low
propensity to game the system (𝛽2 = -0.37, 𝑃 (< 0) > .99).

The interaction between students’ propensity to game the system
and the Immediate Condition was likely negative (𝛽3 = -0.11, 𝑃 (< 0)
> .93). Table 2 presents estimated average effects for students in
each quartile of the propensity to game the system (𝛼). The students
at the bottom quartile of gaming the system propensity experienced
an estimated positive effect from the Immediate Condition of 0.18
SD of algebraic knowledge. In contrast, those at the top quartile of
gaming the system propensity experienced an estimated negative
effect of -0.02 SD of algebraic knowledge. This finding implies that
students who engage in gaming the system behavior may benefit
from the delayed condition, whereas those with a lower propensity
to game the system likely benefit from the Immediate Condition.

7 DISCUSSION & CONCLUSION
The findings of the study indicate that the impact of on-demand
hints and feedback on student performance in a CBLP varies widely.
This disparity in outcomes may be attributed to how students utilize
assistance features. Those who exploit hints excessively or rely on
trial-and-error methods to complete assignments would potentially
benefit from restricted or delayed access to immediate hints and
feedback. Nevertheless, even when immediate hints and feedback
were eliminated (as in the Delayed Condition), the decrease in
performance associated with gaming behavior was not completely
alleviated. Therefore, these results suggest that while removing on-
demand instruction may assist students inclined towards gaming
the system, further intervention is required to fully mitigate the
detrimental effects of such behavior or address the root causes
behind it.

Although the delayed hints and feedback condition was origi-
nally intended to be an active control in this study, it can be viewed
as a proactive intervention targeting gaming the system behavior.
This approach, similar to others mentioned in previous research
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Table 1: Fully Latent Principal Stratification Model Parameter Estimates

Measurement Submodel Outcomes Submodel
Predictors Estimate SD P(>0) P(<0) Estimate SD P(>0) P(<0)
𝑍 0.06 0.05 0.90 0.10
𝛼𝑡 -0.37 0.15 0.01 0.99
𝛼𝑡 : 𝑍 -0.11 0.08 0.07 0.93
Algebraic Procedural Knowledge -0.04 0.05 0.17 0.83 -0.01 0.04 0.42 0.58
Algebraic Conceptual Knowledge -0.08 0.06 0.10 0.90 0.13 0.05 0.99 0.01
Algebraic Flexibility Knowledge -0.03 0.04 0.25 0.75 -0.03 0.04 0.23 0.77
Algebraic Knowledge Items Complete -0.03 0.08 0.36 0.64 0.03 0.06 0.72 0.28
Algebraic Knowledge Time (Log) -0.04 0.04 0.14 0.86 -0.04 0.03 0.06 0.94
Math Anxiety -0.23 0.12 0.03 0.97 0.07 0.10 0.78 0.22
Math Anxiety (Squared) -0.04 0.03 0.08 0.92 -0.02 0.02 0.23 0.77
Math Negative Reaction 0.19 0.08 0.99 0.01 -0.04 0.07 0.27 0.73
Math Numerical Confidence 0.13 0.08 0.96 0.04 -0.06 0.06 0.16 0.84
Math Self Efficacy -0.04 0.04 0.21 0.79 0.03 0.04 0.81 0.19
Perceptual Sensitivity Score Part 1 -0.05 0.04 0.11 0.89 0.00 0.03 0.54 0.46
Perceptual Sensitivity Time Part 1 (Log) -0.10 0.06 0.03 0.97 -0.00 0.04 0.50 0.50
Perceptual Sensitivity Score Part 2 0.01 0.05 0.60 0.40 0.11 0.04 0.99 0.01
Perceptual Sensitivity Time Part 2 (Log) -0.06 0.05 0.10 0.90 -0.01 0.04 0.34 0.66
Perceptual Sensitivity Score Part 3 0.05 0.05 0.82 0.18 -0.04 0.04 0.15 0.85
Perceptual Sensitivity Time Part 4 (Log) -0.08 0.06 0.09 0.91 0.07 0.04 0.95 0.05
State Test Score -0.31 0.06 0.01 0.99 0.03 0.06 0.68 0.32
Female -0.01 0.04 0.38 0.62 0.02 0.03 0.73 0.27
Hispanic 0.11 0.14 0.78 0.22 0.06 0.10 0.72 0.28
Asian/Pacific Islander -0.15 0.13 0.11 0.89 0.11 0.10 0.88 0.12
Black 0.32 0.20 0.94 0.06 0.17 0.15 0.87 0.13
IEP -0.02 0.04 0.28 0.72 0.00 0.03 0.54 0.46
EIP 0.01 0.04 0.55 0.45 0.00 0.03 0.53 0.47
ESOL 0.01 0.05 0.54 0.46 0.01 0.04 0.65 0.35
Gifted -0.02 0.04 0.33 0.68 0.11 0.03 0.99 0.01
In-person Instruction 0.03 0.05 0.72 0.28 -0.16 0.07 0.02 0.98
Missing Data 0.01 0.07 0.58 0.41 -0.00 0.05 0.49 0.51

Table 2: Mean effects of the Immediate Condition (𝜏) and
each quartile of propensity to game the system (𝛼)

Mean
Quartile 𝛼 𝜏

1 -1.05 0.18
2 -0.23 0.09
3 0.28 0.03
4 0.76 -0.02

[3, 40], employs a standardized approach for all students. The dif-
ferential effect observed for immediate hints and feedback supports
[40]’s suggestion that deterring certain students from using hints
may be beneficial for some students despite the overall negative
impact on the student population. Our finding supports this hy-
pothesis.

One potential solution to the impact differential could involve
disabling immediate hints and feedback for students identified as
gaming the system, thereby offering a targeted intervention to redi-
rect their focus toward learning from the activity. This solution

would not only allow students who do not game the system to ben-
efit from the on-demand assistance, but it could also allow students
who game the system to benefit from this assistance when not
gaming the system. This type of adaptive system may also mitigate
some of the negative effects of the gaming behavior by allowing
those who game to experience the best of both interventions (im-
mediate and delayed). However, it is essential to acknowledge that
implementing such an approach may foster frustration and disen-
gagement. Further investigation is needed to test these hypotheses.

The measurement model parameters that predict gaming the
system suggest that intricate factors contribute to this behavior.
One possible scenario is that students with low knowledge but high
confidence resort to gaming the system after encountering fail-
ure in the activities, which contradicts their perceived self-efficacy.
It may seem contradictory that students’ overall math anxiety is
negatively associated with gaming the system behavior, whereas
negative reactions towards math in general are positively associ-
ated with it. However, it is plausible that math-anxious students
approach problems cautiously, while those with negative reactions
toward math may prioritize completing the assignment quickly.
These findings contribute to existing literature, highlighting that
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attributing gaming the system solely to general disengagement may
be too simplistic, as it likely stems from various underlying causes
[8].

Time spent on pretests was associated with gaming the system;
those who took more time on the pretests were less likely to game
the system. This finding is not necessarily surprising as gaming is
associated with rapid behaviors [8, 44]. However, it is still notable
that this behavior may be evident in the testing context. Thus,
gaming the system may be indicative of general rushing behavior.
Analyses of pause time have suggested that students who take more
timemay be exertingmore effort [29] and performing better [15, 33]
than those respond quickly after starting a problem. Together, these
findings indicate that gaming behaviors may be interrelated with
other leaner profiles, which are also associated with heterogeneity
in learning outcomes.

Finally, this paper showcases the potential of combining de-
tection and causal methods in the field of LA to gain a deeper
understanding of appropriate actions following the identification
of specific behaviors or latent states. Artificial intelligence driven
detection within CBLPs often leaves learning experience design-
ers with "what next" questions (e.g. "What should we do now that
we know a student is frustrated?"). FLPS provides one solution by
combining the output of detectors with causal models to address
which program features will differently benefit students who ex-
hibit specific behavior patterns. Although in the current analysis
we use a rule-based detection method, the integration of artificial
intelligence prediction systems with FLPS holds promise for not
only assessing students’ experiences and actions in CBLPs but also
suggesting optimal adaptations within these programs to maximize
their learning impact.

8 LIMITATIONS & FUTURE DIRECTIONS
Although our findings suggest that the impact of feedback may
vary depending on students’ inclination to game the system, it is
important to acknowledge the limitations of this analysis. First,
there remains some uncertainty regarding whether the main and
interaction effects in the model significantly differ from zero. Sam-
pling from the posterior distribution indicated a 90% certainty that
the main effect (i.e., the effect of Immediate Feedback for those with
an 𝛼 of zero) was greater than zero, and a 93% certainty that the
slope associated with the propensity to game the system (𝛼) was
less than zero. However, it is still possible that the observed effects
may be smaller in magnitude than those presented here. Further
research is needed to validate and replicate these results to establish
the robustness of our findings.

Although this analysis provides information about who is likely
to game the system and under what circumstances, it does not fully
address questions related to the profiles of students who game the
system. Our measurement model finds some corollaries to gaming
behavior but does not provide a robust delineation of learner pro-
files for students who are likely to game the system. More work
is needed in this area. Similarly, we found a negative correlation
between the rate of gaming and the average accuracy on each prob-
lem, but we need a more robust understanding of why students
are gaming on specific problems. There is a notable reciprocal rela-
tion between gaming the system and accuracy, which may explain

this relationship. Some problem types had higher associations with
gaming behavior than others, such as ’check all that apply’ and mul-
tiple choice problems. Future work should seek to understand how
problem difficulty and type influence the likelihood that students
will game the system.

Additionally, it is essential to recognize the limitations of FLPS.
The effects estimated using FPLS rely on the underlying quality
of the model itself, and the extent to which errors in the model
estimation may introduce bias to the effect remains unclear. More
work is necessary to develop a comprehensive understanding of
how to evaluate these models and ensure they provide unbiased
estimates of treatment effects.
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Gaming the system is a persistent problem in Computer-Based Learning Platforms. While substantial
progress has been made in identifying and understanding such behaviors, effective interventions remain
scarce. This study uses a method of causal moderation known as Fully Latent Principal Stratification to
explore the impact of two types of interventions – gamification and manipulation of assistance access –
on the learning outcomes of students who tend to game the system. The results indicate that gamifica-
tion does not consistently mitigate these negative behaviors. One gamified condition had a consistently
positive effect on learning regardless of students’ propensity to game the system, whereas the other had a
negative effect on gamers. However, delaying access to hints and feedback may have a positive effect on
the learning outcomes of those gaming the system. This paper also illustrates the potential for integrating
detection and causal methodologies within educational data mining to evaluate effective responses to de-
tected behaviors.

Keywords: gamification, gaming the system, causal inference, computer-based learning platforms

1. INTRODUCTION

Gaming the system – attempting to progress through a learning activity without learning (Baker
et al., 2008) – is an enduring problem that reduces the efficacy of Computer-Based Learning Plat-
forms (CBLPs). Educational Data Mining (EDM) researchers have made substantial progress in
identifying instances of gaming the system behaviors (Paquette et al., 2014; Paquette and Baker,
2017; Paquette and Baker, 2019; Dang and Koedinger, 2019; Baker et al., 2006), and further
research has explored the antecedents of these behaviors (Baker et al., 2004; Baker et al., 2008;
Baker et al., 2009); however, solutions remain scarce. Although interventions to address gaming
the system have been evaluated (Richey et al., 2021; Walonoski and Heffernan, 2006; Murray
and VanLehn, 2005; Xia et al., 2020; Baker et al., 2006), most focus on dissuading students
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from gaming the system instead of improving learning outcomes. Thus, it is unclear which
interventions help students who tend to game the system engage with and learn from CBLPs.

This paper explores two types of interventions – gamification and manipulations of access
to assistance – which could hypothetically benefit students who tend to game the system. In
general, gamification – the act of infusing game features into a system – is seen as a potential
method of increasing engagement within CBLPs (Garris et al., 2002; Gaston and Cooper, 2017;
Vanacore et al., 2023a). By increasing engagement, gamification could theoretically decrease
gaming the system behaviors and help students benefit from the CBLPs. However, features of
gamification could exacerbate these behaviors by providing more opportunities to game. There-
fore, simpler alternatives may also be effective, such as restricting access to the assistance that
is often abused by gamers1 (Murray and VanLehn, 2005). The current research on gaming the
system interventions has not fully addressed which interventions are most effective for gamers.
Thus, it is unclear what changes in CBLP environments can positively influence these students’
learning behaviors and outcomes.

In this paper, we explore the impact of key differences in learning platforms on students
who tend to game the system. More specifically, this study addresses whether students who
game the system in a traditional CBLP – one that includes various closed-ended and open-
ended questions with immediate hints and feedback – would respond differently to alternative
CBLP environments: two gamified CBLPs and a traditional CBLP in which the access to hints
and feedback were delayed until the end of each activity. We find that gamification does not
consistently mitigate the negative effects of gaming the system on learning, but students who
tend to game the system may benefit from delayed hints and feedback.2

As a secondary objective, we present an example of integrating prediction from detection
models into causal models. We utilize a method of causal moderation – Fully Latent Principal
Stratification (Sales and Pane, 2019)– that can leverage detection model outputs to understand
heterogeneity in treatment effects. The combination of detection and causal models provides
opportunities to go beyond identifying students’ behaviors and/or latent states (e.g., confusion
or knowledge component mastery) to understand how to respond in a way that positively impacts
learning.

2. BACKGROUND

In this section, we provide literature reviews of the relevant aspects of the study. First, we include
a review of the suspected antecedents and outcomes associated with gaming behaviors (Section
2.1). Next, we consider the theoretical and empirical support that immediate assistance features
(Section 2.2) and gamification (Section 2.3) influence students’ learning-related behaviors and
outcomes. Finally, we review research on interventions aimed at mitigating gaming behaviors
(Section 2.4).

1Throughout this paper, we use the term ’gamers’ to mean students who tend to game the system and ‘gaming
behaviors’ as behaviors indicative of gaming the system.

2The finding that delayed hints and feedback are beneficial for students who tend to game the system was first
reported in Vanacore et al. (2024). The current paper extends these analyses to include two other conditions.
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2.1. GAMING THE SYSTEM

Gaming the system is defined as “attempting to succeed in an educational environment by ex-
ploiting properties of the system rather than by learning the material and trying to use that
knowledge to answer correctly” (Baker et al., 2008). This definition is operationalized by two
key behaviors: rapid and repeated requests for help (hint abuse) and submission of answers in
a systemic way (guess-and-check) (Baker et al., 2008; Walonoski and Heffernan, 2006). These
behaviors indicate that a student is trying to submit the answers to problems merely to progress
through the assignment without deploying the effortful engagement required to learn from the
activity.

Therefore, it is not surprising that gaming the system behaviors are correlated with reduced
performance within CBLPs (Baker et al., 2004) and poor learning outcomes (Mihaela and Her-
shkovitz, 2009). Furthermore, gaming is also predictive of low distal outcomes such as state
test performance (Pardos et al., 2014) and college enrollment (Adjei et al., 2021). Thus, gaming
behaviors may be related to students’ broader educational struggles.

However, gaming the system tends to have a stronger association with student frustration
rather than general disengagement (Baker et al., 2008), as it is not correlated with off-task be-
havior (Baker et al., 2004). Specific program features may cause gaming behaviors by fomenting
confusion and frustration (Baker et al., 2009). Research suggests that students move from states
of confusion and frustration towards gaming the system behaviors because the CBLP’s features
do not adequately address their learning needs (Rodrigo et al., 2008; Baker et al., 2009). When
the CBLP’s activities are ambiguous and abstract, students are more likely to game the system
(Baker et al., 2009). Thus, it is plausible that decreasing problem difficulty and adding supports
to mitigate frustration may reduce gaming (Baker et al., 2008). Alternatively, additional assis-
tance features may dissuade students from persistent and effortful engagement with the content
while providing more opportunities to abuse support features.

2.2. ON-DEMAND HINTS AND IMMEDIATE FEEDBACK IN CBLPS

Although abuse of on-demand hints and immediate feedback are the key characteristics of gam-
ing the system, these are also fundamental features of many CBLPs. Substantial research is
dedicated to immediate hints and feedback. Students tend to benefit from timely feedback and
support during learning activities (Butler and Woodward, 2018; Shute, 2008; Lu et al., 2023;
Razzaq et al., 2007; Lu et al., 2021). Multiple studies present evidence that providing feedback
immediately after students respond to or complete problem sets has a positive effect on students’
procedural and conceptual knowledge (Corbett and Anderson, 1994; Dihoff et al., 2003; Phye
and Andre, 1989). In many CBLPs, students may also request assistance, which includes hints
and feedback as students work on problems. These features have varying implementations.
Common hints and feedback methods include presenting general topical information (Aleven
and Koedinger, 2000), worked examples that present a complete solution to a similar problem
(McLaren et al., 2016), providing the complete solution to the given problem (Williams et al.,
2016), being shown similar examples done incorrectly (McLaren et al., 2016; Adams et al.,
2014), providing targeted feedback based on a student’s common wrong answer (Gurung et al.,
2023; Gurung et al., 2023), and being given a series of step-by-step hints (Feng and Heffernan,
2006).

Overall, these features have differing levels of efficacy. For example, tutoring strategies,
which provide problem-specific hints, are effective at improving student performance (Prihar
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et al., 2021; Patikorn and Heffernan, 2020). Williams et al. (2016) found students performed
better when presented with Machine Learning-generated explanations as opposed to only re-
ceiving the answer. Research has also shown that feedback is more effective if provided as the
student is answering questions than if it is delayed until after an activity (Lu et al., 2023), which
supports the argument that assistance should be on-demand and immediate. Yet, there are also
implementations of this assistance that show mixed or no efficacy. For example, McLaren et al.
(2016) found that worked examples did not improve learning outcomes. Aleven and Koedinger
(2000) found that students typically ignored assistance that involved general information aimed
at helping students learn concepts; these students preferred hints that focused on the problem
on which they were working. Another study found that students required support to utilize on-
demand learning assistance but failed to find learning gains even when this support was given
(Aleven et al., 2016). Overall, these findings suggest that students want assistance and feedback
focused on the problem in which they are struggling; they are less engaged with assistance that
provides general information about the concepts they are learning.

In theory, on-demand assistance tutoring strategies in intelligent tutoring systems should
encourage help-seeking behaviors, which can increase students’ autonomy and control of their
learning (Aleven et al., 2006; Aleven et al., 2016). Yet, students can abuse this control, as
exhibited by gaming behaviors. Although there is ample research on the efficacy of hints and
feedback, more is needed to understand who benefits from these resources. Furthermore, the
interactions between access to these learning supports, how students use these supports, and
learning outcomes have not been fully explored.

2.3. GAMIFICATION & ENGAGEMENT

Gamification, adopting features of games into non-game contexts, is a common method of in-
creasing engagement in CBLPs (Landers, 2014; Karagiorgas and Niemann, 2017). Gamification
includes incorporating “design elements, game thinking, and game mechanisms” (Karagiorgas
and Niemann, 2017). In contrast, game-based learning allows students to engage in learning
through a playful activity (Karagiorgas and Niemann, 2017).

According to the Theory of Gamified Learning, gamification impacts students’ learning out-
comes by influencing their behaviors as they learn (Landers, 2014). For example, games can
influence students’ learning behaviors by turning activities that may be exasperating into ones
that are “pleasantly frustrating” (Gee, 2005). This pleasant frustration is often a product of
the balance of success and failures necessary for an engaging game (Juul, 2009). It is plausi-
ble that a frustrating problem that might cause an uptick in gaming behaviors in a traditional
CBLP could produce engagement in a gamified one. As frustration is a likely antecedent of
gaming behaviors, gamification could theoretically reduce instances of gaming the system by
reframing typically frustrating experiences as enjoyable. This idea is supported by evidence
that students respond positively to game-based failure in a gamified learning environment by
exhibiting productive performance (Vanacore et al., 2024). Thus, students who might disengage
with a traditional CBLP by gaming the system would possibly instead engage with a gamified
version of the CBLP; however, the extent to which gamification can produce these “pleasantly
frustrating” experiences associated with games is unclear, as engaging with a gamified CBLP
is not the same as playing a game. Furthermore, which features of a learning engagement are
gamified may be as important as whether a learning experience is gamified at all.

Research on gamification has shown mixed effects on students’ behaviors in learning con-
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texts. Some have found a positive effect of gamified features on student engagement (Gar-
ris et al., 2002; Gaston and Cooper, 2017; Vanacore et al., 2023a), while others have not
(Malkiewich et al., 2016; McKernan et al., 2015). Garris et al. (2002) found that reward-based
systems caused students to take more time and replay problems more frequently. Previous work
has also found that gamified performance-based feedback increases students’ persistence behav-
iors associated with greater impacts on student learning (Vanacore et al., 2023a; Vanacore et al.,
2023b). Alternatively, Malkiewich et al. (2016) found that some gamified features, such as nar-
rative elements, did not positively impact students’ persistence within the game. McKernan et al.
(2015) also found that reward systems improved students’ perceptions of their experiences, but
not their behaviors or outcomes. As gaming the system can be seen as the antithetical behavior
of persistence and engagement, it is plausible that gamification could mitigate these behaviors;
however, the mixed results suggest that more research is necessary to evaluate this hypothesis.

2.4. MITIGATING GAMING THE SYSTEM BEHAVIORS

Interventions for gaming behaviors can be either proactive or reactive. Proactive interventions
involve attempting to curtail the gaming behaviors before students have the opportunity to ex-
hibit said behaviors (Aleven et al., 2006; Murray and VanLehn, 2005; Walonoski and Heffernan,
2006; Xia et al., 2020). Reactive options require targeted interventions after the gaming behavior
has been identified (Baker et al., 2006).

Research suggests that proactively discouraging students from superfluous hint requests may
be an imprecise method of addressing gaming behaviors. Advising students to request hints only
when they truly needed them while delaying hint availability by ten seconds reduced hint usage
and did not impact overall performance (Murray and VanLehn, 2005). However, Murray and
VanLehn (2005) found some evidence that this method may have improved the performance
of students who might have otherwise gamed the system; they found a marginally insignificant
positive effect on the performance of students with low prior knowledge. The lack of statisti-
cal significance may be attributed to the study’s small sample. Thus, the finding suggests that
manipulating access to hints could help students who game the system.

Another proactive method includes presenting students with information about their gaming-
related behaviors. Researchers have theorized that this intervention may influence students in
one of two ways. They make the student aware that the system is logging their behaviors, thus
creating “panopticon-like paranoia” of constant awareness of potential observation (Walonoski
and Heffernan, 2006). Alternatively, visualizing students’ actions may also nudge students to
reflect on their learning behaviors (Xia et al., 2020). Two studies found that providing graph-
ical representations of learning-related behaviors can reduce instances of gaming the system
(Walonoski and Heffernan, 2006; Xia et al., 2020). However, neither of these studies evaluated
this method’s impact on learning. Furthermore, students who are likely to game the system to
progress through learning activities may also game the system to manipulate the outputs of the
visualizations.

As a reactive option, Baker et al. (2006) placed students who had previously gamed on spe-
cific content into an intervention focused on the content that the students had gamed. In this
intervention, students saw an animated dog that displayed emotional responses to their learning-
related behaviors. The animation embodied an exaggerated mimic of a teacher’s emotions in
response to student behavior (e.g., excitement and positivity if a student exerted effort, or frustra-
tion if a student gamed the system). This intervention significantly decreased students’ gaming
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behaviors and positively affected their learning outcomes, as measured by a post-test, compared
to a control group that did not have access to the animated dog.

Overall, there is suggestive evidence that directly dissuading students from gaming behav-
iors like hint abuse may benefit some students, yet it is unclear whether it has adverse effects
on the non-gaming student population. Alternatively, presenting visualizations that represent
students’ actions may reduce instances of gaming; however, the learning impact of this method
has not been explored. Notably, only the study that imposed a direct content-specific interven-
tion showed a significant impact on learning (Baker et al., 2006). Thus, none of these studies
connected the prevention of gaming behaviors with learning outcomes.

One alternative method is to change the learning environment substantially. Richey et al.
(2021) evaluated the impact of a gamified CBLP by comparing it to an equivalent non-gamified
CBLP and found that the gamified version reduced students’ gaming behaviors, thus improv-
ing their learning outcomes. The gamified CBLP included interactive characters that prompted
students with feedback and provided “narrative context for why they are performing various
problem-solving activities.” The reduction in gaming behavior completely mediated the effects
on the posttests, suggesting the gamified elements’ primary mechanism for impacting outcomes
is reducing gaming behaviors.

3. CURRENT STUDY

In the current study, we seek to understand the interplay between gaming the system behaviors,
CBLP instructional design, and student learning by evaluating the following research question:
Do students who tend to game the system in a traditional CBLP with on-demand hints and
immediate feedback (i.e., ’gamers’) benefit from alternative CBLPs?

We address this question using open-source data3 from an efficacy study conducted to eval-
uate the effects of different CBLPs on middle school students’ (U.S. Grade Seven) algebraic
knowledge (Decker-Woodrow et al., 2023). The original study included four conditions (dis-
cussed in detail in Section 4.2) consisting of two traditional CBLP conditions administered
through ASSISTments and two gamified CBLP conditions (From Here to There! and Drag-
onBox Algebra 12+). In one of the ASSISTments conditions, students worked through tradi-
tional problem sets with access to hints and automated immediate feedback (Immediate Con-
dition). In the other ASSISTments condition, access to both hints and feedback was delayed
until after students completed problem sets (Delayed Condition). This question was preregis-
tered4 along with the hypotheses that gamers would benefit from both the Delayed Condition
condition and gamified conditions relative to the Immediate Condition.

The original efficacy study found that both gamified conditions caused higher performance
in algebraic knowledge compared to the delayed condition, but the effect of the Immediate Con-
dition was not significant after controlling for student-level covariates (Decker-Woodrow et al.,
2023). The current study is an extension of a previous analysis presented at the 14th Interna-
tional Learning Analytics and Knowledge Conference (Vanacore et al., 2024). In that analysis,
we compared the Immediate and Delayed conditions to understand the impact of feedback de-
livery on learning for students with a higher propensity to game the system in the Immediate

3The data can be accessed on the Open Science Foundation (OSF) repository after filling out a data exchange
agreement: https://osf.io/r3nf2/

4https://osf.io/kfq2s
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Condition. We reported that although students with a low propensity to game the system bene-
fited from the Immediate Condition, those with a high propensity to game the system may have
benefited from the Delayed Condition.

Here, we extend this analysis by including gamified conditions to fully explore how differ-
ences in CBLP institutional design may produce impact differentials for gamers. These gamified
conditions share many key features: dynamic manipulation of equations, performance-based
feedback, multiple paths to solutions, and the ability to replay problems. But they also have key
differences (further described in Section 4.2), including narrative goals and the way puzzles are
used to teach mathematical concepts. The following study does not allow us to understand the
effects of individual gamified features, yet we can better understand how different students inter-
act with gamified systems generally and whether these systems have consistent or inconsistent
patterns of treatment effect heterogeneity.

4. METHOD

4.1. DESIGN

This study consists of a randomized controlled trial conducted in a school district in the South-
eastern United States. The study consisted of 52 teachers in 10 schools. Students were ranked
within classrooms based on their prior state mathematics assessment scores, blocked into sets
of five (i.e., quintets), and then randomly assigned into either the From Here to There (FH2T;
40%), DragonBox (20%), Immediate Feedback (20%), or Delayed Feedback (20%) conditions.
The disproportionate weighting was intended to allow researchers to focus their work on evalu-
ating and understanding FH2T. The implementation of the study included nine weekly half-hour
sessions in which the students worked in their assigned program. A full description of the study
design can be found in Decker-Woodrow et al. (2023), an analysis of the study implementation
is reported in Vanacore et al. (2024), and a description of the data set can be found in Ottmar
et al. (2023).

4.2. CONDITIONS

As explained in Section 3, the study consists of four conditions: two traditional and two gamified
CBLPs. Example problems from each condition are presented in Figure 1. All conditions fo-
cused on teaching procedural ability, conceptional knowledge, and flexibility in algebraic equa-
tion equivalency.
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Figure 1: Example problems from each condition.

Both traditional problem sets’ conditions (Immediate and Delayed Conditions) were admin-
istered through ASSISTments (Heffernan and Heffernan, 2014), an online homework system
that assists students as they solve traditional problem sets. The problem sets in ASSISTments
are adapted from open-source curricula, thus resembling problems students encounter in their
textbooks and homework assignments. ASSISTments presents students with problems one at
a time on their screen. Each condition included 218 problems of the same problems selected
from three curricula – EngageNY, Utah Math, and Illustrative Math – to address specific alge-
bra skills. The problems were divided into nine problem sets and administered throughout nine
half-hour sessions during school hours.
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4.2.1. Immediate Hints and Feedback (Immediate Condition)

In the Immediate Condition, students could request hints while solving problems. They also re-
ceived automatic feedback on whether their answer was correct or incorrect after every submitted
answer. Each problem contained a series of hints with a similar structure. The first hint gave
the students the first step to answering the problem. The second hint gave the student a worked
example of a similar problem. The final hint provided the student with the steps to complete the
problem as well as the problem’s solution. Students could submit as many answers as needed
but could not move on until they had entered the correct answer. This condition was shown to be
effective when implemented as a substitute for paper homework assignments (Roschelle et al.,
2016). However, this condition provides both of the features that enable gaming behaviors: a
sequence of hints that eventually provide the answer, which students can use for hit abuse, and
immediate feedback, which allows for guess-and-check approaches to submitting responses.

4.2.2. Post-Assignment Hints and Feedback (Delayed Condition)

The Delayed Condition provided post-assignment assistance rather than on-demand hints and
immediate feedback. In this condition, problem sets were administered in “test mode,” so stu-
dents did not receive any feedback or hints while submitting answers in each problem set. They
could only submit one answer and progressed through the problem set without any feedback on
their performance. Students received a report with feedback on their accuracy at the end of each
problem set, and they could review their responses, revisit problems, and request hints. This
condition was used as an active control in the original study, but we re-conceptualize it here as
an intervention for gamers.

4.2.3. From Here to There! (FH2T)

From Here to There! (FH2T) takes a nontraditional approach to algebra instruction by applying
aspects of perceptual learning (Goldstone et al., 2010) and embodied cognition (Abrahamson
et al., 2020). Instead of presenting students with traditional algebra equations and expressions
that students solve or simplify, FH2T gives students access to a starting expression (start state)
that they must dynamically transform into a mathematically equivalent expression (goal state).
Students can manipulate the expression by dragging numbers and symbols from one position
to another on the screen or using a keypad when expanding terms. Only mathematically valid
manipulations are accepted. Each valid manipulation counts as a step, which is logged and used
to evaluate how efficiently the student transforms the expression from the start to the goal state.
FH2T has 252 problems that are presented sequentially by mathematical content and complexity.
Students must complete one problem in the sequence before advancing to the next problem.

4.2.4. DragonBox Algebra 12+ (DragonBox)

DragonBox Algebra 12+ 5 (DragonBox) is an educational game that provides instruction in al-
gebraic concepts to secondary school students (ages 12-17). For each problem, students are
asked to isolate a box containing a dragon—equivalent to solving an equation for x. This design
incorporates research-based pedagogical methods, including discovery-based learning, embed-
ded gestures, diverse representations of concepts, immediate feedback, and adaptive difficulty
(Cayton-Hodges et al., 2015; Torres et al., 2016). The game’s key innovation is that students

5https://dragonbox.com/products/algebra-12
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learn the rules of algebra without using or manipulating numbers or traditional algebraic sym-
bols. Thus, students engage with the algebraic concepts as if they are puzzles. Numbers and
traditional algebraic symbols are introduced gradually, presumably after the student has learned
the underlying concepts. Furthermore, DragonBox applies a narrative goal to the learning: stu-
dents must allow the dragon to come out of the box by isolating it in the equation. Previous
analyses found that DragonBox positively affects engagement and attitudes toward math, but
findings are mixed in regard to its efficacy in improving learning outcomes (Siew et al., 2016;
Dolonen and Kluge, 2015).

4.3. ANALYSIS PLAN

Our goal is to assess whether the students who gamed the system in a traditional CBLP would
have benefited from a different CBLP. This poses a methodological difficulty because estimating
the effect of randomizing gamers to the Immediate condition requires us to contrast their post-
test scores with scores from comparable students in the other conditions; however, we only
observe gaming behavior in the Immediate condition. Even if we did observe gaming in another
condition, we cannot know if a student who gamed the system in one condition would also game
in another. In fact, we hypothesize that students who would game the system in the Immediate
Condition would not engage in similar behaviors in the other conditions and benefit from the
learning therein.

To address this methodological problem, we propose that students have a baseline propen-
sity to game the system in the Immediate Condition that exists before randomization, regardless
of whether it can manifest itself after treatment assignment. Because it is considered a base-
line covariate, similar to students’ pretest knowledge, it is independent of the random treatment
assignment and can serve as a moderating variable. However, unlike pretest knowledge, only
students in the Immediate Condition have the opportunity to display the behavior; therefore, its
value in the other conditions is unknown. Nevertheless, once this latent propensity to game the
system is estimated, we can evaluate whether it moderates the effects of the various interven-
tions.

Our analysis requires two key steps, which are described in depth below. First, we use a
gaming the system detector to identify instances where students are gaming the system within
the Immediate Condition. Next, we use the causal method of Fully Latent Principal Stratification
(FLPS, (Sales and Pane, 2019)), which will allow us to estimate the effect heterogeneity of each
program based on students’ latent propensity to game the system in the Immediate condition.
Each of these methods is delineated in the sections below.

4.3.1. Implementation of Gaming The System Detector

This paper employs the rule-based gaming detectors originally created by Paquette et al. (2015)
to identify gaming behavior among students working on algebraic problems. To the best of
the authors’ knowledge, the Cognitive Model developed by Paquette et al. (2015) was the first
detector that was transferable across intelligent tutoring systems, from Cognitive Tutor Algebra
(CTA) to ASSISTments. The original rule-based detector was engineered to detect gaming
in CTA (Baker et al., 2008). Paquette et al. (2014) further developed the rule-based gaming
detector by relying on human judgments through text replays of logged learner actions (Baker
et al., 2010). The insights gained from human judgments were used to develop gaming detectors
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for CTA. Subsequently, the transferability of this rule-based gaming detector was validated in
ASSISTments.

We elected to use the rule-based Cognitive Model for identifying gaming behavior as rule-
based models mitigate key challenges to more complex detectors: model generalizability and
detector rot. Unlike other system-specific gaming detectors, the rule-based model demonstrated
cross-system generalizability, underscoring its adaptability and reliability in contexts beyond
the original training data set (Paquette et al., 2015). More complex models are also susceptible
to detector rot, a phenomenon that refers to the gradual decline in a model’s performance over
time. Prior studies have reported that more complex models, using more advanced ML and DL
algorithms, are more prone to this phenomenon than their simpler counterparts (Lee et al., 2023;
Levin et al., 2022). Given that many gaming the system models were developed years before
our study, they are at a higher risk of experiencing detector rot. Consequently, we implemented
the rule-based detector, in light of its potential for sustained generalizability and resistance to
detector rot.

To implement the rule-based detector for identifying gaming behavior among students, logged
student actions are first aggregated into twenty-second clips. These clips are then analyzed
alongside additional information to contextualize the actions into more meaningful categories,
as outlined in Table 1. This process allows for the identification of specific sequences of action
patterns considered indicative of gaming behavior, with a total of 13 patterns detailed in Table 2.
For example, analyzing the first pattern, “incorrect → [guess] & [same answer/diff. context]
& incorrect” indicates a scenario where the student entered an incorrect answer and re-entered
the same incorrect answer within 5 seconds of making the first attempt. For the students in the
Immediate Condition in this study, the rule-based detector employs this structured approach,
leveraging log-file data compiled in twenty-second intervals (as described in Section 4.4.1) to
determine gaming instances during each clip. These determinations are then integrated into the
FLPS model, enhancing its ability to accurately reflect student engagement and behavior.

4.3.2. Estimating Effects Using Fully Latent Principal Stratification

FLPS is a variant of Principal Stratification, a causal inference method used in randomized con-
trolled trials for estimating the intervention effects on subgroups that emerge after the treatment
has begun (Frangakis and Rubin, 2002; Page et al., 2015). Generally, to estimate subgroup ef-
fects, the subgroups must be defined prior to the intervention and be independent of treatment
assignment. For example, to test whether an effect varies based on pretest knowledge, inter-
acting the treatment with the pretest knowledge score estimates how the treatment effect differs
across different subgroups of students with similar prior knowledge. However, subgroups iden-
tified based on students’ interactions with a treatment program cannot be observed at baseline.
Furthermore, they may only be observed for students randomized in some conditions (in the
present case, the Immediate Condition). Even if they could be observed in multiple conditions,
the student’s behavior is confounded by their condition (i.e., some students may game the system
in one condition but would not in another condition). FLPS provides a solution to this method-
ological problem by modeling these behaviors as manifestations of latent student characteristics,
which are not observed for students randomized to some conditions but must be estimated.

Often, a student’s interactions with programs are categorized by a complex series of behav-
iors. This fact is particularly true in CBLPs, where students may display an array of behaviors
during the program, such as meeting implementation goals (Dieter et al., 2020; Vanacore et al.,
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Table 1: List of contextually interpretable actions that are utilized to develop the rules for identi-
fying gaming the system behavior.

Identifier Description
[did not think before help request] Pause smaller or equal to 5 seconds before a help request
[thought before help request] Pause greater or equal to 6 seconds before a help request
[read help messages] Pause greater or equal to 9 seconds per help message after a help request
[scanning help messages] Pause between 4 and 8 seconds per help message after a help request
[searching for bottom-out hint] Pause smaller or equal to 3 seconds per help message after a help request
[thought before attempt] Pause greater or equal to 6 seconds before step attempt
[planned ahead] Last action was a correct step attempt with a pause greater or equal to 11 seconds
[guess] Pause smaller or equal to 5 seconds before step attempt
[unsuccessful but sincere attempt] Pause greater than or equal to 6 seconds before a bug
[guessing with values from problem] Pause smaller than or equal to 5 seconds before a bug
[read error message] Pause greater than or equal to 9 seconds after a bug
[did not read error message] Pause smaller than or equal to 8 seconds after a bug
[thought about error] Pause greater than or equal to 6 seconds after an incorrect step attempt
[same answer/diff. context] Answer was the same as the previous action, but in a different context
[similar answer] Answer was similar to the previous action (Levenshtein distance of 1 or 2)
[switched context before right] Context of the current action is not the same as the context for the previous

(incorrect) action
[same context] Context of the current action is the same as the previous action
[repeated step] Answer and context are the same as the previous action
[diff. answer AND/OR diff. context] Answer or context is not the same as the previous action

2024), productive persistence (Vanacore et al., 2023a), mastering knowledge components in
mastery learning (Sales and Pane, 2019), and gaming-the-system behaviors that may be viewed
as indicators of latent student characteristics (i.e., high fidelity users, persistent learners, mastery
users, gamers). Understanding which latent behavioral characteristics are associated with effect
heterogeneity can help provide a better understanding of how CBLPs impact students.

However, these latent behavioral characteristics are likely context-dependent (e.g., a student
may persist in one CBLP and not another). These behaviors are unobserved for the students
randomized to conditions where they do not have the same opportunity to display the relevant
behaviors as they did not interact with the same CBLP. For example, some students might re-
quest hints in a condition that provides them. However, other conditions may not provide the
opportunity to request hints, so we cannot observe whether students in this condition would have
requested them. Furthermore, when the relevant behaviors are observable, they are confounded
by the students’ assigned conditions, which presumably influence their behaviors. For example,
suppose students are randomized between receiving optional hints or explanations. In that case,
students who prefer hints may be unlikely to request help when they are randomized to expla-
nations and vice versa. Therefore, their underlying latent student characteristics that define the
subgroups in the FLPS can be interpreted as explaining students’ behaviors if randomized to a
specific condition.

Sales and Pane (2019) used this method to determine whether the effect of Cognitive Tutor
Algebra I on students varies based on whether students were likely to master knowledge compo-
nents in Cognitive Tutor by estimating the likelihood of mastering knowledge components for
the treatment group as a latent variable. In the current study, we evaluate whether the effect of
each alternative condition (Delayed Condition, FH2T, DrangonBox) differs based on students’
latent propensity to game the system had they been assigned to Immediate Condition. This
propensity to game the system in the Immediate Condition is independent of students’ treatment
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Table 2: List of contextually interpretable actions that are utilized to develop the rules for identi-
fying gaming the system behavior.

Action patterns considered gaming behavior.
incorrect → [guess] & [same answer/diff. context] & incorrect
incorrect → [similar answer] [same context] & incorrect → [similar answer] & [same context] & attempt
incorrect → [similar answer] & incorrect → [same answer/diff. context] & attempt
[guess] & incorrect → [guess] & [diff. answer AND/OR diff. context] & incorrect → [guess] & [diff. answer AND/OR

diff. context & attempt
incorrect → [similar answer] & incorrect → [guess] & attempt
help & [searching for bottom-out hint] → incorrect → [similar answer] & incorrect
incorrect → [same answer/diff. context] & incorrect → [switched context before correct] & attempt/help
bug → [same answer/diff. context] & correct → bug
incorrect → [similar answer] & incorrect → [switched context before correct] & incorrect
incorrect → [switched context before correct] & incorrect → [similar answer] & incorrect
incorrect → [similar answer] & incorrect → [did not think before help] & help → incorrect (with first or second answer

similar to the last one)
help → incorrect → incorrect → incorrect (with at least one similar answer between steps)
incorrect → incorrect → incorrect → [did not think before help request] & help (at least one similar answer between steps)

assignment, as it exists prior to any treatment and regardless of whether it has the opportunity to
manifest.

Since students’ gaming behavior was detected in the Immediate Condition, our goal is to
know how students with a high propensity to game the system in the immediate condition would
fare if placed in each of the other conditions: the Delayed Condition, FH2T, or DragonBox. For
simplicity, we refer to the Immediate Condition as the control and each of the other conditions as
treatments. We present the following model as if there is only one treatment for simplicity, but
the model estimated in this paper includes multiple treatment conditions, and therefore, multiple
main and moderating effects.

Let τi be subject i’s individual treatment effect: the difference between i’s posttest score if
i were randomized to treatment and their score if randomized to control. Let T and C be the
samples of students randomized to treatment and control, respectively. Let αci be i’s propensity
to game the system if randomized to the control condition. αci is defined for i ∈ T , as students
in the treatment conditions still had a potential to game the system had they been randomized
to control, even if this potential was never realized. Therefore, αci is estimated from gaming
the system behavior for C and αci is imputed for each T . This propensity to game the system is
condition-specific and represents an estimate of whether students would have gamed the system
if randomized to the control condition (i.e., Immediate Condition).

The principal effect is the treatment effect for the subgroup of students with a particular
value for αc:

τ(α) = E[τ |at = α] (1)

To estimate the function τ(α), we (1) estimate αc for C as a function of pre-treatment covari-
ates observed in both groups, (2) use that model to impute αC for each T , (3) estimate τ(α) by
including a treatment interaction in a linear regression model. The models are estimated using
iterations through these steps in a Bayesian principal stratification model with a continuous vari-
able consisting of measurement and outcome submodels, as outlined by (Jin and Rubin, 2008)
and (Page, 2012).
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Measurement Submodel: First, we estimate αc by running a multilevel logistic submodel
predicting whether the gaming detector identified the students in the treatment condition to have
gamed the system on each twenty-second time clip as delineated in the equation 2. Let Gcji be
a binary indicator of whether student i gamed the system during time-clip c when working on
problem j. Let Pki be covariate predictor k of K student-level predictors, which are measured
at baseline for both T and C (described in section 4.4.2). Let the random intercepts be µj for
problems, µi for students, µt for teachers, and µs schools, each modeled as independent and
with normal distributions with means of zero and standard deviations estimated from the data.

logit(Gcji) = γ0 +
K∑

k=1

γkPki + µj + µi + µt + µs (2)

Using the parameters from Equation 2, students’ propensity to game the system in the im-
mediate condition is defined as:

αi =
K∑

k=1

γkPki + µi + µt + µs (3)

We impute αi for T with random draws from a normal distribution with mean
∑

k γkPki +
µt[i] + µs[i], where µt[i] and µs[i] are the random intercepts for student i’s teacher and school,
respectively, and standard deviation equal to the estimated standard deviation of µi. Note that
randomization occurred at the student level (i.e., teachers had students in the treatment and
control conditions in their classes). Therefore, we include the random intercepts for schools
and teachers from submodel 2 in valuation for αci for students in the control. However, µi is
unknown for T , but we can assume its distribution is the same in the two conditions because of
the randomization.

Prior to the simultaneous estimation of the FLPS sub-models, we estimated the measure-
ment submodel separately using the stan glmer function from the rstanarm package (Goodrich
et al., 2020) with different combinations and transformations of the pretest predictors and de-
mographic variables to find a suitable model for the analysis. To build the measurement model,
we randomly split the data into training (80%) and testing (20%) data sets.

Outcomes Submodel: To estimate the treatment effect for students with differing propen-
sities to game the system, we run a multilevel linear regression predicting student’s post-test
algebraic knowledge (Yi). The submodel includes interaction between αci—estimated for C and
randomly imputed for T —and each Zi indicator of being in the treatment condition. In practice
there is one Zi indicator for each treatment condition. Let the random effects for teacher be νt
and for school be νs.

Yi = β0 + β1Zi + β2αci + β3αciZi +
K∑

k=1

λkPki + νt + νs + ϵi (4)

Using the parameters from the submodel 4, the treatment effect for students with a particular
propensity to game the system is modeled as

τ(α) = β1 + β3α (5)
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Once again, there is one τ(α) for each treatment condition, as β1 and β3 are estimated for
each treatment condition. Submodels 2 and 4 together formed a FLPS model, which we fit
using the Stan Markov Chain Monte Carlo software through STAN (Arezooji, 2020). We ran
10,000 iterations of FLPS models using Markov chain Monte Carlo chains calling Stan through
rstan (Carpenter et al., 2017) in R; code is posted on GitHub6. We evaluated convergence using
trace plots and checking whether the R̂, which measures convergence by comparing between
and within chain estimates of each parameter, was below the recommended threshold of 1.05
(Vehtari et al., 2021). The maximum R̂ for the model parameters was 1.04.

4.4. DATA & VARIABLES

The data for this study exists at two different levels: student and time clip. The student-level
variables include the student pretest data, demographics, roster, and learning outcomes. Alter-
natively, the data used in gaming the system detector and the detector’s output is aggregated in
twenty-second clips of the students’ usage of the program. Only time-clip data from the Im-
mediate Condition is used, as we are estimating students’ propensity to game the system in that
condition.

Notably, the study was conducted during the COVID-19 pandemic and involved considerable
attrition. An attrition analysis based on United States Institute of Educational Sciences standards
found that attrition did not bias the effect estimates of the conditions (Decker-Woodrow et al.,
2023). The sample for the current study consists of 1976 students: 402 in the Immediate Condi-
tion, 385 in the Delayed Condition, 372 in the DragonBox, and 817 in FH2T. The students were
taught by 36 teachers in 10 schools.

4.4.1. Gaming the System Detector Inputs and Output

Gaming labels were generated by adopting the methodology described by Paquette et al. (2015)
to produce action clips for the gaming detector as described in Section 4.3.1. These clips capture
actions taken by students in ASSISTments. Each clip contains unique identifiers: the student,
the problem being worked on at the clip’s start, the skill associated with that problem, and the
problem type. If the clip spanned multiple problems, the problem the student ended on was also
documented. Additionally, the clips detail the start and end times of actions, their total duration,
and, for attempts, the action’s correctness and the student’s answer. Supplementary data within
the clips include indicators for hint requests, the number of hints requested during the clip, the
total hints available for the problem, the use of a ‘bottom-out’ hint, and the total attempts by the
student. Gaming labels were generated based on instances where the student’s actions in the clip
met one or more rules indicative of gaming system behavior.

4.4.2. Pretreatment Predictors

To estimate students’ propensity to game the system, we used data from assessments adminis-
tered prior to their use of their assigned condition. Pretest scores were collected by the original
studies’ researchers: prior algebraic knowledge, math anxiety, and perceptual processing skills.
Pretest algebraic knowledge was a variant of the learning outcome described below. The math
anxiety assessment was adapted from the Math Anxiety Scale for Young Children-Revised (Chiu

6https://github.com/kirkvanacore/FLPS_GamingTheSystem/tree/main/code/JEDM_
code
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and Henry, 1990), which assessed negative reactions towards math, numeric inconfidence, and
math-related worrying (Cronbach’s α=.87; see the items on OSF7). Five items were adapted
from the Academic Efficacy Subscale of the Patterns of Adaptive Learning Scale to assess math
self-efficacy (Midgley et al. (2000); Cronbach’s α = .82; see items on OSF8). The perceptual pro-
cessing assessment evaluates students’ ability to detect mathematically equivalent and nonequiv-
alent expressions as quickly as possible (see item on OSF9). The district also provided metadata
on the students, including their demographics and most recent standardized state test scores in
math. Demographic data included race/ethnicity, individualized education plan status (IEP), and
English as a second or foreign language (ESOL) status. Race/ethnicity was dummy-coded, with
white students as the reference category because they were the majority population.

We standardized (z-score) all continuous scores to improve model fit and ease interpretation.
Log forms of assessment test times were also included in the models. We include polyno-
mials of the pretest scores when they improved model fit. Missing data were imputed using
single-imputation with the Random Forest routine implemented by the missForest package in R
(Stekhoven and Buehlmann, 2012; R Core Team, 2016). The number of missing data for each
student was included as a predictor in each submodel.

4.4.3. Learning Outcome

The learning outcome for the study is students’ algebraic knowledge, which was assessed using
ten multiple-choice items from a previously validated measure of algebra understanding (Star
et al. (2015); Cronbach’s α = .89; see the items on OSF10). Four of the items evaluated con-
ceptual understanding of algebraic equation-solving (e.g., the meaning of an equal sign), three
evaluated procedural skills of equation-solving (e.g., solving for a variable), and three evaluated
flexibility of equation-solving strategies (e.g., evaluating different equation-solving strategies).
Together, these ten items assessed students’ knowledge in algebraic equation-solving, the im-
provement of which was the goal of the interventions. The learning outcome was assessed before
and after the interventions. Students’ scores were standardized (z-score) to ease model fit and
interpretation.

5. RESULTS

5.1. GAMING DETECTOR OUTPUTS

The students in the Immediate Condition produced 89,960 twenty-second clips of data. The
gaming detector indicated that students gamed the system during 4.62% of the total clips. Most
students (94.18%) were detected to have gamed the system at least once. Figure 2 displays a
density and boxplot of the percentage of clips in which each student gamed the system during
the study. Overall, students were detected to have gamed the system during approximately 5%
of clips (mean = 5.10%, median = 4.71%, SD =3.64%,). However, this distribution has a positive
skew. Almost a tenth (9.00%) of students were detected to have gamed during at least 10% of
the clips. This suggests that while most students engage in some gaming, there is wide variation

7https://osf.io/rq9d8
8https://osf.io/rq9d8
9https://osf.io/r47ev

10https://osf.io/uenvg

16
127 Journal of Educational Data Mining, Volume 16, No 1, 2024

2.2. EFFECT OF GAMIFICATION ON GAMING THE SYSTEM**

73



in student gaming behavior, and some students likely have a substantially higher propensity to
game than others.

Figure 2: Density and box plots showing the distribution of students’ percentage of clips in which
the detector indicated gaming behavior.

In almost three-quarters of the problems (74.35%), the detector did not detect any gaming.
Notably, there was a small significant negative correlation between the gaming rate on each
problem and the average accuracy on the problem (r = -0.21, p < 0.001). Furthermore, some
problem types had significantly higher rates of gaming behaviors than others (F[5,244] = 6.403
p < 0.001). Students were more likely to game the system on ‘check all that apply’ problems
compared with problems for which they had to submit a number (p < 0.001), variable (p =
0.016), algebraic expression (p = 0.020), or open response (p < 0.016). Furthermore, students
were more likely to game the system on a multiple choice question than problems in which they
had to submit a numeric answer (p = 0.015). Because the problems without gaming behavior
would not be informative for assessing students gaming the system, we did not include these
problems when estimating the measurement submodel.

5.2. FULLY LATENT PRINCIPAL STRATIFICATION

Table 3 provides parameter estimates and relevant statistics for the measurement and outcome
submodels.

5.2.1. Measurement Submodel

As described in section 4.3.2, before running the full FLPS model, we tested covariate combi-
nations and transformations and validated the model using training and testing data sets. The
model performed best when pretest sub-scores from the tests were included. Math anxiety had
a non-linear relation to gaming behavior, so a polynomial transformation was included in the
model. Our final model produced an adequate AUC of 0.87 on the testing data set.
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Table 3: Fully latent principal stratification model parameter estimates.

Measurement Submodel Outcomes Submodel
Predictors Estimate SD P(>0) P(<0) Estimate SD P(>0) P(<0)
α -0.51 0.13 0.01 0.99
ZDelayedCondition -0.10 0.05 0.02 0.98
α ∗ ZDelayedCondition 0.10 0.07 0.90 0.10
ZFH2T 0.01 0.04 0.63 0.37
α ∗ ZFH2T -0.08 0.06 0.09 0.91
ZDragonBox 0.08 0.05 0.96 0.04
α ∗ ZDragonBox 0.04 0.07 0.71 0.29
Algebraic Procedural Knowledge -0.06 0.04 0.09 0.91 -0.01 0.03 0.44 0.56
Algebraic Conceptual Knowledge -0.10 0.06 0.04 0.96 0.15 0.04 0.01 0.99
Algebraic Flexibility Knowledge -0.05 0.04 0.14 0.86 0.01 0.03 0.58 0.42
Algebraic Knowledge Items Complete -0.00 0.08 0.49 0.51 0.04 0.05 0.79 0.21
Algebraic Knowledge Time (Log) -0.08 0.06 0.10 0.90 -0.04 0.04 0.15 0.85
Math Anxiety -0.18 0.12 0.06 0.94 -0.04 0.08 0.28 0.72
Math Anxiety (Squared) -0.05 0.03 0.05 0.95 -0.01 0.02 0.24 0.76
Math Negative Reaction 0.16 0.08 0.98 0.02 0.01 0.06 0.59 0.41
Math Numerical Confidence 0.11 0.07 0.93 0.07 0.04 0.05 0.77 0.23
Math Self Efficacy -0.04 0.04 0.21 0.79 0.03 0.03 0.81 0.20
Perceptual Sensitivity Score Part 1 -0.06 0.04 0.08 0.92 -0.00 0.03 0.48 0.52
Perceptual Sensitivity Time Part 1 (Log) -0.10 0.06 0.04 0.96 -0.01 0.04 0.42 0.58
Perceptual Sensitivity Score Part 2 0.03 0.04 0.71 0.29 0.08 0.03 0.01 0.99
Perceptual Sensitivity Time Part 2 (Log) -0.05 0.05 0.16 0.84 -0.03 0.03 0.13 0.87
Perceptual Sensitivity Score Part 3 0.01 0.05 0.60 0.40 0.00 0.04 0.52 0.48
Perceptual Sensitivity Time Part 4 (Log) -0.06 0.06 0.13 0.87 0.04 0.04 0.86 0.14
State Test Score -0.32 0.05 0.01 0.99 0.01 0.06 0.57 0.43
Female -0.03 0.04 0.21 0.79 0.04 0.03 0.92 0.08
Hispanic 0.09 0.13 0.75 0.25 0.16 0.09 0.98 0.02
Asian/Pacific Islander -0.17 0.12 0.08 0.92 0.18 0.08 0.98 0.02
Black 0.31 0.20 0.93 0.07 0.16 0.13 0.88 0.12
IEP -0.02 0.04 0.26 0.74 0.02 0.02 0.76 0.24
EIP 0.01 0.04 0.62 0.38 0.01 0.02 0.68 0.33
ESOL -0.00 0.05 0.47 0.53 -0.03 0.03 0.19 0.81
Gifted -0.01 0.04 0.43 0.57 0.08 0.03 0.99 0.01
In-person Instruction 0.04 0.13 0.60 0.40 -0.10 0.07 0.06 0.94
Missing Data 0.03 0.09 0.63 0.37 0.02 0.05 0.63 0.37

The measurement submodel’s coefficients provide insight into which student characteristics
predict gaming behavior in the Immediate Condition. Generally, lower-performing students
tended to game the system more frequently. Students with lower scores on the math section of
their state test were more likely to game the system (γ17 = -0.32, P (< 0) = .99). This association
was consistent with the albeit smaller associations between the algebraic knowledge sub-scores
and the gaming behavior. Furthermore, there was a nonlinear association between math anxiety
and gaming behavior. Students with higher math anxiety were also less likely to game the system
(γ6 = -0.18, P (< 0) = .94) than those with low math anxiety. This association was even greater
for students with highest levels of math anxiety, as shown by the coefficient for math anxiety
squared (γ7 = -0.05, P (< 0) = .95). Students with a higher negative reaction toward math (γ8
= 0.16, P (> 0) = .98) and with higher numeric confidence (γ9 = 0.11, P (> 0) = .93) were
more likely to game the system. Time spent on the algebraic knowledge test and the perceptual
sensitivity learning sub-tests were all predictive of gaming behavior; students who took less time
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on these tests were more likely to game the system.

5.2.2. Outcomes Submodel

The outcomes submodel provides the parameter estimates that address whether students likely
to game the system in the Immediate Condition would benefit from an alternative learning en-
vironment. As expected, students’ propensity to game the system (α) was negatively associated
with the outcome (β2 = -0.51, P (< 0) = 0.99). However, the interactions between α and the
conditions varied widely.

First, the Delayed Condition had a negative main effect but a positive interaction. For stu-
dents who had an average propensity to game the system in the Immediate Condition (α = 0),
the effect of the Delayed Condition was likely negative (β1−Delayed = -0.10, P (< 0) = 0.98).
The interaction between students’ propensity to game the system and the Delayed Condition
was likely positive (β3−Delayed = 0.10, P (> 0) = 0.90). Although the positive effect of the in-
teraction balanced out the negative effect of the Delayed Condition, it did not mitigate the lower
performance associated with students’ propensity to game the system. That is to say, the negative
effect for the Delayed Condition was equivalent in magnitude to the positive effect of the other
interaction; thus, a student with a high propensity to game the system (α = 1) would have the
same benefit from the Delayed Condition as a student with a low propensity to game the system
(α = 0) would from the Immediate Condition. However, the magnitude of the positive effect for
students who game the system in the Delayed Condition does not outweigh the overall negative
association of propensity to gaming the system on the student’s post-test scores. Therefore, the
Delayed Condition likely does not mitigate the gaming behavior. These were consistent with
our findings in (Vanacore et al., 2024), thus reproducing those results with a slightly different
model.

Second, the results showed varied effects of gamification and the interactions between gam-
ified programs and students’ propensity to game the system. The estimated effect of FH2T on
students who have an average propensity to game the system in the Immediate Conidtion (α = 0)
was small, and we have low confidence that it is greater than zero (β1−FH2T = 0.01, P (> 0) =
0.63). Yet, the interaction between FH2T and propensity to game the system was likely negative
(β3−FH2T = -0.08, P (< 0) = 0.91). Thus, contrary to our hypotheses, gamers would likely have
been better off in the Immediate Feedback condition than in FH2T; however, these results were
not consistent for DragonBox, which had a likely positive main effect (β1−DragonBox = 0.08,
P (> 0) = 0.96), yet there is little evidence of an interaction with students’ propensity to game
the system in the Immediate Condition (β3−DragonBox = 0.04, P (> 0) = 0.71).

Figure 3 provides a visual representation of the interactions between α and Z by plotting
the effect sizes (τ ) for different levels of students’ propensity to game the system problem in
the Immediate Condition (α). Note that the mean of α is zero and since all the covariates were
standardized with means of zero, where the lines cross α = 0 can be interpreted as the estimated
effect for the average student with average gaming behavior (i.e., the main effect).

We have little evidence that the slope for the Dragon Box is different than zero. Therefore,
it is most likely that students benefited from Dragon Box regardless of their propensity to game
the system. However, we have higher confidence that the slopes for the Delayed Condition
and FH2T are not zero. The Delayed Condition had an estimated negative impact on students
with low or average gaming propensities, but those with very high propensities to game the
system in the Immediate Condition may have experienced a positive effect. Note that only 5%
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Figure 3: Plot of effect sizes (τ ) by propensity to game the system in the Immediate Condition
(α).

of the student population had propensities to game the system this high (α > 1), so this effect
is only relevant for the most ardent gamers. For FH2T, we see the opposite trend: students
with the lowest propensity to game the system experience the greatest effects, and those with an
average or high propensity to game the system likely experience no effect or negative effects,
respectively.

6. DISCUSSION

The results suggest that students who tend to game the system respond differently to various
CBLPs, but not in the way we hypothesized. Although the two gamified conditions produced
different heterogeneity patterns for students who tend to game the system, neither of these condi-
tions fully mitigated the negative association between gaming the system behaviors and learning.
Similarly, delaying access to hints and feedback likely has a positive effect on students who tend
to game the system, yet not enough to fully outweigh the potential negative effects of gaming
behavior. Although we found evidence that some learning environments may provide marginal
benefits to students who tend to game the system, overall, more targeted interventions may be
necessary to reengage these students in the learning process so that they fully benefit from the
CBLPs’ content.

6.1. EFFECTS OF GAMIFICATION ON STUDENTS WHO GAME THE SYSTEM

Although neither gamified condition had positive effect differentials on students with a high
propensity to game the system, the interactions do provide some insight into how gamers tend to
respond to different gamified environments. The effect was likely consistent for one of the gam-
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ified conditions (DragonBox), regardless of students’ propensity to game the system, whereas
gamers in the other gamified condition (FH2T) experienced negative effects. This suggests that
gamification alone is not the only factor influencing students’ behaviors and outcomes. Previous
research on the relationship between gaming the system and gamification found that a gamified
version of a CBLP did mitigate the gaming behavior and positively impacted student outcomes
(Richey et al., 2021). In our study, the differences in heterogeneity patterns across platforms that
shared many features of gamification (e.g., performance-based feedback, multiple paths to solu-
tions, the ability to replay problems, and dynamic manipulation of equations) highlight that even
slight variations in how a program is gamified may be more important than whether a program
is gamified at all in terms of impacting students’ behavior and learning.

It is possible that FH2T did not benefit gamers because the goals are more abstract than tradi-
tional problems. Students needed to find the most efficient path to the solution by manipulating
the expressions and equations on the screen as opposed to submitting answers to traditional
problems. Furthermore, the evaluation system in the game is not delineated prior to playing and
is meant to be intuited by the students as they play. As previous research suggests that abstract-
ness and ambiguity may induce gaming behaviors (Baker et al., 2009), one possible explanation
is that students who are likely to game the system in the Immediate Condition become even
more frustrated by FH2T, causing them to disengage with the activity to a greater extent than
they would have in a traditional CBLP environment. This may explain in part why FH2T had
the greatest effects on students with the highest pretest scores (Decker-Woodrow et al., 2023),
who were the students who were least likely to game the system.

However, DragonBox had a likely consistent positive effect regardless of students’ propen-
sity to game the system, despite similar gamification features and a similar dynamic approach in
teaching students the concept of equivalency to FH2T. Yet some key differences between these
CBLPs may point to reasons for DragonBox’s effectiveness among gamers. First, DragonBox
allows students to engage with algebraic equivalency without interacting with traditional math
symbols. Second, the activity’s mathematical goal is embedded in a gamified narrative: freeing
the dragon from the box. Finally, students learn the game’s goals through animated interac-
tions before learning the algebraic principles. These elements may have alleviated tendencies
towards unproductive learning behaviors enough so that students benefited regardless of propen-
sity to game the system. More research is necessary to determine exactly why there were stark
differences in the effect trajectories between the two gamified conditions.

6.2. EFFECT OF ASSISTANCE ON STUDENTS WHO GAME THE SYSTEM

The positive interaction between students’ propensity to game the system and the Delayed Con-
dition indicates that the impact of on-demand hints and feedback on student performance in a
CBLP are heterogeneous. The differences in effects are likely attributed to how students use
assistance features. Those who exploit hints excessively or rely on trial-and-error methods to
complete assignments would potentially benefit from restricted or delayed access to immedi-
ate hints and feedback. Nevertheless, although on-demand hints and immediate feedback were
not available in the Delayed Condition, the decrease in performance associated with gaming
behavior was not completely mitigated. Therefore, these results suggest that while removing
on-demand instruction may assist students inclined towards gaming the system, further inter-
vention is likely required to fully alleviate the detrimental effects of such behavior and address
the behavior’s root causes.
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Delaying hints and feedback can be viewed as a proactive intervention targeting gaming the
system behavior. This approach, similar to others employed in previous research (Aleven et al.,
2006; Murray and VanLehn, 2005), uses a uniform approach for all students. The differential
effect observed for delayed condition supports Murray and VanLehn (2005)’s suggestion that
discouraging certain students from using hints may be beneficial for some students despite the
overall negative impact on the student population; however, it is notable that only a small mi-
nority of the most ardent gamers may have benefited from delaying hints and feedback access.

A possible approach to address the varying effects includes withholding instant hints and
feedback when students exhibit gaming behaviors, thus providing a focused corrective measure
to steer their attention back to learning from the task at hand. Such a strategy would preserve
the availability of real-time help for students who use the system appropriately while potentially
benefiting those who exploit the system whenever they engage with it properly. An adaptable
system like this could also lessen the damaging impact of manipulative behaviors by permitting
gamers to reap the benefits of both instant and delayed hints and feedback. Nevertheless, this
is unlikely to mitigate the antecedents of gaming fully without additional remediation. Further-
more, it is crucial to recognize that adopting this method could lead to feelings of frustration and
a loss of engagement in some students, making it important to further explore and validate these
ideas through additional causal research.

6.3. COMBINING DETECTION MODELS WITH FLPS

This study also illustrates the possible benefits of integrating detection and causal methods
within EDM to explore how systems should effectively respond after identifying certain be-
haviors or latent states. Using artificial intelligence for detection purposes in CBLPs often leads
learning experience designers to confront the dilemma of subsequent steps (for example, “Now
that we know a student is frustrated, what do we do?”). FLPS offers a solution by pairing
detector outputs with causal models to determine which program features may uniquely ben-
efit students with particular behavioral patterns. Although rule-based detection methods were
employed in our current investigation, future research could merge AI prediction systems with
FLPS to go beyond assessing student experiences and behaviors in CBLPs to identify optimal
alterations within these programs to boost their educational effectiveness.

7. LIMITATIONS & FUTURE DIRECTIONS

Although our findings suggest that the CBLPs’ impacts differ based on students’ tendencies to
game the system, it is important to acknowledge the limitations of this analysis. There remains
some uncertainty regarding whether the main and interaction effects in the model significantly
differ from zero. Overall, for the estimates we considered likely to be different from zero, there
was at most a 10% posterior probability that the true parameter had the opposite sign compared
to the estimate presented in this paper. Thus, it is important that future research substantiate
these findings to increase the certainty of their veracity.

Furthermore, while this study provides information about how students who game the system
in a traditional CBLP respond to alternative CBLPs, it does not fully illuminate why. The
patterns of effect sizes found here do not provide a simple principle for addressing gaming the
system behaviors. More research is necessary to understand why some interventions work well
for gamers whereas others do not.
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The current study also does not address whether gaming behaviors are consistent across
programs or whether the differential impact of these conditions is a function of changes in gam-
ing behaviors. Future work should consider whether students’ gaming behaviors are consistent
across programs. This could be done using causal mediation analysis to evaluate whether varia-
tion in gaming behavior mediates the relation between conditions and learning outcomes.

Another limitation of this study is that the FLPS results depend on the gaming detector’s
accuracy. If there are systematic errors in the gaming detector, those errors should be consid-
ered while interpreting the FLPS model results. For example, some students may be gaming the
system in principle but still have lower action rates. The Cognitive Model may not detect these
students, and their propensities to game the system may be underestimated. The effect hetero-
geneity does not apply to profiles of gamers who are not detected. Conversely, if students are
systematically misidentified as gaming, they will also be misidentified as part of gaming strata,
which may influence the heterogeneity effects.

Finally, it is important to acknowledge the constraints inherent to the use of FLPS. The
estimated impacts using FLPS heavily depend on the inherent quality of the model itself, and
it remains uncertain how inaccuracies in estimating the model could potentially lead to biased
outcomes. Future research should focus on gaining a more accurate understanding of how to
assess these models to confirm that they furnish impartial appraisals of intervention effects.

8. CONCLUSION

The study indicates that students who are likely to game the system respond differently to various
CBLPs, with none of the tested conditions fully mitigating the adverse effects of gaming the
system. Delayed access to hints and feedback potentially benefits such students; however, the
effect size was not large enough to outweigh the effect of their gaming tendencies on learning
completely. This highlights the need for targeted interventions to help these students fully benefit
from CBLPs’ content.

The studied gamified conditions produced inconsistent heterogeneity patterns—one (Drag-
onBox) showed a consistent effect regardless of gaming tendencies, whereas the other (FH2T)
indicated adverse effects for gamers despite the fact that these programs employed many similar
gamification methods. This emphasizes that how a program is gamified, rather than the mere
presence of gamification, might be key in influencing student behavior. It is possible that FH2T’s
abstract goals caused more student frustration and consequent disengagement for students who
were likely to game. On the other hand, DragonBox exhibited a positive effect independent of
the student’s propensity to game the system, possibly attributable to its emphasis on taking ab-
stract mathematical processes and teaching them through non-mathematical puzzles. However,
understanding the differences in heterogeneity patterns across the gamified conditions warrants
further research.

The promising interaction between students’ gaming tendencies and the Delayed Condition
suggests that restricting immediate hints and feedback for those gaming the system might be
effective at ameliorating some of the effects of gaming behaviors. Nevertheless, such a strategy
could lead to feelings of frustration and decreased engagement in some students. Consequently,
more research is necessary to validate these ideas and investigate further interventions.
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ence (AIED 2017), E. André, R. Baker, X. Hu, M. M. T. Rodrigo, and B. du Boulay, Eds. Springer
International Publishing, Cham, 274–286.

PAQUETTE, L. AND BAKER, R. S. 2019. Comparing machine learning to knowledge engineering
for student behavior modeling: a case study in gaming the system. Interactive Learning Environ-
ments 27, 5–6 (Aug), 585–597.

PAQUETTE, L., BAKER, R. S., DE CARVALHO, A., AND OCUMPAUGH, J. 2015. Cross-system transfer
of machine learned and knowledge engineered models of gaming the system. In User Modeling,
Adaptation and Personalization, F. Ricci, K. Bontcheva, O. Conlan, and S. Lawless, Eds. Lecture
Notes in Computer Science. Springer International Publishing, Cham, 183–194.

27
138 Journal of Educational Data Mining, Volume 16, No 1, 2024

CHAPTER 2. HETEROGENEOUS EFFECTS FOR DISENGAGED STUDENTS

84



PAQUETTE, L., DE CARVALHO, AND A. M. J. A., & BAKER, R. S. 2014. Towards understanding expert
coding of student disengagement in online learning. In Proceedings of the 36th Annual Cognitive
Science Conference, P. Bello, M. Guarini, M. McShane, and B. Scassellati, Eds. CogSci, 1–6.

PARDOS, Z. A., BAKER, R. S. J. D., SAN PEDRO, M. O. C. Z., GOWDA, S. M., AND GOWDA, S. M.
2014. Affective states and state tests: Investigating how affect and engagement during the school year
predict end-of-year learning outcomes. Journal of Learning Analytics 1, 1, 107–128.

PATIKORN, T. AND HEFFERNAN, N. T. 2020. Effectiveness of crowd-sourcing on-demand assistance
from teachers in online learning platforms. In L@S 2020 - Proceedings of the 7th ACM Conference
on Learning @ Scale. Association for Computing Machinery, 115–124.

PHYE, G. D. AND ANDRE, T. 1989. Delayed retention effect: Attention, perseveration, or both? Con-
temporary Educational Psychology 14, 2 (Apr), 173–185.

PRIHAR, E., PATIKORN, T., BOTELHO, A., SALES, A., AND HEFFERNAN, N. 2021. Toward person-
alizing students’ education with crowdsourced tutoring. In L@S 2021 - Proceedings of the 8th ACM
Conference on Learning @ Scale. Association for Computing Machinery, 37–45.

R CORE TEAM. 2016. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria.

RAZZAQ, L., HEFFERNAN, N. T., AND LINDEMAN, R. W. 2007. What level of tutor interaction is best?
Frontiers in Artificial Intelligence and Applications 158, 222–229.

RICHEY, J. E., ZHANG, J., DAS, R., ANDRES-BRAY, J. M., SCRUGGS, R., MOGESSIE, M., BAKER,
R. S., AND MCLAREN, B. M. 2021. Gaming and confrustion explain learning advantages for a math
digital learning game. In Artificial Intelligence in Education: 22nd International Conference, I. Roll,
D. McNamara, S. Sosnovsky, R. Luckin, and V. Dimitrova, Eds. Lecture Notes in Computer Science.
Springer International Publishing, Utrecht, The Netherlands, 342–355.

RODRIGO, M. M. T., BAKER, R. S. J. D., D’MELLO, S., GONZALEZ, M. C. T., LAGUD, M. C. V.,
LIM, S. A. L., MACAPANPAN, A. F., PASCUA, S. A. M. S., SANTILLANO, J. Q., SUGAY, J. O.,
TEP, S., AND VIEHLAND, N. J. B. 2008. Comparing learners’ affect while using an intelligent
tutoring system and a simulation problem solving game. In Intelligent Tutoring Systems, B. P. Woolf,
E. Aı̈meur, R. Nkambou, and S. Lajoie, Eds. Lecture Notes in Computer Science. Springer, Berlin,
Heidelberg, 40–49.

ROSCHELLE, J., FENG, M., MURPHY, R. F., AND MASON, C. A. 2016. Online mathematics homework
increases student achievement. AERA Open 2, 4 (Oct.), 2332858416673968.

SALES, A. C. AND PANE, J. F. 2019. The role of mastery learning in an intelligent tutoring system:
Principal stratification on a latent variable. The Annals of Applied Statistics 13, 1 (Mar), 420–443.

SHUTE, V. J. 2008. Focus on formative feedback. Review of Educational Research 78, 1 (Mar), 153–189.

SIEW, N. M., GEOFREY, J., AND LEE, B. N. 2016. Students’ algebraic thinking and attitudes towards
algebra: The effects of game-based learning using dragonbox 12 + app. The Research Journal of
Mathematics and Technology 5, 1, 66–79.

STAR, J. R., POLLACK, C., DURKIN, K., RITTLE-JOHNSON, B., LYNCH, K., NEWTON, K., AND

GOGOLEN, C. 2015. Learning from comparison in algebra. Contemporary Educational Psychol-
ogy 40, 41–54.

STEKHOVEN, D. J. AND BUEHLMANN, P. 2012. Missforest - non-parametric missing value imputation
for mixed-type data. Bioinformatics 28, 1, 112–118.

TORRES, R., TOUPS, Z. O., WIBURG, K., CHAMBERLIN, B., GOMEZ, C., AND OZER, M. A. 2016.
Initial design implications for early algebra games. In Proceedings of the 2016 Annual Symposium on

28
139 Journal of Educational Data Mining, Volume 16, No 1, 2024

2.2. EFFECT OF GAMIFICATION ON GAMING THE SYSTEM**

85



Computer-Human Interaction in Play Companion Extended Abstracts. CHI PLAY Companion ’16.
Association for Computing Machinery, New York, NY, USA, 325–333.

VANACORE, K., GURUNG, A., SALES, A., AND HEFFERNAN, N. T. 2024. The effect of assistance on
gamers: Assessing the impact of on-demand hints & feedback availability on learning for students
who game the system. In Proceedings of the 14th Learning Analytics and Knowledge Conference.
Association for Computing Machinery, 462–472.

VANACORE, K., OTTMAR, E., LIU, A., AND SALES, A. 2024. Remote monitoring of implementation fi-
delity using log-file data from multiple online learning platforms. Journal of Research on Technology
in Education, 1–21.

VANACORE, K., SALES, A., LIU, A., AND OTTMAR, E. 2023a. Benefit of gamification for persistent
learners: Propensity to replay problems moderates algebra-game effectiveness. In Tenth ACM Con-
ference on Learning @ Scale (L@S ’23), D. Spikol, O. Viberg, A. Martı́nez-Mones, and P. Guo, Eds.
ACM, Copenhagen, Denmark, 164–173.

VANACORE, K., SALES, A., LIU, A., AND OTTMAR, E. 2023b. Heterogeneous effects of game-based
failure on student persistence in an online algebra game. In Society for Research Educational Effec-
tiveness Conference (SREE 2023). SREE, 1–4.

VANACORE, K., SALES, A. C., HANSEN, B., LIU, A., AND OTTMAR, E. 2024. Effect of game-based
failure on productive persistence: an application of regression discontinuity design for evaluating
the impact of program features on learning-related behaviors. Available at Social Science Research
Network 4789291.

VEHTARI, A., GELMAN, A., SIMPSON, D., CARPENTER, B., AND BÜRKNER, P.-C. 2021. Rank-
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Abstract

Failure is an integral part of the learning process, which students often view as a necessary evil.

They tend to experience failure as evaluative and demotivating in educational settings. However,

in games, failure is essential in making the gaming experience enjoyable and even motivating. In

the current study, we evaluated the impact of game-based failure on students' persistence behavior

using a regression discontinuity design. We found that game-based failure increases the likelihood

of students engaging in productive persistence as they play an online gamified algebra program.

This finding suggests that gamification features in learning programs help sidestep the negative

aspects of failure and leverage those failure experiences for learning. This work also illustrates the

usefulness of regression discontinuity designs in evaluating the impact of features in online

learning games to provide insight into causal mechanisms through which program features

influence students' learning processes.
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1. Introduction

Learning typically requires struggle; evidence suggests that instructional content should be

presented in ways that induce difficulty to improve the longer-term retention of information (Bjork

& Bjork, 2020). Difficult learning experiences include failure, such as answering questions

incorrectly, taking inefficient routes to solutions, or displaying suboptimal performance on a task

(Kapur, 2012; VanLehn, 1988). To learn, students must exhibit productive persistence –

persistence that leads to positive learning outcomes – by continuing to employ effort during

experiences of failure.

However, during many learning experiences, students are taught that failure during

performance (e.g., submitting an incorrect answer to a problem) indicates failure to learn. For

many students, high-stakes environments, such as standardized tests, have made educational

institutions feel like evaluative environments that focus heavily on response accuracy, which may

influence students' beliefs that accuracy is the goal of learning and inaccuracy is always negative

(Jones, 2007; Jones & Egley, 2004; Klinger & Luce-Kapler, 2008). At best, students may feel that

getting questions wrong is an opportunity to learn; at worst, they perceive these “failures” as

indications of inherent academic inadequacies. This perspective may demotivate students from

exerting the requisite effort for productive persistence.

Alternatively, failure can be viewed as part of the learning process. For example, forgetting

during memory tasks is helpful in fortifying memories for long-term retention (Bjork & Bjork,

2020; Bjork, Robert A., 2014; McGeoch, 1932). Viewing forgetting as a necessary step towards

retention may mitigate its adverse effects on students' self-perception and help them retain their

motivation to persist during the learning task. In some cases, gamification can help students

persevere through failures by lowering the stakes of these experiences.
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In the following paper, we explore how instructional programs can alleviate the

demotivating nature of failure by presenting failure in the context of a mathematics game. Using

data from the algebra game From Here to There, we find evidence that game-based failure

positively affects students' persistence behavior of replaying problems after suboptimal

performance. To estimate this effect, we use a regression discontinuity design (RDD), which

allows for causal effects estimation for decisions made on cut points. This work contributes to the

field of research on digital education by documenting a causal relation between a feature of

gamification and productive persistence. Furthermore, the work serves as an example of how RDD

can be employed to evaluate causal mechanisms of features in education programs.

2. Background

2.1 Failure and Learning

There are a variety of theories addressing how failure experiences contribute to learning.

According to Piaget's Cognitive Development Theory (1977), when a new experience contradicts

a learner's existing schemas, the learner enters a state of disequilibrium. The learner must adjust

schemas to accommodate this contradictory information and restore equilibrium. Inaccuracy may

induce such states of disequilibrium, motivating the learner to generate new understandings and

then consolidate them into their preexisting schemas. Similarly, VanLehn’s (1988) impasse-driven

learning theory posits that for learning to occur, students must overcome impasses in their work

caused by misconceptions or skill deficiency. Other theories view failures in learning as a warning

that learners must modify their cognitive model (Schank, 1999) or an indication that one must

build new memory networks that address the discontinuity between prior knowledge states and the

3

CHAPTER 3. THE EFFECT OF GAME-BASED FAILURE ON PRODUCTIVE
PERSISTENCE

90



knowledge necessary to provide the correct solution (Gartmeier et al., 2008).

Tawfik and colleagues (2015) consolidated these perspectives into one theory of

failure-based learning. They posit that after experiencing failures, learners evaluate their failure,

which they call “failure-based problem solving.” This evaluation is an interactive process that

includes challenging existing mental models, identifying potential reasons for failure, and testing

new solutions. Once the learners find the correct solution, they expand their mental model to

accommodate what they have learned and reflect on how they may apply this new knowledge in

the future.

There is ample evidence that failures during the learning process can lead to better

outcomes. Studies have found that problem-solving exercises prior to instruction are beneficial to

learning, even when learners respond incorrectly during/to these pre-instruction exercises (Kapur,

2012; Kapur & Bielaczyc, 2011; Loibl et al., 2017; Loibl & Rummel, 2014). This phenomenon is

known as productive failure as the failure experience benefits the learner. Notably, Hartmann and

colleagues (2021) found that even examining others' failed responses before instruction had

learning benefits. Similarly, Loibl & Leuders (2019) found that examining incorrect responses and

comparing them to correct ones is more effective than just learning correct responses (Loibl &

Leuders, 2019). Overall, a meta-analysis on learning from failure showed that productive failure

and failure-driven memory conditions had positive effects on learning in experimental studies

(Darabi et al., 2018).

2.2 Persistence in Learning

Tawfik and colleagues (2015) note that all failure-based learning theories posit that failures

are indications learners need to add an additional inquiry step into their learning process, which

would not be induced by an unsuccessful response. Therefore, for a failure experience to be
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productive, the learner must persist through the failure to progress in the educational task.

Persistence is generally defined as an aspect of conscientiousness in which a person is driven to

complete challenging tasks (McClelland, 1961). It is considered essential for learning as persisting

during difficult learning tasks allows students to work in the upper end of their zones of proximal

development, where most learning occurs (Ventura, 2013; Vygotsky, 1978). A recent analysis of

data from intelligent tutoring systems found consistency in student learning rates, suggesting that

students do not vary in their ability to learn but in the number of opportunities required to learn

(Koedinger et al., 2023). This suggests that all students master each knowledge component by

exerting the requisite persistence.

Despite the centrality of persistence in learning, computer-based learning platforms, such

as massive open online courses (MOOC) and intelligent tutors, have struggled to encourage

students to persist in their educational tasks. Kizilcec and colleagues (2020) found few positive

effects of behavioral interventions in MOOCs in encouraging students to persist by completing

their courses. Janelli and Lipnevick (2021) found that pretests in a MOOC negatively impacted

persistence while positively impacting learning for those completing the course. In intelligent

tutors, Botelho and colleagues (2019) found evidence of students showing low persistence through

a behavior they called “stopout,” in which students refuse to exert effort in learning tasks by

simply quitting the task often after submitting an incorrect response. Furthermore, an analysis of

seven different behavioral interventions in an intelligent tutor found that most interventions failed

to encourage students to master the knowledge component (Vanacore et al., 2023). Thus, there is a

lack of understanding of exactly how to foster persistence in digital learning programs.

Although we generally desire students to exhibit persistence, not all persistence yields

positive learning outcomes. Researchers distinguish between productive persistence, in which

students adjust their strategies and behaviors in response to the failure to meet their learning goals

5
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(Kai et al., 2018), versus unproductive persistence, in which students spend time struggling

through failure without adjusting and achieving learning mastery (Baker et al., 2013, p. 200; Beck

& Gong, 2013). Productive persistence has been associated with better long-term academic

outcomes, whereas unproductive persistence is associated with poorer learning outcomes (Adjei et

al., 2021; Beck & Gong, 2013). Therefore, it is important that students engage in productive

behaviors after experiencing failures in order to experience the benefits of persistence.

2.2 Persistence Through Game-based Failure in Learning Environments

2.2.1 Gamified Instruction and Learning Behaviors. Gamification in learning environments may

be one way to encourage productive persistence. In theory, gamified learning systems influence

students' behaviors as they learn, which impacts their learning outcomes (Landers, 2014).

However, studies on gamification have shown mixed effects on students' behaviors in learning

contexts. Some work suggests that adding rewards and scorekeeping to learning programs has a

positive impact on learning-related behaviors (Garris et al., 2002; Gaston & Cooper, 2017), while

others have failed to find effects (Malkiewich et al., 2016; McKernan et al., 2015). For example,

Garris and colleagues (2002) found that reward-based systems caused students to take more time

and replay problems more frequently. Alternatively, Malkiewich and colleagues (2015) found that

game-based features such as feedback and narrative elements did not positively impact students'

persistence within the game. This variance in results suggests that the mechanisms that connect

different gamification elements in learning programs to positive learning behaviors must be better

understood to ensure that learning games are developed effectively to support these outcomes.

2.2.2 Gamification and Persistence. One potential feature of gamification that may promote

persistence behaviors is problem replayability. In many traditional learning programs, such as
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mastery learning intelligent tutors, students attempt problems by submitting either a correct or

incorrect response. While they may submit another answer after an incorrect response, once they

have either submitted the correct answer or been given it by the system, the problem is complete.

It makes little sense to reattempt the problem as they have already been given the solution.

Alternatively, some gamified learning systems construct problems with multiple paths to a

solution (Iseli et al., 2021; Z. Liu et al., 2017; Resnick et al., 2009; Woo & Falloon, 2022). In these

systems, students can replay a problem directly after submitting a correct response to find another

path to the solution.

Several studies illustrate the benefit of using these persistence opportunities in learning

(Clark et al., 2011; Lee et al., 2022; Liu et al., 2017; Vanacore et al., 2023). In one online math

game, a cluster of students who spent a large proportion of game time replaying completed

problems showed the largest learning gains in algebraic understanding (J.-E. Lee et al., 2022).

Furthermore, replaying problems or levels is associated with better learning outcomes (Clark et al.,

2011; Li et al., 2010). Liu and colleagues (2017) found replaying puzzles in a gamified math

program (ST Math) was associated with positive learning outcomes, but only if the students had

already completed the level with the replayed puzzles. Lavoué and colleagues (2021) also found

heterogeneity associated with replay behavior in a gamified math program: students' motivation

varied based on their orientation towards replaying problems. Students with achievement-oriented

engagement, in which students tried to attain the best possible performance on their first problem

attempts, experienced greater intrinsic motivation than those with a perfection-oriented

engagement, in which students replayed problems to try to improve their performance. Overall,

replaying problems seems to be a productive persistence behavior in some contexts but not in

others.
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2.2.3 Game-Based Failure. One way that gamification may help learners persist through failure is

by lowering the stakes of the failure. In traditional learning platforms, students may be more likely

to view their performance as evaluative if feedback is presented as problem accuracy.

Furthermore, presenting students’ performance data to teachers through dashboards – as is

common in many computer-based instruction programs (e.g., Heffernan & Heffernan, 2014;

Molenaar & Knoop-van Campen, 2017; Vanacore et al., 2021) – may exacerbate students’

perceptions of inaccuracy as inadequacy. The evaluative nature of this feedback could lead

students to adopt a performance orientation, thus negatively affecting their intrinsic motivation

and potentially influencing their persistence behaviors (Ryan & Deci, 2000; Lui, under review).

Alternatively, games require difficulties that induce occasional failure to be engaging.

In video game theory, although a player’s goal is to win, failure adds to the gaming

experience by serving “as a contrast to winning” as well as adding content that makes the player

“see the nuances of the game” (Juul, 2008). Similarly, in learning games, if failures are presented

as a part of gameplay, they add to the learner's experience by providing a challenge while cueing

them to attend to the nuances of content. Furthermore, students may perceive failure in a game as

less evaluative and, therefore, less demotivating (Williams-Pierce, 2019). Gee (Gee, 2005) notes

that learning games can make failure “pleasantly frustrating” by indicating to them “how and if

they are making progress” and allowing the learner to fail without concluding, “I am a failure.”

Thus, learning games can present failure in ways that are salient to the learner while retaining an

engaging playfulness.

8
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3.1 Current Study

Although there is evidence that gamification can help students persist (Clark et al., 2011;

Lee et al., 2022; Liu et al., 2017; Vanacore et al., 2023), and it is theoretically plausible that this

enhanced persistence is due in part to the engaging nature of game-based failure (Juul, 2008;

Williams-Pierce, 2019), there is a lack of causal research linking game-based failure to the

persistence of educational games. In the current study, we address this gap by exploring the effect

of receiving failure feedback on learners' likelihood of replaying problems after they exhibit

suboptimal performance. To do so, we use a regression discontinuity design (RDD) within the

treatment arm of a randomized controlled trial testing the efficiency of a gamified algebra

program, From Here To There! (FH2T; Ottmar et al., 2015). An RDD is a quasi-experimental

design that enables researchers to estimate the causal effects of a condition administered at a cut

point along a scale. The primary purpose of this paper is to evaluate the impact of game-based

failure on students' persistence behavior.

As a secondary goal, we seek to illustrate the usefulness of RDD in understanding digital

learning environments. This design is commonly employed in economics, public policy, and

education research (Lee & Lemieux, 2009; Ludwig & Miller, 2007), but it is underutilized in

human-computer interaction research on educational platforms. Yet, features in digital learning

environments are often good candidates for RDD, because many decisions in these programs are

made based on a cut point. Some examples include the administering of rewards (Liu et al., 2022),

prescribing usage recommendations (Dieter et al., 2020), and determining whether students have

mastered a knowledge component (Bloom, 1968; Kelly et al., 2015; Yudelson et al., 2013). These

mechanisms, which determine how students experience learning programs, provide opportunities

for understanding the impacts of these associated features. We use our estimation of the effect of
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game-based failure on persistence to demonstrate how RDD can be leveraged for casual research

to help understand how digital learning impacts students' learning processes and outcomes.

3.1 Gamified Algebra Instruction in FH2T

FH2T takes a nontraditional approach to algebra instruction by applying aspects of

perceptual learning (Goldstone et al., 2010) and embodied cognition (Abrahamson et al., 2020).

Instead of presenting students with typical algebra equations and expressions that students solve or

simplify, FH2T gives students access to a starting expression (start state) that they must

dynamically transform into a mathematically equivalent expression (goal state). Students can

manipulate the expression by dragging numbers and symbols from one position to another on the

screen or using a keypad when expanding terms. Only mathematically valid manipulations are

accepted. Each valid manipulation counts as a step, which is logged and used to evaluate how

efficiently the student transforms the expression from the start to the goal state. Figure 1 displays

an example problem. FH2T has 252 problems that are presented sequentially by mathematical

content and complexity. Students must complete one problem in the sequence before advancing to

the next problem.

Several randomized control trials with middle school students consistently showed that

students in the FH2T condition outperformed on algebra assessments compared to students who

completed traditional online problem sets, including multiple choice and fill-in-the-blank problem

sets with automated hints and feedback (Chan et al., 2022; Decker-Woodrow et al., 2023; Hulse et

al., 2019). While these studies cannot determine which specific mechanisms led to improved

mathematics outcomes in students, there is reason to believe that the gamification in the program

played a role in its effectiveness, as the main difference between comparison conditions was the

inclusion of gamification.

10

3.1. EFFECT OF GAME-BASED FAILURE ON PRODUCTIVE PERSISTENCE*

97



FH2T has some notable elements of gamification. The ability to dynamically manipulate

expressions into a goal makes the problem seem like a puzzle to be solved instead of a math

question to be answered. The mathematical rules of algebra govern the world and system, and, as

with many games that impose parameters on the users, the rules of math cannot be broken. Finally,

the evaluation mechanism provides characteristics of game-based failure, as described in the next

section.

Figure 1: A sample problem in the gamified condition.

From the initial expression (a), the student taps on 3 5c to automatically multiply the 3 and 5 together (b). The student

then drags 8 on top of the 2 to automatically add 8 and 2 together (c). Finally, the student drags the 15c to the other

side of the 10 (d) to reorder the terms and reach the goal state (e). Finally, the student earned the maximum reward -

three clovers - for completing the problem in the minimum number of steps (f).

3.3 Game-Based Failure in FH2T

In FH2T, each problem has an optimal solution (i.e., a minimum number of steps to

complete the problem), and students receive feedback in the form of clovers based on how close
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they are to the optimal solution (Figure 2). The clovers act as performance contingent rewards:

three clovers for optimal performance, two clovers if the student's solution took one or two steps

more than the optimal solution, and one clover if their solution took more than two steps. When

students are close to the optimal solution and receive two clovers, they are still congratulated by

being told "Good Job" despite the crossed-out "Best Solution." However, when they only earn one

clover, both "Good Job" and "Best Solution" are crossed out, communicating to the students that

their performance needs improvement. Thus, we propose that receiving one clover is an instance

of game-based failure, communicating that although the student completed the task, they did not

do a good job. Notably, this information is only available to the student themselves and not their

instructors. Therefore, it is still a low-stake failure that exists only in the game.

Figure 2: Performance-based feedback in FH2T

The clover reward screen shown after each problem. Students receive three clovers for an optimal solution, two

clovers if they are within two steps of optimal, and one clover if they are over optimal. Students are given the option to

either retry the problem again (a replay attempt) or to move on to the next problem if they earn one or two clovers and

are automatically progressed to the next problem if they earn three clovers.

12
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3.2 Replaying problems in FH2T as productive persistence

When students do not perform optimally, earning fewer than three clovers, they are

encouraged to replay the problem. This encouragement is communicated by a replay button on the

reward screen (Figure 2) displayed when students receive one or two clovers. Previous research

found that students who spend more time replaying problems experience greater growth in

algebraic knowledge (J.-E. Lee et al., 2022). Furthermore, we found that upon replaying the

problems, students are likely to improve their performance on the replayed problem and are more

likely to achieve optimal performance on subsequent problems than those who did not replay (Liu

et al., under review). In the same study, a qualitative evaluation of students' replayed solutions

revealed not only improved efficiency but also that students had adjusted their strategies,

indicating improved algebraic understanding. Finally, in a recent study, we found that students

with a higher propensity for replaying problems experience a greater impact of FH2T on their

algebraic knowledge than those with a lower propensity for replaying problems (Vanacore et al.,

2023). This evidence suggests that replaying problems in FH2T constitutes a form of productive

persistence because it is preceded by difficulty in the form of suboptimal performance and because

it is associated with improvements in performance within the program and enhanced efficacy of

the program on learning.

3.3 Research Questions

In the following study, we evaluate the impact of game-based failure on the productive

persistence behavior of replaying problems. Furthermore, we examine whether the effect varies

based on the problem's complexity and the student's prior knowledge to evaluate any heterogeneity

in the effect.

This study has three research questions:
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RQ1. Does experiencing game-based failure impact students' productive persistence?

RQ2. Does this effect vary based on the complexity of the problem?

RQ3. Does this effect differ for students with higher or lower prior knowledge?

4. Method

As mentioned above, this analysis involves a variation of RDD, Limitless Regression

Discontinuity (LDR; Sales & Hansen, 2020). RDD allows for the estimation of causal effects

when a cut point on a scale determines treatment assignment. In this case, the treatment of

game-based failure (receiving one clover in FH2T) is entirely determined by students’

performance on each problem (steps over optimal). Therefore, though the treatment of game-based

failure is not randomized, treatment assignment is determined by one confounder, which is known.

We use LDR because the method is amenable to binary outcomes and discrete scales. This section

describes the data used in the LDR (Section 4.1) and explains the research design, assumptions,

and procedure (Section 4.2).

4.1 Data

The current study uses secondary data from a larger efficacy study, which took place

during the 2021-22 school year (Decker-Woodrow et al., 2023). A total of 52 seventh-grade

mathematics teachers and their students from 11 middle schools were recruited from a large,

suburban district in the Southeastern United States. The efficacy study included four conditions,

but we only focused on the gamified condition described above for this analysis. Data for the

entire study are open-sourced and available through the Open Science Framework (OSF;

https://osf.io/r3nf2/). A full explanation of the data is available in Ottmar et al. (2023).
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A total of 1,430 students were randomized into the FH2T condition, 1130 of whom

completed at least one problem in the game. During the study, these 1130 students attempted

110,523 problems. For the current analyses, we are exclusively concerned with the instances in

which students were encouraged to display productive persistence by replaying the problem after

the suboptimal performance (i.e., only instances when students received one or two clovers). This

encouragement came in the form of the “Retry” button being available, as described in section 3.3.

There were 26,941 instances in which students displayed this suboptimal performance; this sample

includes data 1,009 unique students and from 245 problems. Specific data sets for this analysis are

also posted on OSF (link excluded for review). Table 1 presents the demographic data for both

original and analytic samples.

Table 1: Student Demographics
Original Sample

(n = 1,430)
Analytic Sample

(n = 1,009)
Gender

Female 47.06% (673) 47.08% (476)

Male 52.94% (757) 52.82 (533)

Race/Ethnicity

White 48.09% (678) 51.54% (520)

Asian 28.01% (395) 23.29% (235)

Hispanic 15.18% (214) 17.34% (175)

Black/African American 4.89% (69) 3.87% (39)

American Indian 0.64% (9) 0.69% (7)

Two or More Races 3.19% (45) 2.58% (26)

Missing Race/Ethnicity Data 0.01% (20) 0.69% (7)

Individual Education Plan (IEP) 8.74% (125) 11.79% (119)

English Speakers of Other Languages 9.67% (138) 11.30% (114)

4.1.1 Measures
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Three measures are necessary for the regression discontinuity design (RDD; described in

Section 4.2). RDDs require an outcome variable, a treatment indicator variable, and a running

variable is used to determine the treatment. The outcome indicates whether the student displays

productive persistence by replaying the problem. The treatment is the game-based failure of

receiving one clover described in Section 3.3. The treatment indicator (Z) was coded such that Zij

= 1 when students experienced the game-based failure of receiving one clover and Zij = 0 when

students received two clovers. The running variable (R) is the steps over optimal students take on

their first attempt at the problem. Zij is determined by the students taking more than two steps over

optimal; therefore, the cut point, c, is two. We centered R around the cutoff c, such that the cut

point is zero, one step above the cut point is .5, one point below is -.5, and so on.

We used two covariates to evaluate effect heterogeneity when addressing RQ2 and RQ3.

The number of optimal steps for each problem measures the complexity of the problem. The

greater the number of optimal steps, the more complex the problem. To assess students' prior

knowledge, we used an algebraic knowledge pretest comprising ten multiple-choice items from a

previously validated measure of algebraic understanding of equivalence (Star et al., 2015; α = .89).

Table 2 presents descriptive statistics for these variables.

Table 2: Descriptive statistics of moderator variables

Variable Mean Min Max Skew Kurtosis

Optimal Steps 3.78 2.20 1 12 1.08 0.47

Prior Algebraic Knowledge 5.28 2.69 0 10 0.11 -1.07
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In order to ensure the robustness of the RDD, we ran placebo tests - described in detail in

Section 4.2.1 - which require placebo outcome variables. For these, we used four behaviors

measured on the problems prior to the problem included in the RDD. These measures are used as

placebo outcomes because the game-based failure on one problem cannot possibly have a causal

effect on students’ behaviors on previous problems. These variables included whether the student

accessed the hint problem on the prior problem, attempted to execute a step that constituted a

mathematical error on the prior problem, achieved the optimal solution on a prior problem, and

replayed the previous problem.

4.2 Research Design

Since our research questions concern whether game-based failure causes students to replay

problems, we employ a causal method of analysis: regression discontinuity design (RDD).

Following the Rubin Causal Model (Rubin, 1974), in the case of binary treatment (Z = 1; Z = 0),

let Yi(1) be the potential outcome associated with individual i were they to undergo the treatment

condition (Zi=1), and Yi(0) be the potential outcome for individual i were they to undergo control

condition (Zi=0). Let the treatment effect for individual i be . The

fundamental problem of causal inference is that only one potential outcome is observed (Y(1)i or

Y(0)i). Yet, when the potential outcomes of Yi are independent of Zi , as is the case in a completely

randomized controlled trial, the difference in the average effects across treatment and control

provides an estimate of the treatment effect as shown in Equation 1.

(1)
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In RDD, treatment assignment is not randomized. Instead, it is determined by the value of

a numeric “running variable” of R relative to a threshold, c (Imbens & Lemieux, 2008). In our

current study, Rij represents the steps over optimal student i employed when working on problem

j, and Zij is completely determined by whether Rij > c=2. Standard RDD methods (e.g. Imbens and

Kalyanaraman, 2012, Calonico, et al. 2014) use linear regression models in an attempt to estimate

the local average treatment effect, the limit of effect of treatment on the outcome as R approaches

the cutpoint c from either side. However, since it relies on linear regression and limits, the

standard approach is often applied when both the outcome and running variable are continuous.

In contrast, the outcome variable in the current study is binary (whether or not the students

replay the problem) and the running variable is discrete (students' steps over optimal); therefore,

we employ the method established by Sales & Hansen (2020) of LRD, which is more amenable to

non-continuous variables. The discrete running variable poses challenges to standard RDD

analysis because the LATE refers to a limit that does not exist, since R cannot truly approach the

cutpoint. LRD does not require a continuous running variable because the effect estimate is

averaged across all units within the bandwidth (Limitless ATE), not just locally at the cutpoint.

Furthermore, binary outcomes present difficulties for the standard approach because methods

based on linear models forgo the substantial efficiency gains from models that are designed for

binary outcomes, such as logistic regression (Cox and Snell, 1989), while coefficients from

logistic regressions may not interpretable as average causal effects (Freedman, 2008). LRD can

accommodate logistic regression modeling without relying on the logistic regression coefficients

for causal effects. Finally, LRD has the added benefit of using bounded-influence regression

estimators (Maronna et al. 2019); these models are more robust than the typical local linear models

to slight model misspecification or overly optimistic bandwidth choices.
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In an RDD, the running variable Rmay confound the relationship between treatment Z and

the potential outcomes for Y. On the other hand, because R completely determines Z, it is the only

possible confounder (in the framework of Pearl, 2009 R blocks all backdoor paths between Z and

Y). Sales and Hansen (2020) argue that variation in Y(0) could be decomposed into a confounded

component driven by R, and to an unconfounded component that is independent of R. To estimate

the Limitless ATE, researchers may model the relationship between Y(0) and R, and then subtract

fitted values from Y–a process called “detrending,” leaving residuals, which will be unconfounded.

Formally, they posit residual ignorability: let be the residuals of a function predicting Yi

using Ri, referred to as the detrending procedure. Residual ignorability states that if Ri is within a

specified window of analysis W–typically, within a bandwidth b of c–the residuals produced when

predicting the potential outcomeY(0)i are mean-independent of Z,

. (2)

For RQ1 we used LRD to estimate the Limitless ATE, which requires four steps: (1)

selecting the bandwidth for Ri for which the Limitless ATE can be applied; (2) fitting of the

function used in the detrending procedure; (3) estimating the effect of treatment; (4) robustness

checks and post-fit diagnostics. The full procedure is outlined in Sales and Hansen (2020) and

summarized below. To address RQ2 and RQ3, we run separate Limitless RDDs for each quartile

of the variables of interest – problem complexity and prior knowledge – and evaluate the

differences in effect sizes between the quartiles.

For the detrending procedure, we use the robust MM-estimation through the glmrob

function in R (Maechler et al., 2023). To estimate the treatment effect, we use the lmitt function in

the propertee package. The R script for the entire analysis is posted on GitHub (link excluded for

review).
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4.2.1 Bandwidth Selection

To determine what bandwidth of R to include in the analysis, we estimated the effect of the

treatment on the placebo outcomes described in Section 4.1.1. Since placebo outcomes were

drawn from prior problems, they could not be affected by Z, so a significant effect estimate would

indicate a violation of residual ignorability (Equation 2), possibly due to an overly wide choice of

b. To estimate these effects, we follow the following procedures for fitting a detrending model

(Section 4.2.2) and effects models (Section 4.2.3) for each placebo outcome at each possible

bandwidth, moving sequentially from the broadest bandwidth to the narrowest. We selected the

broadest bandwidth for which the treatment did not have a significant estimated effect on the

placebo outcomes for all broader bandwidths.

4.2.2 Robust Fitter for the Detrending Procure

The detrending procedure requires a model predicting the likelihood that students, if in the

control condition, would replay problems Y(0)i as a function of the running variable ( ). Since

we only have access to observed outcomes Y and not potential outcomes Y(0), we include Z in the

model. Because each cut-point decision is made at the problem level, we include fixed effects for

each problem ( ), which were one-hot encoded excluding one problem.

(3)

The partial residuals from Model 4, , where𝑒
θ
(𝑌

𝑖𝑗
|𝑅

𝑖𝑗
) = 𝑌

𝑖𝑗
− 𝑙𝑜𝑔𝑖𝑡−1(γ

0

^
+ γ

^

2
𝑅
𝑖𝑗
+ γ

^

𝑗
)

is the inverse logit function, are used to estimate the main effect of the game-based𝑙𝑜𝑔𝑖𝑡−1(·)

failure ( = 1) on the probability that students will replay the problem ( ) as described in the

next section.
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4.2.3 Treatment Effect Estimation

Finally, we estimate the differences in the residuals of the control group using a linear

regression

(5)

Let be the function producing the residuals of the control potential outcomes. Let be

the intercept and be the treatment effect of . Thus, is the effect of game-based failure on

students' persistence behavior, which addresses RQ1. The estimate of from model (5) is equal to

the difference in means estimate (1), with residuals replacing raw outcomes Y. We refer

to this treatment effect as the Limitless average treatment effect (Limitless ATE).

4.2.4 Robustness Checks and Post-fitting Diagnostics

As a robustness check, we estimated the main treatment effect across a range of

bandwidths to ensure that the reported effect is not simply a product of the selected bandwidth. As

further robustness checks, we then estimate the determining and treatment models using ML

estimators and including random intercepts for problems and students. This ensures that the

estimated effects are not simply a product of our chosen estimator. Finally, we evaluated plots of

the residuals and the expected values of the detrending model, which allowed us to assess model

misspecification.

5. Results

5.1 Bandwidth Selection

To select the appropriate bandwidth for a limitless average treatment effect, we estimated

models for four placebo covariates at each possible bandwidth. The p-values for the treatment

effect coefficient of each model are presented in Figure 3. There are no significant placebo effects
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when the |Rij| < 7. The effective bandwidth used in the estimation is Rij [-1.5, 6.5] or one step

over optimal through seven steps over optimal. We only include problems with in which at least

one student replayed and at least one did not, observations with both outcomes, dropping 28

problems from a total of 251 to a sample of 223 problems. These restrictions retain the

overwhelming majority (99.54%) of the data for the original sample (n =26,566) as the sample

was heavily skewed towards lower steps over optimal. All of the students in the analytic sample

described in Table 1 are represented in the post-bandwidth-restricted data.

Figure 3: P-Values of Placebo Effect at Different Bandwidths

5.2 Fitter for Detrending Procedure

Table 3 presents the detrending models predicting the outcome, as described in Section

4.2.2. Figure 4 displays the regression discontinuity scatterplot produced by the trending model for

RQ1. The coefficient for Z indicates the difference in log odds that students will replay a problem
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when experiencing game-based failure. Steps over optimal (R) is negatively associated with replay

( = -0.28, SE = 0.02, p < 0.001); thus, the further the students are away from optimal

performance, the less likely they are to replay the problem. However, at cut point c, where

game-based failure (Z= 1), the likelihood that students will persist by replaying the problem shifts

discontinuously ( = 0.38, SE = 0.07, p < 0.001). This will be explored further in the section on

causal effects estimates (Section 5.3).
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Table 3: Limitless RDD Models

ML-Estimator

Detrending Model

Log Odds SE p

Intercept -.77*** .162 < 0.001

Z 0.38*** 0.07 < 0.001

R -0.28*** 0.02 < 0.001

Random
Intercepts

Problems

Students

Limitless ATE

Estimate SE p

0.06*** 0.02 < 0.001
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Figure 4: Predicted Outcomes from Detrending Model for RQ1

Jitter plot of predicted probabilities of replay persistence behavior by steps over optimal centered at the treatment cut

point. Each point represents average log odds of replay for students within a problem at the particular R-value.

5.3 Limitless ATE Estimation

The Limitless ATE of game-based failure is a 0.06 increase in the probability of replaying (

= 0.06, SE = 0.02, p < 0.001). This addresses RQ1, providing evidence that game-based failure

positively impacts the likelihood that students will persist by replaying the problem.

To address RQ2 and RQ3, we reran the Limitless RDD procedure for each quartile of both

problem complexity and students’ prior knowledge. The limitless ATEs produced by these

procedures are presented in Figure 5. (Tables of the estimates and statistical tests of the

comparison are included in Section 9.1 of the Appendix). Overall, these analyses suggest the

possibility but do not provide definitive proof of effect heterogeneity.
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There is some evidence that students are less or not responsive to game-based failure on

the most complex problems (Q4 of problem complexity; = 0.03, SE = 0.03, p = 0.23), but this

evidence is inconclusive as there isn't a significant difference between the effects for Q4 and the

less difficult problems (Q1, Q2, and Q3). Similarly, we have some evidence that students with low

prior knowledge (Q1) may not experience an effect, as the point estimate is close to zero and the

confidence intervals span zero ( = 0.02, SE = 0.03, p = 0.65). Furthermore, the estimate for Q1

was significantly lower than the Q3 estimate ( = .11, SE = 0.04, p = 0.04), but no other

comparisons had significant differences after correcting for multiple comparisons using the Holm

procedure (Holm, 1979). Finally, the estimate for high-knowledge (Q4) students is not significant (

= 0.07, SE = 0.04, p = 0.06). This may be an issue of a smaller sample of problems for this

group because the number of instances in which high-knowledge students had suboptimal

performance was lower than other students, causing a lower statistical power.

Figure 5: Effect Heterogeneity Across Problem Complexity and Prior Knowledge
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5.4 Robustness Checks

After estimating the Limitless ATE using the models presented above, we evaluate the

robustness of these effects to ensure that they were not simply spurious artifacts of specific

modeling decisions. We assessed this robustness in two ways: by estimating the effects at different

bandwidths and by using different modeling techniques (i.e. ML-estimators and Multi-Level

Models). All models showed a consistent positive effect of the game-based failure on the

probability that students would replay problems. The effect estimates across bandwidths are

discussed in this section. The other robustness check models are presented in the Appendix, along

with model fit checks.

Figure 6 displays both the Limitless ATE calculated using data from multiple bandwidths.

Although the effects decrease as the bandwidth increases, they remain significant across the

bandwidths. Furthermore, the decrease in the magnitude of the effects stabilizes as the bandwidth

increases such that the effect reported above is not significantly different from any of the smaller

effects at larger bandwidths. Thus, the statistical significance of the effect estimate reported above

is not a product of a specific bandwidth, and the magnitude would not significantly increase or

decrease if a different bandwidth had been selected.
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Figure 6: Limitless Average Treatment Effects across multiple bandwidths.

6. Discussion

6.1 Game-Based Failure and Productive Persistence

Overall, the experience of game-based failure had a positive effect on the likelihood that

students would engage in productive persistence. According to Lander’s Theory of Gamified

Learning (2014), gamification impacts student outcomes by affecting their behaviors. This finding

provides insight into one mechanism by which gamification influences students' behaviors. The

results suggest that failure, which is generally demotivating, can positively affect student behavior

when framed in the game context.

Notably, the only change the students experienced in the program was that they received a

smaller nominal reward (the image of one clover as opposed to two) and that the words “good job”
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were crossed out (see Figure 2), thus communicating to the student’s performance was inadequate.

Generally, if we explicitly communicate to the students' performance that their performance is

poor, we can expect students to be less motivated to continue and show lower persistence (Fong et

al., 2019). Consider that students often stopout – quit a mastery learning task early – after getting a

problem wrong (Botelho et al., 2019). Furthermore, low performance on high-stakes tests is also

associated with decreased motivation (Amrein & Berliner, 2003; Roderick & Engel, 2001). Yet, in

the context of a game, communicating that the student failed to do a good job had a positive

impact on their persistence behavior, suggesting that students were motivated by the failure to

engage in productive persistence.

This finding supports the theory that game-based failure can be “pleasantly frustrating”

and, therefore, less demotivating than getting a problem wrong in another educational context

(Gee, 2005). Though the goals of a traditional assignment and a game-based learning activity are

ostensibly the same – perform well by presenting the correct or best solution – in the game

context, feedback indicating suboptimal performance is likely perceived differently than just being

provided with an indication that a response was incorrect. Rather than point towards the

inadequacies of the students, in-game feedback points the students towards the “nuances of the

game” (Juul, 2008), which in this case happen to coincide with the nuances of algebraic

knowledge and understanding of equivalency. Gamified communication of failure makes the math

problem feel like an activity to be won, as opposed to a perfunctory task that must be completed.

6.2 Learning from Game-Based Failure

As we discussed previously (Section 3.2), research on replaying problems within FH2T is

associated with improved performance within the program (Liu et al., under review), greater

growth in algebraic knowledge (Lee et al., 2022), and enhanced impact of the gamified program
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(Vanacore et al., 2023). Although the average effect of game-based failure on productive

persistence was small in magnitude – a 0.06 increase in the probability that students would replay

the problem – that does not mean the effect was insubstantial. Economies of scale are important

here. Within the study itself, which only consisted of one school district, the difference in

probability is associated with over a thousand problems replayed that would likely not have been

reattempted otherwise. Considering the potential to scale the program far beyond the study, there

is a large prospective impact on students' learning behaviors.

It is also notable that the program's efficacy in improving students' algebraic knowledge is

associated with marginal differences in students’ replay behavior. In a previous study, we found

that students’ propensity to replay problems moderated the impact of the gamified condition on

students' algebraic knowledge, such that those with a higher propensity to replay experienced a

greater positive effect from the program (Vanacore et al., 2023). Substantial differences in the

effects were associated with small differences in the students’ propensities to replay problems.

Students with a low propensity to replay, with a probability of replaying the average problem of

0.08, experienced about half the effect of students with a high propensity to replay of 0.20.

Furthermore, the main effect for students with a low propensity to replay was not discernibly

different from zero. (The analysis was Bayesian, and the credible intervals spanned zero.) Thus,

the small increases in students' propensity to replay problems caused by game-based failure may

be crucial to the program's effectiveness.

The results also have implications for how we understand failure in the context of

educational games. The connection between game-based failure and replaying problems after

suboptimal performance is important because it allows access to the learning benefits of failure

that have been theorized and studied previously (Kapur, 2008; Piaget, 1977; VanLehn, 1988). Yet,

there are a couple of peculiarities in the failure experiences explored in this paper that should be
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delineated. There is a key distinction between the gamified experience of failure studied in this

paper and impasse-driven learning. In impasse-driven learning, which is often relevant in mastery

learning scenarios, failure induces a state of cognitive disequilibrium that prohibits progress

(VanLehn, 1988). Alternatively, the game-based failure experience in our study allows the student

to progress, but encourages them to learn from their mistakes. Students do not experience an

impasse in their learning, although they may still need to work through a state of cognitive

disequilibrium to achieve the optimal solution. Yet, the game-based failure is more subtle, which

may contribute to its motivational nature.

Productive failure provides another perspective on failure and learning. Studies related to

productive failure suggest that when students are induced to fail before instruction they experience

learning benefits compared with students not primed by failure experiences (Kapur, 2008, 2012;

Kapur & Bielaczyc, 2011). Although the students’ experience in the gamified learning program

does not mirror Kapur and colleagues’ experiments, which often occurred in small groups with

teachers guiding students through understanding their failures, the mechanisms may be similar.

The system indicates that the student's struggle to produce an answer was suboptimal, and the

student has to learn by reattempting the problem. Typically, students need instructors to guide the

experience of productive failure as managing students' “frustration thresholds” can be difficult

(Kapur & Bielaczyc, 2012). Alternatively, our finding that game-based failure increases

productive persistence suggests that game-based failure may remove frustrating elements from the

failure experience, allowing the students to benefit from, rather than be discouraged by, their

failures.
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6.2 Leveraging Regression Discontinuity Designs for Research in Computer in

Education

The secondary goal was to illustrate the utility of RDD in the context of human-computer

interaction research on educational programs. As noted above, the prevalence of decisions made

based on cut points in computer-based learning platforms provides opportunities for causal

insights into the impact of programmatic features on students’ learning behaviors and outcomes.

We have demonstrated one example of this, which shows the impact of game-based failure on

student behavior and, more broadly, on student learning in digital environments. RDD can be

leveraged to understand the impact of administering rewards (Liu et al., 2022), prescription of

usage recommendations (Dieter et al., 2020), and to determine whether students are allowed to

progress in mastery learning activities (Bloom, 1968; Kelly et al., 2015; Yudelson et al., 2013), as

well as other decisions automatically made within computer-based learning platforms. This is

especially useful when experimental designs, typically employed to estimate causal effects, are

impractical or infeasible. Furthermore, we have demonstrated how limitless regression

discontinuity design can allow for flexibility even when outcomes and running variables of the

RDD are not continuous.

7. Limitations and Future Directions

There are limitations to this work that should be addressed in future research. First, the

gamified condition has some singularities that make the generalizability of the findings contingent

upon replication in other contexts. In most learning environments, reattempting a problem after

completing it with an acceptable response would be impractical, especially in math problems with

one correct solution. Therefore, the productive persistence outcome in our study is peculiar to the
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gamified condition here. Future work should consider how game-based failures may affect other

manifestations of productive persistence. Yet, it is notable that the game-based failure experience

of receiving a low-performance feedback reward and indicating that the student performance had

suboptimal performance, while not commonly indicated by a crossed-out “good job,” is typical in

other gamified computer-based learning platforms. Future work should test the impact of this or

similar forms of game-based failure on productive persistence in other environments.

The RDD in this study included two features, each of which complicates the usual account

of RDDs: a binary outcome and a discrete running variable. Fortunately, a suite of alternative

estimation methods and bandwidth choices all lead to estimates that are broadly consistent with

our overall conclusions. If, instead, the results had (counterfactually) depended heavily on a

particular model or bandwidth choice, the appropriate conclusions would have been much less

clear. In other words, more methodological research is necessary to fully understand the strengths,

weaknesses, and operating characteristics of our analytical approach, especially under

circumstances as challenging as ours.

Conclusion

Overall, this research suggests that gamification may be used to mitigate the demotivating

aspects of failure that can prevent students from experiencing the benefits of failure. In this case,

something that may be perceived as punitive – an indication that students did not do a “good job”

– is counterintuitively motivating to students regardless of the complexity of the problem or their

prior abilities. This research adds to an increasingly nuanced understanding of how students

respond to feedback and how gamification may influence the relationship between failure and

persistence.
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9. Appendix

9.1 Effect heterogeneity estimates (RQ2 & RQ3)

Table 4 presents the effects for each quartile of problem complexity and prior knowledge.

Table 5 presents the estimated difference between the quartiles and statistical tests of those

differences. The results are discussed in Section 5.3.

Table 4: Limitless ATE Estimates for RQ2 and RQ3
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Quartile Estimate Std. Error P-value

Problem Complexity

Q1 0.10 0.03 0.002

Q2 0.06 0.02 0.008

Q3 0.07 0.02 0.001

Q4 0.03 0.02 0.232

Prior Knowledge

Q1 0.02 0.03 0.648

Q2 0.07 0.03 0.015

Q3 0.12 0.02 0.000

Q4 0.07 0.04 0.057
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Table 5: Comparisons of differences in effect sizes between

Comparison Estimated
Difference SE p-value Adjusted

p-values*

Problem Complexity

Q1_Q2 0.04 0.04 0.84 0.99

Q1_Q3 0.03 0.04 0.78 0.99

Q1_Q4 0.08 0.04 0.97 0.99

Q2_Q3 -0.01 0.03 0.37 0.99

Q2_Q4 0.04 0.03 0.86 0.99

Q3_Q4 0.05 0.03 0.93 0.99

Prior Knowledge

Q1_Q2 -0.06 0.05 0.11 0.45

Q1_Q3 -0.11 0.04 0.01 0.04

Q1_Q4 -0.06 0.05 0.14 0.83

Q2_Q3 -0.05 0.04 0.09 0.51

Q2_Q4 -0.00 0.05 0.49 0.99

Q3_Q4 0.05 0.05 0.87 0.99

*adjusted using the Holm–Bonferroni method

9.2 Model Fit Diagnostics

To evaluate potential model misspecification in the detrending and effect estimation models, we

plotted residuals against the predicted values using binned residual plots presented in Figures 5

and 6. Neither plot revealed evidence of misspecification.
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Figure 5: Binned Residual Plot for Detrending Model

Figure 6: Binned ResidualPlot for Limitless ATE Estimation model

9.3 Robustness checks

Table 6 presents two alternative estimation methods for running models. Unlike the

MM-estimator from our main analysis, the ML-estimator does not downweight outliers during the

model estimation process. The MLM model, which includes random effects, was estimated to

ensure that by the data’s levels of nesting – students who attempted multiple problems and
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problems attempted by multiple students – did not confound the effects estimations. Estimates

produced by both modeling methods show consistent findings with the estimates presented in

Sections 5.2 and 5.3. This is further evidence of the robustness of the causal effect between

game-based failure and replay behavior.

Table 6: Models for Effect Estimate Robustness Checks

ML-Estimator MLM

Detrending Model

Log Odds SE p Log Odds SE p

Intercept -0.73 0.044 < 0.001 -2.23 0.139 < 0.001

Z 0.33 0.063 < 0.001 0.60 0.087 < 0.001

R -0.24 0.020 < 0.001 -1.00 0.027 < 0.001

Random
Intercepts

Problems 2.46

Students 1.49

Limitless ATE

Estimate SE p

0.05 0.007 < 0.001 0.06 0.005 < 0.001
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Chapter 4

The how Game-Based Failure can
Productive Persistence

4.1 Benefit of Gamification for Persistent Learners**
See manuscript below.
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ABSTRACT
Computer-assisted learning platforms (CALPS) increasingly include
gamified elements to improve student outcomes by enhancing their
engagement with content. Although evidence exists that gamified
programs increase engagement and learning outcomes, there is
little causal research on what programmatic mechanisms drive the
effect between engagement and learning. In the following paper, we
explore this relationship through a method of causal moderation
known as fully latent principal stratification. Using data from a
large-scale randomized control trial assessing gamified and tradi-
tional CALP systems’ effects on algebraic knowledge, we estimate
the impact of using the gamified CALP on students who engage
with one of its key gamification elements—replaying a problem after
a suboptimal attempt. The gamified CALP asks students to manip-
ulate algebraic expressions from start to goal states and provides
feedback based on the efficiency of these manipulations, allowing
students to replay the problems when their efficiency can be im-
proved.We find that the effect of gamification is greater for students
with a higher propensity to replay problems. This finding suggests
that gamification elements that provide students with opportuni-
ties to retry problems are driving the game’s efficacy and provide
evidence for a scalable mechanism of gamification that can improve
students’ learning.
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1 INTRODUCTION
Gamified computer-assisted learning programs (CALPs) can in-
crease students’ engagement and motivation as well as problem-
solving abilities and learning outcomes [13, 19, 27, 52]. CALPs, such
as ASSISTments [26] and MATHia [51], provide students with prob-
lems, instruction, and feedback through a digital interface. Some
CALPs are gamified, defined as the infusion of "game design into
non-game contexts," resulting in a playful user experience [8]. This
process includes introducing game-like features — such as point
systems, narrative elements, awards and badges, competitions, and
features that provide a mix of successes and failures – into the
learner’s experience [30, 36]. In theory, gamification impacts learn-
ing by changing students’ behaviors, mediating and moderating
the relations between instructional content and outcomes [36]. Al-
though many studies have evaluated the impact of gamification on
students’ learning and behaviors [6, 13, 33, 43, 49, 60], few trace a
causal path from gamified programs through behaviors to learning
outcomes [34].

In the current paper, we begin to address this gap by assess-
ing one theoretical relation between gamification and learning
through a learning related behavior. More specifically, we exam-
ine whether the improved learning outcomes associated with the
algebra-focused learning game From Here to There! (FH2T) [45]
depends on students’ likelihood to persist when confronted with a
gamed-based failure. We do this by using a novel technique of fully
latent principal stratification (FLPS) [39] to evaluate the impact of
gamification on students who exhibit a game-related behavior —
replaying problems to achieve optimal performance — on their al-
gebraic knowledge. In doing so, we provide evidence for the causal
link between gamification, behavior change, and learning outcomes
while displaying the usefulness of FLPS in exploring causal relations
using data from large-scale CALPs.

2 BACKGROUND
2.1 Theories of Gamification
Pedagogical systems are more effective when they require learners
to participate, engage in problem-solving, and provide immediate
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feedback [9, 25, 57]. Gamified CALPs are particularly well suited to
meet these needs, as they can engage learners in active problem-
solving while providing automated and targeted feedback in playful,
low-stakes environments [9, 13, 14].

There are many theories for how to gamify CALPs and how
gamified elements can impact learning effectively. One review of
32 papers related to learning-based games identified 118 theories
used to explain the connection between gamification and learning
[34]. This review found that most of the theories did not focus on
the connection between gamification and learning; instead, they
were more general theories applied to learning games (e.g., self-
determination theory, flow theory, experiential learning theory,
etc.). Alternatively, Landers [36] proposed that gamification in-
directly influences learning outcomes. Specifically, gamification
is thought to affect learning-related behaviors or attitudes, and
these behaviors/attitudes influence learning by 1) moderating the
relationship between instructional design quality and academic
outcomes and 2) mediating learning outcomes directly. Notably,
Landers’s theory is not exclusive: it provides a framework through
which other theories can be used to influence learners’ behaviors
and attitudes, which subsequently impact learning.

2.2 Impact of Gamification
Numerous studies have shown that gamification can positively
influence students. These positive effects generally fall into three
categories: learning achievement, motivation and engagement, and
interaction and social connection [40, 65]. For example, Jaguvst and
colleagues[30] found that digital math lessons led to increased or
sustained performance over time in primary school students when
those lessons included game elements, compared to a non-gamified
version which produced decreased performance over time. Further-
more, different combinations of individual game elements also had
differential effects on mathematics performance, with the largest
performance increase shown for a gamified condition that included
competition, narratives, and adaptive difficulty. Similarly, Wijers
and colleagues [64] found that adolescent students reported high
levels of motivation and interest when playing a mobile mathe-
matics game and believed they had learned the game’s material
well.

However, gamification’s effects are not always consistent. For
example, adolescent students showed increased performance after
using mobile mathematics game, but no change in their intrinsic
motivation [24], and undergraduate students enrolled in an online
learning course with badges showed decreased intrinsic motivation
over time [35]. Indeed, different game elements or combinations of
elements can result in significantly different effects [53]. Further,
the same game elements can also have different effects depending
on the student, even when these students are in the same class [16].

Because of these complex interactions, most studies fail to pro-
vide theoretical explanations on how gamification relates to learn-
ing, engagement, and motivation [65]. Thus, questions remain re-
garding when and how gamification can successfully impact aca-
demic outcomes.

2.3 Gamification and Persistence Behaviors
Gamification may influence students’ behavior by encouraging
them to persist by re-attempting problems when they have not
achieved optimal performance [21, 38, 40]. Persistence is considered
an aspect of conscientiousness in which a person is driven to com-
plete challenging tasks [42]. Persisting after experiencing difficulty
allows students to work in the upper ends of their zones of proximal
development, where most learning occurs [62, 63]. However, not
all types of persistence are equal. Researchers distinguish between
productive persistence, in which students adjust their strategies and
behaviors in response to failure to better meet their learning goals
[32], versus unproductive persistence, in which students spend time
struggling through failure without adjusting and achieving learn-
ing mastery [5, 7]. Productive persistence has been associated with
better long-term academic outcomes [2], whereas unproductive
persistence is associated with poorer learning outcomes [2, 7].

Generally, persisting through failure appears to be easier in
game contexts [22], suggesting that gamified CALPs can effectively
support students during challenging learning activities. Indeed,
gamification can have positive effects on student persistence [21,
44]. For example, O’Rourke and colleagues [44] implemented a point
system in a fraction game that increased children’s playtime and
persistence through game levels compared to children who played
the same game without points. Gaston and Cooper [21] similarly
implemented a reward system in a game about protein structures
and found that players were more likely to use fewer moves, take
more time per move, and replay levels more often. However, as with
gamification’s effects on learning outcomes, effects on persistence
are also inconsistent across gamification elements, as the inclusion
of some game elements can instead hinder persistence behaviors
[11, 41].

Gamified CALPs can provide opportunities to continuously and
easily engage in persistence behaviors, which is not always possi-
ble in traditional instructional tasks. For example, some gamified
CALPs allow students to immediately reset or retry problems an un-
limited number of times to fix errors, try alternative solution paths,
and/or improve their performance [40]. Several studies illustrate
the benefit of using these persistence opportunities in gamified
CALPs. In one online math game, a small group of students who
spent a large proportion of game time replaying completed prob-
lems showed the largest learning gains in algebraic understanding
[38]. Lavoue and colleagues [37] found two patterns of student
engagement behaviors within a digital math learning environment:
achievement-oriented engagement, in which students tried to attain
the best possible performance on their first problem attempts; and
perfection-oriented engagement, in which students replayed prob-
lems to try to improve their performance. The former engagement
pattern led to a decrease in intrinsic motivation, whereas the latter
replay-focused engagement pattern led to increases in extrinsic
and identified motivation (a form of self-determined motivation
in which one’s actions are driven by one’s attitudes, values, and
needs). This evidence suggests that students who take advantage of
gamified opportunities for productive persistence may show better
academic outcomes compared to those who avoid these opportuni-
ties.
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3 CURRENT STUDY
Although there is evidence that gamification can impact learning
and influence persistence behaviors, there is a lack of empirical
evidence of a causal link between the behaviors and the outcomes,
as theorized by Landers [36]. The current study seeks to fill this
gap by conducting a causal moderation analysis on data from an
efficacy study assessing the impact of FH2T [45], which consists of
a game-based educational technology focused on improving alge-
braic knowledge. The study compares this gamified condition (e.g
FH2T) to active control of traditional algebra problems administered
through ASSISTments [26].

Data for our analysis were generated during a larger efficacy
study comparing FH2T to three other conditions (results reported
in [15] and the full study data can be found in [46]). In the current
study, we focus on two conditions: the gamified FH2T condition
and the active control. The study was conducted in ten schools
from a district in the Southern US during the 2021-22 school year.
Randomization occurred at the student level, so teachers had stu-
dents of different conditions in the same class. The study consisted
of nine half-hour sessions conducted fortnightly throughout the
school year.

The FH2T is meant to improve students’ understanding of al-
gebra using perceptual learning [23] and embodied cognition [1].
The game consists of worlds (problem sets) that teach different
mathematical concepts (from Addition to Inverse Operations), and
each world contains 18 problems for a total of 252 problems. All
students started at World 1 (Addition) and worked through progres-
sive worlds in a set order. Each problem has a unique starting ex-
pression and goal state. Several studies have demonstrated FH2T’s
effectiveness at improving elementary and middle school students’
mathematical understanding of equivalence [10, 15, 28].

3.1 Problems in Gamified and Active Control
Condition

The two conditions represent different approaches to teaching al-
gebra. The gamified condition asks students to transform a starting
algebraic expression into a mathematically-equivalent goal state.
An example problem is shown in Figure 1. Students reach the goal
state by manipulating expressions by tapping or dragging numerals
or variables using a mouse or touch screen. The system responds
by providing a fluid visualization showing how these actions trans-
form the expressions. Students learn new gesture actions through
video demonstrations as they progress through the game, and they
must use and combine these learned gesture actions to successfully
transform expressions from one state to another as the game pro-
gresses. For each problem, students can make an infinite number of
expression transformations, but there is always an optimal number
of steps.

Alternatively, in active control, students complete the problem
sets by submitting answers through multiple choice or filling in
answers. The condition included 218 problems, divided into nine
problem sets corresponding to the study’s nine sessions. An exam-
ple of the active control problem can be found in Figure 2. Students
in this condition do not receive feedback until after completing
each problem set.

3.2 Replaying Problems in Gamfied condition
In the gamified condition, students are encouraged to replay prob-
lems when they do complete them in the optimal number of steps.
Unlike many traditional math problems where there is typically
only one correct answer, replaying in the gamified condition allows
students to explore multiple possible solutions. Previous studies
have shown that students who replay problems in the gamified
CALP become more efficient in achieving those solutions and are
more likely to reach the optimal solution on the first attempt of the
next problem [29]. In the gamified condition, students receive feed-
back for an ordinal "reward" represented by clovers (see Figure 3).
They can receive between one and three clovers depending on their
efficiency: three clovers if the students took the optimal number of
steps to reach the goal state, two clovers if they were within two
steps of optimal, and one clover for all other completed attempts.
When students receive three clovers, they are automatically moved
to the next problem. However, when students earn one or two
clovers, they are prompted to either replay the problem or move
on to the subsequent problem. Previous analyses suggest that the
number of clovers received has a causal effect on whether students
replay the problem [61]. These findings suggest that students are
responding to the gamified nature of the program by displaying per-
sistent learning behaviors when taking the opportunity to replay
problems to improve their skills and understanding.

Replaying the problem is a product of students’ own volition;
there were no external ramifications of receiving fewer than three
clovers as teachers did not have access to student performance data.
Therefore the ability to replay in the gamified condition is one of
the key differentiators of the CALP, as traditional problem sets are
not optimized for students to learn from multiple attempts of the
same problem.

3.3 Research Question
As explained above, gamification theoretically impacts learning in
part because it creates opportunities for students to exhibit bene-
ficial learning behaviors, such as persisting, which enhances the
effect of the instruction. In the current study, we hypothesize that
the opportunity to replay in the gamified condition allows students
to change behavior, which improves learning. If this is true, then
the students who replay in the gamified condition should experi-
ence a larger effect than those who do not replay. We seek to test
this hypothesis by answering the question: Does the impact of the
gamified condition vary based on whether students engage with
the replay element gamification?

4 METHOD
4.1 Fully Latent Principal Stratification
The fundamental question of this paper—whether replaying the
problem moderates the impact of the gamified program on the stu-
dent’s algebraic knowledge— poses an interesting methodological
complication as students in the control condition did not have the
opportunity to replay problems. One way to approach this com-
plication is to view students’ replay behavior as a function of a
latent characteristic: every student’s propensity for replaying if
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Figure 1: Gameified Condition Example Problem
A sample problem in the gamified condition. From the initial expression (a), the student taps on 3 5c to automatically multiply the 3 and 5

together (b). The student then drags 8 on top of the 2 to automatically add 8 and 2 together (c). Finally, the student drags the 15c to the other side
of the 10 (d) to reorder the terms and reach the goal state (e). Finally, the student earned the maximum three clovers for completing the problem in

the minimum number of steps (f).

Figure 2: Control Example Problem
A sample problem from the control condition. The students select a
response and then submit it. They only receive feedback after each

problem set is completed.

they had been given the opportunity (i.e. if assigned to the treat-
ment condition). This latent characteristic is present at baseline
(though not observed) and defined for the entire sample, so it can
be considered a baseline covariate or potential moderator, similar
to students’ pretest knowledge. Therefore, it is independent of the
random treatment assignment. However, unlike pretest knowledge,
only students in the treatment conditionwere given the opportunity
to display the behavior; therefore, its value in the control condition
is unknown. To estimate the treatment effect for the students with a
high propensity to replay, we use fully latent principal stratification
(FLPS) [39, 56].

Principal stratification is a causal inference method used in ran-
domized control trials for estimating the intervention effects on
subgroups determined after the treatment has begun [20, 48]. Tra-
ditional estimation of effects for subgroups requires that they be
defined before intervention and be independent of any treatment.

Figure 3: Replay encouraging feedback
The clover reward screen that is shown after each problem (with one,

two, or three clovers shown depending on the number of steps
students use to solve the problem). Students are given the option to
either retry the problem again (a replay attempt) or to move on to the
next problem if they earn one or two clovers, and are automatically

progressed to the next problem if they earn three clovers.

For instance, in the case of pretest knowledge, simply interacting
the treatment with the pretest knowledge score provides informa-
tion about how the treatment effect varies across subgroups of
students with similar prior knowledge. However, subgroups de-
fined based on students’ potential program implementation cannot
be observed at baseline, and are never observed for students ran-
domized to the control condition. When program implementation
consists of a complex sequence of users’ behaviors or choices, and
is defined based on, say, a cluster analysis or a latent variable model,
then it is not directly observed for students randomized to the treat-
ment condition either, but must be estimated. This is particularly
true in CALPs, where students may display behaviors during the
program such as meeting usage targets [17], "gaming the system"
[4], or mastering knowledge components in mastery learning [54].
These behaviors can all be viewed as indicators of membership in
subgroups (i.e., high fidelity users, gamers, mastery users) that are
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unknown for the control groups who do not have the opportunity
to use, game, or master as they did not interact with the CALP.
For instance, Sales & Pane [54] demonstrated the use of principal
stratification with a latent variable to determine whether the effect
of Cognitive Tutor Algebra I on students varies based on whether
students were likely to master knowledge components.

An alternative to FLPS is to use the control group only and create
an observational study comparing students who replay to thosewho
do not replay within the gamified condition. Yet, to use this method
for estimating causal effects, we must assume strong ignorability —
that there are no omitted confounders that would bias the results.
This may be a dubious assumption as students may be more or
less likely to replay problems due to various unobserved factors
(e.g., familiarity with technology, motivation, goal orientation, time
management, etc.). When comparing observational methods to
principal stratification, Sales & Pane [55] note that the observational
methods rely heavily on the strong ignorability assumption, and
they suggest using principal stratification when this assumption
is not met. The disadvantage of principal stratification is that it
focuses on the mechanism indirectly, in that the effect estimate
is for students who are likely to use the mechanism (replay), not
the effect of the mechanism (replay) itself. This will be discussed
further in the Limitations section.

Let 𝜏𝑖 be subject 𝑖’s individual treatment effect, i.e., the difference
between what 𝑖’s posttest score would be if 𝑖 were randomized to
treatment and what it would be were they randomized to control.
Let T and C be the samples of students randomized to treatment
and control, respectively. Let 𝛼𝑡𝑖 represent student 𝑖’s propensity
to replay a problem if randomized to the treatment condition (the
𝑡 subscript indicates that this variable refers to potential behavior
if assigned to treatment). Although 𝛼𝑡𝑖 exists for C, as students in
the control still have an unspecified propensity to replay problems
even if they do not have the opportunity, 𝛼𝑡𝑖 can only be estimated
from replay behavior for T . The principal effect is the treatment
effect for the subgroup of students with a particular value for 𝛼𝑡 :

𝜏 (𝑎) = 𝐸 [𝜏 |𝛼𝑡 = 𝑎] (1)

To estimate the function 𝜏 (𝑎), we (1) estimate 𝛼𝑡 for T , (2) model
𝛼𝑡 as a function of covariates observed in both groups, (3) use that
model to impute 𝛼𝑡 for C, (4) estimate 𝜏 (𝑎) by including a treatment
interaction in a linear regression model. In practice, we iterate
through these stepsmany times in a Bayesian principal stratification
model with a continuous variable, consisting of measurement and
outcome submodels, as outlined by [31] and [47].

4.1.1 Modeling Replay Behavior. First, we estimate 𝛼𝑡 by running
a multilevel logistic submodel predicting whether students in the
treatment (gamified) condition replay on each problem they at-
tempt as delimited in the equation 2. Let 𝑅 𝑗𝑖 be a binary indicator of
whether student 𝑖 replayed problem 𝑗 . Let 𝑃𝑘𝑖 be covariate predictor
𝑘 of 𝐾 student-level predictors, which are measured at baseline for
both T and C (described in section 4.2.3). Let 𝐸 𝑗 be covariate pre-
dictor 𝑗 of 𝐽 problems. Let the random intercepts be `𝑖 for students,
`𝑡 for teachers, and `𝑠 schools, each modeled as independent and
normal with mean 0 and a standard deviation estimated from the
data.

𝑙𝑜𝑔𝑖𝑡 (𝑅 𝑗𝑖 ) = 𝛾0 +
𝐾∑︁
𝑘=1

𝛾𝑘P𝑘𝑖 +
𝐽∑︁
𝑗=1

𝛿 𝑗E𝑗 + `𝑖 + `𝑡 + `𝑠 (2)

Using the parameters from equation 2, students’ propensity to
replay is defined as

𝛼𝑡𝑖 =

𝐾∑︁
𝑘=1

𝛾𝑘P𝑘𝑖 + `𝑖 + `𝑡 + `𝑠 (3)

We impute 𝛼𝑡𝑖 for C with random draws from a normal distribu-
tion with mean

∑
𝑘 𝛾𝑘P𝑘𝑖 + `𝑡 [𝑖 ] + `𝑠 [𝑖 ] , where `𝑡 [𝑖 ] and `𝑠 [𝑖 ] are

the random intercepts for student 𝑖’s teacher and school, respec-
tively, and standard deviation equal to the the estimated standard
deviation of `𝑖 . Note that randomization occurred at the student
level (i.e. teachers had students in the treatment and control in their
classes). Therefore we are able to include the random intercepts
for schools and teachers from submodel 2 in valuation for 𝛼𝑡𝑖 for
students in the control. However, `𝑖 is unknown for C, but we can
assume its distribution is the same in the two conditions because
of the randomization.

4.1.2 Modeling Posttests 𝜏 (𝑎). To estimate the treatment effect for
students with varying propensities to replay, we run a multilevel
linear regression predicting student’s post-test algebraic knowledge
(𝑌𝑖 ). The submodel includes interaction between 𝛼𝑡𝑖—estimated for
T and randomly imputed for C—and 𝑍𝑖 , an indicator of being in
the treatment.

𝑌𝑖 = 𝛽0 + 𝛽1Z𝑖 + + 𝛽2𝛼𝑡𝑖 + 𝛽3𝛼𝑡𝑖Z𝑖 +
𝐾∑︁
𝑘=1

_𝑘P𝑘𝑖 + a𝑡 + a𝑠 (4)

Using the parameters from the submodel 4, the treatment effect
for students with a particular propensity replay is modeled as

𝜏 (𝑎) = 𝛽1 + 𝛽3𝑎 (5)

Submodels (2) and (4) together formed a Bayesian FLPS model,
which we fit using the Stan Markov Chain Monte Carlo software
[3].

4.2 Data and Variables
The data for this study exists at two different levels. There are
student-level variables, including the learning outcome, demograph-
ics, pretest math anxiety, and pretest state test scores. Replay be-
havior is a problem-level variable, which exists for each problem
that students in the gamified condition attempt. All data from the
study are available through OSF and a full explanation of the data
can be found at [46].

The sample consists of 1209 students: 824 in the gamified con-
dition and 385 in the active control (sampling was intentionally
weighted towards the gamified condition). The students where
taught by 42 teachers, in 138 classes. In the treatment condition,
students completed 88,949 problems. Missing data were imputed
using using singly-impution with the Random Forest routine im-
plemented by the missForest package in R [50, 59].
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4.2.1 Learning Outcome. The learning outcome for the study is stu-
dents’ algebraic knowledge, which was assessed using ten multiple-
choice items from a previously validated measure of algebra under-
standing (Cronbach’s 𝛼 = .89; see the items on OSF1) [58]. Within
the ten items, four focused on conceptual understanding of alge-
braic equation-solving (e.g., the meaning of an equal sign), three
focused on procedural skills of equation-solving (e.g., solving for
a variable), and three focused on flexibility of equation-solving
strategies (e.g., evaluating different equation-solving strategies).
These 10 items together assessed a range of students’ knowledge
in algebraic equation-solving, which is the ultimate goal of each
of the education technologies tested. The assessment was taken
before and after the intervention.

4.2.2 Replay Behavior. Students in the gamified condition had the
opportunity to replay the problem as described in Section 3.2. As
the replay count per problem is highly skewed (skew = 7.62), we
treat it as a binary outcome: whether or not the student replayed a
problem at least once. Out of the 88,949 problems which students
played, students replayed 12.85% of the time. Students only replayed
problems more than once 3.18% of the time.

4.2.3 Predictors. Students’ demographic data—race/ethnicity, in-
dividualized education plan status (IEP), and English as a second
or foreign language (ESOL) status—were provided by the students’
school district along with their most recent standardized state test
scores in math. Race ethnicity was dummy coded, with white stu-
dents as the reference category. Three pretest scores were collected
by the original studies’ researchers: prior algebraic knowledge,
math anxiety, and perceptual processing skills. Pretest algebraic
knowledge was a variant of the learning outcome. The math anxi-
ety assessment was adapted form from the Math Anxiety Scale for
Young Children-Revised [12], which assessed negative reactions
towards math, numerical inconfidence, and math-related worry-
ing (Cronbach’s 𝛼=.87; see the items on OSF1). The perceptual
processing assessment evaluates to students’ ability to detect math-
ematically equivalent and nonequivalent expressions as quickly
as possible (see the items on OSF1) [18]. Log forms of assessment
times of the pretest alphabetic knowledge were also included in
the models. Polynomials and splines of the pretests were included
when they improved model fit.

5 RESULTS
The results include two models, the measurement model (2), which
predicts replay behavior, and the outcome model (4), which predicts
algebraic knowledge. The FLPS models were run using Bayesian
estimation through Markov chain Monte Carlo chains calling Stan
through rstan [3] in R [50]; code is posted GitHub2. Convergence
was evaluated using trace plots and𝑅. Themaximum𝑅 for estimated
parameters was 1.04.

5.1 Measurement Submodel of Replay Behavior
To ensure that the measurement submodel would provide accurate
predictions of replay behavior, we first estimated the submodel in

1https://osf.io/r3nf2/
2
2https://github.com/kirkvanacore/FH2T_FLPS_replay

R using the glmer function from the lme4 package. This allowed us
to select the transformations of variables that produced the most
accurate models. The predictors used in the FLPS measurement
submodel produced a model with an AUC of 0.85 with a sensitivity
of 0.79 and a specificity of 0.74. This model was then estimated
in Stan and presented in Table 1. The table provides the mean
estimates form the posterior distributions as well as standard errors
(SE) and credible intervals (CI). Notably, only two of the coefficients
had credible intervals that did not span zero. Students were more
likely to replay when they had scores pretest scores of 6.5 out of 10
or above. Students with higher math anxiety were also more likely
to replay problems.

The propensity to replay any given problem in log odds—𝛼𝑡𝑖—
was estimated using the model parameters for each student, and
the distribution of 𝛼𝑡𝑖 is displayed in Figure 4. 𝛼𝑡 has a mean of
-0.53 and a standard deviation of 1.20. Converted to probability, on
average, students have a 0.30 probability of replaying the average
problem (SD = 0.21). Figure 4 also shows the distribution of the
fixed effects for the problems (𝛾𝑒 ), which were not displayed in the
Table 1.

5.2 Outcomes Submodel
The outcomes submodel is also displayed in Table 1. The credible
intervals for the main treatment effect—which is the effect for stu-
dents for whom 𝛼𝑡𝑖 is estimated to be zero, suggesting that there
may be no treatment effect for students who had log odds of re-
playing any given problem of zero. By sampling from the posterior
distribution, we calculate the probability that the main treatment
effect is greater than zero is 0.83. Although the credible intervals
for the 𝛼𝑡𝑖 coefficient also spanned zero, the probability that the
coefficient is less than zero is 0.96. This suggests that, for students in
the control condition, a higher likelihood of replaying is associated
with lower post-test algebraic knowledge scores. This finding is
expected as replaying is associated with having sub-optimal perfor-
mance on the first attempt. Therefore a high likelihood of replaying
without the opportunity to replay should be associated with low
performance.

The creditable intervals for interaction between 𝛼𝑡𝑖 and the
treatment did not span zero, and the probability that the coefficient
was greater than zero was 0.98. This suggests that the treatment
effect is greater for students with a higher propensity to replay
problems. Figure 5 displays the interaction using a random sample
of 𝛼𝑡𝑖 drawn from the posterior distribution.

Using the outcomes submodel parameters, we estimate the treat-
ment effects for students with low and high propensity to replay.
The estimated effect of the treatment for students with 𝛼𝑡𝑖 = 0 is
an increase of 0.639 points on the algebraic knowledge post-test,
whereas the estimated effect for students with 𝛼𝑡𝑖 = 1 (those with a
probability of replaying a problem on the average problem of 0.20)
is an increase of 1.27 points on the algebraic knowledge post-test.
Notably, only 10% of the students in the sample have such a high
propensity for replaying. The estimated effect for students in the
upper quartile of replay behavior (𝛼𝑡𝑖 ≥ 0.23; i.e., a probability
of replay on the average problem ≥ of .10) is at least 0.78 points.
Conversely, the effect for students with 𝛼𝑡𝑖 = −1 (those with a prob-
ability of replaying a problem on the average problem of 0.03) was
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Table 1: Parameters from the measurement and outcome models

Measurement Submodel Outcomes Submodel

Predictors Estimate SE CI Estimate SE CI

Intercept -0.544 1.271 -3.26 - 1.9 3.839 0.667 2.46 - 5.11
Gamified Condition (𝑍𝑖 ) 0.639 0.696 -0.71 - 2.08
Propensity to Replay (𝛼𝑡𝑖 ) -0.564 0.311 -1.13 - 0.05
𝑍𝑖 X 𝛼𝑡𝑖 0.632 0.310 0.02 - 1.19
Virtual Instruction -0.09 0.122 -0.33 - 0.15 0.095 0.267 -0.48 - 0.62
Hispanic -0.02 0.066 -0.15 - 0.11 0.163 0.074 0.02 - 0.31
Asian & Pacific Islander -0.015 0.079 -0.17 - 0.14 0.359 0.085 0.19 - 0.52
Black 0.07 0.057 -0.04 - 0.18 0.04 0.061 -0.08 - 0.16
Individualized education Plan -0.009 0.059 -0.13 - 0.11 0.128 0.062 0.01 - 0.25
English as a Second Language -0.072 0.069 -0.21 - 0.07 -0.024 0.074 -0.17 - 0.12
Pretest Algebraic Knowledge (Spline, x < 6.5, 1) 0.097 0.069 -0.04 - 0.23 0.428 0.075 0.28 - 0.57
Pretest Algebraic Knowledge (Spline, x > 6.5, 2) 0.218 0.078 0.06 - 0.37 0.668 0.091 0.49 - 0.84
Pretest Time on Task (Log) 0.025 0.057 -0.09 - 0.14 0.002 0.062 -0.12 - 0.12
Pretest Math Anxiety 0.133 0.054 0.03 - 0.24 0.014 0.061 -0.11 - 0.13
Pretest Math Anxiety (Squared) -0.05 0.072 -0.19 - 0.09 0.120 0.072 -0.02 - 0.26
Perceptual Processing -0.074 0.072 -0.22 - 0.07 0.011 0.075 -0.14 - 0.16
Perceptual Processing Response Time (Log) 0.115 0.080 -0.04 - 0.27 0.353 0.089 0.18 - 0.53
Prior Math State Test Scores -0.055 0.085 -0.22 - 0.11 0.847 0.092 0.67 - 1.03
Missing Data Count -0.033 0.069 -0.17 - 0.10 -0.061 0.067 -0.19 - 0.07

Random Effects
𝜎2 3.29
𝑣𝑎𝑟 (`0)/𝑣𝑎𝑟 (a0) 1.465𝑖

0.182𝑡 0.445𝑡
0.147𝑠 0.453𝑠

N 824𝑖
252𝑗
42𝑡 42𝑡
11𝑠 11𝑠

Observations 88949 1209

Figure 4: Distribution of the estimated parameters
𝛼𝑡𝑖 are drawn form a random sample of posterior distribution. 𝛾𝑒 are the mean model parameters.

0.007. Furthermore, the effect on students in the bottom quartile of replay behavior(𝛼𝑡𝑖 ≥ −1.26; i.e., a probability of replay on the
average problem ≥ of .02) was -0.16.
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Figure 5: Interaction between 𝛼𝑖 and 𝑍𝑖 from an random draw
form the posterior distribution.

Notably, The credible intervals for students’ race/ethnicity, whether
they had an individualized education plan, their pretest algebra
score, their response time on the perceptual processing task, their
math state test scores, and the number of data points imputed all
had coefficients that did not span zero. This suggests that these are
all substantial predictors of students’ post-test performance.

6 DISCUSSION
In this study, we find that students with a higher propensity for
persisting by replaying problems when they achieve suboptimal
performance benefit more from gamification than those with a
lower propensity for persistence. Furthermore, it is possible that
there is little to no effect for students with a low propensity for
persistence. This suggests that the causal mechanism of gamifica-
tion in impacting students learning is the opportunity that gamified
CALP provides for replaying problems. Students who take advan-
tage of this opportunity are more likely to benefit, and those who
do not either experience a lower effect, or no effect at all. Regarding
Lander’s theory of gamified learning [36], the gamified condition
influences students’ persistence behavior by replaying problems,
thus increasing the instruction’s effectiveness.

This finding has two major implications. First, gamification’s
effects may depend on students’ propensity towards certain behav-
iors. Effect heterogeneity has been documented in gamified CALPs
[16]. What is notable about the present study findings is that we
find this heterogeneity based on latent behavioral profiles that are
only observed during the study. Past research has shown corre-
lation evidence suggesting differences in program behaviors are
related to differences in learning, such as the importance of delayed
responses when answering questions [10, 38]. For non-gamified
CALPs, there is also correlation evidence that in-program behaviors
such as wheel spinning and productive presence are predictive of
learning outcomes [2]. Our findings add causal evidence that the
effects depend on how students use the program.

The second implication of this work is that students’ utilization
of a specific feature may be driving the overall effect of a program.
This finding suggests that providing opportunities for students to

display productive presence, like replaying problems, may increase
CALPs’ effectiveness. The ability to replay the same problems is in
many ways peculiar to the gamified CALP in this study because
of the nature of the problems, which focus on efficiency in ma-
nipulated equations as opposed to producing a correct response.
Yet there are other instances in which students can display persis-
tence, such as in mastery learning CALPs, which allow students to
attempt similar problems until they have mastered a skill. Further-
more, increasing students’ persistence behavior may also improve a
program. Previous research has found that students are responsive
to performance-based feedback, encouraging them to replay prob-
lems [40, 61]. This suggests that developers of CALPs may be able
to influence students’ persistence behaviors and, by proxy, enhance
the program’s efficacy.

7 LIMITATIONS AND FUTURE DIRECTIONS
Although our findings show that persistence behaviors moderate
the relationship between the gamified program and learning, our
work has some notable limitations. First, as mentioned above, the
replay option is specific to the studied gamified CALP, and it may
be difficult to implement such a feature in other programs. In prin-
ciple, features in different gamified CALPs may provide options
for persistence behaviors in other ways, yet future research must
be conducted to confirm that the causal mechanism found here
persists under different circumstances. Second, we focus solely on
one behavior to be the causal mediator in this case, yet there are
likely other behaviors that interact with the treatment effect (e.g.
usage, wheel-spinning, gaming-the-system, response times). Future
research should evaluate these potential mediators to provide a
more robust understanding of how and for whom gamified CALPs
are effective.

Furthermore, there are limitations to FLPS. Although FLPS allows
for the estimation of heterogeneity in the causal effect associated
with the latent characteristic of propensity to replay, we are not
estimating the effect or replaying directly on the impact of the
gamified condition [31]. It is only students who have a tendency
to replay experience a greater effect. This tendency to replay may
actually be associated with other student characteristics that may
drive the heterogeneity of the effect. More work should be done to
understand how the availability of a replay option impacts student
learning to fully understand the relationship between this feature
of the game and the game’s overall effectiveness. Finally, effects
estimated using FPLS are contingent on the underlining quality
of the model itself, and it is unclear what error level in the model
may bias the effect. More work must be done to understand how to
evaluate these models to ensure they provide unbiased treatment
effect estimates.
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Abstract

This study investigates the role of productive persistence, specifically reattempting problems

after sub-optimal performance, in the efficacy of computer-based learning platforms (CBLPs)

designed for middle school algebra instruction. Utilizing data from an efficacy trial involving

three CBLPs —- From Here to There (FH2T), DragonBox, and ASSISTments -— we employ a

Fully Latent Principal Stratification (FLPS) model to evaluate how students’ propensity to persist

moderates program efficiency. Results indicate that reattempting problems is a productive

persistence behavior, contributing positively to performance improvement. However, the

moderating effect of this behavior varies across the CBLPs, suggesting that the peculiarities of

instructional design may influence how students engage in persistent behavior and learn from the

content. The study highlights the need to design educational technologies that foster persistence

by encouraging students to attempt multiple problem-solving strategies. These findings

underscore the importance of understanding behavior-moderated effects, which show how

program efficacy varies based on students’ engagement tendencies. Studying this heterogeneity

provides insights into why programs’ impact varies across students and what institutional design

features may help all students benefit from educational innovations.
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Behavior-Moderated Effects: Effectiveness of Computer-Based Learning Platforms Varies

Bases on Students Tendencies Toward Productive Persistence

Introduction

Education researchers increasingly recognize effect heterogeneity as essential to efficacy

research (Boedeker & Henson, 2020; Bryan et al., 2021; Fadda et al., 2022; Schudde, 2018). A

program’s impact may vary by implementation (Durlak & DuPre, 2008; Lendrum & Humphrey,

2012) or differ based on students’ characteristics (Decker-Woodrow et al., 2023a; Pane et al.,

2023). Kizilcec and Lee (2022) argue that educational innovations should not expand the gaps

between advantaged and disadvantaged students. Evaluating heterogeneity can allow us to

understand who benefits from innovative programs and guard against potential gap-increasing

innovations.

Heterogeneity analyses typically evaluate effects by student’s prior knowledge or

demographic groups; however, students’ specific tendencies towards interacting with the

programs can also moderate the impact of those programs. This type of heterogeneity, which we

call behavior-moderated effects, is largely unexplored. Typically, assessing students’ specific

interactions with program components may be difficult for education program implementations;

however, computer-based learning platforms (CBLPs) allow researchers to log detailed data on

student behaviors, thus providing an opportunity to understand how these behaviors relate to the

platform’s impact.

One particularly salient behavior is reattempting to solve problems after a poor

performance. The opportunity to reattempt problems after receiving immediate feedback is a

critical feature of many CBLPs. For example, mastery learning programs allow students to

complete comparable problems until they have mastered the underlying knowledge component

(Bloom, 1968; C.-L. Kulik et al., 1990). In some cases, programs encourage students to try

similar problems after submitting an incorrect answer (Kuchipudi, 2024). Furthermore, some

gamified platforms allow students to explore multiple routes to a solution (Pradhan et al., 2024).

Reattempting problems may indicate persistence in learning tasks, which is essential to

4.2. HOW BEHAVIORAL TENDENCIES TOWARDS PERSISTENCE MODERATES
THE EFFECTIVENESS OF COMPUTER-BASED LEARNING PLATFORMS

147



BEHAVIOR-MODERATED EFFECTS 4

learning difficult concepts and skills. Persisting during difficult academic tasks allows students to

work in the upper ends of their zones of proximal development, where most learning occurs

(Ventura et al., 2013; Vygotsky & Cole, 1978). Since productive persistence is essential to

learning, the efficacy of programs that create opportunities for persistence may depend on

whether students take advantage of those opportunities.

In this paper, we estimate this dependence. This study is a secondary data analysis from

an efficacy study of three CBLPs used to teach algebra to middle school students. The two

gamified CBLPs, From Here To There (FH2T) and DragonBox 12+ (DragonBox), allow students

to dynamically manipulate expressions and equations to solve algebra problems. In both of these

conditions, students can reattempt problems after using inefficient solution paths. Another

CBLPs, ASSISTments, presents typical textbook-style problem sets with on-demand hints and

immediate feedback. In this condition, students must submit the correct answer before

progressing to the next problem. We compare these conditions to an Active Control, also

administered through ASSISTments, of textbook-style problems on which students can make one

attempt.

Overall, we find that students with high propensities for persistence benefit more from all

the conditions in which they can reattempt problems (i.e., all conditions other than the Active

Control). However, the differences between conditions’ moderating slopes suggest that nuances

in the presentation of persistent opportunities may influence students’ learning. Furthermore, we

find that students with low persistence propensities may experience adverse effects compared to

the control condition. Overall, the study provides evidence that the efficacy of these CBLPs may

be contingent upon students’ behavioral tendencies.

Background

The following section provides an overview of this paper’s context and theoretical

underpinnings. First, we describe the nuances of CBLPs and provide evidence of their impact on

learning. This section includes an overview of how gamification may influence students’

behaviors in CBLPs. Next, we discuss how reattempting problems fits into the learning process,
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along with the potential benefits and drawbacks of the behavior. Finally, we examine how this

behavior often manifests in various CBLPs.

Computer-Based Learning Platforms

In recent decades, educational intuitions have increasingly relied on online programs to

administer homework, assessment, and instruction (Gallop, 2019; Gray & Lewis, 2021). Many of

these technologies were created to function as individual tutors by responding to students as they

learn skills and solve problems (Bloom, 1968; A. Corbett, 2001). Meta-analyses and reviews of

CBLPs have mostly found modest positive effects, with evidence that efficacy varies by the type

and implementation style of the program (Cheung & Slavin, 2011; J. A. Kulik & Fletcher, 2016).

In the following section, we characterize two instructional designs common in CBLPs: traditional

platforms that seek to emulate a tutoring environment and gamified platforms that incorporate

game-like features into learning platforms to increase engagement and learning. Notably, these

characteristics are not necessarily mutually exclusive – a traditional platform can be gamified, and

gamified platforms often incorporate features associated with traditional platforms – but for this

paper, we differentiate between program features related to each of these instructional designs.

Traditional CBLPs generally present students with problems similar to those found in a

typical worksheet (e.g., equations to be solved, word problems, etc.) while often providing added

support like hints, feedback, and scaffolding. Problems in traditional CBLPs are typically

multiple-choice, fill-in, or open-response questions (Gurung et al., 2024). Features are

incorporated into traditional CBLPs to varying degrees of adaptability and responsiveness to

students; some CBLPs only provide simple features like on-demand hints and automated

feedback, whereas others employ more suffocated features to guide students through learning

activities. Often, these programs use a mastery learning method, giving students problems on the

same knowledge component until they reach a mastery threshold. Statistically and machine

learning algorithms are often employed to determine which problems a student should receive

(Kozierkiewicz-Hetmańska & Nguyen, 2010), which support will be most helpful (Prihar et al.,

2023), and whether the student has learned the content or mastered the skill (Abdelrahman et al.,
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2022; A. T. Corbett & Anderson, 1994; Yudelson et al., 2013). These features are generally meant

to emulate high-quality human tutors who can guide students through a learning experience with

appropriate challenges and support.

Studies have found positive effects of traditional CBLPs on student learning, such as

Mathia (formally Cognitive Tutor) and ASSISTments (Feng et al., 2023; Pane et al., 2010, 2014;

Roschelle et al., 2016). Feng et al. (2023) found that ASSISTments improved long-term learning

and disproportionately helped students of color, providing evidence that ASSISTments is a

gap-closing intervention; however, there is evidence that the effects of the programs may vary by

how students interact with them. Sales and Pane (2021) found that students who used hints in

Cognitive Tutor experience greater effects. Alternatively, in ASSIStments, the impact of hint

access varies based on how students use those hints (Vanacore, Gurung, Sales, & Heffernan,

2024). Thus, the effect of CBLPs may depend on whether these systems can influence students’

interactions with their content and features.

Gamified CBLPs

CBLPs may influence students’ behavior through gamification, the method of

incorporating game-like elements into non-game experiences, such as learning tasks. According

to the Theory of Gamified Learning, gamification indirectly impacts learning outcomes by

influencing students’ attitudes and learning-related behaviors (Landers, 2014). Gamification can

potentially improve students’ motivation and engagement with learning content (A. Liu et al.,

2022; Zainuddin et al., 2020).

Evaluations of gamified CBLPs have produced mixed results. A meta-analysis of 19

experiments on the cognitive effects of gamified CBLPs found modest but consistently positive

effects of gamification (Sailer & Homner, 2020). Jagušt et al. (2018) found that including specific

game elements – competition, narratives, and adaptive difficulty – in digital math lessons led to

increased performance as students used the program, whereas non-gamified versions caused a

decrease in performance. However, another study found that students benefited more from a

non-gamified intelligent tutoring system than a gamified CBLP and that gamified CBLPs do not
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outperform their peers (Long & Aleven, 2017).

There is also mixed evidence that gamification can influence student engagement. Richey

et al. (2021) found that the effect of gamification on learning was mediated by student gaming the

system behaviors (i.e., their tendencies to exploit CBLPs’ features to progress through content

without learning). These results indicated that gamification caused a reduction in gaming the

system behaviors, thus improving students’ learning. Alternatively, another study found mixed

results on gamification’s ability to mitigate students’ gaming the system tendencies (Vanacore,

Gurung, Sales, & Heffernan, 2024). Similarly, performance-based rewards have had mixed effects

on engagement (Hyde et al., 2022; Malkiewich et al., 2016; Vanacore, Sales, et al., 2024). Many

of these differences may be due to how CBLPs are gamified, as different game elements or

combinations of elements result in significantly different effects (Sailer et al., 2017). Further, the

same game elements can have different effects on different students (Denden et al., 2022;

Vanacore, Sales, et al., 2023). Because of these complex interactions, most studies fail to provide

theoretical explanations of how gamification relates to learning, engagement, and motivation

(Zainuddin et al., 2020). Thus, questions remain regarding when and how gamification features

affect academic outcomes.

Persistence and Learning through CBLPs

Persistence is considered an aspect of conscientiousness in which a person is driven to

complete challenging tasks (McClelland, 1961). Students must persist when struggling to learn

difficult skills or understand challenging concepts. However, many students tend to disengage

when struggling in CBLPs (Botelho et al., 2019). Thus, a substantial body of research investigates

measuring and understanding persistence-related behaviors in CBLPs, including both productive

and unproductive performance (Adjei et al., 2021; Kai et al., 2018; Owen et al., 2019; Park, 2023;

Shute et al., 2015; Ventura et al., 2013).

Persistence in CBLP has been measured in a variety of ways. Researchers have used

students’ time spent on challenging and unsolved problems to measure persistence (Shute et al.,

2015; Ventura et al., 2013). In mastery learning activities, productive presence is often defined as
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mastering a knowledge component after completing over ten problems within an activity,

signifying that students needed to exert substantial effort to learn the skill (Adjei et al., 2021; Kai

et al., 2018). Alternatively, unproductive persistence, also known as wheel spinning, is

categorized by students exerting effort without learning (Owen et al., 2019; Park, 2023). Notably,

productive persistence is positively associated with short and long-term academic outcomes,

whereas unproductive persistence is not predictive of academic achievement (Adjei et al., 2021;

Ventura et al., 2013).

Displaying Persistence by Reattempting Problems

Features allowing students to practice similar or reattempt problems are common in

CBLPs. Programs that provide immediate feedback may allow students to resubmit answers after

an incorrect response. Mastery learning platforms present students with multiple problems with

similar skills, allowing students to reattempt the problems they have displayed sufficient mastery

of the skill. Other similar programs allow students to review or replay problems they have

previously attempted. Finally, more process-oriented programs present problems with multiple

paths to solutions, allowing students to find new paths to a solution in multiple ways (Vanacore,

Lee, et al., 2023). These programs often evaluate performance using the quality of solution paths

and allow students to reattempt problems based on improving those paths (Decker-Woodrow

et al., 2023b; Long & Aleven, 2017).

Reattempting problems after sub-optimal performance may indicate a student’s

persistence in the learning activity. In one online math game, students who spent a considerable

proportion of game time reattempt completed problems showed the largest learning gains in

algebraic understanding (Lee et al., 2022). Lavoué et al. (2021) found that students who

reattempted problems to improve performance tended to have higher levels of self-determined

motivation.

There is some evidence that gamification can increase students’ tendencies towards

reattempting problems. Performance-based feedback in game settings can encourage students to

reattempt problems by including game-based failure, which, unlike typical failure experiences in

CHAPTER 4. THE HOW GAME-BASED FAILURE CAN PRODUCTIVE
PERSISTENCE

152



BEHAVIOR-MODERATED EFFECTS 9

educational settings, can motivate students to persist (Vanacore, Sales, et al., 2024). Other studies

have found that performance-based feedback and reward systems can increase engagement,

persistance, and reattempt behaviors (Gaston & Cooper, 2017; O’Rourke et al., 2016).

Current Study

Study Design

This study uses open-sourced data from a randomized controlled trial conducted in a

school district in the Southeastern United States, involving 52 teachers in 10 schools. The

randomization procedure involved ranking students within classrooms based on their prior state

mathematics assessment scores, blocking them into quintets, and randomly assigning them into

either the From Here to There (40%), DragonBox-12 (20%), problem sets with on-demand hints

and immediate Feedback administered through ASSISTments (20%), or an Active Control (20%).

The study’s original purpose was to evaluate and understand From Here to There; thus, the

researchers disproportionately sample weighted towards that condition.

The study was implemented through nine weekly half-hour sessions in which the students

worked in their assigned program. The sessions were intended to be part of students’ in-school

coursework. However, as the study was conducted during the pandemic, some students attended

school remotely (39.54% started the year remotely, and 27.49% remained remote throughout the

entire school year). Due to the pandemic, the study involved substantial attrition.

Decker-Woodrow et al. (2023a) provides a complete description of the study design, attrition

analysis, and the results. Vanacore, Ottmar, et al. (2024) presents an analysis of the study

implementation fidelity, and Ottmar et al. (2023) contains a full description of open-sourced data.

Conditions

The study involves four conditions administered through two gamified CBLPs and one

traditional CBLP, all focusing on teaching aspects of algebraic equation equivalency. Each

condition teaches procedural ability, conceptual knowledge, and flexibility in solving algebraic

expressions. Example problems from each condition are presented in Figure 1. Each condition is

described in detail below.
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Figure 1

Example problems from each condition.
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From Here to There! (FH2T)

FH2T1 is an algebra game that applies aspects of perceptual learning (Goldstone et al.,

2010, 2017) and embodied cognition (Abrahamson et al., 2020) to teach students fluency when

using algebraic expressions. FH2T problem gives students a starting expression (start state) that

they must dynamically transform into a mathematically equivalent expression (goal state).

Students can manipulate the expression by dragging numbers and symbols from one position to

another on the screen or using a keypad when expanding terms. The program prevents students

from making mathematically invalid manipulations. FH2T evaluates performance based on the

efficiency of the solution process – the number of valid manipulations (steps) they take to reach

the goal state. FH2T includes 252 problems that are presented sequentially by mathematical

content. The problems become more complex through the program. Students must complete each

problem in the sequence before advancing.

DragonBox-12 (DragonBox)

DragonBox2 is an educational game that provides instruction in algebraic concepts to

secondary school students (ages 12-17). For each problem, students must isolate a box containing

a dragon—equivalent to solving an equation for x. This design incorporates research-based

instructional designs, including discovery-based learning, embedded gestures, diverse

representations of concepts, immediate feedback, and adaptive difficulty (Cayton-Hodges et al.,

2015; Torres et al., 2016). Students start by learning algebra rules without using or manipulating

numbers or traditional algebraic symbols. Instead they engage with the algebraic concepts as if

they are puzzles. The program introduces numbers and traditional algebraic symbols gradually

after the student has learned the underlying concepts. Furthermore, DragonBox includes a

narrative goal: students must release the dragon from the box by isolating it in the equation.

Previous analyses found that DragonBox positively affects engagement and attitudes toward

math, but findings are mixed regarding its efficacy in improving learning outcomes (Kluge &

1 https://graspablemath.com/fh2t.html

2 https://dragonbox.com/products/algebra-12
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Dolonen, 2015; Z. Liu et al., 2017; Long & Aleven, 2017; Siew et al., 2016).

On Demand Hints and Immediate Feedback in ASSISTments (Immediate Condition)

Both Immediate Conditions and the Active Control (described below) were administered

through ASSISTments3 (Heffernan & Heffernan, 2014), an online homework system that helps

students as they solve traditional problem sets. The problem sets in ASSISTments resemble

problems students encounter in their textbooks and homework assignments. ASSISTments

presents students with problems one at a time on their screen. Each condition included 218

problems selected from three curricula – EngageNY, Utah Math, and Illustrative Math – to

address specific algebra skills. The problems were organized into nine problem sets, administered

throughout nine half-hour sessions.

In the Immediate Condition, students could request hints while solving problems. After

every submitted answer, they also received automatic feedback on whether their answer was

correct or incorrect. Each problem contained a series of hints with a similar structure. The first

hint gave the students the first step to answering the problem. The second hint gave the student a

worked example of a similar problem. The final hint provided the student with the steps to

complete the problem as well as the problem’s solution. Students could submit as many answers

as needed but could only move on once they had entered the correct answer. Multiple studies have

found positive effects of this method when implemented as a substitute for paper homework

(Feng et al., 2023; Roschelle et al., 2016).

Post-Assignment Hints and Feedback (Active Control)

The Active Control provided post-assignment assistance rather than on-demand hints and

immediate feedback. In this condition, ASSISTment administered the problem sets in “test

mode," so students did not receive any feedback or hints while submitting answers in each

problem set. They submitted one answer for each problem and progressed through the problem

set without receiving an indication of whether their answers were correct. At the end of each

3 https://new.assistments.org/
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problem set, students received a report with performance feedback. They also had the opportunity

to review their responses, revisit problems, and request hints.

Reattempting Problems

Each treatment condition (i.e., FH2T, DragonBox, and Immediate Condition) allowed

students to reattempt problems differently. In the Immediate Condition, students had to reattempt

the problems until they submitted the correct answer. Although they could review their results,

they could not reattempt the problems after submitting correct answers. Although ASSISTments

has mastery-based learning activities and features that allow students to receive problems similar

to those they struggled with, neither was active during the study.

In both gamified conditions, upon completing a problem, students could repeat problems.

Unlike many traditional math problems, which evaluate students based on whether they provide

the correct answers, FH2T and DragonBox focus on students’ processes for finding solutions.

The student’s task for each problem is to manipulate the equation to a specific state in the optimal

number of steps. This instructional design allowed students to explore multiple paths to a solution.

After completing each problem in FH2T, students receive feedback for a “reward"

represented by clovers (see Figure 2). They are given between one and three clovers depending on

their efficiency: three clovers if the students took the optimal (i.e., minimal) number of steps to

reach the goal state, two clovers if they were within two steps of optimal, and one clover for all

other completed attempts. When students receive three clovers, they are automatically moved to

the next problem. However, when students earn one or two clovers, they are given the option to

either reattempt the problem or move on to the subsequent problem. Previous analyses suggest

that the number of clovers received has a causal effect on whether students reattempt the problem

(Vanacore, Sales, et al., 2024). This findings suggest that students are responding to the gamified

nature of the program by displaying persistent learning behaviors when taking the opportunity to

reattempt problems to improve their skills and understanding.
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Figure 2

Performance based feedback in FH2T. Note that when students did not achieve the “Best

Solution," the “Retry" option is available.

DragonBox operates similarly by asking students to isolate a variable and are evaluated

based on whether they do it efficiently ("Right number of moves") and whether they have the least

number of variables or numbers in the solution ("Right number of cards"). Students receive a star

for completing the problem, a star for the correct number of moves, and a star for the right

number of variables (see Figure 3). As in FH2T, students can reattempt problems when they have

not earned all the stars.
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Figure 3

Performance-based Feedback in DragonBox. Note that the button in the upper left corner allows

students to reattempt problems.

There are two crucial distinctions between the designs of FH2T and DragonBox. First, in

FH2T, students cannot complete the problems with extra variables; in other words, the student

needs to completely achieve the goal state before completing the problem. This is not the case in

DragonBox. Second, there is a subtle but important difference between how the conditions

present the option of reattempting problems. FH2T presents a “retry" button in the center of the

students’ screen when they use a sub-optimal solution. In Dragbox, to reattempt a problem,

students select the back button in the screen’s upper right corner.

Notably, these rewards had no internal or external ramifications. In the FH2T and

DragonBox, students could see how many rewards they earned but could not use them in the

game. In the study, teachers did not have access to students’ performance data. Therefore, there

was no external pressure on students to reattempt problems.

Research Questions

This study explores how differences in behavioral tendencies – specifically, whether

students display productive persistence by reattempting problems after sub-optimal performance
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– are associated with varying effects of CBLPs. The following questions are meant to evaluate

whether reattempting problems is a productive persistence behavior (Research Question 1) and

whether the effects of the treatment conditions vary based on this behavior (Research Questions 2

and 3).

Research Question 1 Does students’ performance improve after they reattempt problems?

First, we evaluate whether reattempting problems is a productive persistence behavior by

whether the behavior is associated with improved performance.

Research Question 2 Does the effect of each treatment condition vary based on students’

propensity to reattempt problems after sub-optimal performance?

Next, we evaluated the effect heterogeneity of each treatment condition based on students’

propensities to reattempt problems after sub-optimal performance. We hypothesized that

students with higher propensities to reattempt problems would experience greater effects in

all treatment conditions than those with lower propensities.

Research Question 3 Is this heterogeneity consistent across the conditions?

Finally, we evaluate whether the effect heterogeneity differs by treatment condition. We are

specifically concerned with whether the pattern of effect heterogeneity is consistent across

the gamified conditions. We hypothesized that the effects of the gamified conditions vary

similarly by students’ propensities to reattempt problems and the heterogeneity of both

gamified conditions would be greater compared to the Immediate Condition.

Method

Participants

The original study sample included 3,271 middle school students. As stated above, the

study was continued during the COVID-19 pandemic, and there was substantial attrition. The

original efficacy study reported that the differential attrition was not statistically significant and

met the What Works Clearing House Standards for tolerable threats of bias under optimistic

assumptions (Decker-Woodrow et al., 2023b; WWC, 2020). The current study sample differs
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from the original efficacy study in that the efficacy dropped all students with missing pretest or

posttest scores. The current study excludes all students without post-test scores, which are used as

the outcome, but imputes all other missing data. Thus, our sample is slightly larger than that of

the efficacy study.

The sample for the current study consists of 1976 students: 402 in the Immediate

Condition, 835 in the Delayed Condition, 372 in the DragonBox, and 817 in FH2T. These

students were taught by 36 teachers in 10 schools. Demographic data was provided by the district.

The sample was balanced between male and female students (49.00% Female, 51.00% male).

The district did not report any non-binary students. About half the student population was White

(51.21%), 25.29% was Asian, 15.08% was Hispanic/Latino, 4.41% was Black/African American,

0.56% American Indian, 0.10% was Pacific Islander, 3.29% were two or more races and 0.06%

did not have reported race/ethnicity data. English was not the first language for 10.26% of the

students. Students who received accommodations (i.e., Individual Education Plans or 504 Plans)

accounted for 16.11% of the student population, and 16.62% were labeled “gifted" by the district.

Data & Variables

Persistence Behavior

We used students’ log-file data from FH2T and created an indicator variable for when

students reattempted a problem after performing sub-optimally (i.e., using an inefficient path to

the solution and receiving fewer than three clovers). Although students could reattempt problems

in DragonBox, we did not have access to their log-file data. Students in the Immediate Condition

had to submit multiple responses after an incorrect answer before progressing; consequently, it is

difficult to determine whether a student displayed persistence when submitting subsequent

answers or was simply attempting to progress through the system. Because of these

complications, persistence was estimated empirically for students in FH2T and then imputed for

students in other conditions, as explained below.
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Pretreatment Predictors

To estimate students’ propensity to persist in FH2T, we use data from assessments

administered before students used their assigned condition. The original studies’ researchers

administered the following pretests: algebraic knowledge, math anxiety, and perceptual

processing skills. Pretest algebraic knowledge was a variant of the learning outcome described

below. The math anxiety assessment was adapted form from the Math Anxiety Scale for Young

Children-Revised (Chiu & Henry, 1990), which assessed negative reactions towards math,

numerical inconfidence, and math-related worrying (Cronbach’s α =.87; items accessible on

OSF4). Five items adapted from the Academic Efficacy Subscale of the Patterns of Adaptive

Learning Scale to assess math self-efficacy (Midgley et al., 2013; Cronbach’s α = .82; items

accessible on OSF 5). The perceptual processing assessment evaluates students’ ability to detect

mathematically equivalent and nonequivalent expressions as quickly as possible (Bye et al., 2022;

items accessible on OSF 6). The district provided additional data on the students, including their

demographics and most recent standardized state test scores in math (of Education, 2020).

Demographic data included race/ethnicity, individualized education plan status (IEP), and English

as a second or foreign language (ESOL) status. Race/ethnicity was dummy-coded, with white

students as the reference category because they were the majority population.

Table 1 presents the correlations between the pretest scores. As expected, many of the

scores are moderately or highly correlated. However, math anxiety and its related subscores are

not highly correlated with the mathematical knowledge scores. Furthermore, math self-efficacy is

not highly correlated with scores other than math anxiety. This suggests that while these measures

assess related constructs, they still evaluate different aspects of students’ mathematics knowledge

and math identity, which may be leveraged to assess their propensity to reattempt mathematical

tasks.

4 https://osf.io/rq9d8

5 https://osf.io/rq9d8

6 https://osf.io/r47ev
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Table 1

Correlations Between Pretest Covariates

– 2 3 4 5 6 7 8 9 10

1. Algebraic Knowledge Total Score –

2. Procedural Sub-Score 0.77 –

3. Conceptual Sub-Score 0.89 0.53 –

4. Flexibility Sub-Score 0.75 0.39 0.50 –

5. Math Anxiety Total Score -0.25 -0.16 -0.25 -0.18 –

6. Negative Reaction Math Sub-Score -0.26 -0.16 -0.26 -0.19 0.80 –

7. Numeric Inconfindence Sub-Score -0.20 -0.12 -0.21 -0.13 0.78 0.39 –

8. Math Self-Efficacy 0.33 0.21 0.33 0.25 -0.58 -0.50 -0.47 –

9. Perceptual Sensitivity Score 0.70 0.53 0.67 0.47 -0.24 -0.25 -0.18 0.30 –

10. Math State Test Score 0.63 0.43 0.63 0.44 -0.28 -0.27 -0.24 0.37 0.60 –

All correlations were significant at p < 0.001.

We standardized all continuous scores (z-score) to improve model convergence and ease

interpretation. Assessment test times were log-transformed. We included polynomials of the

pretest scores when they improved model fit. We imputed missing pretreatment data using

single-imputation with the Random Forest routine implemented by the missForest package in R

(R Core Team, 2016; Stekhoven & Buehlmann, 2012).

FH2T Problem Features

When estimating students’ propensity to reattempt problems, we accounted for how

complex the problem is and where it is situated in the sequence of each problem set. The

minimum number of steps it would take to complete each problem served as a measure of

problem complexity. The sequence within each problem set (referred to as ”Worlds" in FH2T)

was also included in the model.
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Learning Outcome

We evaluated learning using a standardized measure of students’ algebraic knowledge,

administered two weeks after students stopped using the programs. The assessment included ten

multiple-choice items from a previously validated measure of algebra understanding (Star et al.,

2015; Cronbach’s α = .89; items accessible on OSF7). Four of the items evaluated conceptual

understanding of algebraic equation-solving (e.g., the meaning of an equal sign), three evaluated

procedural skills of equation-solving (e.g., solving for a variable), and three evaluated flexibility

of equation-solving strategies (e.g., evaluating different equation-solving strategies). Together,

these ten items assessed students’ knowledge in algebraic equation-solving, the improvement of

which was the goal of the interventions. The learning outcome was assessed before and after the

interventions. Students’ scores were standardized (z-score) to ease model fit and interpretation.

Analytic Approach

Reattempt Behavior Exploration

First, we conducted an exploratory data analysis that examined the reattempt behavior in

FH2T, with the aim of understanding the context in which students tend to reattempt problems.

To address Research Question 1, we use multilevel logistic regression to assess whether

reattempting problems after sub-optimal performance is associated with better performance on

subsequent problems. This indicates whether the behavior is likely productive or unproductive: if

students improve their performance after reattempting a problem, the behavior may be productive.

Fully Latent Principal Stratification

Research Questions 2 and 3 pose methodological complications. First, our moderator

variable of interest, reattempt behavior, does not manifest equally across conditions, and in the

Active Control, students cannot reattempt problems. Additionally, students’ tendencies toward

reattempting problems may be confounded by conditions: reattempting in FH2T is not necessarily

equivalent to reattempting in the Immediate Condition. Typically, to estimate effect heterogeneity,

7 https://osf.io/uenvg
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researchers must define subgroups before the intervention and be independent of any treatment.

For example, when testing if treatment effects vary based on students’ prior knowledge of the

content, interacting with the treatment indicator with measures of test performance collected

before the treatment provides an estimate of effect heterogeneity. Yet, our subgroups of interests –

students with different reattempt behaviors – only become evident after an intervention begins.

Principal stratification is a method used in randomized controlled trials for estimating the

intervention effects on subgroups that emerge after the treatment has begun (Frangakis & Rubin,

2002; Page et al., 2015). For example, the effectiveness of an educational program may vary

based on the extent to which students engage with the program’s components; however,

subgroups identified based on students’ interactions with a treatment program are unknown

before the treatment begins. Furthermore, these subgroups may only be observed for students

randomized into some conditions. The essential premise of principal stratification is that even

subgroups defined by interactions with the treatment exist before treatment and equally across

conditions due to randomization.

Fully Latent Principal Stratification (FLPS) models these moderator behaviors as latent

characteristics (Sales & Pane, 2019). For participants who are randomized to the conditions in

which the behavior of interest is expressed, the latent state can be estimated from their behavioral

data. For participants who are randomized to other conditions, the latent state is essentially

imputed using data collected before the randomization. The latent state variable can be

interpreted as a propensity to display the behavior if randomized to the condition in which the

behavior is expressed. This propensity exists before randomization and is, therefore,

unconfounded by any condition. In a model predicting the outcome, the interaction of the

treatment and the latent state variable estimates the heterogeneity associated with the behavior in

question (i.e., behavior-moderated effects).

This method has particular benefits for education efficacy research as students’

engagement within learning activities is often characterized by a complex series of behaviors. For

example, in many CBLPs, students may display an array of behaviors during the program, such as
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meeting implementation goals (Dieter et al., 2020; Vanacore, Ottmar, et al., 2024), mastering

knowledge components in mastery-learning activity (Sales & Pane, 2019), and

gaming-the-system behaviors (Vanacore, Gurung, Sales, & Heffernan, 2024) that may be

indicators of latent student characteristics (i.e., high fidelity users, mastery users, gamers).

Understanding how specific behaviors may influence the CBLP’s impact on students’ learning is

often difficult. FLPS provides an approach to addressing the relationships between in-program

behaviors and program effects.

Since we are concerned with how the effects of each CBLP in this study vary based on

their propensity to reattempt problems when using FH2T, regardless of the actual assignment, we

define FH2T as the primary treatment and the Active Control as the control. The Immediate

Condition and DragonBox will treated as separate treatments as delineated below.

Let τi be subject i’s individual treatment effect: the difference between what i’s posttest

score would be if i were randomized to treatment and their score if randomized to control. Let T

be an index of the treatment conditions where FH2T , DB, and IC signify FH2T, DragonBox, and

the Immediate Condition, respectively. Let αti be i’s be a measurement of a student’s propensity

to reattempt problems. αti is defined for students who were not randomized to FH2T, as each

student had the potential to reattempt problems had they been randomized to FH2T, even if this

potential was never realized.

The principal effect is the treatment effect for the subgroup of students with a particular

value for αt :

τ
T (α) = E[τ|αt ] (1)

The FLPS method allows us to estimate the function τ(α) for each treatment condition.

Intuitively, FLPS can be viewed as three steps: (1) estimate αt using reattempt data from FH2T as

a function of pre-treatment covariates observed in both groups, (2) use that model to impute αt for

students who were not randomized to FH2T, (3) estimate τ(α) by interaction αt and the treatment

conditions in a linear region model. In reality, these steps are fit simultaneously using iterations
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through these steps in a Bayesian principal stratification model with a continuous variable

consisting of measurement and outcome submodels, as outlined by Jin and Rubin (2008) and

Page (2012). We fit the FLPS model using the Stan Markov Chain Monte Carlo (MCMC)

software (Arezooji, 2020).

FLPS Implementation

Measurement Submodel

We estimate αt by running a multilevel logistic submodel predicting whether the

reattempted problems in FH2T using students’ FH2T problem logs. Equation 2 models two

components that may contribute to the behavior: the student and the problem. This model

resembles a Rasch model, which has shown promise when evaluating students’ behavioral

tendencies in CBLPs (Huang et al., 2023).

Let R ji be a binary indicator of whether student i reattempts problem j. As noted above,

only problem attempts in which student i performed sub-optimally on their first attempt at

problem j are included in the model. Let αi be student i’s contribution to the likelihood of the

reattempt behavior and η j be the baseline likelihood for all students on the problem j.

log(odds(R ji = 1)) = γ0 +αi +η j (2)

η j is estimated using problem features (Pf j) and random intercepts for each problem (µ j).

Let Pf j be problem-level feature f for problem j.

η j =
F

∑
f=1

Pf jν f +µ j (3)

We model α using student-level variables. Let Cki be covariate predictor k of K

student-level predictors, which are measured at baseline for both T and C . Let the random

intercepts be πi for students, ηt for teachers, and ρs schools, each modeled as independent and

with normal distributions with means of zero and standard deviations estimated from the data.
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αi =
K

∑
k=1

γkCki +πi + ηt + ρs (4)

The MCMC procedure imputes αti for all students not assigned to FH2T with random

draws from a normal distribution with mean ∑k γkPki +ηt[i]+ρs[i], where ηt[i] and ρs[i] are the

random intercepts for student i’s teacher and school, respectively, and standard deviation equal to

the estimated standard deviation of πi. The student level randomization (i.e. teachers had students

in different conditions in their classes) allows us to include the random intercepts for schools and

teachers from Equation 4. However, πi is unknown for students not in FH2T, but we can assume

its distribution is the same in all conditions because of the randomization.

Before fitting the full FLPS model, we used bidirectional stepwise regression production

to select student and problem-level predictors. Next, we validated the measurement model using a

ten-cross-fold validation procedure. Appendix A provides a full description of the

cross-validation procedure. The area under the receiver operating characteristic curve (AUC) –

which measures the balance between true positive and false positive predictions at different

cut-point thresholds – was used to assess model performance. A minimum AUC of 0.65 is

acceptable in FLPS measurement models based on prior simulations (Sales et al., 2022).

Outcomes Submodel

The outcome submodel interacts students’ estimated propensities to reattempt problems

(αti) with the condition indicators, thus estimating the association between αti and the effect of

each condition. Let Yi be the learning outcome for student i. Let λk be the fixed effects for

covariates Cki. Let the random effects for a teacher be ρt and for school be ψs. Let ZT
i be dummy

code variables for student i in condition T . Note that the Active Control is the reference category.

Yi = β0 +β1αti + ∑
T ∈{FH2T,DB,IC}

ZT
i (βT

2 +β
T
3 αti)+

K

∑
k=4

βkCki + ρt + ψs + εi (5)

Together, submodels 2 and 5 formed an FLPS model, which we fit using the Stan Markov

Chain Monte Carlo software (Arezooji, 2020). We evaluated convergence using trace plots and
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whether the R̂, which measures convergence by comparing between- and within-chain estimates

of each parameter, was below the recommended threshold of 1.05 (Vehtari et al., 2021). The

maximum R̂ for the model parameters was 1.03.

Descriptive statistics of the posterior distributions of β Z
0 and β Z

1 are used to evaluate the

main effects of each condition and moderating effects of students’ propensity to reattempt

problems (Research Question 2). Comparisons of these distributions are used to address whether

the moderator effects consist of gamified conditions (Research Question 3).

Results

Reattempt Behavior Exploratory Data Analysis

Table 2 presents frequencies of students’ reattempt behavior. In FH2T, students

reattempted 14,546 problems, averaging 13% of all the problems they completed. Students most

commonly attempted problems after sub-optimal performance (n=8973; 61.69% of total

reattempts). When students performed sub-optimally, they reattempted the problem just under

one-third of the time (30.74%). A substantial minority of the reattempts occurred after students

performed optimally (n=5573, 38.31% of total reattempts). Yet, this behavior occurred

infrequently compared to the total number of optimal performances (6.67%). Since this paper

concentrates on productive persistence, we focus only on instances of reattempt after sub-optimal

performance.

Table 2

Reattempt Frequencies

Reattempt n Percent

All Problems 14546 13.00%

After sub-optimal Attempts 8973 30.74%

After Optimal Attempts 5573 6.74%

Figure 4 displays this relation between the total number of problems students completed

and the percent of sub-optimal problems that they reattempted, along with a box plot of the
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reattempt behavior. On average, students tend to reattempt problems after they perform

sub-optimally slightly less than a quarter of the time (median = 23.33). However, the distribution

of reattempts is positively skewed, with just 25% of students attempting these problems between

56.25% and 100.00% of the time. Although it might seem logical that spending time attempting

problems would lead to less content covered, there was a small positive but significant correlation

(r= 0.09, p = 0.002) between the number of problems completed and the percentage of problems

reattempted. Thus, if anything, attempting problems after sub-optimal performance is associated

with covering more, not less, content.

Figure 4

Scatter plot of the relation between the present of problems each student reattempted after

sub-optimal performance and the total number of problems the students completed.

Associations with Performance (Research Question 1)

As an initial test of whether students may benefit from reattempting problems, we

evaluated whether this behavior was associated with improved performance on subsequent
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problems. Table 3 presents frequencies of the next problem performance based on whether

students reattempt problems. The table only includes instances in which students performed

sub-optimally on the problem. 70.64% of students who reattempted problems after sub-optimal

performance performed optimally on the next problem, compared with 58.24% of those who did

not reattempt the problem. This difference was statistically significant (χ2 398.97, DF = 1, p <

0.001).

Table 3

Probability of next problem optimal by reattempt behavior after sub-optimal performance

Next Problem

n Sub-Optimal Optimal

Did not reattempt 19756 41.76% 58.24%

Reattempt 8849 29.36% 70.64%

To ensure that this result was not explained by students’ prior knowledge of the content or

any predisposition toward math, we ran a logistic regression predicting whether students

performed optimally on the next problem after optimal performance. We included students’

pretest algebraic knowledge and math anxiety as well as random intercepts for both the student

and the problem. Table 4 presents the model estimates. Students were significantly more likely to

perform optimally on the next problem after a sub-optimal performance when reattempting the

problem compared to when they did not reattempt it (β1 = 0.46, SE = 0.05, p < 0.001), after

accounting for student pretest scores and baseline probabilities for optimal performance for the

student and the problem. Overall, this increased likelihood of performance improvement

associated with reattempting problems suggests that the behavior is an example of predictive

persistence.
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Table 4

Predicting Next Problem Optimal after Sub-optimal Performance

Estimate (Log Odds) SE Z-value P-value

Intercept 0.62 0.14 4.38 < 0.001

reattempt 0.46 0.05 10.24 < 0.001

Pretest Algebraic Knowledge 0.22 0.03 8.11 < 0.001

Pretest Math Anxiety -0.03 0.03 -1.22 0.222

Random Intercepts SD Variance

Student 0.18 0.42

Problem 4.25 2.06

Fully Latent Principal Stratification Model

Measurement Submodel

Prior to estimating the full FLPS model, we calculated the intra-class correlations (ICC)

for different model components and conducted the cross-validation procedure described in the

Measurement Model Section. Table 5 presents the variances and ICCs associated with the student

(α) and the problem (η). These are estimated by running a null model with only random

intercepts for the student and problem. Most of the variance in reattempt behavior is associated

with the student (52%), while a substantial portion is associated with the problem (19%). This

suggests that reattempting problems is largely driven by individual student differences.
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Table 5

Measurement model intra-class correlations

Variance ICC

α (Student) 5.99 0.52

η (Problem) 2.19 0.19

The estimated model parameters are presented in Table 6. In Bayesian analyses, parameter

estimates and their uncertainty are derived from the descriptive statistics of the posterior

distribution. Thus, the mean of the posterior distribution is the point estimate, and the standard

deviation (SD) functions similarly to a standard error in frequentist statistics. The credible

interval (CI) is the range of the position distribution that falls within the 95% probability

distribution and can be interpreted similarly to confidence intervals in frequentist statistics. One

benefit of Bayesian methods is the ability to calculate the probability that a point estimate is

different from zero, which is indicated in the table.

When interpreting the measurement model, we only consider parameters that have at least

a 90% probability of being either greater or smaller than zero. Note that the covariates in the

model were selected to create the best predictive model and not to explain the reattempting

problem behavior. Many variables are highly correlated with one another. Since this collinearity

may influence the parameter estimates and their uncertainty, our interpretations are made with

caution.

Overall, higher-knowledge students were more likely to reattempt problems after

sub-optimal performance. Of the student-level covariates, students’ pretest algebraic flexibility

(γ3 = 0.23, CI = 0.06 -– 0.40) and math state test performance (γ5 = 0.23, CI = 0.02 -– 0.46) had

positive associations with reattempt behavior. This suggests that students’ abilities to think

flexibly about algebraic equations may be key in determining whether a student tries a different

method by attempting a problem. The positive correlation between math state test performance

and reattempt behaviors may indicate that general math knowledge may play a key role in
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Table 6

Fully Latent Principal Stratification Model Parameter Estimates

Measurement Submodel Outcomes Submodel
Estimate SD CI Estimate SD CI

Intercept -2.13* 0.42 -2.82 – -1.43 -0.08 0.10 -0.24 – 0.09
α -0.10* 0.05 -0.18 – -0.02
Immediate Condition 0.07◦ 0.05 -0.01 – 0.16
Immediate Condition*α 0.07◦ 0.05 -0.02 – 0.15
FH2T 0.08◦ 0.05 -0.01 – 0.15
FH2T*α 0.14* 0.05 0.07 – 0.22
DragonBox 0.17* 0.05 0.08 – 0.26
DragonBox*α 0.07◦ 0.05 -0.02 – 0.16
Algebraic Procedural Knowledge 0.11 0.11 -0.07 – 0.29 0.05* 0.02 0.02 – 0.09
Algebraic Conceptual Knowledge 0.17◦ 0.13 -0.04 – 0.39 0.24* 0.03 0.2 – 0.28
Algebraic Flexibility 0.23* 0.11 0.06 – 0.40 0.04* 0.02 0.01 – 0.08
Perceptual Sensitivity 0.40* 0.12 0.20 – 0.60 0.09* 0.03 0.05 – 0.13
State Math Test 0.23* 0.13 0.02 – 0.46 0.18* 0.03 0.14 – 0.23
State Math Test (Squared) 0.01 0.07 -0.10 – 0.12 0.00 0.01 -0.02 – 0.03
Pretest Time (Log) -0.02 0.11 -0.20 – 0.16 0.02 0.02 -0.01 – 0.05
Pretest Items Complete 0.01 0.12 -0.20 – 0.21 0.02 0.02 -0.02 – 0.05
Math Anxiety -0.13 0.15 -0.37 – 0.11 -0.02 0.03 -0.07 – 0.03
Math Anxiety (Squared) 0.12* 0.07 0.00 – 0.23 0.01 0.01 -0.01 – 0.03
Numeric Inconfidence 0.17◦ 0.14 -0.05 – 0.40 0.02 0.03 -0.02 – 0.06
Math Self Efficacy -0.05 0.12 -0.25 – 0.14 0.05* 0.02 0.02 – 0.09
Gifted 0.14◦ 0.10 -0.02 – 0.31 0.08* 0.02 0.05 – 0.11
English Speakers of Other Languages -0.16* 0.09 -0.31 – -0.01 0.01 0.02 -0.02 – 0.04
Virtual Instruction -0.11 0.16 -0.37 – 0.15 0.11 0.10 -0.06 – 0.27
Problem Complexity -0.34* 0.06 -0.43 – -0.25
Problem Sequence within Problem Set -0.39* 0.04 -0.46 – -0.32
* 95% CI excludes 0
◦ 90% CI excludes 0

students’ decisions to attempt problems. Other assessments of students’ prior knowledge were

also positively correlated with the reattempt behavior, including algebraic conceptual knowledge

(γ2 = 0.17, CI = -0.04 — 0.39), perceptual sensitivity (γ4 = 0.40, CI = 0.20 -– 0.60), and whether

students were labeled “gifted" (γ13 = 0.14, CI = -0.02 — 0.31) by the district.

Although higher-performing students are more likely to reattempt problems, the profile of

students with a high propensity for this behavior may be more nuanced. While math anxiety was

not likely associated with reattempting problems, the quadratic transformation of math anxiety

was positively associated with the behavior (γ10 = 0.12, CI = 0.00 – 0.23). This suggests that

students with the highest levels of math anxiety are more likely to reattempt problems. Similarly,
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students with higher numerical inconfidence were also more likely to reattempt problems (γ11 =

0.17, CI = -0.05 – 0.40). Taken as a whole, the measurement model suggests that

higher-performing students with higher math anxiety, specifically in numerical inconfidence, are

most likely to reattempt problems.

The problem-level parameters give us some understanding of the context in which

students reattempt problems. On average, students were less likely to reattempt more complex

problems (ν1 = -0.34, CI = -0.43 -– -0.25) and those that came later in the problem set (ν2 = -0.39,

CI = -0.46 -– -0.32).

Figure 5 presents the relationship between students’ estimated propensity to reattempt

problems after sub-optimal performance (αti) and the percentage of problems that they reattempt

problems after sub-optimal performance. The plot shows a close but imperfect relationship

between the two variables. The size of the points represents the number of problems in which the

student performed sub-optimally. Notably, students with sparse data tend to have αti values closer

to zero than those with more data and the same percentage of problems reattempted. This

suggests the measurement model appropriately regularizes students’ propensities based on the

number of available observations.
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Figure 5

Relationship between students’ estimated propensity to reattempt problems after sub-optimal

performance (αti) and the percentage of problems that they reattempt problems after sub-optimal

performance.

Outcomes Submodel

The parameters of the outcomes submodel are presented in the rightmost columns of

Table 6. The association between students’ propensity to reattempt problems and their post-test

algebraic knowledge was likely negative (β2 = -0.10, SD = 0.05). Thus, higher propensities to

reattempt problems were not indicative of higher post-test performance for students who did not

have access to features that allowed them to reattempt problems (i.e., delayed condition). This

finding is particularly interesting because the behavior was positively associated with pre-test

math performance measures.

The main effects of each condition (β Z
2 ) are the expected effects for students with average

reattempt behavior (αt = 0). All of the conditions had likely positive main effects. It is highly

probable that DragonBox (β DB
2 = 0.17, CI = 0.08 -– 0.26) positively impacted algebraic

knowledge for students with average propensities to reattempt problems. It is also probable that
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FH2T (β FH2T
2 = 0.08, CI = -0.02 -– 0.15) and Immediate Condition (β IC

2 = 0.07, CI = -0.01 —

0.16) had positive main effects.

The interaction effects indicate whether students’ propensities to reattempt problems

moderates the effect of CBLPs (Research Question 2). It is highly probable that interaction

between FH2T and the propensity to reattempt problems was positive (β FH2T
3 = 0.14, CI = 0.07

-– 0.22). The interaction effects between the propensity to reattempt and the Immediate Condition

(β IC
3 = 0.07, CI = -0.02 -– 0.15) and DragonBox (β DB

3 = 0.07, CI = 10.02 -– 0.16) were likely

positive, but smaller in magnitude – the estimates were half the size of the FH2T interaction.

Figure 6 visualizes these slopes by presenting the effect sizes at different levels of αt for each

condition.

Figure 6

Plot of effect sizes (τ) by propensity to reattempt problems (α).

Table 7 presents the differences in main and interaction effects between conditions.

Notably, DagonBox had greater main effects than both FH2T (∆τ = 0.10, P(> 0) = 0.96) and the

Immediate Condition (∆τ = 0.10, P(> 0) = 0.95). To address whether the moderating association

differs between gamified and non-gamified conditions (Research Question 3), we compare the
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posterior distributions of each interaction coefficient to one another. The effect of FH2T likely

varied more based on students’ propensities to reattempt problems compared with DragonBox (

∆τ = 0.06, P(> 0) = 0.91) and the Immediate Condition ( ∆τ = 0.07, P(> 0) = 0.93). The FLPS

model did not provide evidence that there was a substantial difference in the interactions between

DragonBox and Immediate Condition (∆τ = 0.01, P(> 0) = 0.58).

Table 7

Difference between Main and Interaction effects across conditions

Main Effect Interaction Effect

Comparisons ∆τ P(> 0) P(< 0) ∆τ P(> 0) P(< 0)
FH2T vs DragonBox -0.10 0.04 0.96 0.06 0.91 0.09
FH2T vs Immediate < 0.01 0.51 0.49 0.07 0.93 0.07
DragonBox vs Immediate 0.10 0.95 0.05 0.01 0.58 0.42

Discussion

This study finds that students’ tendency towards productive persistence may be essential to

whether they reap the benefits of learning platforms; however, having a high propensity to persist

may be insufficient for learning from CBLP. Differences in these learning environments that allow

students to display productive persistence likely influence whether students learn from innovative

programs in algebra education. Thus, it is paramount that when designing learning platforms, we

consider the opportunities that these learning experiences provide for students to respond to their

sub-optimal performance. Providing opportunities for multiple attempts at a problem and even

multiple paths to a solution may allow students to struggle through misconceptions and learn from

mistakes. More broadly, our analyses highlight the need to understand how students’ behavioral

tendencies can influence whether innovative educational technologies effectively teach students.

These analyses suggest that reattempt behavior is a particularly salient action for students’

performance in the CBLPs and their benefit from the platforms. Taken as a whole, the finding that

students are more likely to improve performance after attempting problems, along with the

positive moderation effects with each of the treatments, indicate that reattempting problems is
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often an example of productive performance. This finding adds causal evidence to the previous

studies showing that productive persistence behaviors in CBLPs are positively associated with

short and long-term academic outcomes (Adjei et al., 2021; Ventura et al., 2013). However, the

negative association between this propensity and post-test performance for students in the Active

Control suggests that having the propensity to persist without access to the ability to reattempt

problems is likely determinantal to learning; students needed the opportunity to persist through

specific CBLP features to benefit from their latent tendencies.

The analysis also provides insights into which student characteristics are predictive of

productive persistence and which perspectives and abilities may be barriers for students to display

the behavior. Students’ algebraic flexibility was particularly predictive of reattempting problems

after sub-optimal performance. This association indicates that students who did not display the

behavior may struggle with the mental flexibility required to produce multiple solutions.

Attempts to foster flexibility by explicitly having students produce multiple solutions to algebra

problems have produced promising results (Newton et al., 2010; Star & Seifert, 2006).

Incorporating these practices into algebra CBLPs like FH2T and DragonBox might help programs

increase students’ algebraic flexibility, thus improving their chances of reattempting problems.

More general student characteristics might also contribute to this behavior. For example,

the "need for cognition" – the intrinsic drive to rationally understand one’s experiences and world

– may drive some students to persist during learning tasks (Cacioppo & Petty, 1982). Similarly,

epistemic curiosity, in which students find pleasure in finding solutions to academic problems,

might explain persistence behaviors (Litman, 2008). However, the corrections between the

reattempt behavior and students’ math anxiety and lack of numeric inconfidence suggest that

curiosity as a feeling of deprivation may be a greater driver of the reattempt behavior (Litman &

Jimerson, 2004). At times, students experience curiosity as a frustrating feeling of a lack of

understanding instead of the pleasurable pursuit of knowledge. In our case, students with

heightened math anxiety and low confidence might respond with curiosity due to irritation at their

inadequate response. Future work to tease apart the student’s underlying motivations for this
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behavior might help produce more generalizable predictions of persistence behaviors.

It is also notable that as students progressed through the problem sets and the content

became more complex, they were less likely to reattempt problems. This finding suggests that

they may experience some fatigue in persistence. Future work should evaluate whether nudging

students towards reattempting more complex problems is both effective at changing behavior and

productive at improving learning outcomes. Alternatively, there could be an effect of diminished

returns where reattempting many more problems does not contribute to the effect of the program.

Thus, more research in this area is required.

Although all three treatment conditions likely moderated students’ propensity to persist

productively, the unequal moderating relationships across programs suggest that differences in the

programs’ instructional designs may cause various behavioral manifestations of the persistence

propensity. In contrast to our hypothesis, the two gamified conditions had different magnitudes of

effect heterogeneity. FH2T had a more substantial effect heterogeneity based on persistence than

the other conditions. This finding suggests that specific program features, rather than general

gamification, may drive efficacy patterns. Although propensity to persist had similar moderating

effects on DragonBox and the Immediate Condition, these effects likely have different

antecedents due to the differences in the programs.

FH2T was most effective for students with a high propensity to persist, and students with

a low propensity to persist would likely have benefited from the Active Control condition in

which they did not have any opportunities to reattempt problems. Notably, students with average

reattempt behavior and average pretest covariates likely experience only marginal effects of the

program – less than a tenth of a standard deviation on the post-test. These findings suggest that

the program’s efficacy may be contingent upon students engaging in productive persistence by

reattempting problems after sub-optimal performance.

The larger moderation effect of reattempt propensity for FH2T compared with the other

platforms may be attributable to the prominence of the “retry" button on the reward screen when

informing students of sub-optimal performance. Notably, DragonBox’s reattempt button did not
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have the same prominence. It’s possible that students in DragonBox would have reattempted

more problems and experienced larger effects from the program had the option to reattempt

problems been more conspicuous.

Overall, DragonBox had a more substantial effect on students with average reattempt

behavior and pretest covariates than the other platforms. DragonBox also showed smaller effect

heterogeneity compared with FH2T. Only the students with the lowest propensities to persist

likely experienced negative effects from this program. The lower heterogeneity may be due to the

differences in gamification features between DragonBox and FH2T. This inference is consistent

with previous research showing that gamification is often insufficient to explain behavioral and

learning differences between programs (Sailer & Homner, 2020; Sailer et al., 2017). Students

with a lower propensity to persist in FH2T may have been more motivated to replay problems in

DragonBox, due to narrative features and the puzzle-like presentation of algebraic problems.

Furthermore, DragonBox’s use of non-mathematical symbols to scaffold students’ learning of

algebraic concepts may have helped students with lower propensities to persist still benefit.

Limitations

Although we provide evidence of effect heterogeneity associated with students’

persistence tendencies, the analysis has some limitations. There remains uncertainty regarding

whether some of the main and interaction effects in the model significantly differ from zero.

Overall, for the estimates we considered likely to be different from zero, there was at most a 10%

posterior probability that the true parameter had the opposite sign compared to the estimate

presented in this paper. Thus, it is important that future research substantiate these findings to

increase the certainty of their veracity.

Furthermore, there are some limitations in the interpretation of the FLPS results. First,

although we are making inferences about how the reattempt behavior may influence the efficacy

of a program, the moderation model does not address this directly. Rather, FLPS indicates

whether an effect varies based on an estimated propensity of the behavior. From the study design,

we infer that some conditions enabled students to engage in persistent behaviors more than others,
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but this difference is not measured directly. However, it is possible that our measure of students’

propensity to reattempt problems actually assesses another latent construct by which the effect

sizes also vary. Future studies could measure these differences in reattempt behavior in similar

programs and medication analyses to evaluate how the behavior change may cause outcome

differences.

Finally, it is important to acknowledge the constraints inherent to FLPS. Although this

method has been employed in both empirical and simulation studies, which support the method’s

robustness (Sales & Pane, 2021; Sales et al., 2022), the estimated impacts using FLPS heavily

depend on the inherent quality of the model itself. It remains unclear how inaccuracies in

estimating the model could potentially lead to biased outcomes. Future research should focus on

gaining a more accurate understanding of how to assess these models to confirm that they furnish

impartial appraisals of intervention effects.

Conclusion

In conclusion, the findings of this study underscore the critical interplay between students’

persistence tendencies, program institutional designs, and efficacy. For students to merely possess

a high propensity to persist is not sufficient; the design of the CBLP must facilitate opportunities

for students to engage in productive behaviors such as reattempting problems. Therefore,

educators and platform designers should incorporate features that actively encourage students to

persist through challenges, providing multiple attempts and diverse pathways to problem-solving.

Furthermore, the study highlights the pressing need for a nuanced approach to designing

educational technologies. The efficacy of CBLPs is not uniform; rather, it is moderated by how

these platforms cater to persistent behaviors. For instance, FH2T’s prominent reattempt feature

showed a significant advantage for students with high persistence, whereas DragonBox’s

narrative-driven, puzzle-like approach benefited a broader range of students, including those with

lower persistence tendencies. These insights challenge us to design educational technologies that

account for students’ diverse behavioral tendencies, engaging us in the process of creating more

effective learning platforms.
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More generally, our study shows the importance of understanding how efficacy may vary

by a population’s behavioral tendencies. Analysis of behavior-moderated effects like this one

holds promise for allowing research beyond assessing whether some populations benefit more

than others by pointing toward which aspects of the programs may drive students toward positive

learning behaviors. Conversely, analysis like these can allow us to understand the potential

barriers to these behaviors that must be overcome to create programs that impact students

equitably.
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Appendix A

Prior to running the full FLPS model, we validated our measurement model using a

ten-fold cross-validation method. Figure 7 presents the sampling and modeling method for this

cross-validation process. We specifically sought to understand how well our model performed

under two conditions: (1) when the random intercept for the students is estimated empirically and

(2) when the random intercepts for the students are imputed with random draws from the

posterior distribution. Sampling for the cross-validation procedure required randomly dividing

students from the FH2T condition into groups and partitioning the student’s associated

problem-level data. This process created samples of problem-level data from distinct student

populations. In k-fold cross-validation, one sample is held out from the training sample each time

the model is estimated, and predictions are made on the held-out sample. In this case, we added

an additional step by holding out a random sampling 10% of the problems from students assigned

to the training data set. Therefore, for each of the ten models, we have two hold-out samples: (1)

a sample from the same students as the training data set but with problem data that is not included

in model estimation (i.e. Test Data 1) and (2) a sample of students who were not included in the

model estimation (Test Data 2). Predictions on these two samples are used to assess model

performance under the two conditions.

Figure 7
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The results yielded acceptable model performance. Table 8 provides prediction statistics

for each of the samples. The AUC on the training data is 0.91. The AUC on the test data in which

the student random effect was not imputed was 0.88 (Test Data 1). The AUC on the test data in

which the student random effect was imputed was 0.68 (Test Data 2).

Table 8

Caption

Sample AUC
Training Data 0.91
Test Data 1 0.88
Test Data 2 0.68

Appendix B

As a robustness check for the FLPS model, we created fake condition samples by

randomly sampling the FH2T sample and rerunning the model. In this simulation, the main and

interaction effect parameters from the outcomes models should be effectively zero. We ran this

procedure of sampling and re-estimating the model participants five times. Figure 8 presents the

key parameter estimates and their credible intervals. All credible intervals for main and

interaction effects included zero, suggesting that FLPS is robust to false positives.
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Figure 8

Parameter estimates generated from five FLPS models run with fake condition samples. All

credible intervals for main and interaction effects included zero.
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Chapter 5

Conclusion

Developing effective, equitably educational programs requires that they benefit students
regardless of their identities, abilities, or behavioral tendencies. Often, equity research in
education focuses on ensuring that programs are beneficial to students of all identities.
Similarly, education researchers have put substantial emphasis on evaluating whether
programs close the gap between lower- and higher-performing students. However, less work
has been dedicated to understanding how students’ engagement may influence the impact of
a program. Throughout this dissertation, I provide evidence of effect heterogeneity across
multiple CBLPs based on students’ propensities towards specific engagement patterns.
These findings point towards the need to leverage how students use programs when
evaluating their effectiveness across the entire student population.

I introduce this idea in the book chapter Beyond Performance Analytics: Using Learning
Analytics to Understand Learning Processes that Lead to Improved Learning Outcome, which
explores how Learning Analytics (LA) can use rich data sources produced by CALPs to
study and enhance students’ learning processes, including their problem-solving strategies
and behavioral engagement (Section 1.3). The chapter emphasizes that to maximize
student outcomes, we must consider how students engage with those programs beyond
their accuracy. I, along with my coauthors, point to the need for more work connecting
the behaviors that students display in CALPs and the impact of those programs. This
dissertation provides examples of such work.

First, I consider students who have disengaged while working in CALPs by studying the
variance of impacts of CALPs based on students’ tendencies towards gaming the system
behaviors. I find that delayed feedback and hints can mitigate some of the negative gaming
effects of students’ gaming tendencies, but the method is insufficient to help gamers to
perform at the level of their peers (Section 2.1). I also find that students’ gaming tendencies
interact inconstantly with different versions of gamification (Section 2.2). Specific designs
of gamification within programs seem to influence student behavior and learning, as some
gamified environments prove more effective for ‘gamers’ than others. The paper highlights
the need for targeted interventions to support students who game the system, emphasizing
that some features of gamification help ‘gamers’ whereas others are associated with adverse
outcomes.

Next, I present research highlighting the interplay between students’ persistence
tendencies, program design, and program efficacy. I find inducing game-based failure
through low-stakes, yet direct performance-based feedback increases the likelihood that
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students will engage in productive persistence by reattempting problems after the sub-
optimal performance (Chapter 3). However, this effect was not statistically significant
for the most complex problems or for the lowest-performing students, indicating that the
context and abilities of students determine how they respond to elements of gamification.
In the final analysis, I find that the efficacy of three CBLPs is likely moderated by students’
productive persistence tendencies. Notably, merely having a high propensity to persist is
insufficient to improve students ouctomes; the design of CBLPs must provide opportunities
for productive engagement, such as multiple problem reattempts. This finding of behavioral-
moderated effects points to the need to create educational technologies that account for
diverse behavioral tendencies.

Collectively, this work demonstrates the importance of understanding how student
engagement profiles interact with digital learning environments to impact learning. The
work highlights that evaluations of educational programs should consider the variance
in impacts based on how different students interact with program features. The insights
gained from behavior-moderated efficacy research can inform the development of targeted
instructional strategies and equitable learning opportunities that cater to diverse student
needs. In order for CBLPs to have consistent effectiveness across a population CBLPs their
features need to account for variability in students’ behavioral tendencies. Ultimately, this
work points to the need to create environments that either adapt to students’ engagement
styles or are universally accessible and effective regardless of students’ identities, abilities,
and behavioral tendencies.

Unlike many heterogeneity analyses, focusing on behavior-moderated effects increases
our understanding of the connection between how students use programs and the programs’
impacts. These analyses indicate who benefits from different learning environments while
also providing insights into how program features and elements of instructional design may
help students improve their learning-related behaviors and outcomes. Taken as a whole,
the analyses portray the complexities of engagement and the nuances of how to assist
students with different behavioral tendencies to productively engage in learning behaviors
through CBLPs.

5.1 Engagement Dichotomy

At the beginning of this dissertation, I posited that gaming the system and productive
persistence were at opposite ends of the engagement spectrum: gaming the system is
characterized by specifically trying not to learn, whereas productive persistence is a drive to
learn despite difficulties. If true, students’ propensities for these theoretically antithetical
behaviors should be negatively associated. Figure 5.1 showed the association between
students’ propensities to game the system in the Immediate Condition and to reattempt
problems after suboptimal performance in FH2T. As expected, there is a moderate negative
correlation between these propensities (r = 0.42, p < 0.001), indicating that if a student is
high in one propensity, they are likely low on the other. The heat map (right plot) shows
the distribution of students in different quartiles for each engagement propensity. Notable,
the densest regions of the plot are in the upper left and lower right corners. These are the
areas that indicate if students are in the top quartile (Q4) on one engagement propensity
and are most likely to be in the lowest quartile on another (Q1). Alternatively, very few
students are in the lower left and upper right regions: Q1 on both or Q4 on both. This
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Figure 5.1: Association between students’ propensities to game the system in the Immediate
Condition and to reattempt problems in FH2T. The left graph plots the two propensities
for each student and their correlation. The right plot is a heat map of the alignment
between the two measures by quartile.

relationship supports the hypothesis that these behaviors represent different ends of the
engagement spectrum.

Although the relationship between these behaviors is strong, they are not perfectly
predictive of one another. Thus, some students display complex propensities for these
engagement behaviors. For example, a student may tend to game the system on some
problems in the Immediate Condition but also would be likely to reattempt problems in
FH2T (e.g., those in Q4 on both measures). This is consistent with research suggesting
that engagement behaviors are not all or nothing but rather highly context-dependent,
with students’ tendencies varying across platforms [2].

The FLPS measurement models used to estimate students’ propensities provide some
indication of student characteristics that predict different engagement tendencies. Gaming
the system is more associated with general mathematical abilities, whereas productive
persistence is associated with skills that are specific to the mathematical task (e.g., algebraic
flexibility and perceptual sensitivity to equivalence in algebraic expressions). This suggests
that students may game the system because they lack general math skills to complete the
problems. On the other hand, in order for students to engage in productive presence, they
may need highly specific skills for the task at hand. Notably, numerical inconfidence was
positively associated with both behaviors, providing some insight into the overlap between
the two behavioral profiles. Perhaps gamified conditions encourage students who lack
confidence in their math skills to persist by helping them imagine new ways to engage with
math. In contrast, the traditional CBLP may drive these students to become discouraged
and disengage. These nuanced findings highlight that more work is necessary to understand
the complex cognitive and affective antecedent or engagement.

Engagement may be viewed as a product of students’ own volition. Under this view,
education may be characterized by the old axiom: ”You can lead a horse to water, but you
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can’t make it drink.” Similarly, education researchers have debated whether engagement
is a transitory state or fixed trait [4, 41]. The research presented in this dissertation
indicates that, although engagement propensities can be estimated for a specific context,
changing the context affects whether students with different engagement propensities learn.
For example, a student who is likely to game the system when they do problems with
on-demand hints and automatic feedback is likely to learn more when these features are
removed. Thus, while latent traits of engagement exist, the manifestations of these traits
are highly context-dependent.

5.2 Behavior-Moderated Effects

As stated above, analyses of effect heterogeneity are necessary to ensure that all students
experience the positive effects of educational programs. We must specifically ensure that
programs do not disproportionately affect the most advantaged students over the least
advantaged [22]. A common finding is that typical effect heterogeneity analyses may reveal
that disadvantaged groups of students do not benefit as much as advantaged groups [34,45].
Although these analyses are important indications of problems, they often fail to address
why some students benefit and others do not. Analyses of behavior-moderated effects can
point toward which behaviors may be driving these disparities and what programmatic
aspects may help mitigate them. Furthermore, estimating behavior-moderated effects may
reveal unexpected heterogeneity patterns that provide insights into the nuanced connection
between student behaviors and the benefits of educational programs.

The analyses of behavior-moderated effects in this dissertation provide insights into
why some students benefit, and others do not and what types of environments might
be necessary to help students engage in productive learning behaviors. Overall, these
findings also suggest that the impact of more innovative programs may depend on specific
engagement tendencies generally held by high-performing students. FH2T involves an
innovative method of teaching problems by allowing them to move components of the
problems around following the order of operations and algebraic rules. Although FH2T has
a positive average treatment effect on students’ allergic knowledge, this effect is smaller for
students with lower pretest knowledge [13] and negative for students who tend to game the
system (Section 2.2) or do not engage in productive persistence (Chapter 4). This suggests
that FH2T teaching methods are gap-increasing innovation [22], as disadvantaged students
– lower performing and less engaged – either benefit less or are adversely impacted by the
program, whereas advantaged students – higher performing and more engaged – benefit
more from the program.

Although simply interacting pretest knowledge with the FH2T condition, as done
by [13], is sufficient to identify FH2T as a gap-increasing innovation, it does not indicate
why and leaves the designers to speculate on how to mitigate this problem. Alternatively,
behavior-moderated effects can point toward potential causes and solutions. For example,
this research suggests that the effects of FH2T may be contingent upon whether a student is
likely to engage in productive performance by reattempting problems after the suboptimal
performance. Thus, it is likely that increasing students’ propensity to engage in productive
persistence may increase student learning. Yet, I found that although game-based failure
increases the probability that students would engage in productive persistence, the effect
was not significant for the lowest-performing students (Chapter 3). Thus, the students who
needed the most encouragement to persist were least responsive to a game-based failure
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intervention. Thus, other methods of encouraging low-performing students to attempt
problems after suboptimal performance could be tested to see if they increase students’
persistence and improve the impact of the program.

These findings indicate that gamification is not a panacea for disengagement, even
though certain gamified features may help encourage positive behaviors and possibly
migrate negative behaviors. The patterns of heterogeneity between the two gamified
conditions (FH2T and DragonBox) suggest the specifics of gamification matter more than
whether a program is gamified at all. FH2T had estimated negative effects on students with
high gaming tendencies, whereas DragonBox positively affected students regardless of the
propensity to game the system. On the other hand, the moderating effect of the propensity
to engage in productive persistence was likely greater for FH2T than for Dragonbox. Put
differently, DragonBox had an estimated positive impact on a wider array of students with
differing engagement profiles, whereas FH2T only had an estimated positive impact on
students who tended to be highly engaged (e.g., low likelihood of gaming the system and
high likelihood of persistence). This pattern exists despite the fact that the two programs
share a key innovation: dynamic manipulation of equations. Dragonbox differentiated itself
by including native goals and puzzle-based math primers. These features may be critical
in helping students engage in learning activities.

A benefit of the analysis of behavior-moderated effects is that they point toward
which features may positively or negatively impact students’ learning depending on their
behavioral engagement tendencies. Table 5.1 provides some key features to the programs
and Table 5.2 indicates whether each program uses those features. By examining the
features of the CBLPs along with our understanding of which behavioral tendencies are
associated with the program’s effectiveness, we can hypothesize whether features may be
the ”active ingredients” in producing differing results for students. For example, on-demand
hints and immediate feedback likely drive the negative effects on students who are likely
to game the system. The differences between the gamified conditions can also provide
some indications of which features may help specific subsets of students learn. Notably,
DragonBox uses pedagogical techniques similar to those used in FH2T, but students
tend to benefit from this program regardless of their ability or engagement tendencies.
There are two possible explanations for the trend. First, DragonBox may implement the
innovation differently, making it more accessible and engaging to all students. Second,
DragonBox’s other features – including a native goal (freeing the dragon) and teaching
students algebra through non-mathematical symbols before introducing more traditional
equations (puzzle-based math primers) – may alleviate the gap-increasing nature inherent
to the underlying pedagogical technique.

This work also provides a better understanding of the relationship between assistance
features in non-gamified CALPs and students’ engagement tendencies. Both studies
of engagement behavior moderated effects suggest that students with low engagement
tendencies (i.e., those who are less likely to persist and more likely to game) may benefit
from restricted access to on-demand hints and immediate feedback. This suggests that
these students are not using these features in ways that maximize their learning potential.
Thus, to increase the impact of CALPs on disengaged students, instructional designs may
ned to include features that directly address how these students interact with assistance.
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Table 5.1: Gamified and traditional CBLP feature definitions

Features Definition Feature of
Gamification*

Hints Subtle suggestions to guide problem-solving process No
Embedded feedback Feedback that occurs during the problem-solving process No
Performance-based feedback Feedback on performance (e.g., correct, incorrect, 90%) No
Performance-based rewards Rewards given based on performance (e.g., stars) Yes
Reattempt problem Ability to try a problem again No
Embedded gestures Ability to dynamically manipulate problem elements Yes

Narrative goals Goals unrelated to the underlying concepts,
but achieved through performance (e.g., freeing the dragon) Yes

Diverse representations of concepts Underlying concepts are presented in many ways
(e.g., teaching algerbia concepts through puzzels) No

* Features more typically associated with games than traditional learning activities

Table 5.2: CBLP Features
Platforms

Features FH2T DargonBox Immediate Condition Delayed Condition
Hints Yes Yes Yes No
Embedded feedback Yes Yes No No
Performance-based feedback Yes Yes Yes No
Performance-based rewards Yes Yes No No
Reattempt problem Yes Yes Yes No
Embedded gestures Yes Yes No No
Narrative goals No Yes No No
Diverse representations of concepts No Yes No No

5.3 Future Directions

Overall, these examples of research on the connection between instructional design,
engagement, and learning impacts provide indications of how programs can be improved to
be highly impactful for all students. As explained above, this work points toward potential
solutions for pernicious effect heterogeneity (e.g., gap-increasing effect variance). However,
future work must test these solutions to ensure that they improve effect equity within
innovative CBLPs.

Finding, deploying, and testing ways to increase the persistence behaviors of all students,
specifically those who are lower performing, will likely increase the impact of FH2T for
students who generally struggle with persistence behaviors. Similarly, restricting access
to hints and feedback for students who tend to game the system may help these students
engage in more productive learning behaviors. However, features like these need to be
tested to ensure that they have the desired effects.

Finally, behavior-moderated effects analyses also have the potential for more efficient use
of A/B testing as they point towards specific features that may produce effect differentials
based on students’ behaviors. For example, A/B testing adaptive features in traditional
CBLPs that restrict access to assistance for ’gamers’ should likely be tested. Also, testing
whether requiring students to try multiple paths to solutions in general or only on problems
in which students perform sub-optimally would help refine our understanding of the
learning mechanisms behind reattempt features. This understanding could help the field
develop better features that leverage the benefits of students generating multiple solutions.
Similarly, evaluating whether the diverse representations of concepts used in DragonBox
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might alleviate some of the heterogeneity in FH2T. Testing the addition of puzzle-based
math primers in FH2T could help establish whether this is the curtail difference between
the programs that makes DargonBox more accessible to a wider array of students. In
general, behavior-moderated effects produce hypotheses about the mechanisms of learning
in CBLPs that may be distilled into testable features for future research.
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