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Abstract    
 

This project evaluated the feasibility of correlating surface roughness to coefficient of friction on 

a shoe sole’s polymer-based material.  We used state of the art microscopes to measure the surface of 

polymer compounds at fine scales.  We used geometric multiscale analysis to characterize the surface 

and determine the relevant scales of measurement.  We designed a testing device that can apply a 

measurable normal and transversal force at the interaction of two surfaces.  We used a dynamometer to 

measure the two forces simultaneously to calculate the coefficient of friction. This study demonstrated 

that with a more diverse selection of surface topographies one should be able to find a correlation.  
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1. Introduction 

1.1 Objective 
  The objective of this project is to determine a correlation between coefficient of friction 

(COF) and the surface roughness of a shoe sole against a counter surface. This project will 

involve designing a testing procedure to determine the COF and using the multi-scale geometric 

analysis method to characterize a surface’s roughness in an attempt to find the relationship 

between the two.  

 

1.2 Rationale 
  More than 37 million slip and falls occur each year during recreational, work, and daily 

activities (WHO 2012). Studies have found that friction is the most critical factor in the 

occurrence of a slip and fall (Way 2006). An understanding of COF and how different surfaces 

interact would provide shoe makers with a better understanding on how to improve the COF of 

shoe soles on concrete, hardwood flooring, carpet, and other recreational and workplace surfaces. 

Using state of the art methods we will be able to analyze factors that affect the COF which 

previous standardized testing does not address. Providing a direct relationship between surface 

roughness and the COF can provide manufacturers with information to help understand how 

their shoe will behave on surfaces in certain conditions. 

 

1.3 State of the Art 
  Measuring the coefficient of friction involves the interaction between two surfaces. To 

fully understand the COF measurement, the surface roughness properties of both surfaces needs 

to be analyzed. Through the use of ASTM, ASME, and ISO standards, surface roughness can be 

measured and characterized to establish parameters, such as peak height or roughness average, 

that most significantly influence the COF between a shoes’ sole and counter surface. 

Establishing a strong understanding of surface roughness and having accurate COF 

measurements is the basis for being able to determine a correlation between the shoe sole and 

counter surface.  

 

1.3.1 Surface Roughness 

Surface roughness is generally measured by taking the average height of the surface over 

the length of the surface, Ra. The length of the surface is determined by the cutoff wavelengths 

which the user defines. Other parameters have been used to characterize surface roughness over 

a given length which include slope, root mean square, and maximum profile height. These 

parameters are used to help determine how surface roughness affects different tribological 

phenomena. ASME standard B46.1 helps better explain surface texture parameters and how they 

are used to characterize surface roughness.    



Another method for characterizing surface roughness is multi-scale geometric analysis. 

This method utilizes a confocal microscope to analyze the texture of a surface at different 

measurement scales. The texture area is then broken down into partitions of geometric shapes 

based on the scale. It also simplifies the process of correlating common surface roughness 

parameters outlined in ASME B46.1 and the different measurement scales of the surface. The 

best scale for measuring the surface is found by finding which scale produces the best 

R(squared) values for the parameter.  

 

Case Study 1: How to select the most relevant 3D roughness parameters of a surface 

In a study on “How to select the most relevant 3D roughness parameters of a surface,”  

Deltombe et al. detail a process for determining the relevance of measured surface topography 

values. The first step is to take measurements of various surface roughness parameters.  For this 

study a white light interferometer was used for “characterizing and quantifying surface 

roughness.” The second step is is a multiscale decomposition, which uses a Gaussian filter, as 

recommended by ISO and ASME standards, to determine the mean line of the surface metrology.  

From these measurements taken at varying scales various 3D roughness parameters are 

computed. Step three is to use a statistical model to measure the variance and thus the relevancy 

of each parameter for each spatial scale. The final steps in the process are to classify each 

parameter, determine which are most relevant and interpret the physical ramifications of each. 

This study details an “elementary study of surface topography” (Deltombe et al. 2014). 

 

Case Study 2: Floor slipperiness measurement: friction coefficient, roughness of floors, and subjective 

perception under spillage conditions 

Another study, carried out by Li et al. set out to understand the “risk of slipping 

accidents.” This study tested five common floor materials for their COF with four common shoe 

materials under five different spill conditions. The researchers first measured the surface 

roughness of the tiles using a profilometer to measure for four surface roughness parameters (Ra, 

Rtm, Rpm, and Rq). Then COF was measured by using a Brungraber Mark II COF tester which 

simultaneously applies the normal and transversal forces. A weighted inclined strut impacts the 

counter surface at specified angle, the angle is increased until a slip occurs in which the tangent 

of the angle is the COF. The COF data and the surface roughness data were then plotted against 

each other. The results attained were a “very high (r=0.932 to 0.99)” correlation.  This study is 

an example of research that was able to attain very good correlation results (Li et al. 2004)  

 

1.3.2 Friction 

Several standards currently exist to test the dynamic coefficient of friction between the 

shoe sole and counter surface. The British standard BS 7976-2:2002 + A1:2013, which was 

amended in 2013, outlines the methods for establishing a pendulum shoe friction test. This 

standard provides useful information about procedures currently used for testing shoe sole 



friction. Other standards include EN ISO 13287:2007 and ASTM F2913-11 which specify 

methods for testing the COF of shoe soles by manipulating the properties of the counter surface.  

To understand the coefficient of friction between shoe and counter surface, “standardized 

mechanical test devices have been developed to simulate dynamic footwear-surface interaction 

to provide a repeatable measure of floor slipperiness.” (Clark et al 2015). A pendulum testing 

machine and a SATRA STM 603 machine are currently used for testing friction as it relates to 

shoe soles. The pendulum testing machine uses a pendulum like motion to move and measure the 

displacement of the shoe sole as it comes into contact with the surface. The procedures and 

methods for using the pendulum testing machine are outlined in the BS 8976-2:2002 +A1:2013 

standard. The SATRA STM 603 machine is a slip resistance testing device to test the friction of 

the shoe sole-counter surface interface. The company SATRA is an independent research and 

testing organization that developed the test to follow the EN ISO 13287:2007 standard. 

Additionally, the organization established its own standard SATRA TM144 which can be read to 

better understand the testing procedure and methods. All of the standards that are relevant and 

studied for purposes of this project can be found in Table 1. 

 

Standards for Testing Coefficient of Friction for Shoe Soles 

EN ISO 13287:2007 specifies methods for testing for the slip resistance of 

conventionally soled safety 

ASTM F2913-11 specifies method for measuring the coefficient of 

friction of shoe soles using a whole shoe tester 

BS 7976-2:2002 + A1:2013 outlines methods for measuring coefficient of friction 

of shoe soles using a pendulum tester 

SATRA TM144 specifies methods for testing coefficient of friction of 

shoe soles using STM 603 machine 

Table 1: Standards for testing coefficient of friction for shoe soles 

This study analyzed the factors that influenced the COF on shoe soles. Derler et al 

investigated the factors that influenced the results of the friction measurement by using a 

tribometer Floor Slide Control 2000 that was operated under different condition in a climate 

chamber. The device was operated over a specified distance and velocity to measure the dynamic 

coefficient of friction between a standard material to mimic a shoe sole such as rubber, plastic or 

leather and the underlying surface, either PVC flooring of terrazzo tiles. Each combination was 

carried out under four different temperatures.  From there the hardness of all shoe sole materials 

were measured under the different temperatures. After all the measurements and trials were 

carried out they were able to analyze the data through software Mathematica® (Wolfram, 1996) 



and statistical methods described in Sachs (2004). This study showed a simple slip resistance test 

while taking into consideration the temperature effect on the COF on the shoe sole materials. 

While the friction that was measured was a result of the viscoelastic material properties and 

depended on the hardness of the shoe sole, the temperature and mechanical abrasion of the sole 

materials were the two factors with the greatest effect on the dynamic COF.   

 

Case Study 4: Understanding the Friction Measured by Standardized Test Methodologies Used to Assess 

Shoe-Surface Slip Risk 

Currently there are two shoe-surface contact testing methods that assess the risk of a 

pedestrian slip specified in British Standards. There is the aforementioned BS 7976-2:2002 

pendulum test device and BS EN ISO 13287:2007 which specifies the test method to assess the 

slip resistance of conventionally soled safety, protective and occupational footwear. In this study 

experiments were conducted on six different household surfaces. The results showed no 

correlation between the two standardized test methods. Clark et al believe this can be attributed 

to the effect that the different methodologies have on the friction factors at the heel-surface 

contact. The results do suggest that a linear relationship between roughness and slip resistance 

may exist for stiff surfaces however the relationship does not include deformed surface. “With 

stiff surfaces, the friction caused by asperity contact is dominant and controlled by surface 

roughness” (Clark et al 2015).  

 

1.3.3 Correlation 

Using the methods and standards for characterizing surface roughness and measuring the 

coefficient of friction, a correlation between the two can be determined. Most often, surface 

roughness and COF are correlated through the use of linear regression analysis. This method for 

correlation was used in a study from 2010 analyzing milled steel die surface roughness 

correlation with steel sheet friction (Berglund et al 2010). Linear regression analysis produces an 

equation that can determine a y-value given an x-value. For this research, the surface roughness 

parameter is the x-value used to determine the COF (y-value). This method also creates a value, 

R2, which determines the strength of correlation. A value of 1 is ideal as it means that it is a 

perfect correlation.  

 

Case Study 5: Milled Die Surface Roughness Correlation 

In a study on milled die steel surface roughness correlation with steel sheet friction, a 

team of engineers conducted linear regression analysis of 32 characterization parameters against 

the surface roughness of milled die. The purpose of performing the analysis was to determine 

which characterization parameters best relates the friction found in sheet metal forming and the 

surface roughness of metal dies. The study used the bending under tension test of sample 

surfaces, a test commonly used when analyzing metal dies, to measure friction. Through the use 

of linear regression analysis, the study was able to compare the friction measurements against the 

surface parameters by producing R2 values and was able to determine which parameters were 



most closely related to the friction found in sheet metal forming. This study exhibits a good 

example of how a linear regression analysis can be useful in relating factors of surface roughness 

with friction. The study was able to find that inclinations of a surface roughness are important to 

consider when analyzing friction in sheet metal forming because of their strong correlation 

factor. The study also provides a good example of how to understand the linear regression 

models that the analysis produces to determine which parameters should be considered and 

which should not be considered (Berglund et al 2010). 

1.4. Approach 
To satisfy the goal of finding the correlation between the surface roughness and COF we 

will break the project up into three areas of work: designing a process to characterize surface 

roughness of a shoe sole and counter surface, designing a system to simultaneously measure the 

forces to determine the COF, and analyzing the results to determine the correlation. 

 

The project team will utilize axiomatic design for the duration of this project for any 

aspect that requires design. By using axiomatic design the project team will ensure that its work 

is as effective and accurate as possible. Finally it will also help the team to develop important 

insight and ideas related to the projects designs, testing, and analysis. 

 

1.4.1 Surface roughness of shoe sole and counter surface 

This project's objective is different from previous studies such as case study 2 in the 

“state of the art” section because it specifically deals with the correlation between two objects 

surface roughness and the resulting COF. Understanding the scale of interaction of the surfaces 

helps to better understand how the selected parameters relate to the properties of the roughness 

of the surface. As a result we will use the multi-scale geometric analysis for the shoe sole surface 

as well as common floor surfaces used in shoe testing. A list of the common floor surfaces can 

be found in Table 2. The method of multi-scale geometric analysis has not been used in past 

studies to identify a relationship between surface roughness and the COF of a shoe sole and a 

counter surface.  

 

 

 

 

 

 

 

 



 

 

Common Counter Surfaces 

Unglazed clay quarry tile 

Stainless steel number 1.4301 type 2G 

Vinyl (PVC) 

Wood 

Carpet 

GRP 

Concrete 

Table 2: Common counter surfaces used in shoe testing 

1.4.2 Simultaneous measurement of forces 

Once the roughness of the surface and the significant parameters are determined, a better 

understanding of the relationship with the COF measurement may be accomplished. When 

measuring the COF, it is important to measure both the tangential and normal forces at the same 

time. To do this, a Kistler dynamometer, which is capable of quasi-static and dynamic 

measurements, can be used to measure the forces simultaneously. The tangential forces of 

friction directly impact the normal forces of friction, therefore if the two forces are not measured 

simultaneously than a clear picture of the coefficient of friction cannot be understood. This 

process is different from the approach used in studies such as case study 3 which uses a portable 

device to measure slip resistance. The Kistler dynamometer will provide our team will real time 

data of both forces during static and dynamic friction testing instead of a device automatically 

calculating the COF. Measuring the forces simultaneously and establishing a scale with 

significant parameters for surface roughness will give us a better picture to correlate coefficient 

of friction with surface roughness.  

 

 



1.4.3 Determine the correlation 

The most accurate approach that will provide the most incite whether there is a 

correlation between the COF and the surface roughness of a shoe sole against a contact surface is 

a linear regression analysis. This method is discussed in case study 5.  

 

2. Methods  

2.1 Friction Measurement 

2.1.1 Testing Materials 

2.1.1.1 Polymer Bases 

To assess polymer samples of shoe soles currently used in production, Vibram was able to 

provide us with the polymer samples used in this project.  For more information on the polymer samples 

refer to Appendix A.  

2.1.1.2 Rapid Prototyped Block 

Due to the thickness of the material, 3.63 mm (0.143”), we designed a spacer that would enable 

us to apply and control the normal and tangential forces to the material. For more information on our 

spacer refer to Appendix B.  

2.1.2 Kistler Dynamometer 
Forces in the normal and tangential directions affect the COF. A common method for measuring 

COF is to calculate the forces individually and then average the ratios. The average of the ratios is 

different from the ratio of the average. This means that the average of the ratio of normal force 

calculations and ratio of tangential force calculations does not produce the same result as the ratio of 

the average normal and tangential calculations. Taking the ratio of the averages provides a more precise 

COF measurement as both forces affecting it are calculated simultaneously. The project used a Kistler 

dynamometer to measure the forces simultaneously. For more information on the dynamometer and 

how it works refer to Appendix C. For more in-depth information on the friction measurement set-up 

and process refer to Appendix D. 

2.1.3 Friction Measurement Procedure 
To determine the COF of the rubber sample, we designed a system that could apply a force in 

the normal and tangential directions on the material. For more information on our procedure refer to 

Appendix E. 

2.2 Surface Metrology  

2.2.1 Surface Measurement 
To analyze the surface of the polymer samples, we used an Olympus LEXT OLS 4100 confocal 

microscope. The microscope measures the topography of our material at 10 nanometer resolutions. The 

microscope’s nanometer resolution was needed to obtain surface measurements since the surfaces 

used were optically smooth. For information on how we prepared and measure the material refer to 

Appendix F. 



2.2.2 Use of MountainsMap 
MountainsMap is a program developed by Digital Surf with the capability to interpret and analyze 

measurements taken by the Olympus microscope. There were three possible areas that could affect the 

result of our surface roughness parameters that our team analyzed to get an average roughness value. 

For more information on how we filtered the material in MountainsMap refer to Appendix G. 

2.2.3 Correlation 

2.2.3.1 Surface Roughness and Volume Parameter Correlation 

Previous case studies concluded that some conventional surface roughness parameters show 

strong correlation to tribological phenomena. These parameters include max peak height (Sp), minimum 

depth of valleys (Sv), maximum surface height (Sz), arithmetic average (Sa), and root mean square 

roughness (Sq). We also tested volume parameters such as material volume (Vm), peak material volume 

(Vmp), and core material volume (Vmc). It is important to measure these conventional parameters to 

determine if there is a possible correlation with the COF measurements.  

After we took a measurement of the surface from the Olympus microscope, MountainsMap can 

extract the value of these parameters. The parameters along with the COF values are put into an Excel 

spreadsheet. Excel has the ability to perform linear and second degree order regression analysis to 

calculate an R2 value. The R2 value represents how close the values in a given data set are to the 

equation of the regression line calculated in the regression analysis. The closer the R2 value is to 1.0, the 

closer the data points are to the regression line.  

2.2.3.2 Sfrax 

Multiscale geometric analysis is a method for interpreting the relative area of a surface at 

various scales of observation. The method takes a surface’s area and breaks it down into partitions of 

geometric shapes based on the scale. The larger the scale, the larger the partitions of geometric shapes. 

The partitions help to provide data for the relative area of the surface. This data is analyzed with COF 

measurements to determine if a correlation exists.  

We used the software Sfrax to perform the multi-scale geometric analysis. A WPI student 

designed the program to read surface measurements and perform area-scale analysis. The process we 

used in performing the analysis was to import our stitched surface measurements into Sfrax. The area-

scale analysis and four corners and full overlap method was performed on the surface measurements to 

produce data on the relative area of the surface at a range of scales.  

Sfrax also has the capability to allow the user to input surface properties, such as COF, in order 

to perform a linear regression analysis. This function was used to determine if a correlation existed 

between a surface’s relative area and COF measurements.  

3. Results  

3.1 COF Measurements 

3.1.1 Dynamometer Measurements 
 Through the use of the VI program designed in LabView, we were able to produce graphs for our 

COF measurements. Below are Figures 1 and 2 which show the data we received for two different trials.  



 

Figure 1: COF Data for Material 1 18 Iron Front Side 

 

Figure 2: COF Data for Material 2 12 Iron Front Side 

The first increase in the figures above, from zero to about one, represent the lowering of the 

weight on the pulley. For all of the trials the hanging weight was not enough force to make the material 

move on the counter face. The flat line in the figures from time 100 to 150 represents this. We then had 

to apply a small additional force to the rope. We did this by applying a slow pull of the rope where we 

increased the force of the pull until the block moved. The peak of the graph at time 165 represents 

when the block exceeded the static COF. The peak value was the value we used as the COF 

measurement for that trial. For each surface we performed six trials. We took the average of each trial’s 

peak to obtain the average COF measurement of the surface. We followed this same procedure for each 

of our surfaces. Table 3 shows the average COF values for each surface.  

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250

C
o

ef
fi

ci
en

t 
o

f 
Fr

ic
ti

o
n

Time (seconds / 36)

Material 1 18 Iron Front Side: COF xy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250 300

C
o

ef
fi

ci
en

t 
o

f 
Fr

ic
ti

o
n

Time (seconds / 36)

Material 2 12 Iron Front Side: CoF xy

Peak, Max 

Static COF 

Peak, Max 

Static COF 



Material COF Std Dev 

Spec 1 18 Iron Frontside 1.384878 0.053186 

Spec 1 12 Iron Frontside 1.590392 0.099352 

Spec 1 ASTM Backside 1.369278 0.14118 

Spec 1 ASTM Frontside 1.448452 0.158926 

Spec 2 ASTM Frontside 1.539579 0.061997 

Spec 2 ASTM Backside 1.789609 0.041101 

Spec 2 12 Iron Frontside 1.35968 0.054769 

Spec 2 18 Iron Frontside 1.293991 0.052835 
 

Table 3: Average COF for Tested Materials 

3.2 Surface Measurements 

3.2.1. Height and Volume Parameters 
 The stitched surfaces for both material one and material two produced conventional surface 

height and volume parameters to determine if a correlation existed between these parameters and the 

COF. We used the program MountainsMap to determine these parameters.  

 

Table 4: Values of the surface height and volume parameters for all of the surfaces. 

 

3.3 Correlation Results 

3.3.1 Excel Correlations  
 We used Microsoft Excel to calculate the linear regression analysis for the conventional height 

and volume parameters. Similar to when we calibrated the dynamometer, we put the values of the 

parameters and COF in an Excel spreadsheet. We plotted the surface parameters for the surfaces of 

each material against their COF values in a scatterplot. Excel has the function to calculate the linear 

regression equation and R2 value to determine correlation. As stated in the methods, the closer the R2 

value is to 1 the greater influence the parameter has on the COF value. Figure 3 shows the Excel 

scatterplot, linear regression equation, and R2 value for max peak height vs COF for material 2. 

Material COF Std Dev

Sq Sp Sv Sz Sa Vmp Vmc Vvc Vvv

Spec 1 18 Iron Frontside 2.13 6.71 14 20.7 1.67 0.0808 1.86 2.23 0.316 1.384878 0.053186

Spec 1 12 Iron Frontside 3.09 8.99 11.7 20.7 2.44 0.145 2.61 3.94 0.346 1.590392 0.099352

Spec 1 ASTM Backside 1.67 5.85 6.37 12.2 1.33 0.0821 1.53 1.89 0.201 1.369278 0.14118

Spec 1 ASTM Frontside 1.53 20.8 13 33.7 1.22 0.0771 1.38 1.88 0.171 1.448452 0.158926

Spec 2 ASTM Frontside 1.6 6.36 6.22 12.6 1.27 0.0699 1.44 2.01 0.184 1.539579 0.061997

Spec 2 ASTM Backside 1.59 5.16 6.26 11.4 1.25 0.0701 1.45 1.81 0.203 1.789609 0.041101

Spec 2 12 Iron Frontside 2.55 10.7 11.5 22.2 1.99 0.105 2.07 3.08 0.347 1.35968 0.054769

Spec 2 18 Iron Frontside 3.93 14.8 18.6 33.4 3.14 0.138 3.58 4.74 0.477 1.293991 0.052835

Volume ParametersHeight Parameters



 

Figure 3: Sp vs COF Correlation of Material 2 

 Figure 4 shows the Excel scatterplot, linear regression equation, and R2 value for peak material 

volume for material 1.  

 

Figure 4: Vmp vs COF Correlation of Material 1 

Table 5 shows the full list of results for the R2 values of the volume and height parameters. We 

explain all the parameters and what they mean in method 2.2.3.1. 

 

Table 5: Correlation Values for Volume and Height parameters 
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Material Modulus of Elasticity

Vmp Vmc Vvc Vvv Sq Sp Sv Sz Sa

1 7.042x106 0.8398 0.8238 0.8238 0.2656 0.6566 0.0355 0.0719 0.0631 0.6687

2 4.899x106 0.7222 0.5894 0.7161 0.6891 0.6721 0.8184 0.6786 0.7422 0.6635

Volume Parameters Height Parameters



3.3.2 Relative Area vs Scale Analysis 
 To perform multi-scale geometric analysis, our team used SFrax to perform area-scale analysis. 

The results shown in Figure 5 show the relative area at multiple scales for material 1.  

 

Figure 5: Relative Area vs Scale for Material 1. Dark Blue line is the 12 Iron Surface, Light Blue line is the ASTM Front Surface, 
Green line is the 18 Iron Surface, and the Red line is the ASTM Back Surface 

 This figure helps to illustrate at what scale we can distinguish between the four surfaces we 

measured for material 1. Based on this figure, the surfaces are undistinguishable from 105 µm2 to 103 

µm2. At 103 µm2 the 12 iron front side surface begins to become distinguishable from the other three 

surfaces and by 90 µm2, all four surfaces become distinguishable from each other. This is important 

when analyzing the regression analysis because the values that will show us how the surfaces correlate 

will be from 90 µm2 and smaller. 

Figure 6 shows the relative area at multiple scales for material 2. 

 

Figure 6: Relative Area vs Scale for Material 2. Dark Blue line is the 18 Iron Surface, Red line is the 12 Iron Surface, Light Blue is 
the ASTM Back Surface, Green line is the ASTM Front Surface 

Figure 6 helps to illustrate at what scale we can distinguish between the four surfaces we 

measured for material 2. Based on this figure, the surfaces are undistinguishable from 105 µm2 to 103 



µm2. At 103 µm2 the 18 iron front side surface begins to become distinguishable from the other three 

surfaces and by 70 µm2, all four surfaces become distinguishable from each other. This is important 

when analyzing the regression analysis because the values that will show us how the surfaces correlate 

will be from 80 µm2 and smaller. 

3.3.3 Relative Area Regression Analysis 
 We used the SFrax variable correlation tool to calculate the R2 value between relative area and 

COF. Figure 7 shows the plot of R2 values vs scale for material one.  

 

Figure 7: Correlation results of Relative Area and COF of Material 1 

 Figure 7 helps to illustrate how well the relative area of the material one surfaces correlates 

with the COF measurement of the surface. From Figure 7, we understand that the R2 values from 105 

µm2 to 103 µm2, possibly fluctuate due to high peaks or irregularities of one of the four surfaces because 

the four surfaces cannot be distinguished. From a scale of 90 µm2 and smaller, we see that there is a 

consistent R2 value of 0.99. This indicates that 99% of the variation in COF measurements for material 

one are due to the relative area of the surface. This means that there is a close correlation between 

surface roughness and coefficient of friction for material 1.  

 

 

 

 

 

 



Figure 8 shows the plot of R2 values vs scale for material 2. 

 

Figure 8: Correlation results of Relative Area and COF of Material 1 

 Figure 8 helps to illustrate how well the relative area of the material two surfaces correlates 

with the COF measurement of the surface. From Figure 8, we understand that the R2 values from 105 

µm2 to 103 µm2, possibly fluctuate due to high peaks or irregularities of one of the four surfaces because 

the four surfaces cannot be distinguished. From a scale of 70 µm2 and smaller, we see that there is a 

consistent R2 value of 0.47. This indicates that 47% of the variation in COF measurements for material 

one are due to the relative area of the surface. This means that there may be a correlation between 

surface roughness and coefficient of friction for material 2. 

3.3.4. Complexity vs Scale Analysis 
 To perform multi-scale geometric analysis, our team used SFrax to perform complexity-scale 

analysis. The complexity is the scale based derivative of the relative area of the surfaces. 

Mathematically, the complexity is the slope of the relative area over one decade. For purposes of this 

project, this helps us understand what is going on with the correlation between surface roughness and 

COF at each decade. On the surface, if there are multiple large peaks at the large scales the entire 

surface will be characterized by those peaks in a relative area analysis. The complexity scale helps to 

eliminate this by taking the average surface measurement at fine scales. This allows us to analyze the 

average roughness instead of a measurement characterized by a few large peaks that may exist. The 

results shown in Figure 9 show the complexity at multiple scales for material one. 



 

Figure 9: Complexity vs Scale for Material 1 Surface Measurements. Dark Blue line is the 12 Iron Surface, Light Blue line is the 
ASTM Front Surface, Green line is the 18 Iron Surface, and the Red line is the ASTM Back Surface 

This figure helps to illustrate at what scales we can distinguish between the complexities of the 

four surfaces we measured for material one. Based on this figure, the surfaces are undistinguishable 

from 105 µm2 to 103 µm2. At approximately 700 µm2 the four surfaces become distinguishable from each 

other. This is important when analyzing the regression analysis because the values that will show us how 

the surfaces correlate will be from 700 µm2 and smaller. 

Figure 10 shows the complexity at multiple scales for material two. 

 

Figure 10: Complexity vs Scale for Material 2 Surface Measurements. Dark Blue line is the 18 Iron Surface, Red line is the 12 Iron 
Surface, Light Blue is the ASTM Back Surface, Green line is the ASTM Front Surface. 

This figure helps to illustrate at what scales we can distinguish between the complexities of the 

four surfaces we measured for material two. Based on this figure, the surfaces are undistinguishable 

from 105 µm2 to 102 µm2. At approximately 90 µm2 the four surfaces become distinguishable from each 

other. This is important when analyzing the regression analysis because the values that will show us how 

the surfaces correlate will be from 90 µm2 and smaller. 



3.3.5. Complexity Regression Analysis 
 We used the SFrax variable correlation tool to calculate the R2 values between complexity and 

COF. Figure 11 shows the plot of R2 values vs scale for material one. 

 

Figure 11: Regression Analysis of Complexity vs COF of Material 2 

Figure 11 helps to illustrate how well the complexity of the material one surfaces correlates with 

the COF measurement of the surface. From Figure 11, we understand that the R2 values from 105 µm2 to 

103 µm2, possibly fluctuate due to high peaks or irregularities of one of the four surfaces because the 

four surfaces cannot be distinguished. From a scale of 700 µm 2 to about 9 µm 2, we see that there is a 

consistent R2 value of 0.99. This indicates that 99% of the variation in COF measurements for material 

one are due to the complexity of the surface. This means that there is a close correlation between 

surface roughness complexity and coefficient of friction for material one. From about 9 µm 2 and smaller 

we see a fluctuation from the .99 R2 value. This may be explained by the change in complexity of the 18 

Iron front side surface that drops below the ASTM back side surface complexity in this scale range.  

 

Figure 12: Regression Analysis of Complexity vs COF of Material 2 

Figure 12 helps to illustrate how well the complexity of the material two surfaces correlates with 

the COF measurement of the surface. From Figure 12, we understand that the R2 values from 105 µm2 to 

102 µm2, possibly fluctuate due to high peaks or irregularities of one of the four surfaces because the 

four surfaces cannot be distinguished. From a scale of 90 µm2 to 10 µm2 we see a steady incline in R2 



that leads up to a peak R2 value of 0.58. This indicates that 58% of the variation in COF measurements 

for material two are due to the complexity of the surface. From approximately 7 µm2 and smaller, the 

fluctuation in the R2 value may be due to the decrease in complexity of the 18 Iron front side surface. 

This means that there may be a correlation between surface roughness complexity and coefficient of 

friction for material two. 

4. Discussion  

4.1 Friction Testing  

 We attempted to design a testing device that would enable us to measure how much force we 

were applying in the normal and tangential directions on the dynamometer. Axiomatic design was the 

primary design process in order to manufacture a testing device. Reading on the content of axiomatic 

design can found in Appendix J.  

To make sure our device was working properly with the dynamometer, we designed the rope – 

pulley system that we eventually used as our final testing procedure. We found that the issues with how 

the testing device was attached to the dynamometer affected the data from the testing device. The 

testing device was designed to be directly fastened to the dynamometer, with parts touching above the 

force plate. This caused the testing device to apply a force on the dynamometer that caused issues with 

calibration. If the testing device was to be redesigned, it should be redesigned so that it does not apply a 

force on the dynamometer.  

Figures 13 and 14 help illustrate the difference between the measurement with the testing 

device and the measurement with the rope – pulley system. Due to the forces the testing device was 

exerting on the dynamometer, the dynamometer only read a COF of 0.4 shown in figure 13, where we 

found a more realistic COF of 1.47 with the rope pulley system shown in figure 14. The dynamometer 

was able to accurately measure the forces simultaneously.  If it was possible to account for the force the 

testing device had on the dynamometer, then we may have gotten similar results between the testing 

device and the rope-pulley system.  

 

Figure 13: COF measurement using the testing device 



 

 

Figure 14: COF measurement using rope-pulley system 

   

4.2 Surface Roughness  

4.2.1 Discrimination Tests 
When we analyzed the different surfaces of a material, we wanted to know if it was possible to 

distinguish between the surfaces at certain scales. To do this, our team used the program Sfrax to 

perform F-Tests on relative area of the surfaces in addition to area-scale complexity. 

4.2.1.1 Relative Area 

 We performed f-tests at a 90% confidence level on the relative area of the surface 

measurements for both materials. If we wanted to repeat our measurements, we found that there were 

some comparison scales at a 90% confidence level at which we could repeat the same measurements. 

However, some of the mean square ratios did not seem to support our results. The confidence level 

indicated that the surfaces were only repeatable at the high scales. This result contradicts the results 

from the area – scale figure and regression analysis. Figure 15 shows one of the f-tests that 

demonstrates this finding for material one. The solid black line across the data points at a mean square 

ratio of approximately 3.21 indicates the crossover at which we would be able to be confident in 

repeating the same measurement. All data points above the black line are values we would feel 

confident in being able to repeat. In the figure, the line shows that the surfaces are distinguishable from 

400 µm2 and larger which does not support the findings of our relative area vs scale graph for material 

one found in the results. A full list of the discrimination tests for both materials can be found in 

Appendix H. 
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Figure 15: Discrimination Test between 12 iron mold and 18 iron mold 

 The discrimination tests are important for us to perform in order to confirm or deny that the 

results we receive from the regression analysis represent the four surface measurements we measured. 

The results we received from these tests are inconclusive and we are unable to say for all surfaces that 

we are 90% confident that we can distinguish between the four measurements. 

4.2.1.2 Complexity  

For the 90% confidence level f-tests on complexity of the surfaces, we found that the there were 

scales at which we could feel 90% confident that the measurements could be repeated. Figure 16 shows 

one of the figures that supports this finding for material one. The solid black line across the data points 

at a mean square ratio of approximately 3 indicates the crossover at which we would be 90% confident 

that the measurements could be repeated. In the figure, the line is around the 100 µm2 scale which 

corresponds with the relative area vs scale graph for material one found in the results. A full list of the 

discrimination tests for both materials can be found in Appendix I. 

 

Figure 16: Discrimination test between 12 iron mold and ASTM mold 



 As with the relative area, the discrimination tests for complexity are important for us to perform 

in order to confirm that the results we receive from the regression analysis represent the four surface 

measurements we measured for each material. If we were unable to be confident that the 

measurements could be repeated for the four measurements, the results from the regression analysis 

would not be as conclusive. 

4.2.2 Surfaces of Material 
 While our team was using the Olympus microscope, we found that the microscope could not 

measure two of the surfaces we intended to analyze. As seen in figures 17 and 18, two measurements 

taken at two different spots were showing nearly identical measurements. This happened for all six 

measurements on the same surface.  

 

 
Figure 17: Surface Topography of Material 2 18 Iron Mold at Point A 

 
Figure 18: Surface Topography of Material 2 18 Iron Mold at Point B 

  

We found that the issue with these surfaces was that Vibram buffed the materials by machines 

that are used for adhering the material to the midsole or outsole. This may have played a role in why the 

microscope could not measure the material, as this problem only existed with the buffed surfaces. 
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4.2.3.1. Counter Face Measurement 

 This project analyzed the surface roughness of the shoe sole material with COF measurements. 

The COF measurement is a measure of the forces interacting between the surface roughness of the shoe 

sole and the counter face. The surface roughness of the aluminum counter face used in our testing 

should have been analyzed, but unfortunately we ran out of time. Analyzing the surface of the counter 

face may provide further data to support the correlation between surface roughness and COF. 

4.2.3. Surface Measurement Outliers 
 When performing our outlier removal procedure, we opted for the best method that would not 

alter the surface measurement. Several of the methods we analyzed in MountainsMap and SFrax 

removed the outlier completely from the measurement, leaving a non-measured point in the middle of 

the surface. Many of the methods attempted to fix this by an operator called fill in non-measured 

points. This operator takes the measurements surrounding the non-measured point and interpolates 

their measurements to produce a point that is most-likely what the measured point should be. However, 

the more outliers in a surface the more fill ins occur and alter the surface. Our team used the 85% slope 

filter in the remove outliers operator of MountainsMap because it removed the greatest outliers 

without leaving a large number of non-measured points.  

 Although our team was able to remove most of the outliers from the surface measurements, the 

85% slope filter does not eliminate all outliers. Some outliers still existed in the measurement and could 

have had an effect on the correlation with COF. We recommend that a different outlier removal method 

be performed to eliminate all outliers without altering the surface measurement.  

4.2.3.1. Height Parameters 

 In addition to the height parameters we measured, we tried to also measure the values for root 

mean square surface slope (Sdq) and developed interfacial area ratio (Sdr). However, due to the 

MountainsMap remove outliers operator, which affected the surface when we tried the fill in non-

measured points option, we were unable to calculate these parameters due to the number of non-

measured points in our measurement. If there is an option to remove outliers that do not create non-

measured points, this would be ideal as the parameters Sdq and Sdr could be calculated and analyzed 

for correlation with COF. 

4.2.4. Material Property Information 
 For this project, we wanted to test the surface roughness of shoe sole material to attempt to 

find data and a correlation relevant to shoe manufacturers. We teamed up with the Vibram Innovation 

Team in North Brookfield, MA to obtain material that was currently used to make shoes on the market. 

Unfortunately, due to the proprietary nature of the material, we were not able to receive full 

information on the material which could possibly be used to draw conclusions on correlation data.  

4.3 Correlation  

 Due to time constraints, we were only able to measure two of the five materials provided to us 

by Vibram. Ideally, we would have been able to measure the surfaces of all five materials to have more 

correlation data. However, we feel that the two materials we measured still provide data that can be 

used to analyze the behavior of surface roughness as it relates to COF.  

 Additionally, due to the properties of the buffed surface, we were only able to analyze four 

surface measurements. Ideally, we would have been able to measure all six prepared surfaces for the 



material. This would have enabled us to perform logarithmic regression analysis in addition to linear 

regression analysis. However, we feel that the surface measurements we received from the microscope 

were able to provide us with data needed to make conclusions about the correlation between surface 

roughness and COF.  

5. Conclusions 
1. Surface relative area and complexity do have a correlation with COF measurements with an R2 

value at 0.99 for material one at a scale of 100 µm2 and smaller. 

2. Surface relative area does have a correlation with COF measurements with an R2 value at 0.47 for 

material two at a scale of 100 µm2 and smaller. 

3. Complexity does have a correlation with COF measurements with an R2 value at .84 for material 

two at a scale of 8 µm2 and smaller. 

4. Our results indicate that a material with a modulus of elasticity of 7.042 x 106 has a higher R2 

value than a material with a modulus of elasticity of 4.899 x 106 when correlating relative area 

with COF. 

5. For relative area and complexity, there are mean square ratios for some surfaces that can 

provide a 90% confidence level that our measurements can be repeated at small scales. 

6. Conventional surface height parameter Sp does have a correlation with COF measurements with 

an R2 value at 0.8184 for material two. 

7. Conventional surface volume parameters Vmp, Vmc, and Vvc do have a correlation with COF 

measurements at an R2 value above 0.8 for material one. 
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Appendix  

Appendix A 
We were provided information on the polymer samples, but due to their proprietary nature we 

are unsure of the complete composition of the material. Table 1 and Table 2 show the information 

available for all five materials we received.  

 Base Polymer Tensile (psi) Elongation (%) 

1 Butyl Base Polymer 2639 882 

2 NBR / PVC 1724 670 

3 SBR, IR  2625 560 

4 CR 2590 535 

5 NBR 1938 649 
Table 6: Tensile Strength and Elongation Percentage for the 5 Polymer Samples 

 

Vibram also provided us with information on how they molded and buffed the material. This 

information is listed below. 

Molding: 

 We run a compression molding operation 

 Our factory in the US has over 40 presses running to make soles 

 Compression presses cure the rubber using a combination of heat and a large amount of 

pressure  

 The presses run at around 350F and the time they run at depends on the thickness and shape of 

the individual soles  

o Some of the presses in the factory can run up to 500F though our material doesn’t 

normally need that much heat 

o Soles take approx. 10 min in the cure / molding process – as a baseline  

  The molds inside the presses are made of steel and are different sizes depending on the sole as 

well 

Buffing: 

 For buffing we have a few different types of machines  

o Some of the machines are made to buff the rubber outsoles – this helps the shoe 

company adhere them to the midsole  

o Other machines are made to buff the midsole for the same reasons  

 Base Polymer Strain at Break 
(mm/mm) 

Stress at Break 
(MPa) 

Modulus of Elasticity (Pa) Tg (C) 

1 Butyl Base 
Polymer 

3.09+- 0.19 21.76+-0.85 7.042x106 -35C 

2 NBR / PVC 2.18+-0.20 10.68+-0.81 4.899x106 -15C 

 

 

 

 

Table 7: Strain, Stress, Modulus of Elasticity, and Glass Transition Temperature for Samples 1 and 2 



o We also make sheets of material in the factory – those are buffed by much larger 

machines that buff one side at a time  

 Mostly buffing is done for adhesion purposes 

 

Appendix B  
We designed the spacer in SolidWorks and manufactured using a 3D printer. The dimensions of 

the block are 1.75” X 1.75” X 0.5”. We designed this spacer to allow us to apply the necessary normal 

force and tangential force using various weights. The rubber material was adhered to the spacer 

through the use of an epoxy glue, Loctite Flexible Adhesive for vinyl, fabric, plastic and also rubber, 

which needed 24 hours to set. Figure 19 shows the 3D printed block with the rubber material adhered to 

it.   

 

Figure 19: Rubber Material Adhered to Spacer 

Appendix C 
“The multicomponent dynamometer provides dynamic and quasi-static measurement of the 3 

orthogonal components of a force (Fx, Fy, and Fz) acting from any direction onto the top plate” (Kistler 

Group 2015). The dynamometer allowed this project to measure the normal and tangential forces 

simultaneously. We were then able to calculate the COF that could be used to attempt to correlate COF 

with surface roughness parameters. 

The dynamometer requires a signal amplifier.  This amplifier takes the change in electrical 

charge from the dynamometer, amplifies it by a desired voltage per mechanical unit, and reports the 

forces in the form of three voltages, one for each orthogonal direction. To read these three analog 

signals we used a National Instruments DAQ box. The DAQ box was connected to a computer running a 

virtual instrument (VI) which can read all three of these signals simultaneously.  The VI, programed 

through LabView, has the capability to be calibrated to any unit of force.  

Appendix D 
Measuring the forces of friction involved calibrating the dynamometer. We needed to use the 

voltages that the dynamometer and LabView produce and convert them into a unit of weight. To do this, 

we placed known weights on top of the dynamometer. This process involved placing a 2.5lb weight on 

Material 1 

Spacer 



the dynamometer and recording the weight the dynamometer was measuring. We repeated this 

process for 5lb, 7.5lb, 10lb, and 12.5lb weights. The LabView program recorded the measurements and 

exported the data to an Excel sheet. The recorded values were plotted against the actual weight values 

and a linear regression analysis was performed. The intercept of the equation found through the 

analysis was used as the offset value when recording COF data through Labview. This calibrated the 

dynamometer by offsetting the difference in measurement between the known weight and the weight 

measured by the dynamometer. Figures 20 and 21 show how we calibrated in the normal and tangential 

directions. 

For calibrating the tangential direction, we created a rope - pulley system. For all 

measurements, we used an aluminum plate as our common counterface for finding the COF. To attach 

the aluminum plate to the dynamometer, we screwed the aluminum piece into the threaded hole of the 

Kistler dynamometer closest to the pulley at the edge of the table. We attached the rope to the head of 

the threaded rod and attached different weighted plates to the end of the rope hanging from the pulley. 

We followed the same procedure from the calibration of the normal force in placing weights and 

recording the measurements to find the offset value for tangential force. Figure 21 shows how we 

calibrated the force in the tangential direction. Figure 22 shows how we interpreted the data in Excel to 

get the offset value used during the measurement procedure. 

 

 

Figure 20: Normal Force Calibration 

Weights applying normal force 

Aluminum 

Counter Face 

Dynamometer 



 

Figure 21: Tangential Force Calibration 

 

Figure 22: Calibration Data for Tangential Force 

Appendix E 
To apply a normal force, a weight was placed on the spacer. The side of the spacer with the 

surface adhered to it was placed on the aluminum counterface. We secured the aluminum piece with a 

bolt into the threaded hole the Kistler dynamometer closest to the pulley at the edge of the table. The 

aluminum counterface acted as the common counterface among all of the testing trials. To apply a 

tangential force, we attached the small rope – pulley system used in the set-up around the edges of the 

spacer underneath the weight and above the rubber material. We attached a weight to the end of the 
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rope and slowly lowered it down until it hung from the pulley system at the edge of the table. If the 

weight did not move the material across the counterface, we applied a small additional force on the 

rope until the material slid. The material slipping over the counterfaace indicated that we reached the 

static COF limit which would be represented in the data set as the highest point of force. We designed a 

LabView program that could export the data from the measurement to an Excel worksheet where we 

could interpret the measurements. We repeated this process six times so that we could calculate the 

average COF for each surface. Figure 23 shows how we set up the COF measurement. 

 

 

Figure 23: Friction Measurement 

Appendix F 
To prepare the material for measurement, the team cleaned the surface with soap and water. 

We dried the material with Dust Off compressed air in an attempt to eliminate contamination in the 

measurement. The material was prepared in samples of 1.75” x 1.75” and measured with the x50APO 

lens. This lense measures at a field of view of 256-32 µm. As the image size taken by the microscope is in 

nanometers and the materials surface 1.75 inches x 1.75 inches, we measured six different points on the 

same surface. Our team was then able to calculate the average surface roughness parameters in order 

to analyze the correlation between surface roughness and COF. 

Appendix G 
Because we took six different measurements on the same surface, our team needed to stitch the 

measurements together to get an average value for the surface roughness properties.  
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MountainsMap Remove Outliers Operator  

While taking a measurement, the Olympus microscope takes measurements of the surface that 

are considered outliers, or not true representations of the surface. These outliers can affect the surface 

roughness parameters and need to be removed. The MountainsMap operator for removing outliers 

removed any outliers outside of 85% of the slope of the surface. The program analyzed and determined 

the height and slopes all of the peaks of the surface measurement. To remove outliers, the user can 

choose how much of the surface they want removed.  In this instance, we chose to remove any points 

that had a slope greater than 85% of the average slope of the surface. Additionally, the program 

requires removing points as strong, normal, or soft. We chose the soft removal because it removed 

points that the strong and normal methods did not.  Figure 24 shows the instruction panel for removing 

outliers that we used. Figures 25 and 26 show the original surface and the surface with the outliers 

removed. Figure 25 and Figure 26 illustrate how the operator removed the outliers.  

 

 

Figure 24: Instruction panel for MountainsMap remove outliers operator 



 

Figure 25: Material 2 surface topography with outliers 

 

 

Figure 26: Material 2 surface topography with outliers removed 

MountainsMap Level Operator 

A surface can be unbalanced when taking a measurement with the microscope at these fine 

scales. Leveling the surface measurement is important to ensure that an unbalanced measurement will 

not affect the surface roughness parameters. This function has several different selections for leveling a 

surface. Through testing each method we were able to find a function that leveled surface without 

changing the surface measurement. We chose to level through the least squares plane method. This 

method analyzes a surface and fits the points to a best fit line curve. Additionally this method was 

performed by the operation subtraction compared to the line by line operation. We chose to use 

subtraction over line by line to produce a leveled surface that did not change the surface measurement. 



Figure 27 shows the instruction panel for leveling the surface that we used. Figure 28 shows one of 

surfaces after applying the level operator.  

 

Figure 27: Instruction panel for MountainsMap level operator 

 

Figure 28: Leveled surface 

MountainsMap Stitch Operator 

We used MountainsMap in order to stitch the six measurements together, remove the outliers 

from the measurements, and level any unbalanced measurements. This eliminates any factor that could 

influence the analysis of the correlation between COF and surface roughness. For stitching, we used the 

stitch method in MountainsMap to combine our six measurements on the same surface together. This 



would provide us with a single surface measurement, averaging the measurements of all six 

measurements. The operator allows the user to choose a grid on which to place each surface 

measurement for stitching. As we chose to take three measurements on the top half of the surface and 

three measurements on the bottom half of the surface, we chose a 3 X 2 grid to stitch the 

measurements together. Figure 29 shows the instruction panel for stitching the surface measurements 

together. Figure 30 shows one of the surfaces after applying the stitch operator. 

 

Figure 29: MountainsMap Instruction Panel or stitching surfaces 

 



 

Figure 30: Stitched Surfaces in MountainsMap 

Appendix H:  
Relative Area Discrimination Analysis  

90% Confidence Interval F-Test for Material 1 

 

Figure 31: 12 Iron Surface against 18 Iron Surface 



 

Figure 32: 12 Iron Surface against ASTM Back Side Surface 

 

Figure 33: 12 Iron Surface against ASTM Front Side Surface 



 

Figure 34: 18 Iron Surface against ASTM Back Side Surface 

 

Figure 35: 18 Iron Surface against ASTM Front Side Surface 



 

Figure 36: ASTM Back Side Surface against ASTM Front Side Surface 

 

 

 

 

 

 

 

 

90% Confidence Interval F-Test for Material 2 



 

Figure 37: 12 Iron Surface against 18 Iron Surface 

 

 

Figure 38: 12 Iron Surface aginast ASTM Back Side Surface 



 

Figure 39: 12 Iron Surface against ASTM Front Side Surface 

 

Figure 40: 18 Iron Surface against ASTM Back Side Surface 



 

Figure 41: 18 Iron Surface against ASTM Front Side Surface 

 

Figure 42: ASTM Back Side Surface against ASTM Front Side Surface 

  



Appendix I:  
Complexity-Scale Discrimination Analysis 

90% Confidence Interval F-Test for Material 1 

 

 

Figure 43: 12 Iron Surface against 18 Iron Surface 

 

Figure 44: 12 Iron Surface against ASTM Back Side Surface 



 

Figure 45: 12 Iron Surface against ASTM Front Side Surface 

 

Figure 46: 18 Iron Surface against ASTM Back Side Surface 



 

Figure 47: 18 Iron Surface against ASTM Front Side Surface 

 

Figure 48: ASTM Back Side Surface against ASTM Front Side Surface 

 

 

 

 

 

 

 

 



90% Confidence Interval F-Test for Material 2 

 

Figure 49: 12 Iron Surface against 18 Iron Surface 

 

Figure 50: 12 Iron Surface against ASTM Back Side Surface 



 

Figure 51: 12 Iron Surface against ASTM Front Side Surface 

 

Figure 52: 18 Iron Surface against ASTM Back Side Surface 



 

Figure 53: 18 Iron Surface against ASTM Front Side Surface 

 

Figure 54: ASTM Back Side Surface against ASTM Front Side Surface 

  



Appendix J 
Testing Device Decomposition 

 

 

 

 

 

 

 

 

 

 

 

FR-0: Determine the coefficient of friction between shoe sole and contact surface 

 The primary objective of our testing apparatus is a simple one that requires two materials to be 

rubbed against each other and for those forces to be translated to the Kistler dynamometer. However, 



the design can be complicated by the need to control the normal and tangential forces, control the 

movement of the two materials, and isolating the dynamometer from influences not related to the COF. 

To accomplish this the DP-0 was a COF testing device assembly.  

 

Figure 55: Components of Testing Device 

 

 



 

Figure 56: Exploded View of Testing Device Components 

 

 

 

FR-1: Measure forces of friction 

 In order to calculate the COF at any given time one must know the magnitude of the normal 

force and the tangential force needed to slide the materials across one another. To do this, and for 

reasons stated in the methods, the Kistler dynamometer was chosen as DP-1. 

FR-1.1: Restrict movement of the dynamometer 



 To be as accurate as possible the dynamometer cannot move throughout the duration of COF 

testing. To secure the device DP-1.1, four ¼’’-20 bolts, was developed. These bolts could be used to 

secure the dynamometer to a variety of materials. 

FR-1.1.1: Reduce vibrations translated to dynamometer from anchor surface 

 During initial use and calibration of the dynamometer it was clear that it was sensitive enough 

to pick up vibrations caused rolling around in a chair, or dropping a pen on the workbench. To combat 

the collection of any data not stemming from the COF test a rubber washer interface was used, which is 

DP-1.1.1. The washer was comprised of old bike tire inner tubes that would help mitigate any vibrations 

or forces being translated to the dynamometer via the workbench.  

FR-1.2: Amplify signals to readable level 

 The output electrical signal of the dynamometer is very low, low enough that the data 

acquisition equipment would not be able to read it. Therefore the signal would need to be amplified. 

DP-1.2 was a Kistler charge amplifier. 

Connecting the two is vital because our data acquiring DAQ box and software cannot process the output 

of the dynamometer  

FR-1.2.1: Allow for connection to amplifier 

 The kistler dynamometer has a type 1687B5 cable output connection, while the charge amplifier 

has a type 1688B5 cable input connection. To connect the two devices a Kistler type 1689B5 connection 

cord was used that is meant specifically for this model of dynamometer and corresponding charge 

amplifier. This cord is DP-1.2.1.  

FR-1.2.2: Provide power 

 The type 5004 dual mode amplifier required a 12-volt power source. The corresponding DP 

(1.2.2) was a 3-prong 12 volt electric plug. 

FR-1.3: Convert analogue signal to digital signals 

The output signal of the type 5004 dual mode amplifier is analogue. In order to collect and 

process any data coming from the dynamometer the output signal would have to be converted to 

digital. The corresponding DP to fulfill this requirement is the National Instruments 16-bit DAQ box, 

which is commonly used throughout the engineering community for data acquisition.  

FR-1.3.1: Allow for connection to module 

 The charge amplifier has three output connections, one each of the 3 axes it can measure along. 

These connections are meant for bnc connectors, the same as the input connections for the DAQ 

module. DP-1.3.1 is three bnc connection cords. 

FR-1.3.2: Provide power 

 THe DAQ module also requires a 12 volt power source. DP-1.3.2 is a 3 prong 12 volt electrical 

plug. This was an independent plug from the one used in DP-1.2.2.  



FR-1.4: Read and export data signals 

 At this point in the decomposition there is a digital signal that is available to be read and 

measured. The corresponding DP for this functional requirement is Ni measurement and automation. 

FR-1.4.1: Allow for connection to computer 

 In order to use the Ni measurement and automation our group had to use a WPI computer and 

server. Therefore, the corresponding DP-1.4.1 was developed so that it could be connected via a USB 

cable. 

FR-1.4.2: Provide Power 

FR-1.5: Synthesize data and export to analysis software 

 The Kistler dynamometer and the DAQ module do not come with a specific analysis software 

and there is no specific software, that we had access to at least, designed for our equipment and needs. 

Therefore, when developing DP-1.5, we were able to reference a class our team had taken earlier in our 

academic careers. Engineering experimentation taught us how to use a program called LabView, which 

allows one to design a operating analysis “software” based on their needs. This program was chosen as 

our design parameter. 

FR-1.6: Allow for interface between contact surface and dynamometer  

 In this project the contact surface is a constant, in our case a aluminum plate having a surface 

roughness that would not change from test to test. To translate the forces of friction to the 

dynamometer this plate would need to be secured to it. The dynamometer force plate, which is DP-1.6, 

has pre-drilled and tapped ½’’-20 holes. 

FR-1.6.1: Restrict movement of contact surface 

 DP-1.6.1 was developed to be two ½’’-20 bolts to fit in the pre-existing ½’’-20 bolt holes in the 

force plate. 

FR-1.6.2: Reduce concentrations of force on contact surface 

 Aluminum is a soft metal and if any other contact surface material was used, such as a ceramic, 

the concentration of force applied by the bolt head could alter the surface, warp, or break the material. 

DP-1.6.2 are two ½’’ aluminum washers.  

FR-2: Apply adjustable tangential force 

 As tangential force is one of the two forces that go into calculating the COF, the testing 

apparatus had to be able to this force at a designated place. The DP to accomplish this FR is the 

tangential force assembly.  

FR-2.1: Restrict force application to y-axis of dynamometer 

 For testing purposes it was important that the force be applied only along the y-axis to prevent 

any unwanted moments. It was also important that the force could be applied along the y-axis, at any 

given point. To fulfill this FR the DP-2.1 of a horizontal pneumatic cylinder was developed. 



FR-2.1.1: Restrict motion of horizontal pneumatic cylinder to z-axis 

First, in order to apply a force along the y-axis with the pneumatic cylinder there is a need for a 

material to secure it to. Secondly, if a different contact surface was ever needed and had a different 

thickness then the tangential force would need to be applied at a different point on the z-axis. To 

accomplish these two needs DP-2.1.1 a tangential force plate workpiece was. 

FR-2.1.1.1: Secure horizontal pneumatic cylinder 

 As mentioned previously, the testing apparatus must hold this cylinder in a fixed position. DP 

2.1.1.1 is a ½’’-20 fitted threads through the tangential force plate workpiece as the pneumatic cylinder 

comes already machined with ½’’-20 threads. 

FR-2.1.1.2: Prevent application of forces to the dynamometer 

To obtain data from the dynamometer that are only from a COF testing the tangential force 

plate workpiece could not come into contact with the dynamometer force plate. To accomplish this task 

the design parameter of left and right “legs” workpiece were developed. DP-2.1.1.1 was developed as a 

way to integrate the horizontal tangential force plate workpiece into an assembly that went around and 

was completely independent of the dynamometer.  

FR-2.1.1.3: Restrict movement of plate to z-axis 

 As the horizontal pneumatic cylinder is secured to the plate, the plate must therefore move 

along the z-axis. By machining two vertical ¼’’ wide channels on either side the plate can be secured to 

whatever assembly while still be able to slide up and down. The channels are DP-2.1.1.3. 

FR-2.1.1.4: Secure tangential force plate  

 The plate must also be secured to a solid workpiece as it must withstand the forces that the 

pneumatic cylinder will be producing. DP-2.1.14 are four ¼’’-20 bolts and fitted threads in the left and 

right legs workpieces.  

FR-2.2: Provide air pressure 

The pneumatic cylinders are designed to operate by pressurizing air inside the device which pushes the 

piston out. A air pressure system was developed for the corresponding DP 2.2. 

FR-2.2.1: Prevent fluctuation in air pressure 

 Any fluctuation of air pressure affects the amount of force that is being applied by the 

pneumatic cylinders piston. If our team were to use the large system that supplies an entire lab and can 

be used by others at the same time we risk having air pressure fluctuations at any time. Therefore DP 

2.2.1 is an air holding tank that can be filled from the system described above, but can be made 

independent with the twist of a valve. 

FR-2.2.2: Control supply of air pressure 

 The air system was capable up pressurizing the tank to just above 100 psi. This pressure could 

not be applied to the pneumatic cylinder all at once however. In order to control the air pressure DP-

2.2.2 was developed to be a air valve and PSI gauge.  



FR-2.2.3: Connect air supply to cylinder  

 To supply the air pressure from the valve to the pneumatic cylinder a connection line was 

needed that could handle the maximum pressure. The connection line also had to be flexible in order to 

move with the testing apparatus but be stiff enough to retain its shape while under pressure. If the line 

is too flexible it can result is a variation in air pressure. DP-2.2.3 was developed as a flexible pneumatic 

straight bonded polyurethane line.  

FR-3: Apply a adjustable normal force to shoe sole material 

 Just as the tangential force assembly provided a means of moving the shoe sole material along 

the y-axis of the dynamometer, to calculate a COF a means of applying a normal force is also needed. 

DP-3 is a normal force assembly. 

FR-3.1: Restrict force application to z-axis 

 It was very important that the applied normal force had to ability to, and only moved along the 

z-axis. The corresponding DP is the vertical pneumatic cylinder. 

FR-3.1.1: Secure vertical pneumatic cylinder 

 In order to apply or normal force the cylinder would need to be secured. DP 3.1.1 is ½’’-20 fitted 

threads. 

FR-3.1.2: Prevent application of forces to the dynamometer 

 Again the dynamometer had to be kept independent from any forces being applied unless that 

force was pushing down on the shoe sole material. To accomplish this task DP-3.1.2 of a normal force 

workpiece was developed. 

FR-3.1.2.1: Allow normal force workpiece to move along y-axis 

 During the duration of a COF test the shoe sole material would have to slide across the 

dynamometer. During that movement the normal force must remain constant or the COF will be 

affected. This means that the normal force workpiece, along with the pneumatic cylinder, would also 

have to move along the y-axis. The corresponding DP for this functional requirement was a bearing rail 

system. 

FR-3.1.2.1.1: Secure bearings to normal force workpiece 

 In order to secure the bearings to the normal force workpiece the eight M8 bolts that came with 

the system had to be used. The bolts are DP-3.1.2.1.1. 

FR-3.1.2.1.2: Secure bearing rails to “legs” 

 The other half of the system would then need to be secured to a material independent of the 

dynamometer. As the left and right leg workpieces are already serving that purpose they were to be that 

material. DP-3.1.2.1.2 was developed as the four remaining M8 bolts that came with the system. 

For FR-3.2.1 to 3.2.3 please refer to FR-2.2.1 to 2.2.3 as they are the same functional requirements. At 

this time in the decomposition of the design there is one DP pairing. The air holding tank is the same 



tank that is used to provide the air pressure to the horizontal pneumatic cylinder. This could be avoided 

by using another, separate air tank. The PSI valve and gauge, as well as the flexible pneumatic straight 

bonded polyurethane were independent of the previously stated DP’s. 

FR-4: Hold shoe sole material 

 The last requirement of the COF testing device was to be able to control the shoe sole material. 

Applying the normal and tangential force using only the piston of the pneumatic cylinder would cause 

the pliable rubber polymers to bend and warp. It would also cause force concentrations that could affect 

our data. A shoe sole adapter system was developed as DP-4. 

FR-4.1: Allow shoe sole materials to be changed quickly 

 The only way to achieve even force distribution would be by applying the force through a flat 

plate the same size as the rubber polymer face it is in contact with. For testing purposes however there 

was a functional requirement that the team be able to change the shoe sole material quickly and easily. 

We therefore developed DP4.1, a 3-D printed adapter piece. 

FR-4.1.1: Secure shoe sole material 

To secure the material to the adapter piece an adhesive was chosen as it would secure the 

entire area of the polymer, compared to a screw that would warm and alter the surface. DP-4.1.1 was 

chosen to be a PVC two-part resin adhesive that was safe to use on the rubber polymer. 

FR-4.1.2: Hold 3-D printed adapter 

 As the shoe sole material was secured to the adapter piece there was still a functional 

requirement to hold, or control, the movement of the two materials. To accomplish this a aluminum 

“box” adapter was developed. The box adapter is DP-4.1.2. 

FR-4.2: Allow for connection to vertical pneumatic cylinder 

 The last step of this design decomposition was to ensure that the box adapter could be attached 

to the vertical pneumatic cylinder. This was important so that there was no slipping between the piston 

and the box adapter throughout the duration of the test. The corresponding DP are ¼’’-20 fitted threads 

of the vertical pneumatic cylinder. 

2. Prototype Production 

In order to produce the workpieces, our team had to machine each part using a HAAS Minimill. The 

manufacturing of the workpieces required the HAAS Minimill to ensure that they were as accurate as 

possible to the predetermined measurements. All of the workpieces were created from 6061-T6 

Aluminum stock. This material was chosen because of it is inexpensive compared to other materials and 

can be easily machined. The material is also strong enough to withstand the largest magnitude of forces 

that the testing apparatus could apply. 

Each workpiece was first designed using the SolidWorks program. Once completed the SolidWorks part 

was imported into the machining program ESPRIT. The appropriate tooling information and tooling 

paths were inputted into the program to produce the desired features of the stock material. 

DP-2.1.1: Tangential Force Plate Workpiece 



To machine this workpiece a 8’’ x 6’’ x ¼’’ stock was ordered. To reduce the amount of milling needed 

the stock was cut with a bandsaw so it was just over the desired width. The minimill was programed to 

machine any extra material on the left or right side to achieve the desired length, and then to machine 

the two slots all the way through the stock. This can be seen below. 

 

Figure 57: Testing Device Tangential Force Plate Workpiece 

The workpiece was then orientated differently within the vice grips of the minimill. This allowed the 

program to mill any extra material on the front or back of the workpiece to ensure the desired 

dimensions were met. The final step was to drill the hole at the desired location. The tapping of the hole 

in order to secure the horizontal pneumatic cylinder was done by hand. It is shown below. 

 

Figure 58: Testing Device Tangential Force Plate Workpiece with center hole 

  



DP-2.1.1.2: Left and Right Leg Workpieces 

Both the left and right leg workpieces were identical parts so the program and process to machine both 

were the same. The stock material was cut with a bandsaw just over the desired length. The first step 

was to remove enough material so that a ¼’’-20 bolt could reach the workbench underneath. This was 

done by milling as well as drilling a clearance hole for the head of the bolt and can be seen below. Lastly 

the minimill was programmed to remove any excess material on either side so the desired length was 

achieved.  

 

Figure 59: Left Leg Workpiece 

 

The stock was then flipped over so it could be faced down to the desired height and the remaining 

features could be milled. The last step was to complete the through hole that allows the bolt to reach 

the workbench. These operations are shown below.  



 

Figure 60: Right Leg Workpiece 

While the process of drilling and tapping three ¼’’-20 bolt holes were done in ESPRIT, in an effort to 

reduce time, and because these hole did not have to be exact, they were done by hand. This is also the 

only feature that was not exactly the same for the left and right leg workpieces. The holes were drilled 

on opposite sides of each other respectively so the tangential force workpiece has something to be 

secured to on both sides of the dynamometer. The ESPRIT file is shown below.  

 

Figure 61: Left Leg ESPIRIT File 



 

 

DP-3.1.2: Normal Force Workpiece 

After the stock material was loaded into the vice grips of the minimill it was programmed to mill the 

following features into the workpiece. The tool used to accomplish this was not long enough to reach 

the bottom of the part however. Step one is shown below. 

 

Figure 62: Normal Force Workpiece 

The stock was then flipped over and machined down to the desired height as shown below.  

 

Figure 63: Normal Force Workpiece 

 



 

Similar to the left and right leg workpieces the hole in the top of the part shown below was drilled and 

tapped by hand. 

 

Figure 64: Espirit File for Normal Force Workpiece 

DP-4.1.2: Box Adapter 

The box adapter part was used from a previous MQP done here as WPI. The only difference between 

this figure from when the previous group machined the part and ours is that we drilled a ¼’’-20 hole in 

the center in order to allow the pneumatic piston to attach to it.  

 

Figure 65: Box Adapter 

 

 


