

Radial-Basis-Function Neural Network Optimization of Microwave Systems

by

Ethan K. Murphy

A Master’s Project

Submitted to the Faculty

of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Industrial Mathematics

by

December 2002

 APPROVED

 Dr. Vadim V. Yakovlev, Project Advisor

 Dr. Homer Walker, Department Head

 ii

Abstract

An original approach in microwave optimization, namely, a neural network procedure combined

with the full-wave 3D electromagnetic simulator QuickWave-3D implemented a conformal FDTD

method, is presented. The radial-basis-function network is trained by simulated frequency

characteristics of S-parameters and geometric data of the corresponding system. High accuracy

and computational efficiency of the procedure is illustrated for a waveguide bend, waveguide T-

junction with a post, and a slotted waveguide as a radiating element.

 iii

Acknowledgements

• Vadim Yakovlev

• My mother and father

• My brother who is lost in Africa with the Peace Corp

• Veronika Mechenova

 iv

List of Figures

Fig 2.1. S-parameter representation of a 2-port system.

Fig 2.2. Conventional frequency characteristic of the magnitude of S11.

Fig 2.3. Model of a single neuron.

Fig 3.1. Layers of Neural Network

Fig 3.2. Linear function.

Fig 3.3. Hyperbolic Tangent function.

Fig 3.4. Radial basis neuron.

Fig 3.5. The Gaussian radial basis function.

Fig 3.6. Conventional frequency characteristic of |S11| in the constrained optimization problem

Fig 4.1. Outline of the RBF-NN used in the algorithm.

Fig 4.2: Uniform grid of samples from the database for a 90o waveguide

bend (see Chapter 6.1).

Fig 5.1: Flow chart of the algorithm for optimization of the reflection coefficient |S11|

 v

Fig 5.2. Principle steps in Databasegetter and Matrixgetter

Fig 6.1: Geometry of Project A

Fig 6.2. Geometry of Project B.

Fig 6.3. Geometry of Project C

Fig 6.4. RBF NN mean square error for varying scaling parameter 1 ≤ r ≤ 20 (a) and 1.75 ≤ r ≤

4.25 (b) for Projects A (1), B (2), and C (3).

Fig 6.5. QW3D-generated values of |S11| for Project A

Fig 6.6. RBF NN results for p = 3 (Project A)

Fig 6.7. RBF NN results for p = 4 (Project A)

Fig 6.8. RBF NN results for p = 5 (Project A)

Fig 6.9. Absolute value of error in Project A for p = 5

Fig 6.10. Optimized |S11| frequency characteristics for Project A.

Fig 6.11. Optimized |S11| frequency characteristics for Project B.

Fig 6.12: Optimized |S11| frequency characteristics for Project C.

Fig 6.13. Optimized frequency characteristics of |S11| in Project A for Trial 1. Thin curves:

Methods A (marked by ∇), C (◊), and D (♦). Thick curves: NN technique for p = 4

and p = 5.

Fig 6.14. Optimized frequency characteristics of |S11| in Project A for Trial 2. Thin curves:

Methods A (marked by ∇), and B (◊). Thick curves: NN technique for p = 4 and p = 5.

 vi

Fig 6.15. Optimized frequency characteristics of |S11| in Project A for Trial 3. Thin curves:

Methods A (marked by ∇), B (◊), C (♦), and D (∨). Thick curves: NN technique for p

= 4 and p = 5.

Fig 6.16. Optimized frequency characteristics of |S11| in Project A for Trial 4. Thin curves:

Methods A (marked by ∇), B (◊), C (♦), and D (∨). Thick curves: NN technique for p

= 4 and p = 5.

 vii

Contents

Chapter 1. Introduction ... 1

Chapter 2. Background.. 5

2.1 Electromagnetic Issues ..5

2.2 Basics of Neural Networks ..7

2.3 Neural Networks in Microwave Modeling ..9

Chapter 3. Analysis .. 12

3.1 Statement of the Problem ..12

3.2 Feedforward MLP NN...14

3.3 RBF NN...17

3.4 Optimization Method...20

Chapter 4. Neural Model ... 23

Chapter 5. Implementation ... 26

5.1 Overview ...26

5.2 Creation of the Database..27

5.3 Construction and Training of Radial Basis Network ...29

5.2 Optimization and Comparison..31

Chapter 6. Illustrations.. 32

6.1 MW Systems ...32

6.2 Scaling ...36

 viii

6.3 Accuracy..36

6.4 Optimization ..41

6.5 Comparison with QW3D Optimizers ...46

Chapter 7. Conclusions .. 50

Appendix ... 51

Bibliography ... 67

 1

Chapter 1

Introduction

The modern trends towards production-oriented design and reduced time-to-market in the

microwave (MW) industry require instruments assisting in accurate and fast design. Efforts to

lower the cost and reduce the weight/volume of the circuits have caused a keen interest of

electronic and microwave engineers in new efficient computer-aided design (CAD) tools.

 Recent extraordinary growth of productivity and capabilities of computer hardware has

made comprehensive, fast, accurate, and reliable numerical modeling of microwave circuits

possible. Today, a number of pieces of modeling software allow one to get valuable data about

the characteristics of the system prior to constructing a physical prototype. For example,

Microwave Studio (MWS) [1], the electromagnetic (EM) code based on Finite Integration Method,

and Quick-Wave-3DTM (QW3D) [2], the conformal FDTD 3D EM simulator, have been recently

identified among the most efficient and proficient full-wave simulators in the market [3, 4].

 2

 However, a simple application of highly sophisticated computational tools for analysis of

MW systems may not bring many direct recommendations for design implementation. Practical

problems may be associated with specific optimization goals, which cannot be addressed with the

use of the general tools in the software packages. This dictates the necessity of development of

efficient optimization techniques for microwave modeling. Efficient computational procedures

linked with advanced EM solvers should become powerful and flexible CAD tools revolutionizing

the design of MW systems.

 Several approaches based on the space mapping technique [5, 6] and a few other methods

[7-9] form a group of modern advanced approaches to MW optimization. The techniques are

applicable to a variety of microwave devices and demonstrate good performance in a number of

practical situations. However, the extremely fast development of the MW industry encourages

further research in this area towards resolution of many issues in accuracy, reliability, and

computational resources.

 One of the most important questions here comes up from the following. Some

optimization techniques may work particularly well if joined with universal modeling software

generating results of analysis of the MW structure. With the simulators applicable to a majority of

systems and components in the microwave industry, such combinations could be highly universal

instruments in the automated design. The emerging feasibility and practicality of inclusion of

resourceful full-wave numerical simulators in optimization and automated design of MW structure

time has been recently emphasized in [10].

 3

 In the meantime, so far, examples of optimization with involvement of full-wave

modeling software are limited to just a few cases: e.g., emTM by Sonnet Software [10] was used

with the space mapping optimizations [5, 6, 10, 12], specifically to handle circuits containing

complex subcircuits or components whose simulation requires significant computational effort.

The approach proposed in [13] operates in connection with HP-MDSTM [14]. It seems that many

researchers are not concerned with generalization of their optimization schemes, but rather deal

with the detailed physics-EM models and empirical approaches (see, e.g., [15, 16]). This can be

explained by the fact that the inclusion of full-wave simulators in optimization and automated

design has been traditionally considered unfeasible given the high cost in corresponding

computational effort.

Meanwhile, it appears that with the current progress in computer hardware, packages like

MWS and QW3D having expanded capabilities and characterized by high accuracy deserve a

careful look at them as analysis tools backing an efficient MW optimization. Even if the “built-in”

optimization options available in these simulators may appear to be general-purpose and slowly

converging procedures characterized by heavy demand on computer resources, this still does not

mean that, in case of a really efficient accompanying optimization technique, a truly competent

solution cannot be obtained.

So far, the only known attempt to connect the advanced full-wave simulator with an

efficient optimization procedure was made in [17], where the technique based on response surface

methodology (RSM) and the Sequential Quadratic Programming (SQP) method for constrained

 4

optimization was implemented to run with QW3D. The concept behind this approach was

generated by a condition of efficient operation of microwave heating systems: the method

intentionally ignores possible resonance’s of the response surface near the operating frequency.

Being efficient for this particular class of MW devices, this approach has a drawback for others,

which are frequently highly nonlinear, so that a quadratic function, as used in [17], could not

always approximate a hypersurface with sufficient accuracy. The computer implementation of

this method is still characterized by a notable CPU time.

To overcome the stated shortcomings, for the first time, the present paper proposes an

efficient and simple optimization technique based on artificial neural networks (NN) made as a

computational supplement for QW3D. We show that, given the resources of today’s computers,

such an approach can be reasonably productive and serve as a competent optimization tool in

designing of various MW systems.

 5

Chapter 2

Background

2.1 Electromagnetic Issues

Development of specialized efficient optimization algorithms for QW3D implemented the 3D

conformal FDTD method requires dealing with many issues in numerical mathematics,

programming, and computing. This project is focused on the relevant aspects in computational

mathematics, but it needs some basic concept of microwave circuit analysis.

 The concept of a scattering (S) matrix is one of the fundamental concepts of

electromagnetics. It may be very convenient in analysis of characteristics of many electronic and

communication devices as well as microwave circuits. Many important characteristics of MW

system could be successfully described with the use of S-matrix terminology. Although it is

applicable to any number of ports, in the illustration below we show a 2-port system for which two

S-parameters can be introduced as follows:

 6

Figure 2.1. S-parameter representation of a 2-port system

021

1
11

=

=
aa

bs (2.1a)

021

2
21

=

=
aa

bs (2.1b)

where

,
o

n
n Z

Va
+

=
o

n
n Z

Vb
−

= (2.2)

Referring to Fig. 2.1, S11 is called the reflective coefficient. In accordance with (2.1a), if b1 is

equal to a1, then the energy going in comes out, so S11 = 1, or, in other words, there would be

100%-reflection. S21 is the transmission coefficient describing the transmission of a field passing

through the system and leaving it at Port 2.

 As we see from an illustrative graph in Fig. 2.2, for every frequency, there is a distinct S11

coefficient. An important idea throughout the present study was that the microwave systems

typically operate in some frequency ranges. Therefore, we are interested in the neighborhood of

 7

Figure 2.2. Conventional frequency characteristic of the magnitude of S11.

an operating frequency f0. This is illustrated by Fig. 2.2 showing f0 at 2.45 GHz and the adjacent

frequency range between f1 = 2.4 and f2 = 2.5 GHz, provided that f0 ∈ (f1, f2).

2.2 Basics of Neural Networks

As mentioned earlier this project utilizes NNs. An artificial neural network is a massively

distributed parallel processor that has a natural propensity for storing experiential knowledge and

making it available for use. It resembles the brain since knowledge is acquired by the network

through a learning process, and inter-neuron connection strengths are used to store the knowledge.

Inputs of the NN are given to the network and processed by simple processors (units,

nodes, neurons) in parallel. Each processor holds a limited amount of memory. Unidirectional

 8

channels carry numerical data connecting these processors, in such a way that the NN can be

viewed as a simple function mapping a set:

Figure 2.3. Model of a single neuron.

() YXF → (2.1)

 A graphical representation of a neuron’s model is shown in Fig. 2.3. There is an initial

vector x given to the network which is multiplied by a weight matrix wjk and added to a bias vector

bj, where j is the number of hidden neurons and k is the number of input neurons. The result of

this is processed by g called a transfer function and finally arrives at the output of the layer.

 Knowledge is programmed into the neural network by training runs. The neural network

is trained by giving the NN a series of arguments x with known outputs y. Through a training

algorithm weights and biases converge such that we have the following relation

() ybwxF i
j

i
jkn →,; (2.2)

where n denotes the nth training iteration, and i represents the layer.

 9

2.3 Neural Networks in Microwave Modeling

Neural networks are known as offering the ability of skillfully approximating highly nonlinear

systems with a generally small amount of data and capable of competent solving problems of

control and optimization. NNs were introduced into computational electromagnetics in the 1990s,

and, since that time, their typical application has been associated with the networks representing

(or directly imitating) the modeled devices and dealing with their physical/electrical

characteristics. Sets of solution samples for these networks have been provided by

physical/empirical models, or measured data. When developed appropriately, these models are

convenient and accurate, but applicable only to the particular devices, so their usefulness is rather

limited. When used with universal software, neural networks can be put in the background of an

algorithm appropriately processing simulator’s input/output data and generating the optimal

solution for virtually any system to which the software is applicable.

 QW3D is well suitable for building databases required for efficient operation of the NN-

based procedures. This simulator is highly compatible with MATLAB, which seems to be a

convenient environment for hosting NN algorithms. A master program could conveniently control

operations of the entire computational structure.

 Knowledge-based neural networks (KBNN) reduce EM simulator’s involvement; two

examples are [18] and [16]. KBNN are similar to that of an ordinary NN model except there is a

layer or series of layers in which knowledge of the MW system is used. In [18], a detailed

 10

discussion shows how to design a model, which utilizes possible functions known on the boundary

and throughout the space.

 KBNN and NN differ in a subtle way. KBNN are more specified to a narrow model and

rather small generalization while NN uses a universal approach. From the NN’s point of view,

there is only data coming in or out. This is in contrast to KBNN where the neural network is

programmed in relations and/or formulas specified for the problem.

 There are other types of neural networks, which are used to optimize a MW system.

There are Space Mapping Based Neural Networks (SMNN) [12]. They efficiently use an EM

simulator by creating a coarse NN and mapping it to a fine NN without having to create a large

database for the fine NN. This mapping is produced by a third neural network that maps only the

design variables.

 Another approach to NN optimization is a neural network called Synthesis Neural

Networks (SNN) [10]. The SNN is an approach, which is an inverse with respect to the mentioned

above. In this technique, geometric parameters are the outputs of systems and the inputs are the S-

parameters. It has been found that it is difficult to get an SNN converged due to the fact that

multiple geometries may results in the same S-parameters. In [19], an algorithm using a

combination of analysis and synthesis NNs to optimize a MW system was successfully

implemented.

 A major issue throughout all the papers reviewed in the course of this project is

efficiency. Even though EM simulators give accurate and reliable results, the question is how can

 11

we use those simulators as little as possible and still have an accurate model. Several papers have

referred to the time needed to simulate data for neural networks as a major drawback for NNs

using EM simulators [7, 20]. It should be clearly noted that the methods like KBNN and SMNN

are ingenious attempts at minimizing computing time. We have seen that with the rapid growth

and efficiency of computers this is becoming less and less of a problem.

 To summarize the introductory part, it should be emphasized that at the initial stage of the

project we looked through much of the most recent works in microwave modeling, and have found

that optimization using NNs is still a field of research with much room for growth. The approach

used in this project includes creation of a database, development of a neural network, and

operations towards getting an optimal solution. We attempt to show that it is now feasible to use a

straightforward approach combining a universal full-wave simulator with an efficient optimization

technique and maintain efficiency and accuracy of computation. This work addresses a universal

approach to MW optimization with the goal to be able to expand the range of the microwave

systems to which our method is applicable.

 12

Chapter 3

Analysis

3.1 Statement of the Problem

Let

T
mxxxfX],...,,,[21=

r
 (3.1)

be a vector containing m (geometrical) parameters of a given device. In (3.1), f is frequency. We

extract f from X in the following manner:

T
qqij nqYfSY]...,,2,1,[)(===

rr
, (3.2)

where Y is a vector containing the response of the device under consideration (e.g., S-parameters

of a p-port device, i, j = 1, …, p). In the reality, the EM problem is:

)(XFY
rr

= (3.3)

Equation (3.3) can be modeled by training a NN through a set of sample pairs

(){ }DkZX kk ...,,2,1,, =
rr

 (3.4)

 13

where Xk, Zk, are m- and n- dimensional vectors representing the kth sample of X and Z

respectively, and D is the number of samples of X and Z. Thus we can view Zk as the following:

)()(kkkk XFYXEMsimZ
rrrr

=≈= for k = 1, 2, …, D (3.5)

where EMsim denotes an operator which means the sample of S-parameters Zk is generated by

numerical simulations given the geometrical parameters Xk. The NN model for (3.3) is

),,(bWXGY
rrrr

= (3.6)

where W and b are the parameters of the NN model (weight and bias vectors), and X and Y are the

input and output of the neural model.

 Definition of W and b and how Y is computed in (3.6) determines the structure of the NN.

Equation (3.6) represents the original problem of (3.3) when the neural model is trained by data in

(3.4).

The training problem is described as a determination of W and b such that the mean

square error between the NN output Y and the desired output Z is minimized:

()∑
=

−=
D

k
kllk ZbWXG

D
bWE

1

2
),,(1),(

rrrr
 (3.7)

Once trained, the NN model can be used for predicting the output values of (3.3):

),,(OPTOPT bWXGY
rrrr

≈ (3.8)

 14

3.2 Feedforward MLP NN

For the class of MW optimization problems addressed in this project, we consider implementation

with two neural network structures. The first of these was a feedforward Multilayer Perceptron

(MLP) NN with training according to Levenberg-Marquardt optimization. The second was a

Radial Basis Function (RBF) network. We start with a review of basic ideas of the MLP

approach.

 The first layer has weights coming from the input. Each following layer has a weight

coming from the previous layer. The last layer is the network output. Each layer has biases

imposed upon it.

In many typical problems, a two-layer MLP is used. This means that the input layer is

layer zero followed by a hidden layer of neurons (layer one), and the network output is layer two.

Fig. 3.1 shows this simple structure. We use the hyperbolic tangent as the first transfer function

and a linear function as the second one.

 The linear function defined as

() xxpl = . (3.9)

is illustration in Fig 3.2. The hyperbolic tangent function is presented as:

() ()
()

()
()xx

xx

ee
ee

x
xx

−

−

+
−

==
cosh
sinhtanh (3.10)

The graph of (3.10) is shown in Fig. 3.3.

 15

Figure 3.1: Layers of a neural network

Figure 3.2: Linear function

Figure 3.3: Hyperbolic tangent function

 16

The neural network can be described in the following single equation:

()()() ndnhdhmdhmnh fSbbAwwpl)(tanh 11
2112 =++ (3.11)

A simpler way of looking at (3.11) is its interpretation at one layer at a time:

() hdhmdhm BbAw =+ 11tanh (3.12)

() ()nsnhsnh fSbBwpl 11
22 =+ (3.13)

 Therefore, in our NN, we have m inputs, d samples, h hidden neurons, and n outputs. In

(3.12) and (3.13), hmw1 and nhw2 represent weight matrices for the 0th and 1st layer of the NN.

There are also biases for each layer hb1 and nb 2 .

The function representing the neural network as (3.11) can be expressed in combination

with (3.8) as follows:

()()()nhdhmdhmnhOPTOPT bbAwwplbWXGY 2112 tanh),,(++=≈
rrrr

 (3.14)

Training a Neural Network

As stated above, for NN training, we use the Levenberg-Marquardt method, which has a similar

form to that of Newton’s Method. The Hessian is approximated by the following form:

JJH T= (3.15)

where J is the Jacobian matrix. The gradient is computed as

EJg T= (3.16)

 17

where E is a vector of the network error. The Jacobian is computed by the general

backpropogation technique. The Levenberg-Marquardt algorithm uses the following iterative

steps for updates:

[] EJIJJxx TT
kk

1
1

−
+ +−= µ (3.17)

When the scalar µ is zero, we reduce the algorithm to regular Newton’s Method. When µ is large,

the method becomes gradient descent method with a small step size. Since Newton’s Method

converges quicker near an error minimum, the goal of this algorithm is to decrease µ, so that it

converges to Newton’s Method.

 It has been shown in literature, specifically in [21], that the Levenberg-Marquardt

algorithm is much more efficient than the conjugate gradient algorithm and the variable learning

rate algorithm. Therefore it is frequently used in implementations for the MLP NN.

3.3 RBF NN

Radial basis function neural networks have similar capabilities to that of MLP NNs. The

difference is that the RBF approaches the problem as a function approximation problem [22].

 The structure of a radial basis neuron is illustrated in Fig 3.4. The procedure starts with a

vector of inputs. Then the distance between the inputs and the vector of weights is calculated,

multiplied by the vector b and sent to the radial function. This can be expressed as a function

 18

Figure 3.4: Radial basis neuron

Figure 3.5: The Gaussian radial basis function

()bpwradbasa |||| −= (3.18)

The commonly used radial basis activation functions [22] are the multiquadratic function

and the Gaussian function given by

2
)(aearadbas −= , (3.19)

and illustrated in Fig 3.5.

 19

The architecture of the entire RBF network consists of two layers. The first layer is a

hidden layer of radial basis neurons and the second layer is a linear layer – the same as used in the

second layer of the feedforward MLP NN.

 The motivation with a radial basis network is quite simple. The closer an input is to a

weight, the closer that value is to zero. Thus going through the RBF that node’s result will be

close to one. Therefore, it will have a larger affect on the network.

 There are two types of radial basis networks are used for testing. The first of these is a

zero training error network. Given m inputs, m radial basis neurons are created. Therefore, there

is no error for the network training because each neuron correctly detects each input. The

drawback of this approach is that there is a large number of inputs/neurons.

 The second approach is as follows. Initially, the radial basis layer has no neurons. The

following steps are repeated until the network’s mean squared error (MSE) falls below a specified

goal:

 1. The network is simulated.

 2. The input vector with the greatest error is found.

 3. A radial basis neuron is added with weights equal to that vector.

 4. The linear layer weights are redesigned to minimize error.

Once the MSE is below a certain limit, the network is said to be trained and we proceed to

minimize the RBF NN.

 20

Resulted from the analysis of data, the RBF approach has been chosen for

implementation in the computational procedure developed in this project. Several trials were

tested with the zero training error approach, but it has been found that this method was insufficient

for our needs because of a large number of inputs, which may not always properly define the

network. For this reason, the second type of RBF training has been implemented in the

computational procedure.

3.4 Optimization Method

We consider the optimization problem as follows: find a configuration of the structure such that a

magnitude of an S-parameter under consideration is less or larger than the assigned level (S0) in

the frequency range (f1, f2) around the operating frequency f0 (f1 < f0 < f2). |Smn| is a multivariable

function of frequency f and system parameters X = [X1 X2 … Xm]T which becomes an objective

function of the optimal design, and S0 and (f1, f2) are interpreted as the relevant constraints. A

representation of this for a specific S-parameter, S11, is shown in Fig 3.6.

Least Squares Method

After a NN is created and trained, it can be defined as function G represented by (3.8). Least

squares minimization technique can be used to determine its minimum. The algorithm

implements a subspace trust region method and is based on the interior-reflective Newton method

 21

Figure 3.6. Conventional frequency characteristic of |S11| in the constrained optimization problem

described in [23, 24]. Particularly, it is shown in [24] that this technique is globally and

quadratically convergent.

We consider the following problem:

() () ,
2
1

2
1min 22

2 ∑=
∈ i

i
Rx

xGxG
n

 uxl ≤≤ (3.20)

where nRl)}({ −∞∪∈ , nRu)}({ ∞∪∈ , ul < and mn RRG →: . This algorithm is an iterative

procedure where kkk xxs −= +1 is an approximate solution to a quadratic subproblem:

()

 ∆≤+≡

∈
kkk

TT
k

Rs
sDsBssgs

n
:

2
1min ψ (3.21)

With gk defined as ()kk xGg ∇≡ , kB is a symmetric approximation to the Hessian matrix

()kxG2∇ , kD is a scaling matrix, and k∆ is a positive scalar representing the trust region size.

 22

 The basic idea of the algorithm above is to approximate the function G(x) with a simpler

function ψ(s) which basically reflects the behavior of G(x) in a neighborhood k∆ around the point

x. A trial step s is computed to minimize the function over k∆ . Therefore, the current point is

updated as (x + s) if G(x + s) < G(x); otherwise, the current point is unchanged and the trust region

is shrunk. The method iterates and quadratically approaches a minimum value.

 The algorithm returns a minimum corresponding to the geometrical parameters of size m.

This method does not necessarily return a global minimum. Therefore, multiple guesses were

used throughout the domain to increase the probability of finding the global minimum.

Getting local optimal solutions in our analysis does not seem to be a drawback. For a

majority of applied MW devices, it is enough to fulfill the goals of the constrained optimization

problem formulated in the beginning of this section without guaranteeing that the obtained

solution corresponds to a global minimum.

 23

Chapter 4

Neural Model

After a series of experiments with various structures of standard feedforward neural networks, we

have constructed the Radial Basis Function network with the Gaussian activation function. A

suitability of the RBF NN for our problem is conditioned by their capability of faster than

multiplayer perceptron (MLP) learning and low sensitivity to the order in which training data are

presented [22].

 The chosen basic NN structure shown in Fig. 4.1 possesses m inputs in accordance with

the number of the system parameters to be optimized and one output associated with the value of

Sij(fk) obtained from the EM solver. The entire network consists of n distinct NNs corresponding

to a particular frequency; n here is determined by the number of approximating points in (f1, f2).

For many practical scenarios in MW optimization, we do not expect n to be a large number, so the

choice of the RBF network suited, compared to MLP, for problems with smaller number of inputs

[22], appears to be particularly reasonable.

 24

Figure 4.1: Outline of the RBF NN used in the algorithm.

Figure 4.2: Uniform grid of samples from the database for a 90o waveguide bend (see Chapter 6.1).

 Frequency characteristics of S-parameters obtained in FDTD simulations performed by

QW3D compose the network database. In order to have the optimization procedure suitable for a

variety of MW systems, we use uniform grid sampling giving no preference to any particular

subregions of the input space. An illustration of this is shown in Fig. 4.2.

 25

 In MW applications, scaling is regarded highly valuable operation since the order of

magnitude of input parameter values can be very different [25], so making the problem better

conditioned for training and thus helping the network with learning process, we apply linear

scaling of data samples on the input parameters from the database in accordance with the

following formula:

() ()minmax
minmax

min
min xx

xx
xxxxD −
−

−
+= (4.1)

 26

Chapter 5

Implementation

5.1 Overview

The algorithm has been implemented in MATLAB 6 R12 environment. The master program

controls operations of QW3D’s Editor and Simulator, manages processing and transferring data,

communicates with appropriate procedures from the MATLAB Neural Network and Optimization

Toolboxes, and conducts required computations. The project consists of five basic steps:

specification of input parameters, database creation, neural network construction and training,

minimization of the NN function approximation (3.8), and choice of the best geometry and

corresponding frequency characteristic of |Sij|. A general layout of the algorithm can be seen in

Fig. 5.1. The following description of the algorithm is given for i = j = 1.

The first step is implemented in the script rad_method (see Appendix, part A), which

loads the input data for a specific project (e.g., ant_input presented in Appendix, part D). This

 27

Figure 5.1: Flow chart of the algorithm for optimization of the reflection coefficient |S11|

input data holds information about frequencies range and the matrix of points to be taken for the

database.

5.2 Creation of the Database

After initial parameters have been chosen, the database is built by calling Databasegetter

(see Appendix, part B). The latter starts by creating a list of points by calling the script

paramaker (Appendix, part H) made from the matrix of bounds of the given parameters.

Throughout the implementation of this project we choose equal number of points for each

variable. Although the program is written in such a way it can accept any number of geometric

variables, for each example illustrated in this project, there were only three variables used.

 28

Therefore, the parameter matrix is of the form 3 by p, where p is the number of points for each

parameter, and the list of the database points is of size 3 by p3.

Then Databasegetter forms a loop of the parameter list. For each specified three

points ()iii xxx 321 ,, , we first call the QuickWave-3D’s Editor and modify the project so that we will

actually simulate the correctly specified microwave system. Following the modification of the

system and saving the project file, we analyze the Tasker file, *.ta3, which specifies the operating

frequency f0, the number of iterations, and the name of data file to be saved.

The next step is to call the Simulator. The latter takes the Tasker file and runs the project

for the specified number of iterations. Each project converges at a different speed, so the user

needs to decide the correct number of iterations to use; this is normally made by a simple

inspection. After the said number of iterations is reached, the Simulator saves the results of S11

into a file in the project directory.

After the Simulator has computed all of the samples, another Matlab script called

matrixgetter (see Appendix, part C) is called. Matrixgetter assembles all of the

information into a convenient format.

Matrixgetter opens one file at a time and takes the second column of the file

containing the S11 data obtained from the EM simulator for a number of points in a specific

frequency range. After data is extracted from each file, all the data is saved into a *.mat file. The

mat-file consists of two matrices and one vector, vars (size 3 by S), f (size n), and S11 (size S

by n).

 29

Figure 5.2. Principle steps in Databasegetter and Matrixgetter

At this point, we have a database consisting of p3 = S points and having a simple format

to be used in the following steps. Fig. 5.2 presents a flowchart of the operations performed in

scripts Databasegetter and Matrixgetter:

5.3 Construction and Training of Radial Basis Network

The next step in the program is constructing the neural network. The first step in this process is

scaling, specifically linear scaling in accordance with (4.1). Through the analysis it was seen that

only certain intervals of inputs into RBF NN converge. To specify the optimal interval at which

the data are given to the network, a series of computational experiments is required. The Matlab

script called scalar (see Appendix, part F) is responsible for scaling.

 30

The implemented procedure of scaling can be described as follows. Given a matrix, or a

vector, and the corresponding minimum and maximum values of both its inputs and outputs, the

function returns the scaled matrix or vector. That is, for matrix params (geometric parameters)

with corresponding input and output maxima and minima, the function scalar returns a matrix

scaled_params (input to the RBF NN). This can be numerically illustrated as:

params:

120906030
7066.5633.4330
90705030

;

inputs:

303030:min

1207090:max ; output:

−−− 333:min
333:max ;

scaled_params:

−−
−−
−−

3113
3113
3113

.

 Once the matrices vars and params have been scaled, they are used in rad_method.

This script organizes the entire process; it also creates and trains the neural network. The first step

is to extract the specified frequencies corresponding to the S11 values from the matrix S11.

 The matrix ouputs is extracted from S11 with the dimensions n by S, where S is the

number of samples. The n rows of this matrix correspond to the n chosen frequencies. The matrix

inputs is given by the scaled vars matrix. Inputs has dimension m by S, in which m

represents the number of geometric variables. In the examples considered in this project, n = m =

3.

 31

5.2 Optimization and Comparison

When the network is trained, we take several initial guesses and minimize function G with the

MATLAB’s least square method’s algorithm lsqnonlin. Due to the fact that our minimization

technique does not guarantee the global minimum, we choose two values for each of m geometric

parameter. The collection of these values is, therefore, equivalent to 2m guesses. The results from

the minimization procedure yield possible optimized geometric values. Numerically, the output

data generally have many decimal places. Since in engineering practice MW systems are

normally described in millimeters, we introduce the script rounder (see Appendix, part E),

which rounds off to a specified decimal place so that the results are more meaningful.

 Then these geometric values are passed to the opttest script (Appendix, part G). This

one runs QW3D and tests the value. If the results of simulation are the minimum of the other

optimized guesses, then we save the geometric and S-parameters, and have our solution.

 32

Chapter 6

Illustrations

The described computational procedure has been applied to optimize geometrical parameters of

several MW components – from a waveguide structure through an antenna to MW heating

devices. In this Chapter, we present the detailed results for three particular constructions.

6.1 Microwave Systems

In this section, we present the geometric shapes and constrained parameters of the microwave

devices considered in this project. In each case, minimization of |S11| being a function of

frequency and three geometric parameters was the goal.

Project A: 90° Waveguide Bend

The first scenario, a 90o 23 x 11.5 mm waveguide non-smooth bend, is the simplest example that

we used, so, from the computational point of view, simulation of the model of this project was

quickest.

 33

Figure 6.1: Geometry of Project A

 As one can see in Fig. 6.1, the waveguide redirects the path of the EM field from the top

left exiting in the bottom right. In the optimization procedure we minimize |S11|, i.e., the

reflections generated by the non-regular cross-sections along the direction of propagation. The

minimized S11 results in the maximized the transmission of the field through the waveguide bend.

Table 6.1 contains the geometric variables of the bend and the corresponding ranges. As

for the frequency range, it was chosen to be f ∈ (9, 12 GHz). We assume that n = 3, i.e., we

minimize S11(f) at the points f1, f0, f2. The operating frequency f0 is 10.5 GHz.

Table 6.1: Variables of Project A (Fig. 6.1)

Variable Range

s 1 ≤ s ≤ 15 mm

p -8 ≤ p ≤ 8 mm

m 1 ≤ m ≤ 9 mm

 34

Figure 6.2. Geometry of Project B.

Project B: Slotted Waveguide

This project is a waveguide-fed slot-antenna array. It has been used as resonant and traveling-

wave antennas in many ground-based and airborne radar systems for many years [26]. It is made

up of five narrow inclined slots. The full description of the structure could be given by 5

parameters shown in Fig. 6.2. We consider this antenna to be based on the rectangular waveguide

WR430 (86 x 43 mm) and assume that the configuration of each slot is not changed (w = 8 mm, l

= 65 mm)

The operating frequency for this project is f0 = 2.45 GHz, and we optimize the S11

characteristic in the interval (f1, f2) = (2.4, 2.5 GHz).

Table 6.2: Variable of Project B (Fig. 6.2)

Variable Range

θ 20° ≤ θ ≤ 90°

s 30 ≤ s ≤ 70 mm

d 30 ≤ d ≤ 120 mm

 35

Figure 6.3. Geometry of Project C

Project C: Waveguide T-junction with a Post

This is a typical junction of rectangular waveguides in which a post plays the role of the matching

element [27]. It is located along the central line of the input waveguide. We analyze a junction of

the waveguides WR75 (19.05 x 9.53mm). The considered construction is characterized by three

geometric parameters outlined in Fig. 6.3.

The operating frequency for this project is f0 = 12.5 GHz, and (f1, f2) = (11, 14 GHz).

Table 6.3: Variable of Project C (Fig. 6.3)

Variable Range

r 0.5 ≤ r ≤ 1.5mm

h 4 ≤ h ≤ 8mm

s -6 ≤ s ≤ 6mm

 36

6.2 Scaling

Scaling was implemented in order to find a optimal range for RBF NN inputs for each of the

analyzed projects. For Projects A to C, scaling was implemented for varying ranges [-r, r] with

scaling parameter r ranging from 1 to 20 with inspection of the generated mean square error

(MSE). From Fig. 6.4, a, it is seen that MSE of the RBF NN has a minimum in the interval (2, 3)

for all three projects.

We also ran another test in which we reduced our search range to the interval of [1.75,

3.25] taking again 20 points of testing. Fig. 6.4, b represents the results from this test. We found

that the minimum is not clearly defined in this interval. Thus, when optimizing configurations of

the systems in Project A to C, an optimal scaling interval was chosen to be r = 3.

6.3 Accuracy

The accuracy of the presented approach is illustrated by the results obtained for Project A.

 Fig. 6.5 is the graph of the S11 parameter computed by QW3D assuming that two

geometric parameters m and s vary and one is held constant (p = 0). Frequency is also constant at

the operating frequency of f0 = 10.5 GHz. We have taken a 30 by 30 point area meaning 900 runs

of QW3D. We view this surface as exact, and intend to compare it with the outputs of the RBF

NN.

 37

(a)

(b)

Figure 6.4. RBF NN mean square error for varying scaling parameter 1 ≤ r ≤ 20 (a) and 1.75 ≤ r ≤ 4.25 (b)
for Projects A (1), B (2), and C (3).

 38

 The surface in Fig 6.6 shows that with p = 3 (27 point database), our method does not

converge well as compared to the exact solution (Fig. 6.5). The result generated by the 64 point

Figure 6.5. QW3D-generated values of |S11| for Project A

Figure 6.6. RBF NN results for p = 3 (Project A)

 39

database (p = 4) and shown in Fig 6.7 resembles the graph in Fig. 6.5 moderately well. Fig. 6.8

corresponding to p = 5 (125 points database) seems to be the most accurate of the three.

Figure 6.7. RBF NN results for p = 4 (Project A)

Figure 6.8. RBF NN results for p = 5 (Project A)

 40

Fig. 6.9 represents the absolute value of the difference between the graphs in Figs. 6.5

and 6.8. We see that the maximum error is below 0.1 across the entire domain that the neural

Figure 6.9. Absolute value of error in Project A for p = 5

network was approximated for. The mean squared error for the three cases presented above is

shown in Table 6.4.

 Quality of training of the used RBF NN was checked for the different number of training

samples in the database. For Projects A to C, mean square error is quite low even for small

number of training samples. The comparison of RBF-NN-generated results with the accurate

QW3D simulation can be estimated as fairly acceptable.

Table 6.4. Testing Error (MSE) of the Developed RBF NN

 Database: # of samples

 41

Project 27 64 125

A < 0.001 0.005 0.016

B 0.005 0.002 0.003

C 0.001 0.002 0.001

6.4 Optimization

For each project, the optimal solutions have been obtained with the use of the databases of

different size. The objective function was minimized in the frequency range, specified by f1 and f2

(their values are presented below in the graphs of Figs. 6.10-6.12), whereas the limiting value S0

has not been explicitly assigned; the characteristic was rather forced to be within the range of (f1,

f2) as small as possible.

 Table 6.5 contains the results for the waveguide bend: the optimized values of |S11| for the

three specified points in the frequency range. The operating frequency represents the midpoint of

the interval. Three sets of the optimized geometric parameters of the waveguide bend (Project A)

are presented in Table 6.6 for the databases of different sizes (27, 64, 125 samples). The S-

parameters from Table 6.5 correspond to the values of s, p, and m in Table 6.6.

Table 6.5: Optimized Values of |S11| for Project A

S-parameters at p = 3 p = 4 p = 5

f1 = 9 GHz 0.3171 0.1073 0.0594

f0 = 10.5 GHz 0.3399 0.0191 0.0181

f2 = 12 GHz 0.1335 0.0569 0.0809

Table 6.6: Optimized Geometry for Project A

 42

Geometry p = 3 p = 4 p = 5

s 14.973 10.798 14.735

p -7.967 -2.974 0.105

m 8.992 3.279 1.5

Figure 6.10. Optimized |S11| frequency characteristics for Project A.

 43

Figure 6.11. Optimized |S11| frequency characteristics for Project B.

Figure 6.12: Optimized |S11| frequency characteristics for Project C.

 Table 6.7: Optimized Values of |S11| for Project B

S-parameters p = 3 p = 4 p = 5

 44

f1 = 2.4 GHz 0.043 0.1446 0.0696

f0 = 2.45 GHz 0.0424 0.0744 0.0294

f2 = 2.5 GHz 0.0419 0.0709 0.0231

Table 6.8: Optimized Geometry for Project B

Geometry p = 3t p = 4 p = 5

θ = 90-input 34.484 18.362 42.983

s 69.754 70 40.268

d 30.322 44.938 55.091

 Table 6.7 contains the optimized values of |S11| in the slotted antenna (Project B) for the

three specified points in the frequency range with f0 at the midpoint of the interval. Three sets of

the optimized geometric parameters are presented in Table 6.8 for the databases of different sizes

Table 6.9: Optimized values of |S11| for Project C

S-parameters p = 3 p = 4 p = 5

f1= 12.45 GHz 0.191165 0.088163 0.113607

f0 = 12.5 GHz 0.193691 0.110458 0.112232

f2 = 12.55 GHz 0.198225 0.133406 0.110781

Table 6.10: Optimized Geometry for Project C

Geometry p = 3t p = 4 p = 5

r 0.500762 0.815124 0.505496

h 4.000077 4.011209 7.980402

s 5.999768 5.969846 -2.36053

 45

(27, 64, 125 samples). The S-parameters from Table 6.7 correspond to the values of θ, s, and d in

Table 6.8.

 In Table 6.9, we present the optimized values of |S11| in the T-junction with a metal post

(Project C) for the three specified points in the frequency range (f0 is at the midpoint of the

interval). Three sets of the optimized geometric parameters are given in Table 6.10 for the

databases of different sizes (27, 64, 125 samples). The S-parameters from Table 6.9 correspond to

the values of r, h, and s in Table 6.10.

To evaluate the accuracy of performance of the developed RBF NN approach, we have

generated optimized results by alternative techniques; corresponding graphs are shown in Figs.

6.10 to 6.12. The waveguide bend (Project A) was optimized by one of the QW-Optimizers

implementing the Davidon-Flethcer-Powell (DFP) method. The optimal solution for the slotted

antenna (Project B) and the T-junction (Project C) were obtained by the RSM-SQP method [17].

From the curves presented in these figures, we can see that the RBF NN procedure gives either

equally good, or better results.

For example, for the slotted antenna, with S0 < 0.3, the optimal geometry suggested by

[17] is represented by the parameters θ = 27°, s = 56mm, and d = 118mm which correspond to |S11|

= 0.283 at f0 = 2.45 GHz. Our procedure give different geometric configurations which yield the

values of |S11| equal to 0.042, 0.074, and 0.029 for 27-, 64-, and 125-point databases respectively.

For the waveguide junction, with the constraint of S0 < 0.33, the RSM-SQP-method in

[17] gives the set r = 1.5mm, h = 8mm, s = -6mm, which corresponds to |S11| = 0.2062 at f0 = 12.5

 46

GHz. With the use of three different databases, the RBF NN generates the values of the reflection

coefficient 0.194, 0.11, and 0.112.

 Therefore, optimizing Projects B and C, the presented procedure has shown superior

results in comparison with the algorithm described in [17]. Even trained with the 27-sample

database, the Radial Basis network has generated significantly improved solutions. Computation

benefits of our approach over [17] are illustrated in Table 6.11.

Table 6.11. Optimization Time (min.) by RFB-NN and [17]

Table 6.12. Comparison of QW3D Optimizers to the RBF NN Optimization (Project A)

Method |S11| at f0 = 10.5 GHz

Trials 1 2 3 4

QW3D: Powell Non-Gradient Method (A) 0.0323 0.0331 0.0202 0.025

QW3D: DFP Gradient Method (B) MF 0.0302 0.0442 0.0453

QW3D: Controlled Random Search (C) 0.0372 MF 0.0184 0.055

QW3D: Evolutionary Strategy (D) 0.0457 MF 0.0087 0.0983

Time (P III 1.0 GHz)
Database:

of samples

Project,
of FDTD
cells, RAM

(QW3D) 27 64 125

Optimiza-
tion

Time
(P III,

750 MHz)
in [17]

B: 13,600
cells, 1 MB 10 25 51 < 5 70

C: 102,000
cells, 10 MB 91 208 412 < 56 660

 47

RBF NN: p = 4, or 64-point database 0.0191 0.0191 0.0191 0.0191

RBF NN: p = 5, or 125-point database 0.0181 0.0181 0.0181 0.0181

6.5 Comparison with QW3D Optimizers

For Project A, the RBF NN procedure supported by the 64- and 125-sample databases was

compared with the optimization modules in the QW3D package; the results of this comparison are

shown in the present section.

Table 6.12 showing the values of the reflection coefficient at the operating frequency

includes the references to the five optimization techniques involved the comparison. The results

obtained with the QW3D optimizers strongly depend on the initial guess. The method may even

Figure 6.13. Optimized frequency characteristics of |S11| in Project A for Trial 1. Thin curves: Methods A
(marked by ∇), C (◊), and D (♦). Thick curves: NN technique for p = 4 and p = 5.

 48

Figure 6.14. Optimized frequency characteristics of |S11| in Project A for Trial 2. Thin curves: Methods A
(marked by ∇), and B (◊). Thick curves: NN technique for p = 4 and p = 5.

Figure 6.15. Optimized frequency characteristics of |S11| in Project A for Trial 3. Thin curves: Methods A
(marked by ∇), B (◊), C (♦), and D (∨). Thick curves: NN technique for p = 4 and p = 5.

 49

Figure 6.16. Optimized frequency characteristics of |S11| in Project A for Trial 4. Thin curves: Methods A
(marked by ∇), B (◊), C (♦), and D (∨). Thick curves: NN technique for p = 4 and p = 5.

fail if this guess is not quite successful; in Table 6.12, MF (method fails) stands for such a failure.

For this reason, we show the results of 4 trials. It is seen that the RBF NN solution is independent

on the initial guess.

 The optimized solutions generated by the five methods are presented in Fig. 6.13-6.16.

Each of these four graphs represents the distinct initial guess of these trials.

Analysis of this comparison reveals the following observations. Among QW3D

Optimizers, the Powell Non-Gradient method looks most reliable. The other three techniques

failed in 1 out of 4 (25%) initial guesses. The Controlled Random Search and Evolutionary

Strategy have particular difficulties with some initial guess. The DFP Gradient Method finds the

 50

optimal solution by placing one variable (s) on the endpoint of its interval and not changing

another variable (p) at all. Therefore, we conclude that our optimization technique looks more

reliable and stable since it does not depend on any of these circumstances. The RBF NN

procedure with 64 and 125 samples has generated smaller values of |S11| at f0 compared with

almost all methods and trials.

 51

Chapter 7

Conclusion

In the present project, we propose an original, efficient and simple optimization technique based

on artificial neural networks and developed as a computational supplement for QuickWave-3D.

We have shown that, given the resources of today’s computers, such an approach can be

reasonably productive and serve a competent optimization tool in designing of various MW

systems. Our approach is characterized by high accuracy and efficiency. In addition, when

compared with the optimization routines in the QuickWave-3D package, this approach achieves

the improved results. This work contributes to the development of efficient and universal CAD

instruments suitable for optimization of various microwave systems and components.

 With computer hardware becoming faster and faster, methods such as this will become

much more practical. Therefore, we suppose that this method can only be improved in the coming

years.

 52

Appendix

This appendix supplies the core MATLAB scripts used to run the algorithm.

Rad_method is the main script. It first calls input data; ant_input is an example of

an input data script for Project B. Following this, rad_method calls Databasegetter.

Databasegetter is a script that communicates with QuickWave-3D‘s Editor and Simulator in

order to create a database.

 Databasegetter’s first step is to call paramaker. Paramaker creates a list of

points that will be used for the database from the input data. Upon this Databasegetter

communicates with QW3D Editor to update the project.

 The QW3D projects are completely parameterized *.udo files, created in such a way that

from Matlab the project can be modified to any desired geometric configuration. Several projects

of this sort were developed in [17]; in this work, we used the udo-scripts from [17] to perform

computations for Projects A to C in Chapter 6.

Then QW3D Simulator is called to run the project. A data file is saved into the project

folder and this process is repeated a specified number of times determined by the input data.

 53

 Matrixgetter is then called by rad_method. Matrixgetter opens each data

file and extracts the pertinent information. In the examples illustrated above we extract |S11| values

for varying frequencies.

 Then rad_method calls scalar. Scalar is a script that scales the input data (i.e.,

geometric variables) of the NN into normal intervals. After that rad_method creates and trains

a RBF NN from the database information.

 The RBF NN is then minimized with a least squares technique (MATLAB’s

lsqnonlin procedure) using a series of guesses because of predetermined limitation of the

method. Then the function rounder is used to round off the results of the minimized RBF NN

(i.e., geometric parameters). The geometric parameters are sent to opttest. Opttest tests the

validity of the supposed minimum by generating results from QW3D. Finally, the best optimized

solution is saved and the algorithm is completed.

 The presented MATLAB scripts are given below in the following subsections:

A. Rad_method

B. Databasegetter

C. Matrixgetter

D. Ant_input

E. Rounder

F. Scalar

G. Opttest

H. Paramaker

 54

A: Rad_method.m

function [bestmin, mins11, mse, e, neural_ans, suppose, bestopts,
f , net] = rad_method(project_name,div,fdiv,scalexmax)

%radial basis method
tout =cputime;

global s11 f vars keyf params

%load project%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
loading = [project_name,'_input'];
eval(loading)
%load project%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Database%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
params = rounder(params);
project_name
Databasegetter(params , project_name);
matrixgetter(params , project_name);
loading = ['load ',project_name,'data'];
eval(loading);

ex = cputime-tout
saving = ['save ',project_name,'_database',num2str(div)];
eval(saving)

%Database%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tout = cputime;

xmax = params(:,div);
xmin = params(:,1);

%Set upper and lower bounds for Least Squares
Minimization%%%%%%%%%%%%%
vars=vars';
scalexmin = -scalexmax;
params = scalar(params , scalexmax , scalexmin , xmax , xmin)
vars = scalar(vars , scalexmax , scalexmin , xmax , xmin);
lb = params(:,1);
ub = params(:,div);

for l = 1:length(params(:,1))
 A(l,:) = linspace(params(l,1) , params(l,div), 5);
end
middle = length(keyf)/2; middle = round(middle);

 55

%Least Squares Minimization Options%%%%%%%%%%%%%%%%%%%%%%%

qo=1;
mins11 = ones(length(keyf),1);
%Neural Network%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Extract Key Frequencies
x_t = ['['];
for pt = keyf
 pt
 [m, ind] = min(abs(f - pt));
 x_t = [x_t, ' s11(:,',num2str(ind),')'];
end
x_t = [x_t,']'];

%Extract Key Frequencies

%Inputs and Targets%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

inputs = vars;
targets = eval(x_t)';

%Strings to create NN%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:length(keyf)
 net = ['net', num2str(i) , ' = newrb(inputs,targets(',
num2str(i) ,',:));'];
 eval(net)

 siming = ['train(', num2str(i) ,',:) = sim(net', num2str(i)
,', inputs);'];
 eval(siming)
end

%Error: Mean Squared error%%%%%%%%%%%%%%%%%%%%%%%%%
for j=1:length(keyf)
 ies = ['ie(',num2str(j),') = sum((targets(:,',num2str(j),')
- train(:,',num2str(j),')).^2)/length(train);'];
 eval(ies)
end
% for j=1:3
% ie(j) = sum((targets(:,j) - train(:,j)).^2)/length(
train);
% end

e = sum(ie)/length(ie)

%Error: Mean Squared error%%%%%%%%%%%%%%%%%%%%%%

%Create fun function
fid = fopen('fun.m', 'wt');
x = ['function y = fun(x) '] ;

 56

globals = ['global '];funs = [' '];
for j=1:length(keyf)
 globals = [globals, ' net',num2str(j),' '];
 funs = [funs, ' y(',num2str(j),') = sim(net',num2str(j),',
x); '];
end
fprintf(fid,'%s',x);
fprintf(fid,'\n %s',globals);
fprintf(fid,'\n %s',funs);
fclose(fid);
clear fid globals funs x j

%Neural Network%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%TESTING THE Neural Network%%%%%%%%%%%%%%%%%%%%%%%%%%

x = paramaker([A(:,2) A(:,4)])';
for qo = 1:length(x(1,:))
 mini(:,qo) = lsqnonlin('fun',x(:,qo),lb,ub);
 realmini(:,qo) = scalar(mini(:,qo), xmax, xmin , scalexmax ,
scalexmin);
 %Optimization test%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 realmini(:,qo) = rounder(realmini(:,qo));
 [suppose(qo,:),opts11] = opttest(realmini(:,qo),
project_name, div, fdiv);

 %check with Neural Net
 neural_ans(qo,:) = fun(mini(:,qo));
 error(qo,:) = abs(neural_ans(qo,:) - suppose(qo,:));

 %Compare with Previous Optimal Solution
 if (suppose(qo,middle) <= mins11(middle)) &
(suppose(qo,middle) > 0.0001)
 mins11 = suppose(qo,:)';
 mins11
 nnmins11 = neural_ans(qo,:)';
 bestopts11 = opts11;
 bestmin = realmini(:,qo);
 end
 %%%%%%%%%%%%%%%%%%%%%%%%%%
 %Optimization test%%%%%%%%%%%%%%%%%%%%%%%%%%%
end

%TESTING THE Neural Network%%%%%%%%%%%%%%%%%%%%%%%%

%MSE OF Testing Procedure%%%%%%%%%%%%%%%%%%%%%%%

for j=1:3

 57

 init_mse(j) = sum((suppose(:,j) - neural_ans(:,j)).^2
)/length(neural_ans);
end
mse = sum(init_mse)/length(init_mse) ;
%MSE OF Testing Procedure%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(1)
plot(f,bestopts11,'k')
axis([min(f) max(f) 0 1])

[filler,five] = opttest(veronica, project_name , div, fdiv);
figure(2)
plot(f,bestopts11,'b')
hold on
plot(f,five,'r')
hold off
axis([min(f) max(f) 0 1])
title(['Comparison: Veronicas solution = red, neural sol =
blue'])

ex = cputime-tout

saving = ['save
',project_name,'div',num2str(div),'fdiv',num2str(fdiv)];
eval(saving)

 58

B: Databasegetter.m

function Databasegetter(params , project_name)

t = cputime;

%Quickwave Paths%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%SimulatorPath = 'c:\Program
Files\QWED\QW_3D\v21Xmas\Local\Qw_sim\bin\ker1.exe';
SimulatorPath = 'C:\Program
Files\QWED\QW_3D\v22rev1\Local\Qw_sim\bin\ker1.exe';
%EditorPath = ['c:\Program
Files\QWED\QW_3D\v21Xmas\Local\Qw_edi\bin\zed.exe'];
EditorPath = ['C:\Program
Files\QWED\QW_3D\v22rev1\Local\Qw_edi\bin\zed.exe'];

Simulator = SimulatorPath;
Editor = EditorPath;

%Quickwave Paths%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Project Input Data%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
get_inputs = [project_name, '_input_data'];
eval(get_inputs);

%Project Input Data%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Create function to make databasepoints

num_vars = length(params(:,1));
fid = fopen('paramaker.m', 'wt');
dats=[' '];command = ['points(k,:) = ['];
x = ['function points = paramaker(params) '] ; fprintf(fid,'%s
\n',x);
k = ['k = 1; ']; fprintf(fid,'%s \n',k);
for j=1:num_vars
 fors = ['for i',num2str(j),'=params(',num2str(j),',:) '];
fprintf(fid,'\n %s',fors);
 dats = [dats,' i',num2str(j),' '];
end
command = [command,dats,']; k=k+1;']; fprintf(fid,'\n
%s',command);
for j=1:num_vars
 ends = [' end ']; fprintf(fid,'\n %s',ends);
end
fclose(fid);
clear num_vars dats command x k j fors ends fid

%Create function to make databasepoints
points = paramaker(params);

 59

for i= 1:length(points(:,1))
 %Gives a vector of each of the parameters that quickwaves
will use
 idata = points(i,:);
 disp(idata);
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 %construct the whole string needed to call the editor
 ModifyProject = [' -p"',Project,'" -i',' -m',' -e',' -q'];
 LoadProject = [' -p"',Project,'" -i',' -m',' -
o',num2str(Iter),' -i',' -e',' -q'];
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 %construct the string needed to call the Simulator
 PerformSimulation = [' -t',' "', TaskerFile,'"'];
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 %save parameters into a params file needed for run ant.udo
 f = fopen(ParsFile, 'wt');
 fprintf(f, '%f ', idata);
 fclose(f);
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 %call Editor to modify the project
 run_qw1 =['!"',EditorPath,'"',ModifyProject];
 run_qw2 =['!"',EditorPath,'"',LoadProject];
 %Calls the editor to modify the project
 eval(run_qw1);
 eval(run_qw2);
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 % modify Tasker file %%%%%%%%%%%%%%%%%%%%%%%%%%%%
 fid = fopen(TaskerFile, 'r+');
 il = 0;
 while ~feof(fid)
 il = il +1;
 data = fscanf(fid,'%c',1);
 if ~isempty(data)
 TaskerCont(il) = data;
 end
 if il >13
 word = TaskerCont(il-12:il-1);
 if strcmp(word,'Save_Results') == 1
 point = il-1;
 end
 end

 end
 fclose(fid);

 60

 presFile = ['A'];
 for j=1:length(idata)
 presFile = [presFile, 'A',num2str(idata(j))];
 end
 presFile = ifdec(presFile);
 presFile = [presFile,DatExt];

 TaskerCont = [TaskerCont(1:point)];
 Filetype = ['QW_Pure'];
 fid = fopen(TaskerFile, 'w+');
 fprintf(fid,'%c',TaskerCont);
 fprintf(fid,'\n %s',presFile);
 fprintf(fid,'\n %s',Filetype);
 fclose(fid);
 % modify Tasker file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 % call Simulator with the modified tasker file
 run_qws =['!"',SimulatorPath,'"',PerformSimulation]

 eval(run_qws);
end

e = cputime-t

 61

C: Matrixgetter.m

function matrixgetter(params , project_name)

%first we have to set the initial data
%Gives the input for the specified project,

get_inputs = [project_name, '_input_data'];
eval(get_inputs);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Since the vector of frequencies is always the same we'll do it
above the loop

points = paramaker(params);
idata = points(1,:);
File = ['A'];
for j=1:length(idata)
 File = [File, 'A',num2str(idata(j))];
end
File = ifdec(File);
loading = ['load ',project_name,'/',File,DatExt];
eval(loading);
File = ifneg(File);
File = [project_name,'_',File];
x = [File,'(:,1)'];
f = eval(x);
f = f/10^9;
%%

for i= 1:length(points(:,1))

 %Gives a vector of each of the parameters that quickwaves
will use
 idata = points(i,:);
 %Loading and deleting each data file%%%%%%%%%%%%%%%%%%%%%%%
 File = ['A'];
 for j=1:length(idata)
 File = [File, 'A',num2str(idata(j))];
 end
 File = ifdec(File);
 loading = ['load ',project_name,'/',File,DatExt];
 eval(loading);
 deleting = ['delete ',project_name,'/',File,DatExt];
 eval(deleting);
 %Loading and deleting each data file%%%%%%%%%%%%%%%%%%%%%%%

 %Getting vectors of the s11 parameter%%%%%%%%%%%%%%%%%%%%%%
 File = ifneg(File);

 62

 File = [project_name,'_',File];
 y = [File,'(:,2)'];
 s11vector = eval(y);
 %Getting vectors of the s11 parameter%%%%%%%%%%%%%%%%%%%%%%

 %now we will make our vectors:
 %first is a matrix called variables; entailing the three
 %from the file name: Theta(t),s, and d in that order
 %first column theta, second s, and third d
 for l = 1:length(idata)
 vars(i,l) = idata(l);
 end

 %second is s parameters; each row represents the s parameters
 %for the first row of the variables matrix
 s11(i,:) = s11vector';

 clearing = ['clear ',File];
 eval(clearing);
end

%save workspace%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
saving = ['save ',project_name,'data s11 f vars'];
eval(saving)
%save workspace%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 63

D: Ant_input.m

(Sample Input File)

%ANT%%
%params row 1: Theta; row 2: slot; row 3: distance
keyf = [linspace(2.4, 2.5, fdiv)];

project_name = ['ant'];

params = [linspace(30 , 90, div); linspace(30 , 70,
div);linspace(30 , 120, div)];

%veronica = [52.45; 51.17; 33.62];
veronica = [63; 56; 118];
%ANT%%

 64

E: Rounder.m

function y = rounder(x)

trunc = 100;

x = trunc*x;
x = round(x);
y = x/trunc;

 65

F: Scalar.m

function x = scalar(y , xmax , xmin , ymax , ymin)

%This function will scale y into a the interval xmin xmax

if length(xmax) == 1 & length(xmin) == 1
 xmax = xmax*ones(length(y(:,1)),1);
 xmin = xmin*ones(length(y(:,1)),1);
end

if length(ymax) == 1 & length(ymin) == 1
 ymax = ymax*ones(length(y(:,1)),1);
 ymin = ymin*ones(length(y(:,1)),1);
end

for i = 1:length(y(:,1))
 for j = 1:length(y(1,:))
 x(i,j) = xmin(i) + (y(i,j) - ymin(i)) / (ymax(i) -
ymin(i)) * (xmax(i) - xmin(i));
 end
end

 66

G: Opttest.m

function [opts11 , s11, f] = opttest(dum , project_name, div,
fdiv)
dum
Databasegetter(dum , project_name);
matrixgetter(dum , project_name)
loading = ['load ',project_name,'data'];
eval(loading);

get_inputs = [project_name, '_input'];
eval(get_inputs);

opts11 = ['['];
for pt = keyf
 [m, ind] = min(abs(f - pt));
 opts11 = [opts11, ' s11(', num2str(ind),');'];
end
%%%

opts11 = [opts11,']'];
opts11 = eval(opts11)';

%plot(f,opts11)

 67

H: Paramaker.m

function points = paramaker(params)
k = 1;

 for i1=params(1,:)
 for i2=params(2,:)
 for i3=params(3,:)
 points(k,:) = [i1 i2 i3]; k=k+1;
 end
 end
 end

 68

Bibliography

1. Microwave StudioTM, CST, GmbH, Bad Nauheimer Str. 19, 64289 Darmstadt, Germany,

http://www.cst.de/.

2. QuickWave-3DTM, QWED, ul. Zwyciezcow 34/2, 03-938 Warsaw, Poland,

http://www.qwed.com.pl/.

3. V.V. Yakovlev, “Commercial EM codes suitable for mode-ling of microwave heating - a

comparative review,” In: U. van Reinen, et al, Eds., Scientific Computing in Electrical

Engineering, Lecture Notes in Computational Sciences and Engineering, vol. 18,

Springer Verlag, pp. 87-96, 2001.

4. V.V. Yakovlev, Examination of contemporary electromagnetic software capable of

modeling problems of microwave heating, In: Advances in Microwave and High-

Frequency Processing, Springer Verlag, 2002, 13 p.

5. J.W. Bandler, N. Georgieva, et al., “A generalized space-mapping tableau approach to

device modeling,” IEEE Trans. Microwave Theory Tech., vol. MTT-49, no 1, pp. 67-79,

Jan 2001.

 69

6. J.W. Bandler, M.H. Bakr, et al., “A hybrid aggressive space mapping algorithm for EM

optimization,” IEEE Trans. Microwave Theory Tech., vol. MTT-47, no 12, pp. 2440-

2440, Dec 1999.

7. J.W. Bandler, R.M., Biernacki, et al., “Yield-driven electromagnetic optimization via

mutlilevel multidimensional models,” IEEE Trans. Microwave Theory Tech., vol. MTT-

41, no. 12, pp. 2269-2278, Dec 1993.

8. F. Alessandri, M. Mongiardo, and R. Sorrentino, “New efficient full wave optimization

of microwave circuits by the adjoint network method,” IEEE Microwave Guided Wave

Lett., vol. 3, no 11, pp. 414-416, Nov 1993.

9. F. Alessandri, M. Dionigi, et al., “Rigorous and efficient fabrication-oriented CAD and

optimization of complex waveguide networks,” IEEE Trans. Microwave Theory Tech.,

vol. MTT-45, No 12, pp. 2366-2374, Dec 1997.

10. J.W. Bandler, J.E. Rayas-Sanchez, and Q.-J. Zhang, “Yield-driven electromagnetic

optimization via space mapping-based neuromodels,” Int. J. RF and Microwave CAE,

vol. 12, no 1, pp.79-89, 2002.

11. emTM, Sonnet Software, Inc., 1020 7th N. St., Suite 210, Liverpool, NY 13088,

http://www.sonnetusa.com/.

12. M.H. Bakr, J.W. Bandler, et al., “Neural space-mapping optimization for EM-based

design,” IEEE Trans. Microwave Theory Techn., vol. MTT-48, No 12, pp. 2307-2315,

Dec 2000.

 70

13. P.M. Watson, and K.C. Gupta, “EM-ANN models for microstrip vias and interconnects

in multilayer circuits”, IEEE Trans. Microwave Theory Techn., vol. MTT-44, no 12,

pp.2495-2503, Dec 1996.

14. HP-MDS, Hewlett-Packard Co., Santa Rosa, CA, 1996.

15. J. Purviance, and M. Meehan, “CAD for statistical analysis and design of microwave

circuits,” Int. J. RF and Microwave CAE, vol. 1, pp. 59-76, 1991.

16. P.M. Watson, G.L. Creech, and K.C. Gupta, “Knowledge based EM-ANN models for the

design of wide bandwidth CPW path/slot antennas,” 1999 IEEE MTT S Int. Microwave

Symp. Dig., pp. 2588-2591, June 1999.

17. V.A. Mechenova, Method of Efficient Optimization of Microwave Systems, M.S. Thesis,

Worcester Polytechnic Institute, Worcester, MA, 2002.

18. F. Wang, and Q.-J. Zhang, “Knowledge-Based Neural Models for Microwave Design”,

IEEE Transactions on Microwave Theory and Techniques, vol. 45, no 12, Dec 1997.

19. P.M. Watson, C. Cho, and K.C. Gupta, “Electromagnetic-artificial neural network model

for synthesis of physical dimensions for multiplayer asymmetric coupled transmission

structures,” Int. J. RF and Microwave CAE, vol. 9, pp. 175-186, 1999.

20. P. Burrascano, M. Dionigi, et al., “A neural network model for CAD optimization of

microwave filters,” 1998 IEEE MTT S Int. Microwave Symp. Dig., pp. 13-16, June 1998.

21. Hagan, M.T., Menhaj, M.B, “Training feedforward networks with the Marquardt

algorithm,” IEEE Trans. Neural Networks, vol. 5, no 6, pp. 989-993, Nov 1994.

 71

22. F. Wang, V.K. Devabhaktuni, et al, “Neural network structures and training algorithms

for RF and microwave applications,” Int. J. RF and Microwave CAE, vol. 9, pp. 216-240,

1999.

23. Coleman, T.F, Lu, Y., “An interior trust region approach for nonlinear minimization

Subject to Bounds,” SIAM Journal on Optimization, Vol. 6, No. 2, pp. 418-445, May

1996

24. Coleman, T.F., Li, Y., “On the convergence of reflective Newton methods for large-scale

nonlinear minimization subject to bounds”, Mathematical Programming, Vol. 67, No. 2,

pp. 189-224, 1994.

25. V.K. Devabhaktuni, M.C.E. Yagoub, et al, “Neural networks for microwave modeling:

model development issues and nonlinear modeling techniques,” Int. J. RF and Micro-

wave CAE, vol. 11, No 1, pp. 4-21, 2001.

26. R.E. Collin, Antennas and Radiowave Propagation, McGraw-Hill Book Co., 1987.

27. K.-L. Wu, and H. Wang, “A rigorous modal analysis of H-plane waveguide T-junction

loaded with a partial-height post for wide band applications,” IEEE Trans. Microwave

Theory Techn., vol. MTT-49, no 5, pp. 893-901, June 2001.

