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Abstract 

 

An original approach in microwave optimization, namely, a neural network procedure combined 

with the full-wave 3D electromagnetic simulator QuickWave-3D implemented a conformal FDTD 

method, is presented.  The radial-basis-function network is trained by simulated frequency 

characteristics of S-parameters and geometric data of the corresponding system.  High accuracy 

and computational efficiency of the procedure is illustrated for a waveguide bend, waveguide T-

junction with a post, and a slotted waveguide as a radiating element.   
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Chapter 1 

Introduction 

 

The modern trends towards production-oriented design and reduced time-to-market in the 

microwave (MW) industry require instruments assisting in accurate and fast design.  Efforts to 

lower the cost and reduce the weight/volume of the circuits have caused a keen interest of 

electronic and microwave engineers in new efficient computer-aided design (CAD) tools.  

 Recent extraordinary growth of productivity and capabilities of computer hardware has 

made comprehensive, fast, accurate, and reliable numerical modeling of microwave circuits 

possible.  Today, a number of pieces of modeling software allow one to get valuable data about 

the characteristics of the system prior to constructing a physical prototype.  For example, 

Microwave Studio (MWS) [1], the electromagnetic (EM) code based on Finite Integration Method, 

and Quick-Wave-3DTM (QW3D) [2], the conformal FDTD 3D EM simulator, have been recently 

identified among the most efficient and proficient full-wave simulators in the market [3, 4].   
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 However, a simple application of highly sophisticated computational tools for analysis of 

MW systems may not bring many direct recommendations for design implementation.  Practical 

problems may be associated with specific optimization goals, which cannot be addressed with the 

use of the general tools in the software packages.  This dictates the necessity of development of 

efficient optimization techniques for microwave modeling.  Efficient computational procedures 

linked with advanced EM solvers should become powerful and flexible CAD tools revolutionizing 

the design of MW systems.  

 Several approaches based on the space mapping technique [5, 6] and a few other methods 

[7-9] form a group of modern advanced approaches to MW optimization.  The techniques are 

applicable to a variety of microwave devices and demonstrate good performance in a number of 

practical situations.  However, the extremely fast development of the MW industry encourages 

further research in this area towards resolution of many issues in accuracy, reliability, and 

computational resources.  

 One of the most important questions here comes up from the following.  Some 

optimization techniques may work particularly well if joined with universal modeling software 

generating results of analysis of the MW structure.  With the simulators applicable to a majority of 

systems and components in the microwave industry, such combinations could be highly universal 

instruments in the automated design.  The emerging feasibility and practicality of inclusion of 

resourceful full-wave numerical simulators in optimization and automated design of MW structure 

time has been recently emphasized in [10].   
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 In the meantime, so far, examples of optimization with involvement of full-wave 

modeling software are limited to just a few cases: e.g., emTM by Sonnet Software [10] was used 

with the space mapping optimizations [5, 6, 10, 12], specifically to handle circuits containing 

complex subcircuits or components whose simulation requires significant computational effort.   

The approach proposed in [13] operates in connection with HP-MDSTM [14].  It seems that many 

researchers are not concerned with generalization of their optimization schemes, but rather deal 

with the detailed physics-EM models and empirical approaches (see, e.g., [15, 16]).  This can be 

explained by the fact that the inclusion of full-wave simulators in optimization and automated 

design has been traditionally considered unfeasible given the high cost in corresponding 

computational effort.  

Meanwhile, it appears that with the current progress in computer hardware, packages like 

MWS and QW3D having expanded capabilities and characterized by high accuracy deserve a 

careful look at them as analysis tools backing an efficient MW optimization.  Even if the “built-in” 

optimization options available in these simulators may appear to be general-purpose and slowly 

converging procedures characterized by heavy demand on computer resources, this still does not 

mean that, in case of a really efficient accompanying optimization technique, a truly competent 

solution cannot be obtained.  

So far, the only known attempt to connect the advanced full-wave simulator with an 

efficient optimization procedure was made in [17], where the technique based on response surface 

methodology (RSM) and the Sequential Quadratic Programming (SQP) method for constrained 
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optimization was implemented to run with QW3D.  The concept behind this approach was 

generated by a condition of efficient operation of microwave heating systems: the method 

intentionally ignores possible resonance’s of the response surface near the operating frequency.  

Being efficient for this particular class of MW devices, this approach has a drawback for others, 

which are frequently highly nonlinear, so that a quadratic function, as used in [17], could not 

always approximate a hypersurface with sufficient accuracy.  The computer implementation of 

this method is still characterized by a notable CPU time.  

To overcome the stated shortcomings, for the first time, the present paper proposes an 

efficient and simple optimization technique based on artificial neural networks (NN) made as a 

computational supplement for QW3D.  We show that, given the resources of today’s computers, 

such an approach can be reasonably productive and serve as a competent optimization tool in 

designing of various MW systems.  
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Chapter 2 

Background  

2.1  Electromagnetic Issues 

Development of specialized efficient optimization algorithms for QW3D implemented the 3D 

conformal FDTD method requires dealing with many issues in numerical mathematics, 

programming, and computing.  This project is focused on the relevant aspects in computational 

mathematics, but it needs some basic concept of microwave circuit analysis.   

 The concept of a scattering (S) matrix is one of the fundamental concepts of 

electromagnetics.  It may be very convenient in analysis of characteristics of many electronic and 

communication devices as well as microwave circuits.  Many important characteristics of MW 

system could be successfully described with the use of S-matrix terminology.  Although it is 

applicable to any number of ports, in the illustration below we show a 2-port system for which two 

S-parameters can be introduced as follows:  



 6

 

Figure 2.1.  S-parameter representation of a 2-port system 
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Referring to Fig. 2.1, S11 is called the reflective coefficient.  In accordance with (2.1a), if b1 is 

equal to a1, then the energy going in comes out, so S11 = 1, or, in other words, there would be 

100%-reflection.  S21 is the transmission coefficient describing the transmission of a field passing 

through the system and leaving it at Port 2.  

 As we see from an illustrative graph in Fig. 2.2, for every frequency, there is a distinct S11 

coefficient.  An important idea throughout the present study was that the microwave systems 

typically operate in some frequency ranges.  Therefore, we are interested in the neighborhood of  
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Figure 2.2.  Conventional frequency characteristic of the magnitude of S11.  

 
 
an operating frequency f0.  This is illustrated by Fig. 2.2 showing f0 at 2.45 GHz and the adjacent 

frequency range between f1 = 2.4 and f2 = 2.5 GHz, provided that f0 ∈ (f1, f2).  

2.2 Basics of Neural Networks 

As mentioned earlier this project utilizes NNs.  An artificial neural network is a massively 

distributed parallel processor that has a natural propensity for storing experiential knowledge and 

making it available for use.  It resembles the brain since knowledge is acquired by the network 

through a learning process, and inter-neuron connection strengths are used to store the knowledge. 

Inputs of the NN are given to the network and processed by simple processors (units, 

nodes, neurons) in parallel.  Each processor holds a limited amount of memory.  Unidirectional 
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channels carry numerical data connecting these processors, in such a way that the NN can be 

viewed as a simple function mapping a set:  

 

 

Figure 2.3.  Model of a single neuron.  

 

( ) YXF →                                                              (2.1) 

 A graphical representation of a neuron’s model is shown in Fig. 2.3.  There is an initial 

vector x given to the network which is multiplied by a weight matrix wjk and added to a bias vector 

bj, where j is the number of hidden neurons and k is the number of input neurons.  The result of 

this is processed by g called a transfer function and finally arrives at the output of the layer.   

 Knowledge is programmed into the neural network by training runs.  The neural network 

is trained by giving the NN a series of arguments x with known outputs y.  Through a training 

algorithm weights and biases converge such that we have the following relation  

( ) ybwxF i
j

i
jkn →,;                                                      (2.2) 

where n denotes the nth training iteration, and i represents the layer. 
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2.3  Neural Networks in Microwave Modeling 

Neural networks are known as offering the ability of skillfully approximating highly nonlinear 

systems with a generally small amount of data and capable of competent solving problems of 

control and optimization.  NNs were introduced into computational electromagnetics in the 1990s, 

and, since that time, their typical application has been associated with the networks representing 

(or directly imitating) the modeled devices and dealing with their physical/electrical 

characteristics.  Sets of solution samples for these networks have been provided by 

physical/empirical models, or measured data.  When developed appropriately, these models are 

convenient and accurate, but applicable only to the particular devices, so their usefulness is rather 

limited.  When used with universal software, neural networks can be put in the background of an 

algorithm appropriately processing simulator’s input/output data and generating the optimal 

solution for virtually any system to which the software is applicable.  

 QW3D is well suitable for building databases required for efficient operation of the NN-

based procedures.  This simulator is highly compatible with MATLAB, which seems to be a 

convenient environment for hosting NN algorithms.  A master program could conveniently control 

operations of the entire computational structure.  

 Knowledge-based neural networks (KBNN) reduce EM simulator’s involvement; two 

examples are [18] and [16].  KBNN are similar to that of an ordinary NN model except there is a 

layer or series of layers in which knowledge of the MW system is used.  In [18], a detailed 



 10

discussion shows how to design a model, which utilizes possible functions known on the boundary 

and throughout the space.   

 KBNN and NN differ in a subtle way.  KBNN are more specified to a narrow model and 

rather small generalization while NN uses a universal approach.  From the NN’s point of view, 

there is only data coming in or out.  This is in contrast to KBNN where the neural network is 

programmed in relations and/or formulas specified for the problem.  

 There are other types of neural networks, which are used to optimize a MW system.  

There are Space Mapping Based Neural Networks (SMNN) [12].  They efficiently use an EM 

simulator by creating a coarse NN and mapping it to a fine NN without having to create a large 

database for the fine NN.  This mapping is produced by a third neural network that maps only the 

design variables.  

 Another approach to NN optimization is a neural network called Synthesis Neural 

Networks (SNN) [10].  The SNN is an approach, which is an inverse with respect to the mentioned 

above.  In this technique, geometric parameters are the outputs of systems and the inputs are the S-

parameters.  It has been found that it is difficult to get an SNN converged due to the fact that 

multiple geometries may results in the same S-parameters.  In [19], an algorithm using a 

combination of analysis and synthesis NNs to optimize a MW system was successfully 

implemented.   

 A major issue throughout all the papers reviewed in the course of this project is 

efficiency.  Even though EM simulators give accurate and reliable results, the question is how can 
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we use those simulators as little as possible and still have an accurate model.  Several papers have 

referred to the time needed to simulate data for neural networks as a major drawback for NNs 

using EM simulators [7, 20].  It should be clearly noted that the methods like KBNN and SMNN 

are ingenious attempts at minimizing computing time.  We have seen that with the rapid growth 

and efficiency of computers this is becoming less and less of a problem.   

 To summarize the introductory part, it should be emphasized that at the initial stage of the 

project we looked through much of the most recent works in microwave modeling, and have found 

that optimization using NNs is still a field of research with much room for growth.  The approach 

used in this project includes creation of a database, development of a neural network, and 

operations towards getting an optimal solution.  We attempt to show that it is now feasible to use a 

straightforward approach combining a universal full-wave simulator with an efficient optimization 

technique and maintain efficiency and accuracy of computation.  This work addresses a universal 

approach to MW optimization with the goal to be able to expand the range of the microwave 

systems to which our method is applicable. 
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Chapter 3 

Analysis 

3.1  Statement of the Problem 

 

Let 

T
mxxxfX ],...,,,[ 21=

r
                                                    (3.1) 

be a vector containing m (geometrical) parameters of a given device.  In (3.1), f is frequency.  We 

extract f from X in the following manner: 

T
qqij nqYfSY ]...,,2,1,[)( ===

rr
,                                          (3.2) 

where Y is a vector containing the response of the device under consideration (e.g., S-parameters 

of a p-port device, i, j = 1, …, p).  In the reality, the EM problem is: 

)(XFY
rr

=                                                             (3.3) 

Equation (3.3) can be modeled by training a NN through a set of sample pairs 

( ){ }DkZX kk ...,,2,1,, =
rr

                                                 (3.4) 
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where Xk, Zk, are m- and n- dimensional vectors representing the kth sample of X and Z 

respectively, and D is the number of samples of X and Z.  Thus we can view Zk as the following: 

)()( kkkk XFYXEMsimZ
rrrr

=≈=   for  k = 1, 2, …, D                            (3.5)  

where EMsim denotes an operator which means the sample of S-parameters Zk is generated by 

numerical simulations given the geometrical parameters Xk.  The NN model for (3.3) is 

),,( bWXGY
rrrr

=                                                            (3.6) 

where W and b are the parameters of the NN model (weight and bias vectors), and X and Y are the 

input and output of the neural model.   

 Definition of W and b and how Y is computed in (3.6) determines the structure of the NN.  

Equation (3.6) represents the original problem of (3.3) when the neural model is trained by data in 

(3.4).  

The training problem is described as a determination of W and b such that the mean 

square error between the NN output Y and the desired output Z is minimized: 

( )∑
=

−=
D

k
kllk ZbWXG

D
bWE

1

2
),,(1),(

rrrr
                                         (3.7) 

Once trained, the NN model can be used for predicting the output values of (3.3): 

),,( OPTOPT bWXGY
rrrr

≈                                                    (3.8) 

 

 



 14

3.2  Feedforward MLP NN 

 

For the class of MW optimization problems addressed in this project, we consider implementation 

with two neural network structures.  The first of these was a feedforward Multilayer Perceptron 

(MLP) NN with training according to Levenberg-Marquardt optimization.  The second was a 

Radial Basis Function (RBF) network.  We start with a review of basic ideas of the MLP 

approach.  

 The first layer has weights coming from the input.  Each following layer has a weight 

coming from the previous layer.  The last layer is the network output.  Each layer has biases 

imposed upon it.   

In many typical problems, a two-layer MLP is used.  This means that the input layer is 

layer zero followed by a hidden layer of neurons (layer one), and the network output is layer two.  

Fig. 3.1 shows this simple structure.  We use the hyperbolic tangent as the first transfer function 

and a linear function as the second one.  

 The linear function defined as  

( ) xxpl = .                                                               (3.9) 

is illustration in Fig 3.2.  The hyperbolic tangent function is presented as: 

( ) ( )
( )

( )
( )xx

xx

ee
ee

x
xx

−

−

+
−

==
cosh
sinhtanh                                                 (3.10) 

The graph of (3.10) is shown in Fig. 3.3. 
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Figure 3.1: Layers of a neural network 

 

 
Figure 3.2:  Linear function 

 

 

Figure 3.3:  Hyperbolic tangent function 
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The neural network can be described in the following single equation: 

( )( )( ) ndnhdhmdhmnh fSbbAwwpl )(tanh 11
2112 =++                               (3.11) 

A simpler way of looking at (3.11) is its interpretation at one layer at a time: 

( ) hdhmdhm BbAw =+ 11tanh                                              (3.12) 

( ) ( )nsnhsnh fSbBwpl 11
22 =+                                             (3.13) 

 Therefore, in our NN, we have m inputs, d samples, h hidden neurons, and n outputs.  In 

(3.12) and (3.13), hmw1  and nhw2  represent weight matrices for the 0th and 1st layer of the NN.  

There are also biases for each layer hb1  and nb 2 .   

The function representing the neural network as (3.11) can be expressed in combination 

with (3.8) as follows:  

( )( )( )nhdhmdhmnhOPTOPT bbAwwplbWXGY 2112 tanh),,( ++=≈
rrrr

             (3.14) 

Training a Neural Network 

As stated above, for NN training, we use the Levenberg-Marquardt method, which has a similar 

form to that of Newton’s Method.  The Hessian is approximated by the following form: 

JJH T=                                                            (3.15) 

where J is the Jacobian matrix.  The gradient is computed as 

EJg T=     (3.16) 
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where E  is a vector of the network error.  The Jacobian is computed by the general 

backpropogation technique.  The Levenberg-Marquardt algorithm uses the following iterative 

steps for updates: 

[ ] EJIJJxx TT
kk

1
1

−
+ +−= µ                                              (3.17) 

When the scalar µ is zero, we reduce the algorithm to regular Newton’s Method.  When µ is large, 

the method becomes gradient descent method with a small step size.  Since Newton’s Method 

converges quicker near an error minimum, the goal of this algorithm is to decrease µ, so that it 

converges to Newton’s Method.   

 It has been shown in literature, specifically in [21], that the Levenberg-Marquardt 

algorithm is much more efficient than the conjugate gradient algorithm and the variable learning 

rate algorithm.  Therefore it is frequently used in implementations for the MLP NN.   

 

3.3 RBF NN 

 
Radial basis function neural networks have similar capabilities to that of MLP NNs.  The 

difference is that the RBF approaches the problem as a function approximation problem [22].  

 The structure of a radial basis neuron is illustrated in Fig 3.4.  The procedure starts with a 

vector of inputs.  Then the distance between the inputs and the vector of weights is calculated, 

multiplied by the vector b and sent to  the  radial  function.   This  can  be  expressed  as a function 
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Figure 3.4:  Radial basis neuron 

 

 

Figure 3.5:  The Gaussian radial basis function 

 

( )bpwradbasa |||| −=                                                   (3.18) 

The commonly used radial basis activation functions [22] are the multiquadratic function 

and the Gaussian function given by 

2
)( aearadbas −= ,                                                     (3.19) 

and illustrated in Fig 3.5. 
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The architecture of the entire RBF network consists of two layers.  The first layer is a 

hidden layer of radial basis neurons and the second layer is a linear layer – the same as used in the 

second layer of the feedforward MLP NN.   

 The motivation with a radial basis network is quite simple.  The closer an input is to a 

weight, the closer that value is to zero.  Thus going through the RBF that node’s result will be 

close to one.  Therefore, it will have a larger affect on the network.   

 There are two types of radial basis networks are used for testing.  The first of these is a 

zero training error network.  Given m inputs, m radial basis neurons are created.  Therefore, there 

is no error for the network training because each neuron correctly detects each input.  The 

drawback of this approach is that there is a large number of inputs/neurons.   

 The second approach is as follows.  Initially, the radial basis layer has no neurons.  The 

following steps are repeated until the network’s mean squared error (MSE) falls below a specified 

goal:  

 1.  The network is simulated. 

 2.  The input vector with the greatest error is found. 

 3.  A radial basis neuron is added with weights equal to that vector. 

 4.  The linear layer weights are redesigned to minimize error. 

Once the MSE is below a certain limit, the network is said to be trained and we proceed to 

minimize the RBF NN.  
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Resulted from the analysis of data, the RBF approach has been chosen for 

implementation in the computational procedure developed in this project.  Several trials were 

tested with the zero training error approach, but it has been found that this method was insufficient 

for our needs because of a large number of inputs, which may not always properly define the 

network.  For this reason, the second type of RBF training has been implemented in the 

computational procedure.  

 

3.4  Optimization Method 

 
We consider the optimization problem as follows: find a configuration of the structure such that a 

magnitude of an S-parameter under consideration is less or larger than the assigned level (S0) in 

the frequency range (f1, f2) around the operating frequency f0 (f1 < f0 < f2).  |Smn| is a multivariable 

function of frequency f and system parameters X = [X1 X2 … Xm]T which becomes an objective 

function of the optimal design, and S0 and (f1, f2) are interpreted as the relevant constraints.  A 

representation of this for a specific S-parameter, S11, is shown in Fig 3.6.   

 

Least Squares Method 

After a NN is created and trained, it can be defined as function G represented by (3.8).  Least 

squares minimization technique can be used to determine its minimum.  The algorithm 

implements a subspace trust region method and is based on the interior-reflective Newton method  
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Figure 3.6.  Conventional frequency characteristic of |S11| in the constrained optimization problem 

 

described in [23, 24].  Particularly, it is shown in [24] that this technique is globally and 

quadratically convergent.   

We consider the following problem: 

( ) ( ) ,
2
1

2
1min 22

2 ∑=
∈ i

i
Rx

xGxG
n

  uxl ≤≤                                        (3.20) 

where nRl )}({ −∞∪∈ , nRu )}({ ∞∪∈ , ul < and mn RRG →: .  This algorithm is an iterative 

procedure where kkk xxs −= +1  is an approximate solution to a quadratic subproblem:  

( )






 ∆≤+≡

∈
kkk

TT
k

Rs
sDsBssgs

n
:

2
1min ψ                                 (3.21) 

With gk defined as ( )kk xGg ∇≡ , kB  is a symmetric approximation to the Hessian matrix 

( )kxG2∇ , kD  is a scaling matrix, and k∆  is a positive scalar representing the trust region size.   
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 The basic idea of the algorithm above is to approximate the function G(x) with a simpler 

function ψ(s) which basically reflects the behavior of G(x) in a neighborhood k∆  around the point 

x.  A trial step s is computed to minimize the function over k∆ .  Therefore, the current point is 

updated as (x + s) if G(x + s) < G(x); otherwise, the current point is unchanged and the trust region 

is shrunk.  The method iterates and quadratically approaches a minimum value.   

 The algorithm returns a minimum corresponding to the geometrical parameters of size m.  

This method does not necessarily return a global minimum.  Therefore, multiple guesses were 

used throughout the domain to increase the probability of finding the global minimum.   

Getting local optimal solutions in our analysis does not seem to be a drawback.  For a 

majority of applied MW devices, it is enough to fulfill the goals of the constrained optimization 

problem formulated in the beginning of this section without guaranteeing that the obtained 

solution corresponds to a global minimum.   
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Chapter 4 

Neural Model 

 
After a series of experiments with various structures of standard feedforward neural networks, we 

have constructed the Radial Basis Function network with the Gaussian activation function.  A 

suitability of the RBF NN for our problem is conditioned by their capability of faster than 

multiplayer perceptron (MLP) learning and low sensitivity to the order in which training data are 

presented [22].   

 The chosen basic NN structure shown in Fig. 4.1 possesses m inputs in accordance with 

the number of the system parameters to be optimized and one output associated with the value of 

Sij(fk) obtained from the EM solver.  The entire network consists of n distinct NNs corresponding 

to a particular frequency; n here is determined by the number of approximating points in (f1, f2).  

For many practical scenarios in MW optimization, we do not expect n to be a large number, so the 

choice of the RBF network suited, compared to MLP, for problems with smaller number of inputs 

[22], appears to be particularly reasonable.  
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Figure 4.1: Outline of the RBF NN used in the algorithm. 

 

Figure 4.2:  Uniform grid of samples from the database for a 90o waveguide bend (see Chapter 6.1).  

 

 Frequency characteristics of S-parameters obtained in FDTD simulations performed by 

QW3D compose the network database.  In order to have the optimization procedure suitable for a 

variety of MW systems, we use uniform grid sampling giving no preference to any particular 

subregions of the input space.  An illustration of this is shown in Fig. 4.2.   
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 In MW applications, scaling is regarded highly valuable operation since the order of 

magnitude of input parameter values can be very different [25], so making the problem better 

conditioned for training and thus helping the network with learning process, we apply linear 

scaling of data samples on the input parameters from the database in accordance with the 

following formula:  

( ) ( )minmax
minmax

min
min xx

xx
xxxxD −
−

−
+=                                        (4.1) 
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Chapter 5 

Implementation 

5.1  Overview 

The algorithm has been implemented in MATLAB 6 R12 environment.  The master program 

controls operations of QW3D’s Editor and Simulator, manages processing and transferring data, 

communicates with appropriate procedures from the MATLAB Neural Network and Optimization 

Toolboxes, and conducts required computations.  The project consists of five basic steps: 

specification of input parameters, database creation, neural network construction and training, 

minimization of the NN function approximation (3.8), and choice of the best geometry and 

corresponding frequency characteristic of |Sij|.  A general layout of the algorithm can be seen in 

Fig. 5.1.  The following description of the algorithm is given for i = j = 1.  

The first step is implemented in the script rad_method (see Appendix, part A), which 

loads the input data for a specific project (e.g., ant_input presented in Appendix, part D).  This 
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Figure 5.1:  Flow chart of the algorithm for optimization of the reflection coefficient |S11| 

 

input data holds information about frequencies range and the matrix of points to be taken for the 

database.   

5.2  Creation of the Database  

After initial parameters have been chosen, the database is built by calling Databasegetter 

(see Appendix, part B).  The latter starts by creating a list of points by calling the script 

paramaker (Appendix, part H) made from the matrix of bounds of the given parameters.  

Throughout the implementation of this project we choose equal number of points for each 

variable.  Although the program is written in such a way it can accept any number of geometric 

variables, for each example illustrated in this project, there were only three variables used.  
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Therefore, the parameter matrix is of the form 3 by p, where p is the number of points for each 

parameter, and the list of the database points is of size 3 by p3.  

Then Databasegetter forms a loop of the parameter list.  For each specified three 

points ( )iii xxx 321 ,, , we first call the QuickWave-3D’s Editor and modify the project so that we will 

actually simulate the correctly specified microwave system.  Following the modification of the 

system and saving the project file, we analyze the Tasker file, *.ta3, which specifies the operating 

frequency f0, the number of iterations, and the name of data file to be saved.   

The next step is to call the Simulator.  The latter takes the Tasker file and runs the project 

for the specified number of iterations.  Each project converges at a different speed, so the user 

needs to decide the correct number of iterations to use; this is normally made by a simple 

inspection.  After the said number of iterations is reached, the Simulator saves the results of S11 

into a file in the project directory.   

After the Simulator has computed all of the samples, another Matlab script called 

matrixgetter (see Appendix, part C) is called.  Matrixgetter assembles all of the 

information into a convenient format.   

Matrixgetter opens one file at a time and takes the second column of the file 

containing the S11 data obtained from the EM simulator for a number of points in a specific 

frequency range.  After data is extracted from each file, all the data is saved into a *.mat file.  The 

mat-file consists of two matrices and one vector, vars (size 3 by S), f (size n), and S11 (size S 

by n).   
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Figure 5.2.  Principle steps in Databasegetter and Matrixgetter 

 

At this point, we have a database consisting of p3 = S points and having a simple format 

to be used in the following steps.  Fig. 5.2 presents a flowchart of the operations performed in 

scripts Databasegetter and Matrixgetter:   

5.3  Construction and Training of Radial Basis Network 

The next step in the program is constructing the neural network.  The first step in this process is 

scaling, specifically linear scaling in accordance with (4.1).  Through the analysis it was seen that 

only certain intervals of inputs into RBF NN converge.  To specify the optimal interval at which 

the data are given to the network, a series of computational experiments is required.  The Matlab 

script called scalar (see Appendix, part F) is responsible for scaling.   
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The implemented procedure of scaling can be described as follows.  Given a matrix, or a 

vector, and the corresponding minimum and maximum values of both its inputs and outputs, the 

function returns the scaled matrix or vector.  That is, for matrix params (geometric parameters) 

with corresponding input and output maxima and minima, the function scalar returns a matrix 

scaled_params (input to the RBF NN).  This can be numerically illustrated as: 

params: 
















120906030
7066.5633.4330
90705030

; 

inputs: 








303030:min

1207090:max ;  output: 







−−− 333:min
333:max ; 

scaled_params: 
















−−
−−
−−

3113
3113
3113

. 

 Once the matrices vars and params have been scaled, they are used in rad_method.  

This script organizes the entire process; it also creates and trains the neural network.  The first step 

is to extract the specified frequencies corresponding to the S11 values from the matrix S11.  

 The matrix ouputs is extracted from S11 with the dimensions n by S, where S is the 

number of samples.  The n rows of this matrix correspond to the n chosen frequencies.  The matrix 

inputs is given by the scaled vars matrix.  Inputs has dimension m by S, in which m 

represents the number of geometric variables.  In the examples considered in this project, n = m = 

3.   
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5.2 Optimization and Comparison 

When the network is trained, we take several initial guesses and minimize function G with the 

MATLAB’s least square method’s algorithm lsqnonlin.  Due to the fact that our minimization 

technique does not guarantee the global minimum, we choose two values for each of m geometric 

parameter.  The collection of these values is, therefore, equivalent to 2m guesses.  The results from 

the minimization procedure yield possible optimized geometric values.  Numerically, the output 

data generally have many decimal places.  Since in engineering practice MW systems are 

normally described in millimeters, we introduce the script rounder (see Appendix, part E), 

which rounds off to a specified decimal place so that the results are more meaningful.   

 Then these geometric values are passed to the opttest script (Appendix, part G).  This 

one runs QW3D and tests the value.  If the results of simulation are the minimum of the other 

optimized guesses, then we save the geometric and S-parameters, and have our solution.  
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Chapter 6 

Illustrations 

 

The described computational procedure has been applied to optimize geometrical parameters of 

several MW components – from a waveguide structure through an antenna to MW heating 

devices.  In this Chapter, we present the detailed results for three particular constructions.  

6.1  Microwave Systems  

In this section, we present the geometric shapes and constrained parameters of the microwave 

devices considered in this project.  In each case, minimization of |S11| being a function of 

frequency and three geometric parameters was the goal.   

Project A: 90° Waveguide Bend 

The first scenario, a 90o  23 x 11.5 mm waveguide non-smooth bend, is the simplest example that 

we used, so, from the computational point of view, simulation of the model of this project was 

quickest.   
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Figure 6.1:  Geometry of Project A 

 
 
 As one can see in Fig. 6.1, the waveguide redirects the path of the EM field from the top 

left exiting in the bottom right.  In the optimization procedure we minimize |S11|, i.e., the 

reflections generated by the non-regular cross-sections along the direction of propagation.  The 

minimized S11 results in the maximized the transmission of the field through the waveguide bend.  

Table 6.1 contains the geometric variables of the bend and the corresponding ranges.  As 

for the frequency range, it was chosen to be f ∈ (9, 12 GHz).  We assume that n = 3, i.e., we 

minimize S11(f) at the points f1, f0, f2.  The operating frequency f0 is 10.5 GHz.   

 

Table 6.1: Variables of Project A (Fig. 6.1)  
 

Variable Range 

s 1 ≤ s ≤ 15 mm 

p -8 ≤ p ≤ 8 mm 

m 1 ≤ m ≤ 9 mm 
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Figure 6.2.  Geometry of Project B. 
 

Project B: Slotted Waveguide  

This project is a waveguide-fed slot-antenna array.  It has been used as resonant and traveling-

wave antennas in many ground-based and airborne radar systems for many years [26].  It is made 

up of five narrow inclined slots.  The full description of the structure could be given by 5 

parameters shown in Fig. 6.2.  We consider this antenna to be based on the rectangular waveguide 

WR430 (86 x 43 mm) and assume that the configuration of each slot is not changed (w = 8 mm, l 

= 65 mm)  

The operating frequency for this project is f0 = 2.45 GHz, and we optimize the S11 

characteristic in the interval (f1, f2) = (2.4, 2.5 GHz). 

 

Table 6.2: Variable of Project B (Fig. 6.2) 
 

Variable Range 

θ  20° ≤ θ ≤ 90° 

s  30 ≤ s ≤ 70 mm 

d  30 ≤ d ≤ 120 mm 
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Figure 6.3.  Geometry of Project C 

 
 
Project C: Waveguide T-junction with a Post 

This is a typical junction of rectangular waveguides in which a post plays the role of the matching 

element [27].  It is located along the central line of the input waveguide.  We analyze a junction of 

the waveguides WR75 (19.05 x 9.53mm).  The considered construction is characterized by three 

geometric parameters outlined in Fig. 6.3.  

The operating frequency for this project is f0 = 12.5 GHz, and (f1, f2) = (11, 14 GHz). 

 

Table 6.3: Variable of Project C (Fig. 6.3) 
 

Variable Range 

r  0.5 ≤ r ≤ 1.5mm 

h  4 ≤ h ≤ 8mm 

s  -6 ≤ s ≤ 6mm 
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6.2   Scaling 

 

Scaling was implemented in order to find a optimal range for RBF NN inputs for each of the 

analyzed projects.  For Projects A to C, scaling was implemented for varying ranges [-r, r] with 

scaling parameter r ranging from 1 to 20 with inspection of the generated mean square error 

(MSE).  From Fig. 6.4, a, it is seen that MSE of the RBF NN has a minimum in the interval (2, 3) 

for all three projects.  

We also ran another test in which we reduced our search range to the interval of [1.75, 

3.25] taking again 20 points of testing.  Fig. 6.4, b represents the results from this test.  We found 

that the minimum is not clearly defined in this interval.  Thus, when optimizing configurations of 

the systems in Project A to C, an optimal scaling interval was chosen to be r = 3.  

 

6.3   Accuracy  

 

The accuracy of the presented approach is illustrated by the results obtained for Project A.  

 Fig. 6.5 is the graph of the S11 parameter computed by QW3D assuming that two 

geometric parameters m and s vary and one is held constant (p = 0).  Frequency is also constant at 

the operating frequency of f0 = 10.5 GHz.  We have taken a 30 by 30 point area meaning 900 runs 

of QW3D.  We view this surface as exact, and intend to compare it with the outputs of the RBF 

NN.  
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(a) 

 

(b) 

Figure 6.4.  RBF NN mean square error for varying scaling parameter 1 ≤ r ≤ 20 (a) and 1.75 ≤ r ≤ 4.25 (b) 
for Projects A (1), B (2), and C (3). 
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 The surface in Fig 6.6 shows that with p = 3 (27 point database), our method does not 

converge well as compared to the exact solution (Fig. 6.5).  The result generated  by  the  64  point  

 

Figure 6.5.  QW3D-generated values of |S11| for Project A 

 

Figure 6.6.  RBF NN results for p = 3 (Project A) 
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database (p = 4) and shown in Fig 6.7 resembles the graph in Fig. 6.5 moderately well.  Fig. 6.8 

corresponding to p = 5 (125 points database) seems to be the most accurate of the three.  

 

Figure 6.7.  RBF NN results for p = 4 (Project A) 

 

Figure 6.8.  RBF NN results for p = 5 (Project A) 
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Fig. 6.9 represents the absolute value of the difference between the graphs in Figs. 6.5 

and 6.8.   We  see  that  the  maximum  error  is  below 0.1 across the entire domain that the neural 

 
Figure 6.9.  Absolute value of error in Project A for p = 5 

 

network was approximated for.  The mean squared error for the three cases presented above is 

shown in Table 6.4.  

 Quality of training of the used RBF NN was checked for the different number of training 

samples in the database.  For Projects A to C, mean square error is quite low even for small 

number of training samples.  The comparison of RBF-NN-generated results with the accurate 

QW3D simulation can be estimated as fairly acceptable.  

 
 

Table 6.4. Testing Error (MSE) of the Developed RBF NN 
 

 Database: # of samples 
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Project 27 64 125 

A < 0.001 0.005 0.016 

B 0.005 0.002 0.003 

C 0.001 0.002 0.001 

6.4  Optimization 

For each project, the optimal solutions have been obtained with the use of the databases of 

different size.  The objective function was minimized in the frequency range, specified by f1 and f2 

(their values are presented below in the graphs of Figs. 6.10-6.12), whereas the limiting value S0 

has not been explicitly assigned; the characteristic was rather forced to be within the range of (f1, 

f2) as small as possible.  

 Table 6.5 contains the results for the waveguide bend: the optimized values of |S11| for the 

three specified points in the frequency range.  The operating frequency represents the midpoint of 

the interval.  Three sets of the optimized geometric parameters of the waveguide bend (Project A) 

are presented in Table 6.6 for the databases of different sizes (27, 64, 125 samples).  The S-

parameters from Table 6.5 correspond to the values of s, p, and m in Table 6.6.  

 

Table 6.5: Optimized Values of |S11| for Project A 
 

S-parameters at p = 3 p = 4 p = 5 

f1 = 9 GHz 0.3171 0.1073 0.0594 

f0 = 10.5 GHz 0.3399 0.0191 0.0181 

f2 = 12 GHz 0.1335 0.0569 0.0809 

 
Table 6.6: Optimized Geometry for Project A 
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Geometry p = 3 p = 4 p = 5 

s 14.973 10.798 14.735 

p -7.967 -2.974 0.105 

m 8.992 3.279 1.5 
 

 

 

Figure 6.10.  Optimized |S11| frequency characteristics for Project A.  
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Figure 6.11.  Optimized |S11| frequency characteristics for Project B.  

 
 

 

Figure 6.12:  Optimized |S11| frequency characteristics for Project C.  
 

 Table 6.7:  Optimized Values of |S11| for Project B 
 

S-parameters p = 3 p = 4 p = 5 
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f1 = 2.4 GHz 0.043 0.1446 0.0696 

f0 = 2.45 GHz 0.0424 0.0744 0.0294 

f2 = 2.5 GHz 0.0419 0.0709 0.0231 

 
 

Table 6.8: Optimized Geometry for Project B 
 

Geometry p = 3t p = 4 p = 5 

θ = 90-input 34.484 18.362 42.983 

s 69.754 70 40.268 

d 30.322 44.938 55.091 

 

 Table 6.7 contains the optimized values of |S11| in the slotted antenna (Project B) for the 

three specified points in the frequency range with f0 at the midpoint of the interval.  Three sets of 

the optimized geometric parameters are presented in Table 6.8 for the databases of  different  sizes  

Table 6.9:  Optimized values of |S11| for Project C 
 

S-parameters p = 3 p = 4 p = 5 

f1= 12.45 GHz 0.191165 0.088163 0.113607 

f0 = 12.5 GHz 0.193691 0.110458 0.112232 

f2 = 12.55 GHz 0.198225 0.133406 0.110781 
 

Table 6.10: Optimized Geometry for Project C 
 

Geometry p = 3t p = 4 p = 5 

r 0.500762 0.815124 0.505496 

h 4.000077 4.011209 7.980402 

s 5.999768 5.969846 -2.36053 
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(27, 64, 125 samples).  The S-parameters from Table 6.7 correspond to the values of θ, s, and d in 

Table 6.8.  

 In Table 6.9, we present the optimized values of |S11| in the T-junction with a metal post 

(Project C) for the three specified points in the frequency range (f0 is at the midpoint of the 

interval).  Three sets of the optimized geometric parameters are given in Table 6.10 for the 

databases of different sizes (27, 64, 125 samples).  The S-parameters from Table 6.9 correspond to 

the values of r, h, and s in Table 6.10.  

To evaluate the accuracy of performance of the developed RBF NN approach, we have 

generated optimized results by alternative techniques; corresponding graphs are shown in Figs. 

6.10 to 6.12.  The waveguide bend (Project A) was optimized by one of the QW-Optimizers 

implementing the Davidon-Flethcer-Powell (DFP) method.  The optimal solution for the slotted 

antenna (Project B) and the T-junction (Project C) were obtained by the RSM-SQP method [17].  

From the curves presented in these figures, we can see that the RBF NN procedure gives either 

equally good, or better results.   

For example, for the slotted antenna, with S0 < 0.3, the optimal geometry suggested by 

[17] is represented by the parameters θ = 27°, s = 56mm, and d = 118mm which correspond to |S11| 

= 0.283 at f0 = 2.45 GHz.  Our procedure give different geometric configurations which yield the 

values of |S11| equal to 0.042, 0.074, and 0.029 for 27-, 64-, and 125-point databases respectively.   

For the waveguide junction, with the constraint of S0 < 0.33, the RSM-SQP-method in 

[17] gives the set r = 1.5mm, h = 8mm, s = -6mm, which corresponds to |S11| = 0.2062 at f0 = 12.5 
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GHz.  With the use of three different databases, the RBF NN generates the values of the reflection 

coefficient 0.194, 0.11, and 0.112.  

 Therefore, optimizing Projects B and C, the presented procedure has shown superior 

results in comparison with the algorithm described in [17].  Even trained with the 27-sample 

database, the Radial Basis network has generated significantly improved solutions.  Computation 

benefits of our approach over [17] are illustrated in Table 6.11.  

 

 

 

 

Table 6.11.  Optimization Time (min.) by RFB-NN and [17] 
 

 

 
 
 
 

 

 

Table 6.12.  Comparison of QW3D Optimizers to the RBF NN Optimization (Project A) 
 

Method |S11| at f0 = 10.5 GHz 

Trials 1 2 3 4 

QW3D: Powell Non-Gradient Method (A) 0.0323 0.0331 0.0202 0.025 

QW3D: DFP Gradient Method (B) MF 0.0302 0.0442 0.0453 

QW3D: Controlled Random Search (C) 0.0372 MF 0.0184 0.055 

QW3D: Evolutionary Strategy (D) 0.0457 MF 0.0087 0.0983 

Time (P III 1.0 GHz) 
Database: 

# of samples 

Project,       
# of FDTD 
cells, RAM 

(QW3D) 27 64 125 

 

Optimiza-
tion 

Time 
(P III, 

750 MHz) 
in [17] 

B: 13,600 
cells, 1 MB 10 25 51 < 5 70 

C: 102,000 
cells, 10 MB 91 208 412 < 56 660 
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RBF NN: p = 4, or 64-point database 0.0191 0.0191 0.0191 0.0191 

RBF NN: p = 5, or 125-point database 0.0181 0.0181 0.0181 0.0181 

 
 

6.5 Comparison with QW3D Optimizers  

 

For Project A, the RBF NN procedure supported by the 64- and 125-sample databases was 

compared with the optimization modules in the QW3D package; the results of this comparison are 

shown in the present section.  

Table 6.12 showing the values of the reflection coefficient at the operating frequency 

includes the references to the five optimization techniques involved the comparison.  The results 

obtained with the QW3D optimizers strongly depend on the initial guess.   The  method  may  even  

 
 

Figure 6.13.  Optimized frequency characteristics of |S11| in Project A for Trial 1.  Thin curves: Methods A 
(marked by ∇), C (◊), and D (♦).  Thick curves: NN technique for p = 4 and p = 5.  
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Figure 6.14.  Optimized frequency characteristics of |S11| in Project A for Trial 2.  Thin curves: Methods A 
(marked by ∇), and B (◊).  Thick curves: NN technique for p = 4 and p = 5.  

 

 
 

Figure 6.15.  Optimized frequency characteristics of |S11| in Project A for Trial 3.  Thin curves: Methods A 
(marked by ∇), B (◊), C (♦), and D (∨).  Thick curves: NN technique for p = 4 and p = 5.  

 



 49

 
 

 
 

Figure 6.16.  Optimized frequency characteristics of |S11| in Project A for Trial 4.  Thin curves: Methods A 
(marked by ∇), B (◊), C (♦), and D (∨).  Thick curves: NN technique for p = 4 and p = 5.  

 
 

fail if this guess is not quite successful; in Table 6.12, MF (method fails) stands for such a failure.  

For this reason, we show the results of 4 trials.  It is seen that the RBF NN solution is independent 

on the initial guess.  

 The optimized solutions generated by the five methods are presented in Fig. 6.13-6.16.  

Each of these four graphs represents the distinct initial guess of these trials.   

Analysis of this comparison reveals the following observations.  Among QW3D 

Optimizers, the Powell Non-Gradient method looks most reliable.  The other three techniques 

failed in 1 out of 4 (25%) initial guesses.  The Controlled Random Search and Evolutionary 

Strategy have particular difficulties with some initial guess.  The DFP Gradient Method finds the 
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optimal solution by placing one variable (s) on the endpoint of its interval and not changing 

another variable (p) at all.  Therefore, we conclude that our optimization technique looks more 

reliable and stable since it does not depend on any of these circumstances.  The RBF NN 

procedure with 64 and 125 samples has generated smaller values of |S11| at f0 compared with 

almost all methods and trials.  
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Chapter 7 

Conclusion 

 

In the present project, we propose an original, efficient and simple optimization technique based 

on artificial neural networks and developed as a computational supplement for QuickWave-3D.  

We have shown that, given the resources of today’s computers, such an approach can be 

reasonably productive and serve a competent optimization tool in designing of various MW 

systems.  Our approach is characterized by high accuracy and efficiency.  In addition, when 

compared with the optimization routines in the QuickWave-3D package, this approach achieves 

the improved results.  This work contributes to the development of efficient and universal CAD 

instruments suitable for optimization of various microwave systems and components.  

 With computer hardware becoming faster and faster, methods such as this will become 

much more practical.  Therefore, we suppose that this method can only be improved in the coming 

years.  
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Appendix 

This appendix supplies the core MATLAB scripts used to run the algorithm.  

Rad_method  is the main script.  It first calls input data; ant_input is an example of 

an input data script for Project B.  Following this, rad_method calls Databasegetter.  

Databasegetter is a script that communicates with QuickWave-3D‘s Editor and Simulator in 

order to create a database.   

 Databasegetter’s first step is to call paramaker.  Paramaker creates a list of 

points that will be used for the database from the input data.  Upon this Databasegetter 

communicates with QW3D Editor to update the project.   

 The QW3D projects are completely parameterized *.udo files, created in such a way that 

from Matlab the project can be modified to any desired geometric configuration.  Several projects 

of this sort were developed in [17]; in this work, we used the udo-scripts from [17] to perform 

computations for Projects A to C in Chapter 6.   

Then QW3D Simulator is called to run the project.  A data file is saved into the project 

folder and this process is repeated a specified number of times determined by the input data.   
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 Matrixgetter is then called by rad_method.  Matrixgetter opens each data 

file and extracts the pertinent information.  In the examples illustrated above we extract |S11| values 

for varying frequencies.   

 Then rad_method calls scalar.  Scalar is a script that scales the input data (i.e., 

geometric variables) of the NN into normal intervals.  After that rad_method creates and trains 

a RBF NN from the database information.   

 The RBF NN is then minimized with a least squares technique (MATLAB’s 

lsqnonlin procedure) using a series of guesses because of predetermined limitation of the 

method.  Then the function rounder is used to round off the results of the minimized RBF NN 

(i.e., geometric parameters).  The geometric parameters are sent to opttest.  Opttest tests the 

validity of the supposed minimum by generating results from QW3D.  Finally, the best optimized 

solution is saved and the algorithm is completed.   

 The presented MATLAB scripts are given below in the following subsections:  

A. Rad_method 

B. Databasegetter 

C. Matrixgetter 

D. Ant_input 

E. Rounder 

F. Scalar 

G. Opttest 

H. Paramaker 
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A: Rad_method.m 
 
function [bestmin, mins11, mse, e, neural_ans, suppose, bestopts, 
f , net] = rad_method(project_name,div,fdiv,scalexmax) 
 
%radial basis method 
tout =cputime; 
 
global s11 f vars keyf params  
 
 
%load project%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
loading = [project_name,'_input']; 
eval(loading) 
%load project%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%Database%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
params = rounder(params); 
project_name 
Databasegetter(params , project_name); 
matrixgetter(params , project_name); 
loading = ['load ',project_name,'data']; 
eval(loading); 
 
ex = cputime-tout 
saving = ['save ',project_name,'_database',num2str(div)]; 
eval(saving) 
 
%Database%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
tout = cputime;  
 
xmax = params(:,div);   
xmin = params(:,1);             
 
%Set upper and lower bounds for Least Squares 
Minimization%%%%%%%%%%%%% 
vars=vars'; 
scalexmin = -scalexmax; 
params = scalar(params , scalexmax , scalexmin , xmax , xmin) 
vars = scalar(vars , scalexmax , scalexmin , xmax , xmin); 
lb = params(:,1);            
ub = params(:,div);  
 
for l = 1:length(params(:,1)) 
    A(l,:) = linspace(params(l,1) , params(l,div), 5); 
end 
middle = length(keyf)/2;      middle = round(middle);          
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%Least Squares Minimization Options%%%%%%%%%%%%%%%%%%%%%%% 
 
qo=1;     
mins11 = ones(length(keyf),1);   
%Neural Network%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Extract Key Frequencies 
x_t = ['[']; 
for pt = keyf 
    pt 
    [ m, ind ] = min( abs(f - pt) ); 
    x_t = [x_t, ' s11( :,',num2str(ind),')'];   
end 
x_t = [x_t,']']; 
 
%Extract Key Frequencies 
 
%Inputs and Targets%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
inputs = vars; 
targets = eval(x_t)'; 
 
%Strings to create NN%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i=1:length(keyf) 
    net = ['net', num2str(i) , ' = newrb(inputs,targets(', 
num2str(i) ,',:));']; 
    eval(net) 
     
    siming = ['train(', num2str(i) ,',:) = sim(net', num2str(i) 
,', inputs );']; 
    eval(siming) 
end 
 
%Error: Mean Squared error%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:length(keyf) 
    ies = ['ie(',num2str(j),') = sum( ( targets(:,',num2str(j),') 
- train(:,',num2str(j),') ).^2 )/length( train );']; 
    eval(ies) 
end 
% for j=1:3 
%     ie(j) = sum( ( targets(:,j) - train(:,j) ).^2 )/length( 
train ); 
% end 
 
e = sum(ie)/length(ie)  
 
%Error: Mean Squared error%%%%%%%%%%%%%%%%%%%%%% 
 
%Create fun function 
fid = fopen( 'fun.m', 'wt'); 
x = ['function y = fun(x) '] ; 
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globals = ['global '];funs = [' ']; 
for j=1:length(keyf) 
    globals = [globals, ' net',num2str(j),' ']; 
    funs = [funs, ' y(',num2str(j),') = sim(net',num2str(j),', 
x); ']; 
end 
fprintf(fid,'%s',x); 
fprintf(fid,'\n %s',globals); 
fprintf(fid,'\n %s',funs); 
fclose( fid );  
clear fid globals funs x j  
 
%Neural Network%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%TESTING THE Neural Network%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
x = paramaker([A(:,2) A(:,4)])'; 
for qo = 1:length(x(1,:)) 
    mini(:,qo) = lsqnonlin('fun',x(:,qo),lb,ub);              
    realmini(:,qo) = scalar(mini(:,qo), xmax, xmin , scalexmax , 
scalexmin ); 
    %Optimization test%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    realmini(:,qo) = rounder(realmini(:,qo)); 
    [suppose(qo,:),opts11] = opttest(realmini(:,qo), 
project_name, div, fdiv); 
     
     
    %check with Neural Net 
    neural_ans(qo,:) = fun(mini(:,qo)); 
    error(qo,:) = abs(neural_ans(qo,:) - suppose(qo,:)); 
     
    %Compare with Previous Optimal Solution       
    if (suppose(qo,middle) <= mins11(middle)) & 
(suppose(qo,middle) > 0.0001) 
        mins11 = suppose(qo,:)'; 
        mins11 
        nnmins11 = neural_ans(qo,:)'; 
        bestopts11 = opts11; 
        bestmin = realmini(:,qo); 
    end 
    %%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Optimization test%%%%%%%%%%%%%%%%%%%%%%%%%%%                         
end      
 
%TESTING THE Neural Network%%%%%%%%%%%%%%%%%%%%%%%% 
 
%MSE OF Testing Procedure%%%%%%%%%%%%%%%%%%%%%%% 
 
for j=1:3 
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    init_mse(j) = sum( ( suppose(:,j) - neural_ans(:,j) ).^2 
)/length( neural_ans ); 
end 
mse = sum(init_mse)/length(init_mse) ;        
%MSE OF Testing Procedure%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
figure(1) 
plot(f,bestopts11,'k') 
axis([min(f) max(f) 0 1]) 
 
[filler,five] = opttest(veronica, project_name , div, fdiv); 
figure(2) 
plot(f,bestopts11,'b') 
hold on 
plot(f,five,'r') 
hold off 
axis([min(f) max(f) 0 1]) 
title(['Comparison: Veronicas solution = red, neural sol = 
blue']) 
 
ex = cputime-tout 
 
saving = ['save 
',project_name,'div',num2str(div),'fdiv',num2str(fdiv)]; 
eval(saving) 
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B: Databasegetter.m 
 
function Databasegetter(params , project_name) 
 
t = cputime;  
 
%Quickwave Paths%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%SimulatorPath = 'c:\Program 
Files\QWED\QW_3D\v21Xmas\Local\Qw_sim\bin\ker1.exe'; 
SimulatorPath = 'C:\Program 
Files\QWED\QW_3D\v22rev1\Local\Qw_sim\bin\ker1.exe'; 
%EditorPath = ['c:\Program 
Files\QWED\QW_3D\v21Xmas\Local\Qw_edi\bin\zed.exe']; 
EditorPath = ['C:\Program 
Files\QWED\QW_3D\v22rev1\Local\Qw_edi\bin\zed.exe']; 
 
Simulator  = SimulatorPath; 
Editor     = EditorPath; 
 
%Quickwave Paths%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Project Input Data%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
get_inputs = [project_name, '_input_data']; 
eval(get_inputs); 
 
%Project Input Data%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Create function to make databasepoints 
 
num_vars = length(params(:,1)); 
fid = fopen( 'paramaker.m', 'wt'); 
dats=[' '];command = ['points(k,:) = [']; 
x = ['function points = paramaker(params) '] ;    fprintf(fid,'%s 
\n',x); 
k = ['k = 1;  '];    fprintf(fid,'%s \n',k); 
for j=1:num_vars 
    fors = ['for i',num2str(j),'=params(',num2str(j),',:) '];    
fprintf(fid,'\n %s',fors); 
    dats = [dats,' i',num2str(j),' ']; 
end 
command = [command,dats,']; k=k+1;'];   fprintf(fid,'\n 
%s',command); 
for j=1:num_vars 
    ends = [' end '];   fprintf(fid,'\n %s',ends); 
end 
fclose( fid );  
clear num_vars dats command x k j fors ends fid 
 
%Create function to make databasepoints 
points = paramaker(params); 
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for  i= 1:length(points(:,1)) 
    %Gives a vector of each of the parameters that quickwaves 
will use 
    idata = points(i,:); 
    disp( idata); 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    %construct the whole string needed to call the editor             
    ModifyProject = [' -p"',Project,'" -i',' -m',' -e',' -q']; 
    LoadProject = [' -p"',Project,'" -i',' -m',' -
o',num2str(Iter),' -i',' -e',' -q']; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    %construct the string needed to call the Simulator     
    PerformSimulation = [ ' -t',' "', TaskerFile,'"']; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    %save parameters into a params file needed for run ant.udo             
    f = fopen( ParsFile, 'wt'); 
    fprintf(f, '%f ', idata); 
    fclose( f ); 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    %call Editor to modify the project 
    run_qw1 =['!"',EditorPath,'"',ModifyProject]; 
    run_qw2 =['!"',EditorPath,'"',LoadProject]; 
    %Calls the editor to modify the project     
    eval(run_qw1); 
    eval(run_qw2); 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    % modify Tasker file %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    fid = fopen( TaskerFile, 'r+'); 
    il = 0; 
    while ~feof(fid) 
        il = il +1; 
        data = fscanf( fid,'%c',1 ); 
        if ~isempty(data) 
            TaskerCont(il) = data; 
        end 
        if il >13 
            word = TaskerCont(il-12:il-1); 
            if strcmp(word,'Save_Results') == 1 
                point = il-1; 
            end 
        end 
         
    end 
    fclose( fid ); 



 60

 
    presFile = ['A']; 
    for j=1:length(idata) 
        presFile = [presFile, 'A',num2str(idata(j))]; 
    end 
    presFile = ifdec(presFile); 
    presFile = [presFile,DatExt]; 
     
    TaskerCont = [ TaskerCont(1:point)]; 
    Filetype = ['QW_Pure']; 
    fid = fopen( TaskerFile, 'w+'); 
    fprintf(fid,'%c',TaskerCont); 
    fprintf(fid,'\n %s',presFile); 
    fprintf(fid,'\n %s',Filetype); 
    fclose( fid );  
    % modify Tasker file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%          
     
    % call Simulator with the modified tasker file            
    run_qws =['!"',SimulatorPath,'"',PerformSimulation]            
     
    eval(run_qws);                         
end 
 
e = cputime-t 
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C: Matrixgetter.m 
 
function matrixgetter(params , project_name) 
 
%first we have to set the initial data 
%Gives the input for the specified project, 
 
get_inputs = [project_name, '_input_data']; 
eval(get_inputs); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%Since the vector of frequencies is always the same we'll do it 
above the loop 
 
points = paramaker(params); 
idata = points(1,:); 
File = ['A']; 
for j=1:length(idata) 
    File = [File, 'A',num2str(idata(j))]; 
end 
File = ifdec(File); 
loading = ['load ',project_name,'/',File,DatExt]; 
eval(loading); 
File = ifneg(File); 
File = [project_name,'_',File]; 
x = [File,'(:,1)']; 
f = eval(x); 
f = f/10^9; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
for  i= 1:length(points(:,1)) 
 
    %Gives a vector of each of the parameters that quickwaves 
will use 
    idata = points(i,:); 
    %Loading and deleting each data file%%%%%%%%%%%%%%%%%%%%%%% 
    File = ['A']; 
    for j=1:length(idata) 
        File = [File, 'A',num2str(idata(j))]; 
    end                        
    File = ifdec(File); 
    loading = ['load ',project_name,'/',File,DatExt]; 
    eval(loading); 
    deleting = ['delete ',project_name,'/',File,DatExt];  
    eval(deleting); 
    %Loading and deleting each data file%%%%%%%%%%%%%%%%%%%%%%% 
     
    %Getting vectors of the s11 parameter%%%%%%%%%%%%%%%%%%%%%% 
    File = ifneg(File); 
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    File = [project_name,'_',File]; 
    y = [File,'(:,2)']; 
    s11vector = eval(y); 
    %Getting vectors of the s11 parameter%%%%%%%%%%%%%%%%%%%%%% 
     
    %now we will make our vectors: 
    %first is a matrix called variables; entailing the three 
    %from the file name: Theta(t),s, and d in that order 
    %first column theta, second s, and third d 
    for l = 1:length(idata) 
        vars(i,l) = idata(l);        
    end 
     
    %second is s parameters; each row represents the s parameters 
    %for the first row of the variables matrix 
    s11(i,:)  = s11vector'; 
      
    clearing = ['clear ',File]; 
    eval(clearing); 
end 
 
%save workspace%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
saving = ['save ',project_name,'data s11 f vars']; 
eval(saving) 
%save workspace%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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D: Ant_input.m  
 
(Sample Input File) 
 
%ANT%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%params row 1: Theta; row 2: slot; row 3: distance 
keyf = [linspace(2.4, 2.5, fdiv)]; 
 
project_name = ['ant']; 
 
params = [linspace(30 , 90, div); linspace(30 , 70, 
div);linspace(30 , 120, div)]; 
 
%veronica = [ 52.45; 51.17; 33.62]; 
veronica = [63; 56; 118]; 
%ANT%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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E: Rounder.m 
 
function y = rounder(x) 
 
trunc = 100; 
 
x = trunc*x; 
x = round(x); 
y = x/trunc; 
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F: Scalar.m 
 
function x = scalar(y , xmax , xmin , ymax , ymin) 
 
%This function will scale y into a the interval xmin xmax 
 
if length(xmax) == 1 & length(xmin) == 1   
    xmax = xmax*ones(length(y(:,1)),1); 
    xmin = xmin*ones(length(y(:,1)),1); 
end 
 
if length(ymax) == 1 & length(ymin) == 1   
    ymax = ymax*ones(length(y(:,1)),1); 
    ymin = ymin*ones(length(y(:,1)),1); 
end 
 
for i = 1:length(y(:,1)) 
    for j = 1:length(y(1,:)) 
        x(i,j) = xmin(i) + (y(i,j) - ymin(i)) / (ymax(i) - 
ymin(i)) * (xmax(i) - xmin(i)); 
    end 
end 
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G: Opttest.m 
 
function [opts11 , s11, f] = opttest(dum , project_name, div, 
fdiv) 
dum 
Databasegetter(dum , project_name); 
matrixgetter(dum , project_name) 
loading = ['load ',project_name,'data']; 
eval(loading); 
 
get_inputs = [project_name, '_input']; 
eval(get_inputs); 
 
opts11 = ['[']; 
for pt = keyf 
    [ m, ind ] = min( abs(f - pt) ); 
    opts11 = [opts11, ' s11(', num2str(ind),');']; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
opts11 = [opts11,']']; 
opts11 = eval(opts11)'; 
 
%plot(f,opts11) 
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H: Paramaker.m 
 
function points = paramaker(params)   
k = 1;    
 
 for i1=params(1,:)  
 for i2=params(2,:)  
 for i3=params(3,:)  
 points(k,:) = [  i1  i2  i3 ]; k=k+1; 
  end  
  end  
  end 
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