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Abstract 
 

Prerequisite skill structure graphs represent the relationships between knowledge components. 

Prerequisite structure graphs also propose the order in which students in a given curriculum need to be 

taught specific knowledge components in order to assist them build on previous knowledge and improve 

achievement in those subject domains. The importance of accurate prerequisite skill structure graphs can 

therefore not be overemphasized. In view of this, many approaches have been employed by domain 

experts to design and implement these prerequisite structures. A number of data mining techniques have 

also been proposed to infer these knowledge structures from learner performance data. These methods 

have achieved varied degrees of success. Moreover, to the best of our knowledge, none of the methods 

have employed extensive randomized controlled trials to learn about prerequisite skill relationships 

among skills. In this dissertation, we motivate the need for using randomized controlled trials to refine 

prerequisite skill structure graphs.  

 

Additionally, we present PLACEments, an adaptive testing system that uses a prerequisite skill structure 

graph to identify gaps in students’ knowledge. Students with identified gaps are assisted with more 

practice assignments to ensure that the gaps are closed. PLACEments additionally allows for randomized 

controlled experiments to be performed on the underlying prerequisite skill structure graph for the 

purpose of refining the structure. We present some of the different experiment categories which are 

possible in PLACEments and report the results of one of these experiment categories.  The ultimate goal 

is to inform domain experts and curriculum designers as they create policies that govern the sequencing 

and pacing of contents in learning domains whose content lend themselves to sequencing. By extension 

students and teachers who apply these policies benefit from the findings of these experiments.  
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1 Introduction 
 

Prerequisite skill structure graphs have been developed by domain experts over many years, specifying the scope 

and sequence of knowledge components. They have been represented in several forms including learning 

trajectories [24, 25, 85] as well as learning maps and pacing guides [98]. Regardless of the overall representation, 

each knowledge component represents a given topic or skill in the knowledge domain. In considering middle 

school math for instance, “Addition of Fractions” and “Multiplication of Mixed Numbers” are two examples of 

knowledge components that may exist within the graph. These, in addition to other such knowledge components, 

represent math skills that students need to know at the given grade level defined by the domain experts. The 

prerequisite skill structure graphs further describe the order in which students in a given curriculum should be 

taught specific knowledge components in order to effectively build on previous knowledge and improve 

achievement in those subject domains. A pair of skills are said to have a prerequisite skill relationship between 

them if one of the skills is a prerequisite to the other (commonly referred to as the post-requisite skill); these 

relationships could be causal in nature, particularly if these relationships are strong. [73] In other words, when 

two skills have a strong prerequisite skill relationship between them, it is implied that knowledge of the 

prerequisite skill causes faster learning of the post-requisite skill. The importance of accurate prerequisite skill 

structure graphs can therefore not be overemphasized. Learners’ performance in standardized tests can be 

attributable to, among other causes, the effectiveness of instruction that learners receive prior to these tests. 

Specifically, the order in which students progress through content is very important to their success [75], as 

measured by performance in standardized tests and preparation for future employment.   

In view of the importance of the accuracy of prerequisite skill structures, also referred to as skill 

topologies, many approaches have been employed by domain experts to design and implement these structures. A 

number of data mining techniques have been used to infer these knowledge structures from learner performance 

data. The evolution of the study of prerequisite skill structures using data mining was largely influenced by the 

inference of the Q-Matrix, a mapping of items to knowledge components. [86] Several of the data mining 

techniques that have been employed afterwards use the Q-matrix representation of the mapping between items 

and knowledge components [12, 86]. Additionally, Deep Learning [67, 100], Learning Factors Analysis [19], and 
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Bayesian Networks and Association Rule Mining [21] have all been employed to refine existing skill topologies 

and also to infer new skill topologies.  

While the above-mentioned approaches have arguably chalked certain degrees of success, to the best of 

the author’s knowledge, none of them have been used to make causal claims about the prerequisite relationships 

among the inferred skills. Randomized controlled trials, sometimes referred to as the gold standard of research 

[47], have been noted to be the most effective research method to identify causal relationships between constructs 

in real life. [97] In view of the apparent failure of the aforementioned methods to make causal claims about the 

skill topologies, this dissertation presents motivation for the use of randomized controlled trials for inferring 

prerequisite skill structures from learner performance data. This motivation is preceded by a presentation of 

several techniques that this author has used to infer prerequisite skill structure graphs from learner performance 

data. 

In this dissertation, an adaptive assessment and remediation system that uses a prerequisite skill structure 

graph to identify gaps in students’ knowledge is presented. The system additionally assists students with 

identified knowledge gaps by assigning them more practice assignments to ensure that the gaps are filled. The 

relevance of this system to this work is exemplified through the feature that allows randomized controlled 

experiments to be run on the underlying prerequisite skill structure graph. The results of the experiments allow for 

causal claims to be made about the relationships among knowledge components.  Additionally, a framework for 

inferring and refining prerequisite skill structure graphs is presented, with the sole aim of assisting domain experts 

who design these knowledge structures, and students who benefit from well-designed structures.  

This thesis is organized into thirteen (13) chapters. In each chapter, related work is presented separately. In 

view of this, no separate chapter is dedicated to related work or literature review, however chapter 2 presents a 

brief description of skills and prerequisite skill structures as used in the context of this dissertation. Chapters 3 and 

4 present the results of the application of a Bayesian Network-based combinatorial search algorithm to refine an 

existing prerequisite structure graph. These chapters show the factors that contribute to the effectiveness of such a 

combinatorial search method. Chapter 5 reports the findings of an investigation in which Deep Knowledge 

Tracing [67] is applied to infer skill topologies from learner performance data. Chapter 6 illustrates how a simple 
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task of predicting students’ performance in post-requisite skills using learning and performance information on 

the prerequisite skill was used to infer prerequisite skill relationships among skills. Chapters 7 and 8 describe two 

different methods that this author employed to infer prerequisite skill relationships between skills. A correlation-

based approach for inferring prerequisite skill links is presented in chapter 9. The results of a randomized 

controlled experiment in which the impact of the order of learning tasks on student assignment completion rates 

and subsequence performance are reported in chapter 10. Chapters 3 to 10 act to form a foundation for the 

primary focus of this dissertation, culminating in Chapters 11 and 12, which describe PLACEments, the adaptive 

learning system for diagnosing and remedying gaps in student prerequisite knowledge, and the randomized 

controlled experiments carried out within this infrastructure to infer relationships between skill links. Chapter 13 

presents concluding remarks in regard to the work presented in this dissertation, detailing possible future work 

that is available through this system. 
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2 Background 
 

This chapter presents a brief overview of the field of domain knowledge representations. It presents working 

definitions of skill, prerequisite skill, and prerequisite skill graph.  

 

2.1 Skill / Knowledge Component 

A knowledge component has been defined as “an acquired unit of cognitive function or structure that can be 

inferred from performance on a set of related tasks.” [49] As noted in [49], this definition encompasses other 

terms (such as production rule [8], schema [46], misconception [23], skill, and concept) which define pieces of 

cognitive knowledge that students must learn or express either explicitly or implicitly. In the context of this 

dissertation, a skill or knowledge component is defined as a concept or set of concepts that students in a given 

cognitive domain are expected to be taught at a given level of their education. Take middle school Algebra as an 

example cognitive domain. Middle school Algebra can be broken down into smaller concepts (like Addition of 

Fractions, Multiplication of Mixed Numbers, etc.) each of which students are expected to be taught at a certain 

grade level in the course of middle school training. Each of these concepts is defined as a skill. In this write-up, 

skills and knowledge components are used interchangeably. They represent the knowledge required by a learner 

to be able to solve specific types of problems. A typical example problem for the “Addition of Fractions” 

knowledge component is: 

2

5
 + 

5

9
 

For this example, any student able to correctly answer this question and all other possible questions of this 

format is said to have acquired the “Addition of Fractions” knowledge component.  This is a single component of 

a larger group of components. Groups of well-defined skills form a cognitive domain. Others have defined a 

domain as a group of different problem types (or knowledge components). [34] Each individual learner has a 

well-defined subset of problem types (or knowledge components) that they can comfortably solve under normal 

circumstances (i.e. not under any emotional or physical pressure). This set of knowledge components is referred 

to as the student’s knowledge state. For every given set of knowledge components, there is a large number of 
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possible knowledge states that can be exhibited across students through the acquisition of varying combinations of 

knowledge components.  

  

2.2 Prerequisite Skill / Skill Graphs 

Webster’s International Dictionary defines learning as “the activity or process of gaining knowledge or skill by 

studying, practicing, being taught, or experiencing something.” This implies that learning is a process, and that as 

a student progresses through the learning process, the number of knowledge components in a learner’s knowledge 

state is expected to increase. This process involves building on an already-existing knowledge state. For many 

concepts, there is a set of knowledge components that a learner is expected to know in order for the learning of the 

new unknown knowledge components to occur in a less arduous manner.    

Two skills are said to be in a prerequisite relationship if learners are required to know one of the skills in 

order to more easily learn the second skill and subsequently correctly answer questions of the second skill. Figure 

2-1 below shows a sample prerequisite skill link between two skills: Addition of Fractions and Multiplication of 

Fractions. The arrow points from the prerequisite skill to the second skill in the pair. This second skill is also 

referred to as the post-requisite skill of the first skill. As depicted in the diagram, a student is expected to know 

how to correctly answer questions/problems that test their ability to add fractions in order to be able to correctly 

respond to questions relating to multiplication of fractions.  

 

 

 

Some skills have multiple prerequisite skills. For those cases, it is implied that knowledge of all the 

prerequisite skills is necessary and required for students to be able to easily learn and correctly respond to 

problems of the post-requisite skills. This relationship is referred to, in most literature, as a conjunctive 

relationship. [29] Disjunctive relationships are those in which not all the prerequisites are required for success in 

the post-requisite skills. In the context of this dissertation and for cases where a skill has more than a single 

Addition of 

Fractions 

Multiplication 

of Fractions 

Figure 2-1 An Example Prerequisite skill link 
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prerequisite skill, we assume a conjunctive relationship and do not claim to make any statements about the 

disjunctive links.  

A prerequisite skill graph represents a collection of all the skills in a given cognitive domain as well as 

the relationships between the constituent knowledge components.  It is usually depicted as a directed acyclic 

graph in which the nodes represent the knowledge components and the arrows indicate the direction of 

prerequisite relationships. In the context of this dissertation, we avoid cyclic graphs (graphs that contain cycles). 

We hypothesize that graphs that have cycles cause confusion regarding which skills to blame when learners fail to 

demonstrate learning for any selected knowledge component in the cycle, and hence beyond the scope of this 

work. Furthermore, the presence of a cycle is indicative that no prerequisite relationship exists among the skills in 

the cycle since this will be arbitrary as to the ordering of skills within a cycle. Figure 2-2 depicts an example of 

these domain-expert-designed graphs. In this particular example, the rectangles represent knowledge components, 

the links between them indicate the direction of the prerequisite relationship, and the colors are meant to show the 

different grade levels at which students are expected to be taught different knowledge components. Figure 2-3 

shows another example of the prerequisite skill structure. In this particular example, skills are represented as 

hexagons, and the attachments to other hexagons show the relationships between them.   

 

 
Figure 2-2 An example prerequisite skill graph 
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Figure 2-3 Another example graph sourced from [turnonccmath] 
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The chapters that follow describe several attempts that have been made to refine structures of this nature, and the 

degrees of success that this author and other authors have reported in this area of research with the ultimate goal 

of supporting teachers, and curriculum developers to improve the educational experience of students.   
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3 Refining Learning Maps with Data Fitting Techniques: Searching for 
Better Fitting Learning Maps 

 

Learning related sciences need quantitative methods for comparing alternative theories of what students are 

learning. An example of models that represent what students are expected to learn in a given domain is the 

learning map. A learning map, sometimes referred to as a concept map, is the graphical representation of the skills 

and knowledge components that students are expected to learn in a subject area (such as math) and the 

relationships between these skills/concepts. [15, 81] This chapter presents an investigating of the accuracy of a 

learning map and its utility to predict student responses. Our data included a learning map detailing a hierarchical 

prerequisite skill graph and student responses to questions developed specifically to assess the concepts and skills 

represented in the map. Each question aligned to one skill in the map, and each skill had one or more prerequisite 

skills. Our research goal was to seek improvements to the knowledge representation in the map using an iterative 

process. We applied a greedy iterative search algorithm to simplify the learning map by merging nodes 

together.  Each successive merge resulted in a model with one skill less than the previous model. We share the 

results of the revised model, its reliability and reproducibility, and discuss the face validity of the most significant 

merges.  

 

A version of this chapter is published at the following venue: 

Adjei, S. A., Selent, S., Pardos, Z., Broaddus, A., Heffernan N. & Kingston, N. (2014) Refining Learning Maps 

with Data Fitting Techniques: Searching for better fitting learning maps. In John Stamper et al. (Eds) Proceedings 

of the 7th International Conference on Educational Data Mining.pp413-414 

 

3.1 Introduction 

Cognitive models are used to represent how one’s knowledge may be organized [41]. As such, they contain 

descriptions of component pieces of knowledge and connections among the components to indicate how 

understanding develops in a specified domain [41]. Different authors have described various cognitive models, 

including learning maps [68], learning trajectories [24], and learning hierarchies [40]. Learning maps use linear 

sequences of learning goals and are useful for instructional planning [68]. A learning trajectory includes a 

learning goal, a developmental progression defining the levels of thinking students pass through as they work 

toward the defined goal, and a set of learning activities or experiences that assist students in reaching the defined 
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goal [24]. As their name implies, learning hierarchies model prerequisite knowledge components in hierarchies, 

allowing multiple pathways to extend from one prerequisite skill to multiple learning goals [40].  

The learning map extends the notion of a learning hierarchy by representing domain knowledge as a 

network of component skills and connections, allowing for multiple paths from prerequisites to learning goals. 

While multiple paths add complexity to the cognitive model, they allow the learning map to represent the 

potential learning of a broad range of individuals who may experience difficulties traversing certain pathways due 

to disabilities or particular learning preferences. As such, the learning map provides a flexible model of learning 

that is consistent with recent advances in universal design for learning [15, 80]. 

In the present study, we examine a small section of the learning map and investigate the effects of 

permuting the topology of the hierarchy. Skills and concepts are represented by latent nodes in the learning map. 

Directed edges represent the prerequisite relationship among latent nodes and also represent the relationship 

between those nodes and their associated test items. We present a simple method for improving the predictive 

power of the learning map by combining latent nodes. We report our initial results on the fit improvement, 

stability of the resulting map, and interpretation of the algorithms chosen node combinations. 

This work connects with literature on searching for better fitting cognitive models. Several non-

hierarchical cognitive models have been developed to represent the relationship between knowledge components 

(KCs) in the form of prerequisite skill maps. These cognitive models have been developed to help intelligent 

tutors, as well as experts, determine student mastery of KCs. A number of technical approaches have been 

developed to evaluate cognitive models developed by domain experts. One approach is Learning Factors Analysis 

(LFA), developed by Cen, Koedinger and Junker [19] to help the Educational Data Mining (EDM) community 

evaluate different cognitive models. 

There are several different methods for analyzing skills. Tatsuoka [86] introduced the rule space method 

for representing and determining how well students understood the underlying skills (or rules as the authors call 

it) for test items. Additionally, the method is used to identify any erroneous classification or misconceptions of 

students in responding to test items. Barnes [12] utilized the Q-matrix method from Tatsuoka’s rule space method 

to organize combinations of skills into distinct latent classes and assign students to latent classes based on level of 
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mastery. Additive Factor Models (AFM) also utilize the Q-matrix but with a multiple logistic regression model 

which predicts student performance based on a number of factors, primarily the number of opportunities a student 

has to demonstrate a particular skill.  Cen reported in [19] that AFM did not accurately predict items involving 

conjunctive skills and hence introduced the Conjunctive Factor Model (CFM) to improve predictions in this area. 

In addition to latent skill cognitive models, item to item knowledge structures have also been learned from 

empirical data using Bayesian Network structure learning and partial order knowledge structures [30]. 

Our approach to simple merging of skills was inspired by Learning Factors Analysis [19], which uses a 

combinatorial search to determine which model best fits student data. The combinatorial search consists of three 

different types of operations: splitting, merging or adding existing KCs. Splits occur when a knowledge 

component is determined to be composed of more than one skill, and hence splits into multiple skills. One or 

more skills are merged if they are determined to be inseparable skills, given student data. The add operation 

involves the inclusion of a completely new skill to the original map [18]. 

Other researchers have tried to extend LFA to other subject domains. Leszczenski and Beck introduced a 

scalable application of the LFA framework in the context of reading knowledge transfer [52]. The problem with 

this approach is that the search was unstable and could give different results each time the search was run. Instead 

of determining a student model given an initial human generated model, Li, Cohen, Noboru, and Koedinger 

proposed a method for automatically generating the KCs from student responses to individual items. [53] 

Although their method resulted in the best fit among the other candidates, it may not generalize for models with 

less coarse-grained KCs. Other models have focused on the determination of a student’s knowledge of certain 

skills. Logistic regression has been used to trace multiple sub-skills of a given skill [99]. Pavlik, Cen, and 

Koedinger proposed a method for automatically deriving a cognitive model by generating a Q-matrix, which 

provides a representation of the KCs required for each test item. [63]  

In this work, we follow the process described by Cen, Koedinger and Junker [19]. This technique can be 

used to analyze hypothesized learning maps and consider whether small improvements to the model result in a 

better fit to the data. In this method two different approaches were studied to determine the best skill map from an 

initial graph.  Cen, Koedinger, and Junker suggested three types of operations, i.e., merges, splits, and adds. [19] 
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However, in this study, we used only merge operations given the already highly granular quality of our initial, 

subject matter expert derived learning map. 

 

3.2 Initial Learning Map  

This study examined a section of the learning map containing 15 concepts and skills related to understanding 

integers. The map was developed using mathematics educational literature describing how students learn to 

understand and operate with integers. The set of integers includes the whole numbers and their opposites, 

presenting many students their first exposure to negative numbers (Van de Walle, Bay-Williams, Karp, & Lovin, 

2014). Although many students have prior knowledge of negative values within contexts such as debt or 

temperatures below freezing, they often struggle when first learning to work with negative numbers. Proficiency 

with integers includes understanding opposite numbers, comparing integers, representing integers on number lines 

and graphs, and using integers in real world problem contexts. The learning map shown in Figure 3-1 illustrates 

the component concepts and skills that comprise such understanding. This map suggests that students should learn 

to identify opposite numbers (M-1104) and integers (M-1289) in preparation for comparing and ordering integers 

(M-1133, M-1135, M-1140) as well as representing integers on number lines (M-1118, M-1120, M-1108, M-

1126) and coordinate planes (M-1122, M-1124). Because integers challenge the initial counting strategies 

students learned for positive numbers, it is beneficial for students to work with integers in real-world contexts (M-

1106, M-1105, M-1127, M-1128) [90]  
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.  
Figure 3-1 The initial learning map that researchers created.  Each ellipse represents a “skill” and 

each rectangle represents a test item.  For easy reference, the links are labeled. The labels do not have 

any specific meaning 

The data for this study was gathered from student responses to 25 test items aligned to the 15 skills shown 

in the learning map in Figure 3-1. All of the test items were multiple choice questions, with four answer options 

per question. Each skill was assessed by one or more items. As part of the test development process, subject 

matter experts confirmed the alignment of each item to its associated skill, meaning that the item was judged by 

experts to evoke the intended skill. Therefore, when a student answered a test item correctly, we assumed in this 

study that the student had mastered the skill associated with that test item. Furthermore, due to the hierarchical 

structure of the learning map, items associated with skills lower in the learning map were assumed to be more 

difficult, i.e., require more skills, than items associated with skills higher in the learning map. 

In addition to the graph, we utilized a data-set containing the responses of 2,846 students answering the 

same sequence of 25 items in the learning map.  All the students were chosen from middle schools in a mid-

western state from grades 6 (8%), 7 (49%), 8 (39%) and 10 (4%). The students’ responses were dichotomous, ‘1’ 

for correct and ‘0’ otherwise. 
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3.3 Methodology 

3.3.1 Merge Operation 

In all of the experiments our sole manipulation of the map was to merge latent nodes. A merge operation occurred 

when two skills adjacent to each other in the map were combined into one skill. Items from both skills that were 

merged were reattached to the new single skill. The prerequisites of the constituent skills became prerequisites of 

the merged skill and the same applied to the post-requisites.  An example merge operation on a section of the skill 

map is shown below. The skill maps before and after the merge operation are shown in Figure 3-2.  M-1289 and 

M-1133 are the skills that were merged into a single skill, named “M-1289XM-1133”. Note that the names of the 

skill hold no meaning of their own, just as the labels of the arcs between the skills.  

   
Figure 3-2 Before and after the merge of the arc between M-1289 and M-1133.  Note that after the merge, all the items mapped to 

both M-1289 and M-1133 now are mapped to the joint skill labeled “M1289xM1133”. 

  

3.3.2 Evaluation Procedure 

For evaluating the models, we used per student per item cross validation with 5 student folds and 3 item 

folds. Our student and item folds were chosen randomly for our evaluation. More details about how the cross-

validation was done can be found in the technical document (1). We used the Root Mean Squared Error (RMSE) 

metric to evaluate the results of the experiments. RMSE is calculated by squaring the differences between each 

actual value and predicted value and then finding the average value of the differences.  Taking the square root of 

the average will give the RMSE value for the model. The closer the RMSE value is to 0, the more accurate the 

model is (i.e. the smaller the error is in predicting the available data.) 
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3.4 Experiment 1:  Iterative Search 

The purpose of this experiment was to take the original learning map and to create and run a search algorithm to 

find a better, more predictive, learning map. This experiment uses a greedy search algorithm to generate the new 

models. In this experiment, we started with the initial learning map shown in Figure 3-1 and created a Bayesian 

network to represent this map. Starting with the original map we programmatically found all possible skill pairs 

that could be merged. The algorithm only considered merging adjacent skills, or skills that shared an edge 

between them. Each possible merge was evaluated using the procedure previously described, and the best merge 

was chosen based on the map with the lowest cross-validated prediction error. We applied the best possible merge 

to the map and this resulted in a map with one less skill. The new map was used as the input to the next iteration 

of the algorithm. This technique was iteratively applied until all the skills were merged into a single skill. Further 

details of the iterative search algorithm can be found in the technical document. 

3.4.1 Results and Analysis 

Figure 3-3 shows a graph and an image of the prerequisite skill graph of the results from the iterative search. The 

search started at iteration 0, which was the initial skill map consisting of 15 skills before any merges were applied 

to it. The search ended at iteration 14, which is a graph consisting of just one skill with all the items attached to 

that one skill.  The best models from each iteration are shown below. We recorded AUC, RMSE, accuracy, AIC, 

and BIC metrics, although we only used RMSE to choose the best models at each iteration and to guide our 

search. Ultimately, we chose RMSE as the deciding metric. 
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(a) Skill Accuracy 

 
(b) Best Model Skill Map (11 skills at iteration 4) 

Figure 3-3 a) The chart of results and b) the graph of the best skill model 

 

The results show that the best RMSE obtained was from the 11-skill map at iteration 4 with an RMSE of 

0.37238. This is slightly better at predicting students’ real performance data than the original skill map (with 

RMSE of 0.37451). The 11-skill map has a small but significant improvement (p = 6.22624E-68) from the 

original skill map. The graph shown in Figure 3-3b also shows that models consisting of between 9 and 12 skills 

have similar RMSE values and are alternative choices for a best model depending on the level of skill granularity 

desired. Though the 11-skill model is significantly better than the original model (in terms of RMSE), practically 

these two models are the same since the difference between these RMSE values is about 0.0022. The only 

advantage that the 11-skill model has over the original 13-skill model is the reduction in complexity of the model. 

In addition to looking at which model best predicted actual responses, we examined which skills were 

being merged throughout our iterative search to see if we could find any general trends. A list of the merges can 

be found in the technical report. The individual skills are represented by their original numbers and a merged skill 

is represented by the numbers of each skill concatenated with an ‘x’. The numbering is in topological order, 

meaning that the skill highest up on the skill map was listed first for a merged skill.  The first merge occurred for 

skills M-1128 and M-1127.  Since skill M-1128 was a parent of skill M-1127, it is listed first in the combined 

skill name M-1128xM-1127. (See Figure 3-3b) 
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3.5 Experiment 2:  Stability Experiment 

In the previous experiment, every model was evaluated once and only once, which lead to the question of whether 

or not our results were stable. Our model evaluation used the Expectation Maximization (EM) algorithm, which is 

known to be affected by the starting value. For our original experiment, we chose our starting points for EM 

randomly and only evaluated each model once. The authors, in earlier research, found that the starting point of the 

EM algorithm could make a difference in the converged value. In general, the EM algorithm does converge to the 

correct value, but there are cases where it can converge to incorrect values or to the “opposite” 

value.  Considering the range to be between 0-1, if the actual true value of a parameter was 0.3, EM could 

converge to (1 - 0.3) = 0.7 instead if the initial starting point was too far from the true value. 

Our question was: if we were to run the iterative search experiment several times would we end up with 

the same results using different starting values for EM. Since it takes several hours just to evaluate a single model, 

running the entire search consisting of over 100 models to evaluate would take too long. The purpose of this 

experiment was to evaluate just the first iteration of the search ten times to see if the results converged to a single 

best graph. 

For the first iteration of the algorithm there were sixteen possible merges that could happen. For each of 

these possible merges we evaluated the resulting model ten times. The evaluation used was the same evaluation as 

the iterative search experiment for which we tested stability. For each of the ten runs we set the random seed in 

MatLab to correspond to the run number. This gave us a different set of random numbers for each run of the 16 

possible merges, where each merge got the same random seed within a run. Manually setting the random seed 

also meant our results for the stability experiment would be reproducible 

 

3.5.1 Results and Analysis 

After evaluating all sixteen models from the first iteration ten times we kept a count of how many times a model 

was the best model and how many times a model was in the top 3 best models. RMSE was used to choose the best 

models since it was used to determine the best model in the iterative search experiment. The results are shown in 

the table below in Figure 3-4. 
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Figure 3-4 Stability of Graph 

Merge ‘g’ was in the top 3 the most times (6) and was also the best model the most times (3). Merge ‘x’ 

and merge ‘q’ also did well. Merge ‘x’ was in the top 3, five times and was the best model two times. Merge ‘q’ 

was in the top 3, three times and was the best model three times. Merges ‘t’ and ‘o’ also did well. The general 

observation was that there was separation between good and bad merges but the best merge was not stable and did 

not converge. 

We compared the graphs to our original iterative search experiment. In the original iterative search, the first 

two skills that were merged were skills M-1128 and M-1127, corresponding to merge ‘x’ in our stability 

experiment. The second two skills that were merged in the iterative search experiment were skills M-1140 and M-

1118, corresponding to merge ‘g’ in the stability experiment. Both merges ‘x’ and ‘g’ were the best two graphs in 

the stability experiment. Although merge ‘g’ did slightly better in the stability experiment, the order in which the 

merges took place did not matter. The best model in the iterative search took place after 4 merges, which included 

merges ‘x’ and ‘g’.  Although we could not run the stability experiment 10 times for all possible merges and 

merge paths, we believe that it has a decent chance to converge to the same best model, which occurred after the 

fourth merge in the iterative search. 

 

3.6 Discussion 

When analyzing each merge, we considered the skills or concepts described by the affected skills as well as the 

test items associated to those skills. The descriptions below discuss the three groups of skills merged in 
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experiment 1 and shown in the Best Model Skill Map (Figure 3-3b). The two additional pairs of skills merged in 

experiment 2 are also discussed. In each case, the merges point to commonalities in the skills themselves or 

among the test items used to assess different skills. 

Merge ‘x’ affected skills M-1127 and M-1128. These skills represent “the abilities to represent 

inequalities from real world contexts” and “explain inequalities from real-world contexts”, respectively. The test 

items associated with these skills required students to read problems and identify inequality statements that 

matched the problems. In this case, the test items did not distinguish between two unique skills, i.e., representing 

a problem or explaining a problem, as was suggested by the two skills. 

Merges ‘g’ and ‘k’ affected skills M-1118, M-1140 and M-1120. These skills represent the abilities to 

“locate integers on a number line”, “represent integers on a number line”, and “order integers from least to 

greatest”, respectively. The test items associated with these skills required students to select lists of correctly 

ordered integers or identify the correct number line graph of a particular integer. In this case, the test items did not 

adequately distinguish between locating and representing integers on a number line (i.e., M-1118 and M-1120) 

because all of the items were multiple-choice, and none provided students the opportunity to construct their own 

number line representations of integers. The inclusion of ordering integers from least to greatest (i.e., M-1140) 

with the other two skills is possibly due to the fact that using a number line is inherently, cognitively connected to 

ordering numbers from least to greatest. 

Merge ‘t’ affected skills M-1105 and M-1106. These skills represent the abilities to “use positive and 

negative numbers in real-world contexts” and “relate the meaning of zero to positive and negative numbers in 

real-world contexts”, respectively. The test items associated with these skills required students to interpret 

problems involving integers and choose integer answers or verbal statements about integers. Two of the four test 

items included references to zero either as freezing point or sea level. In this case the items were designed to 

distinguish between the two skills, i.e., using integers and relating integers to zero. However, the relationship 

between zero and positive or negative numbers is so critical for understanding integers that, it is likely one cannot 

compare integers without considering their values in relation to zero.  
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Merge ‘q’ affected skills M-1120 and M-1108. These skills represent the abilities to “represent integers 

on a number line” and “recognize opposite numbers on a number line”, respectively. The test items associated 

with these skills required students to identify the correct number line graph of a particular integer or the opposite 

of a given integer. In this case, the two skills are inherently connected by the very definition of an integer as the 

opposite of a whole number. Consequently, it is likely that once students understand the definitions of integers 

and opposites and can use a number line, the act of graphing an integer is the same as graphing an opposite.  

Merge ‘o’ affected skills M-1122 and M-1124. These skills represent the abilities to “recognize integer 

coordinate pairs” and “graph integer coordinate pairs”, respectively. The test items associated with these skills 

required students to identify the graph of a given integer ordered pair or to select the description of how to graph a 

given ordered pair on a coordinate plane. In this case, the items did not clearly distinguish between the two skills 

because the items associated with recognizing integer coordinate pairs included graphs. Furthermore, the skills 

themselves are difficult to distinguish in a practical sense because when students learn to graph integer ordered 

pairs, they routinely associate the numerical representation (i.e., the ordered pair) with its graphical representation 

(i.e., the point graphed in the coordinate plane). 

An additional observation is that some of the skills tended to merge by pairing up with one and only one 

adjacent skill before RMSE started to decline. Before merge ‘t’, the merges were all pairwise with the exception 

of merge ‘m’. After merge ‘t’, the skills tended to keep merging into the same skill. The best skill map was 

generated after merge ‘r’, suggesting that adjacent skills tended to be similar skills and skills M-1140 and M-1120 

were similar although they were not adjacent. This was a stronger relationship for several reasons. Firstly, the 

merges that culminated in the merger of M-1140, M-1118, and M-1120 all took place before the best skill map 

was reached. This indicated that those three skills give better predictive performance when represented as one 

skill. Secondly, this was the first and only 3-skill group to be merged in the best model before RMSE 

declines. Lastly the three skills took two iterations of the search algorithm to merge together because skills M-

1140 and M-1120 were not adjacent skills. Despite the initial graph topology, our search decided to merge these 

three skills. The combination of all these factors provided strong reasoning that the three skills M-1140, M-1118, 

and M-1120 were not really distinct skills. 



21 
 

3.7 Contributions, Conclusions and Future Work 

In this work, we provided a search algorithm to reduce the complexity of a given learning map, while improving 

its fit to real student data.  Since merging skills increased accuracy, these results suggest that the original skill 

map was too fine-grained (given the number of questions per skill and the number of students who took the 

test.). In some cases, the test items did not adequately distinguish between the skills that were merged; hence such 

skills were merged. The results of algorithms like this can help the content experts who are creating skill maps 

and test items to either reconsider thinking of two skills as separate, or prompt them to write different test items to 

better distinguish between students that have mastered one of the skills but not the other skill. In this work, the 

team that created the learning map expected item 11 was a prerequisite for items 12 and 13, but our stability 

results suggested that of all the arcs, this arc was the least supported by the data (see Figure 3-4, arc “g”).   In fact, 

due to this work, we asked an unbiased teacher who did know what our mapping was, to create a hierarchy 

between items 11, 12 and 13. Surprisingly, she suggested that 12 and 13 were prerequisites to item 11, suggesting 

that the arc should point in the exact opposite direction. This may indicate that our method may be helpful in 

using the data to suggest places in the skill graph that need more attention and refinement.     

We can relate this work to our other work. Heffernan’s ASSISTments project is a project that is 

attempting to track and improve students’ knowledge across middle school mathematics. About a decade ago we 

had a learning map with over 300 skills but we now have reduced that complexity to 147 skills. Curriculum 

designers will correctly be thinking about the subtle ways in which problems are different from one another, 

which cause them to want to add skills to the skill maps to make more subtle distinctions between questions. 

However, if you also want to use the hierarchy to track knowledge, having more skills creates complexity, as few 

questions for each skill make fitting quantitative models harder.    

All of the work we have done in this chapter has a very small number of questions per skill. This naturally 

would cause us to think that many merges would be necessary, but if we had a large number of questions, and 

added all those students’ responses to that large number of questions, we could probably justify more complicated 

models.   

In our experiments, we examined the effects of merging skills on an existing learning map. There are 

many other ways we could have used the existing map to create alternatives.  For instance, Cen, Koedinger and 
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Junker [19] have explored ways of splitting skills or adding new skills, but all of those make more complicated 

models. What was not examined were the split and add operations. Possible future work could examine those 

operations to see if a better model can be obtained with them. Additionally, to validate our algorithm, applying it 

to synthetic learning maps and synthetic data could be useful to determine if our algorithm does converge to a true 

learning map. 

 

End Notes 

(1) The dataset, evaluation algorithm, and a technical report describing the algorithm in detail can be found 

at https://sites.google.com/site/assistmentsdata/kansas-project  

 

  

https://sites.google.com/site/assistmentsdata/kansas-project
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4 Refining Learning Maps with Data Fitting Techniques: What Factors 

Matter?  

Attempts have been made to refine cognitive models/Learning maps (skill graphs) using some data mining 

techniques. [16, 21, 32, 63, 92, 100]  However, the factors that affect these improvements/refining processes are 

not so clear. In the previous chapter, we presented a method for improving these cognitive models. The purpose of 

this chapter is to present the factors to consider when using our initial algorithm to refine learning maps. We 

present a simulation study that shows how important each of the factors is for this refinement process.  

 

4.1 Introduction 

Learning maps have been used as a tool to depict the set of skills in a cognitive domain and the relationship 

between these skills. A number of studies have been conducted to find and represent the relationships between the 

skills [37, 58, 84, 86]. Tatsuoka introduced the Rule-space method for identifying skills/knowledge components 

in a given cognitive domain whereas [51] present another approach called the Attribute Hierarchy Method 

(AHM). The rule-space method (RSM) does not present the relationship of the skills/knowledge components as a 

hierarchy. However, AHM, which is a variation of Tatsuoka’s RSM, considers the hierarchical relationship 

between the components [87]. Gierl used the AHM approach to make inferences of students’ cognitive 

assessment. [41] None of these approaches dealt with methods for improving the item response models developed 

using the methods proposed. The Learning Factors Analysis (LFA) method [19] was introduced to deal with this 

problem. In that chapter three different operations for improving the predictive abilities of learning maps or 

cognitive models are introduced. In [1] an attempt was made to solve this problem by presenting the results of a 

number of experiments that showed that learning maps can be refined using just one (the merge operation) of the 

three possible of the LFA method. It was shown that there were significant improvements in RMSE for the best 

model chosen, starting off with a pre-defined learning map.  
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We realize that, to generalize the method for refining learning maps, there are a number of questions that 

still need to be answered. These include: “What are the factors that can determine when a model can be best 

refined?” and “Do the number of skills, the number of items per skills, the number of levels in the skill hierarchy 

and the number of data points have any effect in determining the best refined model?” Whilst the LFA methods 

use a set of factors to determine whether to merge, add or split skills to generate better models from an existing 

one, all the factors used are based on expert knowledge and are independent of data. In order to answer the above 

questions, we present a number of simulation experiments.  

 

4.2 Problem Statement 

The LFA model uses three operations (splits, merges and adds) to refine knowledge components. In each of the 

operations, learning factors were included in the model refinement process. These factors did not include the 

number of skills in the model, the levels in the hierarchy of skills in the model, the number of items per skill and 

the guess and slip parameter values for the items. We hypothesize that these factors are important in generating an 

optimal model from a given learning map (pre-requisite skill hierarchy). Hence, we set out in this chapter to 

present a series of experiments that help in determining the impact of the above-mentioned factors in refining a 

given learning map or cognitive model. 

 

4.3 Methodology 

To answer the research questions, we started off with a 3-skill graph. We inserted a fake skill at different locations 

of the graph and ran our evaluation code to determine when the original skill-graph is learned back and what 

factors determine when this occurs. We define a fake skill as a non-existent skill within the current domain or in 

any other domain for that matter. The intent is to determine whether our iterative method [1] can identify such a 

skill and eliminate it from the final refined skill graph. We examine the following factors and determine which of 

these factors have the most impact on using the greedy algorithm presented in the earlier paper to refine a given 

model: guess and slip parameter values, the number of levels in the skill graph hierarchy and the number of data 

points (i.e. students and items). For each randomly chosen skill graph we generate a set of simulated data, one 
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each for the number of student and item pairs used. We then evaluate the models using Expectation Maximization 

to determine the factors that have the most impact. The section presents the random graph generation, Bayesian 

network creation, fake skill creation and the evaluation code. 

4.3.1 Random Skill Hierarchy Generation.  

To generate a skill graph randomly we start by choosing a random skill hierarchy. Our algorithm to generate the 

skill hierarchy takes a range of skills and a graph depth as input parameters. The output of the algorithm is a valid 

skill hierarchy where the number of vertices is within the skill range and the number of levels is within the depth 

range. We order our vertices from 1 to N and use the constraint that a vertex cannot have a directed edge pointing 

to a smaller numbered vertex. We also enforce the constraint that a vertex cannot have any self-edges.  

To generate a random graph, we choose a random number within the range of possible graphs. We then 

convert this number to binary form and add the correct number of leading zero’s (we know the number of skills 

from the random number chosen). Then we simply insert the bits of the binary number into the varying spots of 

the matrix form of the graph in order. 

The result is a directed acyclic graph with no self-edges. It will not necessarily be completely connected, 

that is some of the skills be stand-alone without any prerequisite relationships with other skills. The final step is to 

check if the graph is connected. If the graph is connected, we keep it; otherwise we discard it and repeat the 

generation process. This method allows us to instantly generate valid graphs. An example is shown in Table 4-1 

and Figure 4-1 for a graph with three skills. 
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Table 4-1. Example Matrix.  Matrix generated by the random number 5. A ‘Y’ represents that this cell is ignored because it must be a zero 

since a vertex cannot have directed edges pointing to vertices with larger numbers. An ‘X’ represents that this cell is ignored because it 

must be a zero since a vertex cannot have self-edges. 

Vertex/Vertex 1 2 3 

1 X (0) 1 0 

2 Y (0) X (0) 1 

3 Y (0) Y (0) X (0) 

 

 

 

Figure 4-1. Example Graph Generated 

4.3.2 Create Bayesian Network.  

The Bayesian network used for the analysis was generated from the skill graph selected from the previous step. 

To generate the items for the skills an item range is specified. A random number of items are chosen within the 

item range for each skill. In our experiments, we restricted our range to be a single value so all skills will have an 

equal number of items. We set our Bayesian network up like knowledge tracing, where every skill has one or 

more items and every item has a guess and slip node. [26] An item must belong to exactly one skill. The skill 

nodes are latent nodes since we cannot observe whether or not a student knows the skill. Each item node is an 

observable node, which is a ‘1’ if the student answered the item correctly and a ‘0’ if the student did not answer 

the item correctly. Both the guess and slip nodes are also latent nodes representing whether or not the student 

guessed or slipped on the item. A student is considered to have guessed when the student answered correctly but 

did not know the skill. A student is considered to have slipped when the student answered incorrectly but knew 

the skill. Using the previous skill graph example, we added the item, guess, and slip nodes to the graph.  

The final step to create the Bayesian network is to create the conditional probability tables (CPT) for the 

nodes. For our experiments, if a skill has multiple prerequisites, we considered the prerequisites as conjunctive. 

This means that a student should find it difficult to learn a post-requisite skill if the student does not know all of 

the prerequisite skills. Therefore, if a student does not know one of the prerequisite skills then the student may 
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find it challenging to learn the post-requisite skill. If the student does know all the prerequisite skills (or there are 

no prerequisite skills), we pick a random probability that the student will know the post-requisite skill between 0.3 

– 0.7. Our guess and slip parameters have varying probabilities since that was one of the parameters we 

experimented with. All the item nodes have a deterministic (0% chance or 100% chance of correctness) CPT 

based off of the skill, guess, and slip nodes (which or not deterministic). 

 

4.3.3 Creation of Fake skill 

We exported our Bayesian network to Matlab and used Kevin Murphy’s Bayes Net Toolkit to generate simulated 

data, which we define as ground truth data for the graph. Once the ground truth data was generated we randomly 

generated “fake” skills from the original graph. A fake skill is generated by randomly choosing a real skill. Once a 

real skill is chosen, a random number of items is chosen from the real skill. These items are then detached from 

the real skill and attached to the fake skill. The fake skill is then randomly chosen to be either a parent or a child 

of the real skill. Figure 4-2 shows the creation of a fake skill. 

 

 

Figure 4-2 Creation of Fake Skill. The left skill graph shows the original skill graph before the creation of the fake skill. The skill 

graph on the right shows the skill graph after the creation of the fake skill. The fake skill was created from Skill_1 where item 2 

was removed from skill 1 and attached to the fake skill 
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4.3.4 Evaluation 

In order to evaluate our Bayesian Network, we used a similar process as done in [1]. We use Expectation 

Maximization (EM) to learn parameters and fit our model. To evaluate our model, we used per student per item 

cross validation with 5 student folds and 3 item folds. Our student and item folds were chosen randomly for our 

evaluation. In [1], the item folds were chosen randomly but kept the same for each student. The only difference 

between the evaluation in [1] and this experiment is that each student is assigned a different set of random item 

folds instead of all students having the same set of random item folds. 

 

4.4 Experiments 

4.4.1 Experiment 1 

In this first experiment, we started with a set of 3-skill graphs. For each of the graphs, we insert a fake skill. We 

define a fake skill as one that is broken off of an existing skill. The fake skill has a random number of items 

chosen from the original skill and the fake skill is either a pre-requisite or post-requisite of the original skill. If the 

fake skill is a pre-requisite of the original skill, all the previous pre-requisites of the original skill become the pre-

requisites of the new fake skill and the original skill becomes the post-requisite of the fake skill. The whole idea is 

to figure out if this fake skill will be easily identified and merged with the skill from which it was created from. 

This is to validate our merge operations and to determine what factors influence the determination of a better 

skill-model /skill map than the original. 

4.4.1.1 Analysis 

We analyzed the results of the experiment and looked at how the number of students, number of items, guess/slip 

values, and the number of fake skills impacted RMSE of our predictions and the percent of correct graphs learned 

back. Fig 3-3 shows the relationship between the probability a student guesses/slipped and the RMSE as well as 

the percent of the correct skill graph being learned back. We paired guess and slip values to lower the number of 

variables in our experiment.  Our guess/slip pairings are as follows: (0, 0), (0.1, 0.08), (0.3, 0.16) and (0.5, 0.25). 

It shows that the higher chance the student has to guess the answer the less accurate and harder it is to learn back 
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the true original graph. The percent of graphs learned back with a guess/slip probability of 0 is significantly better 

than the percent of graphs learned back with a guess probability of .5 (p < .001). A realistic guess probability is 

around 0.14 calculated in [61]. At this point the percentage of graphs learned is somewhere between 0.25 and 

0.33. These are not great percentages to learn back a correct graph under realistic guess and slip values. Not much 

can be done to lower the guess probability on typical questions middle school math students would see. However 

more student data can be used to increase model performance. 

 

 
Figure 4-3 Effect of guess/slip on learning back the original graph 

 

The guess/slip probability is the biggest factor that affects model accuracy followed by the number of students. 

Table 4-2 shows how both the guess/slip probability and the number of students affects the percentage of correct 

graphs learned back and average RMSE. A cell is broken up into two columns where the first column in the cell is 

the percentage of correct graphs learned back and the second column in the cell in the average RMSE value. 

Table 4-2 Student/Guess Impact on Evaluation 

 Number of Students 

Guess 50 100 150 200 

PLB RMSE PLB RMSE PLB RMSE PLB RMSE 

0 0.33 0.09 0.64 0.08 0.70 0.1 0.67 0.02 

0.1 0.25 0.36 0.33 0.33 0.33 0.32 0.38 0.31 

0.3 0.25 0.46 0.33 0.44 0.08 0.44 0.38 0.43 

0.5 0.08 0.49 0.08 0.48 0.08 0.48 0.00 0.46 
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Figure 4-4 Effect of Number of Fake Skills on model improvements 

4.4.2 Experiment 2 

In experiment 1 multiple randomly chosen graphs were used as the ground truth. In this experiment, we chose to 

try each possible 3-skill graph to see if the graph structure had an effect on whether or not the correct skill graph 

was learned back. The methodology was the same as experiment 1 except instead of randomly choosing graphs 

we ran each of the four graphs for each possible number of students and items per skill. Figure 4-5 shows all four 

possible 3-skill graphs. After determining that the major factor impacting performance were guess/slip values, a 

reasonable pair of values were chosen for the guess and slip values (guess=0.1 and slip=0.08). Additionally, we 

fixed the number of fake skills to one in order to reduce the variability of the factors. 

 

Figure 4-5 Different Graph types for experiment 2 
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Figure 4-6 Effect of students/items on the model simplification 

The general observation from this experiment is clear from Figure 4-6 above. As the number of data 

points increases, the level of accuracy in recovering the original graph increases. This is in spite of the fact that 

the location of the fake skill was not fixed. Moreover, for any given number of students, an increase in the number 

of items results in a slight decrease in RMSE and hence better chance of learning back the original graph. This 

experiment shows that the data points (i.e. student and item numbers) have an impact on improving on the 

determination of the best model from a given model. 

4.4.3 Experiment 3 

In this experiment, we fixed all variables except for the number of students and the number of items per skill. We 

wanted to see how stable our search was and how well it performed for a small example with reasonable 

parameter values. We fixed guess at 0.10 and slip at 0.08 with three skills and one fake skill. For the fake skill, we 

took the first half of items from the original skill. We ran our algorithm for 50, 100, 150, and 200 students for 2 

and 8 items per skill. For each pair of parameters, we ran the experiment 10 times with different random seeds 

and took an average of the number times the correct graph was learned back. Figure 4-7 shows the results of this 

experiment.  We found that the results are very stable for graphs that had two items per skill.  The results were 

less stable for graphs with eight items per skill although the percent of graphs learned back was much batter.  The 
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graphs that had two items per skill were learned back correctly 8% of the time, where graphs with eight items per 

skill were learned back correctly 43% of the time, which is a significant improvement (n=40, p<.001). 

 

 

Figure 4-7 Percent of graphs learned back for student ranges 50-200 and 2+8 items per skill. 

4.4.4 Experiment 4 

We ran experiment 4 to confirm that the number of students has an impact on the recoverability of the original 

graph, fixing all other parameters at reasonable values and varying the number of students. For this experiment, 

guess and slip values were set at 0.1 and 0.08 respectively. We used graph type 4 (Figure 4-6), set the number of 

items to 4 and fake skills at 1, varying the location of the fake skill. The student numbers were varied from 10 to 

100. For each student number, the evaluation was run 10 times. The results, in Figure 4-8, show that as we 

intuitively assumed, the number of students has a huge impact on the algorithm’s ability to learn back the true 

graph. The results show that as the number of students increases the probability of a skill graph being learned 

back increases whiles at the same time the RMSE reduces. These results, we found, are significant with p-values 

below 0.01. This finding confirms that student numbers is an important factor that needs to be considered when 

refining learning maps. 
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Figure 4-8 Impact of Student Numbers 

4.5 Conclusion 

Many learning maps/cognitive models are built from expert knowledge. With the production of lots of educational 

data on student performance, it has become imperative to find data centered methods of improving upon these 

expert-designed learning maps. In our earlier studies, we designed and presented an algorithm for 

simplifying/improving the predictive accuracy of these models. In this chapter, we have presented a number of 

factors that influence the data centered model improvement process we initially published. We have shown with 

our simulation studies that the guess/slip values, number of items per skill, the number of students and the number 

of fake skills in the graph affect the simplification of the skill models. We also explored many parameters to see 

how much data is needed to recover the true learning maps. For future work, we plan to continue to evaluate our 

algorithm on larger examples to see how well our algorithm can scale up and test it on well-known real data sets. 
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5 Can Skill Prerequisite Topologies be Accurately Learned Using Deep 

Knowledge Tracing?  

 

Observing student knowledge over time grants insights into the learning process.  Measuring student 

performance, it often becomes apparent what skills, or knowledge components, compose a student’s strengths, as 

well as potential weaknesses in terms of what content is understood and what requires more practice or 

remediation.  The representation of content into a type of hierarchy is often adopted in the classroom and by 

computer-based learning platforms as a means of determining the ordering in which skills should be presented to 

students to maximize learning.  This hierarchy, composed of prerequisite links, defines the order in which skills 

should be learned. While some have been proposed, few quantitative methods exist to verify existing prerequisite 

graphs. Applying deep learning to this task of predicting next-problem correctness as a student works through an 

assignment, Deep Knowledge Tracing (DKT) [67] has been suggested to be able to identify latent relationships 

between skills based on estimates of student knowledge and the ordering in which skill exercises are completed.  

This work seeks to build upon this previous work by appropriating the original Deep Knowledge Tracing 

methodology as a means of verifying the prerequisite graph defined with the ASSISTments online learning 

platform, and adapting that methodology to determine the feasibility of making stronger claims of causality in 

measuring these skill relationships. It is found through our validation, DKT is an insufficient model to make any 

claims regarding the relationship of knowledge components without incorporating considerations of skill content. 

 

5.1 Introduction 

The ordering of knowledge components, or skills, aligned to a curriculum is often established by domain experts.  

These orderings, often represented by a hierarchy defining pre-to-post- requisite concepts, however could benefit 

from data-driven methods of validating that the correct ordering and relationships have been identified.  The 

usage of computer-based systems in classrooms has allowed for the emergence of such methods, but themselves 

often lack proper validation, motivating our work here.  The ability to develop and verify unsupervised methods 
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of identifying skill topologies, detailing the relationships between skills using evidence from real student data 

would greatly benefit teachers, administrators, and developers of computer-based learning platforms to implement 

optimized skill orderings to be presented to students. 

Many such models that attempt to identify latent skill structures address the question of whether or not the 

current skill topologies represent the best sequencing of content for instruction. Can we improve upon the models 

by identifying missed relationships or removing weak or non-existent links? In fact, the question of learning 

prerequisite skill structures from learner performance data is beginning to gain traction in the educational data 

mining and analytics community in recent years. Some methods for learning the skill topology from data have 

been explored. Among the numerous methods that have been proposed for this exercise is Partially Ordered 

Knowledge Structures, which was proposed by Desmarais et al. [28]. POKS generates item-level topologies based 

on the correlation between student performances on items or problems. Adjei and Heffernan [4] used randomized 

controlled experiments in an adaptive testing system to investigate the strength of relationships between skills in a 

given knowledge topology, with varied degrees of success. Learning Factors Analysis (LFA) [19] was introduced 

as another method for refining existing prerequisite skill topologies, and possibly generating new topologies. 

Pavlik et. al. extended the LFA model in their quest to generate domain models, also referred to as skill 

topologies. [63]  They analyzed learning curves and used the results of their analyses to generate the learning 

models from student performance data [19]. Additionally, Chaplot, et. al. [20]  combined text-based and 

performance-based methods for inferring prerequisite skill topologies from student performance data as well as 

from text-based course materials. They proposed an unsupervised approach for the task, and report that this 

approach outperformed alternative supervised methods.  

In recent years, researchers in the learning research community have started applying neural network-

based data mining techniques to the task of generating/learning skill topologies from data. Piech et.al. [67] 

developed Deep Knowledge Tracing (DKT), a neural network approach for predicting student next problem 

correctness on items in an assignment. The primary goal of that work was to propose a better method of 

predicting students’ performance on the next item in an assignment task, and was meant to be an effective 

alternative to the  widely known probabilistic Bayesian Knowledge Tracing (BKT) model [26]. In spite of this 
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primary goal, Piech and his colleagues mention that the DKT method produces, as a byproduct, estimates of the 

relationship between two skills based on student performance on the skills under consideration. They attempted to 

use these estimates to learn the skill topology represented in the data and hence to improve upon existing methods 

of learning skill structures from data.  

While DKT promises to do well at predicting students next problem correctness, it has its own challenges. 

Khajah and colleagues [48] find that simpler methods that model student performance, like BKT, perform equally 

well even though the resources required to run the DKT model far outweigh those required by the simpler BKT 

models.  Also, for the context of learning skill topologies from data, the DKT model generates probability 

estimates even for unseen skill orderings and does not take into consideration the difficulty of skills when 

determining the directionality of links. Zhang et al. [100] attempted to replicate Piech’s work  [67] and made 

general conclusions about the skill topologies they found, without taking into consideration the limitations just 

presented. They believed the skill link estimates produced, without checking to see whether those combinations 

were ever present in the training data. The mere fact that estimates exist for certain skill links does not necessarily 

mean that those estimates can and should be accepted. Further scrutiny is required to be certain that those 

estimates presented are reasonable. Additionally, the DKT method for learning skill topologies can easily produce 

spurious, or non-existent links. As an example, a 9th grade skill may be found as a prerequisite to a 2nd grade 

skill, which does not make any sense in reality. This therefore requires some human judgements to scrutinize the 

skill dependency graphs or topologies learned purely from the DKT model.  

This work seeks to explore the feasibility of using DKT method to identify causal skill relationships.  As 

described, this has been attempted in other works already, but we believe there are a number of factors that have 

not been considered in making such identifying claims. To this end, we propose an unsupervised method utilizing 

DKT to identify prerequisite structures from student performance data.   

The following sections present a brief introduction to DKT as a prediction method, as it is used as the basis 

of our methodology.  We then describe the methodology we propose, considering aspects of the skill orderings 

that should not be ignored.  We observe the feasibility of this method using a simulation study and observe the 

results using real data from the ASSISTments online learning platform as well. 
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5.2 Deep Knowledge Tracing 

Knowledge tracing is a task which measures a student's knowledge level on a particular skill given the student’s 

past performance on that skill. Bayesian Knowledge Tracing (BKT) is the most famous model for the knowledge 

tracing task.[26]  BKT models a student’s knowledge level on a particular skill as a latent variable, and updates 

the probability that the student answers the next problem from the same skill correctly using Hidden Markov 

Models. DKT is recently introduced by [67] and uses Recurrent Neural Networks (RNN) to model student 

learning process.  

RNNs attain the state of hidden nodes and the state summarizes all the information about the past input to 

the hidden nodes that is necessary to provide an insight to the future prediction. At a given time step, both the 

input at current time step and the state from the immediate previous time step are fed into hidden nodes. This 

characteristic allows RNN to memorize the information about the past, which is necessarily useful for the final 

prediction task. Long short-term memory (LSTM) is a variant of RNN that solves the vanishing gradient problem 

suffered by RNN. [43, 44] Compared to RNN, each hidden node of LSTM has three gates: input gate, forget gate, 

and output gate. By controlling these three gates, LSTM have the capability of learning long-term dependencies. 

As shown in Figure 5-1, the student performance (correct or incorrect) on a given skill is converted into a 

fixed length vector. For a dataset with a small number 𝑘 of unique skills, a one-hot encoded vector with 2𝑘 

dimensions is used to represent the input 𝑥𝑖 at time step 𝑖. For the first 𝑘entries in the input vector, one entry is set 

to 1 if the corresponding skill for that entry is answered correctly. For the other 𝑘 entries in the input vector, one 

entry is set to 1 if the corresponding skill is answered incorrectly. The prediction 𝑦𝑖 is a vector with 𝑘 dimensions, 

where each entry represents the predicted probability that the student answers the corresponding skill correctly. 
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Figure 5-1 An Illustration of DKT. The input (𝒙𝒊) to LSTM is the one-hot encoding, which indicates the skill that is answered at time 

𝒊 and if the skill is answered correctly. The output 𝒚𝒊 is a vector representing the probability of answering each skill correctly at the next 

time step. 

5.3 Methodology 

The methodology used to estimate the strength and directionality of skill links requires careful consideration.  

Other works have attempted to claim the ability to identify causal relationships inferred from real data [100] 

without considering other confounding factors.  This section describes such factors that must be considered to 

make stronger claims when inferring causal relationships using predictive models. 

The first step of our methodology includes applying the DKT model, as described earlier to our datasets. 

A simulated dataset and real-student dataset are explored in this work and will be further described in later 

sections.  The DKT model takes a one-hot encoded vector representing correct and incorrect responses for a series 

of exercises, or skills.  As the primary goal of the DKT model is to predict next problem correctness, such 

predictions are what is output from the model.  While individual item predictions can be observed from the output 

vector, as is done when only observing next problem correctness, the model does output a complete vector of 

probabilities associated with each skill.  To interpret this, once the model is trained, if given an input indicating a 

correct response on a problem of skill ‘A’, the output represents the probability that a student answers a problem 

from each skill correctly.  This output answers the question of what is the probability of answering skill ‘B’ 

correctly given that the student has just answered a problem from skill ‘A’? Considering this probability, in 

conjunction with the probability of answering other skills correctly given that an incorrect response has just been 

recorded, has been used in other methods to claim causality.  However, two problems emerge from using just this 

information alone: trusting unseen directionalities and differing skill difficulties. 
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The first problem stems from the fact that not all skill ordering combinations have been seen within the 

training data.  As students often follow a curriculum, or pre-determined ordering of skills, it is likely that a student 

may see a skill ‘A’ before skill ‘B’ but never in the opposing direction.  The DKT model is of course still able to 

produce an output for this unseen ordering, but it has never been trained to know if that output probability is good 

or bad; it can only be trained on labels that have been observed in the training data.  For this reason, we can only 

trust those skill orderings that exist in the training dataset.  Furthermore, to avoid making claims on just a small 

set of students, we place a threshold that 60 students must have seen the skill ordering in order to believe the 

model results.  This arbitrary number is chosen to rule out the possibility that just one student, or even one class is 

the sole instance of a particular skill ordering in the dataset. 

The second problem is a much more complex problem, pertaining to differences in skill difficulties.  If 

observing only the probabilities of answering problems in one skill given correctness in another skill, the easier 

skill is always likely to have a higher probability of correctness.  In other words, if a difficult skill is given before 

an easy skill, it may appear that the probability of answering the second skill is impacted by the first skill even if 

no true relationship exists.  This is partially addressed by using both probabilities of answering the second skill 

correctly given correctness and given incorrectness on the first skill, but this difference can be impacted by skill 

difficulty in various different ways.  Furthermore, ceiling (and floor) effects become evident when skills are very 

easy or very hard, where the probability of correctness is always high or low regardless of the existence of skill 

relationships. As such, we argue that no strong causal claim can be made unless the skills are found to have the 

same, or at least similar difficulties.  Comparing skills on even terms helps to rule out confounding effects 

incorporated due to skill difficulty. 

With this in mind, we use the output of the DKT model where the output skill matches the input skill to 

measure difficulty.  We observe the probability of answering a skill ‘A’ given that a problem from skill ‘A’ is 

answered correctly.  For each observable skill ordering, the difficulty as defined by this probability is compared in 

the form of a ratio of the first skill’s difficulty to the second skill’s difficulty.  If the two values are equal, this 

ratio is equal to 1, with values farther from 1 indicating large differences in skill difficulties.  We further filter the 

observable skill links to those orderings with a difference ratio between 0.95 and 1.05.  While we are filtering, we 
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are not claiming that no prerequisite links exist in the data we are excluding, but rather that using a method such 

as DKT for this type of analysis is insufficient to make reliable claims outside our observed space. 

With our likely smaller set of skill orderings, we can finally compare the probabilities output from the 

DKT model.  For each observed ordering, we find the difference of probabilities of answering the second skill 

correctly given that the first skill is correct versus when the first skill is incorrect.  For example, if observing the 

ordering of skill ‘A’ to skill ‘B’, we find the difference: 

P(B is correct | A is correct) - P(B is correct | A is incorrect) 

In order to make a claim that A is a prerequisite to B, it would be expected that the difference would 

produce a comparably large, positive value.  This “comparably” large value, however, introduces one last 

criterion for claiming a causal relationship.  As it is not knowable what a “large” difference value is for a 

particular ordering and it is likely that this value is dependent on the skills within the ordering, the difference 

value must be compared to the difference value of the opposing skill ordering.  For example, the difference value 

of skill A to skill B is compared to the difference value of skill B to skill A.  If both orderings do not exist in the 

observed set, no strong claim can be made as there is no basis of comparison.  This comparison is made for all 

observable skill orderings with a matching reverse ordered pair, identifying prerequisite ordering to exhibit the 

larger of the two values.  A threshold can be placed to limit the number of believed relationships, which is 

explored in this work using simulated data. 

 

5.4 Datasets 

5.4.1 Simulation 

In an effort to observe how well the Deep Knowledge Tracing model is able to identify prerequisite relationships, 

this work includes a simulation study. Using real student data recorded within ASSISTments [42], we begin by 

modeling individual students.  As real student knowledge is a complex problem to model, the real data is used to 

begin the process.  The same dataset used in the other trials of this work is used again here, summarized into a 

one-student-per-row description of student performance.  This performance includes means and standard 

deviations for percent correctness, the time it takes to complete individual problems, and hint usage within 
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ASSISTments.  As these summary statistics are aggregated over a multitude of different content, each row 

captures student-level information independent of individual knowledge components.  Each simulated student is 

sampled at random from this dataset, using the same mean and standard deviations of the real student in an 

attempt to remove some of the artificial nature often exhibited in simulation work. 

As we also need to control the difficulty and relationship between skills, 10 arbitrary simulated 

knowledge components are also created, where the ground truth values are known.  Each skill is given a mean and 

standard deviation representing the difficulty of problems of that content.  Difficulty means are sampled from a 

normal distribution with a mean of 0.7 and standard deviation of 0.2, with higher values indicating a more 

difficult skill.  The standard deviation of skill difficulty for all skills are set at 0.1.  In our case, the mean of 0.7 is 

chosen based on a rounded average of all correctness across all skills in the real data, while the standard 

deviations are chosen arbitrarily to observe a controllable range of difficulties. 

With these simulated skills, a set of relationships are also defined.  The first set of relationships define the 

effects of practice within a skill.  Essentially, particularly in mastery-based assignments, it is assumed for 

simulation that students who demonstrate understanding of concepts are more likely to answer problems of the 

same content correctly in the future.  This effect is stored within memory of each student, as it is likely in real 

scenarios that different students will sometimes see differing amounts of content; when a student answers the first 

three questions correctly, for example, the assignment is finished and that student is likely to have seen less of a 

range of content than a student needing 8 problems to complete.  This effect of practice is sampled from a normal 

distribution with a mean of 1 and standard deviation of 0.02, and represents a scaling to student knowledge when 

observing similar content in future simulated assignments.  This effect incorporates a tendency to slip, as the 

scaling factor can sometimes drop below 1; this aspect is included as it is not always the case that students 

improve with more practice.  It is also the case that we do not model time differences between assignments, which 

may also impact student memory when seeing similar content after an extended period of time.  While this effect 

impacts student knowledge, the relationship also impacts the amount of time students take on future problems of 

the same content and hint usage within that skill, with these being set arbitrarily at 0.98 (sd=0.1) and 0.9 

(sd=0.02) scaling respectively.  It is important to mention that for this work, unlike knowledge and hint usage, the 
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time needed to solve problems does not impact correctness but is included for robustness as this method of 

simulating data is among the contributions of this work and is usable for future works. 

 

Figure 5-2 Simulated Graph 

In addition to each skill being related to itself, a prerequisite hierarchy is also defined, as seen in Figure 5-

2. Note that the arrows in this graph and subsequent graphs point from the prerequisite skill to the post-requisite 

skill. As an example, S1 → S2 implies that S1 is the prerequisite skill of S2. Also, note again that arbitrarily 

constructed, the graph illustrates several possible structures, including skills having multiple prerequisites (S5), 

multiple post-requisites (S2 and S7), no post-requisite skills (S3, S8, and S9), and a skill that has no relation to 

any other skill (S10).  Similar to the relationships defined for the effects of practice, the prerequisite effect on 

knowledge is sampled from a normal distribution with a mean of 1.3 and standard deviation of 0.1.  As a 

prerequisite relationship is clearly defined to be that a skill ‘A’ impacts performance on a skill ‘B’, the knowledge 

effect scaling is given a lower bound of 1.1, ensuring that the effect is never negatively impactful on performance 

in the post-requisite.  Scaling factors for speed and the probability of using hints is also set as constant for all 

skills at 0.95 (sd=0.1) and 0.95 (sd=0.02) respectively.  The assumption is made that hint usage may not be as 

impacted in prerequisite relationships as they are in practicing the same content due to the differences in material 

Assignments are constructed from the simulated skills and given to each of the simulated students.  For 

this particular work, 1000 students are created and each is given 6 assignments.  Each assignment is composed of 

multiple skills, with one skill appearing with higher probability than the others.  In practice, it is common for 

teachers to assign work that is composed of one or two content types, depending on what material has been 

covered in the classroom.  This is apparent as even in the real data, students have opportunities to see certain 

skills in different orderings.  This is of course not randomized, and usually follows a curriculum, so the same is 
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done in our simulation.  Using the simulated graph, assignments follow the pre-to-post ordering of skills, with 

only small probabilities that a student will see a post-requisite item in the same assignment as its prerequisite. 

The simulated students are given problems of particular skills on the assignment, with difficulties 

sampled from the distribution defined earlier.  After applying scaling effects based on previous completed 

assignments and the skill tagging of each problem, an answer is generated from the student’s knowledge 

distribution.  The problem is considered correct if the student answer is larger than the problem difficulty.  As hint 

usage in ASSISTments marks the problem incorrect, the simulated correctness value of each problem is modified 

in the same way.  The student’s propensity to ask for a hint, as sampled from the real data, is used to determine 

the probability that a student asked for a hint on the given question, marking the problem as incorrect if a hint is 

used.  To better model student knowledge over time, the propensity to ask for hints is reduced in scenarios of 

consecutive correct responses; in other words, the simulated students require less help as they demonstrate 

understanding of the material.  Students are given problems until either answering three consecutive problems 

correctly, or a maximum threshold of 10 problems is reached.  This arbitrary threshold is provided as student 

persistence is not included in the model. 

The resulting simulated performance is formatted in the same manner as the real data, detailing each 

student’s sequence of responses accompanied by the skill tagging of each skill.  The resulting summary statistics, 

as compared to the real data, is detailed in Table 5-1. The resulting simulated data is shown to exhibit similar 

metrics to that of the real data.  This similarity supports the claim that the simulated student performance 

sufficiently models the real-world data.  With all ground truth values and relationships known, the methodology 

can be compared for its effectiveness.  As prerequisite relationships in real data is often difficult to measure, the 

complexities introduced for simulation will help gain an understanding of how effective this methodology is able 

to learn latent structures in the presence of simulated noise.  
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Table 5-1 Summary statistics for generating simulated data 

Feature Real Student 

Data 
Simulated Data 

Percent Correct 0.72 0.76 

Average Problems per 

Assignment 
5.09 5.4 

Hint Usage 0.15 0.14 

Time Per Problem 

(seconds) 
24.12 26.15 

Completion 0.8 0.82 

 

5.4.2 ASSISTments Dataset 

ASSISTments is an online homework assignment and completing system that has served a number of students 

and teachers for about a decade now [42]. A recent study showed that this system causes a huge gain in learning 

among students of different knowledge levels as compared to students who did not use the system. The study thus 

shows the effectiveness of the system in helping students learn over a given period of time. [79]  The current users 

of the system span all over the US with a heavy concentration of the schools in the north-eastern parts of the 

USA. A vast majority of the student users are at the middle school level, with a few of them being in the high 

school. The system provides teachers with the ability to assign sets of questions, referred to as problem sets, to 

students. The problem sets are usually composed of problems that are tagged with skills/knowledge components 

and are presented to the students in random order. Students continue to answer the questions in the problem set 

until they get a predefined number of questions correct in a row. This predetermined number of questions is 

referred to as the mastery criterion. Daily limits are set for students who are unable to complete the assignment 

task on that day. These limits define the maximum number of questions by which the system should stop 

presenting problems to the students if they have not reached the mastery criterion. 

We pulled data from this system for the 2014-2015 academic year. The complete data set for the academic 

year consisted of about 5 million unique rows, each row representing a student’s performance on a problem in a 

given assignment. From this large sample space, the first one million rows are selected to perform our analysis, 
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utilizing a large sample space in which to apply and test our method while at the same time considering 

computational costs. This subset of the data set consisted of student performance data for 25,465 students whose 

grades range from 4 to 9. There was a total of 124 knowledge components in the dataset. The students had 

completed an average of 40 problems for all assignments in the dataset. A total of 32,465 unique assignments had 

been attempted. The complete dataset as well as the code used for the current study are available at 

http://tiny.cc/DKTPrereqSkillsGraph. 

 

5.5 Results 

The results of our method are presented here, illustrating the learned skill topologies.  We are able to evaluate our 

methodology, using the results of the DKT model and considering confounding effects caused by skill orderings 

and differences in skill difficulties.  To reiterate the purpose of this evaluation, the use of a predictive model to 

make causal inferences seems inherently problematic. Therefore, using such a method and accounting for 

impactful effects should give us an idea of the feasibility for use on this task, particularly when evaluated on the 

simulated dataset where ground truth values are known. 

5.5.1 Simulation 

As depicted in Figure 5-2, we defined a ground-truth prerequisite structure for use on our simulated data.  The 

simulation, proving to illustrate in Table 5-1, sufficient representation of real world data on which it is based, uses 

the defined structure to emulate students solving problems.  From that data, the skill graph seen in Figure 5-3 

illustrates what our method determines to be the skill topology. 

In this learned graph, the method is able to identify just three direct prerequisites in skills 1 to 2, skills 4 

to 5, and skills 5 to 9, while identifying other skills that exist within the same prerequisite branch, such as skills 1 

to 3 and skills 4 to 9.  While illustrating some success, the method also identifies several spurious links, 

particularly those involving skill 10, which has no true relationship to any other skill.  If existing in a simulated 

study that, while close to real student sequences, is likely to capture only a portion of the true complexity, such 

limitations are likely to exist if applied to real data; this occurs even in the case of accounting for differences in 

skill difficulty and attempts to limit our comparisons to those where causal claims are strongest. 

http://tiny.cc/DKTPrereqSkillsGraph


46 
 

 
Figure 5-3 Learned Graph from Simulated Data 

5.5.2 Real Data 

The findings of our simulation study suggest that, while able to correctly identify some prerequisite relationships, 

DKT and out method is prone to identifying false positives, or spurious links that are truly non-existent.  The 

method is not completely invalid, however, suggesting that while perhaps failing as an unsupervised method, 

incorporating expert knowledge to supervise the believability of identified links may improve its accuracy.  The 

model may be useful, therefore, in a human-assisted manner to further base identified relationships within the 

interpretability of the knowledge components themselves. 

In this regard, we apply our method to the real-world data and observe the results in Figure 5-4. Notes 

that Table 5-2 contains the list of skills that correspond to the identifiers in the nodes of the graph. Those reported 

underwent two levels of human-guided filtering before being considered.  The first is an additional constraint 

placed on the links to help remove likely spurious relationships.  Using the common core standard tagging of each 

of the skills, only those relationships in which both skills are in the same grade are considered.  This helps remove 

the possibility that a 9th grade skill could be identified as a prerequisite to a 2nd grade skill.  The remaining links 

are illustrated in the figure.  From these links, a human domain expert can scrutinize the identified relationships 

further. 
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Figure 5-4 shows the resulting prerequisite skill graph that was inferred from the results of the DKT method 

together with our intuitive method for determining the direction and strength of the prerequisite skill links.  

 

 
Figure 5-4 Learned Graph from Real Data 
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Table 5-2 List of skills with their corresponding ids from ASSISTments 

 
 

Observing the skill orderings identified by the method in Figure 5-4, it must be noted that the groups of 

skills do not necessarily represent clusters of skills, especially since these groups of skills do not represent sub-

domains. They just represent skills that our method identified as related directly or indirectly to each other. Also, 

several interpretability issues become prevalent. First, only one link (189 → 190) is identified to match with the 

existing skill structure of 157 links between the 124 observed skills within ASSISTments. While it is among the 

goals of such a model to identify links that may have been missed by domain experts who constructed the 

prerequisite hierarchy, identifying only one to match domain experts raises concern that the model is not accurate.  

It is therefore more likely that the model is identifying many more spurious than actual prerequisite relationships 

in the real data.  Furthermore, the method produces a cycle between the skills 99, 110, and 124; while a method 

could be introduced to break cycles, the emergence of such an occurrence further suggests that the relationships 
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identified are not prerequisite in nature.  The latent structures do not pertain to content, but rather are largely 

impacted by other emerging correlations in the data. 

5.6 Discussion 

The disappointing validation results of our simulation study suggest that a predictive model such as DKT is 

insufficient to make reliable causal claims regarding skill orderings.  Even when accounting for confounding 

effects caused by unseen skill orderings in the data and differences of skill difficulty, the model identifies many 

spurious links.  This is not to say that the model is not at least partially effective; it was able to identify three 

prerequisite relationships and other links within the same branch of the hierarchy.  However, as these links were 

indistinguishable from the spurious links identified, there is no known unsupervised way to know which links are 

believable when applied on the real data. 

Aside from the ability to make causal claims, it is similarly unreliable to make correlational claims for the 

same reason of spurious links.  Based on the simulation study, skill 10, which is defined to have no relationship 

whatsoever to other skills, is identified as having relationships with two skills.  It is believed that this is the case 

due to confounding effects of the skill difficulties once more; unlike the problem of differences in skill 

difficulties, this problem actually stems from similar skill difficulties.  If the model is identifying a relationship, it 

is possible that the skills are only correlated in terms of the difficulty of problems within that skill, but not on the 

content itself, especially since this study did not consider the content of the knowledge components.  The DKT 

model, as presented in Piech et al.  [67] has not been developed to capture aspects of content, and instead observes 

an imperfect representation of content by means of student performance.  If skills have the same difficulty, 

especially in the case of very high or very low likelihoods of answering problems correctly, the ceiling effect 

introduced confounds the results leading to such spurious links.  For example, in an extreme case, if students 

answer 100% of problems correct in skill ‘A’ and the same percentage correct in skill ‘B’, the two skills are likely 

to be identified as related even if there is no similarity of actual content. 
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5.7 Contribution 

As is found from our attempts to remove effects of skill difficulty and the relationships identified by the 

simulation study, it is suggestive that the difficulty of knowledge components is poorly representative of their 

content.  We argue as a result that models observing only this difficulty, such as in the form of propensity of 

answering items correctly based on other correctness probabilities, is insufficient to make claims, causal or 

otherwise, regarding the relationship between skills.  If employing such models, information of the domain and 

content should be observed in order to properly support any such claims. 

Understanding the problem however, simply motivates future work to develop and utilize models that are 

able to better represent and utilize content rather than relying on student performance alone.  Incorporating such 

models would exhibit more promise in its ability to distinguish true prerequisite links and non-existent, spurious 

links.   

It is also likely more beneficial to conduct randomized controlled experiments to observe the effects of skill 

orderings.  Doing so, however proves to have its own limitations due to ethical implications of potentially 

presenting students with a detrimental skill ordering, but some systems have developed means of doing so using 

remedial work rather than for initial instruction.  Coupling such trials with unsupervised methods considering the 

content of knowledge components is topic worthy of future research.  
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6 Predicting Student Performance on Post-requisite Skills Using 

Prerequisite Skill Data 
  

Prerequisite skill structures have been closely studied in past years leading to many data-intensive methods aimed 

at refining such structures. While many of these proposed methods have yielded success, defining and refining 

hierarchies of skill relationships are often difficult tasks.  The relationship between skills in a graph could either 

be causal, therefore, a prerequisite relationship (skill A must be learned before skill B). The relationship may be 

non-causal, in which case the ordering of skills does not matter and may indicate that both skills are prerequisites 

of another skill. In this study, we propose a simple, effective method of determining the strength of pre-to-post-

requisite skill relationships. We then compare our results with a teacher-level survey about the strength of the 

relationships of the observed skills and find that the survey results largely confirm our findings in the data-driven 

approach. 

This chapter is published at the following venue: 

Adjei, S. A. & Heffernan N.(2016) Predicting Student Performance on Post-requisite Skills Using Prerequisite 

Skill Data: An alternative method for refining Prerequisite Skill Structures. Proceedings of the Sixth International 
Conference on Learning Analytics & Knowledge, Edinburgh, United Kingdom — April 25 - 29, 2016 pp469-473 

 

6.1 Introduction 

Prerequisite skill structures represent the ordering of skills in a given knowledge domain. The learning sequences 

represented in prerequisite skill structures have become an area of interest over the past few years. As a prelude to 

the objective of learning prerequisite skill structures from data, Tatsuoka developed and proposed the Q-Matrix, a 

structure that represents the mapping of items on a test to specific skills. [86] Others have built on this structure to 

find relationships between the skills and items represented in the Q-matrices [12, 82], or proposed methods for 

refining Q-Matrices [32]. Brunskel presented preliminary work in which she used students’ noisy data to infer 

prerequisite structures. [16] Additionally, Scheines, et al. present an extension of a causal structure discovery 

algorithm in which the assumption of pure items is relaxed to reflect real data, and use that relaxed assumption to 

infer prerequisite skill graphs from students’ response data.[82]   

 



52 
 

The focus of other researchers in the community has been on refining the prerequisite structures developed either 

by domain experts or through data mining approaches, as used by Barnes. Barnes, 2005 #28} Cen, et al. proposed 

Learning Factors Analysis (LFA) as a method for refining cognitive models.  Their approach includes statistical 

techniques, human expertise, and combinatorial search to refine cognitive models. Following the proposals made 

by Cen et al. in [19], Adjei et al. [1] developed a combinatorial search algorithm based on LFA and found 

simplified prerequisite structures, which have equally good predictive power as the originals.  

Desmarais, et al. introduced a method for determining partially ordered knowledge structures (POKS) 

from student data. [31] The main idea behind this approach is to compare pairs of items in a test in order to 

determine any interactions existing between each pair. The interactions serve as a basis for determining the 

relationship between the skills represented by the items. Pavlik and his colleagues applied POKS to analyze item-

type covariances and proposed a hierarchical agglomerative clustering method to refine the tagging of items to 

skills, [64] and later proposed Learning Factors Transfer Analysis [63] as a means for generating domain models. 

Adjei and Heffernan used randomized control experiments to identify links within prerequisite skill structures that 

require further scrutiny. [5] All of this effort that has been expended in the quest to find skill structures from data 

have yielded varied degrees of success. 

The desire to find the best representation of skills (i.e., the prerequisite skill structure) is important for a 

number of reasons. It informs domain experts about the optimal sequencing of instruction in order to achieve the 

best tutoring for students. Additionally, this should help researchers in the education research community to better 

model students’ knowledge and performance in intelligent tutoring systems more accurately. Such strategies and 

models can benefit students’ understanding of new skills by supplying them with the optimal foundations for the 

material.  Likewise, better student models can lead to improved intervention design for those students requiring 

further aid. 

This current study proposes a simple method for identifying problematic links in a prerequisite skill 

structure, pointing domain experts to the ordering of instructions that may be creating problems for students. In 

this study, we use linear regression of students’ performance on items presented to students in the order of a given 

prerequisite skill structure and make suggestions about the strength of the relationships between the skills.  



53 
 

This chapter starts out by describing PLACEments, the adaptive testing system from which data was 

collected for use in this study. This is followed by a description of the methods we employed and the results of the 

studies. We then present the results of a teacher survey that we conducted and compare the results of the survey 

with the findings of our data mining task. The chapter concludes with a discussion of the results and possible 

future work in this area. 

 

6.2 PLACEments 

PLACEments, a free mathematics adaptive testing system, is a feature of ASSISTments (a free web-based 

Intelligent Tutoring System (ITS)). When assigning a PLACEments test, an initial set of skills are selected for the 

test. Students are tested on the initial set of skills and depending on their performance, the system traverses a skill 

graph to present problems from the prerequisite skills of the initial set of skills. The test adapts to the student’s 

performance as well as the underlying prerequisite skill graph. If a student performs poorly on an item in the test, 

they are presented with items from the prerequisite skills required to solve the original problem. PLACEments 

uses a prerequisite skill structure created by one of the experts who developed the Common Core Standard for 

mathematics. [17] Portions of this structure are currently being used by websites like AchieveTheCor.org 

[http://www.achievethecore.org/coherence-map/]. The developers of the site call it the Coherence Map. 

PLACEments has an additional feature that assigns remediation assignments to students who perform 

poorly on a test. These remediation assignments are intended to build the students’ understanding of the skills 

they performed poorly on, during the test. The remediation assignments are released in the order of the 

arrangement of skills in the prerequisite skill structure. Students are assigned lower grade level prerequisite skills 

first, and until they complete those remediation assignments, post-requisite skills-related remediation assignments 

are not released. This ensures that the students gradually build on their knowledge of skills until they eventually 

reach a desired level of mastery of the skills in the given domain. 

To illustrate how PLACEments works, Figure 6-1 shows a hypothetical prerequisite skill graph where the 

letters A through H each represents a skill. The graph additionally shows a typical configuration of a student’s 
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navigation through the prerequisite skill structure in the process of taking a PLACEments test. “Dividing Positive 

Decimals”, “Greatest Common Factor” and “Least Common Factor) are the initial skills assigned on the test.  

 

Figure 6-1 A Typical Student’s navigation in PLACEments 

In this case, the student answered incorrectly the question related to “Dividing Positive Decimals” and so 

is asked questions for “Dividing Whole Numbers” and “Multiplying & Dividing Powers of 10”. Since the student 

could not demonstrate understanding of “Dividing Whole Numbers”, he is further asked questions from “Place 

Value Relationships”, which he performs poorly on as well. PLACEments creates remediation assignments for 

each of the skills the student performs poorly on (Dividing Positive Decimals, Multiplying & Dividing Powers of 

10, and Place Value Relationships). For this particular example, the remediation assignment for “Place Value 

Relationships” is released before any other remediation assignments are released. The assignment for 

“Multiplying & Dividing Powers of 10” is released after the student completes that previous skill’s assignment.  

For the purpose of this study, we focus only on the remediation assignment management feature. This is the 

feature that provides us with data for determining how strong prerequisite skill relationships are. The remediation 

assignments are typically assignments in which students practice a number of similarly designed problems to help 

them master a particular common core skill. In the course of the assignments, students are allowed to ask for help 

(in the form of hints) as they progressively answer the questions. The student is deemed to have mastered the skill 

if he/she correctly answers n consecutive problems in the assignment without asking for hints. The value of n 

typically ranges from three to five depending on the designer of the problem set. If after a set number of problems 

(typically called the daily limit), the student is unable to reach the mastery criterion, the system pauses the 

practice session until the next day when the student can continue with the assignment.   
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6.3 Methodology 

6.3.1 Dataset 

The remediation assignment feature of PLACEments served as the source of data for the current study. The 

dataset includes students’ performance on remediation assignments. There were 495 prerequisite skill links from 

the prerequisite skill structure described above. In this study, we focused our attention only on skills that have 

exactly one prerequisite skill, but it is important to note that our approach is not inherently limited to such skills. 

Of the 104 skills that have exactly one prerequisite skill, we had 24 of the links that had data for a minimum of 50 

students. For each of the prerequisite skill links examined, there was an average of 120 students who were 

assigned remediation assignments of both the prerequisite and post-requisite skills of the link.  

Each row in the dataset has a student’s performance on the pre- and post-requisite skills (measured by the 

percent correct of the Skill Builder, and the number of items it took them to complete the Skill Builder typically 

referred to as the student’s mastery speeds) and the student's prior performance on all problems in ASSISTments. 

The latter is to help us account for the student’s knowledge level. The data set also includes the skill difficulty 

values for both the pre- and post-requisite skill. These difficulty values are the percent correct for all the items 

tagged with that skill in ASSISTments. Table 6- 1 shows a sample of the dataset that was used for this study. Each 

row in the dataset represents a student's’ performance on the remediation assignments related to a given 

PLACEments test. If the student had a similar pair of assignments in another PLACEments test, that information 

was ignored because we did not want to duplicate the data for a given student. In all, the dataset had 5803 

instances of student’s performance on pre- and post-requisite skills, involving 1567 students who have completed 

PLACEments tests.  
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Table 6-1 Sample data set. 1 

SID PsSk PreSk PosMS PreMS StPr  Pre Dif Pos Dif 

23412 57 50 4 5 0.75 0.32 0.40 

24321 87 50 3 5 0.86 0.58 0.67 

…. … … … … … …… ....... 

 

6.3.2 Regression Models 

We ran linear regression to predict students’ performance on the post-requisite skill. To avoid bias caused by 

student performance and differences in skill difficulty, we included each student’s prior performance, mastery 

speed of the prerequisite skill, and the difficulty of both the pre- and post-requisite skills into our models. The 

dependent variable was the mastery speed of post-requisite skills. 

 

The following equation illustrates the regression model learned from the data for each of the links: 

 

mi,j =  αi + βkmk,j + γi,kKj +  ρkdk +  σidi………… (1) 

 

where i indicates the metric for the post-requisite skill and k indicates the prerequisite for student j.  The term m 

represents mastery speed, α represents the intercept, K represents the prior knowledge, and d represents skill 

difficulty. 𝛽, 𝛾, 𝜌 and 𝜎 represent the coefficients of the independent features in the regression.  

We considered a link’s model only when the model was found to be statistically significant (p<0.05) with R-

Square above 0.1. All those models with R-Square values below 0.1 were considered to be suggestive of non-

existence of a believable link between the two skills. For the models that met the above criterion, a prerequisite 

relationship was considered to exist when there is a positive standardized beta coefficient for the prerequisite 

skills mastery speed (i.e., βk> 0) and is significant (p<0.01 in many cases and p<0.05 in a few).  

                                                      

 
1 The complete dataset can be found at http://tiny.cc/mslinkstrength. SID is the unique student identifier, PsSk is the post requisite skill id, 

PreSk has the prerequisite skill id, PrMS and PosMS contain the student’s mastery speed of the pre- and post-requisite skill respectively, 

StPr is the students’ prior percent correct (an indication of the student’ knowledge level), and PreDif and PosDiff is the difficulty of the 

pre- and post-requisite skills. The column names have been shortened for lack of space. 



57 
 

Since outliers in the dataset could skew the results, we used two data transformation methods to minimize 

the effects of outliers in the dataset. The first method was to winsorize the mastery speeds in which all mastery 

speeds above 10 had their values set to 10. Skill Builders in ASSISTments have this feature where a daily limit of 

10 is set to prevent students from banging their heads when they are unable to master the skill within 10 

opportunities. This is the reason we chose 10 as the cut off number in order to fairly account for student 

performance. More than 80% of the data we used had mastery speeds below 10 so the impact of this 

transformation was not very significant. The second data transformation method we used was a log transform of 

the mastery speeds. We then used each of the transformations to predict the correspondingly transformed mastery 

speeds and present both results in the results section. 

In the case of the transformed data, we replaced the raw mastery speeds in the model with the transformed 

mastery speeds. We run linear regression models similar to equation (1) above with the mastery speeds,mi,j and 

mk,j, respectively replaced with the transformed data, mi,j and 𝑚𝑘,𝑗. Equation (1) in this case becomes: 

𝑚𝑖,𝑗 =  𝛼𝑖 +  𝛽𝑘𝑚𝑘,𝑗 +  𝛾𝑖,𝑘𝐾𝑗 +  𝜌𝑘𝑑𝑘 +  𝜎𝑖𝑑𝑖 ……….. (2) 

 

6.3.3 Teacher Survey 

To verify the results of our findings, we ran a survey of 45 randomly selected domain experts and teachers who 

use ASSISTments and asked about their perceptions of the strength of the 24 prerequisite skill relationships, 

including the 14 links we studied in the regression study. A sample survey question is shown in Figure 6-2. The 

survey had 26 different questions, the first question introduced the survey and the last was complimentary. There 

was a survey question for each of the 24 prerequisite skill links. For each prerequisite skill link, we presented a 

sample problem for each of the post- and pre-requisite skills and asked teachers to rate, on a scale of 1 to 7 (1 not 

important; 7 extremely important), how important it is for a student to know the prerequisite skill to be able to 

answer the problem from the post-requisite skill. Even though the questions give the impression that we are trying 

to figure out how related the skills are, we intentionally did not use the terms “pre-” and “post-requisite skills” in 

order not to confuse the respondents, or to point them in a particular direction. A link is considered to exist if the 
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mean of the responses for that link was approximately 5 and a standard deviation of less 1 or less. We then 

compare the results of the survey with the findings of the study and report on the comparison.  

 

 
Figure 6-2  Sample Teacher Survey question 

 

6.4 Results 

6.4.1 Regression  

The results of the regression study are illustrated in Figure 6-3, which shows that several of the links could be 

found to be problematic and require further scrutiny. When the mastery speeds were transformed to take care of 

the outliers, the models do a better determination of the good links than was the case when the raw speeds were 

used. The takeaway from this graph is that we do a better job at finding both good and bad links in a prerequisite 

structure (and thus refine the structure) when we transform the mastery speeds. By transforming the data, we 

increase the good links by about 10 percentage points, as shown in Figure 6-3. 
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Figure  6-3 Percentages of identified good and problematic links based on mastery speed transformation methods 

 

The bar chart in Figure 6-4 shows that, of the twenty-four (24) prerequisite links, the regression method 

identified 25% of the links (6 links) in which the students’ performance on the prerequisite skills significantly 

predicts their performance on the post-requisite skills, irrespective of the data transformation method used. Thirty-

six percent (36%) of the prerequisite skills (in 8 links) are significant predictors (p-value < 0.05) of students’ 

performance in the post-requisite skill related assignment, if we used any two of the transformation methods. This 

suggests that a prerequisite skill relationship truly exists between the two skills in each of those links. 

 

 
Figure 6-4 Agreement between mastery speed transformation methods 
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6.4.2 Teacher Survey 

We received responses from 21 of the 45 teachers invited to respond to the survey, representing a response rate of 

47%.  All respondents completed the survey in its entirety, and the resulting scores were averaged per link.  Those 

links found to have an average score greater than or equal to 5 with a standard deviation approximately equal to or 

less than 1 were viewed as exhibiting a prerequisite relationship. This is concluded as we used a 7-point scale, 

with those scores greater than 4 indicating at least some importance for one skill to be presented before the other.  

On the basis of these criteria, the survey found 67% of the links (16 links) are good, while the remaining 33% (8 

links) are bad. 

 

 
Figure 6-5 A comparison of model predictions with teacher survey about link strength.  

Using these values as ground truth, we compare the results to our regression models. In Figure 6-5, we 

observe our models in terms of precision, recall, and accuracy metrics against the ground truth values.  An 

interesting finding from those results is that the accuracy of the regression models was not influenced by the 

transformation method used.  This could indicate that the transformations alter the data in similar ways, or simply 

that there were too few instances affected by the transformations to observe an effect. 
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Figure 6-6 illustrates each method’s ability to identify correct links when compared to the ground truth values.  

We see that the method is generally successful in identifying links.  This is the case, even as the accuracy seen in 

Figure 6-6 has room for improvement. 

 
Figure 6-6 Strength of Methodology. This graph shows counts of the good and bad links correctly identified by the method grouped 

by data transformation method. 

 

6.5 Discussion of Results 

Prerequisite skill structures in any knowledge domain are very important for instruction and for preparing students 

for future learning. Almost every knowledge domain has one or a couple, which are created by domain experts. It 

is important to note that several of these prerequisite skill structures need to be refined. Data is currently being 

generated that affords us the opportunity to use data-centered methods to refine these structures. 

In this study, we used data generated from PLACEments, which is an adaptive testing feature of 

ASSISTments, to propose one method for refining these structures. In this current study, we used a simple linear 

regression method in which we use the student performance on the prerequisite skill to predict their performance 

on the post-requisite skill. We found that for some of the links, this method was effective at identifying both good 

and bad links in the structure. Comparing the results of the method with the survey provided a ground truth with 

which to compare the findings from the study. The results have shown that if we have performance data, in the 

form of mastery speeds, we can achieve more accurate results by transforming the dataset in some format in order 

to take care of outliers that can easily ruin the findings. [61] The methodology affords prerequisite skill structure 

creators i.e., domain experts, the opportunity to identify and refine the order of the skills in these structures.  
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It must however be noted though that the method was not perfect. A few of the links could not be correctly 

identified. Additionally, the criterion for determining whether a regression model is worth examining is relatively 

low. In view of these, further studies are required to ascertain the reasons behind that finding and to propose 

refinements of the method. There could be interaction effects and other relevant predictors that have been ignored, 

but which may be necessary to ensure better accuracy for the prediction models.  

 

6.6 Contribution 

The main contribution of this study is the provision of a simple and effective linear regression-based method for 

refining prerequisite skill structures. With this method, we are able to identify problematic arcs in the structure 

and make these findings available to domain experts who will then use this information to further refine the maps.  

Additionally, we have introduced a system that provides us with a very good source of data for refining 

prerequisite skill structures. 

 

6.7 Conclusions 

Several authors in the educational data mining and learning analytics community have attempted to learn 

prerequisite structures from students’ response data. Others have looked for methods to refine already existing, 

domain-expert-made prerequisite skill structures using methods like LFA, etc. It has so far been difficult to get 

datasets that present students’ response data in the order of their underlying students’ performance. This chapter 

uses such a dataset available from PLACEments, an adaptive testing system that traverses a prerequisite skill 

structure for item selection. The data from students’ performance on remediation assignments was used to learn 

the strength of prerequisite skill relationships existing between skills and to make suggestions regarding these 

arcs. We have shown that using simple linear regression and with the right dataset, we can relatively tell how 

strong the prerequisite skill relationship between two skills are and, based on that make suggestions, regarding 

which links domain experts may need to investigate and refine. 
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This study does have some limitations. The data used for this analysis has come solely from PLACEments. 

There are not many such adaptive testing systems that generate the kind of data we used in this study. It will be 

interesting to study another dataset that is generated in the same or similar format as PLACEments, in order to 

apply this simple linear regression method to make statements about the strength of prerequisite skill 

relationships. We view this study as a preliminary step in our goal of finding optimal prerequisite structures using 

PLACEments data. 
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7 Modelling Interactions across skills: A method to Construct and 

Compare Models Predicting the Existence of Prerequisite Skill 

Relationships 
 

The incorporation of prerequisite skill structures into educational systems helps to identify the order in which 

concepts should be presented to students to optimize student achievement. Many skills have a causal relationship 

in which one skill must be presented before another, indicating a strong skill relationship. Knowing this 

relationship can help to predict student performance and identify prerequisite arches. Skill relationships, however, 

are not directly measurable; instead, the relationship can be estimated by observing differences of student 

performance across skills. Such methods of estimation, however, seem to lack a baseline model to compare their 

effectiveness. If two methods of estimating the existence of a relationship yield two different values, which is the 

more accurate result? In this work, we propose a baseline model that can be used to compare not only different 

methods of estimating the strength of skill relationships, but also can be used to observe which student-level 

features are most accurate in providing these estimates. Focusing on interactions of performance across skills, we 

use our method to construct models to predict the existence of five strongly-related and five simulated poorly-

related skill pairs. Our method is able to evaluate several models that distinguish these differences with significant 

accuracy gains over a null model and provides the means to identify that interactions of student mastery provide 

the most significant contributions to these gains in our analysis. 

 

This chapter is published at the following venue: 

Botelho, A., Adjei, S. A. & Heffernan N. (2016) Modeling Interactions Across Skills: A Method to Construct and 

Compare Models Predicting the Existence of Skill Relationships In Tiffany Barnes, Min Chi and Mingyu Feng 

(eds.) Proceedings of the 9th International Conference on Educational Data Mining held in Raleigh, North 

Carolina, USA. — June 29 - July 2, 2016 pp292-297  

 

7.1 Introduction 

Many educational systems like ASSISTments [42] and Khan Academy already implement a prerequisite structure 

as a suggested ordering in which skills should be presented to students. These structures are often developed by 

domain experts and teachers in the field of study and are likely to hold ground-truth. It is clear, for example, that 
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relationships can be identified by observing skills at the problem-level; by viewing the steps required for students 

to complete each item, it can be known that any skills required to complete such problems can be considered 

prerequisites (for example, Multiplying Whole Numbers as a prerequisite to Greatest Common Factors as is used 

in our analysis). While this is true from a content perspective, it is also possible, and perhaps comparably useful, 

to describe general skill relationships in addition to prerequisite arches; general relationships could refer to skills 

requiring similar processes to complete rather than a relationship of content or may be similar in any other 

content-independent aspects. Such relationships, perhaps even themselves existing as a causal arch (expressed as a 

prerequisite), may not be found by domain experts due to their non-intuitive relationship. Therefore, by using 

existing prerequisite links that are known to be strong by domain experts, we are able to construct a method of 

measuring which factors are most predictive of such relationships. 

We also argue that identifying strong relationships is not enough for a method of prediction to be 

considered adequate. Such a method should also be able to identify weak or non-existent skill relationships. It is 

likely that while much attention and research is placed on structuring prerequisite links, some of the deemed 

strong links are false-positives. In other words, a skill may be listed as a prerequisite, but has no true relationship 

to its supposed post-requisite skill. In such a case, there is little or no interactions of performance. Such links must 

also be identified and removed or reordered in learning platforms to benefit the students. 

A significant amount of research has looked at measuring the strength of skill relationships [1, 16], and 

even the effects such relationships have on measuring student performance [14, 93], but without a common 

baseline model, it is difficult to compare the true accuracy of such methods in a general setting. Furthermore, 

many of these methods represent similar conceptualizations of performance inherently, or through variations of 

representation such as aggregation or centering. For example, “student achievement” is likely a predictor of skill 

relationships (achievement on a prerequisite skill will likely influence achievement on a post-requisite skill), but 

can be represented as the percent of problems answered correctly, mastery speed (the number of items needed to 

complete an assignment as is commonly used in intelligent tutoring systems), or countless other combinations of 

features. It will be important to distinguish between these generalized components to avoid incorporating features 

that capture the same types of conceptualizations into predictive models. 
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This study attempts to provide a baseline model that can be used to compare and identify which features best 

indicate a strong relationship between two skills. This baseline model will incorporate a method of generalizing 

and distinguishing features that measure different aspects of learning and performance. With this model, we seek 

to answer the following two research questions: 

1. What link-level features, expressed in this chapter as interactions of performance between skills, are 

significant in predicting the existence or non-existence of skill relationships? 

2. Are we able to identify which features are the strongest predictors of skill relationships, and if so, does 

combining them make for a more accurate predictive model? 

The next section of this chapter will discuss some of the previous research performed on skill relationships 

and prerequisite structures. Then, we will discuss our theory and methodology to provide a baseline model of 

comparing methods of measuring skill relationships. Using this model, we then compare several commonly-used 

student-level features, and of the most accurate, compare several different representations of those features. 

Finally, we will discuss our findings and suggested future works. 

 

7.2  Previous Work 

The discovery and refinement of prerequisite skill structures has been an important research question in recent 

years. The impact of this research on educational systems cannot be overemphasized. Domain experts who design 

these structures need data centered methods to support the decisions they make; it is vital to have empirical data to 

support hypothesis regarding the order in which skills are presented as it can have a large impact on student 

achievement and either aid or impede the learning process. Additionally, identifying the best prerequisite skill 

structure will enhance student modeling; knowing a student’s prior performance on prerequisite skills can help 

estimate that student’s performance on the post-requisites. This can lead to earlier interventions for struggling 

students, or even help redefine mastery perhaps students who perform very well on a prerequisite requires less 

practice on a post-requisite, or can be given more advanced examples. 
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Tatsuoka, defined a data structure called the Q-Matrix, that represents the mapping of problems to skills: 

the rows of this matrix represent the problems, and the columns represent the skills. [86] Though the goal of the 

research was to diagnose the misconceptions of students, they set in motion a number of studies that have used 

this data structure as the first step to find prerequisite structures [12, 21, 82]. 

Desmarais and his colleagues developed an algorithm that finds the prerequisite relationship between 

questions, or items, in students’ response data. [31] They compare pairs of items in a test and determine any 

interactions existing between each pair. Depending on the interactions and a set of interaction-related criteria, they 

determine whether the two items have a prerequisite relationship between them. This approach was applied by 

Pavlik, et al. to analyze item-type covariances and to propose a hierarchical agglomerative clustering method to 

refine the tagging of items to skills. [64] Brunskel conducted a preliminary study in which they use students’ 

noisy data to infer prerequisite structures [16]. Further research by Scheines, et al. extended a causal structure 

discovery algorithm in which an assumption regarding the purity of items is relaxed to reflect real data and to use 

that to infer prerequisite skill structure from data [82]. 

 

7.3 Dataset 

The dataset2 used for this study consists of real-world student data from the ASSISTments online learning 

platform. The raw data contains student problem logs pertaining to ten math skills from the 2014-2015 school 

year. These ten skills represent five skill pairs, listed in Table 7-1, for which domain experts identified as having a 

strong prerequisite relationship. While we are not limiting the usage of our proposed baseline model to just 

prerequisite relationships, these are the most reliable to identify due to the causal effect of content (if problems in 

skill B require the use of skill A to complete, a strong relationship can be identified) 

  

                                                      

 
2 The full raw and filtered datasets are available at the following link: http://tiny.cc/veqg5x  

http://tiny.cc/veqg5x
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Table 7-1 The strong skill pairs as determined by domain experts 

Prerequisite Post-requisite 

Multiplication of Whole Numbers Greatest Common Factor 

Subtracting Integers Order of Operations 

Division of Whole Numbers Dividing Multi-Digit Numbers 

Volume of Rectangular Prisms Without 

Formula 
Volume of Rectangular Prisms 

Nets of 3D Figures Surface Area of Rectangular Prisms 

 

 

Figure 7-1 Sample question from the survey given to teachers and domain experts to help identify strong skill relationships 

 

In order to identify believable ground-truth skill pairs, a survey containing 24 skill pairs for which we had 

sufficient student data (greater than 50 student rows) was administered to 45 teachers and domain experts who use 

ASSISTments. Each was asked to rate on a scale of 1 to 7, indicating the perceived qualitative strength of the 

relationship of each skill pair. A sample question from that survey can be seen in Figure 7-1. From the survey 

results, five skill pairs were selected to be the strongest related links with the smallest variance in opinion scores. 

As we are treating these links as ground truth, we wanted to be highly selective of these pairs.  

The resulting dataset consists of 1838 student rows consisting of 896 unique students. This number of rows includes two 

rows of data per student for each of the five skill pairs included. The first row contains information of that student’s 
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performance on the pre- and post-requisite skills, while the second row contains student performance on the prerequisite and 

a simulated post-requisite described further in the next section. 

For each student, a feature vector was selected using common performance metrics to compare within our model. This 

feature vector contained eight link-level features representing the interactions between student-level prerequisite and post-

requisite performance metrics. The generated link-level features observed are as described below: 

Percent Correct: The mean-centered3 percentage of correct responses in the prerequisite skill multiplied by the 

mean-centered percentage of correct responses in the post-requisite skill. 

First Problem Correctness (FPC): The binary correctness of the first response in the prerequisite skill multiplied 

by the binary correctness of the first response on the post-requisite skill. 

Mastery Speed: The mean-centered mastery speed of the prerequisite skill, defined as the number of problems 

required for each student to achieve three consecutive correct responses, multiplied by the mean-centered 

mastery speed of the post-requisite skill. In addition to centering, these values were also winsorized to 

make the largest possible value 10, chosen as this is often the maximum number of daily attempts allowed 

within ASSISTments. All centering and winsorizing occurred before multiplying the two values. 

Z-Scored Percent Correct: The z-scored4 value of mean-centered percentage of correct responses in the 

prerequisite skill multiplied by the z-scored value of mean-centered percentage of correct responses in the 

post-requisite skill. 

Binned Mastery Speed (Bin): The numbered bin of mastery speed as described in [3] of the prerequisite skill 

multiplied by the bin of mastery speed in the second skill. Students were placed into one of five bins based 

on mastery speed if the assignment was completed and based on percent correct if the assignment was not 

completed. 

Z-Scored Mastery Speed: The z-scored value of mean-centered, winsorized mastery speed in the prerequisite 

skill, multiplied by the z-scored value of mean-centered, winsorized mastery speed in the post-requisite 

skill. 

                                                      

 
3 All centering of features was performed at the skill-level. 
4 All z-scoring was performed at the class-level. 
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Bin X FPC: The binned mastery speed value in the prerequisite skill multiplied by the binary correctness of the 

first response in the post-requisite skill. 

Percent Correct X FPC: The mean-centered percentage of correct responses in the prerequisite skill multiplied by 

the binary correctness of the first response in the post-requisite skill. 

 

7.4 Methodology 

The ultimate goal of our model is to provide the means of comparing and identifying features that most accurately 

predict the existence (or non-existence) of skill relationships. As such, we propose a method that can be 

summarized in three parts. We develop a baseline model using known strongly related as well as simulated 

poorly-related skill pairs. Using principle component analysis, we group similar features into more generalized 

conceptualizations to both compare which types of features matter when predicting relationships, but also to avoid 

problems of multicollinearity that may bias our estimates. Once this baseline model is established, we can 

construct new predictive models from the significant features and observe their accuracy in predicting the 

existence of skill relationships when compared to a simple null, or unconditional model. 

7.4.1 Baseline Model 

We build a baseline model which we can use to compare combinations of features that estimate skill relationships. 

The theory behind this model stems from the idea of a “perfect” relationship-measuring method. Such a method 

needs to not only accurately identify strong skill relationships, but also must be accurate at identifying weak, or 

non-existent relationships. The dataset created from the five believable skill links will be used as ground truth 

strong skills, but we also need to introduce weak skill relationships into the dataset in order to ensure a more 

robust measure of accuracy. 

In order to compare the usage of features against a weak or non-existent relationship, we simulated a new 

skill using students from the existing prerequisite skill by generating random sequences of responses. For each 

existing student, we randomly assign him/her a probability between 0.5 and 0.9 in order to create a random 

sequence of answers. For example, a student given a probability of 0.5 has a 50% chance of answering each given 

problem correctly. We simulate student answers until either mastery is achieved, defined as three sequentially 
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correct responses, or the student reaches 10 problems without mastering; a value of 10 is chosen here, as many 

assignments in ASSISTments are given a daily limit of 10 problem attempts. While we acknowledge that there 

are many ways to accomplish this simulation step, we feel this simple method sufficiently creates a skill that has 

no relationship to the original prerequisite as intended. As our proposed method is intended to be used in the 

future to help identify undiscovered pre- or post-requisite links, we chose to use a simulated skill rather than a 

random existing skill to avoid the possibility of randomly selecting an undiscovered relationship. Again, we 

wanted to be highly selective and consider several such scenarios as we are attempting to create ground-truth 

values to which we can make our comparisons. 

Using these two skill-pairs, one link representing a strong relationship while the other representing a non-

existent relationship, we can calculate a feature vector for each student in the prerequisite skill with values from 

each skill-pair. The purpose of this study is primarily to provide a method of comparison, and therefore choose 

features to observe based on commonly studied metrics, focusing primarily on feature interactions across skills. 

Future work could use our method to expand on this in order to look at other models and feature representations. 

Using the existence of a relationship (either a relationship exists or it does not) as a dependent variable in 

a binary logistic regression, we compare the set of student features based on their predictive power. By identifying 

the features that best predict skill relationships, this model can later provide a value representative of the strength 

of each skill link. 
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Table 7-2 The results of the PCA analysis. All features except Z-Scored Mastery Speed mapped to one of three generalized 

components 

 
 

We begin to compare commonly used student-level features in this study through two levels of 

experimental analysis. The first experiment performed with our proposed model attempts to compare groups of 

features, generalizing different representations of similar features into conceptual groupings. As such, we are able 

to view the predictive power of what we denote as initial performance, mastery, and correctness. The second 

experiment looks at the individual features as different representations of the overall group to compare these 

predictors at a closer level. We can take each factor of mastery, for example, and compare their usage in several 

models to determine which is the most accurate predictor of the existence of skill relationships. 

 

7.4.2 Comparing Link-Level Features 

In order to compare representations of student-level features, we must first be able to compare general 

conceptualizations of features to determine which provide more accurate predictions of the existence of skill 

relationships. We want to capture the true representations of each metric and attempt to interpret these 

generalizations as types of features. In order to accomplish this grouping of predictors, we use principal 

component analysis (PCA) to identify which student-level features correlate to and are representative of more 

generalized components. PCA is primarily used for dimensionality reduction as we are doing here and gives us 

the ability to create new variables from the component mappings. The resulting feature alignment can be seen in 
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Table 7-2. As is the case in our study, and was mentioned in the previous section, we have multiple metrics of 

mastery speed as well as several other features. As we can represent “mastery” in several ways, we want to know 

if the overall concept of mastery, as captured by the metrics used, is reliably predictive of the existence of skill 

relationships. The usage of PCA in comparing the groupings of similar predictors also helps to avoid problems of 

multicollinearity in our comparisons. As we are relying primarily on the significance values of each feature when 

predicting skill links, incorporating features that overlap in what they represent could bias results and alter such 

values. Multicollinearity is difficult to avoid entirely in this case, as many of the metrics used describe student 

general performance to some degree and are unlikely to be entirely independent of each other, but our method 

attempts to at least remove the larger effects of this problem on our results. 

 

Creating a new set of predictors of these groupings, we are able to incorporate these into a binary logistic 

regression model to view the predictive power of each. While PCA groups similar features together based on their 

correlations, by viewing which features are grouped we are able to interpret and label each. From this process, we 

found that most of our features fell into three categories for which we have given the names “mastery,” as this 

consists of representations of mastery speed, “correctness,” as this consists of representations of the percentage of 

correct student responses, and “initial performance,” as this consists of representations of student performance on 

the initial items of each skill. In addition to these three categories, we are also left with student mastery speed z-

scored within student classes as a variable that did not fall under either of the three aforementioned categories; 

while a derivation of mastery speed, we believe that this did not correlate to the “mastery” category due to the 

method of standardization as it is capturing this metric in relation to students’ peers. We will readdress this case in 

our section of discussion. 

Once these predictors are identified and created, we construct a binary logistic regression model to 

predict, for each student row, whether a relationship exists or not. This model will give us a significance value 

and coefficient for each predictor in the model, as well as an overall predictive accuracy of the model which will 

be used more for the next analysis. 
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7.4.3 Comparing Feature Models 

After being able to compare which generalized groups of features are significant predictors of the existence of 

skill relationships, we are able to compare the individual student level features that fall into each category by 

incorporating them into separate models to observe predictive accuracy. The analysis of the first experiment is 

used to determine which categories are significant in predicting the existence of skill relationships. Using that 

information, we are able to focus on those groupings with significance to construct models that utilize factors 

from each grouping. The grouping of “mastery,” for example contains the factors of mastery speed and binned 

mastery speed, so we can construct models using each to compare differences in predictive power. To avoid 

problems of collinearity, no single model contains more than one factor from a single grouping. This significantly 

reduces the number of combinations of features to test compared to running this experiment without first grouping 

like features and identifying those that are significant as we did in the first experiment. 

Using the significant groupings, we are able to create 17 models consisting of single, pairs, and triplets of 

features. A logistic regression is run on each of these models to predict the existence of a skill relationship. Of the 

17 models, 10 of them produce a statistically significant prediction when compared to a null model. Ideally, our 

null model should produce a 50% accuracy as there is an equal number of good and bad link rows in our dataset. 

This is not always the case, however, as depending on the feature observed, information may be missing for a 

particular student; mastery speed, for example, as the number of items attempted by a student before reaching 3 

consecutive correct answers, would be missing for any student that did not complete the assignment. For this 

reason, the predictive power of each model is described as gains in predictive accuracy, or rather, the accuracy of 

each model minus the accuracy of the corresponding null model. In the case of our analysis, the null model ranges 

in accuracy from 50% to about 62% depending on the factors contained within that model. 

Table 7-3 The coefficients and significance values of the generalized components analyzed. From this we can focus on models that 

exclude features contained in the components with no significance. 

Component Coefficient Value  

(log-odds units) 

Significance 

Mastery -.251 <.001 

Correctness .015 .802 

Initial 
.129 .037* 
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Performance 

Z-Scored 

Mastery 

Speed -.129 <.001 

 

7.5 Results 

The results of the first experiment are expressed in Table 7-3. Each of the three feature groupings of Mastery, 

Correctness, and Initial Performance created using PCA in addition to the Z-Scored Mastery are compared within 

the same model, predicting the existence of a skill relationship. As these again are link-level features describing 

interactions between student-level performance on prerequisite and post-requisite skills, it is difficult to draw 

tangible interpretations from the coefficient value, expressed in log-odds units. This coefficient, used in the 

logistic regression to make the predictions, describes each component’s effect on the dependent variable. For 

example, for each unit increase in “Mastery,” the probability that the link exists decreases. Again, as this 

component is an aggregation of interaction features, it is really describing an aggregation of differences of 

differences between student-level features making it difficult to make definitive claims regarding these values 

alone and were included purely to display a general trend of these components on the prediction. 

From Table 7-4, we see the significance of each component on the overall prediction by viewing the 

corresponding p-values in the fourth column. Looking at these values, we can claim that the overall grouping of 

“Correctness” seems to have less of an impact on the predictive accuracy of the model. As this term is not 

significant, we can focus the remainder of our study on the remaining three components. 

Figure 7-2 illustrates the results of our second analysis comparing the models that we are able to construct 

with the remaining features once the “Correctness” grouping has been disregarded. This figure shows the 

comparative predictive accuracy of the 10 models that give statistically significant predictions as seen in Table 7-

4. Again, these values are expressed as accuracy gains, or rather the percent accuracy increase over the null model 

run for each predictive model. 

Table 7-4 The models constructed from features in the significant generalized components. No one model contains more than a 

single feature from each generalized component. 

 

Model Null Model Accuracy Significance 
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Accuracy Accuracy Gain 

Mastery Speed (MS) 0.63 0.62 0.00 1.000 

Z-Scored Mastery Speed 0.63 0.63 0.00 0.888 

First Problem Correctness 

(FPC) 

0.50 0.56 0.06 <0.001*** 

Binned MS 0.50 0.69 0.19 <0.001*** 

Bin X FPC 0.50 0.56 0.06 <0.001*** 

Bin, Z-Scored MS 0.50 0.71 0.21 <0.001*** 

MS, FPC 0.63 0.62 0.00 1.000 

MS, Bin X FPC 0.63 0.62 0.00 1.000 

Bin, FPC 0.50 0.69 0.19 <0.001*** 

Bin, Bin X FPC 0.50 0.69 0.19 <0.001*** 

MS, FPC, Z-Scored MS 0.63 0.63 0.00 0.754 

MS, Bin X FPC, Z-Scored MS 0.63 0.63 0.00 0.979 

Bin, FPC, Z-Scored MS 0.50 0.71 0.20 <0.001*** 

Bin, Bin X FPC, Z-Scored MS 0.50 0.71 0.21 <0.001*** 

MS, Z-Scored MS 0.63 0.63 0.00 0.843 

FPC, Z-Scored MS 0.50 0.64 0.14 <0.001*** 

Bin X FPC, Z-Scored MS 0.50 0.61 0.11 <0.001*** 

 

 
Figure 7-2 A comparison of accuracy gain of the models with statistically significant predictions. The Bin feature is found in the 

most accurate models indicating that it is a strong predictor. 

 

7.6 Discussion 

This chapter provides a baseline model of comparing student level performance across skills to measure the 

strength of a skill relationship and compare the accuracy of both features and models that estimate this value. 
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Such a model, in our experience, has not existed prior to this study. Our method attempts to identify not only the 

individual features that contribute to better predictions of these relationships, but also moves to generalize similar 

features into conceptualizations for comparison in order to minimize multicollinearity. 

The principle component analysis step of our model found that all but one feature mapped to one of three 

components that we have interpreted as mastery, correctness, and initial performance. It was found the z-scored 

mastery speed, contrary to our intuition, did not map well to the grouping of mastery. We can speculate the reason 

for this occurrence by altering our interpretation of the feature. Mastery speed itself is an interesting metric as it 

attempts to capture two dimensions of performance: a level of understanding and a rate of learning. Also, to 

reiterate a prior distinction, these metrics are interactions of performance across skills. When centering, 

winsorizing, and z-scoring this metric, it seems to have changed its representation and we can alter our 

interpretation of this feature to be the change of comparative performance to one’s peers across skills. 

 

Observing the resulting model components from the principle component analysis in Table 7-2, we were able to 

focus our attention to those components with significant values. Correctness was the only component of that 

model that was found to have no statistical significance on the dependent variable. This is certainly interesting, as 

percent correctness and other such measures are among the most common metrics of performance. Perhaps the 

interaction between pre- and post-requisite percent correct is losing some predictive power from when the metric 

is used for other predictions of performance. 

This aspect illustrates one other important finding that the distinct representations of one metric or another 

each contribute differently to the predictive accuracy of the models studied. Models incorporating mastery speed, 

for example, had no significant accuracy gains over a null model, while mastery speed binning showed 

considerable gains as seen in Table 7-4. The baseline model of comparison proposed in this study provides the 

means to make that distinction regarding features contained within the same generalized component grouping. As 

is seen in that figure, combinations of features outperform any single feature, illustrating a more robust model by 

capturing multiple representations of performance. 
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7.7 Future Work 

While we have shown that our model is able to compare and identify features that contribute to higher accuracy in 

predicting the existence of skill relationships, we also need to stress the importance of the usage of this 

information. The ability to compare features is only the first step of our model’s goal. By identifying strong 

predictors of skill relationships that we know exist, we can apply it to other skills within ASSISTments and other  

systems to identify potentially new prerequisite arches, and also to better measure and predict long-term student 

performance, learning, and retention. Having an accurate estimate of skill relationships can help restructure 

prerequisite structures to provide skill sequences in an order that optimizes student learning and achievement. 

The work in this chapter incorporated several skills into a single dataset to make predictions. In this case, 

we wanted to create a method that is generalizable to some degree. While our selective skill set allows us to make 

some claims in terms of the accuracy these models over all skills, it may likely be the case that skill relationships 

are measurable in different ways for different skills. Further analysis could repeat the steps here on each one of 

the acquired skills in the dataset. While correctness was not significant in these results, perhaps it is significant 

when predicting certain types of skills. Perhaps, similar to our features, skills themselves could be generalized 

into conceptual types for different kinds of analysis pertaining to interactions of performance and their 

relationships. 

The feature vectors generated for each student in our dataset captured many of the most common student-

level metrics, but certainly not all of them. There are many other aspects that could be added including 

completion, measures of learning rate, time spent on the assignments, hint usage, and countless other variables. In 

addition, this study only observed interactions expressed as multiplications of these terms to describe them as 

link-level features. There are various other ways to represent interactions or other such transformations including 

differences of values, division of values, or just simply cross-feature interactions as was partially explored here by 

looking at Bin X FPC and Percent Correct X FPC. Such interactions model various other aspects of student 

performance and behavior that can be very useful in this type of relationship prediction. 
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In addition to all these, this model could potentially benefit from personalization by adding a measure of student 

prior performance before even the prerequisite. Perhaps a skill is measurable to different degrees depending on 

the type of student in terms of past data.  
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8 A Correlation-Based Method for Inferring Prerequisite Skill Links from 

Learner Performance Data
  

Using learner performance, rather than domain expertise, to infer prerequisite skill links has been a topic of recent 

interest. Several different data mining methods have been proposed to infer prerequisite links. In this chapter, we 

present preliminary results from a method that uses partial correlations to infer these links from learner 

performance data. Our method starts out by generating a number of links and pruning the generated links based on 

a series of criteria. These criteria are applied sequentially to the intermediate results of the method. The pruned list 

of links is then presented to domain experts for their judgements. We find that our method infers meaningful 

prerequisite links. After conducting a survey of human experts on a subset of the links inferred by our method and 

domain-expert designed links, we find that there was higher rate of agreement (80%) among the experts on the 

data mined links, than even their own links (70%). The pruning method presented herein can be used to augment 

other data mining methods, in order to reduce the number of spurious links that they generate. 

 

8.1 Introduction 

In recent times, there has been a proliferation of studies that investigate methods for inferring prerequisite skills 

from learner performance data. Many of these methods can be categorized into two main groups: 1) pure data 

mining-based methods, and 1) experiment-based methods. Most of the research in this area apply to the use of 

pure data mining methods for refining prerequisite skill graphs. 

The many pure data mining methods that attempt to identify latent skill structures address the question of 

whether or not the current skill topologies represent the best sequencing of content for instruction. Can we 

improve upon the models by identifying missed relationships or removing weak or non-existent links? In fact, the 

question of learning prerequisite skill structures from learner performance data is beginning to gain traction in the 

educational data mining and analytics community in recent years. Among the numerous methods that have been 

proposed for this exercise is Partially Ordered Knowledge Structures, which was proposed by Desmarais et al.  

[28]. POKS generates item-level topologies based on the correlation between student performances on items or 

problems. Learning Factors Analysis (LFA) was introduced as another method for refining existing prerequisite 
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skill topologies, and possibly generating new topologies. [65] Pavlik et. al. extended the LFA model in their quest 

to generate domain models, also referred to as skill topologies. [63] They analyzed learning curves and used the 

results of their analyses to generate the learning models from student performance data. Additionally, Chaplot, et. 

al. combined text-based and performance-based methods for inferring prerequisite skill topologies from student 

performance data as well as from text-based course materials. [20]They proposed an unsupervised approach for 

the task, and report that this approach outperformed alternative supervised methods. [21] Chen and colleagues 

proposed a probabilistic association rules mining method for discovering prerequisite skill structures from learner 

performance data. What makes their method different from the others is the use of a learned evidence model. [21] 

The model is used to estimate students’ probabilistic knowledge states as they progress through an assignment.  

Adjei and colleagues have used randomized controlled trials (RCT) [1] as well as predictive models [3] in 

PLACEments to infer prerequisite links between skills. PLACEments is an adaptive testing and remediation 

system that is based on a prerequisite skill structure. Both studies identified sections of the prerequisite structure 

that need improvement. The sections that require improvement have issues that include: 1) links that are in the 

wrong direction, and 2) links that have prerequisites which do not help students to demonstrate competence in the 

post-requisite skill. The problem with using RCT’s in PLACEments for this purpose is that, it requires a lot of 

time to collect sufficient data to be able to draw meaningful conclusions from the experiments.  

In this chapter, we describe a correlation-based method for inferring prerequisite skill links between 

knowledge components based on learner performance data and inputs from domain experts. The chapter is 

organized as follows: the next section describes the methodology. We then present the results and a comparison 

with domain-expert designed links. Finally, we conclude with a discussion of the benefits and limitations of this 

approach as well as planned future work. 

 

8.2 Methodology 

This section describes the dataset for the study, the partial correlation-based method for generating prerequisite 

skill links and the pruning and evaluation method. 
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8.2.1 Dataset 

The data set used for this study is pull from ASSISTments [42], a predominantly math-based homework and 

tutoring system. This system is known to cause learning gains for students using the system [79].  ASSISTments 

provides students with problem sets.  There are different types of problem sets, the predominantly used type being 

Skill Builders. Each such problem set is called a skill builder. Each skill builder examines students understanding 

of a specific math skill (aka, knowledge component). A student is said to have mastered a skill builder/knowledge 

component if he/she answers 3 items correctly in a row without being given any assistance. As long as that streak 

of correct answers is not achieved, the system continues to provide more questions until the student reaches a 

daily limit of questions (which is usually 10). When the daily limit is reached without the student reaching 

mastery, the assignment is discontinued until the next day. The idea behind the daily limit is to force students to 

seek further assistance from elsewhere. This is due to the understanding that the assistance provided on the 

ASSISTments platform for that skill builder has not been helpful to the student. The number of items it takes the 

students to complete a skill builder is referred to as the mastery speed of the student for that skill builder. 

In this data set, if a student could not complete the assignment at the time of data collection, the student’s 

assignment is given a mastery speed of 20. This was to minimize data loss. Additionally, we felt that students who 

dropped out from an assignment will give us useful information about the particular skill being tested in the 

assignment. The higher the mastery speed, the worse the student’s performance. This will result in higher skill 

penalty for our method. The dataset contains skill builder assignment performance data for 22,023 8th grade 

students. The students were assigned at least two of the 120 different skill builders in the data set. Some students 

were assigned the same skill builder multiple times. For those students, we included their performance on the very 

first attempt on that skill builder. This was done in order to eliminate data pollution that may be caused by over 

representation of performance data for the same skill builder-student pair. 
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8.2.2 Generating and Evaluating Skill Links 

Generating skill links is performed in two phases: 1) Identify all possible links and 2) prune the identified links 

based on a set of criteria. The first phase is purely data mining based whereas the second phase is where expert 

input is required to ensure that the identified links make sense. This section describes both phases in detail. 

 

8.2.2.1 Generating Possible links: The Partial Correlation Based (PCB) Method 

We generated nP2 - n different permutations of the n different skills. To illustrate this, suppose there are 3 different 

skills (A, B, C) in our dataset. This results in 9 possible links (shown in Table 8-1) 

 

Table 8-1 Possible Permutations of skills in from a set of 3 skills (A, B, C) 

Row # 
Prerequisite 

Skill 

Post-requisite 

skill 

1 A A 

2 A B 

3 A C 

4 B A 

5 B B 

6 B C 

7 C A 

8 C B 

9 C C 

 

We removed all links resulting from skills that are linked to themselves, hence the “- n” term. In Table 8-

1 for example, rows 1, 5 and 9 will be removed from the list of possible links to be investigated, resulting in 6 

possible links. For each pair of skills that we generated, we identified students who were assigned skill builders 

for the two skills in the pair and in the order of the pair. To be more specific, suppose the pair <Skill A, Skill B> 

is one of the possible permutations of skills in the dataset (row 2 in Table 8-1). For this permutation, students get 

assigned Skill A and then Skill B after completion of Skill A. We therefore are interested in determining whether 

the relationship Skill A → Skill B is a valid prerequisite relationship that can be inferred from the data.  

With this link, we identify students who were assigned and started the skill builder assignments in the 

order of the link. We then determine the correlation between the mastery speeds of all the students who started 
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both skill builders, partialling on their average mastery speed on all other unrelated skill builder assignments. The 

reason for partialling out the average mastery speed on all other unrelated skill builder assignments is to ensure 

that we remove the effect of the student’s performance in general and to account only for the pure relationship 

between the two skills. The magnitude and sign of the partial correlation are then used as a measure of the 

strength of the relationship between the two skills in the link and the directionality of the relationship, 

respectively. 

 

8.2.2.2 Pruning generated links: 

While partial correlations are a good starting point, it leaves unspecified which specific links to focus on, and 

which spurious links to ignore. There are several reasons for the numerous spurious links. This section describes 

some of the reasons for the spurious links and how we pruning those links from our final result.    

Spurious links:  unreasonable directions.  Since the permutations are agnostic to the grade levels of the 

individual skills that are paired up in a link, several spurious links can be learned. For example, you might find 

situations in which a second-grade skill is identified as a post-requisite to a 6th grade skill. This orientation is not 

reasonable, even though there could be data showing a teacher assigned the skill builders in that order.  A possible 

reason for this is that teachers may want to assign lower grade skills to a subset of students because these students 

may be lacking those lower-grade skills, or some students struggled on the initial assignment and the teacher later 

assigned a prerequisite. We therefore applied the criterion to remove any links in which lower level grade skills 

are post-requisites of higher level grade skills. 

Where to focus:  strong partial correlations. We believe that for a link to make any sense and be included in the 

learned prerequisite skill graph, it must have a strength above a certain threshold.  We set our threshold to 0.15 

because relatively few links were that strong and so we screened out most of the links with very low partial 

correlation numbers. Links with higher values than the threshold were then included in the final inferred skill 

graph. 

Spurious links:  non-similar sub-topics.  Though this is not a recommended pruning criterion since it involves 

domain expert input, it reduces the number of links that could be found in the dataset and which can be analyzed 

by human domain experts. While our method is intended to use data to infer prerequisite skills, the method needs 
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to be informed by the static information about the domain. Examples of such domain information are the grades in 

which the skills are taught and the sub-areas to which the skills belong. In other words, the method capitalizes on 

what is already known about the knowledge components. 

The number of links resulting from applying the above-mentioned criteria was large. We therefore 

decided to restrict the links learned to skills within the same sub-topic of the domain, applying static domain 

knowledge. In this context, a sub-topic will be similar to a strand in the Common State standards for mathematics 

[17]. Typical examples of sub-topics are “Expressions and Equations” and “Number Sense”.  In other words, two 

skills will be accepted to be in a skill link if they are both within the same sub-topic. It must be noted that this 

criterion eliminates the number of cross-topic prerequisite links that our method can learn. However, applying it 

ensures that human experts can have a reasonable set of links to study and make sense of. Additional studies will 

be conducted to consider the other cross-topic links that were identified. 

8.2.3 Comparison with Domain Expert - designed Links 

We compared a random selection of data mined links with domain expert designed prerequisite links and present 

the results of that comparison. We further presented 10 random selection of the links to three domain experts. 

These experts were asked to rate the goodness of the data mined links.  

 

8.3 Results 

Applying PCB method to the dataset described above, we identify a large number of prerequisite skill links, as 

was expected. Of the 120 skills in the ASSISTments Data set, we started out with 14280 possible links. There was 

a total of 2926 links for which were had student performance data. Applying the pruning criteria described in the 

methods section, reduced the number of links from 2926 to 56. As Table 8-2 and Figure 8-1 show, of the 178 

links inferred, there were 56 links that were found to be within the same strand or topic area. By comparison, the 

graph constructed by a domain expert contained 156 links.  This result of automated techniques finding fewer 

links than humans is a common result [12, 28].  PCB and the human-generated prerequisite graph (HUM) agreed 

about only 12 links.  This accuracy is rather low, if we were to accept the HUM prerequisite skill graph as ground 

truth. Furthermore, the PCB method learned 3 links that were reversed in the domain expert designed graphs. 
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Table 8-2 The results of the application of Pruning Criteria 

Category Number of Links 

Potential Links  14,280 (= 120P2 – 120) 

Links for which we had data 2926 

Links with correlation > 0.15 304 

Links with correct direction 178 

Links in the same sub area 56 

 

 
Figure 8-1 Number of links inferred using PCB method compared with Human designed links. The red bars show the links that are 

within the same strand and the blue bars are links in the correct direction. 

Figure 8-2 shows the level of agreement between the domain experts. A large percentage of the randomly 

chosen skill links from the PCB links, which are not in the HUM links, were agreed upon to be worthwhile and 

reasonable links. This percentage is higher than percentage of links in the HUM links not present in the PCB 

links. This is quite surprising because it shows that the domain experts agree a lot more with the data mined links 

than with their own links. This gives credence to the usefulness of the PCB method. 
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Figure 8-2 Domain Expert Survey Results 

8.3.1 Survey of domain experts 

We randomly selected 10 links each from the following three groups of links: Links that are both in PCB inferred 

links and domain expert designed links (i.e. “PCB in HUM”), domain expert designed links not in PCB mined 

links (“HUM not in PCB”) and PCB inferred links that are not in the domain expert designed links (“PCB not in 

HUM”). Two domain experts who designed the HUM skill graph were then asked to rate each of the 30 randomly 

selected links. The experts were agnostic to the source of each of the 30 links. These experts were asked to 

indicate whether or not the links learned were reasonable. Figure 8-2 indicates the distribution of the responses 

from the experts. Each bar represents the proportion of links the experts agreed were reasonable. The experts 

agreed that 80% of the links found from the PCB links were accurate as compared with 70% from both the PCB 

and HUM links. It was surprising to note that the experts found only a small percentage of links from the HUM 

links to be reasonable.  

 

8.4 Contribution 

The major contribution of this work is the introduction of an approach for pruning prerequisite skill links from 

data mined skill graphs. The partial correlation-based pruning approach presented in this work ensures that we 

measure the true relationship between two skills. Partialling out the students’ performance on other related skills 

eliminates the effect of the students’ ability level on the existence of a relationship between two skills. Other data 

mining techniques for inferring prerequisite skill graphs could be augmented with this method. 
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8.5 Future Work 

Our work has a number of limitations. One such limitation is the fact that we eliminate many cross-topic links. 

Additional work is required to investigate these other types of links that we pruned out of the data-mined graph. 

There could be a lot of meaningful findings that the pruning techniques ignore in our quest to reduce the size of 

the eventual graph that is learned. There is the need for a better method to eliminate spurious links from the data 

mined graph. Another important source of information that could be helpful in refining our search method is the 

inclusion of student help seeking behavior during assignment tasks. (whether they ask for help when practicing 

skill related tasks).  

In our work, we compared the results of the data mined links with those of the human experts. We looked 

at the similarities and differences between the data mined links and expert designed links. As the results show, 

there were a few links that were completely different from those designed by domain experts. The next natural 

step that follows from this is to test which of the links better improves student learning. We intend to run 

randomized controlled trials to compare the data-mined links with the expert designed links. The results of these 

studies should inform domain experts regarding the prerequisite skill links to consider when designing these 

models. 

 

8.6 Conclusions 

We have attempted to infer prerequisite skill links from student performance data, just by using correlations 

between student performance on skills, partialling out their performance on some other non-related skills. We 

have also introduced a method for pruning spurious links. We compared the data mined links to domain expert 

designed links based on the same set of skills used in the PCB method. We also conducted a survey of domain 

experts and found that these designers may be missing useful links in the work. This preliminary result is an 

indication that using simple methods like partial correlations can be helpful in augmenting the other methods of 

inferring skill graphs from student performance data.  
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9 Improving Learning Maps using An Adaptive Testing System: 

PLACEments 
 

Several efforts have been put forth in finding algorithms for identifying optimal learning maps for a given 

cognitive domain.  A few authors have used Learning Factors Analysis and Q-Matrix-based algorithms for 

improving the predictive powers of learning maps with a degree of success. In [1], we proposed a greedy search 

algorithm for searching data fitting models with equally accurate predictive power as the original skill graph but 

with fewer nodes/skills in the graph. In another unpublished work, we showed that the algorithm is susceptible to 

a number of factors including the number of students, items as well as the initial guess and slip rates of the 

individual skills in the graph. In this chapter we present PLACEments, an adaptive testing system, and report on 

how this is used to determine the strength of the prerequisite skill relationships in a given skill graph. We also 

present preliminary results that show that different learning maps need to be designed for students with different 

knowledge levels. 

 

This chapter is published at the following venue: 

Adjei, S. and Heffernan N. (2015). Improving Learning Maps Using an Adaptive Testing System: PLACEments. 

Artificial Intelligence in Education. C. Conati, N. Heffernan, A. Mitrovic and M. F. Verdejo, Springer 

International Publishing; 2015-01-01. 9112: 517-520. 

 

9.1 Introduction 

In order to improve upon student learning, a number of approaches have been studied to determine ways of 

improving the effectiveness of the skills teachers transfer to students and the order in which these skills need to be 

taught. A few other methods have been proposed and used to improve upon learning maps. Cen, Koedinger, and 

Junker described a process for analyzing multi-dimensional skill maps whereby successive adjustments to a map 

were analyzed to determine the arrangement of nodes and connections that best fit available data. [19] Desmarais, 

et. al. present a framework for identifying structures from students’ data and call these structures Partial Order 

Knowledge Structures (POKS). [28]The POKS framework is probabilistic in nature and infers the structure from 

the student’s responses to a poll of items. One issue with this approach is its use of items. When the number of 
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items is large, the approach is not scalable. These and many other approaches have shown promising results, 

though many have not been applied to different subject domains. Wang proposed a genetic algorithm based 

method for determining optimal curriculum for schools. [95] The method proposed in Wang’s study significantly 

reduced the amount of time needed to arrange the optimal curriculum, the level of granularity was at the course 

level and not at the level of individual knowledge components (skills in the learning map).  

Given student responses to a number of questions, a prerequisite skill graph, in the form of a Bayesian 

Network, can be identified. Friedman and his colleagues proposed an algorithm they call the “Sparse Candidate” 

algorithm for learning such belief structures. Their method was found to be faster because it uses a heuristic to 

reduce the search space. [39] 

While these approaches have their strengths and weaknesses, none of the approaches present a method by 

which to determine the strength of the relationships in a prerequisite skill graph. In our quest to find the best 

methods for improving the predictive and representative powers of learning maps, we observe that one possible 

method of improving skill graphs is to determine the strength of some of the links in the graph and to propose 

changes to the graph based on those strengths. Could we use empirical studies to determine the strength of the 

relationships between skills in learning maps and hence to determine whether these links belong in the graph? 

This chapter presents an adaptive testing system that traverses a prerequisite skill graph based on a student’s 

performance. We present a brief description of how the system works, the design of the study, our method and the 

results we found. We also include an analysis of the results based on the knowledge level of students. The chapter 

concludes with a discussion of the findings of the study as well as the limitations of this approach. 

9.1.1 PLACEments, an Adaptive Testing Systems 

PLACEments is a computer aided adaptive testing system. This system is a feature of an intelligent tutoring 

system, ASSISTments, that mainly provides teachers a means of creating and as-signing exercises and tests to 

their students. [42] ASSISTments also has a feature that allows students to do the exercises and tests assigned by 

their teachers.  
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The PLACEments system has a number of components: item pool, item selection, termination rules (a 

skill graph for the knowledge domain in which the students’ knowledge will be assessed and three modules: test 

creation, test taking (Tutor), and remediation creation). The item pool for placements is chosen from a list of skill 

builders used extensively in ASSISTments. The choice of problems for the placements test was made based on 

the difficulty of the item. The difficulty was determined by calculating the percent correct for all responses of 

students in ASSISTments to that item and subtracting that value from 1. (See equation 1 below) To ensure that 

PLACEments does not present overly easy or overly difficult problems, the items for each of the skills tested were 

chosen such that their difficulty is between .4 and .6 (the smaller the number, the more difficult the item is).  

𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑖 = 1 − 𝑃𝑟 (𝑖𝑡𝑒𝑚𝑖 = 1)  (1) 

As noted earlier, PLACEments uses a predefined skill graph to guide test item selection. Though we 

currently use a prerequisite skill graph developed based on the Massachusetts Common Core State Standards for 

Mathematics [17] the system is designed such that it can use any prerequisite skill graph from which tests can be 

drawn. The initial set of problems is chosen from the initial set of skills chosen by the assigner of the test. Each 

skill has one problem chosen from the item pool. When students get an item for a skill incorrect, implying that the 

student does not have that cognitive skill, the test is expanded by including the problems from the prerequisite 

skills of the skill the student has gotten incorrect. The test bank increases until the grade boundaries chosen at test 

creation are reached. For a given student, the test terminates when all the skills in the initial set of skills have been 

tested, and the student gets all the items for that skill correct. If the student is not able to answer any of the initial 

problems correctly, then the test terminates when there are no prerequisites remaining to be tested.  

The following diagram, Figure 9-1, shows a hypothetical graph that explains how the test proceeds. The 

correctness indicator attached to each node in the graph is a particular representation of a given student’s 

performance. The nodes in the graph represents the skills, the arrows between the skills represents the prerequisite 

relationship between the skills (thus, skill ‘D’ is one of the prerequisites of skill ‘A’). In this configuration, the 

students are assigned skills ‘A’, ‘B’ and ‘C’ as the initial skills. This student is adaptively assigned questions D 

and E since he gets the question for “A” incorrect. The student also does poorly on E and hence is presented a 

problem from H. The test terminates when the student reaches skill H since it is the last in the boundaries 
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specified at the test creation. The size of the test is affected by the students’ performance as well as the structure 

of the skill graph. 

 

Figure 9-1 A sample skill graph and a sample student’s response configuration 

After a student completes the test, remediation assignments are created based on the skills they performed 

poorly on. Each student is assigned a different set of remediation assignments. The remediation assignments on 

the lowest grade level skills are released before those of the higher-grade levels. In the example shown in fig 18, 

the student will be assigned a skill builder assignment in the following sequence: H, E and then A. Once the 

prerequisite skill is completed, the next skill-related assignment inline is released. 

 

9.1.2 Research Question 

As was stated earlier, this study is meant to determine whether a skill graph can be improved using empirical 

studies. To be specific we want to determine the strength of prerequisite skill relationships between skills and 

hence determine which of such relationships to remove or maintain in a skill graph. 

 

9.2 Methodology 

To answer our research question, we run a study in which the navigation of a skill graph in a series of 

PLACEments tests is modified for a random sample of students. Figure 9-2 demonstrates the modifications made 

to PLACEments in order to answer this question. For those randomly chosen students, a random initial skill (skill 

‘A’ in Figure 9-2) is selected and the students get to answer questions from the prerequisite skills (‘B’ and ‘C’) of 

the chosen skill if the students get the initial skill correct.  
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Figure 9-2 Sample navigation of the graph for this study 

In order not to overload the chosen students with work, in a given assignment, only one initial skill is 

used in the study. Additionally, if any of the chosen students gets the prerequisite skill incorrect, they are not 

assigned remediation assignments as is the case with all the other assignments, and the navigation does not 

continue to the second level of prerequisite skills (i.e. those of ‘B’ and ‘C’ in Figure 9-2) for the chosen initial 

skill.  

It is expected that if a high percentage of the students in the study answer the prerequisite skills of a given 

skill correctly, this would suggest a strong relationship between the skills, and hence maintain the link in the 

graph. On the other hand, if the percentage is below a predetermined threshold, it would suggest that that 

prerequisite link in the graph would either require further scrutiny or must be removed. 

 

9.2.1 Dataset 

The dataset includes a prerequisite skill graph developed by a Mathematics domain expert. This graph contains 

skills from the Common Core Standards [17] spanning grades K-9. The graph, which is the graph used in 

PLACEments, has a total of 495 prerequisite skill relationships. A portion of the graph is shown in Figure 9-3 

below. The green lines in the graph indicate that the prerequisite skills are in a lower grade level, whiles the black 

arrows between the nodes show prerequisite links between skills of the same grade level as the post-requisite 

skill. The node names represent the skill codes from the Common Core Standards for Mathematics. Each of these 

nodes has a complete description and examples of what students need to be taught. See 

http://www.corestandards.org/Math/ for a complete listing and a detailed description of the standards. 

http://www.corestandards.org/Math/
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Figure 9-3 A portion of the prerequisite skill graph designed by a math expert and based on standards from the Common Core 

Mathematics Standards [52] 

 

The dataset additionally includes 1272 problem logs from ASSISTments. Each row in the dataset 

represents a student’s response to a placements test item. That dataset also includes a matrix of item to skill 

tagging. These logs were from 601 distinct students whose grades ranged between 6 and 12. Each of these 

students was assigned at least one of the 119 placements assignments used in the study. The data set represented 

60 of the 495 prerequisite relationships in the skill graph.  

 

9.3 Results and Analysis 

As of the time of reporting this study, data had been collected on 60 of the 495 relationships/prerequisite skill 

links. Of these 60, 35 had at least 10 responses. (See Table 9-1 for the complete list of 35 links) We limit the 

number of responses per relationship to 10 in order to achieve some generalization of the results. The graph in 

Figure 9-4 shows that three (3) of the relationships had link strength of 0, since none of the students had the 

prerequisite questions correct even though they knew the post-requisite. Two (2) were of the maximum strength 

(i.e. 1). A larger proportion of the links examined so far has strengths ranging between 0 and 1. As many as 24 of 

the links have a significantly low link strength as the figure shows.  
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Figure 9-4 Prerequisite Link Strength 

As the graph in figure 9-4 indicates, we can make general statements about the relationships. For three of 

the relationships, none of the students knew the prerequisite skills even though they performed well on the post-

requisite skill. Similarly, two of the links can be believed since all the students who knew the post-requisite skills 

also knew the pre-requisite, suggesting that the link belongs in the graph. There was a larger number of the links 

for which strengths were inconclusive. Of particular interest are the skill links with strength below 0.5. Those 

strength values show that a big percentage of students did not know the prerequisite skill even though they all got 

the post-requisite skills correct. These low numbers suggest that the prerequisite relationship between the skills 

need to be looked at extensively and may warrant a removal from the skill graph. It may be safe to assume that the 

skills with a link strength above 0.5 may be valid and the reason for which the strength is not 1 may be because 

the items used in the test have high slip rates. However, this assertion needs further studies to ascertain. 

9.3.1 Effect of Student Knowledge Levels on Link Strength 

To help us understand how the link strength is affected by the knowledge level of the students who participated in 

the study, the results were subdivided into the different knowledge levels. The knowledge level of a student was 

determined by the student’s prior percent correct, i.e. the percent of correctness of a student’s previous 

performance on problems in ASSISTments prior to the study. All students with a percent correct value below 0.5 

were assigned to the low knowledge group, while those students with percent correct values between 0.5 and 0.75 

were tagged as medium level students. Any student whose prior percent correct was above 0.75 was tagged as a 

high knowledge student.  



96 
 

Figures 9-5 and 9-6 present a breakdown of the results by knowledge level. Table 9-1 lists the 35-links 

considered in this study. Of the 35-skill links studied, there were 12 of the skills for which we had data for all 

three knowledge levels. Twenty-three (23) of these links were examined for only medium and high knowledge 

students. 

The results, in Figure 9-5, show some variations in the link strength when the data is split into different 

knowledge levels, with the exception of two of the links. The results for links J and K clearly show an agreement 

in the results across knowledge levels. The results for J suggest a very weak link and hence that link must be 

removed from the skill graph. For all knowledge groups, link K is strong, suggesting that the link is believable 

and hence belong in the graph.  

 

Figure 9-5 Prerequisite Skill Link Strength by knowledge level 
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Table 9-1 A Subset of the List of Skill Links in the prerequisite skill graph. 

Link 

Code Skill Prerequisite Skill 

A Ordering Fractions Equivalent Fractions 

B Subtracting fractions like denominator Adding mixed numbers like denominator 

C Comparing Positive Decimals Read & write decimals 

D Subtraction Mixed Numbers  Addition Mixed Numbers  

E Word problems with fractions as division Multiplication Fractions 

F Multiplication Fractions Area of rectangle word problems 

G Line Plot Real world fraction multiplication 

H Line Plot Line Plot with fractions 

I Expressing unit rate in words Finding the Ratio 

J Expressing unit rate in words Word problems with fractions as division 

K Solve unit rate problems Expressing unit rate in words 

L Percent of Expressing unit rate in words 

M Divide multi-digit numbers Division Whole Numbers 

N Division of Positive Decimals Multiplication Positive Decimals 

O Comparing integers on number line Plot on coordinate plane 

P Evaluate exponents 

Multiply by Powers of 10 (number of 

zeros) 

Q 

Deviations in measures of center & 

spread Median 

R Identify constant of proportionality Unit Conversions with ratios 

S Identify constant of proportionality Unit rate with fractions 

T Identify constant of proportionality Solve unit rate problems 

U Identify constant of proportionality Percent of 

V Identify constant of proportionality Expressing unit rate in words 

W Identify constant of proportionality Percent- finding whole 

X Divide Integers Multiply Integers 

AA Word problems all operations w/ integers Word problems with fractions as division 

AB Word problems all operations w/ integers Divide Integers 

Y Word problems all operations w/ integers Multiply and Divide non-integer rationals 

Z Word problems all operations w/ integers Multiply Integers 

AC Combining Like Terms Distributive Property 

AD Equation Solving Two or Fewer Steps Word problems all operations w/ integers 

AE Scale drawings Identify constant of proportionality 

AF Operations with scientific notation Dividing Monomials 

AG Operations with scientific notation Power of Powers 

AH Operations with scientific notation Multiplying Monomials 

AI Transversal Sum of angles 

 

 

Links I, L, M, N and AC show that the different knowledge levels contributed differently to the strength. 

While for links I, M and AC, both high and low knowledge students demonstrate that those links are strong, there 

is a different result for the medium knowledge students. Apart from links I and AC, all the other links in that 
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group have a link strength above 0.8.  The other interesting link is C. Though the results show link C as a weak 

link, it is a much weaker link for medium knowledge students than for high knowledge students, and worse for 

low knowledge students. Another set of interesting results was that for links A, B, E and O.  In all of these, it 

would be expected that medium knowledge students will do poorly on a prerequisite skill than high knowledge 

students, however the results show that this is not the case for those skills. The medium knowledge students 

performed better than expected. Link O is even more interesting. The data for both low and high knowledge 

students suggest that the link should be removed from the skill graph. However, this is a much weaker statement 

to make for medium knowledge students, suggesting that there should be different prerequisite skill graphs for 

students with different knowledge levels. 

In the data set, there were 23 of the links for which we did not have responses from low knowledge 

students. The medium and high knowledge level students are compared in Figure 9-6 and we can see that each of 

the two knowledge groups contributed differently to the results of the study. Links AG and AH appear to be non-

existent since the results show that none of the students in the two knowledge groups demonstrate proficiency in 

the prerequisites in that link even though they responded accurately to the post-requisite skill’s question. These 

links appear to be other candidates for removal from the skill graph. The results in Figure 9-6 show a set of 

interesting variations in the link strengths across the knowledge levels. 

 

Figure 9-6 Medium and High Knowledge Students' contribution to link strength 
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Overall, these results suggest a number of the prerequisite skills that need to be assessed in the graph: some 

may require complete removal from the skill graph and others suggest a different skill graph for different students 

with different knowledge levels. Additionally, breaking the results down into the different knowledge levels has 

resulted in one minor finding: Students with different knowledge levels have different representation of 

knowledge and hence different skill graphs need to be designed for students with different knowledge levels.  

 

9.4 Limitations of the Approach 

The approach described in this chapter has a number of limitations. The first limitation relates to the choice of 

questions for the skills in the skill graph. Since the current implementation of PLACEments uses just one item (or 

question) to represent a skill in the test, a poorly chosen problem will affect the performance of the search. If a 

problem chosen to represent a skill in the test has a very high slip or guess rate, the performance of the students 

(the basis of which is used to determine the strength of links in the graph) will be affected. In other words, if a 

problem has a high slip rate, PLACEments will assume that students do not know a skill because most of the 

students will not perform well on that problem, even though there might be a high probability of the students 

knowing the skill tagged by the problem. An additional limitation that relates to the choice of the questions for 

skills in the graph is about the number of questions used in the test to assess a student’s knowledge of a skill. 

Since PLACEments currently uses just one question per skill, the choice of problems has to be such that it is a 

good representation of problems tagged by that skill. In other words, it has to be an almost perfect determinant of 

a student’s knowledge of the skill. One way to deal with this limitation is to use multiple problems with varying 

guess and slip rates for a given skill.  

Another limitation of this approach is that the fact that we start the search by believing the initial set of 

skills and their ordering. In fact, the approach does not help in determining whether the ordering of the skills in a 

skill graph is problematic or not. A new ordering of skills cannot be suggested by using this approach. Finally, a 

large number of student data is needed in order to make reasonable conclusions. 
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9.5 Contribution 

In this chapter, we have proposed an intuitive but novel method for improving prerequisite skill graphs. The freely 

available adaptive testing system, PLACEments, can be used to collect and analyze student performance data on 

the items tagged by the skills in a skill graph in order to determine the appropriateness of some of the skill links in 

a given prerequisite skill graph. Of course, with the limitations mentioned earlier, we think that the educational 

data mining community can take a good look at this process and augment the search for better fitting models with 

this new technique.  

We have also shown that students of different knowledge levels learn differently and as such there should 

be a different representation of the skills their learning trajectory in a given domain. Our results suggest that 

curriculum designers may want to think about the needs of these different knowledge levels in the design of 

curricula.  

 

9.6 Conclusion and Future Work  

Several methods have been proposed and used to improve upon the predictive power of learning maps. These 

methods include the Learning Factors Analysis, Q-Matrices and the greedy search algorithm proposed and 

reported upon by the authors in an earlier paper. Many of them have shown promise, especially with the greedy 

search algorithm showing that an equally predictive model can be found which is different from the initial skill 

graph but with fewer skill-nodes. [2] However, we have not found any empirical studies that have been conducted 

with the aim of determining the flaws in a given skill graph/learning map and fixing them. The present study set 

out to solve this issue. The initial research question was: Can we do a better job at determining the deficiencies of 

a skill graph with empirical data and improving upon the skill graph? 

To answer that question, we built an adaptive testing feature, PLACEments, in ASSISTments and used 

that to collect data on prerequisite skill graphs. The results of the study showed that deficiencies of a skill graph 

can be determined. Some relationships can be identified as unnecessary and hence be removed from the system. 

This finding is true irrespective of the knowledge level of the students involved. Additionally, we found that 

students with different knowledge levels of a given domain require different skill graphs. This was from the fact 
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that some of the relationships appeared to be stronger for students of one knowledge level than for those of 

another. 

There were a few limitations of this approach requiring further studies to make the method more robust. It 

was mentioned that just one item was used to test a students’ knowledge of a skill, and so our estimate of the 

students’ knowledge of a skill may be biased by either the difficulty of the item or the guess and slip rates of the 

item. This requires further studies. One particular future study to perform in this regard is to vary the number and 

difficulty of the items used to estimate a student’s knowledge of the skill. 

The results would be made even stronger with more student data. So far, we have looked at only 35 of the 

over 400 different links in the graph. More data is needed to test different links in the graph. We have therefore 

proposed an alternative method for improving upon prerequisite skill graphs. This method can be used to augment 

the results from the other three methods mentioned earlier.  
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10 Sequencing Content in an Adaptive Testing System: The Role of 

Choice

The effect of choice on student achievement and engagement has been an extensively researched area of learning 

analytics. Current research findings suggest a positive relationship between choice and varied outcome measures, 

but little has been reported to indicate whether these findings hold in the context of Intelligent Tutoring Systems 

(ITS). In this chapter, we report the results of a randomized controlled experiment in which we investigate the 

effect of student choice on assignment completion and future achievement in an ITS. The experimental design 

uses three conditions to observe the effect of choice. In the first condition, students are able to choose the order in 

which to complete assignments, while in the second condition, students are prescribed an intuitive order in which 

to complete assignments. Those in the third condition were prescribed a counter-intuitive order in which to 

complete assignments. Results indicate that allowing students to choose the order in which to work on 

assignments leads to higher completion rates and better achievement at posttest. A post-hoc analysis also revealed 

that even considering students with similar completion rates, those given choice had higher posttest scores than 

those observed in any other condition. These results seem to support the many theories of the positive effect of 

choice on student achievement. 

 

This chapter is submitted to the following venue: 

Seth A. Adjei, Anthony F. Botelho, and Neil T. Heffernan. (2017). Sequencing content in an adaptive testing 

system: the role of choice. In Proceedings of the Seventh International Learning Analytics & Knowledge 
Conference (LAK '17). ACM, New York, NY, USA, 178-182. DOI: https://doi.org/10.1145/3027385.3027412 

 

10.1 Introduction 

The concept of mastery learning is based on a philosophy that states that “all students have the ability to learn 

anything” and that this ability is a function of time.  In other words, given a new topic, it is merely a matter of 

time and practice before one can reach a state of understanding. It has also been suggested that mastery learning is 

purely teacher-paced, where teachers determine the order in which students must learn specific knowledge 

components or skills.  



103 
 

 

An opposing philosophy to mastery learning is known as the personalized system of instruction (PSI), in 

which students decide on their pace and the amount of content they learn.[13, 75] conducted a study in which 

mastery learning of content in the Cognitive Tutor was compared to teachers’ prescriptions of the order in which 

to present content.[75] It was found in this work that the system’s determination of ordering caused significant 

improvements in student learning. Their findings suggested that using ITS to prescribe the order in which students 

were presented a set of knowledge components or skills was a better approach to learning than allowing teachers 

to determine or prescribe content order. From a different perspective, these results seemed to show that choice, at 

least at the teacher level, did not cause learning gains.  

The effect of choice on various aspects of human life has been studied for many decades. Watanabe & 

Sturmey performed a meta-analysis of publications in the area of metacognition and the effect of choice on 

student performance and found that, particularly for students with disability, allowing choice has many benefits.  

[96] Choice was shown to improve student engagement on tasks as well as propensity of completion. 

Additionally, it has been shown that intrinsic motivation to carry out general tasks can be improved when students 

are given choice. [27] Other researchers have observed the positive effect of choice on outcome measures in a 

number of varied activities. [50, 66, 101] Wang & Stiles showed that students completed more tasks when asked 

to choose when and how to complete the tasks. [94] This phenomenon is evident in preschoolers [6], high-

schoolers [69], and college undergraduates [101]. Across ages, the primary contributing factor causing the 

increase in performance and rate of completion has been attributed to the motivational effects of choice. 

The extent of the effects of choice are sometimes conflicting across different studies. Flowerday and 

Schraw [38], for example, show that choice had a positive effect on attitude and effort, however the effect on 

cognitive engagement was minimal or non-existent.  While not unanimous across all domains and studies, there is 

compelling argument to pursue the study of choice for its potential benefits in learning. Understanding how the 

positive aspects of choice can best be implemented to improve students’ learning experiences is a topic still in 

need of research.   
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Despite the many benefits that seem to be derived from choice, ITSs rarely offer features that allow 

students to make choices regarding what they learn, and when and how to remediate content that they may be 

lacking. Ostrow & Heffernan conducted a randomized controlled experiment in which they investigated allowing 

students to choose the type of feedback received while working on an assignment and its effect on assignment 

completion and future performance. [62] They compared students who were given the choice to decide on the 

type of feedback received with those who randomly received a particular type of feedback. They found that 

students given choice had significantly better achievement than those in the control group, lending credence to the 

notion that choice has a positive impact on student performance within an ITS. 

In this study, our goal is to investigate the effect of choice on student assignment completion and learning 

gains when given the opportunity to choose the order in which to complete assignment tasks. We report on a 

randomized controlled experiment in which students were placed into three conditions. In one condition, students 

were asked to choose the order in which to complete the assignments, whereas students in the other two 

conditions followed different prescribed content orders. We also report a post-hoc analysis of the study in which 

we find that, for students with similar assignment completion rates, those in the choice group performed better at 

posttest than those in either prescribed condition. 

10.1.1 Research Question 

The following research question is addressed in the present study: 

• Does allowing students to choose the order in which to remediate skills improve adherence in the form of 

assignment completion rates, and/or Math achievement?  

In other words, does choice matter? What is the relationship between student choice and mastery learning? 

 

10.2 Methods 

This section describes the methods employed in answering the research questions stated above. We ran the 

randomized controlled experiment in PLACEments, an adaptive testing system. This system is described briefly 

in this section. We then present the experimental design, the participants used in the experiment, and the outcome 

measures of interest.   
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10.2.1 An introduction to PLACEments 

PLACEments is a computer-aided adaptive testing feature of ASSISTments, an online learning platform powered 

by Worcester Polytechnic Institute. [42] PLACEments uses a prerequisite skill graph that underlies the system, 

created based on the Massachusetts Common Core State Standards for Mathematics. [17] All PLACEments tests 

are teacher-driven, in that teachers choose what and when to assign. These tests are composed of an initial set of 

skills selected by the teacher, and once assigned, students are tested on questions related to the initial skills. If a 

student performs poorly on any of the initial skills, the system traverses the skill graph to select questions from 

the immediate prerequisite skills of the incorrect items. These items are then included on the test, and the graph 

traversal for item selection continues until the system determines that there are no further prerequisite skills to be 

shown or the traversal reaches a predefined end point in the graph; the predefined end-point is set at test creation 

time. In this manner, the system can isolate and map the depth of gaps in students’ knowledge, while providing 

opportunity for remediation.  

10.2.1.1 Progressing through the Test 

For the sake of simplicity, we use the hypothetical graph shown in Figure 10-1 to explain how the test proceeds. 

The nodes in the graph represent skills or knowledge components. The arrows between skills represent the order 

in which students need to learn these skills/concepts in order to succeed in the subsequent skills. They therefore 

show the prerequisite relationships between skills (thus, skill ‘D’ is one of the prerequisites of skill ‘A’). The 

correctness indicators attached to each node in the graph are a representation of a given student’s performance 

during the test. In this configuration, the student is assigned ‘A’, ‘B’, and ‘C’ as initial skills in the test. The 

system presents the student with questions from these skills, and since the student performs poorly on skill A (as 

shown in the graph), the student is further tested on skills D, E, and then subsequently H since the student did not 

demonstrate mastery of skills E and H respectively. 
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Figure 10-1 A sample skill graph and a sample student’s response configuration 

Generally, the tests are meant to identify students’ lack of specific skill knowledge and to find which prerequisite skills to 

blame for that missing knowledge.  

10.2.1.2 Remediation Assignment Creation and Release 

Once the knowledge gaps are determined from the test, PLACEments attempts to help students close that gap. 

Once the test is completed, students are assigned remedial practice questions on the skills in which they 

performed poorly. The release of these assignments is staggered and is based on the underlying prerequisite skill 

graph that PLACEments depends upon, and the number of these “remediation” assignments given is dependent on 

the student’s performance during the test. The remediation assignments of the lowest grade level skills on which 

the students performed poorly are released first and, once completed, subsequent post-requisite skill remediation 

assignments follow. In the configuration depicted in Figure 10-1, the remediation assignment for skill H is 

released and completed before the assignment for E is released. The assignment for skill A will be held back until 

the student completes skill E.  All remediation assignments are mastery-based assignments referred to as “skill 

builders,” in which students are given similar skill-based items until a predefined threshold of understanding is 

reached; this threshold is usually met by answering three consecutive items correctly. 

 

10.2.2 Experiment Design 

We ran a randomized controlled trial in PLACEments in which we experimented with the order in which 

remediation assignments were released. Figure 10-2 illustrates the experimental design for this study. 
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As shown in Figure 10-2, each participant is given a predefined PLACEments test which has various initial skills. 

These assignments are teacher-assigned and may have varying degrees of difficulty. After the tests, students are 

randomly placed in one of three conditions. In the first condition, “Prerequisite to Post-requisite,” participants are 

assigned remediation skill builder assignments beginning with the skills of the lowest grade level and the graph is 

traversed in the pre-to-post direction. Participants are required to complete all released remediation assignments 

for a given test before the subsequent post-requisite skill related assignments are released. This condition typifies 

the current graph traversal direction for remediation assignments that are released in PLACEments (See section 

10.2.1.2 for more details). 

The “Post-requisite to Prerequisite” condition has a similar behavior as the “Prerequisite to Post-

requisite” condition with the exception that the graph is traversed in reverse, from the post-requisite to the 

prerequisite skills, which is counter intuitive to most teachers. In the third condition, graph traversal is not 

considered. For all participants in this third condition, the release of remediation assignments is not staggered, nor 

is it based on the prerequisite skill graph. Instead, all remediation assignments are released to the students at once 

and they get to choose the order in which to complete their assignments.  A month after the initial test, students 

had the opportunity to retake their initial PLACEments test as a posttest to gauge the amount of learning that had 

occurred from the remediation assignments and, ultimately, the effect of condition. 

We also performed a post-hoc analysis of the data collected from this experiment. In this post-hoc 

analysis, we investigated the effect of other PLACEments test features and the condition assignment on student’s 

performance gain over the study period. 
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Figure 10-2 Experimental Design 

10.2.3 Participants  

For this experiment, there were 410 student participants, each of whom was assigned the initial PLACEments test 

as well as the reassignment that served as the outcome measure. All students were 7th and 8th grade users of 

ASSISTments. The participants had varying levels of math competence and were randomly assigned to one of the 

three previously described conditions in the study. The “Prerequisite-to-Post-requisite,” “Post-requisite-to-

Prerequisite,” and “Release All” conditions had 129, 145, 136 students respectively. Random assignment to 

condition was performed after the initial PLACEments test was completed. The results of the tests in no way 

impacted random assignment.  

 

10.2.4 Outcome measures 

To determine the effectiveness of choice, the following outcome measures were used: remediation completion 

rate, performance on posttest, and the learning gain from the initial to the reassigned PLACEments tests (i.e., 

from pre- to posttest). 

The completion rate, in this context, is the ratio of remediation assignments completed to the number of 

remediation assignments assigned. This outcome measure was intended to help determine whether the order in 

which remediation assignments were released had an impact on students’ assignment completion rates. 
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Additionally, we use students’ performance on the second PLACEments test as a second outcome measure (i.e., 

posttest). We also considered the gain in PLACEments test performance. This gain was the mathematical 

difference between the initial test performance (expressed as percent of items answered correctly) and that of the 

second PLACEments test. 

 

10.3 Results  

In this section, we present an initial intent-to-treat analysis of all the participants in the experiment and further 

describe an analysis of students who participated in the post-test. We then proceed to answer the proposed 

research questions using data from students who were actually treated. The dataset for this experiment can be 

found at http://tiny.cc/palsrct5data.  

 

10.3.1 Effect of Choice on Remediation Assignment Completion Rate 

Though all 410 students in the study were expected to complete the posttest, we found that a high percentage of 

students did not have the opportunity to do so. In some cases, teachers prevented entire classes from completing 

the posttest, while in other cases, the school year ended before students had the opportunity to take the posttest. In 

view of this, only one of our research questions can be answered using the entire population of the study.  

In regards to the impact of choice on assignment completion, Table 10-1 shows the remediation 

completion rate for each of the conditions in the study. There was no significant difference in remediation 

completion rates between conditions (p-value > 0.05). Though students in the counter intuitive condition (i.e. 

post-to-pre condition) seemed to have a slight edge over students in other conditions, the difference was not 

significant. The observed difference may be due to the fact that the post-to-pre condition encouraged students to 

complete more assignments because they presumably navigated from difficult assignments to easier assignments. 

Generally, there was a low average remediation assignment completion rate of 0.38 across the entire population. 

  

http://tiny.cc/palsrct5data
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Table 10-1 Remediation Completion Rates by Condition 

Condition Participants Mean 

Completion 

Rate 

Pre-to-post 129 0.38 

Post-to-pre 145 0.42 

Student Choice 136 0.35 

 

10.3.2 Effect of Choice on Post-test Performance 

Of the 410 initial students, 70 students completed the post-test. As Table 10-2 shows, the students were randomly 

and almost equally distributed across the different conditions. This section describes the effect of choice on 

performance of these students on the post-test. 

 

Table 10-2 Completion Rates and Learning Gains 

Condition Number of 

Participants 

Average 

Completion 

Rate* 

Learning 

Gain* 

Pre-to-post 22 0.457 0.038 

Post-to-pre 26 0.476 0.120 

Release All/ 

Student 

Choice 

22 0.512 0.310 

Total 70   

* Significance with p-value <0.05 

 

Among others, Table 10-2 shows that students in the pre-post condition who completed the posttest also 

completed far more remediation assignments than those in the other two groups. Additionally, students in the 

choice condition were not completing as many assignments as those in either prescriptive condition. These results 

suggest that choice in this setting did not necessarily increase assignment completion rates for these students, as 

described in section 9.3.1 above. However, Table 10-2 suggests that this same group of students performed better 

on the posttest than students in the two prescriptive conditions. Their gain in achievement from the pre-test to the 

post-test was more than twice the gain for the counter intuitive group and 10 times that of the intuitive group. This 

seems to suggest that students in this condition may have recognized the skills they performed poorly on and were 

therefore able to make intelligent choices regarding which skills required remediation. 
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We also performed a one-way ANOVA and the results show that there was a significant difference in math 

achievement for students who had the chance to complete the experiment (p-value < 0.05). 

 

10.4 Post-hoc Analysis of Results 

Across our population, 32 students had an assignment completion rate of 100%. (see Table 10-3) We analyzed 

these 32 participants and found that, first of all, they were equally distributed among the conditions. Secondly, 

students in the choice condition achieved huge learning gains over those from the other prescriptive conditions. 

This result seems to suggest that even among students who are consistent in completing their assignments, 

prescribing the order in which to complete assignments is not ultimately helpful to learning. When there are 

multiple tasks to be performed by students, it is best to allow them to choose the order in which to work on the 

assignments, as suggested by our results here. Allowing students to choose the order in which they work on 

assignments appears to provide better gains than when the systems make the choice for them, especially for 

students who have high assignment completion rates. 

 

Table 10-3 Learning Gains among students with comparable assignment completion rates 

Condition Number of 

Participants 

Learning 

Gain* 

Pre-to-post 11 0.056 

Post-to-pre 11 0.086 

Student Choice 10 0.333 

Total 32  

* Significance with p-value <0.05 

10.5 Discussions 

Student choice has been found to be helpful for encouraging learners to perform well on certain outcome 

measures of interest. Research has shown that giving students opportunities to make choices regarding the pace 

and sequence of math content has many positive effects on students. These findings informed our quest to 

determine whether the phenomenon would hold true in the context of PLACEments, the adaptive testing system 

that leverages the ASSISTments learning platform.  
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In the current study, we set out to determine whether the touted benefits of student choice could be replicated in 

our testing system, and if so, to what degree it mattered. Contrary to the established notion that choice improves 

assignment completion, the present study showed that assignment completion rates were not significantly 

different among conditions. These findings reveal that though there were differences in student completion rates, 

these differences were not significant and their magnitudes were minimal at best. We think this may be the result 

of several factors, the most prominent of which is the possibility that the lengths of the PLACEments tests in 

these classes were too short. 

However, of the students who completed the posttest, we found that differences in assignment completion 

were significant. We also found that among those students who completed the experiment, there were significant 

differences in learning gains. Post-hoc analysis of the results seemed to suggest that choice was very important 

amongst students with comparable assignment completing behavior.  This is an impactful finding, as it suggests 

that choice increases performance. Of note here, the observed performance boost could not be attributed to 

students completing more assignments than those in the other groups; the assignment completion rates were not 

significantly different, and yet the difference in performance remains. 

The contributions of this chapter support that in every learning analytics study that tries to model students 

learning and behavior, the effect of choice cannot be ignored. Additionally, designers of ITSs must look for ways 

to incorporate opportunities for students with comparable abilities and assignment completion rates to make 

choices in the order in which they complete assignments while using the system. This consideration will 

contribute to an improved learning experience for students. 

 

10.6 Future Work 

The study we report in this chapter has one clear limitation in that there was a considerably high dropout rate 

among all experimental conditions. We presume this high attrition may have been caused by a number of possible 

factors which require further scrutiny. We think that this may be an artifact of the PLACEments system and the 

size and difficulty of the assignments used in the study. Further investigations into the causes of this high dropout 
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rate are necessary to help rectify the issue in future analyses, and to boost teacher and student fidelity of the 

PLACEments system. 

This chapter reports the results of investigating the effect of choice on the release and completion of 

remediation assignments. Another feature of the system in which we can implement choice is in the test itself. 

Additional experiments are being planned to determine how choice can be incorporated in this aspect. An 

illustrative example of this involves providing choice in completing the initial skills for the test.  

We intend to run additional experiments to replicate these findings and improve upon the current results. If 

the results hold in replication trials, we will modify the PLACEments system to allow students to choose the order 

in which to complete their remediation assignments as it is shown here to significantly benefit student learning. 
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11 Refining Prerequisite Skill Links using Randomized Controlled 

Experiments in PLACEments 
 

11.1 Introduction: 

According to the National Assessment of Education Progress (NAEP), the rate of growth of the performance of 4 th 

and 8th grade students in math and reading assessments in the United States has stalled over the past few years. 

[60] This finding was consistent across almost all demographics and is possibly indicative of the fact that there is 

room for improvement in student achievement or is evidence of a ceiling effect (i.e. the curriculum is just as good 

as it is going to get). Identifying the major causes of such a stalling is very important to ensure that students get 

the most out of the education they receive at school. Better yet, creating innovative solutions to address 

discovered causes will then help to ensure that instructional practices grow to benefit student learning. The 

importance of taking these steps cannot be overemphasized, since research has shown that students’ performance 

in math, among other factors, is highly correlated to their performance on the job in future [83].  

As was stated earlier in in section 2.2, learning is defined as “the activity or process of gaining knowledge 

or skill by studying, practicing, being taught, or experiencing something” (Webster’s Dictionary). This definition 

shows that learning requires a number of strategies. Many of these strategies have been categorized into two 

areas: primary and support. [74] The primary activities include identification, comprehension, retrieval, and 

utilization strategies, while the support techniques relate to the activities that support the primary activities. In the 

words of Dansereau [74], these activities “allow the primary strategies to flow efficiently and affectingly.” They 

include techniques that ensure that students learn in the right environment, techniques for monitoring the students’ 

progress while correcting primary strategies and, any activity that helps to deal with loss of concentration and 

develop positive attitudes towards learning. 

In spite of the fact that these learning strategies are applicable to learning math and are meant to make 

math learning interesting and easy, many students continue to struggle with the subject. Several factors have been 

attributed to this observance. Among others, math anxiety [10], socio-economic factors [55], parental over-

expectation [59], prior low math achievement [56], lack of prerequisite knowledge [33] and the poor ordering of 

instructions have been identified to be major causes of such poor performance in math.  This is reflective of the 
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multi-facetted nature of the problem. Many of these factors are beyond the control of educators. However, the 

factor to which researchers have given little consideration is the problem of the deficit of appropriate prerequisite 

skills from a perspective of mitigation and to ensure that the right ordering of skills is followed during instruction. 

These orderings of skills for a given subject domain (e.g. Math) are designed by subject domain experts. 

However, over time, performance data has been collected from students who have been taught by teachers who 

follow these expert-designed learning trajectories. The availability of these sets of data opens up the opportunity 

for data mining techniques to be used to infer prerequisite skills relationships.  

In this dissertation, we tackle a factor that has been little studied: students’ lack of prerequisite skills. The 

earlier chapters of this dissertation have shown the many different data mining approaches that we and other 

researchers have employed to improve learning trajectories (or prerequisite skill relationships between skills) 

using learner performance data. The findings presented herein, and those of other researchers who have addressed 

this issue demonstrate that some progress has been made towards achieving the goal of assisting domain experts 

to design curriculum that results in the best learning gains for students. As the previous chapters have reported, 

some of these approaches include Desmarais’ Partially ordered knowledge structures [28, 31], Learning factors 

analysis [19, 63] and deep learning-based methods [67, 100]. While these methods seem to identify and refine 

prerequisite skill relationships amongst skills, these findings are purely data-mining based and are therefore 

largely correlational. Very minimal causal claims can be made based on these findings without the use of 

randomized experimentation. While the earlier approaches appear to have some success, there is a lot more 

benefit in using randomized controlled trials (RCTs) to infer prerequisite skill structures. [88] 

This chapter presents an overview of the PLACEments infrastructure in some more detail, the types of 

experiments that can be executed within the system, and the results from a number of experiments for which data 

has been collected.   

11.2 PLACEments 

Chapters 8 and 9 gave brief overviews of PLACEments, an adaptive testing and remediation system. The overall 

objective of this system is to identify gaps that exist in students’ knowledge, and to provide a means by which 

these gaps can be closed. The system traverses a prerequisite skill structure as it determines gaps in student 
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knowledge, identifiable as seemingly non-acquired knowledge components, and tries to remedy such knowledge 

gaps. As supplement to the descriptions given of the system in chapters 8 and 9, a more-directed overview of the 

system and its features is presented in this section. 

11.2.1 Assignment Creation 

Typically, the system allows teachers to assign tests, in which they specify knowledge components (or skills) that 

they want to test their students on. These skills are referred to as initial skills. As students go through these tests, 

they are assigned test items from the prerequisites of the initial skills they are not able to demonstrate knowledge 

of. The idea is to identify the prerequisite skills to blame if students perform poorly on a given skill. There are two 

ways by which the test is completed by the students. In the first case, the test terminates if there are no further 

prerequisite skills to ask students of, and the student has been tested on all the initial skills. In the second 

situation, teachers who assign these tests indicate the minimum grade level beyond which students are not to be 

tested. When a student reaches that point in the prerequisite skill graph traversal, the test terminates.    

11.2.2 Filling the Knowledge Gaps 

After the test is completed, the set of skills that students could not demonstrate knowledge of is then used to 

create skill-builder assignments. These assignments are meant to help the students build the knowledge 

components (skills) that they could not demonstrate mastery of.  They include a set of questions created using the 

knowledge component. These questions are asked of the students and if they fail to answer any of the questions 

correct, they are given tutoring in the form of hints texts and video instructions. Students need to answer a 

predefined number of questions correct in a row to achieve mastery. The remediation assignments are then 

released to the students in a staggered fashion, where by default the assignments of easier skills are released and 

completed before those of the more difficult skills. 

 

11.3 Experiment Types Available in PLACEments 

The assessment and remediation features of PLACEments allow for multiple experiments to be run to infer skill 

topologies or at least refine sections of existing prerequisite topologies. Since the system uses an underlying 

prerequisite skill structure, it presents an enormous opportunity for randomized controlled experiments to be 
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designed and implemented to help determine the optimal representation of the prerequisite skill structures that 

causes more learning. There are many different types of experiments that are possible. This section describes 

some of the different experiment types that are available and the different types of statements to be made about 

the portions of the underlying prerequisite skill graph experimented with. Figure 11-1 shows a sample prerequisite 

skill graph that we will use to explain the different types of experiments described in this section. The graph 

depicts the relationships among a subset of 4th and 5th grade math content from the common core state standards. 

[17] A detailed description of the experiment types proposed in PLACEments can be found in Table 11-1. Each of 

the experiments described in this section is analyzed using analysis of variance (ANOVA) on the individual 

outcome measures. 

 

 

Figure 11-1 Sample Prerequisite Skill Graph.  

The arrows emanate from the post-requisite skills and point to the prerequisite skills 

 

11.3.1 Verify Existence of Links  

This type of experiments is meant to verify the existence of a prerequisite skill link between two skills. To 

illustrate, consider the graph in Figure 11-1. According to this graph, “Diving Positive Decimals” has two pre-

requisite skills: “Diving Whole Numbers” and “Multiplying and Dividing by Powers of 10.” The relationship 

between one of the prerequisites and its post-requisite can be investigated using the types of experiments 

described in this section.  
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11.3.1.1 “Drop Prerequisite Skill” Study 

The “drop prerequisite skill” experiment is one that is run in the remediation’s feature of PLACEments. In this 

experiment, we hypothesize that if there is a prerequisite skill relationship between two skills, then mastery of the 

prerequisite is necessary for mastery of the post-requisite skill, and that mastery of the prerequisite skill should 

cause faster learning in the post-requisite skill. In this study, we answer the following research question: “Does 

practice of prerequisite skills impact students’ performance on a post-requisite skill?” The outcome measures of 

this experiment are the speed with which they complete the assignment for the post-requisite skill and, the amount 

of assistance and time needed to complete the post-requisite assignment. The completion speed will be measured 

by the number of problems it takes the student to reach mastery, whereas the amount of assistance sort is 

operationalized as the number of hints and attempts made when answering any of the questions in the assignment. 

Participants of this study will be those students who have performed poorly in the test on a pair of skills that the 

underlying skill graph indicates are related. This is because, these are the participants who have not demonstrated 

mastery of the skills in the study and who will need additional instruction to demonstrate mastery. Using figure 

11-1 as an example, students who perform poorly on both “Diving Whole Numbers” and “Multiplying and 

Dividing by Powers of 10” will be used. To verify the existence of a prerequisite relationship between two skills, 

students will be randomly assigned to two conditions. In the treatment condition, students are assigned 

remediation assignments for the prerequisite skill. They are then asked to complete the remediation assignment of 

the prerequisite skill before completing the remediation assignment for the post-requisite skill. In the control 

condition, students are assigned the remediation task for only the post-requisite skill. Participants in this condition 

will have their remediation assignments for the prerequisite skill marked as completed.  Figure 11-2 summarizes 

the design of this experiment type. 
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Figure 11-2 Drop Prerequisite Skill Experiment Design 

To reduce attrition bias due to an unfair amount of work to be done by the treatment group, we reduce the 

amount of work by randomly selecting another link for which they need remediation and mark the prerequisite 

skill of that link as completed. This implies that participants in this experiment must have at least 2 unrelated links 

for which they need remediation. The following algorithm explains the procedure used for assigning participants 

to condition. The procedure named “assignToCondition” accepts the list of links (LP), the student performed 

poorly in during the PLACEments test and the link on which the experiment is being executed (expLP).  It then 

checks whether there is at least a link unrelated to expLP that can be used in the study. If there is no unrelated 

skill link which can be used, the participant exists the study. In the event that there is more than an unrelated skill 

links, one of them is selected at random. If the participant is randomly assigned to the treatment group, the student 

is assigned practice related to the prerequisite skill of the link expLP and the assignment of the prerequisite skill 

of the other unrelated skill link is marked as completed. Participants in the control group are not assigned the 
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assignment of the prerequisite skill in expLP but are assigned that of the related skill randomly selected from 

procedure selectRandomUnrelatedLink. Doing so ensures that there is a fair distribution of work, and attrition bias 

is removed. See Algorithms 1 and 2 for the complete pseudocode. 

 

 

In this type of experiment, students’ performance in the post-requisite skill’s remediation will be used to 

compare the two conditions. The differences in condition (as measured by completion of the post requisite 

assignment, mastery speed and percent correct on the initial items and time spent on task) will be used to answer 
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the research question for this study. An analysis of variance (ANOVA) for each of these outcome measures is 

performed and used to compare the two conditions.  

11.3.1.2 Assign Prerequisites/Post-requisite Skill Irrespective of Performance  

This experiment is technically not a randomized controlled experiment. It can be described as a sampling exercise.  

The sampling occurs during the PLACEments tests. For a subset of the skills, participants who perform well on 

the post-prerequisite skills are asked questions on the prerequisite skill. Note that this is contrary to the original 

design of the navigation of the skill graph. Normally students are not asked questions from the prerequisite skill of 

a skill for which they have demonstrated learning. Hence this is counter intuitive. We hypothesize that if a 

prerequisite skill relationship exists between two skills, then mastery of the post-requisite skill is necessary and 

sufficient for mastery of the prerequisite skills of that skill in question.     

For another subset of skills and students, we perform a similar sampling exercise in which instead of 

asking questions from the prerequisite skills the chosen skill, we present questions from the post-requisite skills. 

For this sampling exercise, we are trying to determine how well knowledge of a prerequisite skill translates to 

unknown post-requisite skills. 

11.3.1.3 “Change Prerequisite Direction” Study 

In these experiments, we intend to verify the direction of prerequisite skill links. We answer the question: Could 

the direction of a given prerequisite relationship between two skills be incorrect, though the skills have been 

determined to have a relationship between them? In other words, will students learn subsequent skills better if the 

order of a pair of prerequisite skills in a link is reversed? 

This experiment type has two conditions per prerequisite skill link. In the first condition, participants are 

assigned remediation assignments in the order prescribed by the underlying prerequisite skill graph. Participants 

in the second condition will be assigned remediation assignments in the reverse order of the link. We will then 

compare students’ performance and speed of completion of second assignment in the link order. The results of the 

comparison will then be used to answer the research question. If one order causes more learning in the second 

assignment than the other, then we can determine that the order that causes more learning is the correct order. 
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To illustrate, the prerequisite skill structure graph in Figure 11-1 shows that “Least Common Factor” is a 

post-requisite of “Multiplying whole numbers”. If this link is chosen for this experiment type, participants in the 

control condition will be assigned remediation in the order specified by the graph. In other words, participants in 

the control condition will be assigned “Multiplying Whole Numbers” and then “Least Common Factor,” whereas 

students in the treatment condition will be assigned the remediation in the reverse order. Figure 11-3 depicts the 

simple design for this experiment. 

 
Figure 11-3 “Change Prerequisite Direction” Study design 

  

11.3.2 Find New Links 

The PLACEments system allows for another kind of experiments that help in refining prerequisite skill structures. 

In this set of experiment types, new prerequisite skill links are investigated using randomized controlled trials. In 

this section, we describe one such experiment type, Order Prerequisite skills experiment. 

11.3.2.1 Order Prerequisites 

In this experiment, we want to determine whether any pair of prerequisites of a given skill has a prerequisite 

relationship between them. Specifically, we hypothesize that the order in which students learn two prerequisites of 

a given skill impacts students’ performance on the post-requisite skill, if there exists a prerequisite relationship 
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between the two prerequisites. In this case, participants will be assigned to two conditions, in which the students 

get assigned the prerequisites in one of two orders. Using Figure 11-1 as an example, suppose skill “Dividing 

Positive Decimals” is chosen as a link to experiment with. Students in condition 1 will be assigned remediation 

for “Divide Whole Numbers” and then the remediation for “Multiplying and Dividing by powers of 10”. 

Participants in condition 2 will be assigned remediation for “Multiplying and Dividing by powers of 10” after 

which remediation for “Divide Whole Numbers” will be released. The study design is presented in the Figure 11-

4 below. Participants will then be assigned the post-requisite skill. Their performance on the post-requisite skills 

will then be used as post-test for this experiment. 

 

 
Figure 11-4 Order Prerequisites Study Design 
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Table 11-1 A summary of Experiments Types available in PLACEments 

Experiment 

Type 
Study Name Research Question Hypotheses Outcome Measures 

PLACEments 

Feature  

V
er

if
y
 E

x
is

te
n
ce

 o
f 

L
in

k
s 

Drop Prerequisite 

Skill 

Does students’ practice of 

prerequisite skills of a skill 

impact their learning speed 

and performance of the post-

requisite skill? 

If there is a prerequisite skill 
relationship between two skills, 

•  mastery of the prerequisite is 

necessary for mastery of the 

post-requisite skill,  

• mastery of the prerequisite 

skill should cause faster 
learning in the post-requisite 

skill 

• Mastery on the prerequisite 
skill will improve completion 

rates of the post-requisite skill 

• Completion of Post-

requisite skill remediation 

• Mastery Speed of post-

requisite skill (i.e. the 

number of opportunities 

it takes the participant to 

demonstrate mastery of 

the post-requisite skill) 

• Time spent completing 

the second skill. 

Remediation 

Change Prerequisite 

Direction 

Does reversing the order of a 

prerequisite skill link help 

participants learn subsequent 

skills better? 

• If there exists a prerequisite 

skill link between a pair of 

skills, reversing the order of 

the relationship will reduce 

the speed with which students 

complete the post-requisite  

• Mastery Speed on the 

second skill in the link. 

Remediation 

Assign Prerequisites  Does mastery of Post-

requisite skill imply mastery 

of prerequisite skill? 

• Mastery of Post-requisite skill 

implies mastery of 

prerequisite skill 

• Performance on 

Prerequisite skill 

• Time spent on 

prerequisite skill items 

(as measured in 

milliseconds) 

Assessments 

F
in

d
in

g
 N

ew
 L

in
k
s 

Order Prerequisite 

Skill Pair 

For a skill that has two 

prerequisites, is there a 

prerequisite relationship 

between the pair of 

prerequisites? 

• If there is a prerequisite skill 

relationship between two 

prerequisites of a post-

requisite, then the order in 

which the prerequisites are 

practiced impacts 

performance on the post-

requisite skill. 

• Performance on Post-

requisite skills, as 

measured by mastery 

speed 

• Time spent on 

prerequisite skill items 

 

Remediation 
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11.4 Refining the Underlying Graph of PLACEments 

The PLACEments system uses an underlying prerequisite skill graph for middle school mathematics. This graph 

was developed by domain experts based on the common core standards for mathematics [17]. The complete 

version is made up of 130 skills involved in 165 prerequisite skill relationships. Some of the skills had no 

prerequisites, whiles others had up to 5 prerequisites. Figure 11-5 shows a small section of the graph. The 

rectangular boxes represent skills and the arrows between them represent the prerequisite skill relationship. The 

arrow points from the prerequisite skill to the post-requisite skill. We therefore run the four experiment categories 

described in section 11.3 on this prerequisite skill graph structure. 

 

 
Figure 11-5 A Section of the PLACEments Skill Graph for Middle School Mathematics 

 

11.5 Results  

Over a period of one academic year, data collected for each experiment was not sufficient for in-depth analyses. 

This was mainly caused by continuous refinements of the methodology for the experiments over a long period of 

time and this delayed the final release of the experiments. In view of the slow pace of data gathering, a decision 

was made to limit the data collection to just one of the experiment types, i.e. experiment type “Drop Prerequisite 
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Skills”. This meant that the initial set of experiments that were running be stopped. This decision was based on 

the fact that “Drop Prerequisite Skills” experiments had the most data collected that was useful. 

While the data collection was ongoing, we realized that the initial design of this experiment introduces a 

possible attrition bias, mainly because the control group gets assigned more remediation assignments to complete 

than the experimental group, hence affecting their completion/drop-out rates (one of our outcome measures). [36, 

89] As an example, suppose two students are selected for a given link in the graph. If one student is assigned to 

the experiment group, the remediation assignment associated with the prerequisite skill link will be marked as 

completed for this student. However, the student in the control group gets to be assigned that prerequisite skill, 

meaning that the students in the control group receive one additional assignment more than those in the treatment 

group. In analyzing this experiment, any differences between condition found could be attributed to the fact that 

one group had more work to do than the other, and not the effect of the treatment alone, threatening the internal 

validity of these experiments. In view of this obvious attrition bias, we redesigned the experiment type.  

The fix this problem, we selected participants for this study only if there had remediation for at least two 

directly unrelated prerequisite skill links. We define two links to be directly unrelated if they do not share the 

same post-requisite skill. For illustrative purposes, suppose skill A is a prerequisite of skill B, and skill C is a 

prerequisite of an unrelated skill D. We will use both links in this study. Participants in this study were selected if 

they had need for remediation for all four skills from a single PLACEments test. Any participant in this student is 

considered in the control group for one of the links, in which case they are assigned the prerequisite skill for that 

link, and at the same time in the experimental group for the other link (in which case they are not assigned the 

prerequisite skill of that other link.) This way, participants in the study for each of the links will be assigned the 

same amount of work, reducing the possible attrition bias that resulted from the previous design.  We therefore 

proceed to analyze the experiments based on this newly redesigned the student. 

As shown in table 11-1 above, we use completion on the post-requisite skill as an important measure. We 

then perform an analysis of variance to determine the differences between the completion rates. We then use that 

to make statements about the links. We will proceed to analyze the two links for which we had collected enough 

data to analyze. We define “enough” as having at least 20 participants in both conditions. 



127 
 

 

11.5.1 Results of Drop Prerequisite Skill Experiment 

We proceed to analyze the data for two of the about 170 links in the study. We selected these two links because 

they are the once with at least 20 participants whose data we have collected as of the time of this write-up. This 

experiment is particularly susceptible to low numbers of participants due to the fact that a very small percentage 

of students who use PLACEments have need of such a large set of remediation assignments after the assessment. 

The next subsections briefly describe the links and the results from the study related to those two links.  

11.5.1.1 Adding Proper Fractions → Adding Mixed Numbers 

Regarding this prerequisite skill link, the domain experts who designed the underlying PLACEments Skill Graph 

hypothesized that Adding Proper Fractions is a prerequisite to Adding Mixed numbers. These two are fifth-grade 

skills drawn from the 5.NF.A.1 standard in the Common Core State Standards for Mathematics. [17] Students 

who have gained these skills are expected to have the knowledge and ability to add proper fractions of the form 

3

4
 +  

5

6
 and mixed numbers such as 4

2

7
+ 7

2

5
. Based on the hypothesis students should be able to add proper 

fractions before they can add mixed numbers.  

For this link, there were only 91 participants, all of whom are middle school students who use the 

PLACEments feature in ASSISTments. Fifty of the students were randomly assigned to control and the other 41 

assigned to treatment. To examine the research question associated with the “Drop Prerequisite Skill” experiment 

stated in the first row of table 11-1 above and for this link, we performed a chi-square test to understand the effect 

of condition on completion of the post requisite skill, and ANOVAs to understand condition’s effect on mastery 

speed on the post-requisite skill and performance on the two initial items of the post-requisite assignment. To 

account for other measures of student prior performance on completion, we performed a series of logistic 

regressions in which we included these measures. The measures include prior start rate, prior completion rate and 

prior percent correct. Within the 91 students, the effect of condition on completion was found to be significant, 

X2(1, N=91) = 4.23, p-value = 0.04. Analysis of the means revealed that students in the treatment condition (who 

were assigned the prerequisite skill) have a higher completion rate (M=0.26, SD=0.46, n=41) than those in the 

control condition (M=0.1, SD=0.30, n=50) who were not assigned the prerequisite skill. As a covariate, students’ 

prior assignment completion rate was not significantly related to post-requisite skill completion though the p-
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value seemed to lean towards significance (Model 2 of Table 11-2). Prior assignment start rate exhibited a similar 

behavior. (See model 1 of table 11-2). Model 4 in table 11-2 shows that the most important predictor of 

completion of the post-requisite skill’s assignment is students’ prior performance. When this feature is accounted 

for, the variance in completion contributed to by condition is borderline significant.  

 

Table 11-2 Logistic regression of prior start and completion rates, performance and condition on 

 completion of post-requisite skill assignment (Link 1) 

Variable Model 1 Model 2 Model 3 Model 4 

Intercept -1.46** -1.30** -1.44** -8.26*** 

Condition (Drop Prereq) -1.33* -1.36* -1.35* -1.25+ 

Prior Start Rate 0.08+  0.87 3.53 

Prior Completion Rate  1.44+ 0.64 -3.86 

Prior Performance    12.41*** 

+p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.0001 

 

 

Table 11-3 ANCOVA of the Effect of Condition on Speed of Mastery of Post-requisite skills  

(Accounting for average prior mastery speed) 

Source df SS MS F p 

Prior Avg. Mastery 

Speed 1 3.45 3.45 0.482 0.274 

Condition 1 9.06 9.06 1.263 0.496 

Error 20 1.76 0.10   

Total 23 14.27    

 

 

To examine the effect of condition on the number of problems students complete to master the post-

requisite skill (mastery speed), we observe that even after accounting for students’ prior average completion rates, 

condition does not significant relate to relate to mastery speed, F(1,23)=1.23, p=0.496. This shows that the data 

we have collected so far does not support the hypothesis that being assigned practice of “Adding Proper 

Fractions” causes faster learning of the post-requisite skill, “Adding Mixed Numbers”. See table 11-3 for the 

detailed results. 
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To further understand the effect of condition on the students’ first two randomly selected items of the 

post-requisite assignment, we performed an ANCOVA, accounting for students’ prior assignment start and 

completion rates. As table 11-4 shows, condition is not a significant predictor of performance on the two items in 

the post-requisite assignment, F(1,19)=1.46, p=0.242.  

Table 11-4 ANCOVA of the effects of condition on post requisite performance (Link 1) 

 

 

Post-requisite Performance 

(First Two Items) 

Source  df SS MS F p 

Prior Completion 

Rate 
1 0.03 0.03 0.33 0.574 

Prior Start Rate 1 0.14 0.14 1.43 0.247 

Condition 1 0.15 0.15 1.46 0.242 

Error 19 1.92 0.10   

Total 23 2.24    

 

 

11.5.1.2 Rounding to 10 and 100 → Rounding Whole Numbers 

The second link which we report here is: Rounding to 10 and 100 → Rounding Whole Numbers. “Rounding to 10 

and 100” is a third-grade skill from the standard 3.NBT.A.1 while “Rounding Whole Numbers” is a fourth-grade 

skill from the 4.NBT.A.3 standard. It is hypothesized that students need to learn to round numbers to either the 

tens or hundreds of places before they will be able to round numbers to the thousands and ten-thousands places.  

To understand the effect of practice of the skill “Rounding to 10 and 100” on completion of the 

assignment related to the post-requisite skill, “Rounding Whole Numbers”, we performed a chi-square test to 

analyze post-requisite assignment completion. We found that within the 21 students, the effect of condition on 

completion was not found to be statistically significant, X2(1, N=21) = 0.88, p-value = 0.347. Controlling for the 

students’ prior assignment start rate (Table 11.5), condition still did not have a significant relationship with 

assignment completion. Similar observations were made for the effect of condition on post-requisite assignment 

performance (i.e. performance on the two initial items). 
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Table 11-5 Logistic regression of prior start and completion rates, performance and condition on 

 completion of post-requisite skill assignment (Link 2) 

Variable Model 1 

Intercept -1.46 

Condition (Drop Prereq) -1.33 

Prior Start Rate 0.08 

Prior Completion Rate  

Prior Performance  

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.0001 

 

 

Table 11-6 An ANOVA and ANCOVA of the effects of condition on mastery speed (accounting for prior mastery speed) 

  Post-requisite Mastery Speed  

(condition only) 

 Post-requisite Mastery Speed 

(prior covariate) 

Source  df SS MS F p  SS MS F p 

Condition 1 12.85 12.85 2.367 0.142  12.85 12.85 2.264 0.152 

Prior 

Mastery 

Speed 

      1.13 1.129 0.260 0.617 

Error 17 92.31 5.43    90.83 5.677   

Total 19 105.16     104.81 19.66   

 

Table 11-7 ANCOVA of the Effects of Condition on Other Dependent Measures (Link 2) 

   Post-requisite Performance 

(First Two Items) 

Source  df  SS MS F p 

Prior 

Completion 

Rate 

1  0.03 0.03 0.53 0.479 

Prior Start 

Rate 
1  0.36 0.35 5.47 0.034 

Condition 1  0.01 0.01 0.231 0.638 

Error 15      

Total 19      

 

As shown in table 11-1, one of the outcome measures of interest is the speed with which students’ 

complete assignment. We observe from Table 11-6 that regarding the second prerequisite link, condition does not 
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have any significant impact on the speed with which students learn the post-requisite skill F(1,19)=2.37 and 

p=0.142, even when we account for the students prior learning speed where F(1,19)=2.264 and p=0.152. 

Additionally, for this current link, condition does not have any significant effect on other measures of 

student performance in the post-requisite skill. Table 11-6 evidently shows that accounting for prior students’ 

assignment completion and start rates does not help the situation.   

 

11.6 Analyses of Results 

We set out to infer the relationship between skills incorporated in a domain-expert designed prerequisite skill 

structure graph. The graph consists of a number of prerequisite skill links that include the two which are described 

in section 11.4.1.1 and 11.4.1.2 above. We find from the results that when students get practice on the “Adding 

Proper Fractions” knowledge component, such students are significantly more likely to complete the assignment 

related to the post-requisite skill than if there are not, even after controlling for other prior performance measures. 

About 16% more of the students who are given practice on the pre-requisite skill are more likely to complete the 

post-requisite skill than those not assigned. This evidence seems to suggests that there is an existing prerequisite 

skill relationship between the two skills. Thus, we can conclude that “Adding Proper Fractions” is a prerequisite 

skill of “Adding Mixed Numbers.”  

The second skill link did not exhibit similar characteristics. As was seen from the results, we cannot 

conclude whether there exists a prerequisite skill relationship between “Rounding to 10 and 100” and “Rounding 

Whole Numbers” or not. In view of the limited data, we cannot make claims about the effect of condition on post-

requisite skill performance. Students speed of learning the post-requsiute skill does not seem to be impacted by 

whether students are assigned to practice the “Rounding to 10 and 100” knowledge component or not. These 

findings may be due to the small amount of data that we collected, reducing the statistical power of our findings.  

11.7 Discussion 

As was stated earlier, learning progressions/prerequisite skill maps have informed the content related standards 

that have been developed and used by many school districts in the United States. These standards have been used 

as a basis for developing different frameworks for ordering content as teachers provide instructions to students. 
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While many of these frameworks have been used extensively, there is a lack of empirical data to support the 

effectiveness of these frameworks. This work reports initial baby steps that have been taken to use randomized 

experimentation to refine prerequisite skill structure graphs. While not all research questions about prerequisite 

skills were answered in this dissertation, we have shown that randomized controlled experimentation has promise 

in refining prerequisites skill graphs, augmenting the work of domain experts who design these frameworks and 

researchers who build student models to enhance student learning and develop interventions. Ultimately, students 

would benefit from teachers who use more accurate frameworks for teaching domain-specific content.  

Additionally, several interventions have been proposed to solve many educational problems, particularly 

those that deal with students’ inability to comprehend content. However, as noted by Ioannidis, a lot of research 

results are false [45]. Studies that relate to educational content may also be false because of the fact that the 

underlying framework from which students are taught may be influencing the many research findings. We 

proposed four experiment categories that PLACEments allows to be conducted, and we reported the results of one 

such experiment.  

The evidence presented herein indicates that we are able to refine an existing prerequisite skill link just by 

running these randomized experiments. We showed that for one of the links, being assigned the prerequisite skill 

is essential for completion of assignments of the post-requisite skill. In the other link, the evidence we collected 

and analyzed was not sufficient to make any claims about the prerequisite skill link. Findings of this nature help 

in eliminating bad content ordering as one of the possible causes of false positives in numerous experiments that 

have been reported. Conversely, there are many educational-content related experiments that are not reported 

because they are perceived to have failed. This is usually referred to as publication bias [35]. Could it be that the 

interventions themselves may be effective, but the experiments have failed because the underlying progressions 

framework is not necessarily valid and hence the root of the experiment failure? Experiments of the nature 

presented in this dissertation could be helpful in reviving the failed studies, hence reducing some of the causes of 

failed experiments and subsequent publication bias. 

Finally, students will ultimately benefit from progression frameworks that really achieve the goals intended 

by the developers of content-related standards like the CCSS. Additionally, if the findings indicate that the 
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stalling of student achievement in math for 4th grade students [60], this could lead to a positive rate of growth in 

the future. 

11.8 Limitations 

The experiments described and analyzed in this section provide a proof of concept that the features proposed in 

the new PLACEments infrastructure are helpful in finding portions or links in a prerequisite skill hierarchy that 

require more scrutiny. However, this design does not come with its own limitations, and we discuss one of these.  

The major limitation of this work is the amount of time required for data collection. One of the actions that 

can be taken to address this limitation is to ensure that a data collection is orchestrated, i.e. a specific set of 

students should be selected based on some criteria, and a specified period of time given for the 

students/participants to take and complete predesigned placements tests and its accompanying remediation 

assignments. Predesigning the placements test for these experiments ensures that focus is given to a specific and 

usually small section of the prerequisite skill graph, instead of the entire graph as was done in the experiments 

described in this dissertation.  While doing this, just one experiment should be run during that period. This will 

ensure that a large amount of data can be collected within a short period of time. This should give increase the 

power of any findings that may be made during the analysis of the experiments.   
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12 Does It really help to Assign Prerequisites Prior to Learning a new 
skill? 

 

12.1 Introduction 

Over the years, attempts have been made in the Educational Data Mining (EDM) community to find better ways 

to improve student learning. The approaches that have been studied vary drastically. While some have studied the 

medium of instruction as a means to improve student learning, others have investigated ways to improve methods 

of instruction, irrespective of the medium used. Still others have studied the emotional states of students during 

instruction and testing, with the goal of proposing effective interventions to improve student learning [11, 78] 

Among those who have studied the medium of instruction, several authors have focused on the use of intelligent 

tutoring systems (ITSs) as a means of improving student learning. Early on, Merrill, et al. [57] compared human 

tutors to intelligent tutoring systems with the aim of determining which was more effective. More recently, 

VanLehn [91] compared human tutors, intelligent tutoring systems, and other tutoring systems to determine their 

relative effectiveness at helping students learn. 

  Several ITSs (e.g., The Cognitive Tutor, ASSISTments) have been developed to improve student learning 

[7, 70]. ASSISTments uses tutoring strategies in the form of hints and scaffolds to help students solve difficult 

problems. As the name suggests, hints provide pointers to explanations that assist students in solving the problem 

under consideration. Alternatively, scaffolds offer a form of assistance that breaks the problem to be solved into 

smaller steps or segments which, when solved in the presented order, lead the student to a solution for the original 

problem. Each of these strategies can be initiated by the student. Multiple studies have been conducted within the 

ASSISTments system to compare the efficacy of these methods of assistance. After showing that ASSISTments 

led to student learning, Razzaq and Heffernan [72] investigated the effects of scaffolds and hints. Though not 

statistically reliable, they showed that scaffolds offered potentially better effects on learning than hints. However, 

the hints and scaffolds were based solely on the skill being assessed. In a follow-up study, Razzaq and Heffernan 

[71] looked at the amount of tutoring needed to assist students and found that the knowledge level of participants 

had a great impact on the amount and quality of tutoring required. Results suggested that low-knowledge students 
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benefited more from tutored problem solving than from sample solutions to problems, while high-knowledge 

students benefited more from seeing solutions than from tutored problem solving. 

  Whilst the above-mentioned and studied features seem to do well in assisting students to learn the skill 

under consideration, to the best of our knowledge, none of the previously reported studies have focused on the 

effects of prerequisite skills on student knowledge. It seems intuitive that knowledge of and ability to answer 

questions related to a skill, to a large extent, is dependent on the student’s knowledge of the prerequisite skills5 to 

the skill. In the current study, we hypothesize that an alternative way to assist students is to make them practice 

problems rooted in prerequisite skills. In other works, if students revisit these prerequisite skills and fill 

knowledge gaps, solving problems within the primary skill should be much quicker and easier. This hypothesis is 

stronger for skills that are a strict combination of their prerequisites. Moreover, we hypothesize that students need 

to know all the prerequisites of a skill to be able to learn and demonstrate he knowledge of the skill. 

“Solving Equations” is a middle school math knowledge component that has been studied extensively by 

many math education and psychology experts. Rittle-Johnson and Star [76] report a study in which they compare 

three different methods in which students learning this knowledge components. They also studied the benefit of 

having prior knowledge of algebraic methods required to learn and solve equations and report that prior 

knowledge is an important predictor of performance in solving equations. [77] While this finding is interesting 

and appears to show the importance of prior knowledge, their definition of prior knowledge is a too broad. To the 

best of our knowledge, we have not found any research that has studied the effect of individual prerequisite skills 

of a given skill on performance of the skill. Moreover, based on the common core state standards [17], we find 

that the standard (8.EE.C.7b) from which this skill is drawn has four direct of prerequisite standards: Order of 

Operations, 1-Step Addition and Subtraction, 1-Step Multiplication and 1-Step Division. We are therefore 

hypothesizing that students should know all of these skills to be able to more easily learn the post-requisite skill.  

12.2 Research Questions 

The following research questions therefore arise from our hypotheses: 

                                                      

 
5 See sections 2.1 and 2.2 for a complete definition of skills and prerequisite skills. 
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1. Does being assigned practice of all the prerequisite skills of “Solving Equations” impact completion of 

and performance on that skill? 

2. Given that “Solving Equations” has four hypothesized prerequisite skills, does allowing students to 

choose which of the prerequisites to learn impact their performance on the skill?  

12.3 Methods 

12.3.1 Participants 

Participants for this study were drawn from the population of ASSISTments [42] users. They include 390 students 

6th to 8th grade students. These students were spread over 59 classes.  

12.3.2 Experiment Design 

The randomized experiment was designed to have three different conditions: “No Prerequisite Remediation”, 

“Assign All Prerequisite Remediations” and “Student Choice of Remediation”. Students in the study are assigned 

a pretest that has three “Equation Solving” problems. Participants who solve all three questions correctly are 

deemed to already know the skill and hence are dropped from the study.  

As can be seen from Figure 12-1, students were randomly assigned to one of the three conditions stated 

above. Students assigned to the “No Remediation” condition are not given any practice on the prerequisite skills. 

They just get to practice more of the current skill. In the “Assign All Remediations” condition, students are 

assigned practice questions in all of the three remediation skills, after which they get to practice some questions in 

the post0requisite skill. In the third condition, students choose whether to practice all of prerequisite skills of 

“Solving Equations” or just a subset of their choice. Students in the choice condition either choose to “All 

Remediations” from the onset, or a subset of remediations. (Figure 12-2) All students were then given practice on 

the post-requisite skill. Thereafter, participants are presented with a 3-item a post-test that checks their ability to 

apply the knowledge gained to solve challenging questions of the post-requisite skill (Solving Equations).    
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Figure 12-1 Experimental Design – Overall  

 

 
Figure 12-2 Options for Student Choice Condition 

 

Students in both “Assign all Remediations” and “Student Choice” groups were informed about their need to 

practice additional remediations. Those in the “Assign all Remediations” are informed that they will be required 

to complete all the remediations before they can proceed. Figure 12-3 depicts the direction received by students in 

this condition. Students in the choice condition are given the same list of remediations as those in the “Assign All 
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Remediations” group and, are asked to either choose to complete all or practice a subset of the remediations. 

Figure 12-4 shows the prompt. 

 

Figure 12-3 Prompt for Assign All Remediations 

 

 

Figure 12-4 Prompt for "Student Choice" 

 

12.4 Random Assignment 

Prior to random assignment, students who demonstrated mastery of the initial skill by answering all three 

questions in the initial skill builder assignment without any errors were not assigned to any condition. We 

therefore excluded 140 students who fell in this group. Random assignment was performed at the student-level on 

the remaining 250 students.  Of this number, 82 were randomized into “No Remediation”, 79 to “Student Choice” 

and the remaining 89 to “Assign All Remediation.”   
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12.5 Results 

Among the students included in the experiment, all of whom made at least one error in the initial skill builder 

assignment, 52% made 1 error, 27 % made 2 errors and 21% made 3 errors. The mean score at pre-test was 1.57 

out of three with a standard deviation of 0.83, showing a fair range of performance at pre-test/initial skill builder 

assignment.  

To answer our initial research question, we performed an analysis of variance to determine how related 

the assignment to condition is to performance on the post-test, which was a more difficult set of questions of the 

post-requisite skill, measured by percent of students who got that problem correct. As was mentioned earlier, the 

post-test was composed of three more challenging items from the post-requisite skill. We proceed to analyze the 

remaining participants based on the following outcome measures: post-requisite completion and performance. 

Attrition Rates 

An analyses of variance (ANOVA) on completion yielded significant variance among conditions, 

F(2,250)=8.9, p-value = 0.01. A post hoc Tukey test showed that the “Assign All Remediations” group differed 

significantly from the “No Remediation” group, p = 0.05. Additionally, the same post-hoc analyses showed that 

the “Assign All Remediations” group and “Student Choice” groups also differed significantly, p=0.02. The 

“Student Choice” group was not significantly different from the group that was assigned no remediation. Table 

12-1 shows the means and standard deviations for each experimental group.  

Table 12-1 Completion Rates Per Condition 

Condition n 
Completion  Post-test 

Mean SD  Mean SD 

No Remediation 82 0.80 0.40  0.7 0.39 

Student Choice  79 0.82 0.38  0.69 0.38 

Assign All 

Remediation 

 

89 0.65 0.48  0.53 0.42 

 

To better understand the choices made by students within the Student Choice condition, we performed a 

post-hoc analysis of the choice group. It must be noted that students chose either to complete all remediations or 
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to select a subset of the remediations. Of the 79 students in the choice condition, 37 opted to complete all 

remediations and the other 42 opted to learn a subset of the remediations whiles the remaining 42 opted to 

complete a subset of the 5 remediations ([0-5]). Table 12-2 summarizes the distribution of students and the 

choices they made. 

Table 12-2 Post-hoc analyses of student choice group 

Choice Option 
Remediations 

(completed) 
Student Count 

Completion 

Rate 

Mean  

Post-test 

Performance 

Choose All 

1 1 0.00 0.00(N/A) 

2 1 0.00 0.00(N/A) 

4 35 0.89 0.73(0.35) 

Summary  37 0.84 0.69 

Choose Subset 

0 20 0.80 0.65(0.36) 

1 5 0.40 0.40(0.54) 

2 6 1.00 0.94(0.14) 

3 6 0.83 0.78(0.40) 

4 5 1.00 0.73(0.27) 

Summary  42 0.81 0.69 

 

 

We performed a chi-square test to understand the effect of remediation choice option (i.e. Choose All and 

Choose Subset) on completion and find no significant difference between students who, from the onset, choose to 

complete all the assignments and those who choose to complete a subset of the remediations (F(1,79)=0.11, 

p>0.05). For the “Choose Subset” group, we built a simple logistic regression model using only the number of 

remediations started and/or completed as independent variable and the completion of the post-test as the 

dependent variable. We find that the number of remediations chosen significantly predicts whether a student 

completes the assignment or not with p-value < 0.01. This result is a bit surprising, particularly since the overall 

study showed no significant difference between students in the “No Remediation” and the “Student Choice” 

conditions. This seems to suggest that when students are given the choice, they make choices that seem to help 

them complete remedial assignments better than if they are forced to complete all the remedial assignments. As 

Table 12-2 suggests, students who chose not to complete any of the remediations had a high completion rate, but 

the least performance on post-test. The table further shows that students who chose to practice all the 

remediations (either from the onset or later) have high completion rates and high post-test performance. Though a 
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possible bias is observed from Table 12-2, the information presented seems to be suggesting that students must 

make wise choices to be able to gain the most benefit from the material.  

Post-test (Knowledge Transfer) 

In order to analyze post-test performance, all students in each of the conditions who attrited were assigned 

a post-test score of zero in order to ensure a fair comparison among the conditions. A trend similar to the 

observations regarding attrition is observed for post-test performance. ANOVA of post-test scores of students 

indicates a significant variance amongst conditions as well, F(2,250)=5.27, p<0.01. Another post-hoc Tukey test 

showed a significant difference between the “No Remediation” and “Assign All Remediation” groups, p=0.01; 

and between “Assign All Remediation” and “Student Choice” groups, p=0.02. There was however no significant 

difference between the “No Remediation” group and the Choose Remediation group. Table 12-3 summarizes the 

analyses of variance that was conducted for post-test score.  

 
Table 12-3 ANOVA of the Effect of Condition Post-test Performance 

  Post-Test Performance 

Source  df SS MS F p 

Condition 2 1.65 0.83 5.27 0.01 

Error 247 38.80 0.16   

Total 250 40.45    

 

 

12.6 Implications 

The results suggest that requiring students to complete all remedial assignments prior to a classroom activity 

could be detrimental to the learning process. This could be a result of several factors including the case where 

students may not be completing the subsequent assignments due to the fact that they could be spending too much 

time on the remedial assignments, to the detriment of learning the post-requisite skill. As the results suggest (see 

Table 12-1) students who are forced to complete all required remedial assignments significantly perform worse 

than their counterparts who are either asked to make choices of which remedial skills to cover or who are not 

assigned remedial assignments at all.  
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The results of this study do seem contradictory to the widely held notion that students need to know the 

prerequisite skills to be able to learn the post-requisite skills. In fact, several studies have shown that when 

students are given remedial math classes prior to taking college-level courses, they are significantly less likely to 

do well in the college-level course which is supposedly the post-requisite of the remedial classes.[54] In fact there 

are other findings that show that remedial courses at the college level may not be good for all kinds of students 

[9], and that it is what and how the remedial courses are taught that may contribute to students’ higher 

achievement in the college-level course. [22] The findings of this current study may suggest a similar set of 

characteristics showing up at the elementary and middle school levels of education. Further analyses of these 

findings are required to be able to draw conclusions about relationships between these skills, particularly since 

this present study only focused on one skill. 

12.7 Conclusion 

We set out to investigate the effect of prerequisite skill remediation on post-requisite skills. The ultimate goal for 

this study was to understand the effect of prerequisites on student knowledge. In other words, does it matter to 

assign students practice assignments of prerequisites of a new knowledge component they are about to learn.  In 

particular, we wanted to find out whether assigning students remediations or forcing them to choose remediations 

improves student achievement in the subsequent post-requisite skill’s assignment. Using a randomized controlled 

trial, which had three variations of remedial assignments, we have shown that assigning students remediations 

could be detrimental to their learning the post-requisite skill. However, allowing students to make choices of 

which prerequisites to learn prior to learning a new skill may be better than requiring them complete all 

prerequisites. 

Like all other studies, this study is not without its limitations. First and foremost, the skill chosen may have 

had an impact on the differential dropout rates across condition. Since “Equation Solving” is a skill that has four 

different prerequisite skills, it may be that students who were assigned to the complete all remediations 

assignments group may have been assigned an unfair amount of work, compared with the other groups. 

Additionally, the order of the prerequisite skills was imposed on the students. A better design will just be to allow 

students in both “Student Choice” and “Assign All Remediations” to complete the remediations in the order of the 
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students’ choice. Future work will investigate the effect of order on students’ completion of remediations and 

subsequent post-test.    
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13 Conclusion 

 
Prerequisite sill graphs have been used for many decades to represent the order in which content is expected to be 

taught in order to improve student’s achievement in state exams and assist them in the easier comprehension of 

content. While these models have been largely designed by domain experts based on content-related literature, 

there has been a growing desire to find ways to use data-driven methods to refine these domain-expert-designed 

models. As the work presented in this dissertation shows, data mining techniques have been used with promising 

results. 

In this work, we have used additional data mining techniques to refine learning maps, with varying degrees 

of success. We also have presented an adaptive testing system, PLACEments, that uses domain-expert-designed 

prerequisite skill structures for assessment of student knowledge. This system additionally offers remedial 

practice to help low-achieving students fill any knowledge gaps identified during assessment. We have shown that 

this infrastructure presents a useful platform for using randomized controlled experiments to refining portions of 

these domain-expert-designed graphs. We presented examples of six types of experiments, one of which have 

been run in PLACEments, and the possible causal statements that can be made about the links in the underlying 

prerequisite skill structure. 

While the method presented in this dissertation has some promise and has achieved moderate success, it 

comes with a number of limitations. The first of which is the time it takes to collect substantial real time data for 

each of the experiments. The second is the limited amount of data that can be collected per link during the period 

of the experimentation. This limitation becomes apparent when the size of the underlying prerequisite skill 

structure is large, i.e. the number of prerequisite skill links to be studied is large. Also, since the setup for the 

experiments require the inputs of teachers, the set of links that get used in the experiments is dictated by the 

selections made by teachers as they assign these tests. One proposed solution to these limitations is to control the 

selection of participants as well as skill links to be used. By this we suggest pre-selecting focused subsets of skill 

links to examine through experimentation and administer predesigned PLACEments tests encompassing those 

specific links of interest to a population that is representative of students identified to need practice within such 

skills. There could be several other proposals that we can employ to fix the issues of low numbers of participants. 
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