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Abstract 

 Engineered muscle tissue offers a promising solution for the treatment of large muscle 

defects.  Three-dimensional tissue engineered matrices, such as microthreads, can be used to 

grow new myofibers that will reduce scar formation and integrate easily into native myofibers.  

We hypothesize that adsorbing growth factors to the surface of braided collagen scaffolds using 

crosslinking strategies will promote muscle derived fibroblastic cell (MDFC) attachment and 

growth, which will serve as a platform for delivering cells to large muscle defects for muscle 

regeneration.  To test this hypothesis, self-assembled type I collagen threads were braided and 

crosslinked using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) with 

and without heparin and 5 ng/mL, 10 ng/mL, or 50 ng/mL fibroblast growth factor (FGF-2) 

bound to the surface.  Using immunhistochemistry, braided collagen scaffolds showed the 

presence of FGF-2 on the surface, and braiding the microthreads increased the mechanical 

properties compared to single threads.  To determine the effect of FGF-2 on MDFC attachment, 

growth, and alignment, scaffolds were seeded with a MDFC cell suspension for 4 hours using a 

PDMS mold with a sealed 1 mm by 12 mm channel and cultured for 1, 5, or 7 days.  After 1 day 

of culture, the results show a significant increase in cell attachment on braids crosslinked with 

EDC/NHS with heparin and no significant difference in attachment between the different 

concentrations of FGF-2 and EDC/NHS crosslinked scaffolds.  After 7 days in culture, the 

MDFCs responded to FGF-2 with a positive linear correlation between growth rate and 

concentration of FGF-2 on the surface.  Additionally, all control scaffolds showed cellular 

alignment after 7 days, while MDFCs on FGF-2 modified scaffolds showed limited alignment.  

These results show braided collagen scaffolds crosslinked with EDC/NHS with heparin 

delivering a controlled quantity of FGF-2 can support MDFC attachment and growth, which  

may serve as an exciting new approach to facilitate the growth and ultimately the delivery of 

cells to large defects in muscle regeneration.  
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Chapter 1: Introduction 

Skeletal muscle, which makes up nearly half the tissue in the human body, is composed 

of highly vascularized and innervated bundles of myofibers, which are responsible for the 

contraction and movement of the body.
1-4

  When skeletal muscle is injured by trauma, it has the 

ability to self-regenerate, which occurs in four wound healing phases, degeneration, 

inflammation, tissue formation, and tissue remodeling.
1
  At the backbone of regeneration are 

satellite cells, which are undifferentiated progenitor cells located beneath the basal lamina of the 

myofibers.  They are activated from their quiescent state during the tissue formation phase after 

the onset of an injury to proliferate, self-renew, differentiate into myoblasts, or muscle precursor 

cells, and fuse into new myofibers.
3,5

  Research has found that the controlled expression of 

certain trophic factors, such as the families of fibroblast growth factors (FGFs), transforming 

growth factors-β (TGFs-β), insulin-like growth factors (IGFs), hepatocyte growth factor (HGF), 

and interleukin-6 (IL-6), regulate the activation, proliferation, and differentiation of satellite cells 

as well as the initiation of vascularization and reinnervation.
1
  During tissue remodeling, fibrosis 

within the defect area causes the formation of scar tissue due to an excessive amount of type I 

collagen present.
6
  Muscle defects caused by trauma are classified as ranging from first-degree 

defects, defined as minimal myofiber damage with slight swelling, to third-degree defects, 

defined as a defect spanning the entire depth of the muscle.  During the regeneration of minor 

injuries, capillaries and myofibers are able to regenerate with limited scar tissue formation 

allowing for almost complete tissue regeneration.  However, in full thickness defects, the 

increased scar formation and lack of satellite cell availability limits the regeneration and 

revascularization of the skeletal muscle resulting in the loss of some or all of the muscle 

function.
7
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 Skeletal muscle injuries are caused by a variety of mechanisms, including varying 

degrees of direct trauma, indirect causes, and genetic diseases.
2
  Injuries caused by direct trauma, 

like contusions or lacerations, occur predominately in athletes and soldiers in combat.
6,8-13

  The 

major concern with substantial muscle loss related to large muscle defects is that it causes 

deformities, persistent muscle weakness, and loss of function.  Skeletal muscle degradation 

associated with innate genetic diseases causes the muscles eventually to become completely 

atrophied leading to extensive long-term care and death of the afflicted.
2,6,14-16

  Clinically, first 

and second-degree muscle defects are treated using a combination of rest, ice, compression, and 

elevation, but this method does not eliminate the formation of scar tissue and is sometimes 

associated with injury reoccurrence.
6,7,17,18

  Plastic and reconstructive surgeries, such as the 

transplantation of autologous muscle grafts or myogenic cell injections, are performed as 

treatments for third degree injuries to bridge the gap and help initiate muscle regeneration.
18

  

Limitations associated with surgical procedures are scar formation, limited cell incorporation, 

weakness, morbidity, and mortality.
19,20

   

In order to overcome limitations associated with the sub-optimal clinical treatments, 

research is being performed on implanting biomaterials into muscle defects.  Three dimensional 

tissue engineered muscle needs to be biocompatible, biodegradable, biologically and 

mechanically stable, and induce host cell migration, regeneration, and revascularization.
1,8,16

  In 

vitro and in vivo studies using synthetic materials and natural polymers, like polyglycolic acid 

(PGA), poly(ε-caprolactone) (PCL), hyaluronic acid, alginate, fibrin, and acellular matrix, have 

shown to support myoblast migration, differentiation, fusion, and in some cases promote 

revascularization.
21-24

  However, due to limitations in scaffold design including biodegradability, 

which affects myofiber maturity, density, and population homogeneity; and stiffness, which 
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affects myofiber length and the force generated, these biomaterials still do not meet the 

conditions needed for clinical studies.
8
 

Another biomaterial investigated for muscle regeneration is collagen since it possesses 

strong mechanical properties, suitable cell-matrix binding efficiencies, weak immunogenic 

responses, and high biodegradability.
25-29

  Another advantage of using collagen is that it can be 

manipulated into different structures, such as gels, microthreads, and porous sponges, making it a 

good candidate for many different tissue-engineering applications.  By incorporating chemical, 

mechanical, or extracellular matrix modifications on the surface of collagen scaffolds, myoblasts 

can be differentiated to form mature myofibers.
30-34

  Cornwell et al. has shown that collagen 

microthreads seeded with fibroblast cells promoted cell migration and alignment, which suggests 

the potential for microthreads to be used for muscle regeneration.
35,36

  In addition, by 

manipulating the structure of microthreads through bundling, twisting, weaving, or braiding, the 

scaffolds shows structurally similar properties compared to native myofibers, as well as 

increased surface area and mechanical strength.
37

  By chemical crosslinking, the biostability and 

mechanical strength of the scaffold can be increased, and it promotes cell migration, viability, 

differentiation, and myofiber formation.
28,38-40

  Another way to optimize collagen scaffolds for 

muscle regeneration is by binding heparin and FGF-2 to the surface.  Studies show that in the 

presence of FGF-2, cellular proliferation and migration increase, and by binding it to heparin, 

FGF-2 is stabilized and protected from denaturation and proteolytic degradation.
41-43

 

In addition to the studies of different biomaterials for muscle regeneration, the benefits of 

using certain cell types, such as myoblasts and satellite cells, has been investigated, which 

showed that myoblasts and satellite cells remain viable and active on three dimensional 

scaffolds.
44,45

  The limitations associated with using these cells clinically are loss of myogenicity, 
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low cell survival and incorporation, and they are not self renewing satellite cells.
11

  A potential 

way to overcome these limitations is by using fibroblast cells that have been programmed to 

express a stem cell phenotype.  Research shows that exposing fibroblasts to FGF-2 in a low 

oxygen environment induces them to express stem cell related genes, suggesting this treatment 

may lead to cell dedifferentiation.
46

 

In summary, we hypothesize that chemically conjugating heparin to the surface of 

braided collagen scaffolds will serve as an effective method to load heparan sulfate binding 

growth factors, such as FGF-2, to promote cell attachment and growth.  This technology could 

serve as a platform for delivering cells to promote regeneration of large muscle defects.  
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Chapter 2: Background 

 This project investigates a novel scaffold for muscle cell attachment and growth that 

could be used as a method for delivering muscle derived fibroblastic cells to a large muscle 

defect related to trauma or muscle diseases in the future.  The development of a novel cell 

delivery system for muscle regeneration requires an understanding of skeletal muscle anatomy, 

specifically how it responds to injuries naturally.  During the preliminary stages of scaffold 

development, an understanding of how the surface of collagen microthreads can be altered 

chemically to control the cells delivered and the interactions it has with the native muscle tissue 

also needs to be examined.  In addition, this section will summarize the current approaches and 

limitations in treating large muscle defects, both surgically and with tissue engineered methods. 

2.1. Skeletal Muscle 

Skeletal muscle is the most abundant tissue in the human body, accounting for nearly 

45% of the total body mass.
1,4

  Skeletal muscles are highly vascularized and innervated bundles 

of myofibers attached to the skeleton allowing for joint movement.
2,3

  A single myofiber, which 

ranges from 20 µm to 100 µm in diameter, is composed of fused myoblasts, which create many 

myofibrils.
7,17

  A myofibril is derived from repeating sarcomeres, which are made of contractile 

proteins of thin actin filaments and thick myosin filaments (Figure 1).
1
  Surrounding each 

myofiber is a plasma membrane called the sarcolemma and a basement membrane called the 

basal lamina, consisting of an inner layer, an intermediate layer, and an outer lamina densa.
3,4

  

Located between the sarcolemma and the basal lamina are the muscle mononuclear 

undifferentiated progenitor cells called satellite cells, which are quiescent in mature healthy 

myofibers.  Satellite cells make up 2-7% of all myofiber related nuclei.
47

  They are the key to the 



14 

 

self-regeneration of skeletal muscles when they are activated, proliferate, self-renew, and 

differentiate into myoblasts.
3,4,12

  This process will be described in detail in the following section. 

 

Figure 1:  Structure of the skeletal muscle 

A single myofiber is composed of fused myoblasts, which create many myofibrils.  A 

myofibril is derived from repeating sarcomeres, which are made of contractile proteins of 

thin actin filaments and thick myosin filaments (Figure adapted from1). 

Nerves that are in contact with the skeletal muscles are responsible for the functional 

control of contraction and movement of myofibers.
2
  A motor unit consists of a single nerve axon 

and all the myofibers it connects to, which ranges from ten to up to a thousand myofibers 

depending on the type of movement the muscle must perform.
4
  The three types of myofibers 

that make up the human skeletal muscles are classified by their contractile properties.  Type 1 

myofibers are slow twitch and fatigue resistant and type 2A and 2B myofibers are fast twitch and 

moderately fatigue resistant or not fatigue resistant respectively.
1,4,48

  The arrangement of the 

different types of myofibers in the muscle is determined by its function.  Muscle contraction is 

initiated by the release of acetylcholine from the presynaptic axons, which binds to the myofibers 
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and depolarizes the myoblasts.  This results in an action potential across the length of the 

myofiber resulting in contraction.
4,48

  Subsequently, the myosin and actin filaments bind and 

contract due to the release of intracellular calcium.  Muscle relaxation occurs when acetylcholine 

deactivates.
4,48

 

2.1.2. Native Skeletal Muscle Regeneration 

 Following traumatic injury, the wound healing process for skeletal muscle occurs in four 

phases, degeneration, inflammation, tissue formation, and tissue remodeling resulting in fibrosis 

of the tissue.
1,6,7,18,49

  Degeneration and inflammation occur immediately following the injury and 

continue for up to two weeks.  Tissue formation begins about one week after the injury occurs 

and peaks two weeks after onset.  Tissue remodeling is initiated at week two and scar tissue can 

continue to form for up to a month (Figure 2).
4,6,13,50

 

 

Figure 2: Four phases of wound healing 

Following traumatic injury, the wound healing process for skeletal muscle occurs in four 

phases, degeneration, inflammation, tissue formation, and tissue remodeling.  Wound 

healing can last for up to 4 weeks after the injury occurs. 
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When the muscle is injured by trauma, the first stage of wound healing begins with the 

sarcolemma releasing extracellular calcium into the damaged site and proteolysis of the damaged 

tissue.
13

  The degeneration of the injured location is contained within a contraction band 

surrounding the defect.
51

  Blood vessels are injured at the site of the defect causing the release of 

chemotactic factors to activate the inflammatory cells such as neutrophils and later 

macrophages.
1,6,52

  Macrophages, which phagocytose or digest muscle debris, amplify the 

inflammatory response within the injured site.
7,51,52

  In addition, macrophages enhance the 

inflammatory response and support satellite cell survival, proliferation, and differentiation 

through the release of growth factors.
1,2,52

  The extent to which the damaged area revascularizes 

is dependent on the extent of the injury with limited revascularization in larger defects due to 

increased scar formation.
51

  As new capillaries form and migrate to the center of the defect, they 

provide the oxygen needed for aerobic metabolism, which is needed for myofiber formation.
18

 

Once the inflammatory response phase has ceased, tissue formation begins to occur.  At 

the backbone of skeletal muscle regeneration are satellite cells, which are activated by several 

trophic factors triggered during self-regeneration, such as FGFs, TGFs-β, IGFs, HGF, and IL-

6.
1,2,17,53

  The specific role each of these growth factors play in the regeneration process will be 

described in detail in the following section.  In healthy skeletal muscle, satellite cells, also known 

as the skeletal muscle stem cell, remain in a quiescent state between the basal lamina and the 

sarcolemma (Figure 3A).
11,53,54

  Typically, there are two different types of satellite cells present 

in skeletal muscle, committed satellite cells, which are programmed to differentiate and 

proliferate into myoblasts, and self renewing satellite cells, which divide before differentiation in 

order to renew the population.
18,54-56

  When a defect occurs, satellite cells expressing the paired 

box gene 7 (Pax7) protein are activated and migrate along the damaged myofiber to the defect 
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area.
1,2,53,57

  Although less common, satellite cells can migrate from adjacent myofibers if the 

connective tissue separating the myofibers is not damaged.  After the up-regulation of the 

myogenic differentiation factors, myogenic differentiation factor-1 (MyoD) and myogenic factor 

5 (Myf5), satellite cells begin to proliferate and differentiate into myoblasts.  Adult myoblasts are 

the mononuclear myogenic precursor cells to myofibers.
2,5

  The activated satellite cells become 

mature myoblasts with the decreased expression of paired box gene 3 (Pax3) and Pax7 and 

increased expression of myogenin and myogenic factor 6 (Myf6) (Figure 3B).
1,2,50,58

  In the next 

stage of regeneration, the newly differentiated myoblasts begin to fuse to one another or to the 

existing damaged myofibers to create new myofibers (Figure 3C).
6
  The process is complete 

when the newly formed myofibers thicken and the nuclei move from the center of the myofiber 

to the periphery (Figure 3D).
53

   

Scar tissue can form within the damaged area due to fibrosis during tissue remodeling.  

This is caused by an influx of TGF-β1 in the defect, which induces myogenic cells to 

differentiate into myofibroblasts that produces a surplus of type I collagen.
1,6

  The collagen 

synthesized by fibroblast cells is important during healing as it is repairs myofiber-tendon 

junctions and the muscle tensile strength.
59

  The connective tissue formed after muscle damage 

produces contractile forces, which makes it possible for the injury to maintain some limited 

mobility during the healing process.
18

  In contrast to minor injuries, in large muscle defects the 

scar tissue formation can be extensive, limiting the regeneration of the skeletal muscle resulting 

in loss of some or all of the muscle function.
7
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Figure 3:  Native skeletal muscle regeneration 

Once the inflammatory response phase has ceased, tissue formation begins to occur.  In 

healthy skeletal muscle, satellite cells remain in a quiescent state between the basal 

lamina and the sarcolemma (A).  When a defect occurs, satellite cells are activated and 

migrate along the damaged myofiber to the defect area.  They begin to proliferate and 

differentiate into mature myoblast cells (B).  Next, the newly differentiated myoblast 

begin to fuse to one another or to the existing damaged myofibers to create new 

myotubes (C).  The process is complete when the newly formed myofibers thicken and 

the nuclei move from the center of the myofiber to the periphery (D). 

2.1.2.1. Growth Factors 

 An important aspect in native muscle regeneration is to investigate the role of growth 

factors in skeletal muscle wound healing.  Research has shown that trophic factors, which have 

the greatest influence over the regeneration process, are within the families of FGF, TGF-β, 

HGF, IGF, and IL-6.
4,53,60

  In vivo and in vitro studies found that the controlled regulation of 

these factors within the muscle defect greatly affects the activation, proliferation, and 

differentiation of satellite cells, as well as revascularization.  During the initial stages of skeletal 

muscle regeneration, HGF is upregulated in proportion to the size of the defect and plays a vital 
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role in the regulation of satellite cells.
2,13

  At the point when the injury occurs, HGF increases, 

inducing satellite cells out of the quiescent state.
12,58,60

  Further, studies found that HGF acts 

directly on the satellite cells to promote both proliferation and differentiation at the wound 

site.
2,4,60,61

  Once the satellite cells have differentiated into myoblasts and begun to fuse to form 

new myofibers, the amount of HGF present in the defect decreases.
60

   

In addition to HGF playing a vital role in the regulation of satellite cells, factors in the 

FGF family activate proliferation, differentiation, and revascularization during wound healing.
4,62

  

Studies using mice with a knockout of FGF-6, which is upregulated during muscle regeneration, 

have shown a decrease in new myofiber formation with increased scar tissue.
12,51,60

  In contrast, 

some studies showed no difference in the regeneration process with the deletion of FGF-6, 

suggesting a different FGF isoform may induce regeneration in a similar manner.
2
  The FGFs 

found in the basal lamina surrounding myotubes, specifically FGF-2, influences both 

proliferation and fusion of newly differentiated myoblasts.
49

  The FGF receptors (FGFRs) have 

an effect on the activation and regulation of satellite cells.
62

  Specifically, FGFR-1 increases 

drastically during the beginning stages of tissue formation, and it has been found during in vitro 

studies that its expression increases myoblast proliferation and decreases differentiation.
2
  The 

FGFs play a greater role in the regulation of revascularization of the defect area by stimulating 

angiogenesis.
2
 

The members of the TGF-β family, TGF-β1, TGF-β2, and TGF-β3, are involved in a 

variety of aspects of the muscle regeneration process including myoblast fusion, inflammatory 

responses, and motor neuron survival.
61

  An upregulation of TGF-β1 is present during muscle 

remodeling, which has been shown to induce fibrosis.
6,12,50,51

  Studies suggest that myostatin 

(GDF-8), which has been detected in both satellite cells and myoblasts, regulates the number of 
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myofibers formed and the myoblast density within each by inhibiting satellite cell proliferation.
2
  

During degeneration, the damaged muscle fibers have increased levels of GDF-8 and decreased 

satellite cell activity, while during the early stages of tissue formation, GDF-8 is reduced with 

the onset of satellite cell differentiation and proliferation.  These studies suggest GDF-8 blocks 

satellite cell activation during degeneration in order to limit the number of regenerated 

myofibers.
2,50

 

During tissue formation, the ligands in the IGF family, IGF-I and IGF-II, are upregulated 

stimulating proliferation, differentiation, and fusion of myoblasts.
60,61

  Studies involving the 

addition of increased levels of IGF-I to satellite cells during regeneration leads to dense myofiber 

formation, proving further IGFs play a role in the regulation of myoblasts.
49,51,63

  Studies using 

mice found IGF to be involved in inflammatory regulation and limiting the amount of scar tissue 

formed within the wound.
50,60,64

  In addition to promoting myoblast growth, IGFs may contribute 

to the regeneration process by encouraging cell survival and reinnervation.
12,13,64

  Lastly, 

members of the IL-6 family of cytokines, IL-6 and leukemia inhibitory factor (LIF), are present 

during the phases of degeneration, inflammation, and tissue formation.
6,58

  Immediately 

following the onset of the injury, IL-6 stimulates the degeneration of the injured myofibers.
2
  In 

addition, it controls the synchronization of satellite cell proliferation and induces apoptosis of 

macrophages.
60

  The LIF influence myoblast proliferation during the tissue formation phase.  

Studies also suggest LIF is present within the defect prior to inflammation.
58

 

2.2. Motivation for Tissue Engineered Skeletal Muscle Regeneration 

 Skeletal muscle injuries can occur from an array of mechanisms, in the form of direct 

trauma, indirect causes, and genetic diseases.
2,4,8,10,14,16,34,65,66

  Skeletal muscle injuries resulting 

from direct trauma, as from excessive exercise, contusions, strain, or lacerations, are classified 
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clinically as either first, second, or third degree injuries.
2,6,8,10-13

  First-degree injuries signify 

minimal myofiber damage with slight swelling, which results in little or no loss of skeletal 

muscle function.
17,18

  Second-degree injuries represent a defect with moderate myofiber damage 

resulting in restricted skeletal muscle contraction due to scar tissue formation.
17,18

  Lastly, a 

third-degree injury results in the greatest loss of function and extensive scar formation due to a 

severe injury spanning the entire depth of the muscle.
17,18

  Skeletal muscle injuries occurring 

during sport activities, which result from shearing of both the myofiber and the connective tissue, 

account for approximately 35-55% of all sports injuries.  These injuries result in billions of 

dollars in health care expenses to repair them.
6,7,10,17,49,67

   

Besides sports related injuries, skeletal muscle loss is a substantial concern during 

combat.  Military injuries resulting in muscle loss can cause acute cosmetic deformities, chronic 

muscle weakness, and devastating loss of function.
9
  On the battlefield, extremity injuries 

account for 63% of the soldiers diagnosed and 69% of the disabled veterans.
68

  Although not all 

extremity injuries are caused by large muscle defects, it is not uncommon.  In addition, skeletal 

muscle injuries occur due to indirect causes, such with ischemia and neurological disorders, 

which is caused by exercise-induced or traumatic compartment syndromes stemming from direct 

trauma or over-exertion.
2,4,6,10,11,13,16,50

  In severe injuries, the slow recovery process can be 

accompanied with intense pain, muscle atrophy, and risk of a recurrent injury.
11,16

 

With innate genetic diseases, such as muscular dystrophies, inflammatory myopathies, 

congenital myopathies, and spinal muscular atrophy, the myofibers eventually become inert due 

to an increase in degeneration of the fibers.
2,6,14-16,20

  One in every 3,500 males is diagnosed with 

Duchenne Muscular Dystrophy (DMD) each year, which causes striated muscles to weaken due 

to the absence of the structurally stabilizing protein, dystrophin.
15,69

  Males afflicted with this 
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disease have decreased mobility over time eventually leading to confinement to a wheelchair at 

8-10 years old and a life expectancy between 20 and 30 years after suffering respiratory or 

cardiac failure.
69

  In 2000, due to the long-term care required, it cost an estimated 254 billion 

dollars to treat the symptoms of musculoskeletal diseases in the United States.
70,71

  Since 

mobility and function cannot be restored fully in skeletal muscle with extreme trauma due to 

limited satellite cell availability in large defects and scar formation, there is a need for alternative 

methods of regeneration.
65,70

 

2.2.1. Clinical Treatment for Large Muscle Defects 

 Currently, clinical treatment of muscle defects depends on the severity of the injury, but 

due to scar formation, loss of mobility, and length of recovery period, these methods remain sub-

optimal.
6
  When skeletal muscle injury occurs, the first step in treatment is by resting the wound 

with a combination of ice, compression, and elevation, or RICE, which limits pain, 

inflammation, and blood loss.
6,7,17,18,72

  Immediately following the injury, studies suggest the 

wound needs to be mobilized to ensure maximal vascularization and regeneration, but the 

disadvantages associated with this practice are greater scar tissue formation as well as a higher 

probability of injury reoccurrence.
7,17,18,72

  Although immobilization has been shown to limit the 

negative effects of muscle activity, if this process is performed after the first few days of the 

initial injury, it can cause atrophy of the healthy muscle.
7,17,18,72

  Other treatments aid in the 

natural muscle regenerative process, including heat, physical therapy exercises, and anti-

inflammatory drugs, but none of the methods fully repair the skeletal muscle to its pre-injury 

state due to the formation of scar tissue.
6,7,17,18

 

Typically, operative procedures are performed only when all other options have been 

considered, but third-degree muscle injury, or full thickness defect, cannot regenerate itself 



23 

 

without surgical intervention.
73

  In full thickness defects where the damaged area leaves a gap in 

the myofibers, surgery can be used to aid in the bridging of the gap and help initiate 

reinnervation of the truncated myofiber ends.
7,17,18,65

  The success of these surgeries is extremely 

limited.  Although it limits scar tissue formation, it does not eliminate it.
8,19,65

  Through plastic 

and reconstructive surgery, surgeons transplant local and distant autologous muscle grafts into 

the defect location.  Using muscular flaps is not ideal treatment with limited success due to 

limited donor site availability, and after the surgery, it has a high risk of donor site morbidity and 

mortality.
8,9,19,20

  When successful, the muscle flaps only work to restore the muscle coverage in 

the gap created by the injury, but does not restore the strength.
9,20,73

  Clinical studies using 

myogenic cell injections, such as with myoblast or satellite cells, resulted in rapid cell death, 

rejection, and limited cell incorporation, with less than 5% integration into healthy myofibers 

after 48 hours.
8,74,75

  In addition, transplanting prosthetic patches made of Teflon
TM

 or Marlex
TM

 

has been used to repair muscle defects, but this has the risk of a negative foreign body 

response.
73,76

 

2.3. Biomaterials for Skeletal Muscle Regeneration 

 In order to overcome the limitations involved in the clinical treatment of skeletal muscle 

injuries, the use of synthetic and natural biomaterials has been investigated to decrease the 

recovery period and scar tissue formation during muscle regeneration.
1
  When considering the 

appropriate biomaterial for scaffold implantation, a number of conditions need to be considered 

to meet the criteria for functional tissue engineered skeletal muscle.  Primarily, the material 

needs to be biocompatible and biodegradable in order to integrate into the skeletal native muscle 

without rejection, and to stimulate native tissue ingrowth, which eventually will replace the 

scaffold in the wound.
1,8,16,21,77

  Using a three-dimensional matrix for implantation, a large 
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number of cells can be transplanted in aligned myotubes, which gives a greater probability to 

restore function in the damaged area.
65,78

  In addition, the three-dimensional matrix should 

induce satellite cell migration, proliferation, and differentiation as well as fusion and alignment 

with host myofibers.
1,16,79

  The materials can be manipulated using crosslinking to control the 

rate of biodegradability, which can be used to ensure the fully regenerated muscle only contains 

natural muscle tissue.
1,16,65

  In addition, the scaffold needs to allow for the tissue to regenerate 

into a three dimensional matrix without losing the mechanical stability of the newly formed 

tissue.
1,8,21,23

  In order to ensure the healthy skeletal muscle will bind and grow into the 

biomaterial, the material needs to have a high affinity for the myotube surface.
16,21

  In large 

muscle defects, scar tissue formation early in the regeneration process prevents ample 

revascularization of the new tissue, so the biomaterial implant needs to be porous to promote the 

flow of blood, nutrient exchange, cell migration, and new vessel formation thorough the 

scaffold.
1,21,66,77,78

  Finally, the ideal material will not provoke a cytotoxic response, which 

includes not releasing toxins into the muscle.
16,21

 

2.3.1. Current Methods and Limitations 

Researchers have investigated the effects of using scaffolds made of synthetic and natural 

biomaterials to induce muscle regeneration.  Through in vitro and in vivo studies, biomaterials 

were manipulated into three-dimensional matrices or gel solutions to seed with different cell 

types and to determine the optimal environment to promote muscle regeneration.
80

  Engineered 

muscle can be created from both synthetic materials, such as PGA and PCL as well as natural 

polymers, such as hyaluronic acid, alginate, fibrin, acellular matrices, and collagen.
21-24

  In 

addition to the different biomaterials being considered to optimize muscle regeneration, much 

research has emphasized the effect of how the implantation of different cell types, like 
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myoblasts, satellite cells, and fibroblasts, on stimulating native muscle growth.
77,81,82

  Currently, 

bioengineered scaffolds do not meet the criteria needed for human clinical studies since they do 

not match native muscle tissue in length, diameter, maturity, density, or mechanical properties.
8
  

Table 1 summarizes the benefits and limitations of each of these methods. 

 Three-dimensional scaffolds fabricated out of PGA have been studied in tissue-

engineered muscle since the geometry of the polymer can be altered to contain varying pore 

sizes, which allows nutrition, cells, and blood to flow through the scaffold.
20,65,83

  This material is 

also beneficial due to its stiffness and degradation properties, which can be controlled and 

programmed to degrade using hydrolysis.
65,77

  Six weeks after implantation into the peritoneal 

cavity, Saxena et al. provided evidence that implanting a non-woven PGA mesh seeded with 

myoblasts initially supported myofiber attachment, formation, and survival through diffusion of 

nutrients through the porous mesh.  Implanted myoblasts show the ability to fuse with the 

existing myofiber ends as they regenerate to bridge the gap in the damaged muscle quicker.
20

  

However, once the PGA mesh has degraded, the engineered muscle needs vascularization to 

remain viable, integrate into the native muscle, and form a full thickness myofiber.
20,65

  The 

studies performed by Kamelger et al. indicated that by providing the scaffold with a highly 

vascularized environment, myoblasts were able to form myotubes and remain viable outside the 

native skeletal muscle.
21

  This suggests the possibility of implanting a fully vascularized 

engineered skeletal muscle into large muscle defect to promote muscle regeneration. 

Polyesters, such as PCL, has been used in tissue engineering because their properties, 

including biocompatibility, biodegradability, and elasticity, can be controlled in order to provide 

the appropriate structure for myoblast growth and contraction.
23,24

  The disadvantage of using 

PCL alone to regenerate skeletal muscle is that the material does not promote cellular adhesion 
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or myoblast fusion.
84

  In order to mimic the extracellular matrix, biocompatible polymer 

nanofibers have been electrospun into controlled patterns to promote alignment and cell 

growth.
85

  Researchers have investigated how to create composite polymers using gelatin or 

collagen with PCL to promote muscle regeneration.
24,84,86

  Gravity spun nanofibers composed of 

PCL and gelatin seeded with myoblasts promoted attachment, proliferation, differentiation, and 

myoblast fusion into myofibers.
84,86

  When PCL is electrospun with type I collagen into a mesh 

scaffold and seeded with human myoblasts, the collagen creates a hydrophilic surface allowing 

the myoblasts to adhere, proliferate, fuse into myofibers, and align with the nanofibers of the 

scaffold.
24

 

 Other scaffolds used to regenerate muscle are constructed out of hyaluronic acid, in the 

form of films and hydrogels.  The advantage of using hyaluronan, which is a glycosaminoglycan 

extracted from rooster combs, in tissue engineering is that it is combined easily with other 

biomaterials to increase the thickness using layers.  The surface chemistry of the scaffold can be 

altered to increase the seeding efficiency, and the mechanical properties can be controlled 

depending on the application.
87

  In addition, the advantages of hyaluronan as a tissue engineering 

scaffold are that it is non-toxic, biocompatible, and biodegradable.
88

  Ren et al. seeded rat 

myoblasts onto a polyelectrolyte multilayer film consisting of poly(L-lysine)/hyaluronan 

(PLL/HA), and the results showed that cell attachment, proliferation, and spreading increased 

with increased stiffness.
87,89

  On stiff films, the myoblasts differentiated and fused into long, thin, 

striated myotubes that detached due to the contractile properties of skeletal muscles, but 

myoblasts on soft films detach rapidly fusing into short and thick myotubes due to weak 

adhesion between the cells and the scaffold.
87

  Implanting a hyaluronic acid hydrogel seeded 

with rat myoblasts into a vascularized capsule within a rat model resulted in honeycombed 
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structures surrounded by multinucleated myotubes.  Although none of the seeded myoblasts 

migrated out of the wound site, the scaffold induced an inflammatory response, which could 

increase scar formation.
21

 

Alginate, which is derived from seaweed, has been used in tissue engineering due to its 

structural and chemical stability, biocompatibility, and ability to support cell survival in culture 

by controlling the porosity of the scaffold.
70,90,91

  Alginate hydrogels can be chemically altered 

using crosslinking to promote cellular adhesion and control the degradation in vivo, which are 

beneficial in engineering muscle tissue.
70,92

  In vitro studies using porous alginate hydrogels, 

suggested that modifying the surface with adhesion proteins enhanced myoblast attachment, 

proliferation, and fusion into mature myofibers.
70,93

  Boontheekul et al. found that with increased 

stiffness and increased degradation of the hydrogel, the adhesion, proliferation, and 

differentiation of the myoblasts increased, but the hydrogels did not support migration and 

spreading.
92,93

  When implanted subcutaneously into a vascularized capsule in a rat model, the 

alginate solution allowed for myotube fusion adjacent to the capsule wall, but alginate hydrogel 

elicited an inflammatory response from the surrounding native tissue.
21

 

 The use of fibrin gels has been beneficial in skeletal muscle tissue engineering since cells 

readily proliferate and migrate while producing proteases and extracellular matrix proteins that 

degrade and remodel the scaffold, respectively.
94

  The attributes of fibrin, which is a mixture of 

fibrinogen and thrombin that are advantageous in tissue engineering, are it is biocompatible, 

biodegradable, non-toxic, and not immunogenic.
16,19,95-97

  Three dimensional fibrin matrices bind 

to native muscle tissue making it an ideal candidate for bridging the gap in large muscle 

defects.
19,95

  In addition, growth factors which facilitate muscle repair, such as FGF-2 or IGF-I, 

can be mixed into the fibrin solution, which allows it to bind to the scaffold matrix and aid in the 
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regeneration process.
94

  Huang et al. improved their previous research by seeding myoblasts onto 

a fibrin gel instead of fibroblasts and laminin to create their cylindrical muscle constructs, or 

myooids, which decreased the maturation time from thirty days to ten days.
94,98

  The fibrin 

myooids produced similar contractile and force production properties as their previous studies, 

but the constructs remained 10 times in smaller cross sectional area than adult human myotubes 

meaning it does not meet requirements for clinical use.
94,98

  Using mechanical stimulus and 

patterned models, studies have found that myoblasts can be conditioned to align and proliferate 

in linear patterns mimicking native skeletal muscle tissue.
96-98

   

In vivo studies showed that fibrin gel scaffolds completely degrades within 3 to 4 weeks 

leaving behind myoblasts, which have fused to form myofibers and are partially attached to the 

native tissue.
19,94,95

  Fibrin gel injections filled the entire defect volume without eliciting a 

foreign body reaction, but the scaffolds were fragile and difficult to keep sterile.
19,95

  In an effort 

to innervate the tissue-engineered muscle, Dhawan et al. mixed satellite cells with a fibrin gel 

and wrapped it around a truncated femoral nerve.  The results of this study showed that after 4 

weeks, the femoral pedicle had completely incorporated into the fibrin scaffold with the 

differentiated satellite cells showing characteristic skeletal muscle striations as well as capillary 

formation.
80,99

  Although this method increased the contractile forces, there was no strong 

evidence of neuromuscular junctions present.
80

 

In an attempt to avoid adverse foreign body responses when implanting a biomaterial into 

a defect, research has been performed to develop an acellular scaffold, which is created through a 

detergent-enzymatic treatment of mammalian muscle, for muscle regeneration.
77,100,101

  An 

advantage of using an acellular scaffold is it contains residual neural pathways that could initiate 

innervation.  The existing extracellular matrix containing proteins may help revascularize the 
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scaffold, maintain the shape and structure, and help integrate the scaffold into the defect 

environment.
16,100

  The results of experiments performed by attaching myoblasts to acellular 

matrices showed the ability to support myoblast proliferation, differentiation, and fusion of 

myoblasts as well as myofiber mechanical properties.
100,101

  However, absent of vascularization 

or a nerve supply, the scaffolds lacked neuromuscular interfaces and capillary formation, which 

had been found to be imperative in the muscle regeneration process.
100,101

  Seeding with satellite 

cells instead of myoblasts, research has demonstrated a high muscle construct survival rate, and 

with the addition of neural and fibroblast cells, the constructs had muscle-like alignment, 

excitability, contractility, and neuromuscular junction formation.
102-104

  These scaffolds are still 

not optimal for clinical use since they do not express mature adult skeletal muscle characteristics, 

like any myosin heavy chain formation, and produce only 1% of the isometric titanic force 

created by human myoblasts.
102,103

  After implantation of the acellular muscle constructs seeded 

with myoblasts into rat defects, the results demonstrated that in developing muscle, the scaffolds 

were able to initiate the formation of aligned skeletal muscle fibers, neovascularization, and 

innervations after 9 months.
73,101

  However, when implanted into adult rat muscle, the engineered 

muscle experienced a loss of contractile muscle fibers suggesting the regenerative capacity of the 

native muscle is not as successful when the myotubes are mature.
101

  Another disadvantage of 

using an acellular matrix for muscle regeneration is they are fragile, making them a non-optimal 

choice clinically.
77
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Biomaterial 
Research 

Method 
Cell Type Functional Outcome Limitations 

PGA
20,21,65

 In vivo Rat myoblast 

 formation of multinucleated 

myotubes 

 no implanted cell migration 

 supportive capillary network 

growth 

 vascularization not 

sufficient enough for 

thick tissue 

formation 

PCL
24,84,86

 In vitro 
Human and 

mouse myoblast 

 Gelatin increases adhesion, 

proliferation, fusion, and 

differentiation 

 Collagen increases adhesion, 

fusion, alignment, and 

proliferation 

 PCL alone does not 

form myofibers 

PLL/HA
87,89

 In vitro Mouse myoblast 

 Stiff films (elastic modulus > 

350 kPa) increase attachment, 

proliferation, differentiation, 

and spreading 

 Stiff films produce long, thin, 

striated myotubes detaching due 

to contractile properties 

 Flexible films 

produce short and 

thick myotubes 

Hyaluronic 

acid
21

 
In vivo Rat myoblast 

 Honeycombed structures 

surrounded by multinucleated 

myotubes 

 No implanted cell migration 

 Inflammatory 

response 

Alginate
70,92,93

 In vitro Mouse myoblast 

 Surface modifications enhance 

attachment, proliferation, and 

fusion 

 Porosity increases cell survival 

and migration 

 Stiffness promotes adhesion, 

proliferation, and differentiation 

 Increased degradation increases 

proliferation 

 No cell spreading or 

migration 

Alginate
21

 In vivo Rat myoblast 

 Myotubes fusion adjacent to 

capsule wall 

 No implanted cell migration 

 Inflammatory response 

 Inflammatory 

response 

Fibrin
94,96-98

 In vitro 
Mouse and rat 

myoblast 

 Electrical stimulus alters the 

contractility 

 Cylinder muscle structure forms 

in 10 days 

 Positive force frequency 

 Twitch-to-tetanus ratio in 

human range 

 Aligned myotubes achieved 

through continuous strain and 

micropatterns 

 stable cell contraction 

 Specific force 7 

times less than 

human skeletal 

muscle 

 Cross sectional area 

10 times less than 

human myotube 
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Biomaterial 
Research 

Method 
Cell Type Functional Outcome Limitations 

Fibrin
19,95,99

 In vivo Rat myoblast 

 Gel injection remained in the 

implantation site with no 

migration 

 Liquid characteristic in situ 

allowed to completely fill the 

defect 

 No inflammation, rejection, or 

foreign body reaction 

 Partial fusion to host myofibers 

after 25 days 

 Remain in myogenic phenotype 

 Capillary formation within the 

construct 

 Scaffold has 

predefined shape not 

identical to wound 

dimensions 

 Fragile 

 Difficult to maintain 

sterility clinically 

Fibrin
80

 In vivo Rat satellite cell 

 Femoral artery, vein, and nerve 

incorporated into the construct 

after 4 weeks 

 Satellite cells differentiated into 

myoblasts to form myotubes 

 Striated banding pattern 

 Neurotized increases contractile 

forces 

 Few neuromuscular 

junctions formed 

Acellular
100,101

 In vitro 
Mouse and rat 

myoblast 

 Able to support myoblast 

proliferation, differentiation, 

and fusion 

 Contractile and force production 

 No neuromuscular 

interfaces 

 No blood supply 

Acellular
102-

104
 

In vitro Rat satellite cell 

 95% formation success rate 

 Introduction of neural cells 

formed neuromuscular junctions 

 Introduction of fibroblast cells 

created constructs muscle-like in 

appearance, excitability, and 

contractile function 

 No expression of 

myosin heavy chains 

 1% isometric titanic 

force of human 

myoblasts 

Acellular
73,101

 In vivo Rat myoblast 

 FGF-2 and TGF-β1 present in 

matrix promotes capillary 

formation 

 Formation of skeletal muscle 

fibers, neovascularization, and 

innervations 

 Survived 9 months in vivo in 

developing muscle 

 Myotubes aligned in the 

longitudinal direction 

 After 3 months in 

mature skeletal 

muscle loss of 

contractile muscle 

fibers 

Table 1: Current research on muscle regeneration using biomaterials 

Summary of the current research techniques used for skeletal muscle regeneration using 

different biomaterials. 
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2.3.2. Collagen 

Collagen, particularly types I, II, and III collagen, belong to a family of extracellular 

matrix proteins found in the connective tissues of the human body, specifically the dermis, 

tendons, and blood vessels.
25

 Collagen scaffolds are used in a wide range of tissue engineering 

applications including skin, cartilage, bone, and nerve.
26

  These scaffolds possess strong 

mechanical properties similar to those of skeletal muscle and satisfactory cell-matrix binding 

efficiencies.
27,28

  Collagen can be molded into many different matrix compositions, such as gels, 

microthreads, and porous sponges, making it ideal for many different applications.  Collagen 

scaffolds produce weak immunogenic responses and are highly biodegradable.
29

  When 

implanted into the body, an inflammatory response sends macrophages and fibroblasts to the site 

of the wound.  This activation causes natural enzymes to break down the scaffolds at a faster 

rate.
32

  A way to overcome the biodegradable limitations in vivo is to crosslink the collagen 

matrix, creating bonds between the different chains to increase its stability.  Collagen has been 

crosslinked using both physical and chemical crosslinking agents.  Crosslinking collagen results 

in scaffolds with stronger mechanical stability, resistance to swelling, and slower degradation 

rate.
32

  Crosslinking mechanisms will be described in more detail in later in the chapter. 

 Tissue engineered collagen scaffolds have been used extensively in researching ways to 

optimize muscle regeneration.  Table 2 summarizes the benefits and limitations of using each 

type of collagen matrix composition.  Vandenburgh et al. developed bioartificial muscles 

(BAMs), which are created by casting a cell-collagen solution around two posts.  As the 

myoblasts fuse and differentiate into myofibers, the gel solution contracts aligning the myofibers 

along the long axis between the two posts.
105

  Research using mechanical stimulation on BAMs 

has shown that it can increase the myofiber diameter.  These constructs can withstand a constant 
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40% strain rate for up to five hours, and increased cell death occurs under static loading over 

time.
105-108

  In addition to the regenerative capacity of tissue engineering in large muscle defects, 

BAMs have also been used to deliver proteins to the wound site to reverse the effects of muscle 

wasting due to disease or aging.
30

  Researchers showed that controlled release of recombinant 

human growth factor from a BAM scaffold obtains a more consistent host response upon 

implantation than directly injecting the hormone into the muscle.
30

  Although studies show 

BAMs to be beneficial as a drug delivery system, several characteristics limit its potential for 

muscle regeneration at this time, such having a myotube diameter that is twenty times smaller 

than human myotubes and a low muscle fiber to biomaterial ratio.
30,105,106,109,110

 

 In addition to using collagen gels as a means to help create an engineered muscle, it can 

be used as a platform to help promote muscle regeneration in the form of nanofibers, fibril 

matrices, and films.
31,33,34

  When seeded onto collagen electrospun nanofibers, myoblasts showed 

increased proliferation, maintenance of myogenic properties, and myotube formation.  Analysis 

of myotube orientation showed alignment of the fibers, which was influenced by the orientation 

of the nanofiber scaffold.
31

  In an attempt to create a thicker muscle scaffold, Yan et al. attached 

a thin collagen matrix with parallel-aligned fibrils along the bottom of a culture dish and seeded 

satellite cells to this surface.  Once attached, a second collagen-cell layer was spread over the 

construct in order to make a multilayer scaffold.
34

  The results proved that after five days, the 

first layer of cells fused in the direction of the collagen fibrils with the second layer of cells 

having less structured alignment.  However, the model is not reproducible since the 

hypercontraction of the gel caused by contracting myotubes causes the substrate to detach from 

the culture dish resulting in poorly formed myotubes.  When this model successfully binds to the 

underlying substrate, there is decreased cell viability after 21 days.
34

  Another matrix studied for 
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muscle regeneration is collagen film scaffolds, which promotes skeletal muscle cell attachment, 

proliferation, fusion, and alignment.  This scaffold is not suitable for muscle regeneration due to 

insignificant mechanical properties and sporadic myotube formation and maturation.
33

 

 A prominently used scaffold method is suspending cells into a collagen gel, which is 

attractive for research since the gel biodegradability resembles a native wound healing response, 

and there is a high density of cellular attachment sites on and within the matrix.
8,111

  An 

advantage of using gel matrices in tissue engineering is that the cellular contraction, 

differentiation, and alignment within a gel can be controlled through electrical stimulation by 

adjusting the frequency, duration and direction of the electrical pulses.
112

  In addition, applying a 

uniaxial load to cell seeded gels induces myoblasts to elongate in the direction of the load, and 

over time, the myoblasts fuse, align, and mature into multinucleated myotubes.
113

  However, the 

results showed a heterogeneous population of mature myotubes formed, and there was a decrease 

in the number of myotubes present with time due to cell death within the gel scaffold.
112,113

  

Collagen gels can also be modified easily using growth factors and other polymers to create the 

optimal environment for muscle regeneration.
22,31,114

  Gawlitta et al. studied the effects of adding 

IGF, which has been shown to regulate myoblast activity during native muscle regeneration, to 

the gel scaffold and found that it caused myoblast differentiation in vitro, which suggests that it 

could aid in creating tissue-engineered myotubes.
114

  Mixing vascular endothelial growth factor 

(VEGF) within the gel solution showed an increase in engineered muscle density, contractibility, 

and capillary formation in vivo, but the influence of VEGF on the host environment decreased in 

aged mouse models.
22

  Furthermore, creating copolymer solutions with fibrin allows for a 

significant increase in myoblast proliferation, differentiation, and fusion, but the myotubes on 

this substrate did not produce contractile forces, which shows a lack of maturity in the myotube 
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formation.
31

  Huang et al. created a micropatterened substrate using a polydimethylsiloxane 

(PDMS) mold to regulate organization, F-actin assembly, and alignment of myotube formation 

before transferring the cell sheet to a collagen gel.  By varying the width of the microgrooves, 

they could control how well the myotubes aligned.
115

 

Creating a porous collagen sponge for muscle regeneration shows promise since the 

dimension and variability of the pores can be controlled through lyophilizing techniques, which 

allows for diffusion of nutrients throughout the scaffold.
8
  Myoblasts seeded onto porous 

collagen sponges exhibit myotube formation in alignment with the pore structure, which suggests 

that by fabricating a scaffold with long, parallel pores, the myotubes will form with skeletal 

muscle characteristics.
76,116

  Studies have shown that increasing the pore size within the sponge 

increases myotube viability and myoblast matrix production.
76,116

  In high-density scaffolds, 

there was a 45% apoptosis rate after 4 weeks with no significant myoblast proliferation.
31

  When 

sponges seeded with satellite cells are electrically stimulated the expression of MyoD and 

desmin, which are expressed during native muscle regeneration, is enhanced, and the 

myogenicity of the cells can be controlled.
27,45,117

  In addition, seeding the scaffolds under 

dynamic culture conditions increases seeding efficiency and cell viability with very little cell 

death after 24 hours.
27,45,117

 

In order to determine the effects of using a porous collagen sponge for muscle repair, 

Grefte et al. implanted an acellular scaffold into a rat model.  The results showed that in the 

presence of a fibrotic discontinuity, the native muscle tissue still has the ability to activate 

satellite cells from the adjacent myotubes, but the satellite cells were unable to migrate onto the 

scaffold without donor cell signaling, which blocks proper muscle regeneration properties.
118,119

  

When implanting a collagen sponge seeded with myoblasts or satellite cells into a wound defect, 
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the construct was able to produce contractile forces and signal host cell migration, but it 

provoked a large inflammatory response.
27,45,76,116

  Although mature myofiber formation was 

present after six weeks, the maturation of the myofibers was not consistent throughout the 

scaffold, and little evidence of muscle striations was observed.
76,116

  Carnio et al. used a collagen 

sponge seeded with satellite cells in attempts to reverse muscle wasting in dystrophin deficient 

mice, and although the cells remained viable after implantation, the dystrophin restoration was 

not significant enough to be functionally relevant.
27

  Since the collagen structure can be altered 

easily depending on the tissue-engineered application, it makes it an attractive biomaterial 

platform for muscle regeneration scaffolds.30,31,33,34  
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Scaffold 

Type 

Research 

Method 

Cell 

Type 
Functional Outcome / Limitations 

BAMs 
105-108

 
In vitro 

Human 

and 

mouse 

myoblast 

 Mechanical stimulation for 8 days increased myofibers diameter 

by 12% 

 Higher collagen concentration and fewer seeded myoblasts 

improves anchor attachment in BAM development 

 Cells can withstand a constant application of strains below 0.35 for 

up to 5 hours 

 Static muscle fiber diameter 20 times smaller than human skeletal 

muscle 

 Hypertrophy did not increase myofibers diameter great enough for 

clinical relevance 

 2-15% of construct occupied by muscle fibers 

 Increased cell death with time under static loading 

 40% strain compression for 24 hours causes higher cell death in 

increasingly acidic solutions 

BAMs
30

 In vivo 
Mouse 

myoblast 
 Controlled release of recombinant human growth hormone (rhGH) 

obtains a more consistent host response 

Electrospun 

nanofibers 
31

 

In vitro 
Rat 

myoblast 

 Promoted proliferation, maintenance of myogenic properties, and 

myotubes fusion 

 Alignment of fibers influenced by orientation of fibers 

Fibril 

matrix
34

 
In vitro 

Rat 

satellite 

cell 

 Attachment, cell elongation, differentiation, and fusion in the 

direction of collagen fibrils after 5 days 

 Thicker construct achieved through collagen gel layering 

 Embryonic and adult myosin heavy chain expression suggest 

maturation between day 14 and 21 

 Decreased cell viability at day 21 

 Model not easily reproduced due to hypercontraction detaching the 

substrate from the culture dish 

Film
33

 In vitro 
Mouse 

myoblast 

 Promoted attachment, proliferation, and fusion 

 Alignment not parallel with longitudinal axis of film 

 Myotube formation and maturation varies throughout structure 

 Properties not suitable for muscle regeneration 

Gel
31,112-115

 In vitro 

Mouse 

and rat 

myoblast 

 Differentiated myoblasts formed myotubes after 2 days 

 Myotubes contraction causes detachment after 8 days 

 Myotube contraction may be controllable by adjusting the 

frequency, duration, and direction of electrical pulses 

 Uniaxial loading induced fusion, maturation, and alignment of 

myotubes after 6 days 

 Uniaxial loading induces cell elongation 

 IGF causes differentiation 

 Seeding on fibrin copolymer allows for significant proliferation, 

differentiation, and fusion 

 Fibrin copolymer does not provoke myofibers contraction 

 Micropatterned substrates regulates organization, formation, F-

actin assembly, and alignment 

 Myotube death after 12 days in culture 

 Collagen-fiber copolymer not stable enough for in vivo analysis 

 Gels contain a mixture of myotubes and myoblasts after 6 days 

 Myoblast alignment decreases with increase micropattern groove 

widths 
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Scaffold 

Type 

Research 

Method 

Cell 

Type 
Functional Outcome / Limitations 

Gel
22

 In vivo 
Mouse 

myoblast 

 VEGF increases muscle density, contractibility, and capillary 

formation 

 Older host environments reduce the implant’s regenerative 

influence 

Sponge 
31,76,116

 
In vitro 

Mouse 

and rat 

myoblast 

 Cells seed in small clusters centrally between collagen bundles 

 Myotubes formation in alignment with pore structure 

 Formation of extracellular matrix in low density scaffolds 

 Viable myotubes for 30 days in low density scaffolds 

 No significant myoblast proliferation after 4 weeks in high density 

scaffolds 

 High density of scaffold causes 45% apoptosis rate after 4 days 

Sponge 
27,45,117

 
In vitro 

Mouse 

satellite 

cell 

 Dynamic culture conditions increase seeding efficiency and 

viability 

 Electrical stimulation enhances the expression of MyoD and 

desmin 

 Electrical stimulation controls cell myogenicity 

 Very little cell death throughout seeded sponge after 24 hours 

Sponge 
118,119

 
In vivo Acellular 

 Uninterrupted satellite cell activation in adjacent muscle tissue 

 Reduced bleeding at the wound site 

 No evidence of satellite cells on or within sponge 

 Sponge blocks proper muscle regeneration properties 

Sponge 
76,116

 
In vivo 

Mouse 

and rat 

myoblast 

 Able to produce contractile force 

 Host cell migration onto sponge 

 After 6 weeks giant cell formations were present 

 Mixture of mature and immature myofibers 

 No vascularization 

 No striated muscle 

 High inflammatory response 

Sponge 
27,45

 
In vivo 

Mouse 

satellite 

cells 

 Shape easily manipulated to fit defect 

 Small myotubes formation within electrically stimulated scaffold 

after 10 days 

 Low cell death post implantation 

 Host cell colonization inside scaffold 

 Inflammatory response 

 Dystrophin restoration in dystrophin deficient mice too low to be 

functionally relevant 

Table 2: Current research on muscle regeneration using collagen scaffolds 

Summary of the current research techniques using collagen for skeletal muscle 

regeneration. 
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2.3.2.1. Self Assembly of Type I Collagen Microthreads 

 The regenerative capacity of self-assembled type I collagen microthreads has been 

researched extensively in the field of tendon and ligament regeneration.
120-122

  By extruding 

soluble collagen through small diameter tubing, the collagen molecules are able to self assemble 

by growing linearly and laterally into fibrils which fuse, possessing characteristic type I collagen 

structure.
123

  Cornwell et al. investigated the cell-matrix interactions and the mechanical 

properties of single collagen microthreads.
35,36

  Fibroblasts readily migrate onto collagen 

microthreads suggesting the potential of collagen microthreads to elicit host cells to migrate into 

the wound site for enhanced regeneration.
35

  In addition, through crosslinking, the mechanical 

properties of the threads, such as tensile strength and stiffness, can be increased, as well as 

decrease the rate of degradation to ensure the scaffolds remains in the defect long enough to 

support regeneration.
36

 

The long cylindrical structure of the fibers acts as a guide to better align and orient the 

cells into a native myotube formation.
124

  Studies have shown that using microthread based 

scaffolds for ligament regeneration is beneficial since the structure can be easily manipulated 

through twisting, weaving, or braiding, which increases the surface area and mechanical strength 

of the scaffold, which are attributes important in muscle regeneration as well.
37

  Braiding thread 

scaffolds are structurally similar to the composition of native skeletal muscle in that they are an 

arrangement of bundles.  Although the braids lack parallel fiber alignment, by weaving each 

thread throughout the entire length and width of the scaffold, it prevents catastrophic failure if 

one thread is damaged.
37,125

  Braiding threads also allow for controlled and integrated pores, 

which allow for diffusion of nutrients and waste.
37,125,126
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2.3.2.2. Crosslinking using Carbodiimides 

In order to form an irreversible bond between two collagen molecules at different 

locations, bifunctional chemicals are used to chemically crosslink them to one another by 

incorporating the chemical into the collagen structure.
127

  The benefits of using a chemical 

crosslinker, such as glutaraldehyde, formaldehyde, or carbodiimides, are that they are stable.  

The strength of the bond is controlled easily by manipulating the crosslinking environment, and 

the residual chemicals can be washed away by rinsing the scaffolds.
127

  Although the majority of 

chemical crosslinkers are integrated into the chemical bond, the advantage of crosslinking 

collagen based scaffolds using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride 

(EDC) is that it initiates the bond between collagen molecules without become a part of the 

structure.
127,128

  Using EDC increases the biostability and mechanical strength without leaving a 

toxic residue within the structure.
38,39

   

The EDC chemical, which is a zero-length agent, crosslinks collagen by initiating a 

nucleophilic reaction between the carboxylic groups of aspartic and glutamic acids with the 

amine groups of lysine and hydroxylysine amino acids to form a covalent bond between them 

(Figure 4).
28,29,40,129

  After this amide bond between adjacent polypeptide chains forms, the 

crosslink reaction releases urea, a highly soluble waste product, from the scaffold.
29

  This 

biproduct is nontoxic to the body and removed by simply rinsing the scaffold.
130

  Studies show 

that the optimal environment to EDC crosslink collagen based scaffolds is in a solution having a 

pH between 5.0 and 5.5, which helps to initiate the reaction.
131

  Crosslinking using EDC does not 

produce a stable reaction when used to crosslink alone since the unstable amine intermediate 

reaction causes the hydrolysis of the ester bond, reversing the crosslink effects.  To stabilize the 

reaction, N-hydroxysuccinimide (NHS) is added to EDC, which prevents the hydrolysis by 
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activating the ester bond and eliminating the formation of intermediate reactions.
131,132

  Cornwell 

et al. showed that by crosslinking collagen microthreads using EDC/NHS, it increased the 

mechanical stability of the collagen threads, increased the hydrophilicity of the surface compared 

to physical crosslinkers, and promoted cell migration.
36

  Pieper et al. found that EDC crosslinked 

porous sponges maintained their structure after implantation, supported cell survival, and 

promoted cell differentiation and fusion of myoblasts into myotubes.
28,133

 

2.3.2.3. Surface Modification 

Another advantage of using EDC to crosslink collagen scaffolds is that it can aid in the 

further alteration of the collagen surface to improve the biocompatibility of the structure.  

Heparin is associated with cell surfaces and the extracellular matrix, and can be immobilized 

onto the collagen surface covalently by mixing it into the EDC/NHS solution (Figure 4).
38,40,129

  

Studies have shown that heparin increases blood compatibility and decreases the foreign body 

response of the scaffolds.  It also reduces platelet adhesion and aggregation when implanted into 

an animal model.
39,129

  Other studies show an increase in vascularization when collagen gels 

crosslinked with heparin are implanted into a wound site.
133

 

In addition, by immobilizing heparin to the surface it can be used to bind and regulate 

proteins, such as growth factors known to improve adhesion, migration, proliferation, and 

differentiation to enhance regeneration.
38,40

  Growth factors associated with wound healing, such 

as FGF-2, have a high affinity for heparin, and they are known as heparin-binding growth 

factors.
41,42

  Activated FGF-2 denatures quickly, so by electrostatically binding it to heparin, the 

scaffold can act as a storage unit until the FGF-2 is needed in the wound.
38,132

  Heparin will 

stabilize the FGF-2, prevent denaturation and proteolytic degradation, and aid in cell membrane 

receptor interactions.
38,132,134

  Studies show that the slow release of FGF-2, binding it to 
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immobilized heparin from the surface of a collagen matrix, promotes vascularization over time in 

a wound site.
129

  In addition, binding FGF-2 to a fibrin thread showed an increase in cell 

proliferation and migration with increased levels of FGF-2 on the surface, but at high 

concentration, the growth factors influence decreased and eventually plateaued.
43

 

 

Figure 4: Conjugation of heparin to collagen using EDC/NHS 

Mechanism of covalent attachment of heparin to collagen using and EDC/NHS solution 

(Figure adapted from28). 

2.4. Muscle Derived Fibroblastic Cells for Muscle Regeneration 

 Currently, tissue engineered muscle constructs are created using myoblasts or satellite 

cells since they are extracted easily from muscle and can be expanded in vitro.
44,45

  Studies using 

myoblasts to create three-dimensional engineered muscles show that they readily proliferate, 

respond well to environmental and chemical cues, and they fuse into myotubes in vitro by 

manipulating the culture conditions.
114

  Although studies with myoblasts have been successful in 

creating functional muscles tissues in vitro and in animal models, in clinical human applications, 
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there are several limitations including the need to deliver a large quantity of cells, loss of 

myogenicity of implanted cells expanded in vitro, and a low percentage of cells that survive upon 

implantation into a muscle defect.
27

  Other studies suggested that implanting the smallest 

quantity of satellite cells possible into a defect would led to minimal cell death and increased 

myofibers regeneration, but this approach would not be useful clinically.
11

  Another limitation of 

using satellite cells for tissue-engineered muscle is that when culturing satellite cells in a culture 

dish, the cells do not maintain their stemness, becoming differentiation-committed satellite cells 

instead of self-renewing.
11

  Continued research is still being explored into the method needed to 

efficiently regenerate muscle in a human muscle defect. 

2.4.1. Dedifferentiation of Fibroblast Cells using FGF-2 

 One potential way to overcome the limitations of using myoblasts, muscle precursor 

cells, or satellite cells, undifferentiated skeletal muscle progenitor cells, for engineered muscle 

regeneration is by using induced pluripotent stem (iPS) cells, which can be differentiated into 

any cell type.
5,11

  An iPS cell is a mammalian somatic cell, or any cell in the body in its 

differentiated state, that has been forced into a pluripotent state by the expression of embryonic 

transcription factors.
135

  Studies have shown that introducing iPS cells to satellite cell 

differentiation cues in vitro before implantation can help differentiate them into functional 

myoblasts in vivo.  Clinically, research into overcoming the limitations related to using iPS cells, 

such as tumor formation, is being studied.
11

  Since there is still the limitation of having a low 

quantity of autologous cells available, researchers have looked into inducing FGF-2 to 

fibroblasts to express stem cell like characteristics.
46,136

  By activating stem cell specific markers, 

such as OCT4 and SOX2, in fibroblast cells, it gives rise to the potential of using a large quantity 

of autologous cells for muscle regeneration.
46,136-138

  In order to stimulate fibroblasts to exhibit 
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stem cell properties without differentiation, the cells need to be cultured continuously with FGF-

2, on specific cell culture surfaces, and in a low oxygen environment.
46,139,140

 

 In this study, we propose to use braided collagen microthreads seeded with muscle-

derived fibroblastic cells (MDFCs) as a scaffold to aid in muscle regeneration since it will 

provide a structure to create longitudinally aligned myotubes.
37,125,126

  Although braided collagen 

microthreads are not parallel to one another like each myofiber in native skeletal muscle, by 

weaving the microthreads together, the scaffold structure can be maintained without thread 

spreading from one another during hydration.  When a full thickness defect occurs, the entire 

depth of the muscle is damaged, resulting in the destruction of many myofibers.
17,18

  Since the 

diameter of one microthread is smaller than that of a myofiber, which ranges from 20 to 100 µm, 

by braiding the threads together, the dimensions of the microthreads can be increased to fill a 

larger defect area.
7,17

  Studies have shown using a biomaterial with stiffness close to that of 

native muscle, 12 kPa, for engineering skeletal muscle can affect the length, alignment, and 

contractibility of the formed myofibers.
47,141-143

  Using EDC/NHS crosslinking, the mechanical 

properties of the braided collagen microthreads can be controlled to enhance myofiber formation.  

When a large muscle defect occurs, the native skeletal muscle cannot regenerate itself since the 

satellite cells within the basal lamina have been destroyed, so there is a need for a way to deliver 

satellite like cells to the defect area to enhance regeneration.
73

  By attaching heparin and FGF-2 

to the surface of the braided collagen scaffold may serve to help bind, modulate, and release 

FGF-2 to the seeded cells and the surrounding environment.  In addition, the presence of FGF-2 

on the surface of the scaffold will provide a method to release a controlled amount of the growth 

factor to the cells to maintain the undifferentiated state of the muscle derived fibroblast cells.  
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This will insure a population of dedifferentiated fibroblast cells will be delivered to the defect 

site to behave like satellite cells to induce muscle regeneration.  
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Chapter 3: Hypothesis and Specific Aims 

 We hypothesize that binding growth factors to the surface of crosslinked braided collagen 

scaffolds will promote muscle-derived fibroblastic cell (MDFC) attachment and growth, which 

could serve as a platform for delivering cells to large muscle defects for muscle regeneration.  

Specifically, characterization of the surface and mechanical strength of the braided collagen 

scaffold will verify that the scaffolds are suitable for integrating into native skeletal muscle.  In 

addition, quantitative and qualitative analysis of cell attachment, growth, and alignment through 

immunocytochemistry and cell growth assays will confirm that surface modifications facilitate 

the growth of MDFCs on braided collagen scaffolds. 

Specific Aim 1: Characterize the Structural Properties of Braided Collagen Scaffolds 

 Here we hypothesize that braided collagen scaffolds are suitable for integrating into a 

skeletal muscle defect and maintain mechanical stability.  To test this we braided three braids of 

six individual self assembled collagen microthreads together in a three strand braid to form a 

final eighteen microthread braided collagen scaffold.  Next, the scaffolds were crosslinked using 

EDC/NHS with or without heparin and FGF-2 in concentrations of 5 ng/mL, 10 ng/mL, or 50 

ng/mL was passively adsorbed to the surface.  The braided collagen scaffolds were characterized 

through immunocytochemistry and mechanical testing.  Due to limitations involved with 

imaging a three-dimensional braided scaffold, single threads were passively adsorbed with 

different concentrations of FGF-2 and treated with the standard protocol for 

immunocytochemistry.  This was used to show that different concentrations of FGF-2 were 

bound to the surface of the braided collagen scaffolds.  Next, to test the mechanical stability of 

the braided collagen scaffolds, uncrosslinked and crosslinked scaffolds were loaded in uniaxial 
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tension to extrapolate the measured ultimate load at failure, strain at failure, and maximum 

tangent modulus (MTM).  

Specific Aim 2:  Develop a novel cell seeding method to achieve uniform and reproducible 

MDFC attachment on braided collagen scaffolds 

Here we hypothesize that development of a novel seeding method will enhance 

uniformity, efficiency, and reproducibility of MDFC seeding on braided collagen scaffolds.  The 

first step in developing this method was to provide the optimal environment to promote cell 

attachment onto braided collagen scaffolds.  Polydimethylsiloxane (PDMS) molds were created 

with two posts in the center creating a seeding channel with a dimension of either 2.0 mm by 12 

mm or 1.0 mm by 12 mm.  Cells were seeded onto braided collagen scaffolds using both channel 

dimensions, cultured for 24 hours, and analyzed for uniformity to determine which PDMS mold 

provided the most reproducible results.  Second, we determined the most advantageous way to 

visualize the MDFCs on the braided collagen scaffolds for qualitative analysis.  The collagen 

microthreads exhibit significant autofluorescence when exposed to DNA binding dyes directly, 

so to address this issue, MDFCs were preloaded with either a MitoTracker Green or Hoechst dye 

before seeding the cells onto the braided collagen scaffolds.  The seeded scaffolds were imaged 

to determine which dye provided more quantitative information to be used for analysis.  

Specific Aim 3:  Quantify cell attachment and growth on collagen braided scaffolds with 

different surface modifications 

 Finally, we hypothesize that FGF-2 modified surfaces will promote MDFC attachment 

and growth on braided collagen scaffolds.  Braided collagen scaffolds that were uncrosslinked, 

EDC/NHS crosslinked, EDC/NHS crosslinked with heparin, and EDC/NHS crosslinked with 

heparin with 5 ng/mL, 10 ng/mL, or 50 ng/mL FGF-2 were seeded with MDFCs that were 
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preloaded with Hoechst dye.  After culture for 1, 5, or 7 days, the scaffolds were removed and 

analyzed both quantitatively and qualitatively.  Using image J software, the number of Hoechst 

stained nuclei per 10,000 µm
2
 was counted to determine cell density and cell distribution.  In 

addition, scaffolds were stained with phalloidin, a fluorescent stain that binds to the f-actin 

filaments, to characterize the cellular alignment of MDFCs on braided collagen scaffolds.    
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Chapter 4: Materials and Methods 

 In this chapter, the procedures used to achieve the specific aims will be described.  The 

design of a novel engineered muscle construct from self-assembled collagen microthreads will be 

described, as well as the development of a method to seed MDFCs onto a three dimensional 

scaffold.  In addition, this chapter describes the procedures used to characterization the braided 

collagen scaffold and the cell attachment and growth both quantitatively and qualitatively. 

4.1. Type I Collagen Extraction from Rat Tendon 

 Acid-soluble type I collagen was extracted from rat tail tendons as previously 

described.
36,144

  Briefly, tendons were removed from 13 Sprague-Dawley rat tails with a 

hemostat, rinsed in phosphate buffered saline (PBS, pH 7.4), and dissolved in 1600 mL of 3% 

(vol/ vol) acetic acid overnight at 4ºC.  The collagen solution was filtered through layered 

cheesecloth and centrifuged for 2 hours at 8500 rpm at 4ºC.  Discarding the pellet, a salt 

precipitation was performed where 320 mL of 30% NaCl (wt/ vol) solution was dripped into the 

supernatant.  The solution was allowed to sit overnight at 4ºC.  The entire solution was then 

centrifuged at 4ºC for 40 minutes at 4900 rpm, and the resulting pellet was resuspended on a stir 

plate in 400 mL of 0.6% (vol/ vol) acetic acid at 4ºC until the pellet had dissolved completely.  

The solution was placed in dialysis membranes (Spectrum Laboratories, Inc., Rancho 

Dominguez, CA) and dialyzed at room temperature in 1 mM HCl changing the dialysate every 4 

hours until the solution was clear.  The type I collagen solution was lyophilized and stored at 

4ºC.  Prior to use, the lyophilized collagen fleece is dissolved in 5 mM HCl at a concentration of 

10 mg/mL. 
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4.2. Self Assembled Collagen Thread Extrusion 

Self-assembled collagen threads were produced from acid soluble type I collagen using 

methods described previously.
35

  Briefly, type I collagen (10 mg/mL in 5 mM HCl) was placed 

in a 5 mL syringe connected to a polyethylene tube with an inner diameter of 0.86 mm (Becton 

Dickinson, Franklin, NJ).  Using a syringe pump, the solution was extruded through the tubing at 

a rate of 0.255 mm/min into a 37ºC bath of fiber formation buffer  (pH 7.4, 135 mM NaCl, 30 

mM Tris Base, 30 mM Tris HCl, and 5 mM NaPO4 dibasic; Sigma, St. Louis, MO) and 

incubated for 24 hours (Figure 5).  The formed threads were transferred to a 37ºC bath consisting 

of fiber incubation buffer (pH 7.4, 135 mM NaCl, 10 mM Tris Base, 10 mM Tris HCl, and 30 

mM NaPO4 dibasic; Sigma) for an additional 24 hours.  The threads were then washed in a 37ºC 

bath of distilled water for 24 hours to remove the salt, air dried, and stored at room temperature 

in a dessicator until use. 

 

Figure 5: Self assembled collagen thread extrusion 

Type I collagen (10 mg/mL in 5 mM HCl) was placed in a 5 mL syringe connected to a 

polyethylene tube with an inner diameter of 0.86 mm.  Using a syringe pump, the 

solution was extruded through the tubing at a rate of 0.255 mm/min into a 37ºC bath of 

fiber formation buffer and incubated for 24 hours.  The formed threads were transferred 

to a 37ºC bath consisting of fiber incubation buffer for an additional 24 hours.  The 

threads were then washed in a 37ºC bath of distilled water for 24 hours and air dried. 
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4.3. Braided Scaffold Preparation 

To create braided collagen scaffolds, first six type I collagen microthreads were attached 

to a single point and split into three groups of two threads each (Figure 6A).  The grouped 

threads were braided together with 28 crossovers per centimeter.  A crossover is defined as one 

group crossing over an adjacent group (Figure 6B and C).  The final braided scaffold was 

produced by attaching three six-thread braids to a single point and braiding them together with 

26 crossovers per centimeter (Figure 6D).  The final braided scaffolds containing 18 self-

assembled threads were attached to PDMS (Dow Corning, Midland, MI) rings with an inner 

diameter of 14 mm using Silastic Silicone Medical Adhesive Type A (Dow Corning, Midland, 

MI) in order to easy fit inside a 12 well tissue culture plate (Figure 6E). 

 

Figure 6: Braided collagen scaffold preparation 

To create braided collagen scaffolds, first six type I collagen microthreads were attached 

to a single point and split into three groups of two threads each (A).  The grouped threads 

were braided together with 28 crossovers per centimeter (B and C).  The final braided 

scaffold was produced by attaching three six-thread braids to a single point and braiding 

them together with 26 crossovers per centimeter (D).  The final braided scaffolds were 

attached to PDMS rings using Silastic Silicone Medical Adhesive Type (E). 

The phase images and table below compare the size of single threads, 6 thread braids, and 

18 thread braids both dry and hydrated in PBS (Figure 7 and Table 3).  Phase images were 

obtained using an Olympus IX81 motorized inverted microscope coupled to a 12-bit Hamamatzu 

CCD camera and processed using Slidebook
®
. 



52 

 

 

Figure 7: Phase images of single threads, six thread braids, and 18 thread braids 

Phase images comparing the size of single threads, six thread braids, and 18 thread braids 

both dry (top row) and hydrated in PBS (bottom row).  Scale bar = 200 µm. 

Thread 

Configuration 

Sample Size 

(n) 

Dry Diameter   

(µm ± S.D.) 

Hydrated  Diameter  

(µm ± S.D.) 

Single 6 50 ± 20 180 ± 20 

6 Braid 6 250 ± 30 400 ± 50 

18 Braid 6 450 ± 25 600 ± 50 

Table 3: Width comparison of single threads, 6 thread braids, and 18 thread braids 

4.4. Microthread Crosslinking with Heparin 

 Braided collagen scaffolds were crosslinked using the chemical crosslinker 1-ethyl-3-(3-

dimethyl aminopropyl) carbodiimide (EDC; Sigma) and N-hydroxysuccinimide (NHS; Sigma) 

with and without heparin sodium salt (Calbiochem, Gibbstown, NJ) (Figure 8).
40,133,144

  In a 

sterile field, braided collagen scaffolds were inverted and inserted into a 12 well plate with one 

scaffold per well, and they were washed with 70% (vol/ vol) ethanol 4 times for 30 minutes each 

and 40% (vol/ vol) ethanol 5 times for 15 minutes each to sterilize.  Subsequently, the scaffolds 

were submerged in 3 mL of sterile filtered 40% (vol/ vol) ethanol including 50 mM 2-
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morpholinoethane sulphonic acid (MES, pH 5.0; Sigma) for 30 minutes at room temperature.  

Next, the scaffolds were incubated in 2 mL of sterile filtered 40% (vol/ vol) ethanol including 50 

mM MES, 14 mM EDC, 8 mM NHS, with and without 100 µg/mL heparin for 4 hours at room 

temperature.  The scaffolds were washed in 70% (vol/ vol) ethanol 5 times for 10 minutes each 

with a final overnight wash at 4ºC. 

4.5. FGF-2 Binding through Passive Adsorption 

 Fibroblast growth factor (FGF-2; Chemicon, Temecula, CA) in varying concentrations 

was passively adsorbed to the surface of braided collagen scaffolds crosslinked with EDC/NHS 

and heparin using methods previously described (Figure 8).
38

  Due to material limitations, 

passively adsorbing FGF-2 to the surface of uncrosslinked and EDC/NHS crosslinked scaffolds 

without heparin was not tested, but in the future, it will be beneficial to study these interactions 

as well.  Briefly, scaffolds were washed 5 times for 10 minutes with sterile Dulbecco’s 

phosphate buffered saline (DPBS, pH 7.4) without calcium and magnesium at room temperature.  

Subsequently, the chamber walls, PDMS ring, silicone adhesive and nonspecific binding sites on 

the braided collagen scaffolds were blocked using a blocking solution of 3 mL of sterile filtered 

DPBS containing 0.25% (wt/ vol) bovine serum albumin (BSA; Sigma) for 1 hour at room 

temperature.  Next the blocking solution was aspirated from each well, and replaced with 2 mL 

of sterile DPBS containing 0.25% (wt/ vol) BSA with FGF-2 at a concentration of either 5 

ng/mL, 10 ng/mL, or 50 ng/mL.  The scaffolds were incubated for 2 hours at room temperature.  

The braided collagen scaffolds were washed in DPBS 5 times for 10 minutes each and stored at 

4ºC in DPBS until use. 
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Figure 8: Passive adsorption of FGF-2 to braided collagen threads 

Heparin is covalently bound to the surface of the collagen braided scaffold using 

EDC/NHS crosslinking.  Next, FGF-2 is electrostatically bound to the heparin through 

passive adsorption. 

4.6. Braided Collagen Scaffold Structural Characterization 

4.6.1. Characterization of Bound FGF-2 

 To verify that FGF-2 has bound to the surface of the scaffolds immunocytochemistry was 

performed.  Due to imaging limitations of the geometry of braided collagen scaffolds, single 

collagen threads were used to characterize the localization of FGF-2 on the surfaces.  Single 

collagen threads were EDC/NHS crosslinked in the presence of heparin and then loaded with 

FGF-2 at the concentrations mentioned above.  Single collagen threads that were EDC/NHS 

crosslinked in the presence of heparin were used as negative controls.  DPBS was removed from 

the wells by aspiration, and the threads were incubated at room temperature in 300 µL of 1 

µg/mL FGF-2 goat polyclonal IgG (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) in PBS 
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with 0.05% Tween-20 (Promega Corporation, Madison, WI) for 30 minutes.  The threads were 

washed with 500 µL of PBS with 0.05% Tween-20 for 5 minutes three times.  The threads were 

then incubated in 300 µL of 5 µg/mL Alexa Fluor 647 donkey anti-goat IgG (Invitrogen, 

Carlsbad, CA) in PBS with 0.05% Tween-20 for 30 minutes.  They were then washed in 500 µL 

of PBS with 0.05% Tween-20 for 5 minutes twice.  Single collagen threads were imaged using 

fluorescence microscopy on an Olympus IX81 motorized inverted microscope coupled to a 12-

bit Hamamatzu CCD camera and processed using Slidebook
®
. 

4.6.2. Mechanical Testing of Braided Collagen Scaffolds 

 In order to determine the effect of surface modifications on mechanical strength, 

EDC/NHS crosslinked and uncrosslinked braided collagen threads were analyzed by 

mechanically loading the hydrated samples in uniaxial tension.  Braided collagen scaffolds that 

were crosslinked with heparin and exposed to FGF-2 were not tested in this study.  Braided 

collagen threads were cut to a sample length of 30 mm with the last 5 mm of each end bound and 

sealed using Silastic Silicone Medical Adhesive Type A (Dow Corning, Midland, MI).  For 

tensile testing, the samples were secured horizontally with 2711 Series Lever Action Fiber Grips 

(Instron, Norwood, MA) on an E1000 ElectroPuls mechanical testing system (Instron, Norwood, 

MA) with a fixed 50 kN Dynacell dynamic load cell (Instron, Norwood, MA) (Figure 9A).  The 

mechanical testing system and data acquisition were controlled using Bluehill 2 Materials 

Testing software (Instron, Norwood, MA).  The samples were secured insuring that the silicone 

adhesive remained outside of the outer grip boundary (Figure 9B).  An initial gauge length of 7.0 

mm was defined as the distance between the inner grip boundaries, and the braids were loaded to 

failure at a 50% strain rate (3.5 mm/min). 



56 

 

 

Figure 9: Schematic of mechanical testing of samples 

Braided collagen threads were cut to a sample length of 30 mm with the last 5 mm of 

each end bound and sealed using Silastic Silicone Medical Adhesive Type A.  The 

samples were secured horizontally with 2711 series grips on a mechanical testing system 

with a fixed 50 kN load cell (A).  The samples were secured insuring that the silicone 

adhesive remained outside of the outer grip boundary (B).  An initial gauge length of 7.0 

mm was defined as the distance between the inner grip boundaries, and the braids were 

loaded to failure at a 50% strain rate (3.5 mm/min). 

To calculate the ultimate tensile strength, the cross-sectional area of the samples was 

approximated using histological sections of hematoxylin and eosin stained unseeded braided 

collagen threads at five different locations.  Although the scaffolds will shrink due to 

dehydration after processing, using the histological sections will give a better cross-sectional 

estimation since using a cylindrical model will not represent the shape accurately.  Bright field 

images were obtained using an Olympus IX81 motorized inverted microscope coupled to a 12-

bit Hamamatzu CCD camera and processed using Slidebook
®
, and analyzed using Image J 

software (U.S. National Institutes of Health, Bethesda, MD) (Figure 10A).  The outer edge of the 

braided collagen threads was traced to measure the cross-sectional area (Figure 10B and Figure 

10C).  The stress-strain curve, the load at failure, ultimate tensile strength (UTS), stain at failure 
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(SAF), and maximum tangent modulus or stiffness (MTM) were calculated from the data 

obtained during testing. 

 

Figure 10: Braided collagen threads cross-sectional area 

The cross-sectional area of five samples was approximated using histological sections of 

hematoxylin and eosin stained unseeded braided collagen threads, and analyzed using 

Image J software (A).  The outer edge of the braided collagen threads was traced to 

measure the cross-sectional area (B and C). 

 In post processing of the data, a strain of zero was defined as the point where the braided 

collagen scaffolds were minimally loaded to a threshold of 0.01 grams, or less than 1% the 

ultimate load of the weakest uncrosslinked scaffold.  In addition, load-elongation curves were 

truncated when the load fell by 20% of the ultimate load, or the point of the initial break (Figure 

11A).  After this point, as each individual thread within the braided collagen scaffold broke, they 

created peaks lower than the ultimate load until each thread in the scaffold failed.  For the 

purpose of this analysis, only the ultimate load was considered (Figure 11B).  The stiffness was 

defined as the maximum value for a tangent to the stress-strain curve over an incremental strain 

of 0.03. 
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Figure 11:  Post processing of mechanical data 

Load-elongation curves were truncated when the load fell by 20% of the ultimate load, or 

the point of the initial break (A).  Only the ultimate load of the load-elongation curve was 

considered (B). 

4.7. MDFC Seeding to Braided Collagen Scaffolds 

 The procedures described in this section focus on the development on a novel method to 

seed MDFCs onto braided collagen scaffolds.  Initially, MDFCs were preloaded with 

Mitotracker Green and seeded onto the scaffold using the PDMS mold with a 2.0 mm wide 

seeding channel in the middle.  While this method allowed for qualitative analysis of cell 

attachment and growth, individual cells were not distinguishable because it was not clear how 

many mitochondria were in each MDFC.  In addition, the channel width was much larger than 

the width of the braided collagen scaffolds, which led to the procedure having low 

reproducibility and seeding efficiency.  Consequently, we developed a more reproducible 

seeding method and cell labeling procedure. 

4.7.1. MDFC Culture and Braided Collagen Scaffold Sterilization 

The MDFCs were extracted from the calf flexor muscle of a human adult male through 

methods described previously.
46

  The MDFCs were grown in culture media (40% DMEM, 40% 

F-12, 20% FC III serum; Mediatech, Inc, Manassas, VA and Hyclone, Logan, UT) supplemented 
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with 10 ng/mL epidermal growth factor (EGF, Chemicon, Temecula, CA) at ambient conditions 

(20% O2 and 5% CO2) until culture flasks were confluent.  Passages 7-8 were used for all cell-

seeding experiments.  Prior to MDFC seeding, the braided collagen scaffolds were incubated at 

room temperature with 3% penicillin/streptomycin (Pen/ Strep; Gibco BRL, Gaithersburg, MD) 

in DPBS (vol/ vol) for one week changing the antibiotic solution every 2 days to sterilize 

scaffolds. 

4.7.2. Preliminary Cell Seeding Method 

Prior to seeding MDFCs, the cells were preloaded with Mitotracker Green (Invitrogen, 

Eugene, OR), a mitochondrial dye.  The MDFCs were incubated with 500 nM of Mitotracker 

Green in DMEM for 30 minutes at 37ºC on the day of initial seeding.  The cells were washed 

twice with DPBS and placed back into 37ºC incubation with fresh medium until seeding.  To 

seed MDFCs on braided collagen scaffolds, a PDMS mold was created with an outer circular 

well with a diameter of 24 mm with two posts in the center creating a channel with a dimension 

of 2.0 mm by 12 mm (Figure 12A).  This channel was sealed at each end using a thin layer of 

medical grade silicone adhesive (Figure 12B).  The PDMS mold was sterilized by autoclaving.  

Next, the silicone adhesive was notched in order to create a wedge to place the braided scaffold 

through (Figure 12C).  The braided collagen scaffolds were inverted, inserted into the wedge, 

and sealed into place using sterile vacuum grease (Figure 12D).  The MDFCs in a cell 

suspension of 200,000 cells in 90 μL of serum free medium (50% DMEM, 50% F-12) were 

seeded on the scaffolds and incubated for 4 hours at 37ºC (Figure 12E).  Serum free medium was 

used for the MDFCs attachment to avoid masking the surface biochemical properties of the 

braided collagen scaffolds.  The seeded braided collagen scaffolds were subsequently removed 

from the PDMS molds, inverted, and placed in a 12-well plate containing culture medium (45% 



60 

 

DMEM, 45% F-12, 10% FC III serum) (Figure 12F).  During preliminary studies, uncrosslinked 

and EDC/NHS crosslinked braided collagen scaffolds were seeded, incubated for 24 hours, and 

then fixed in 4% paraformaldehyde solution in PBS (USB, Cleveland, OH) for 20 minutes at 

room temperature.  The scaffolds were imaged using fluorescence microscopy on an Olympus 

IX81 motorized inverted microscope coupled to a 12-bit Hamamatzu CCD camera and processed 

using Slidebook
®
.  The results showed (Results in Sections 5.2.1. Preliminary Cell Seeding 

Method, Page 76) that it was not possible to distinguish or quantify single cells since it is 

unknown how many mitochondria are inside a MDFC.  As such, this labeling method did not 

allow for quantitative analysis.  In addition, further development of the mold needed to be 

performed to eliminate the detachment of the braided collagen scaffolds from the PDMS ring 

during insertion into the channel wedge and to optimize the number of cells attaching to the 

scaffold. 

 

Figure 12: Preliminary seeding method 

A PDMS mold was created with an outer circular well with a diameter of 24 mm with 

two posts in the center creating a channel with a dimension of 2.0 mm by 12 mm (A).  

This channel was sealed at each end using a thin layer of medical grade silicone adhesive 

(B).  The PDMS mold was sterilized by autoclaving.  Next, the silicone adhesive was 

notched in order to create a wedge to place the braided scaffold through (C).  The braided 

collagen scaffolds were inverted, inserted into the wedge, and sealed into place using 

sterile vacuum grease (D).  The MDFCs were seeded on the scaffolds and incubated for 4 

hours at 37ºC (E).  The seeded braided collagen scaffolds were subsequently removed 

from the PDMS molds, inverted, and placed in a 12-well plate containing culture (F). 
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4.7.3. Optimizing the Cell Seeding Method 

To overcome the limitations associated with using Mitotracker Green prior to seeding on 

the braided collagen scaffold, MDFCs were incubated with 5 µg/mL Hoechst dye (Invitrogen, 

Carlsbad, CA) in culture medium for 15 minutes at 37ºC on the day of initial seeding.  The cells 

were washed twice with DPBS and placed back into 37ºC incubation with fresh medium until 

seeding.  To determine the optimal environment for uniform and reproducible seeding, the 

channel within the PDMS mold designed with dimensions of either 2.0 mm by 12 mm or 1.0 mm 

by 12 mm (Figure 13A).  A smaller channel width was used to eliminate the void space around 

the scaffold when inserted into the channel.  The molds were sterilized by autoclaving, and the 

channels were sealed at the ends using a thin layer of sterile vacuum grease (Figure 13B).  The 

sterile braided collagen scaffolds were inverted and inserted into the vacuum grease such that the 

braid lies on the bottom of the channel (Figure 13C).  The MDFCs were seeded on the scaffolds 

by adding a cell suspension in serum free medium (50% DMEM, 50% F-12) to the channel 

containing the braided scaffolds and incubated for 4 hours at 37ºC (Figure 13D).  A cell 

suspension of 200,000 cells in 90 µL was used for the 2.0 mm by 12 mm channel, and a 

suspension of 150,000 cells in 30 µL was used for the 1.0 mm by 12 mm channel (Table 4).  

Different seeding volumes were used since 90 µL of solution exceeded the volume of the smaller 

channel.  The seeded braided scaffolds were removed from the PDMS molds and placed in a 12-

well plate containing culture medium (45% DMEM, 45% F-12, 10% FC III serum) 

supplemented with 1% pen/strep (Figure 13E).  The seeded scaffolds were incubated at 37ºC.  

Uncrosslinked and EDC/NHS crosslinked braided collagen scaffolds were seeded, incubated for 

24 hours, and then fixed in 4% paraformaldehyde solution in PBS (USB, Cleveland, OH) for 20 

minutes at room temperature.  The scaffolds were imaged using fluorescence microscopy with an 
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Olympus IX81 motorized inverted microscope coupled to a 12-bit Hamamatzu CCD camera and 

processed using Slidebook
®

.  Due to better seeding uniformity and more reproducible data 

(Results in Section 5.2.2. Optimizing the Cell Seeding Method, Page 77), the PDMS mold with a 

channel dimension of 1.0 mm by 12 mm was used in all subsequent experiments. 

Channel Dimension # Cells Initially Seeded Seeding Volume 

2.0 mm X 12 mm 200,000 90 µL 

1.0 mm X 12 mm 150,000 30 µL 

Table 4: Preliminary Cell Seeding Method Development  

 

Figure 13: Seeding MDFCs onto a braided collagen scaffold 

To determine the optimal environment for uniform and reproducible seeding, the channel 

within the PDMS mold designed with dimensions of either 2.0 mm by 12 mm or 1.0 mm 

by 12 mm (A).  The molds were sterilized by autoclaving, and the channels were sealed 

at the ends using a thin layer of sterile vacuum grease (B).  The sterile braided collagen 

scaffolds were inverted and inserted into the vacuum grease such that the braid lies on the 

bottom of the channel (C).  The MDFCs were seeded on the scaffolds by adding a cell 

suspension in serum free medium to the channel containing the braided scaffolds and 

incubated for 4 hours at 37ºC (D).  The seeded braided scaffolds were removed from the 

PDMS molds and placed in a 12-well plate containing culture medium (E). 

4.8. Quantification of Cell Number on Braided Collagen Threads 

 The procedures described in this section focus on methods used to determine the effect of 

surface modifications, specifically FGF-2 adsorption, on cell attachment and growth.  Braided 

collagen scaffolds with surfaces that were uncrosslinked, EDC/NHS crosslinked, EDC/NHS 
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crosslinked with heparin, and EDC/NHS crosslinked with heparin and different concentrations of 

FGF-2 bound were cultured with MDFCs for various times and analyzed using fluorescence 

microscopy. 

4.8.1. Cell Attachment 

 To determine the effects of different surface modifications on attachment of MDFCs to 

braided collagen scaffolds, MDFCs were seeded as described above onto uncrosslinked scaffolds 

and scaffolds treated with EDC/NHS, EDC/NHS with heparin, or EDC/NHS with heparin coated 

with FGF-2 at concentrations of either 5 ng/mL, 10 ng/mL, or 50 ng/mL.  Unseeded braided 

collagen scaffolds were used as controls.  Seeded braided collagen scaffolds were cultured at 

37ºC for 24 hours before fixing in 4% paraformaldehyde solution in PBS (USB, Cleveland, OH) 

for 20 minutes at room temperature.  Scaffolds were washed twice for 5 minutes in PBS, and 

stored in PBS at 4ºC until imaging.  In order to image the braided scaffolds, they were removed 

from the PDMS ring (Figure 14A) and placed on a glass slide covered with enough PBS to 

maintain hydration throughout the imaging process (Figure 14B).  For each condition, 8 to 14 

scaffolds were imaged from 4 separate experiments by fluorescence microscopy on an Olympus 

IX81 motorized inverted microscope coupled to a 12-bit Hamamatzu CCD camera and processed 

using Slidebook
®
 (Figure 14C).  Imaging locations were chosen for cell quantification at 10X 

magnification in nonoverlapping focal regions across the entire length of the scaffold by placing 

it on the slide parallel to the x-axis.  This resulted in 5 to 18 images per scaffold depending on 

the number of focal regions in the z-direction. 
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Figure 14: Fluorescence microscopy procedure 

In order to image the seeded braided scaffolds, they were removed from the PDMS ring 

(A) and placed on a glass slide covered with enough PBS to maintain hydration 

throughout the imaging process (B).  For each condition, 8 to 14 scaffolds were imaged 

from 4 separate experiments by fluorescence microscopy (C).  Imaging locations were 

chosen for cell quantification at 10X magnification in nonoverlapping focal regions 

across the entire length of the scaffold by placing it on the slide parallel to the x-axis. 

The images were analyzed using Image J software with the grid and cell counter plug-in 

for cell attachment and cell distribution across the length of the scaffold.  A grid was placed on 

each image with an area of 10,000 µm
2
 (1.55 pixels/µm) between each grid line (Figure 15A).  

Using the cell counter plug-in, raw data was collected from each image as the average number of 

Hoechst dye stained nuclei counted in four separate regions (Figure 15B).  Not all of the cells are 

in the focal plane of the each image because of the limited focal depth when imaging three-

dimensional scaffolds.  As such, the data was normalized by reporting it as the number of cells 

within an area of 10,000 µm
2
.  To determine whether there was an equal cell distribution across 

length of the braided collagen scaffold, cells were counted using the procedure described above 

for images taken every 900 µm along the length of the scaffold (Figure 16).  Although the 

majority of the scaffolds were seeded over the entire surface area, for the purposes of this cell 

attachment assay and cell distribution, only one side of the braided scaffold was analyzed.  There 

was no difference in seeding throughout the surface area of the scaffold. 
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Figure 15: Image analysis procedure 

The images were analyzed using Image J software with the grid and cell counter plug-in 

for cell attachment and cell distribution across the length of the scaffold.  A grid was 

placed on each image with an area of 10,000 µm2 (1.55 pixels/µm) between each grid 

line (A).  Using the cell counter plug-in, raw data was collected from each image as the 

average number of Hoechst dye stained nuclei counted in four separate regions (B). 

 

Figure 16: Diagram of MDFCs on braided collagen scaffold for cell distribution analysis 

To determine whether there was an equal cell distribution across length of the braided 

collagen scaffold, cells were counted for images taken every 900 µm along the length of 

the scaffold. 
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4.8.2. Cell Growth 

 To determine the effects of different surface biochemistries on the growth of MDFCs on 

braided collagen scaffolds, MDFCs preloaded with Hoechst dye were seeded as described above 

onto uncrosslinked scaffolds and scaffolds treated with EDC/NHS, EDC/NHS with heparin, and 

EDC/NHS with heparin coated with FGF-2 at concentrations of either 5 ng/mL, 10 ng/mL, or 50 

ng/mL.  Unseeded scaffolds were used as controls.  Seeded braided collagen scaffolds were 

cultured at 37ºC moving the scaffolds to a new sterile 12 well plate with fresh medium every 

other day to prevent contamination during extended culture periods.  Scaffolds were cultured for 

5 days and 7 days before fixing in 4% paraformaldehyde solution in PBS for 20 minutes at room 

temperature.  Scaffolds were washed twice for 5 minutes in PBS, and stored in PBS at 4ºC until 

imaging.  Seeded scaffolds cultured for 5 and 7 days were analyzed for cell growth in the same 

manner as described previously for cell attachment and cell distribution. 

4.8.3. Estimation of Total Cell Attachment and Growth 

 To compare the cell attachment and growth to results found in literature, the total number 

of cells attached to the braided collagen at each time point needed to be approximated.  The cross 

sectional perimeter was established using the histological sections of three hematoxylin and 

eosin stained unseeded braided collagen threads.  The outer edge of the scaffolds was traced 

using Image J software in order to obtain an approximate surface perimeter.  To account for the 

differences in surface topography on the scaffold, sections were measured at four different 

locations along the length of the scaffold and averaged together.  When the braided collagen 

scaffold is placed inside the PDMS mold, the ends of the scaffold are exposed to sterile vacuum 

grease, which prevents MDFCs from attaching beyond this boundary.  Using the cell distribution 

data, the length of the seeded area of the braided collagen scaffold can be determined.  Using the 
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assumption that all sides have been seeded with MDFCs, the total surface area of the braided 

collagen scaffold can be determined by multiplying the cross sectional perimeter by the length of 

the seeded area of the braid.  Using this information, the total number of MDFCs attached to the 

surface at each time point can be extrapolated by multiplying the number of cells counted per 

10,000 µm
2
 region by the total seeded surface area.  In addition to total cell attachment and 

growth calculations, the percentage of the cells seeded that attached to the surface and the fold 

increases of the cells over time was calculated.  The increase in cell number over the number of 

cells that attached, Td, was calculated using the following equation, where q1 is the average 

number of cells attached for each surface modification and q2 is the number of cells at counted at 

5 and 7 days. 

   
  
  

 

4.9. Qualitative Analysis of Cell Density and Cellular Alignment 

 The procedures described in this section focus on the analysis of how the surface 

modifications affect cell density and cellular alignment.  These assays were run to determine 

how the cells were interacting with the surfaces after specific durations. 

4.9.1. Histological Analysis of Cell Density 

 To assess cell density and nuclei conformation on braided collagen thread scaffolds, cell 

outgrowth and alignment were evaluated after 1 or 7 days with each surface modification type as 

well as unseeded controls.  Scaffolds were fixed in 4% paraformaldehyde solution in PBS for 40 

minutes at room temperature, washed twice for 5 minutes in PBS.  Prior to placement in tissue 

cassettes (Fisher Scientific, Pittsburg, PA), samples were embedded in 2% (wt/ vol) Lonza 

SeaKem LE Agarose (Fisher Scientific, Pittsburg, PA) in distilled water to maintain the 

structural characteristics of the braid, and then all samples in tissue cassettes were placed into 
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70% (vol/ vol) ethanol overnight.  Next, scaffolds were processed for embedding by dehydrating 

in a series of increasing concentrations of ethanol, from 70% (vol/ vol) to 100% (vol/ vol), 

cleared with xylene, and embedded in paraffin wax at 60ºC.  Samples were embedded to analyze 

the cross section of the braid by cutting the braid orthogonal to the long axis and mounting the 

cut pieces vertically in the paraffin.  Sections were cut at 5 µm on a rotary microtome (Nikon), 

mounted on Superfrost Plus slides (VWR, West Chester, PA) with Permount (Fisher Scientific, 

Pittsburg, PA), and stained with Modified Harris Hematoxylin and Eosin (H&E; Richard-Allan 

Scientific, Kalamazoo, MI).  Sections were imaged using an Olympus IX81 motorized inverted 

microscope coupled to a 12-bit Hamamatzu CCD camera and processed using Slidebook
® 

to 

determine cell density. 

4.9.2. Fluorescence Microscopic Analysis of Cell Density and Cellular Alignment 

 To determine MDFC alignment and orientation on braided collagen scaffolds, scaffolds 

were seeded with MDFCs, incubated and stained to illuminate the f-actin filaments.  Braided 

collagen scaffolds of each type were assembled and seeded as described previously and 

incubated for 1, 5, or 7 days.  After incubation for the designated period, scaffolds were rinsed 

twice in PBS and fixed with 4% paraformaldehyde solution in PBS for 20 minutes at room 

temperature.  Scaffolds were then rinsed twice in PBS for 5 minutes and stained with 165 mM 

Alexafluor 488 phalloidin (Molecular Probes, Eugene, OR) for 45 minutes.  To image the 

braided scaffolds, they were removed from PDMS rings and placed on a glass slide covered with 

enough PBS to maintain hydration throughout the imaging process.  To analyze cell density, 

scaffolds were imaged by fluorescence microscopy on an Olympus IX81 motorized inverted 

microscope coupled to a 12-bit Hamamatzu CCD camera and processed using Slidebook
® 

under 

4X magnification to visualize the Hoechst stained nuclei.  Cellular alignment was determined by 
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removing scaffolds incubated for 1 or 7 days from PDMS rings (Figure 17A) and placing them 

into 35 mm diameter glass bottom culture dishes with a 10 mm diameter cover slip in the middle 

with a thickness of 0.19 mm (MatTek Corporation, Ashland, MA).  The braids were held flat 

against the cover glass surface using vacuum grease and covered with enough PBS to maintain 

hydration throughout the imaging process (Figure 17B).  The scaffolds were imaged using 

fluorescence microscopy on a Leica TCS SP5 II point scanning confocal microscope (Leica 

Microsystems Inc., Bannockburn, IL) under an oil immersion 20X magnification lens to 

visualize the nuclei and f-actin filaments.  Images were taken along the z-axis at a depth of 100 

to 150 µm of the braided collagen scaffold.  Cellular alignment was qualitatively analyzed by 

determining if the cells aligned with the curvature of the braids or parallel to the x-axis after 7 

days in culture. 

 

Figure 17: Confocal microscope procedure for imaging 

Cellular alignment was determined by removing scaffolds incubated for 1 or 7 days from 

PDMS rings (A) and placing them into 35 mm diameter glass bottom culture dishes with 

cover slip in the middle.  The braids were held flat against the cover glass surface using 

vacuum grease and covered with enough PBS to maintain hydration throughout the 

imaging process (B).  The scaffolds were imaged using fluorescence microscopy on a 

confocal microscope. 

 4.10. Statistics 

 Statistical analyses were executed using SigmaPlot 11.0 (Systat Software, Inc, Point 

Richmond, CA).  For the mechanical data analysis, statistical differences between the 

uncrosslinked and crosslinked samples  were evaluated using a Student’s T-test or the Mann 
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Whitney Rank Sum test for cases of unequal variance.  For all cell-based assay experiements, 

statistical difference between scaffolds was analyzed using one-way analysis of variance 

(ANOVA) with Holm-Sidak post hoc testing.  In cases where data failed the normality test an 

ANOVA on Ranks followed by a Dunn’s post hoc test was used since the group sizes were 

unequal.  Significance was established for p < 0.05.  
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Chapter 5: Results 

5.1. Braided Collagen Scaffold Material Characterization 

5.1.1. Characterization of Localized FGF-2 

To verify and characterize the localization of FGF-2 on braided collagen scaffolds, 

different concentrations of FGF-2 were bound to single collagen threads that were crosslinked 

with EDC/NHS in the presence of heparin.  The threads were immunostained and the results are 

shown in Figure 18.  Threads crosslinked with EDC/NHS and heparin in the presence of FGF-2 

showed FGF-2 on the surfaces of the threads when compared to the control braids that were 

crosslinked with EDC/NHS and heparin, but not exposed to FGF-2 (Figure 18A).  

Immunocytochemical analysis of threads exposed to 5 ng/mL FGF-2 showed FGF-2 having 

inconsistent coverage on the surface (Figure 18B).  To determine further if this inconsistency 

was due to an imaging artifact, it would be beneficial to image the threads using a scanning 

confocal microscope.  Although it is apparent that FGF-2 was present on the surface, it is not 

uniform along the length of the thread.  Threads exposed to 10 ng/mL FGF-2 (Figure 18C) and 

50 ng/mL FGF-2 (Figure 18D) showed similar localization and uniform coverage of FGF-2 

along the length of the thread.  Threads exposed to 50 ng/mL FGF-2 seem to have a more FGF-2 

bound to the surface due to the higher fluorescence intensity across the whole surface.  However, 

these differences were not evaluated quantitatively. 
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Figure 18: Immunocytochemistry verifying the presence of FGF-2 on collagen threads 

EDC/NHS crosslinked collagen threads with heparin (A),  and EDC/NHS crosslinked 

with heparin and passively adsorbed with 5 ng/mL (B),  10 ng/mL (C), or 50 ng/mL FGF-

2 (D).  Scale bar = 200 µm 

5.1.2. Mechanical Testing of Braided Collagen Scaffolds 

 To characterize the mechanical properties of braided collagen scaffolds, uncrosslinked 

and EDC/NHS crosslinked braids were loaded under uniaxial tension until failure.  The results of 

this analysis are summarized in Table 5.  Raw data including individual measurements for each 

braid, cross-sectional area calculations, and statistics can be found in Appendix A: Mechanical 

Testing Data Analysis.  Characteristic load-elongation curves for each of the individual 

uncrosslinked and crosslinked braided collagen scaffolds showed a generally linear shape with 

the scaffold failure occurring as the first of the three internal braids fails (Figure 19).  After the 

point of ultimate failure, the load drops in an incremental manner until each of threads has 

broken.  In addition, each individual braid shows similar curves demonstrating that the 
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production of the braided collagen scaffold from self-assembled type I collagen microthread 

extrusion to braid development is consistent and reproducible. 

 
Sample 

Size 

Cross-sectional 

Area 

(mm
2
 ± SD) 

Ultimate Load 

(N ± SD) 

UTS 

(MPa ± SD) 

Strain at 

Failure 

(mm/mm ± SD) 

Maximum 

Tangent 

Modulus 

(MPa ± SD) 

Uncrosslinked 16 0.115 ± 0.025 0.591 ± 0.076 5.130 ± 0.662 0.420 ± 0.064 13.60 ± 2.668 

Crosslinked 16 0.072 ± 0.013 1.979 ± 0.237 26.97 ± 2.835 0.516 ± 0.118 68.52 ± 8.242 

Table 5: Mechanical properties summary table for braided collagen microthreads 

 Indicates statistically significant differences between uncrosslinked and crosslinked 

braided collagen scaffolds with p < 0.05 using Mann-Whitney Rank Sum Test. 

 

Figure 19:  Characteristic load-elongation relationship for braided collagen microthreads 

Characteristic load-elongation curves for each of the individual uncrosslinked and 

EDC/NHS crosslinked braided collagen scaffolds showed a generally linear shape with 

the scaffold failure occurring as the first of the three internal braids fails (n = 16) 

 In order to calculate the stress-strain curves of the braids, the cross-section areas were 

calculated using the histological cross-sections of hydrated braids.  The average cross-sectional 

area of an uncrosslinked and crosslinked braided collagen scaffold was calculated to be 0.115 ± 
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0.025 mm
2
 (Figure 20A) and 0.072 ± 0.013 mm

2
 (Figure 20B) respectively.  The representative 

stress-strain curves comparing uncrosslinked to crosslinked braids also shows they are roughly 

linear in shape with crosslinked threads withstanding a greater amount of stress per unit strain 

(Figure 21).  The curve measurements allow for the measurement of the maximum tangent 

modulus (MTM) of each sample to be calculated as the maximum slope of the stress-strain 

curve.  Relative to uncrosslinked braided collagens scaffolds, the ultimate load and ultimate 

tensile strength of crosslinked scaffolds were increased significantly by crosslinking using 

EDC/NHS (Figure 22A and Figure 22B).  The crosslinked braids were able withstand an 

ultimate load almost three times that of uncrosslinked scaffolds.  Similarly, the strain at failure 

and maximum tangent modulus of the crosslinked scaffolds were significantly higher relative to 

uncrosslinked collagen scaffolds (Figure 23A and Figure 23B).  Even though the crosslinked 

braids are approximately five times stiffer than uncrosslinked scaffolds, the crosslinked braids 

have a significantly increased strain at failure. 

 

Figure 20: Cross-sections of braided collagen threads 

H&E stained histological cross-sections of uncrosslinked (A) and EDC/NHS crosslinked 

(B) braided collagen threads.  Scale bar = 100 µm. 
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Figure 21: Characteristic stress-strain curve relationship for braided collagen microthreads 

The representative stress-strain curves comparing uncrosslinked to crosslinked braids 

also show they are roughly linear in shape with crosslinked threads withstanding a greater 

amount of stress per unit strain (n = 16). 

  

Figure 22: Ultimate Load and UTS at failure for braided collagen microthreads 

Ultimate Load (A) and UTS (B).   Indicates p < 0.05 using Mann-Whitney Rank Sum 

Test.  Bars indicate mean ± SD (each representing the data in Table 5 having n = 16). 
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Figure 23: Strain at failure and maximum tangent modulus for braided collagen microthreads 

Strain at failure (A) and MTM (B).   Indicates p < 0.05 using Mann-Whitney Rank 

Sum Test.  Bars indicate mean ± SD (each representing the data in Table 5 having n = 

16). 

5.2. MDFC Seeding to Braided Collagen Scaffold 

5.2.1. Preliminary Cell Seeding Method 

 In the first stage of developing a reproducible cell seeding method that allowed for 

quantitative analysis of MDFCs on braided collagen scaffolds, MDFCs were preloaded with 

Mitotracker Green and seeded onto scaffolds using a mold with a seeding channel of 2.0 mm x 

12.0 mm.  Following the protocol, it was found that sealing the channel with the silicone 

adhesive caused a fraction of the braided collagen scaffolds to break from the PDMS ring while 

trying to insert the braid into the wedge opening.  Although the majority of the scaffolds were 

not damaged when they were inserted into the mold, this iteration of the PDMS cell-seeding 

mold does not allow for sufficient reproducibility.  Compared to the unseeded braided collagen 

scaffold (Figure 24A), it appears that using the PDMS mold to seed the braided collagen 

scaffolds is successful since a fluorescent signal appears on the seeded scaffolds.  Fluorescence 

microscopy images of uncrosslinked (Figure 24B) and crosslinked (Figure 24C) seeded braided 

collagen scaffolds show that seeding with the cell suspension method ensures that the entire 
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braid is exposed to the MDFCs.  The results show that MDFCs attached predominately in the 

grooves of the braids.  By visual inspection, it appeared that the uncrosslinked and crosslinked 

braided collagen scaffolds had similar seeding efficiencies.  Unfortunately, fluorescently tagging 

the mitochondria within the MDFCs only allowed for qualitative analysis because the 

mitochondria stain did not facilitate discrete cell counting, so cell attachment differences 

between uncrosslinked and crosslinked scaffolds could not be analyzed.  In addition, the large 

amount of void space in the seeding channel may not facilitate a high seeding efficiency. 

 

Figure 24: MDFCs labeled with Mitotracker Green on braided collagen scaffolds 

Unseeded (A), uncrosslinked (B), and EDC/NHS crosslinked (C) braided collagen 

scaffolds.  MDFCs were preloaded with Mitotracker Green prior to seeding.  Scale bar = 

200 µm. 

5.2.2. Optimizing the Cell Seeding Method 

 In order to rectify the limitations discovered in the analysis of the preliminary cell 

seeding results, MDFCs were loaded with Hoechst dye prior to seeding onto braided collagen 

scaffolds instead of Mitotracker green.  MDFCs were seeded onto uncrosslinked and crosslinked 

braided collagen scaffolds using PDMS molds with channel widths of either 2.0 mm or 1.0 mm, 

and the results are summarized in Table 6.  Raw data including cell counts, total cell and 

percentage calculations, and statistics can be found in Appendix B: Optimizing Cell Seeding 

Method Data.  Using a channel sealed with sterile vacuum grease resulted in elimination of 

scaffold breakage, but there was still a risk of the cell suspension leaking out of the ends of the 
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channel.  Since more than fifty percent of the braided collagen scaffolds seeded in both PDMS 

mold channel types, this was not considered a significant problem.  Hoechst stained images of 

uncrosslinked and crosslinked braided collagen scaffolds seeding using the two channel widths 

are shown in Figure 25.  These images do not show large visual difference between the surface 

treatments due to limitations in imaging a three-dimension scaffold, but in contrast to scaffolds 

preloaded with Mitotracker green, individual cells can be distinguished from one another 

enabling quantitative analysis.  It is apparent that the MDFCs attached onto the scaffolds seeded 

in the 1.0 mm wide channel more uniformly with a clear increase in cell number compared to the 

scaffolds seeded using the wider channel. 

  Uncrosslinked EDC/NHS 

2
.0

 m
m

 x
 1

2
.0

 m
m

 Sample Size 3 3 

Total Scaffolds Successfully Seeded 

(%) 
66.7 100 

MDFC Attachment 

(# of cells/10,000 µm
2
 ± SEM) 

23.4 ± 0.70 29.9 ± 1.2 

Total MDFC attachment 

(# cells ± SEM) 
23,501 ± 704.6 30,087 ± 1,230 

Total MDFCs Successfully Seeded 

(% ± SEM) 
11.8 ± 0.4 15.0 ± 0.6 

1
.0
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m

 x
 1

2
.0
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m

 

Sample Size 4 4 

Total Scaffolds Successfully Seeded 

(%) 
100 75 

MDFC Attachment 

(# of cells/10,000 µm
2
 ± SEM) 

31.1 ±1.12 36.1 ± 0.91 

Total MDFC attachment 

(# cells ± SEM) 
31,277 ± 1,038 36,356 ± 914.8 

Total MDFCs Successfully Seeded 

(% ± SEM) 
20.9 ± 0.7 24.2 ± 0.6 

Table 6: Cell seeding optimization summary table comparing different seeding channel dimensions 

 Indicates statistically significant differences between 2.0 mm wide channels and 1.0 

mm wide channels with p < 0.05 using Kruskal-Wallis One Way ANOVA on Ranks with 

Dunn’s Method. 
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Figure 25: Hoechst stained MDFCs seeded onto braided collagen scaffolds using different methods 

Fluorescence images comparing attachment of MDFCs on uncrosslinked and EDC/NHS 

crosslinked braided collagen scaffolds using 2.0 mm wide channels (top row) or 1.0 mm 

channels (bottom row) for seeding.  MDFCs were preloaded with Hoechst dye.  Scale bar 

= 200 µm. 

 The density of cells that attached to the braided collagen scaffolds in an area of 10,000 

µm
2
 were counted visually to compare the two different seeding methods.  Seeding with either 

the 2.0 mm wide channel or the 1.0 mm wide channel showed a significant increase in cell 

density between uncrosslinked and crosslinked scaffolds (Figure 26).  The results show seeding 

using the narrower channel significantly increased the seeding density on both uncrosslinked and 

crosslinked scaffolds compared to the wider channel. 
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Figure 26: Comparison of MDFC attachment seeding with different channel dimensions 

The density of cells that attached to the braided collagen scaffolds in an area of 10,000 

µm2 were counted visually to compare with seeding using either the 2.0 mm wide 

channel or the 1.0 mm wide channel showed a significant increase in cell density between 

uncrosslinked and crosslinked scaffolds.   Indicates p < 0.05 using Kruskal-Wallis One 

Way ANOVA on Ranks with Dunn’s Method.  Bars indicate mean ± SEM (total n 

numbers indicated in Table 6). 

 The total number of MDFCs that attached to the braided collagen scaffold was 

approximated in order to determine which channel width resulted in the better seeding efficiency.  

As expected from the regional cell attachment counts, seeding with the narrower channel caused 

significantly more cells to attach to the surface compared to the wider channel with at least 6,000 

more cells attached in both uncrosslinked and crosslinked scaffolds (Figure 27).  Since the 

channels were seeded with different cell suspension concentrations to adjust for the different 

channel volumes, the total cell attachment was normalized by calculating the percentage of 

MDFCs used in the cell suspension that actually seeded (Figure 28).  Using the narrower channel 

to seed MDFCs resulted in 20-25% of the cells in the suspension attaching to the braided 

collagen scaffold, which was significantly higher than the wider channel, which resulted in less 

than 15% attachment on each surface modification.   
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Figure 27: Comparison of total MDFC attachment seeing with different channel dimensions 

The total number of MDFCs that attached to the braided collagen scaffold was 

approximated in order to determine which channel width resulted in the better seeding 

efficiency.  Seeding with the narrower channel caused significantly more cells to attach to 

the surface compared to the wider channel with at least 6,000 more cells attached in both 

uncrosslinked and crosslinked scaffolds.   Indicates p < 0.05 using Kruskal-Wallis One 

Way ANOVA on Ranks with Dunn’s Method.  Bars indicate mean ± SEM (total n 

numbers indicated in Table 6). 

 

Figure 28: Percentage of MDFCs seeded that attached to the braided collagen scaffold 

Since the channels were seeded with different cell suspension concentrations to adjust for 

the different channel volumes, the total cell attachment was normalized by calculating the 

percentage of MDFCs used in the cell suspension that actually seeded.   Indicates p < 

0.05 using Kruskal-Wallis One Way ANOVA on Ranks with Dunn’s Method.  Bars 

indicate mean ± SEM (total n numbers indicated in Table 6). 
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5.3. Quantification of Cell Number on Different Surface Modifications 

Based on the results of the development of the cell seeding protocol, all further cell 

attachment and growth experiments, MDFCs were loaded with Hoechst dye prior to seeding to 

allow for quantitative analysis.  In addition, due to the higher seeding efficiency, the narrower 

channels were used for all future attachment and growth experiments. 

5.3.1. Cell Attachment 

 In order to determine the effects of surface modifications on MDFC attachment, braided 

collagen scaffolds with different surface modifications were seeded with MDFCs and incubated 

for 24 hours.  The results of the cell attachment assay are summarized in Table 7, with the raw 

cell counts from each scaffold including statistics in Appendix C.1: Cell Attachment Data.  

Fluorescence images of the Hoechst dye stained braided collagen scaffolds are shown in Figure 

29.  The MDFCs seeded uniformly spread over the entire surface of the braided collagen 

scaffold.  The images show a clear increase in cell attachment from the uncrosslinked scaffold 

surface (Figure 29A) to the crosslinked and FGF-2 bound scaffold surfaces.  The EDC/NHS 

HEP (Figure 29C) braided collagen scaffold appears to have a higher density of cells compared 

to the EDC/NHS (Figure 29B), 5 ng/mL FGF-2 (Figure 29D), 10 ng/mL FGF-2 (Figure 29E), 

and 50 ng/mL FGF-2 (Figure 29F) braided collagen scaffolds. 
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 Sample Size 
MDFC Attachment 

(# of cells / 10,000 µm
2
 ± SEM) 

UNCROSSLINKED 13 34.9 ± 0.69 

EDC/NHS 13 41.6 ± 0.76 

EDC/NHS HEP 11 46.5 ± 0.99 

5 ng/mL FGF2 12 40.3 ± 0.73 

10 ng/mL FGF2 8 39.2 ± 0.70 

50 ng/mL FGF2 8 40.7 ± 0.99 

Table 7: Cell Attachment summary table comparing different surface modifications 

 Indicates statistically significant differences between uncrosslinked and all other 

conditions with p < 0.05 using Kruskal-Wallis One Way ANOVA on Ranks with Dunn’s 

Method.   Indicates statistically significant differences between uncrosslinked and all 

other conditions with p < 0.05 using Kruskal-Wallis One Way ANOVA on Ranks with 

Dunn’s Method. 

 

Figure 29: Hoechst stained MDFCs on braided collagen scaffolds on day 1 

Uncrosslinked (A), EDC/NHS (B), EDC/NHS HEP (C), 5 ng/mL FGF-2 (D), 10 ng/mL 

FGF-2 (E), and 50 ng/mL FGF-2 (F); Scale bar = 200 µm. 

 The density of cells that attached to the braided collagen scaffolds in an area of 10,000 

µm
2
 were counted visually to compare how surface modifications affected cell attachment 

(Figure 30).  There was a significant increase in cell attachment from uncrosslinked braided 
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collagen scaffolds to braids with surface modifications.  Braided collagen scaffolds that were 

EDC/NHS crosslinked with heparin promoted a significantly higher cell attachment to its surface 

than all other scaffold surfaces.  Increasing the amount of FGF-2 bound to the surface does not 

significantly affect cell attachment.  There was not a significant difference in cell attachment 

between EDC/NHS crosslinked scaffolds and all scaffolds with FGF-2 bound to the surface. 

 

Figure 30: MDFC attachment for different surface modifications 

The density of cells that attached to the braided collagen scaffolds in an area of 10,000 

µm2 were counted visually to compare how surface modifications affected cell 

attachment.   Indicates p < 0.05 using Kruskal-Wallis One Way ANOVA on Ranks 

with Dunn’s Method.  Bars indicate mean ± SEM (total n numbers indicated in Table 7). 

 To determine if seeding using the PDMS mold distributes the MDFCs uniformly across 

the entire length of the scaffold, images were taken in adjacent regions across the entire length of 

the braids and cells were counted.  The results are reported as the average number of cells per 

10,000 µm
2
 for every 900 µm across the scaffolds on the x-axis (Figure 31).  The raw data for 

each scaffold can be found in Appendix C.2: Summary of Cell Distribution Data.  These results 

show that using the PDMS mold to seed the braided collagen scaffolds resulted in uniform 

distribution across the length of the braid, with approximately 7,392 ± 1,669 µm of the scaffold 
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being exposed to cells on average.  Although only one side of the scaffold was analyzed for cell 

distribution, it was apparent from visual analysis that the majority of the scaffolds seeded 

uniformly across the entire surface area. 

 

Figure 31: Cell distribution on braided collagen scaffolds after 1 day 

Images were taken in adjacent regions across the entire length of the braids and cells 

were counted to determine cell distribution.  The results are reported as the average 

number of cells per 10,000 µm2 for every 900 µm across the scaffolds on the x-axis. 

5.3.2. Cell Growth 

  The effect of binding FGF-2 on MDFC growth and proliferation was determined 

by seeding MDFCs and incubating them on the braided collagen scaffolds for 1 day, 5 days, or 7 

days.  The results of the cell growth assay are summarized in Table 8, with raw cell counts from 

each scaffold including statistics in Appendix D: Cell Growth Data.  Fluorescence images of 

Hoechst dye stained braided collagen scaffolds are shown in Figure 32.  During incubation, 

MDFCs seeded uniformly showing a minor increase in cell concentration in the grooves of the 

braid topography, and by the seventh day, cells have completely spread out to cover the surface 

of the braid.  All braided scaffolds showed an increase in cell density from 1 day to 7 days 
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showing most of the growth happening between 5 and 7 days.  The greatest overall cellular 

growth appears to occur within the scaffolds with FGF-2 bound to the surface. 

 1 DAY 5 DAYS 7 DAYS 

 
Sample 

Size 

          

          
     

Sample 

Size 

          

          
     

Sample 

Size 

          

          
     

UNCROSSLINKED 13 34.9 ± 0.69 10 37.0 ± 0.91 10 47.7 ± 0.89 

EDC/NHS 13 41.6 ± 0.76 10 44.1 ± 0.79 9 50.8 ± 1.07 

EDC/NHS HEP 11 46.5 ± 0.99 9 46.2 ± 0.75 9 53.3 ± 1.26 

5 ng/mL FGF-2 12 40.3 ± 0.73 9 47.1 ± 0.77 9 55.6 ± 1.18 

10 ng/mL FGF-2 8 39.2 ± 0.70 10 42.5 ± 0.71 10 63.5 ± 1.36 

50 ng/mL FGF-2 8 40.7 ± 0.99 8 44.8 ± 0.91 9 73.2 ± 1.63 

Table 8: Cell growth summary table comparing different surface modifications 

 Indicates statistically significant differences between the growth of that surface 

modification at that day and the growth at all previous days with p < 0.05 using Kruskal-

Wallis One Way ANOVA on Ranks with Dunn’s Method.   Indicates statistically 

significant differences between the growth of that surface modification at that day and the 

growth at all previous days with p < 0.05 using One Way ANOVA with Holm-Sidak 

method.   Indicates statistically significant differences between 10 ng/mL FGF-2 and 

50 ng/mL FGF-2 and all other modifications at 7 days as well as statistically significant 

differences between the cell growth of these modifications at 7 days and the growth at 1 

day and 5 days with p < 0.05 using Kruskal-Wallis One Way ANOVA on Ranks with 

Dunn’s Method. 
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Figure 32: Hoechst stained images of MDFC Growth on braided collagen scaffolds 

Hoechst stained images of MDFC growth at 1 day, 5 days, and 7 days (columns) on 

uncrosslinked, EDC/NHS crosslinked, EDC/NHS crosslinked with heparin, and 

EDC/NHS crosslinked with heparin and 5 ng/mL, 10 ng/mL, or 50 ng/mL FGF-2 braided 

collagen scaffolds (rows).  Scale bar = 200 µm. 
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 The density of cells that attached to the braided collagen scaffolds in an area of 10,000 

µm
2
 were counted visually to compare how surface modifications affected cell growth after 7 

days in culture (Figure 33).  The concentration of MDFCs on the surface of the braids increased 

on both control and modified braids between day 1 and day 7.  After 5 days in culture, the 

number of cells on each of the braid types did not increase significantly except for cells attached 

to braids modified with EDC/NHS crosslinking and 5 ng/mL and 10 ng/mL of FGF2.  

Uncrosslinked scaffolds had significantly fewer cells on the surface than all other scaffold types, 

and scaffolds modified with 5 ng/mL FGF-2 had a significantly higher cell densities than all 

other braids except types modified with EDC/NHS and heparin and 50 ng/mL FGF-2.  By day 7, 

all braided collagen scaffolds showed a significant increase in cell concentration compared to 

day 1.  In addition, between day 5 and day 7, scaffolds modified with different concentrations of 

FGF-2 showed a significant increase in cell growth compared to the controls with increasing 

levels of FGF-2 (Figure 34). 
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Figure 33: Cell growth comparison of different surface modifications 

 Indicates p < 0.05 using Kruskal-Wallis One Way ANOVA on Ranks with Dunn’s 

Method, and  indicates p < 0.05 using One Way ANOVA with Holm-Sidak method.  

Bars indicate mean ± SEM (total n numbers indicated in Table 8). 

 

Figure 34: Cell growth comparison after 7 days in culture 

 Indicates p < 0.05 using Kruskal-Wallis One Way ANOVA on Ranks with Dunn’s 

Method, and  indicates p < 0.05 using One Way ANOVA with Holm-Sidak method.  

Bars indicate mean ± SEM (total n numbers indicated in Table 8). 
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The cell distribution data for the cell growth over 7 days on the different surface 

modifications shows the cells grow evenly along the length of the scaffold (Figure 35).  The raw 

data for each scaffold can be found in Appendix C.2: Summary of Cell Distribution Data, 

Appendix D.4: Summary of Cell Distribution Data – 5 Days, and Appendix D.5: Summary of 

Cell Distribution Data – 7 Days.  The trend of the distribution lines (solid) fluctuate around the 

average cell growth (dashed) for each braided scaffold with minimal changes between 1 and 5 

days.  Interestingly, scaffolds loaded with 10 ng/mL and 50 ng/mL FGF-2 shows a statistically 

significant difference in growth from 5 to 7 days.  
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Figure 35: Cell Distribution for braided collagen scaffolds over 7 days 

Solid lines indicate average cell distributions for representative scaffolds in each group at 

1, 5, and 7 days (n numbers indicated within each legend).  Dashed lines indicate the 

average attachment of all scaffolds analyzed for each group (total n numbers for 1 Day – 

Average, 5 Days – Average, and 7 Days – Average indicated in Table 8). 
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5.3.3. Estimation of Total Cell Attachment and Growth 

 The total number of cells that attach to the braided collagen scaffolds was determined by 

multiplying the results in Table 7 by the surface area of an unseeded braided collagen scaffold 

calculated from histological cross-sections.  The cross-sectional perimeter of a braid containing 

18 collagen microthreads, which was not significantly different between each surface 

modification, was found to be 1,361 ± 278 µm.  The cross-sectional perimeter was then 

multiplied by the length of the seeded portion of the braid, which was determined using the cell 

distribution data, to get a total surface area of 10,059,532 ± 2,058,025 µm
2
.  In order to calculate 

the total attachment, the results in Table 7 were multiplied by 1,006 ± 205.8, which is the surface 

area divided by 10,000 µm
2
.  The results of the total cell attachment are summarized in Table 9, 

with the total cell calculations including surface area calculations, total attachment calculations, 

percentage calculations, and statistics for each scaffold detailed in Appendix E: Total Cell 

Attachment Data.   

 
Total MDFC Attachment  

(# of cells ± SEM) 

Percentage of Attached Cells  

(% of 150,000 cells seeded ± SEM) 

UNCROSSLINKED 35,139 ± 693 23.4 ± 0.5 

EDC/NHS 41,893 ± 765 27.9 ± 0.5 

EDC/NHS HEP 46,386 ± 913 30.9 ± 0.6 

5 ng/mL FGF2 40,511 ± 736 27.0 ± 0.5 

10 ng/mL FGF2 39,414 ± 700 26.3 ± 0.5 

50 ng/mL FGF2 40,912 ± 1,000 27.3 ± 0.7 

Table 9: Total cell attachment summary table on different surface modifications 

 Indicates statistically significant differences between uncrosslinked and all other 

conditions with p < 0.05 using Kruskal-Wallis One Way ANOVA on Ranks with Dunn’s 

Method.   Indicates statistically significant differences between uncrosslinked and all 

other conditions with p < 0.05 using Kruskal-Wallis One Way ANOVA on Ranks with 

Dunn’s Method. 

 The total number of MDFCs that attached to the braided collagen scaffolds was 

approximated to determine which surface treatment promoted more cellular attachment.  As 
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expected from the regional cell attachment counts, uncrosslinked braided collagen scaffolds 

promoted significantly less cell attachment than the other braided collagen scaffolds while 

EDC/NHS with heparin scaffolds promoted significantly more cells to attach (Figure 36).  In 

order to determine which scaffold had the best seeding efficiency, the percentage of the total 

amount of cell in the suspension that actually attached to the scaffolds was calculated (Figure 

37).  Uncrosslinked braided collagen scaffolds resulted in a significantly lower seeding 

percentage compared to the other surface modifications with approximately 23% attachment.  

EDC/NHS with heparin scaffolds resulted in a significantly higher seeding percentage with 

approximately 31% attachment. 

 

Figure 36: MDFC total attachment for different surface modifications 

The total number of MDFCs that attached to the braided collagen scaffolds was 

approximated to determine which surface treatment promoted more cellular attachment.  

 Indicates p < 0.05 using Kruskal-Wallis One Way ANOVA on Ranks with Dunn’s 

Method.  Bars indicate mean ± SEM (total n numbers indicated in Table 8). 
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Figure 37: Percentage of MDFC seeded that attached to the braided collagen scaffolds 

In order to determine which scaffold had the best seeding efficiency, the percentage of 

the total amount of cell in the suspension that actually attached to the scaffolds was 

calculated by dividing the number of cells attached by the initial number of cells seeded.  

 Indicates p < 0.05 using Kruskal-Wallis One Way ANOVA on Ranks with Dunn’s 

Method.  Bars indicate mean ± SEM (total n numbers indicated in Table 8). 

 The effect the surface modifications have on the rate of MDFCs growth was determined 

by extrapolating the doubling time from the total MDFC growth after 5 and 7 days.  The results 

of the total cell growth are summarized in Table 10.  The total cell calculations including 

doubling time calculations and statistics for each scaffold are detailed in Appendix F: Total Cell 

Growth Data. 
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 5 DAYS 7 DAYS 

 
Total MDFC Growth 

(# of cells ± SEM) 

Fold Increase 

(increase ± SEM) 

Total MDFC Growth 

(# of cells ± SEM) 

Fold Increase 

(increase ± SEM) 

UNCROSSLINKED 37,205 ± 918 1.06 ± 0.026 47,978 ± 893 1.37 ± 0.025 

EDC/NHS 44,337 ± 794 1.06 ± 0.019 51,123 ± 1,080 1.22 ± 0.026 

EDC/NHS HEP 46,670 ± 753 1.00 ± 0.017 54,670 ± 1,265 1.18 ± 0.027 

5 ng/mL FGF-2 47,399 ± 770 1.17 ± 0.019 55,977 ± 1,187 1.38 ± 0.029 

10 ng/mL FGF-2 42,742 ± 712 1.08 ± 0.018 63,907 ± 1,371 1.62 ± 0.035 

50 ng/mL FGF-2 45,094 ± 916 1.10 ± 0.022 73,610 ± 1,639 1.80 ± 0.040 

Table 10: Total cell growth summary table on different surface modifications 

 Indicates statistically significant differences between the growth / increase over 

attachment of MDFCs at 7 days for 10 ng/mL and 50 ng/mL FGF-2 and all other surface 

modifications with p < 0.05 using Kruskal-Wallis One Way ANOVA on Ranks with 

Dunn’s Method. 

 The total number of MDFCs present on the braided collagen scaffold after 5 and 7 days 

in culture was approximated to determine which surface modification promoted the highest 

growth rate.  As expected from the regional cell growth counts, after 5 days in culture, none of 

the modified braid types promoted significant cell growth relative to the day 1 attachment data 

expect braids with 5 ng/mL FGF-2 bound to the surface.  However, there was significant growth 

after 7 days, with surfaces modified with 50 ng/mL FGF-2 having approximately 74,000 cells 

present, which was significantly higher than all other conditions (Figure 38).  To determine 

which scaffold promoted the highest growth rate, the fold increase in cell number normalized to 

the average cell attachment for each condition was calculated (Figure 39).  After 5 days, all 

control surface modifications as well as scaffolds modified with 10 ng/mL FGF-2 had 

significantly less growth than surfaces modified with 5 ng/mL FGF-2.  After 7 days, the growth 

rate on EDC/NHS crosslinked scaffolds and EDC/NHS crosslinked with heparin scaffolds was 
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significantly less than all other conditions, and scaffolds modified with 10 and 50 ng/mL FGF-2 

had significantly higher growth rates than all other scaffold types. 

 

Figure 38: Total cell growth after 7 days in culture 

 Indicates p < 0.05 using Kruskal-Wallis One Way ANOVA on Ranks with Dunn’s 

Method, and  indicates p < 0.05 using One Way ANOVA with Holm-Sidak method.  

Bars indicate mean ± SEM (total n numbers indicated in Table 8). 
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Figure 39: Effect of surface modifications on growth rate 

 Indicates p < 0.05 using Kruskal-Wallis One Way ANOVA on Ranks with Dunn’s 

Method, and  indicates p < 0.05 using One Way ANOVA with Holm-Sidak method.  

Bars indicate mean ± SEM (total n numbers indicated in Table 8). 

5.4. Qualitative Analysis of Cell Density and Cellular Alignment 

5.4.1. Histological Analysis of Cell Density 

 Differences in cell density on braided collagen scaffolds with different surface 

modifications was analyzed using histological sections of MDFCs on braids after 1 and 7 days in 

culture stained with H&E.  The sections were imaged to determine qualitatively the cell 

thickness and homogeneity on the surface of the braid (Figure 40).  After 1 day in culture, the 

MDFCs are located on the surface of the braided collagen scaffolds showing very little 

spreading.  The cells are attached to the braids in clusters with heterogeneous cell density 

distributions.  After 7 days, the amount of cells on the surface seems to have decreased, but the 

cells appear more uniformly spread throughout the surface of the braid creating a more 

homogenous thickness. 
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Figure 40: H&E stained braided collagen threads at 1 and 7 days 

H&E stained histological sections of braided collagen scaffolds with different surface 

modifications (rows) at 1 day and 7 days using 20X and 40X magnification (columns).  

Scale bar = 100 µm. 
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5.4.2. Fluorescence Microscopic Analysis of Cell Density and Cellular Alignment 

 The effect of FGF-2 surface modifications on MDFC cell density and cellular alignment 

was determined by seeding MDFCs and incubating them on braided collagen scaffolds for 1, 5, 

and 7 days.  The scaffolds were imaged either to determine cell density using Hoechst dye 

fluorescence microscopy, or to determine cellular alignment using phalloidin confocal 

fluorescence microscopy.  The Hoechst stained cells at 1, 5, or 7 days shows uniform cell density 

over each surface modification (Figure 41).  The uncrosslinked scaffolds show a higher 

concentration of cells in the grooves between threads, and all braided scaffolds with surface 

modification showed a more uniform density across the entirety of the braid.  The uniform 

concentration of cells indicates that imaging a small subsection of the braid would be a 

satisfactory representation of the alignment over the seeded area.  Since the working distance of 

the confocal microscope was not large enough to image through the entire scaffold, only a small 

fraction of the braid could be analyzed per image.  Confocal images of phalloidin stained braids 

at 1 day and 7 days, showed a distinct difference in the f-actin configurations between the two 

time points (Figure 42).  At 1 day, all scaffolds exhibit a lack of cellular alignment, with f-actin 

filaments spread out with no specific orientation.  At 7 days, the cells began to orient themselves 

along the linear axis, meaning the direction of the threads not accounting for the curvature of the 

braids, on uncrosslinked braids and braids crosslinked with and without heparin.  The f-actin 

filaments appear to be aligned parallel to each other over the braid structure with some following 

the curvature of the individual braided threads.  Braided collagen scaffolds modified with 

different concentrations of FGF-2 showed limited alignment resembling the 1 day scaffolds as 

opposed to the 7 day uncrosslinked and crosslinked with and without heparin scaffolds.  
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Figure 41: Qualitative analysis of cell density 

Hoechst stained MDFCs on braided collagen scaffolds with different surface 

modifications (rows) at 1 day, 5 days, and 7 days (columns) under 4X magnification.  

Scale bar = 200 µm. 
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Figure 42: Analysis of alignment using phalloidin staining  

Representative images for alignment analysis of braided collagen scaffolds with different 

surface modifications (rows) at 1 day and 7 days (columns) using phalloidin staining 

(green) and Hoechst stained nuclei (blue).  Scale bar = 250 µm .  
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Chapter 6: Discussion 

 The goal of this project was to investigate a novel method to attach and growth muscle 

derived fibroblastic cells on collagen microthreads that could be used to regenerate skeletal 

muscle in large defects.  This project has succeeded in characterizing the mechanical properties 

of the braids, developing a novel seeding method to attach MDFCs to braided collagen scaffolds, 

quantifying the number of cells that attached and grew on the braids in culture.  This section 

illustrates the significance of these results in terms of the aim of this project. 

6.1. Braided Collagen Scaffold Material Characterization 

6.1.1. Characterization of Localized FGF-2 

The immunocytochemistry of the single collagen threads verified that FGF-2 was bound 

to the surface, and the fluorescence expression increased depending on the concentration of FGF-

2 in the solution.  Initially, immunocytochemistry performed on braided collagen scaffolds to 

verify the localization of FGF-2 on the surface did not give conclusive results due to the 

limitations of imaging the entire braid in one plane of the z-axis (results not shown).  Since the 

surface area of single collagen microthreads exposed to EDC/NHS with heparin and FGF-2 is 

much smaller than braided collagen threads (5.46 ± 2.55 mm
2
 to 19.05 ± 3.90 mm

2
 respectively), 

one can assume that binding heparin and FGF-2 to single thread using the same protocol will 

validate that braided threads have it on the surface.
36

  Threads exposed to 5 ng/mL FGF-2 

showed minimal surface binding with areas containing higher fluorescence intensity than others, 

which suggests that the heparin FGF-2 binding was not homogeneous throughout the surface.  

When threads were exposed to 10 ng/mL and 50 ng/mL of FGF-2, the difference between the 

fluorescence intensity along the thread was less apparent, however the 50 ng/mL FGF-2 threads 

showed a greater overall surface coverage. 
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Studies show that culturing fibroblasts in culture medium supplemented with 4 ng/mL 

FGF-2 in low oxygen conditions (5% O2, 5% CO2) for weeks allows for dedifferentiation into 

stem-like cells, and with continued exposure to FGF-2, the stem cell marker expression could be 

maintained.
46

  Levenstein et al. showed that culturing human embryonic stem cells with media 

supplemented with 100 ng/mL FGF-2 maintained the pluripotency of the cells through multiple 

passages in the absence of fibroblasts, which is standard for growing stem cells.
139

  Mizuno et al. 

was able to induce differentiation of iPS cells reprogrammed from fibroblasts into myoblasts and 

maintain the stemness for 24 weeks on Matrigel-coated plates.
145

  By binding FGF-2 to the 

surface of the braided scaffolds, the cells will have prolonged exposure to the growth factor 

during in vitro culture and after in vivo implantation.  Since FGF-2 has a short half-life, 

approximately 12 hours in vitro, when not electrostatically bound to a surface, binding heparin to 

the scaffold using EDC/NHS before passive adsorption of FGF-2, will help to maintain the 

stability of the growth factor to ensure extended cell exposure.
132,146

  Relative to adding growth 

factor into the culture medium, when binding it to the surface, it is not known how much of the 

FGF-2 actually binds, and the quantity that is needed to maintain the stemness of the fibroblasts 

for an extended period.  For the purpose of this study, it was not necessary to determine 

accurately the amount of FGF-2 that bound since the cells were not going to be cultured long 

enough to show detectable levels of stem cell markers, which previous studies prove to be 

expressed after 7 days.
46

  Future studies should analyze the effects of FGF-2 surface 

concentrations on MDFC stem cell marker expression. 

Previous studies indicate that immobilizing heparin onto the surface of insoluble collagen 

sponges and films doubles the amount of FGF-2 that adsorbs to the surface compared to sponges 

without heparin.
38,132

  After reviewing these studies, it may be beneficial for future experiments 
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using braided collagen scaffolds to use larger quantities of heparin and FGF-2.  Although it is 

clear that both are present on the surface of the scaffold, for long term studies, FGF-2 needs to be 

available during both in vitro culture and in vivo implantation studies.  Wissink et al. crosslinked 

insoluble collagen films with different molar ratios of EDC/NHS to heparin.
132

  The results 

showed that molar ratios between 0.4 and 0.6, which corresponds to 14 mM EDC, 8 mM NHS, 

with between 1.5 mM and 1.0 mM heparin respectively, yielded 20-30 mg of heparin per gram 

of collagen immobilized within the sponge.
132

  It was found that a maximum of 22% of the FGF-

2 added to solution will bind to the heparin on the surface, leading to the conclusion that one 

FGF-2 molecule will bind to heparin per 1000 heparin molecules.  When detecting how much 

FGF-2 is released from the scaffold over time, the study showed that after 10 days approximately 

60% of the growth factor was still present within the sponge.
41,132

  Pieper et al. crosslinked 

collagen sponges with 960 µM heparin sulfate and 7 µg/mL FGF-2, and found that 36% of the 

loaded FGF-2 was bound to the scaffold, with 53% of the growth factor being released after 4 

weeks.
38

 

These results suggest that by crosslinking the braided collagen scaffolds with 1.9% (w/v) 

heparin and passively adsorbing concentrations of FGF-2 between 50 ng/mL and 100 ng/mL to 

the surface, the rate of release can be predicted to create the optimal environment for maintained 

stemness over long intervals.  Based on the study by Wissink et al., by adsorbing 50 ng/mL FGF-

2 in 1.0 mL of solution, one can predict approximately 11 ng will bind to the surface, which will 

correlate to releasing 4.5 ng to the cells in the first 10 days of culture.  This would be consistent 

with the concentration of FGF-2 that cells are exposed to when it is incorporated into the culture 

medium in vitro.  The aim of this preliminary study was to confirm that FGF-2 bound to the 

heparin and influenced the growth of MDFCs on braided collagen scaffolds, so it was not 
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imperative to achieve the maximal binding efficiency of FGF-2 using heparin.  In future studies, 

it will be necessary to determine the quantity and the release rate of heparin and FGF-2 to 

determine the optimal level needed to maintain the stemness long enough to promote muscle 

regeneration. 

Besides maintaining the cell phenotype, FGF-2 promotes vascularization of a wound site 

when implanted into a defect.  Studies show FGF-2 upregulates vascular endothelial growth 

factor (VEGF), which stimulates angiogenesis, and prevents the degradation of the capillaries 

formed.
134,147

  Nillesen et al. EDC/NHS crosslinked collagen sponges with heparin and FGF-2, 

resulting in 68 mg heparin and 1.6 µg FGF attaching per mg scaffold.  After extracting the 

scaffolds from a rat model 21 days after implantation, the FGF-2 scaffolds stimulated 

proliferation and differentiation of granulocytes, endothelial cells, fibroblasts in the surrounding 

tissue, which are responsible for revascularization.
148

  Pieper et al. found implanting a 

crosslinked collagen sponge with 60 mg heparin and 1260 µg FGF per gram of the matrix 

resulted in capillary formation after 4 weeks.
38

  Another study found that EDC/NHS crosslinking 

collagen films with 18.6 mg per gram collagen and 3.4 ng per scaffold elicited a vascular 

response 3 weeks after implantation.
129

  Vascularization is imperative for the formation of 

healthy skeletal muscle since it provides the oxygen needed to maintain the viability of the 

differentiating satellite cells, so these results suggested that by binding FGF-2 to the surface of 

the braided collagen scaffolds will help initiate vascularization in large muscle defects. 

6.1.2. Mechanical Testing of Braided Collagen Scaffolds 

Previous studies by Cornwell et al. on single collagen threads for tissue engineered 

ligament applications showed crosslinking with EDC increased the mechanical strength 

significantly compared to uncrosslinked threads.
36

  These results suggest EDC crosslinked 
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microthreads have potential to be used for load bearing tissue regeneration.  Similarly, tissue 

engineered skeletal muscle needs to be able to withstand the high tensile loads involved with 

muscle movement, specifically the muscle contraction involved with myofiber formation and 

function.  A single EDC crosslinked microthread has a cross sectional area larger than a single 

myofiber when hydrated, approximately 12,100 µm
2
 to 7900 µm

2
, but this would not be 

sufficient to fill a large muscle defect, which involves severing of multiple myofibers.
36,94

  By 

braiding 18 collagen threads together to form a scaffold, the cross sectional area is increased to 

91,900 µm
2
, which is approximately the size of 12 myofibers.  When hydrated, bundles of 

unbraided threads attached to one another at each end tend to separate from one another, leaving 

large gaps, which will cause inconsistencies in myofiber formation and little interaction between 

cells on different threads.  By braiding the threads together, the integrity of the structure can be 

controlled by altering the braiding angle between each thread.  This also insures cells on each 

thread can interact with each other. 

Fiber or thread-based scaffolds have been used extensively in ligament regeneration 

research using collagen, fibrin, silk, PGA, poly-L-lactic acid (PLLA), and polylactic-co-glycolic 

acid (PLAGA).
36,126,149-151

  The mechanical properties of single collagen threads have been 

researched comparing crosslinked to uncrosslinked conditions, but the strength of braided self-

assembled collagen threads has yet to be characterized.  For mechanical testing, only 

uncrosslinked and EDC/NHS crosslinked braided collagen threads were used.  Similar to single 

threads, uniaxial tensile tests of braided collagen scaffolds were conducted and showed a 

significant increase in strength and stiffness when the braids were crosslinked using EDC/NHS.  

Due to the large difference in cross sectional area, the results show that braided uncrosslinked 

threads increases the failure load from 0.389 ± 0.052 N to 0.591 ± 0.076 N.  Crosslinking the 
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braids increased the strength of the scaffold at failure to 1.979 ± 0.237 N compared to single 

crosslinked threads, which has a failure load of 1.33 ± 0.484 N.
36

  Interestingly, braiding the 

collagen threads increased the UTS of the uncrosslinked and crosslinked single threads.  The 

UTS of single uncrosslinked threads was found to be 1.5 ± 0.2 MPa, while braiding the threads 

increased it to 5.11 ± 0.7 MPa.  Crosslinking the single threads using EDC/NHS resulted in a 

UTS of 11 ± 4 MPa, and braiding these threads increased the UTS to 27 ± 3 MPa.  This shows 

that by braiding the threads to one another, the mechanical strength of the threads can be 

increased because the woven design prevents catastrophic failure.  Interestingly, the strain at 

failure is the same for uncrosslinked braids and threads, but crosslinking braids resulted in a 3-

fold increase in failure strain over crosslinked threads.  However, braiding crosslinked collagen 

threads did not affect the stiffness of the threads as both braids and single threads had an 

maximum tangent modulus of approximately 68 MPa. 
36

  Since the threads in braided collagen 

scaffolds are woven together, it gives the threads added support when pulled uniaxially.  A 

limitation of using braided collagen threads for muscle regeneration pertains to the elasticity of 

the scaffold since it is significantly higher than that of human muscle, which is 12 kPa.
47,141,142

  A 

study varying the stiffness of polyethylene glycol (PEG) hydrogels found that hydrogels with a 

stiffness of 12 kPa maintained the optimal environment for sustained satellite cell self-renewal 

and proliferation.
143

  In future studies, it will be necessary to determine if using growth factors, 

such as FGF-2 or IGF-I, are able to mimic the environment created using the optimal elasticity to 

satellite cell self-renewal. 

Braided synthetic polymer threads composed of PGA, PLLA, and PLAGA have been 

researched as possible tissue engineered solutions to repair ligament damage.
149,152

  By keeping 

the braiding angle constant for each polymer composition, the uniaxial mechanical results 
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showed braided PGA fibers were the strongest with a maximum load of 502 N, and PLLA were 

the weakest mechanically with a maximum load of 298 N.
149

  As expected, synthetic fibers have 

a much higher mechanical strength compared to collagen braids, which is beneficial for 

engineered ligaments since they must endure higher loads.  For muscle regeneration, such high 

mechanical strength is not necessary since the loads are not as large.  A limitation in the current 

study of braided collagen threads was the absence of braiding angle characterization.  In the 

future, it would be beneficial to study how different braiding angles affects the mechanical 

strength of the collagen braids.  Another important reason to classify the braiding angle would be 

to give insight into the pore size, or the space between the individual threads, which will verify 

that cells and nutrients have the ability to diffuse into the scaffold for the best tissue ingrowth.
37

 

It is important to characterize the acellular braided collagen scaffolds in relation to their 

failure loads, but a limitation of this study is that it does not determine how the scaffolds will 

respond to native skeletal muscle cues when implanted into an animal model.  Native skeletal 

muscle produces isometric forces due to twitch and tetanic contraction, which are impaired when 

an injury occurs.  Iwata et al. characterized the isometric force production of rats with a 

contusion injury to the plantar flexor muscles, and found the isometric force dropped 

significantly, approximately 45% that of a healthy skeletal muscle, 2 days after injury onset and 

returned to normal after 21 days.
153

  Another method created large muscle defects in the biceps 

femoris muscle of a rat model, which showed after 42 days the deficit isometric force remained 

constant and did not improve.  This confirms that the truncated myofibers are unable to 

regenerate and bridge the gap caused by the defect without a scaffold present leaving the muscle 

permanently impaired.
154
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The method proposed in this study involves seeding and inducing pluripotency of 

fibroblasts on the scaffold to initiate muscle regeneration in the wound bed.  In addition, the 

scaffold will have to maintain its structural integrity as the seeded iPS cells differentiate into 

myoblasts and fuse during tissue remodeling while restoring muscle function.  One approach of 

mimicking this environment in vitro would be to induce differentiation of the iPS cells prior to 

implantation and measure the contractile forces as well as the force produced by the construct.  

This can be achieved by electrical and mechanical stimulation as well as measuring the forces 

produced by stretching and relaxing the construct.
94,106

  Furthermore, since the scaffold will be 

introduced to native myoblasts and stem cells through endogenous cell migration, it may be 

beneficial to seed them to the scaffold as well, to evaluate whether it can handle the native tissue 

response in vitro. 

6.2. MDFC Seeding to Braided Collagen Scaffolds 

 The next step in the development of a tissue engineered skeletal muscle is to determine a 

procedure to attach MDFCs to the surface of the braid in the most reproducible and uniform 

manner.  Previous studies characterized the biocompatibility and migration rate of fibroblasts 

onto single collagen threads, but a method to attach cells onto threads has not been 

investigated.
35,36

  Once attached to the scaffolds, a method to visualize the cells on the surface 

needed to be developed. 

In this study, two channel widths, 1.0 mm and 2.0 mm, were examined to determine 

which resulted in the highest seeding efficiency.  It was found that using a channel width of 1.0 

mm resulted in 21% and 24% of the MDFCs attaching to the uncrosslinked and EDC/NHS 

crosslinked braids, respectively since it had less void space around the braid in the channel.  A 

limitation of this novel MDFC seeding method is the braids are not exposed consistently to cells 
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throughout the entire surface area.  When seeding within the channel, it is not easy to control 

how the braids lies on the bottom of the PDMS mold, so if the braid is touching the bottom, the 

cells in the suspension are unable to flow under the braid to attach.  This resulted in an influx of 

cells on either side of the braided threads in the channel.  If the braid is lifted slightly from the 

bottom of the PDMS mold, then cells are able to flow under the scaffold, exposing the underside 

of the braid to cells.  There was no difference in seeding uniformity and concentration between 

scaffolds that seeded on the whole surface area and ones that only seeded on half. 

 There are several ways to overcome this limitation during the cell seeding process.  

Cornwell et al. seeded bundles of fibrin threads by exposing a cell suspension to the threads on a 

Thermanox® square, but since braided collagen threads are much larger and more structurally 

dense, using this method resulted in the braid drying out after 30 minutes.
43,151

  Altman et al. 

used a Teflon seeding chamber similar to the PDMS mold used in this study to seed their silk 

fiber cords.  Instead of exposing one area of the cords to the cell suspension, the cords were 

rotated 90 degrees while adding additional cells to the chamber until the entire cord was exposed 

to cells.
150,155-157

  Using the Teflon seeding chamber, the seeding efficiency was approximately 

10%, but since cells have a greater affinity for collagen and using longer cell suspension 

exposure times, the efficiency can be increased during the seeding period.
158

  To create the effect 

of physically rotating the scaffold in the chamber, a bioreactor can be utilized that will rotate the 

chamber around the scaffold at a controlled rate. 

 A second limitation to overcome was how to visually characterize the MDFCs on the 

threads.  It was observed that using a Mitrotracker dye was sufficient to visualize cells attached 

to the braids, but it was not possible to quantify discrete cells since it is difficult to correlate 

mitochondria with cell numbers.  Fluorescently tagging MDFCs with Hoechst dye prior to 
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seeding onto braided collagen scaffolds allowed for quantification of MDFCs and was used for 

the remainder of the experiments in this study.  Limitations of using Hoechst dye are that time 

lapse experiments using the same scaffold is not possible since exposing the Hoechst loaded cells 

to ultraviolet light activates the dye, which can cause mutations in the DNA, and 

autofluorescence of collagen between 320 nm and 461 nm can make seeing the cells difficult.  

Another limitation of using Hoechst dye is that it is unknown if cells expel the dye over a period 

of time, which could create inconsistencies in cell counts between experiments.  One way to 

overcome these limitations on the braids would be to express green fluorescent protein (GFP) in 

the MDFCs because in this excitation range, the collagen is less autofluorescent.  In addition, 

using GFP will allow cells to be visualized on braids for time-lapse experiments.
35,36,43

 

6.3. Quantification of Cell Number on Different Surface Modifications  

6.3.1. Attachment 

Using FGF-2 to enhance the regenerative process in tissue engineering has been 

extensively researched due to its involvement in native tissue development and healing of tissues 

including bone, nerve, lung, and connective tissues.
159

  Studies show that FGF-2, which is 

located in the basal lamina surrounding myofibers, is upregulated during skeletal muscle 

regeneration and is involved in the proliferation and fusion of developing myofibers.
49

  Due to 

the angiogenic properties of the protein, FGF-2 also plays a role in revascularizing the defect 

during the inflammatory and degradation stages of muscle wound healing.
2
  During in vivo 

studies, the injection of FGF-2 into injured muscle expedited the wound healing process, 

decreasing the formation of scar tissue and increasing function and movement of the muscle.
49

  

The goal of this study was to determine the effects of FGF-2 and heparin on MDFCs attachment, 

which was analyzed by seeding MDFCs to braided collagen scaffolds with different surface 
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modifications and observing the cellular attachment after 24 hours in culture.  The results show a 

significant decrease in cellular affinity for uncrosslinked braided collagen scaffolds, and a 

significant increase in cellular affinity for EDC/NHS crosslinked with heparin braided collagen 

scaffolds.  The difference in cell attachment between each of the FGF-2 bound scaffolds and the 

EDC/NHS crosslinked scaffolds were not significantly different. 

In vitro studies comparing uncrosslinked controls with scaffolds with surface 

modifications, specifically heparin, show no difference in attachment on collagen scaffolds, 

which is inconsistent with our findings that heparin promotes higher MDFC attachment 

compared to all other surface treatments.
28,43,132,160

  In this study, heparin promoted significantly 

higher attachment of MDFCs than all other braided collagen scaffold surfaces.  One variation 

that could account for this difference is that braided collagen scaffolds were prepared for cell 

attachment without exposure to serum, which affects the interaction between the cell signals and 

the modifications on the surface.  In addition, the cell seeding protocol was conducted without 

the addition of serum to the culture medium, in order to ensure the most accurate reflection on 

cell affinity for the different surface modifications.  Another difference that could cause the 

inconsistencies between the previous observations and the current studies would be the seeding 

method.  Wissink et al. loaded collagen sponges with different surface modifications by adding 

the cell suspension directly onto the surface, which eliminates attachment differences between 

the surface modifications.
132,160

  Another study using fibrin threads exposed the bundles to 

fibroblast cells on a Thermanox® square directly below the microthreads, which allowed for the 

smallest possible volume of cell suspension for optimal cell attachment.
43

  The current seeding 

method does not ensure all cells in the cell suspension will be exposed to the scaffold surface 

since the channel is higher and wider than the braided scaffold.  This hypothesis is supported by 
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the observations that only 23-30% of the cells in the suspension attached to the braided collagen 

scaffolds.   

Research by Cornwell et al. on the migration of fibroblast cells onto single uncrosslinked 

and EDC/NHS crosslinked microthreads showed a higher affinity for fibroblast migration onto 

uncrosslinked threads, but uncrosslinked braided collagen threads had significantly less 

attachment of MDFCs than all surface modifications.
36

  This difference could be explained by 

protocol differences, in which the single threads were EDC/NHS crosslinked in the presence of 

distilled water whereas the braided scaffolds were crosslinked in ethanol.  Pieper et al. showed 

fibroblasts and myoblasts were more viable when collagen sponges were crosslinked in the 

presence of ethanol.
28

  In our study, heparin promoted significantly higher attachment of 

fibroblast cells, but other studies show the effect on attachment is not consistent with our 

findings.
39

  Our attachment assay shows that varying the concentration of FGF-2 does not 

facilitate cell attachment, which was expected since studies do not show FGF-2 to affect the 

attachment of cells.  Cornwell et al. loaded fibrin thread bundles with increasing concentrations 

of FGF-2, from 0 to 200 ng/mL, in the absence of heparin and observed that FGF-2 did not 

increase the attachment of fibroblast cells over the bundles without FGF-2.
43

  Interestingly, with 

the addition of FGF-2 to EDC/NHS with heparin scaffolds, the attachment between EDC/NHS 

crosslinked scaffolds and FGF-2 bound scaffolds were not significantly different.  By binding 

FGF-2 to the heparin, it appears to block the effects of the heparin on cell attachment leaving 

only the crosslinked surface to facilitate attachment. 

6.3.2. Cell Growth 

 Since our studies and others showed that FGF-2 does not influence the attachment of 

cells to scaffolds, the next aspect needed to be evaluated was FGF-2 influence on the cell growth 
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of MDFCs when bound to heparin on braided collagen scaffolds.  The results of our study 

showed that after five days, there was no significant increase in the number of MDFCs on the 

surface of the braid relative to day 1, except for scaffolds modified with EDC/NHS crosslinking 

and 5 ng/mL and 10 ng/mL FGF-2.  After 7 days in culture, all braided collagen scaffolds with 

different modified surfaces, including uncrosslinked controls, promoted significant cell growth 

of MDFCs.  A positive linear correlation was observed between the amount of FGF-2 on the 

surface of the scaffold and the rate of cell growth.  The MDFCs grew uniformly across each 

surface type of the braids for the entirety of the culture period. 

After 5 days in culture, the cell growth on each scaffold was insignificant showing no 

difference in scaffolds modified EDC/NHS with heparin and a 1.1 fold increase in scaffolds 

modified with EDC/NHS with heparin and 50 ng/mL FGF-2.  The growth on modified surfaces 

was significantly higher than on uncrosslinked controls.  Previous research supports the finding 

that the minimal growth of cells on scaffolds conjugated with heparin.  It has been shown that 

heparin does not facilitate proliferation of endothelial cells on collagen films.
39

  Contrary to our 

hypothesis, scaffolds modified with 5 ng/mL FGF-2 showed significant increases in growth over 

the 1 day data as well as a significant increases in growth over scaffolds exposed to 10 ng/mL 

FGF-2. 

The observed similarity between the growth on controls and FGF-2 modified surfaces 

when normalized to attachment is expected because when FGF-2 is bound to heparin binding 

sites it is released at a controlled rate compared to binding it to the collagen scaffold directly.
132

  

Another reason for the limited growth after 5 days is that studies show that at low cell seeding 

densities, less than 10,000 cells/cm
2
, FGF-2 does not begin to influence proliferation of 

endothelial cells until after 6 days in culture.
160

  In the study performed by Wissink et al., they 



115 

 

used a collagen film that was over 2 cm
2
 in surface area with a higher concentration of FGF-2 on 

the surface then on braided collagen scaffolds.
160

  The significantly smaller surface area with less 

FGF-2 per square centimeter explains why the cells in contact with FGF-2 on the braids had the 

same growth reaction even though there were more cells per square centimeter.  Another 

explanation for insignificant growth in cells at 5 days on the braided collagen scaffolds could be 

due to the decreased proliferation.  Due to collagen autofluorescence, the cells could not be 

evaluated for viability after attachment, so it is not known if there was rapid cell death during the 

first few days in culture. 

After 7 days in culture, the cells attached to the scaffolds have begun to proliferate 

showing significant growth on all surface modifications.  The different concentrations of FGF-2 

on the surface of the braids appear to influence the growth rate of the MDFCs.  Scaffolds 

modified using EDC/NHS crosslinking with heparin and exposed to 50 ng/mL FGF-2 increased 

1.8 fold over the amount of cells initially attached to the surface, which was a significant 

increase over the growth after 5 days in culture.  The growth rate of cells on braided collagen 

scaffolds were significantly higher than all control conditions, except there was no significant 

difference at day 7 between uncrosslinked and 5 ng/mL FGF-2 scaffolds. 

Other studies have also observed similar effects of FGF-2 on the proliferation of cells on 

biodegradable scaffolds.  To assess for the effect of FGF-2 on the proliferation of fibroblasts 

attached to fibrin microthreads, Cornwell et al. loaded varying concentrations of FGF-2 to 

bundles of fibrin microthreads and found after 2 days fibroblasts had growth 3 to 4 times over 

the attached number of cells, with a FGF-2 response plateau at 50 ng/mL.
43

  The difference in 

initial growth on fibrin microthreads compared to braided collagen scaffolds can be explained by 

the addition of heparin binding on the braids.  When FGF-2 is bound to the scaffold directly by 
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nonspecific interactions, there is an initial burst of the protein in the first 6 hours, which explains 

why the fibrin threads show a FGF-2 response after 2 days in culture.
43,132

  The high affinity of 

FGF-2 for heparin binding sites allows for the protein to be released much slower, with only 

15% of the protein being released after 2 days compared to almost 60% when not bound to 

heparin.
132

  After 7 days in culture, fibroblast seeded to fibrin microthreads showed a similar 

growth pattern as on braided collagen scaffolds seeded with MDFCs with growth increasing with 

increased FGF-2 up to fibrin threads loaded with 50 ng/mL.
43

 

In other studies, collagen films and PLGA scaffolds crosslinked with EDC/NHS in the 

presence of heparin with increasing concentrations of FGF-2 showed a controlled release of 

FGF-2 from the scaffold when seeded with endothelial cells after 10 days.  Scaffolds exposed to 

FGF-2 without heparin showed lower amounts of bound FGF-2 with unpredictable proliferation 

rates up to 10 days.  Heparin scaffolds had increased amounts of FGF-2 on the surface with 

proliferation rate increasing in proportion to the concentration of FGF-2.
132,161

  FGF-2 binds to 

heparin molecules by electrostatically binding through interactions between the 2-O-sulfate 

groups and N-sulfate groups of the heparin binding sites with lysine and arginine residues on 

FGF-2 proteins.
42,162

  The effect FGF-2 has on the growth of the MDFCs on the braided collagen 

scaffolds suggests that the heparin has protected the protein from the enzymatic degradation 

mediated by MDFCs.
132

   

Hill et al. transplanted myoblasts seeded on alginate gels containing FGF-2 and HGF into 

mouse models and showed that the addition of growth factors increased transplanted cell 

participation in native muscle regeneration by promoting cell migration of both native and 

transplanted myoblasts.  The study showed that it is imperative to determine the optimal rate of 

FGF-2 release to control myoblast viability and migration without initiating a myogenesis 
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response in the surrounding tissue.
70,163

  Although our data suggests that the FGF-2 is bound to 

the collagen scaffolds by means of the heparin binding sites, the amount of heparin and FGF-2 

on the surface has yet to be analyzed.  The surface characteristics of these scaffolds would need 

to be determined in order to decipher the optimal release rate of FGF-2.  In addition, it will be 

important to research the amount of FGF-2 needed to reach saturation of heparin binding sites 

and growth effects. 

6.4. Qualitative Analysis of Cell Density and Cellular Alignment 

 In order to determine how the MDFCs are growing and spreading on the braided collagen 

scaffolds, the scaffolds were fixed, sectioned, and stained using H&E after 1 or 7 days in culture.  

The results showed that after 1 day, the cells were clustered on the surface of the side exposed 

during the seeding process.  After 7 days, the cells are more spread along the surface, but the 

density and thickness is less than that at 1 day, which could be attributed to the cell spreading or 

limitations associated with fixing and sectioning the braided collagen scaffolds.  Since, we 

showed that the number of cells on the scaffolds increases with time on each surface, the 

apparent decrease in cell number at day 7 could be caused by cells shearing off the surface 

during processing or by sectioning artifacts.  During sectioning, it appeared that some of the 

braids were not embedding vertically, which is supported by the observation that not all sections 

contained 18 individual thread cross sections.  In addition, the braids did not maintain the tight 

structure in which they were cultured, so when sectioned, the threads spread, which detached the 

cells from the surface.  This is observed by the cells seen in the cross sections that are not near 

any collagen threads, such as with the scaffolds modified with 50 ng/mL FGF-2 at 7 days in 

culture.  The limitations of analyzing the braided collagen scaffolds thorough histology could be 

corrected by fixing the scaffolds more thoroughly or using a higher concentration of agarose to 
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form a stiffer encapsulation around the braids.  Using a 2% agarose in distilled water to maintain 

the structure may not be stiff enough to immobilize the scaffold during cutting. 

An important aspect of engineered skeletal muscle constructs that must be addressed is 

how the scaffold facilitates alignment of the myotubes during regeneration.  Myotubes, which 

are responsible for movement of the body, consist of bundles of linearly aligned myofibrils 

composed of fused myoblasts.
2
  The engineered skeletal muscle should stimulate the alignment 

and fusion of myoblasts to mimic the native environment, and allow for optimal integration and 

function upon implantation into a wound area.  To analyze the alignment of MDFCs on braided 

collagen scaffolds with different surface modifications, scaffolds seeded with MDFCs were 

imaged using a confocal microscope after 1 or 7 days in culture.  At one day, phalloidin staining 

of the f-actin filaments on all surface modifications showed no distinct orientation.  After 7 days 

in culture, all control scaffolds have cellular alignment along the linear axis of the braided 

collagen microthreads, but scaffolds modified with FGF-2 show limited alignment with most f-

actin filaments having no specific orientation. 

 It may important to have the MDFCs aligned in the dedifferentiated state because it will 

facilitate the fusion of myoblasts with themselves and with host cells when the iPS cells are 

programmed to differentiate for muscle regeneration.  By using microthreads, the myofiber-like 

structure of the biomaterial scaffold will promote the MDFCs to spread and proliferate along the 

linear axis of the braids.  This will produce an organized skeletal muscle structure that will easily 

integrate into a large muscle defect.  Braided collagen scaffolds modified using EDC/NHS 

crosslinking with heparin and FGF-2 showed limited alignment after 7 days, which is not 

consistent with previous research.  Cornwell et al. observed bundles of fibrin microthreads with 

FGF-2 stimulated fibroblast cells alignment along the linear axis of the threads.
43

  One 
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explanation of the limited alignment of MDFCs on FGF-2 modified braids could be the increased 

proliferation between 5 and 7 days in culture compared to the control scaffolds.  With increased 

proliferation, the MDFCs could begin to stack on top of one another, limiting the contact of the 

MDFCs have with the braided collagen scaffold, which could eliminate the influence of the braid 

structure has on the alignment of the cells.  In the future, the MDFC orientation and alignment on 

the FGF-2 modified braided collagen scaffolds should be analyzed between 1 and 7 days in 

culture as well as in prolonged studies to determine when MDFCs begin to align.  It will be 

important to study the viability of the cells on the braided muscle construct as the cells 

proliferate and migrate outward to determine if there is a perfusion of nutrients to the inner 

layers, which can be an issue in three-dimensional engineered tissues.  One approach that 

researchers have found to create alignment is using magnetic, electrical, and mechanical 

stimulation.
96,112,164

  Studies show that exposing myogenic cells to a continuous magnetic field 

helps initiate the alignment, differentiation, and fusion of myoblasts into myotubes.
164

 

Studies have also shown that using aligned electrospun nanofibers seeded with myoblasts 

for muscle regeneration can promote the fusion of longer aligned myotubes after 7 days.
24,31,85,165

  

After 14 days, cell nuclei begin to elongate and fuse exhibiting fast myosin heavy chains, which 

indicates the production of mature myotubes.
165

  This shows potential for braided collagen 

scaffolds, which supported the alignment of MDFCs along the longitudinal axis of the braids 

after 7 days, to create aligned engineered muscle once MDFCs are programmed to differentiate 

into terminal myoblasts. 

 Researchers have also utilized microfluidic patterning to create channels to promote 

myofiber alignment.
115,166,167

  Lam et al. investigated the effect of using different channel widths 

on myofiber alignment showing a widths of 6 µm promoted optimal alignment.
167

  By seeding 
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myoblasts into synthetic polymer molds, the myoblasts are able to align parallel to the 

microgrooves, which then can be transferred into a collagen gel to create a three-dimensional 

muscle construct.
115

  Zhao et al. showed potential for creating multilayer muscle constructs using 

microfluidics, but when adding cell layers to the aligned myofibers in the channels, the newly 

formed myotubes do not exhibit the same highly oriented alignment.
166

  Shimuzi et al. created 

micropatterns using an abrasive substrate, which is used for biomaterial implants, and 

microchannels created with rougher surfaces encouraged a higher degree of alignment in 

myotubes.
168

  The importance of these studies is to show how easily the structure of developing 

myotubes can be manipulated, which is beneficial to creating functional skeletal muscle.  A 

limitation of using microfluidics to pattern aligned myofibers is the fibers do not fuse with one 

another until transferred out of the polymer.  This effect may be corrected by using microthreads 

to align the cells since all cells in the structure are in direct contact with one another. 
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Chapter 7: Future Work and Implications 

 This study succeeded in demonstrating a novel engineered muscle construct that could be 

used to promote cell attachment and growth, which may be used to deliver cells to a large muscle 

defect to stimulate muscle regeneration in the future.  The braided collagen microthread scaffold 

provides an organized structure to facilitate the growth of MDFCs, and using heparin to bind 

FGF-2 to the surface could induce MDFCs to exhibit a stem cell phenotype.  After 7 days in 

culture, the seeded MDFCs had begun to align on the braided collagen scaffold, but it is not 

completely clear if they are aligning with the curvature of the collagen threads or with the x-axis.  

Further studies will need to be conducted in order to determine how the MDFCs are aligning, 

and if this is important when implanting stem-like cells into a large muscle defect.  Another 

aspect of the project that needs additional investigation is the mechanical properties of the 

collagen microthreads.  Since the thread stiffness is significantly greater than native skeletal 

muscle, other processing strategies, should be examined to better mimic the native mechanical 

environment.  In future in vivo studies, delivering stem-like cells to a large muscle defect will 

promote the migration of surrounding satellite cells to the wound area as well as differentiate 

into myoblasts.  The braided collagen muscle construct will integrate into the native muscle and 

help restore function by mimicking cells and responses of native muscle regeneration.  However, 

before the braided collagen scaffold can be used for in vivo experimentation, further studies need 

to be performed to characterize and modify the scaffold and cellular stimuli to optimize the 

muscle delivery system. 

 As stated in the discussion, the seeded scaffolds were not cultured for a long enough 

period to express a stem cell markers and phenotype in the MDFCs.  In order to show the release 

of FGF-2 from the scaffold is sufficient to stimulate dedifferentiation of MDFCs into stem like 
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cells, seeded scaffolds will have to be cultured for longer than 7 days and express the stem cell 

markers, OCT4, SOX2, and NANOG.
46,137

  Once the stem cell phenotype is verified, in vitro 

studies into the maintenance of the stemness of these cells will have to be explored to ensure that 

the cells do not spontaneously differentiate before implantation into a wound site.  Once the 

stemness can be controlled for extended periods and programmed to differentiate into myoblasts 

at the desired point, the braided collagen scaffolds will be optimal for the promotion of skeletal 

muscle regeneration. 

In this study, FGF-2 was adsorbed to the surface of the braided collagen scaffold for the 

application of delivering stem-like cells to a large muscle defects to induce native skeletal 

muscle regeneration as well as satellite cell migration, differentiation, and myofiber maturation.  

In future studies, it would be important to investigate the effects of binding other growth factors 

important to regeneration in combination with and without FGF-2 to attempt to mimic the native 

environment.  In vivo, IGF-I has been found to stimulate proliferation and differentiation of 

myoblasts into functional myotubes faster than native muscle regeneration with decreased 

fibrosis.
49,114

  Shansky et al. created a bioartificial muscle (BAM) construct which secreted IGF-

I, which has been known to prevent atrophy in developing muscles, and when the IGF-I modified 

BAM was cultured in a perfusion chamber with traditional BAM constructs, it caused the growth 

of more myofibers with larger diameters in traditional BAM constructs.
107

  By incorporating 

IGF-I into the braided collagen scaffold, there could be increased regulation of myofiber 

formation upon initiation of differentiation iPS cells to better resemble native skeletal muscle. 

 Other studies have incorporated HGF, which is responsible for the activation and 

differentiation of satellite cells during wound healing, into the scaffolds for muscle 

regeneration.
70,163

  The advantage of using HGF in combination with FGF-2 in scaffold 
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fabrication is that they both are heparin-binding proteins, which will allow for controlled release 

of both growth factors from the surface for optimal muscle regeneration.  Studies show that 

incorporating HGF into a scaffold alongside FGF-2 enhances the regenerative properties of FGF-

2 in the presence of myoblast cells.
163

  Hill et al. found that HGF incorporation into alginate gels 

seeded with myoblasts stimulated increased viability, myoblast migration, and myotube 

formation after implantation.
70

  Adding HGF to the scaffold could promote the native satellite 

cells to migrate into the muscle defect to regenerate full thickness wounds.   

Since vascularization is imperative to the survival of soft tissue, the engineered muscle 

should provide factors that stimulate capillary growth within the wound site.  VEGF in 

combination with FGF-2 has shown to promote vascularization and prevent the degradation of 

developing capillaries.
147

  Borselli et al. injected VEGF and IGF-I into an ischemic mouse 

muscle and observed that the combination of growth factors enhanced regeneration, 

revascularization, reinnervation, and function of the injured muscle.  When injected alone, VEGF 

improved the mechanical properties of the ischemic muscle by increasing the diameters of the 

developing myofibers.
169

  Since studies show FGF-2 upregulates the activation of VEGF at the 

wound site, a combination of FGF-2 with VEGF bound to the surface of the scaffold will 

promote the vascular response and enhance the viability of the engineered muscle.
147

 

Along with surface modifications that could enhance muscle regeneration using braided 

collagen scaffolds, structural changes could be explored to optimize proliferation and alignment 

of MDFCs on the surface of the scaffold.  Although the size of the braided collagen scaffold is 

sufficient for large muscle defects in small animal models, for clinical use in humans, a method 

of scaling up the scaffold would have to be developed.  One proposed method would be to create 

sheets of braided collagen microthreads that will allow for interaction of cells between each 
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braid.  Neumann et al. developed a method to tether polypropylene fibers within a frame, which 

would create a sheet of long, contractile myofibers when seeded with myoblasts.
170

  By 

developing a method to create sheets of stem cells for muscle delivery, the scaffold could be 

manipulated easily to fit into any defect shape and size. 

Another way to modify the braided collagen scaffold would be to incorporate fibrin 

threads into the structure.  Type I collagen is responsible for the formation of scar tissue within 

the wound site, so by limiting the amount of collagen introduced to a defect, fibrosis can be 

decreased or avoided.
1
  Fibrin threads have potential in muscle regeneration due to the 

biochemical properties, including integrin-signaling cues for wound healing, and the threads 

degrade within 3-4 weeks in the presence of ECM proteins.
43,94

  Another beneficial feature of 

fibrin microthreads is that growth factors can be integrated into the structure of the threads and 

be released as the threads degrade.
43

  This aspect will allow multiple growth factors to be 

secreted from the scaffold to better emulate the native wound healing environment.  A limitation 

of fibrin is that it does not possess the mechanical properties of collagen microthreads, which 

would mean modifications would have to be made to the scaffold structure, as in incorporating a 

twisting pattern into the braid.
126,151

 

The braided collagen scaffolds are meant to be used to repair large muscle defects, which 

are unable to repair naturally since the entire basal lamina of the myotube has been destroyed 

eliminating the satellite cells needed for regeneration.
17

  By delivering stem-like cells to the 

muscle defect, the satellite cell population within the wound is replenished, which will allow for 

new muscle formation.  This would be an improvement over current methods, since it would not 

only fill the defect, but would make it functional.  Future research still needs to be explored into 

the in vivo response of native tissue to the braided collagen scaffold.  



125 

 

Chapter 8: Conclusions 

 In summary, this study has characterized the effects of EDC/NHS crosslinking with and 

without heparin and different concentrations of FGF-2, on the MDFC activity on braided 

collagen threads as the preliminary steps to developing a dedifferentiated cell delivery system for 

muscle regeneration.  Immunofluorescent characterization of the braided collagen scaffold 

showed the presence of FGF-2 bound to the surface of the threads with increased intensity when 

exposed to higher concentrations of FGF-2.  The mechanical strength achieved by braided 

collagen scaffolds was higher than single collagen threads, and crosslinking using EDC/NHS 

significantly increase the UTS, ultimate load, strain at failure, and modulus over uncrosslinked 

braids.  When determining the effects of surface modifications on cell attachment, growth, and 

alignment, the results demonstrate that modifying the surface using crosslinking, heparin, and 

FGF-2 significantly increased attachment over uncrosslinked surfaces.  After 1 day, none of the 

MDFCs on braided collagen scaffolds exhibited any alignment.  Between 1 and 5 days in culture, 

the surface modifications did not stimulate any significant growth of MDFCs implying a delayed 

activation of the proliferation of the cells.  After 7 days, FGF-2 promoted the growth of MDFCs, 

with scaffolds exposed to 50 ng/mL FGF-2 having the highest growth rate.  MDFCs responded 

to FGF-2 with increased growth rates with increasing concentrations of the growth factor.  

Cellular alignment on all control scaffolds was oriented in the direction of the linear axis of the 

braided collagen scaffold.  MDFCs seeded on FGF-2 scaffolds showed limited alignment.  These 

results suggest that MDFCs attached to braided collagen scaffolds modified using EDC/NHS 

crosslinking with heparin and a controlled release of FGF-2 may serve as a cell delivery scaffold 

for large muscle defect regeneration.  
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 Appendix A: Mechanical Testing Data Analysis 

Appendix A.1: Histological Cross-Sectional Area Measurements 

Below is the summary of measurements of the histology cross sectional area 

measurements and statistics comparing each surface modification area. 

Braided Collagen Scaffold Histology Cross Section Measurements 

Image 
cross sectional area 
(cm2) 

cross sectional area 
(mm2) 

cross sectional area 
(µm2) 

NONE 0.001 0.1 100000 

NONE 0.001 0.1 100000 

NONE 0.00153 0.153 153000 

NONE 0.001076 0.1076 107600 

EDC/NHS 8.48E-04 0.08479 84790 

EDC/NHS 8.22E-04 0.08222 82220 

EDC/NHS 6.27E-04 0.06266 62660 

EDC/NHS 5.99E-04 0.05987 59870 

HEP 0.002 0.2 200000 

HEP 0.002 0.2 200000 

HEP 6.86E-04 0.06859 68590 

5FGF 0.001 0.1 100000 

5FGF 9.48E-04 0.09477 94770 

5FGF 6.81E-04 0.0681 68100 

5FGF 6.81E-04 0.06811 68110 

10FGF 6.34E-04 0.06337 63370 

10FGF 5.47E-04 0.0547 54700 

10FGF 6.20E-04 0.06195 61950 

10FGF 6.71E-04 0.06708 67080 

50FGF 7.74E-04 0.07735 77350 

50FGF 8.18E-04 0.08182 81820 

50FGF 9.54E-04 0.09538 95380 

50FGF 6.24E-04 0.06237 62370 

        

AVERAGE 0.000919013 0.091901304 91901.30435 

S.D. 0.000405447 0.040544687 40544.68694 
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t-test Monday, November 01, 2010, 3:17:03 PM 

 

Data source: Data 1 in cross section 

 

Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test Monday, November 01, 2010, 3:17:03 PM 

 

Data source: Data 1 in cross section 

 

Group N  Missing  Median    25%      75%     

none 4 0 0.104 0.1000 0.142  

edc 4 0 0.0724 0.0606 0.0841  

 

Mann-Whitney U Statistic= 0.000 

 

T = 26.000  n(small)= 4  n(big)= 4  P(est.)= 0.029  P(exact)= 0.029 

 

The difference in the median values between the two groups is greater than would be expected by chance; there is a 

statistically significant difference  (P = 0.029) 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Thursday, August 26, 2010, 11:23:58 AM 

 

Data source: Data 1 in Notebook1 

 

Group N  Missing  Median    25%      75%     

none 4 0 0.104 0.1000 0.142  

edc 4 0 0.0724 0.0606 0.0841  

hep 3 0 0.200 0.0686 0.200  

5fgf 4 0 0.0814 0.0681 0.0987  

10fgf 4 0 0.0627 0.0565 0.0662  

50fgf 4 0 0.0796 0.0661 0.0920  

 

H = 13.666 with 5 degrees of freedom.  (P = 0.018) 

 

The differences in the median values among the treatment groups are greater than would be expected by chance; 

there is a statistically significant difference  (P = 0.018) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

none vs 10fgf 15.000 3.128 Yes   

none vs edc 10.750 2.242 No   

none vs 50fgf 8.500 1.772 Do Not Test   

none vs 5fgf 6.750 1.407 Do Not Test   

none vs hep 0.917 0.177 Do Not Test   

hep vs 10fgf 14.083 2.719 No   

hep vs edc 9.833 1.898 Do Not Test   
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hep vs 50fgf 7.583 1.464 Do Not Test   

hep vs 5fgf 5.833 1.126 Do Not Test   

5fgf vs 10fgf 8.250 1.720 Do Not Test   

5fgf vs edc 4.000 0.834 Do Not Test   

5fgf vs 50fgf 1.750 0.365 Do Not Test   

50fgf vs 10fgf 6.500 1.355 Do Not Test   

50fgf vs edc 2.250 0.469 Do Not Test   

edc vs 10fgf 4.250 0.886 Do Not Test   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 

 
Multiple Comparison Graph

Symbol indicates significant difference.

none edc hep 5fgf 10fgf 50fgf

50fgf

10fgf

5fgf

hep

edc

none
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Appendix A.2: Mechanical Testing Raw Data 
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t-test – Ultimate Load Thursday, August 26, 2010, 12:43:03 PM 

 

Data source: Data 1 in ultimate load 

 

Normality Test (Shapiro-Wilk) Passed (P = 0.396) 

 

Equal Variance Test: Failed (P < 0.050) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test Thursday, August 26, 2010, 12:43:03 PM 

 

Data source: Data 1 in ultimate load 

 

Group N  Missing  Median    25%      75%     

UNX 16 0 0.578 0.551 0.665  

Crosslinked 16 0 1.950 1.790 2.225  

 

Mann-Whitney U Statistic= 0.000 

 

T = 136.000  n(small)= 16  n(big)= 16  (P = <0.001) 

 

The difference in the median values between the two groups is greater than would be expected by chance; there is a 

statistically significant difference  (P = <0.001) 

 

t-test - UTS Monday, November 01, 2010, 4:13:44 PM 

 

Data source: Data 1 in uts 

 

Normality Test (Shapiro-Wilk) Passed (P = 0.287) 

 

Equal Variance Test: Failed (P < 0.050) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test Monday, November 01, 2010, 4:13:44 PM 

 

Data source: Data 1 in uts 

 

Group N  Missing  Median    25%      75%     

UNX 16 0 5.015 4.788 5.776  

Crosslinked 16 0 26.943 24.734 29.729  

 

Mann-Whitney U Statistic= 0.000 

 

T = 136.000  n(small)= 16  n(big)= 16  (P = <0.001) 

 

The difference in the median values between the two groups is greater than would be expected by chance; there is a 

statistically significant difference  (P = <0.001) 

 

 

t-test – Strain at Failure Thursday, August 26, 2010, 12:46:20 PM 

 

Data source: Data 1 in strain at failure 
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Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test Thursday, August 26, 2010, 12:46:20 PM 

 

Data source: Data 1 in strain at failure 

 

Group N  Missing  Median    25%      75%     

Unx 16 0 0.428 0.390 0.464  

crosslink 16 0 0.482 0.443 0.549  

 

Mann-Whitney U Statistic= 59.000 

 

T = 195.000  n(small)= 16  n(big)= 16  (P = 0.010) 

 

The difference in the median values between the two groups is greater than would be expected by chance; there is a 

statistically significant difference  (P = 0.010) 

 
t-test - MTM Monday, November 01, 2010, 4:15:10 PM 

 

Data source: Data 1 in modulus 

 

Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

 

Test execution ended by user request, Rank Sum Test begun 

 

Mann-Whitney Rank Sum Test Monday, November 01, 2010, 4:15:10 PM 

 

Data source: Data 1 in modulus 

 

Group N  Missing  Median    25%      75%     

unx 16 0 13.242 12.519 14.629  

crosslink 16 0 67.646 61.965 71.916  

 

Mann-Whitney U Statistic= 0.000 

 

T = 136.000  n(small)= 16  n(big)= 16  (P = <0.001) 

 

The difference in the median values between the two groups is greater than would be expected by chance; there is a 

statistically significant difference  (P = <0.001) 
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Appendix B: Optimizing Cell Seeding Method Data 

  Large Channels: 7.8-7.9   Small Channels: 9.17-9.18 

  NONE   NONE 

  Average S.D. S.E.   Average S.D. S.E. 

Section 23.36111111 4.202654112 0.700442352 Section 31.09042553 7.688823328 1.121530149 

Total 23501.27778 4227.870037 704.6450062 Total 31276.96809 7115.457088 1037.896088 

% 11.75063889 2.113935018 0.352322503 % 20.85131206 4.75943078 0.69423433 

                

  EDC/NHS   EDC/NHS 

  Average S.D. S.E.   Average S.D. S.E.M. 

Section 29.90909091 5.736031405 1.222926005 Section 36.13888889 3.857977051 0.909333912 

Total 30088.54545 5770.447593 1230.263561 Total 36355.72222 3881.124914 914.789915 

% 15.04427273 2.885223797 0.61513178 % 24.23714815 2.587416609 0.609859943 
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N# Image # 1 2 3 4 Average Total Number of Cells Precentage of cells seeded

A 20 30 25 24 24.75 24898.5 12.44925

A (02) 28 21 19 25 23.25 23389.5 11.69475

A (03) 14 8 26 21 17.25 17353.5 8.67675

A (04) 33 24 12 26 23.75 23892.5 11.94625

A (05) 27 30 25 19 25.25 25401.5 12.70075

A (06) 21 19 22 29 22.75 22886.5 11.44325

A (07) 17 12 21 21 17.75 17856.5 8.92825

A (09) 35 33 11 18 24.25 24395.5 12.19775

A (15) 16 27 13 30 21.5 21629 10.8145

A (17) 9 13 11 29 15.5 15593 7.7965

A (18) 35 32 26 15 27 27162 13.581

A (19) 21 21 22 13 19.25 19365.5 9.68275

A (2) 20 16 27 19 20.5 20623 10.3115

A (21) 14 19 23 30 21.5 21629 10.8145

a (22) 35 31 33 24 30.75 30934.5 15.46725

A (23) 15 27 21 29 23 23138 11.569

A (4) 18 19 19 25 20.25 20371.5 10.18575

A (7) 21 19 15 23 19.5 19617 9.8085

A (8) 26 12 19 25 20.5 20623 10.3115

A (9) 33 33 28 31 31.25 31437.5 15.71875

Cphal (02) 25 21 22 14 20.5 20623 10.3115

Cphal (03) 17 22 10 17 16.5 16599 8.2995

Cphal (04) 21 22 21 18 20.5 20623 10.3115

Cphal (09) 21 36 44 26 31.75 31940.5 15.97025

Cphal (10) 28 34 23 21 26.5 26659 13.3295

Cphal (12) 32 29 34 21 29 29174 14.587

Cphal (14) 20 26 39 21 26.5 26659 13.3295

Cphal (16) 21 25 25 21 23 23138 11.569

Cphal (19) 33 27 26 30 29 29174 14.587

Cphal (20) 33 24 25 25 26.75 26910.5 13.45525

Cphal (22) 20 14 27 31 23 23138 11.569

Cphal (24) 36 25 18 32 27.75 27916.5 13.95825

Cphal (25) 27 16 37 27 26.75 26910.5 13.45525

Cphal (27) 23 17 26 30 24 24144 12.072

Cphal (29) 14 17 22 32 21.25 21377.5 10.68875

Cphal (31) 17 19 19 20 18.75 18862.5 9.43125

2

7
.8

-7
.9

Cell Number/ Region

2.0 mm x 12 mm - NONE

1
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N# Image # 1 2 3 4 Average Total Number of Cells Precentage of cells seeded

A 36 30 28 21 28.75 28922.5 14.46125

A (02) 22 12 20 17 17.75 17856.5 8.92825

A (05) 26 26 20 12 21 21126 10.563

A (06) 26 29 18 15 22 22132 11.066

A (07) 24 23 36 27 27.5 27665 13.8325

A (08) 50 32 27 28 34.25 34455.5 17.22775

A (09) 30 29 23 27 27.25 27413.5 13.70675

B 62 41 29 37 42.25 42503.5 21.25175

B (02) 31 23 26 25 26.25 26407.5 13.20375

B (03) 31 29 30 33 30.75 30934.5 15.46725

B (04) 30 39 27 24 30 30180 15.09

B (05) 30 27 33 25 28.75 28922.5 14.46125

B (09) 38 37 33 37 36.25 36467.5 18.23375

Cphal (03) 40 28 46 42 39 39234 19.617

Cphal (04) 36 32 27 31 31.5 31689 15.8445

Cphal (05) 31 32 29 20 28 28168 14.084

Cphal (06) 39 38 33 32 35.5 35713 17.8565

Cphal (07) 31 35 29 35 32.5 32695 16.3475

Cphal (09) 27 23 35 34 29.75 29928.5 14.96425

Cphal (11) 29 27 21 23 25 25150 12.575

Cphal (12) 37 23 37 33 32.5 32695 16.3475

Cphal (17) 30 34 28 34 31.5 31689 15.8445

Cell Number/ Region

2.0 mm x 12.0 mm - EDC/NHS
7

.8
-7

.9

1

2

2
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N# Image # 1 2 3 4 Average Total Number of Cells Precentage of cells seeded

A (04) 52 32 27 43 38.5 38731 25.82066667

A (05) 43 51 42 41 44.25 44515.5 29.677

A (06) 34 39 17 32 30.5 30683 20.45533333

A (07) 29 36 43 46 38.5 38731 25.82066667

A (09) 25 37 40 41 35.75 35964.5 23.97633333

A (10) 20 23 17 18 19.5 19617 13.078

A (12) 27 23 12 25 21.75 21880.5 14.587

A (13) 22 12 22 20 19 19114 12.74266667

A (15) 30 14 31 26 25.25 25401.5 16.93433333

A (17) 28 34 19 26 26.75 26910.5 17.94033333

A (19) 19 27 36 17 24.75 24898.5 16.599

A (23) 41 31 35 41 37 37222 24.81466667

A (24) 29 44 36 28 34.25 34455.5 22.97033333

A (26) 32 24 41 30 31.75 31940.5 21.29366667

B 35 32 32 27 31.5 31689 21.126

B (02) 19 35 29 27 27.5 27665 18.44333333

B (05) 29 35 16 18 24.5 24647 16.43133333

B (06) 27 19 24 29 24.75 24898.5 16.599

B (07) 22 26 24 21 23.25 23389.5 15.593

B (08) 32 26 21 28 26.75 26910.5 17.94033333

B (09) 33 32 23 24 28 28168 18.77866667

B (10) 20 16 15 20 17.75 17856.5 11.90433333

B (11) 30 20 32 18 25 25150 16.76666667

B (13) 30 23 25 24 25.5 25653 17.102

B (14) 44 46 31 40 40.25 40491.5 26.99433333

B (15) 41 41 55 38 43.75 44012.5 29.34166667

C (03) 53 39 30 19 35.25 35461.5 23.641

C (04) 37 30 46 21 33.5 33701 22.46733333

C (06) 39 23 28 22 28 28168 18.77866667

C (09) 37 49 38 40 41 41246 27.49733333

C (10) 27 36 50 45 39.5 39737 26.49133333

C (11) 34 36 32 40 35.5 35713 23.80866667

C (13) 39 24 37 41 35.25 35461.5 23.641

C (15) 32 45 28 38 35.75 35964.5 23.97633333

C (17) 28 21 31 35 28.75 28922.5 19.28166667

C (25) 34 36 27 40 34.25 34455.5 22.97033333

D (03) 24 39 42 30 33.75 33952.5 22.635

D (07) 47 31 32 28 34.5 34707 23.138

D (11) 5 6 14 15 10 10060 6.706666667

D (16) 33 21 21 16 22.75 22886.5 15.25766667

D (17) 24 22 22 25 23.25 23389.5 15.593

D (18) 37 27 38 30 33 33198 22.132

D (26) 52 35 32 26 36.25 36467.5 24.31166667

D (27) 39 45 46 42 43 43258 28.83866667

D (31) 48 42 40 37 41.75 42000.5 28.00033333

D (32) 52 37 40 30 39.75 39988.5 26.659

D (33) 30 46 18 28 30.5 30683 20.45533333

4

1.0 mm x 12.0 mm - NONE

Cell Number/ Region
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One Way Analysis of Variance - Attachment Wednesday, August 25, 2010, 12:22:07 AM 

 

Data source: Data 1 in attachment - optimizing 

 

Normality Test (Shapiro-Wilk) Passed (P = 0.459) 

 

Equal Variance Test: Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, August 25, 2010, 12:22:07 AM 

 

Data source: Data 1 in attachment - optimizing 

 

Group N  Missing  Median    25%      75%     

L-none 36 0 23.000 20.500 26.688  

L-edc/nhs 22 0 29.875 27.000 32.938  

s-none 47 0 31.750 25.000 36.250  

s-edc/nhs 18 0 35.125 33.313 40.375  

 

H = 46.073 with 3 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would be expected by chance; 

there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

s-edc/nhs vs L-none 64.528 6.270 Yes   

s-edc/nhs vs L-edc/nhs 30.634 2.704 Yes   

s-edc/nhs vs s-none 24.850 2.515 No   

s-none vs L-none 39.677 5.025 Yes   

N# Image # 1 2 3 4 Average Total Number of Cells Precentage of cells seeded

B (03) 51 38 40 39 42 42252 28.168

B (02) 41 32 49 39 40.25 40491.5 26.99433333

B (06) 41 36 36 21 33.5 33701 22.46733333

B (09) 47 28 28 34 34.25 34455.5 22.97033333

B (10) 38 40 35 27 35 35210 23.47333333

B (11) 34 33 30 29 31.5 31689 21.126

B (12) 44 40 40 39 40.75 40994.5 27.32966667

B (13) 40 28 30 30 32 32192 21.46133333

C (04) 50 40 38 39 41.75 42000.5 28.00033333

C (05) 48 44 38 42 43 43258 28.83866667

C (10) 39 34 31 31 33.75 33952.5 22.635

C (12) 47 32 30 32 35.25 35461.5 23.641

D (05) 33 29 32 29 30.75 30934.5 20.623

D (08) 40 24 32 35 32.75 32946.5 21.96433333

D (09) 46 34 33 38 37.75 37976.5 25.31766667

D (11) 41 36 35 28 35 35210 23.47333333

D (12) 38 38 39 28 35.75 35964.5 23.97633333

D (13) 35 38 34 35 35.5 35713 23.80866667

1.0 mm x 12.0 mm - EDC/NHS

Cell Number/ Region
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s-none vs L-edc/nhs 5.783 0.628 No   

L-edc/nhs vs L-none 33.894 3.513 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 

 

Multiple Comparison Graph

Symbol indicates significant difference.

L-none L-edc/nhs s-none s-edc/nhs

s-edc/nhs

s-none

L-edc/nhs

L-none

 

 

One Way Analysis of Variance – Total Cells Wednesday, August 25, 2010, 12:19:03 AM 

 

Data source: Data 1 in total cells - optimizing 

 

Normality Test (Shapiro-Wilk) Passed (P = 0.459) 

 

Equal Variance Test: Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, August 25, 2010, 12:19:03 AM 

 

Data source: Data 1 in total cells - optimizing 

 

Group N  Missing  Median    25%      75%     

L-none 36 0 23138.000 20623.000 26847.625  

L-edc/nhs 22 0 30054.250 27162.000 33135.125  

s-none 47 0 31940.500 25150.000 36467.500  

s-edc/nhs 18 0 35335.750 33512.375 40617.250  

 

H = 46.073 with 3 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would be expected by chance; 

there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

s-edc/nhs vs L-none 64.528 6.270 Yes   
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s-edc/nhs vs L-edc/nhs 30.634 2.704 Yes   

s-edc/nhs vs s-none 24.850 2.515 No   

s-none vs L-none 39.677 5.025 Yes   

s-none vs L-edc/nhs 5.783 0.628 No   

L-edc/nhs vs L-none 33.894 3.513 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 

 
Multiple Comparison Graph

Symbol indicates significant difference.

L-none L-edc/nhs s-none s-edc/nhs

s-edc/nhs

s-none

L-edc/nhs

L-none

 
 

 

One Way Analysis of Variance - Precentage Wednesday, August 25, 2010, 12:24:21 AM 

 

Data source: Data 1 in precentage - optimizing 

 

Normality Test (Shapiro-Wilk) Passed (P = 0.184) 

 

Equal Variance Test: Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, August 25, 2010, 12:24:21 AM 

 

Data source: Data 1 in precentage - optimizing 

 

Group N  Missing  Median    25%      75%     

L-none 36 0 11.569 10.312 13.424  

L-edc/nhs 22 0 15.027 13.581 16.568  

s-none 47 0 21.294 16.767 24.312  

s-edc/nhs 18 0 23.557 22.342 27.078  

 

H = 77.894 with 3 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would be expected by chance; 

there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 
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Comparison Diff of Ranks Q P<0.05   

s-edc/nhs vs L-none 75.056 7.293 Yes   

s-edc/nhs vs L-edc/nhs 50.977 4.499 Yes   

s-edc/nhs vs s-none 17.441 1.765 No   

s-none vs L-none 57.614 7.297 Yes   

s-none vs L-edc/nhs 33.536 3.641 Yes   

L-edc/nhs vs L-none 24.078 2.496 No   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 

 

 
Multiple Comparison Graph

Symbol indicates significant difference.

L-none L-edc/nhs s-none s-edc/nhs

s-edc/nhs

s-none

L-edc/nhs

L-none

 

  



151 

 

Appendix C:  Cell Attachment 

Appendix C.1: Cell Attachment Data 

Summary of cell attachment calculations, including individual counts for each image, and 

statistics. 

 

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 31.09042553 7.688823328 1.12153 Section 36.13888889 3.857977051 0.909334 Section 44.2625 4.48130253 1.00205

Section Section Section

Q1 25.125 Q1 33.5625 Q1 42.6875

Q3 36 Q3 39.625 Q3 48.3125

IQR 10.875 IQR 6.0625 IQR 5.625

LAV 8.8125 LAV 24.46875 LAV 34.25

UAV 52.3125 UAV 48.71875 UAV 56.75

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 36.56355932 7.964711126 1.036917 Section 38.6402439 5.398509279 0.843106 Section 41.80102041 5.943523171 0.849075

Section Section Section

Q1 31.25 Q1 35.5 Q1 37.75

Q3 41.25 Q3 42 Q3 46.25

IQR 10 IQR 6.5 IQR 8.5

LAV 16.25 LAV 25.75 LAV 25

UAV 56.25 UAV 51.75 UAV 59

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 38.2 5.577537859 1.440114 Section 49.15 4.859453232 1.254705 Section 59.175 2.986195089 0.944318

Section Section Section

Q1 34.625 Q1 45.25 Q1 57

Q3 42 Q3 52.75 Q3 61.875

IQR 7.375 IQR 7.5 IQR 4.875

LAV 23.5625 LAV 34 LAV 49.6875

UAV 53.0625 UAV 64 UAV 69.1875

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 38.425 3.576641037 1.131033 Section 48.95 3.909923273 1.009538 Section 57.85 5.119678809 1.618985

Section Section Section

Q1 36.8125 Q1 47.25 Q1 58

Q3 39.25 Q3 51.5 Q3 60.5

IQR 2.4375 IQR 4.25 IQR 2.5

LAV 33.15625 LAV 40.875 LAV 54.25

UAV 42.90625 UAV 57.875 UAV 64.25

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 34.92938931 7.88488542 0.688906 Section 41.64325843 7.170497443 0.760071 Section 46.10955056 8.56566838 0.907959

Section Section Section

Q1 30.375 Q1 35.75 Q1 39.5

Q3 39.375 Q3 47.5 Q3 50.75

IQR 9 IQR 11.75 IQR 11.25

LAV 16.875 LAV 18.125 LAV 22.625

UAV 52.875 UAV 65.125 UAV 67.625
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Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 36.30625 6.131174936 0.969424 Section 36.91666667 7.073666991 1.667279 Section 36.94444444 5.640293299 1.32943

Section Section Section

Q1 32 Q1 31.75 Q1 34.4375

Q3 39.875 Q3 38.375 Q3 40.375

IQR 7.875 IQR 6.625 IQR 5.9375

LAV 20.1875 LAV 21.8125 LAV 25.53125

UAV 51.6875 UAV 48.3125 UAV 49.28125

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 39.12209302 5.007248345 0.763598 Section 38.61111111 3.946776409 0.537088 Section 38.02272727 5.67990877 1.210961

Section Section Section

Q1 38 Q1 36.0625 Q1 33.6875

Q3 44.25 Q3 40.4375 Q3 40.25

IQR 6.25 IQR 4.375 IQR 6.5625

LAV 28.625 LAV 29.5 LAV 23.84375

UAV 53.625 UAV 47 UAV 50.09375

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 51.15 3.604010112 1.139688 Section 53.45 2.830635971 1.265899 Section #DIV/0! #DIV/0! #DIV/0!

Section Section Section

Q1 49.0625 Q1 54 Q1 #NUM!

Q3 53.75 Q3 55 Q3 #NUM!

IQR 4.6875 IQR 1 IQR #NUM!

LAV 42.03125 LAV 52.5 LAV #NUM!

UAV 60.78125 UAV 56.5 UAV #NUM!

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 50.175 3.883816136 1.228171 Section #DIV/0! #DIV/0! #DIV/0! Section 49.01666667 4.360400812 1.125851

Section Section Section

Q1 47.6875 Q1 #NUM! Q1 45.625

Q3 52.25 Q3 #NUM! Q3 51.25

IQR 4.5625 IQR #NUM! IQR 5.625

LAV 40.84375 LAV #NUM! LAV 37.1875

UAV 59.09375 UAV #NUM! UAV 59.6875

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 40.26941748 7.4239353 0.731502 Section 39.17857143 6.108780504 0.69616 Section 40.66818182 7.370495257 0.993837

Section Section Section

Q1 34.25 Q1 35.5 Q1 35.875

Q3 45.5 Q3 42 Q3 45.875

IQR 11.25 IQR 6.5 IQR 10

LAV 17.375 LAV 25.75 LAV 20.875

UAV 62.375 UAV 51.75 UAV 60.875
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N # Image # 1 2 3 4 Average

A (04) 52 32 27 43 38.5

A (05) 43 51 42 41 44.25

A (06) 34 39 17 32 30.5

A (07) 29 36 43 46 38.5

A (09) 25 37 40 41 35.75

A (10) 20 23 17 18 19.5

A (12) 27 23 12 25 21.75

A (13) 22 12 22 20 19

A (15) 30 14 31 26 25.25

A (17) 28 34 19 26 26.75

A (19) 19 27 36 17 24.75

A (23) 41 31 35 41 37

A (24) 29 44 36 28 34.25

A (26) 32 24 41 30 31.75

B 35 32 32 27 31.5

B (02) 19 35 29 27 27.5

B (05) 29 35 16 18 24.5

B (06) 27 19 24 29 24.75

B (07) 22 26 24 21 23.25

B (08) 32 26 21 28 26.75

B (09) 33 32 23 24 28

B (10) 20 16 15 20 17.75

B (11) 30 20 32 18 25

B (13) 30 23 25 24 25.5

B (14) 44 46 31 40 40.25

B (15) 41 41 55 38 43.75

C (03) 53 39 30 19 35.25

C (04) 37 30 46 21 33.5

C (06) 39 23 28 22 28

C (09) 37 49 38 40 41

C (10) 27 36 50 45 39.5

C (11) 34 36 32 40 35.5

C (13) 39 24 37 41 35.25

C (15) 32 45 28 38 35.75

C (17) 28 21 31 35 28.75

C (25) 34 36 27 40 34.25

D (03) 24 39 42 30 33.75

D (07) 47 31 32 28 34.5

D (11) 5 6 14 15 10

D (16) 33 21 21 16 22.75

D (17) 24 22 22 25 23.25

D (18) 37 27 38 30 33

D (26) 52 35 32 26 36.25

D (27) 39 45 46 42 43

D (31) 48 42 40 37 41.75

D (32) 52 37 40 30 39.75

D (33) 30 46 18 28 30.5

A 46 43 43 35 41.75

A (02) 37 37 40 39 38.25

A (03) 38 36 44 54 43

A (05) 46 43 60 58 51.75

A (06) 39 35 40 42 39

A (07) 23 31 31 34 29.75

A (08) 48 46 45 48 46.75

A (09) 33 40 30 38 35.25

A (10) 35 46 49 41 42.75

A (11) 23 29 48 39 34.75

A (13) 30 31 30 31 30.5

A (14) 39 41 35 43 39.5

A (15) 35 43 30 42 37.5

A (16) 56 51 40 53 50

A (17) 27 32 30 20 27.25

A (18) 41 44 25 33 35.75

A (19) 34 39 37 49 39.75

B 65 57 46 58 56.5

B (02) 16 27 45 16 26

B (03) 35 18 28 27 27

B (04) 21 17 37 40 28.75

B (05) 21 6 3 16 11.5

B (06) 40 29 14 38 30.25

B (07) 37 35 37 46 38.75

B (08) 50 47 52 46 48.75

B (09) 25 21 49 46 35.25

B (10) 49 42 18 26 33.75

B 2 40 23 31 38 33

B 2 (02) 65 48 27 38 44.5

B 2 (03) 39 32 28 42 35.25

B 2 (04) 34 39 39 36 37

B 2 (05) 31 42 42 19 33.5

B 2 (06) 33 35 25 15 27

B 2 (07) 44 19 24 43 32.5

B 2 (08) 44 33 40 50 41.75

C 21 30 35 35 30.25

C (02) 38 33 30 36 34.25

C (03) 37 21 34 31 30.75

C (04) 38 38 42 39 39.25

C (05) 30 42 43 39 38.5

C (06) 46 38 27 30 35.25

C (07) 32 22 32 36 30.5

C (08) 36 47 26 37 36.5

C (09) 46 40 57 36 44.75

C (10) 44 52 70 34 50

D 33 26 42 39 35

D (02) 55 32 39 37 40.75

D (03) 37 32 30 28 31.75

D (04) 45 22 47 18 33

D (06) 29 48 41 39 39.25

D (07) 42 53 46 39 45

D (08) 53 52 46 59 52.5

D (09) 32 40 39 66 44.25

D (10) 31 41 31 36 34.75

D (11) 52 27 37 13 32.25

D (12) 12 49 30 29 30

D (13) 13 17 47 28 26.25

D (14) 44 33 18 38 33.25

D (15) 31 26 29 14 25

A 56 24 21 44 36.25

A (02) 32 46 52 45 43.75

A (03) 36 33 39 37 36.25

A (04) 30 23 37 41 32.75

A (05) 34 20 30 33 29.25

B 28 34 41 37 35

B (02) 42 34 27 46 37.25

B (03) 35 45 30 32 35.5

B (04) 44 62 40 29 43.75

B (05) 35 38 40 44 39.25

C 23 30 37 47 34.25

C (02) 32 16 46 43 34.25

C (03) 43 33 52 40 42

C (04) 31 48 50 39 42

C (05) 53 50 38 65 51.5

B 43 40 41 58 45.5

B (02) 22 44 45 40 37.75

B (03) 38 45 26 48 39.25

B (04) 48 35 39 33 38.75

B (05) 40 23 32 34 32.25

C 52 34 44 22 38

C (02) 44 47 31 35 39.25

C (03) 25 47 37 37 36.5

C (04) 41 46 37 43 41.75

C (05) 38 33 31 39 35.25
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N # Image # 1 2 3 4 Average

A (04) 52 32 27 43 38.5

A (05) 43 51 42 41 44.25

A (06) 34 39 17 32 30.5

A (07) 29 36 43 46 38.5

A (09) 25 37 40 41 35.75

A (10) 20 23 17 18 19.5

A (12) 27 23 12 25 21.75

A (13) 22 12 22 20 19

A (15) 30 14 31 26 25.25

A (17) 28 34 19 26 26.75

A (19) 19 27 36 17 24.75

A (23) 41 31 35 41 37

A (24) 29 44 36 28 34.25

A (26) 32 24 41 30 31.75

B 35 32 32 27 31.5

B (02) 19 35 29 27 27.5

B (05) 29 35 16 18 24.5

B (06) 27 19 24 29 24.75

B (07) 22 26 24 21 23.25

B (08) 32 26 21 28 26.75

B (09) 33 32 23 24 28

B (10) 20 16 15 20 17.75

B (11) 30 20 32 18 25

B (13) 30 23 25 24 25.5

B (14) 44 46 31 40 40.25

B (15) 41 41 55 38 43.75

C (03) 53 39 30 19 35.25

C (04) 37 30 46 21 33.5

C (06) 39 23 28 22 28

C (09) 37 49 38 40 41

C (10) 27 36 50 45 39.5

C (11) 34 36 32 40 35.5

C (13) 39 24 37 41 35.25

C (15) 32 45 28 38 35.75

C (17) 28 21 31 35 28.75

C (25) 34 36 27 40 34.25

D (03) 24 39 42 30 33.75

D (07) 47 31 32 28 34.5

D (11) 5 6 14 15 10

D (16) 33 21 21 16 22.75

D (17) 24 22 22 25 23.25

D (18) 37 27 38 30 33

D (26) 52 35 32 26 36.25

D (27) 39 45 46 42 43

D (31) 48 42 40 37 41.75

D (32) 52 37 40 30 39.75

D (33) 30 46 18 28 30.5

A 46 43 43 35 41.75

A (02) 37 37 40 39 38.25

A (03) 38 36 44 54 43

A (05) 46 43 60 58 51.75

A (06) 39 35 40 42 39

A (07) 23 31 31 34 29.75

A (08) 48 46 45 48 46.75

A (09) 33 40 30 38 35.25

A (10) 35 46 49 41 42.75

A (11) 23 29 48 39 34.75

A (13) 30 31 30 31 30.5

A (14) 39 41 35 43 39.5

A (15) 35 43 30 42 37.5

A (16) 56 51 40 53 50

A (17) 27 32 30 20 27.25

A (18) 41 44 25 33 35.75

A (19) 34 39 37 49 39.75

B 65 57 46 58 56.5

B (02) 16 27 45 16 26

B (03) 35 18 28 27 27

B (04) 21 17 37 40 28.75

B (05) 21 6 3 16 11.5

B (06) 40 29 14 38 30.25

B (07) 37 35 37 46 38.75

B (08) 50 47 52 46 48.75

B (09) 25 21 49 46 35.25

B (10) 49 42 18 26 33.75

B 2 40 23 31 38 33

B 2 (02) 65 48 27 38 44.5

B 2 (03) 39 32 28 42 35.25

B 2 (04) 34 39 39 36 37

B 2 (05) 31 42 42 19 33.5

B 2 (06) 33 35 25 15 27

B 2 (07) 44 19 24 43 32.5

B 2 (08) 44 33 40 50 41.75

C 21 30 35 35 30.25

C (02) 38 33 30 36 34.25

C (03) 37 21 34 31 30.75

C (04) 38 38 42 39 39.25

C (05) 30 42 43 39 38.5

C (06) 46 38 27 30 35.25

C (07) 32 22 32 36 30.5

C (08) 36 47 26 37 36.5

C (09) 46 40 57 36 44.75

C (10) 44 52 70 34 50

D 33 26 42 39 35

D (02) 55 32 39 37 40.75

D (03) 37 32 30 28 31.75

D (04) 45 22 47 18 33

D (06) 29 48 41 39 39.25

D (07) 42 53 46 39 45

D (08) 53 52 46 59 52.5

D (09) 32 40 39 66 44.25

D (10) 31 41 31 36 34.75

D (11) 52 27 37 13 32.25

D (12) 12 49 30 29 30

D (13) 13 17 47 28 26.25

D (14) 44 33 18 38 33.25

D (15) 31 26 29 14 25

A 56 24 21 44 36.25

A (02) 32 46 52 45 43.75

A (03) 36 33 39 37 36.25

A (04) 30 23 37 41 32.75

A (05) 34 20 30 33 29.25

B 28 34 41 37 35

B (02) 42 34 27 46 37.25

B (03) 35 45 30 32 35.5

B (04) 44 62 40 29 43.75

B (05) 35 38 40 44 39.25

C 23 30 37 47 34.25

C (02) 32 16 46 43 34.25

C (03) 43 33 52 40 42

C (04) 31 48 50 39 42

C (05) 53 50 38 65 51.5

B 43 40 41 58 45.5

B (02) 22 44 45 40 37.75

B (03) 38 45 26 48 39.25

B (04) 48 35 39 33 38.75

B (05) 40 23 32 34 32.25

C 52 34 44 22 38

C (02) 44 47 31 35 39.25

C (03) 25 47 37 37 36.5

C (04) 41 46 37 43 41.75

C (05) 38 33 31 39 35.25

1 DAY - NONE

12

13

11
.1

8-
11

.1
9

9

10

11

11
.1

9-
11

.2
0

1

2

3

Cell Number/ Region

9.
17

-9
.1

8
10

.5
-1

0.
6

4

5

6

7

8



155 

 

 

 

N # Image # 1 2 3 4 Average

A (04) 52 32 27 43 38.5

A (05) 43 51 42 41 44.25

A (06) 34 39 17 32 30.5

A (07) 29 36 43 46 38.5

A (09) 25 37 40 41 35.75

A (10) 20 23 17 18 19.5

A (12) 27 23 12 25 21.75

A (13) 22 12 22 20 19

A (15) 30 14 31 26 25.25

A (17) 28 34 19 26 26.75

A (19) 19 27 36 17 24.75

A (23) 41 31 35 41 37

A (24) 29 44 36 28 34.25

A (26) 32 24 41 30 31.75

B 35 32 32 27 31.5

B (02) 19 35 29 27 27.5

B (05) 29 35 16 18 24.5

B (06) 27 19 24 29 24.75

B (07) 22 26 24 21 23.25

B (08) 32 26 21 28 26.75

B (09) 33 32 23 24 28

B (10) 20 16 15 20 17.75

B (11) 30 20 32 18 25

B (13) 30 23 25 24 25.5

B (14) 44 46 31 40 40.25

B (15) 41 41 55 38 43.75

C (03) 53 39 30 19 35.25

C (04) 37 30 46 21 33.5

C (06) 39 23 28 22 28

C (09) 37 49 38 40 41

C (10) 27 36 50 45 39.5

C (11) 34 36 32 40 35.5

C (13) 39 24 37 41 35.25

C (15) 32 45 28 38 35.75

C (17) 28 21 31 35 28.75

C (25) 34 36 27 40 34.25

D (03) 24 39 42 30 33.75

D (07) 47 31 32 28 34.5

D (11) 5 6 14 15 10

D (16) 33 21 21 16 22.75

D (17) 24 22 22 25 23.25

D (18) 37 27 38 30 33

D (26) 52 35 32 26 36.25

D (27) 39 45 46 42 43

D (31) 48 42 40 37 41.75

D (32) 52 37 40 30 39.75

D (33) 30 46 18 28 30.5

A 46 43 43 35 41.75

A (02) 37 37 40 39 38.25

A (03) 38 36 44 54 43

A (05) 46 43 60 58 51.75

A (06) 39 35 40 42 39

A (07) 23 31 31 34 29.75

A (08) 48 46 45 48 46.75

A (09) 33 40 30 38 35.25

A (10) 35 46 49 41 42.75

A (11) 23 29 48 39 34.75

A (13) 30 31 30 31 30.5

A (14) 39 41 35 43 39.5

A (15) 35 43 30 42 37.5

A (16) 56 51 40 53 50

A (17) 27 32 30 20 27.25

A (18) 41 44 25 33 35.75

A (19) 34 39 37 49 39.75

B 65 57 46 58 56.5

B (02) 16 27 45 16 26

B (03) 35 18 28 27 27

B (04) 21 17 37 40 28.75

B (05) 21 6 3 16 11.5

B (06) 40 29 14 38 30.25

B (07) 37 35 37 46 38.75

B (08) 50 47 52 46 48.75

B (09) 25 21 49 46 35.25

B (10) 49 42 18 26 33.75

B 2 40 23 31 38 33

B 2 (02) 65 48 27 38 44.5

B 2 (03) 39 32 28 42 35.25

B 2 (04) 34 39 39 36 37

B 2 (05) 31 42 42 19 33.5

B 2 (06) 33 35 25 15 27

B 2 (07) 44 19 24 43 32.5

B 2 (08) 44 33 40 50 41.75

C 21 30 35 35 30.25

C (02) 38 33 30 36 34.25

C (03) 37 21 34 31 30.75

C (04) 38 38 42 39 39.25

C (05) 30 42 43 39 38.5

C (06) 46 38 27 30 35.25

C (07) 32 22 32 36 30.5

C (08) 36 47 26 37 36.5

C (09) 46 40 57 36 44.75

C (10) 44 52 70 34 50

D 33 26 42 39 35

D (02) 55 32 39 37 40.75

D (03) 37 32 30 28 31.75

D (04) 45 22 47 18 33

D (06) 29 48 41 39 39.25

D (07) 42 53 46 39 45

D (08) 53 52 46 59 52.5

D (09) 32 40 39 66 44.25

D (10) 31 41 31 36 34.75

D (11) 52 27 37 13 32.25

D (12) 12 49 30 29 30

D (13) 13 17 47 28 26.25

D (14) 44 33 18 38 33.25

D (15) 31 26 29 14 25

A 56 24 21 44 36.25

A (02) 32 46 52 45 43.75

A (03) 36 33 39 37 36.25

A (04) 30 23 37 41 32.75

A (05) 34 20 30 33 29.25

B 28 34 41 37 35

B (02) 42 34 27 46 37.25

B (03) 35 45 30 32 35.5

B (04) 44 62 40 29 43.75

B (05) 35 38 40 44 39.25

C 23 30 37 47 34.25

C (02) 32 16 46 43 34.25

C (03) 43 33 52 40 42

C (04) 31 48 50 39 42

C (05) 53 50 38 65 51.5

B 43 40 41 58 45.5

B (02) 22 44 45 40 37.75

B (03) 38 45 26 48 39.25

B (04) 48 35 39 33 38.75

B (05) 40 23 32 34 32.25

C 52 34 44 22 38

C (02) 44 47 31 35 39.25

C (03) 25 47 37 37 36.5

C (04) 41 46 37 43 41.75

C (05) 38 33 31 39 35.25
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N # Image # 1 2 3 4 Average

B (03) 51 38 40 39 42

B (02) 41 32 49 39 40.25

B (06) 41 36 36 21 33.5

B (09) 47 28 28 34 34.25

B (10) 38 40 35 27 35

B (11) 34 33 30 29 31.5

B (12) 44 40 40 39 40.75

B (13) 40 28 30 30 32

C (04) 50 40 38 39 41.75

C (05) 48 44 38 42 43

C (10) 39 34 31 31 33.75

C (12) 47 32 30 32 35.25

D (05) 33 29 32 29 30.75

D (08) 40 24 32 35 32.75

D (09) 46 34 33 38 37.75

D (11) 41 36 35 28 35

D (12) 38 38 39 28 35.75

D (13) 35 38 34 35 35.5

A 62 40 36 35 43.25

A (02) 49 67 50 36 50.5

A (03) 53 51 45 49 49.5

A (04) 43 35 46 42 41.5

A (05) 47 37 48 46 44.5

A (06) 39 40 37 26 35.5

A (07) 36 33 24 27 30

A (08) 21 20 27 26 23.5

A (09) 45 41 31 31 37

A (10) 59 53 35 42 47.25

B 34 38 32 42 36.5

B (02) 48 41 41 34 41

B (03) 37 34 30 40 35.25

B (04) 51 36 27 36 37.5

B (05) 43 35 29 39 36.5

B (06) 37 37 36 35 36.25

B (07) 35 43 49 42 42.25

B (08) 50 3 46 29 32

B (09) 50 36 31 38 38.75

C 44 50 42 29 41.25

C (02) 51 43 42 38 43.5

C (03) 47 34 45 39 41.25

C (04) 35 43 46 46 42.5

C (05) 35 30 33 30 32

C (06) 47 36 34 40 39.25

C (07) 31 33 33 39 34

C (08) 39 39 32 27 34.25

C (09) 35 23 32 32 30.5

C (10) 32 37 38 34 35.25

C (11) 42 37 37 31 36.75

D 64 53 31 36 46

D (02) 40 45 41 37 40.75

D (03) 41 46 31 36 38.5

D (04) 46 34 42 29 37.75

D (05) 49 43 45 31 42

D (06) 31 31 43 50 38.75

D (07) 33 23 30 42 32

D (08) 47 43 34 37 40.25

D (09) 44 34 44 41 40.75

D (10) 32 34 37 41 36

D (11) 37 44 51 38 42.5

A 39 51 34 37 40.25

A (02) 63 49 43 44 49.75

A (03) 51 47 55 59 53

A (04) 58 66 35 55 53.5

A (05) 59 59 55 34 51.75

B 53 56 56 56 55.25

B (02) 49 45 52 36 45.5

B (03) 47 49 53 46 48.75

B (04) 59 57 53 56 56.25

B (05) 53 41 39 40 43.25

C 39 53 48 40 45

C (02) 49 48 49 56 50.5

C (03) 51 48 49 50 49.5

C (04) 54 47 53 56 52.5

C (05) 43 43 41 43 42.5

A 64 47 45 43 49.75

A (02) 52 51 47 67 54.25

A (03) 47 42 52 49 47.5

A (04) 69 50 43 39 50.25

A (05) 57 42 43 46 47

B 44 42 49 41 44

B (02) 55 47 53 48 50.75

B (03) 38 43 39 41 40.25

B (04) 66 65 44 44 54.75

B (05) 60 61 36 50 51.75

C 43 41 64 57 51.25

C (02) 63 53 53 39 52

C (03) 61 37 42 40 45

C (04) 61 57 35 37 47.5

C (05) 57 38 50 48 48.25
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N # Image # 1 2 3 4 Average

B (03) 51 38 40 39 42

B (02) 41 32 49 39 40.25

B (06) 41 36 36 21 33.5

B (09) 47 28 28 34 34.25

B (10) 38 40 35 27 35

B (11) 34 33 30 29 31.5

B (12) 44 40 40 39 40.75

B (13) 40 28 30 30 32

C (04) 50 40 38 39 41.75

C (05) 48 44 38 42 43

C (10) 39 34 31 31 33.75

C (12) 47 32 30 32 35.25

D (05) 33 29 32 29 30.75

D (08) 40 24 32 35 32.75

D (09) 46 34 33 38 37.75

D (11) 41 36 35 28 35

D (12) 38 38 39 28 35.75

D (13) 35 38 34 35 35.5

A 62 40 36 35 43.25

A (02) 49 67 50 36 50.5

A (03) 53 51 45 49 49.5

A (04) 43 35 46 42 41.5

A (05) 47 37 48 46 44.5

A (06) 39 40 37 26 35.5

A (07) 36 33 24 27 30

A (08) 21 20 27 26 23.5

A (09) 45 41 31 31 37

A (10) 59 53 35 42 47.25

B 34 38 32 42 36.5

B (02) 48 41 41 34 41

B (03) 37 34 30 40 35.25

B (04) 51 36 27 36 37.5

B (05) 43 35 29 39 36.5

B (06) 37 37 36 35 36.25

B (07) 35 43 49 42 42.25

B (08) 50 3 46 29 32

B (09) 50 36 31 38 38.75

C 44 50 42 29 41.25

C (02) 51 43 42 38 43.5

C (03) 47 34 45 39 41.25

C (04) 35 43 46 46 42.5

C (05) 35 30 33 30 32

C (06) 47 36 34 40 39.25

C (07) 31 33 33 39 34

C (08) 39 39 32 27 34.25

C (09) 35 23 32 32 30.5

C (10) 32 37 38 34 35.25

C (11) 42 37 37 31 36.75

D 64 53 31 36 46

D (02) 40 45 41 37 40.75

D (03) 41 46 31 36 38.5

D (04) 46 34 42 29 37.75

D (05) 49 43 45 31 42

D (06) 31 31 43 50 38.75

D (07) 33 23 30 42 32

D (08) 47 43 34 37 40.25

D (09) 44 34 44 41 40.75

D (10) 32 34 37 41 36

D (11) 37 44 51 38 42.5

A 39 51 34 37 40.25

A (02) 63 49 43 44 49.75

A (03) 51 47 55 59 53

A (04) 58 66 35 55 53.5

A (05) 59 59 55 34 51.75

B 53 56 56 56 55.25

B (02) 49 45 52 36 45.5

B (03) 47 49 53 46 48.75

B (04) 59 57 53 56 56.25

B (05) 53 41 39 40 43.25

C 39 53 48 40 45

C (02) 49 48 49 56 50.5

C (03) 51 48 49 50 49.5

C (04) 54 47 53 56 52.5

C (05) 43 43 41 43 42.5

A 64 47 45 43 49.75

A (02) 52 51 47 67 54.25

A (03) 47 42 52 49 47.5

A (04) 69 50 43 39 50.25

A (05) 57 42 43 46 47

B 44 42 49 41 44

B (02) 55 47 53 48 50.75

B (03) 38 43 39 41 40.25

B (04) 66 65 44 44 54.75

B (05) 60 61 36 50 51.75

C 43 41 64 57 51.25

C (02) 63 53 53 39 52

C (03) 61 37 42 40 45

C (04) 61 57 35 37 47.5

C (05) 57 38 50 48 48.25
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N # Image # 1 2 3 4 Average

A (03) 38 41 48 43 42.5

A (04) 62 48 47 46 50.75

A (05) 59 33 55 46 48.25

A (06) 34 56 31 35 39

A (07) 40 52 57 54 50.75

A (10) 41 28 39 33 35.25

A (12) 41 27 45 40 38.25

A (13) 50 38 39 45 43

A (17) 53 42 39 38 43

A (18) 42 48 28 32 37.5

A (24) 59 60 43 34 49

A (25) 46 40 43 45 43.5

2 B (04) 44 49 41 37 42.75

C (13) 42 44 43 42 42.75

C (14) 61 52 44 38 48.75

C (15) 50 47 50 46 48.25

C (17) 51 48 39 36 43.5

C (18) 44 40 57 42 45.75

C (21) 44 49 48 36 44.25

C (22) 58 59 36 41 48.5

A (02) 53 49 47 36 46.25

A (03) 63 56 53 37 52.25

A (04) 62 53 48 45 52

A (05) 49 53 43 44 47.25

A (06) 51 54 41 42 47

A (07) 39 55 48 41 45.75

A (08) 36 32 32 29 32.25

A (09) 46 27 32 46 37.75

A (10) 49 46 32 43 42.5

A (11) 45 36 38 34 38.25

A 2 (02) 29 49 50 41 42.25

A 2 (03) 54 47 47 44 48

B 56 49 38 50 48.25

B (02) 55 46 44 48 48.25

B (03) 32 25 37 33 31.75

B (04) 38 35 41 34 37

B (05) 34 31 30 29 31

B (07) 34 43 54 37 42

B (08) 51 45 39 27 40.5

C (04) 27 31 41 20 29.75

C (05) 61 41 41 43 46.5

C (06) 39 45 41 43 42

C (07) 53 55 33 38 44.75

C (08) 41 52 46 47 46.5

C (09) 36 41 41 34 38

C (10) 64 49 32 38 45.75

C (11) 38 35 36 32 35.25

C (12) 39 35 40 36 37.5

C (13) 35 27 49 41 38

C (14) 39 37 37 61 43.5

C (15) 39 40 39 53 42.75

C (16) 46 48 42 48 46

C (17) 34 35 44 55 42

C (18) 52 54 46 56 52

C (19) 37 31 26 31 31.25

D (02) 34 38 37 47 39

D (03) 41 48 35 34 39.5

D (04) 28 35 26 37 31.5

D 2 (02) 45 32 46 28 37.75

D 2 (03) 31 42 37 40 37.5

D 2 (04) 38 30 36 40 36

D 2 (05) 52 58 43 49 50.5

D 2 (06) 39 40 48 50 44.25

D 2 (07) 49 35 43 58 46.25

D 2 (08) 55 37 42 45 44.75

D 2 (09) 38 46 51 54 47.25

D 2 (10) 43 48 38 38 41.75

D 2 (11) 36 40 64 37 44.25

D 2 (12) 32 39 32 42 36.25

A 65 69 69 46 62.25

A (02) 60 64 64 68 64

A (03) 58 51 67 52 57

A (04) 68 60 59 41 57

A (05) 65 65 54 59 60.75

B 74 60 63 52 62.25

B (02) 67 55 50 63 58.75

B (03) 53 53 61 57 56

B (04) 67 55 58 41 55.25

B (05) 60 65 53 56 58.5

A 62 51 49 61 55.75

A (02) 61 68 49 54 58

A (03) 56 62 58 56 58

A (04) 61 65 51 62 59.75

A (05) 45 47 40 46 44.5

C 61 61 57 68 61.75

C (02) 64 56 58 59 59.25

C (04) 60 59 69 63 62.75

C (05) 59 68 57 59 60.75

C (06) 63 64 50 55 58
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N # Image # 1 2 3 4 Average

A (03) 38 41 48 43 42.5

A (04) 62 48 47 46 50.75

A (05) 59 33 55 46 48.25

A (06) 34 56 31 35 39

A (07) 40 52 57 54 50.75

A (10) 41 28 39 33 35.25

A (12) 41 27 45 40 38.25

A (13) 50 38 39 45 43

A (17) 53 42 39 38 43

A (18) 42 48 28 32 37.5

A (24) 59 60 43 34 49

A (25) 46 40 43 45 43.5

2 B (04) 44 49 41 37 42.75

C (13) 42 44 43 42 42.75

C (14) 61 52 44 38 48.75

C (15) 50 47 50 46 48.25

C (17) 51 48 39 36 43.5

C (18) 44 40 57 42 45.75

C (21) 44 49 48 36 44.25

C (22) 58 59 36 41 48.5

A (02) 53 49 47 36 46.25

A (03) 63 56 53 37 52.25

A (04) 62 53 48 45 52

A (05) 49 53 43 44 47.25

A (06) 51 54 41 42 47

A (07) 39 55 48 41 45.75

A (08) 36 32 32 29 32.25

A (09) 46 27 32 46 37.75

A (10) 49 46 32 43 42.5

A (11) 45 36 38 34 38.25

A 2 (02) 29 49 50 41 42.25

A 2 (03) 54 47 47 44 48

B 56 49 38 50 48.25

B (02) 55 46 44 48 48.25

B (03) 32 25 37 33 31.75

B (04) 38 35 41 34 37

B (05) 34 31 30 29 31

B (07) 34 43 54 37 42

B (08) 51 45 39 27 40.5

C (04) 27 31 41 20 29.75

C (05) 61 41 41 43 46.5

C (06) 39 45 41 43 42

C (07) 53 55 33 38 44.75

C (08) 41 52 46 47 46.5

C (09) 36 41 41 34 38

C (10) 64 49 32 38 45.75

C (11) 38 35 36 32 35.25

C (12) 39 35 40 36 37.5

C (13) 35 27 49 41 38

C (14) 39 37 37 61 43.5

C (15) 39 40 39 53 42.75

C (16) 46 48 42 48 46

C (17) 34 35 44 55 42

C (18) 52 54 46 56 52

C (19) 37 31 26 31 31.25

D (02) 34 38 37 47 39

D (03) 41 48 35 34 39.5

D (04) 28 35 26 37 31.5

D 2 (02) 45 32 46 28 37.75

D 2 (03) 31 42 37 40 37.5

D 2 (04) 38 30 36 40 36

D 2 (05) 52 58 43 49 50.5

D 2 (06) 39 40 48 50 44.25

D 2 (07) 49 35 43 58 46.25

D 2 (08) 55 37 42 45 44.75

D 2 (09) 38 46 51 54 47.25

D 2 (10) 43 48 38 38 41.75

D 2 (11) 36 40 64 37 44.25

D 2 (12) 32 39 32 42 36.25

A 65 69 69 46 62.25

A (02) 60 64 64 68 64

A (03) 58 51 67 52 57

A (04) 68 60 59 41 57

A (05) 65 65 54 59 60.75

B 74 60 63 52 62.25

B (02) 67 55 50 63 58.75

B (03) 53 53 61 57 56

B (04) 67 55 58 41 55.25

B (05) 60 65 53 56 58.5

A 62 51 49 61 55.75

A (02) 61 68 49 54 58

A (03) 56 62 58 56 58

A (04) 61 65 51 62 59.75

A (05) 45 47 40 46 44.5

C 61 61 57 68 61.75

C (02) 64 56 58 59 59.25

C (04) 60 59 69 63 62.75

C (05) 59 68 57 59 60.75

C (06) 63 64 50 55 58
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N # Image # 1 2 3 4 Average

A 41 29 29 32 32.75

A (07) 37 25 38 33 33.25

A (10) 29 29 34 33 31.25

A (15) 32 51 38 20 35.25

A (16) 35 30 42 35 35.5

A (17) 49 38 59 60 51.5

A (18) 47 42 45 44 44.5

A (19) 35 33 29 40 34.25

A (20) 44 51 33 26 38.5

A (23) 48 39 41 31 39.75

B (5) 40 42 36 43 40.25

B (06) 30 40 30 27 31.75

B (6) 58 48 47 26 44.75

B (07) 39 34 29 32 33.5

B (08) 38 36 31 32 34.25

B (8) 59 60 46 50 53.75

B (09) 30 40 38 35 35.75

C (03) 48 38 34 60 45

C (11) 38 46 43 53 45

C (12) 29 24 35 42 32.5

C (13) 47 35 38 48 42

C (14) 39 32 37 32 35

C (15) 41 45 45 44 43.75

C (29) 39 30 29 30 32

C (32) 40 41 29 24 33.5

C (33) 23 25 43 33 31

C (35) 49 45 32 42 42

D (02) 40 34 34 42 37.5

D (04) 23 35 35 28 30.25

D (4) 38 31 36 32 34.25

D (08) 22 21 40 28 27.75

D (09) 27 33 30 28 29.5

D (9) 30 32 38 30 32.5

D (12) 37 26 27 22 28

D (14) 37 33 31 27 32

D (15) 28 33 33 32 31.5

D (20) 35 28 15 42 30

D (24) 29 36 40 43 37

D (25) 29 39 39 32 34.75

D (27) 40 37 40 23 35

A (02) 26 25 23 32 26.5

A (03) 51 47 48 31 44.25

A (05) 46 31 29 29 33.75

B (02) 37 47 43 44 42.75

B (03) 39 36 37 29 35.25

B (04) 46 43 41 35 41.25

B (05) 44 49 47 38 44.5

B (06) 28 39 33 25 31.25

B (07) 34 43 49 33 39.75

B (08) 41 37 42 40 40

B (09) 50 40 47 49 46.5

B (10) 24 38 44 45 37.75

B (11) 41 41 34 40 39

B (12) 40 39 50 58 46.75

C (02) 39 29 41 40 37.25

C (03) 53 40 37 34 41

C (04) 46 40 47 43 44

C (05) 42 44 25 30 35.25

C (06) 36 40 36 44 39

C (07) 40 43 38 39 40

C (08) 32 54 39 29 38.5

C (09) 52 45 37 41 43.75

C (10) 43 40 37 36 39

C (11) 40 38 36 40 38.5

C (12) 50 43 38 53 46

C (13) 41 43 42 34 40

C (14) 38 35 46 44 40.75

C (15) 45 45 49 56 48.75

C (16) 29 28 35 32 31

D (02) 48 41 46 52 46.75

D (03) 28 26 24 31 27.25

D (04) 44 42 23 43 38

D (05) 25 39 36 34 33.5

D (06) 40 37 43 37 39.25

D (07) 42 37 36 38 38.25

D (08) 33 46 42 45 41.5

D (09) 40 33 46 40 39.75

D (10) 39 40 41 40 40

D (11) 24 36 27 34 30.25

D (12) 40 36 46 30 38

D (13) 46 42 28 39 38.75

D (14) 43 43 39 30 38.75

D (15) 34 39 49 39 40.25

B 54 53 70 49 56.5

B (02) 62 48 45 45 50

B (03) 46 40 59 64 52.25

B (04) 53 58 51 54 54

B (05) 43 48 58 47 49

C 55 50 40 45 47.5

C (02) 65 64 41 42 53

C (03) 63 62 45 50 55

C (04) 52 57 42 46 49.25

C (05) 46 50 38 46 45

A 46 43 57 41 46.75

A (02) 64 43 46 40 48.25

A (03) 45 38 58 53 48.5

A (04) 65 54 45 48 53

A (05) 40 46 44 55 46.25

C 60 55 58 53 56.5

C (02) 60 58 56 53 56.75

C (03) 47 49 47 47 47.5

C (04) 42 42 55 61 50

C (05) 57 44 47 45 48.25
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N # Image # 1 2 3 4 Average

A 41 29 29 32 32.75

A (07) 37 25 38 33 33.25

A (10) 29 29 34 33 31.25

A (15) 32 51 38 20 35.25

A (16) 35 30 42 35 35.5

A (17) 49 38 59 60 51.5

A (18) 47 42 45 44 44.5

A (19) 35 33 29 40 34.25

A (20) 44 51 33 26 38.5

A (23) 48 39 41 31 39.75

B (5) 40 42 36 43 40.25

B (06) 30 40 30 27 31.75

B (6) 58 48 47 26 44.75

B (07) 39 34 29 32 33.5

B (08) 38 36 31 32 34.25

B (8) 59 60 46 50 53.75

B (09) 30 40 38 35 35.75

C (03) 48 38 34 60 45

C (11) 38 46 43 53 45

C (12) 29 24 35 42 32.5

C (13) 47 35 38 48 42

C (14) 39 32 37 32 35

C (15) 41 45 45 44 43.75

C (29) 39 30 29 30 32

C (32) 40 41 29 24 33.5

C (33) 23 25 43 33 31

C (35) 49 45 32 42 42

D (02) 40 34 34 42 37.5

D (04) 23 35 35 28 30.25

D (4) 38 31 36 32 34.25

D (08) 22 21 40 28 27.75

D (09) 27 33 30 28 29.5

D (9) 30 32 38 30 32.5

D (12) 37 26 27 22 28

D (14) 37 33 31 27 32

D (15) 28 33 33 32 31.5

D (20) 35 28 15 42 30

D (24) 29 36 40 43 37

D (25) 29 39 39 32 34.75

D (27) 40 37 40 23 35

A (02) 26 25 23 32 26.5

A (03) 51 47 48 31 44.25

A (05) 46 31 29 29 33.75

B (02) 37 47 43 44 42.75

B (03) 39 36 37 29 35.25

B (04) 46 43 41 35 41.25

B (05) 44 49 47 38 44.5

B (06) 28 39 33 25 31.25

B (07) 34 43 49 33 39.75

B (08) 41 37 42 40 40

B (09) 50 40 47 49 46.5

B (10) 24 38 44 45 37.75

B (11) 41 41 34 40 39

B (12) 40 39 50 58 46.75

C (02) 39 29 41 40 37.25

C (03) 53 40 37 34 41

C (04) 46 40 47 43 44

C (05) 42 44 25 30 35.25

C (06) 36 40 36 44 39

C (07) 40 43 38 39 40

C (08) 32 54 39 29 38.5

C (09) 52 45 37 41 43.75

C (10) 43 40 37 36 39

C (11) 40 38 36 40 38.5

C (12) 50 43 38 53 46

C (13) 41 43 42 34 40

C (14) 38 35 46 44 40.75

C (15) 45 45 49 56 48.75

C (16) 29 28 35 32 31

D (02) 48 41 46 52 46.75

D (03) 28 26 24 31 27.25

D (04) 44 42 23 43 38

D (05) 25 39 36 34 33.5

D (06) 40 37 43 37 39.25

D (07) 42 37 36 38 38.25

D (08) 33 46 42 45 41.5

D (09) 40 33 46 40 39.75

D (10) 39 40 41 40 40

D (11) 24 36 27 34 30.25

D (12) 40 36 46 30 38

D (13) 46 42 28 39 38.75

D (14) 43 43 39 30 38.75

D (15) 34 39 49 39 40.25

B 54 53 70 49 56.5

B (02) 62 48 45 45 50

B (03) 46 40 59 64 52.25

B (04) 53 58 51 54 54

B (05) 43 48 58 47 49

C 55 50 40 45 47.5

C (02) 65 64 41 42 53

C (03) 63 62 45 50 55

C (04) 52 57 42 46 49.25

C (05) 46 50 38 46 45

A 46 43 57 41 46.75

A (02) 64 43 46 40 48.25

A (03) 45 38 58 53 48.5

A (04) 65 54 45 48 53

A (05) 40 46 44 55 46.25

C 60 55 58 53 56.5

C (02) 60 58 56 53 56.75

C (03) 47 49 47 47 47.5

C (04) 42 42 55 61 50

C (05) 57 44 47 45 48.25
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N # Image # 1 2 3 4 Average

1 A (06) 49 44 45 51 47.25

B (04) 43 40 23 30 34

B (09) 28 31 30 33 30.5

B (10) 43 28 29 26 31.5

B (11) 49 38 34 29 37.5

B (13) 46 45 55 28 43.5

B (20) 43 45 31 26 36.25

B (21) 36 43 33 35 36.75

B (25) 65 44 51 26 46.5

C (06) 61 62 45 51 54.75

C (07) 44 34 23 26 31.75

C (08) 47 37 28 40 38

C (09) 29 32 25 22 27

C (10) 33 37 38 46 38.5

C (12) 37 46 18 36 34.25

C (18) 37 32 31 22 30.5

C (19) 23 34 35 35 31.75

C (23) 49 32 27 29 34.25

A (03) 34 39 38 34 36.25

A (06) 36 37 29 37 34.75

A 2 41 43 53 51 47

A 2 (02) 37 30 40 53 40

A 2 (03) 51 42 37 45 43.75

A 2 (04) 34 42 36 46 39.5

A 2 (05) 46 40 47 35 42

A 2 (06) 49 40 46 35 42.5

A 2 (07) 39 28 23 47 34.25

A 2 (08) 35 38 46 28 36.75

A 2 (09) 43 37 34 38 38

B 43 41 52 51 46.75

B (02) 42 43 39 47 42.75

B (03) 46 38 28 40 38

B (04) 43 39 27 34 35.75

B (05) 33 31 38 42 36

B (06) 45 41 48 40 43.5

B (07) 36 36 41 35 37

B (08) 36 39 29 52 39

B (09) 41 38 40 39 39.5

B (10) 38 46 47 44 43.75

B (11) 36 45 40 34 38.75

B (12) 24 33 35 43 33.75

B (13) 40 36 42 48 41.5

B (14) 52 29 38 42 40.25

B (15) 50 50 30 24 38.5

B (16) 57 45 48 39 47.25

B (17) 34 31 37 38 35

B (18) 31 35 24 28 29.5

C 36 33 35 41 36.25

C (02) 42 47 40 39 42

C (03) 38 31 31 39 34.75

C (04) 67 51 42 31 47.75

C (05) 37 39 36 42 38.5

C (06) 40 28 48 33 37.25

C (07) 39 31 51 45 41.5

C (08) 33 29 40 30 33

C (09) 33 33 38 32 34

C (10) 37 37 32 37 35.75

D 35 38 40 42 38.75

D (02) 42 36 36 41 38.75

D (03) 40 40 39 27 36.5

D (04) 35 32 35 27 32.25

D (05) 30 37 43 32 35.5

D (06) 32 50 42 32 39

D (07) 35 43 46 31 38.75

D (08) 39 43 40 35 39.25

D (09) 37 34 44 44 39.75

D (10) 44 41 34 41 40

D (11) 37 38 39 31 36.25

D (12) 43 44 38 37 40.5

D (13) 48 48 34 25 38.75

D (14) 41 31 36 39 36.75

D (15) 26 31 33 39 32.25

A 65 54 52 49 55

A (02) 70 60 43 49 55.5

A (03) 53 55 42 44 48.5

A (04) 66 64 53 33 54

A (05) 45 65 53 54 54.25
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N # Image # 1 2 3 4 Average

1 A (06) 49 44 45 51 47.25

B (04) 43 40 23 30 34

B (09) 28 31 30 33 30.5

B (10) 43 28 29 26 31.5

B (11) 49 38 34 29 37.5

B (13) 46 45 55 28 43.5

B (20) 43 45 31 26 36.25

B (21) 36 43 33 35 36.75

B (25) 65 44 51 26 46.5

C (06) 61 62 45 51 54.75

C (07) 44 34 23 26 31.75

C (08) 47 37 28 40 38

C (09) 29 32 25 22 27

C (10) 33 37 38 46 38.5

C (12) 37 46 18 36 34.25

C (18) 37 32 31 22 30.5

C (19) 23 34 35 35 31.75

C (23) 49 32 27 29 34.25

A (03) 34 39 38 34 36.25

A (06) 36 37 29 37 34.75

A 2 41 43 53 51 47

A 2 (02) 37 30 40 53 40

A 2 (03) 51 42 37 45 43.75

A 2 (04) 34 42 36 46 39.5

A 2 (05) 46 40 47 35 42

A 2 (06) 49 40 46 35 42.5

A 2 (07) 39 28 23 47 34.25

A 2 (08) 35 38 46 28 36.75

A 2 (09) 43 37 34 38 38

B 43 41 52 51 46.75

B (02) 42 43 39 47 42.75

B (03) 46 38 28 40 38

B (04) 43 39 27 34 35.75

B (05) 33 31 38 42 36

B (06) 45 41 48 40 43.5

B (07) 36 36 41 35 37

B (08) 36 39 29 52 39

B (09) 41 38 40 39 39.5

B (10) 38 46 47 44 43.75

B (11) 36 45 40 34 38.75

B (12) 24 33 35 43 33.75

B (13) 40 36 42 48 41.5

B (14) 52 29 38 42 40.25

B (15) 50 50 30 24 38.5

B (16) 57 45 48 39 47.25

B (17) 34 31 37 38 35

B (18) 31 35 24 28 29.5

C 36 33 35 41 36.25

C (02) 42 47 40 39 42

C (03) 38 31 31 39 34.75

C (04) 67 51 42 31 47.75

C (05) 37 39 36 42 38.5

C (06) 40 28 48 33 37.25

C (07) 39 31 51 45 41.5

C (08) 33 29 40 30 33

C (09) 33 33 38 32 34

C (10) 37 37 32 37 35.75

D 35 38 40 42 38.75

D (02) 42 36 36 41 38.75

D (03) 40 40 39 27 36.5

D (04) 35 32 35 27 32.25

D (05) 30 37 43 32 35.5

D (06) 32 50 42 32 39

D (07) 35 43 46 31 38.75

D (08) 39 43 40 35 39.25

D (09) 37 34 44 44 39.75

D (10) 44 41 34 41 40

D (11) 37 38 39 31 36.25

D (12) 43 44 38 37 40.5

D (13) 48 48 34 25 38.75

D (14) 41 31 36 39 36.75

D (15) 26 31 33 39 32.25

A 65 54 52 49 55

A (02) 70 60 43 49 55.5

A (03) 53 55 42 44 48.5

A (04) 66 64 53 33 54

A (05) 45 65 53 54 54.25
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N # Image # 1 2 3 4 Average

B 23 23 23 24 23.25

B (03) 40 38 42 37 39.25

B (06) 37 36 33 45 37.75

B (07) 43 32 37 37 37.25

B (09) 41 43 44 46 43.5

C (06) 36 35 30 33 33.5

C (08) 39 37 38 39 38.25

C (09) 34 29 34 34 32.75

D 47 53 42 42 46

D (02) 52 44 32 35 40.75

D (03) 34 44 38 40 39

D (15) 40 43 28 43 38.5

D (16) 22 27 29 32 27.5

D (17) 36 26 26 32 30

D (20) 34 46 39 36 38.75

D (21) 55 42 39 27 40.75

D (22) 50 36 43 34 40.75

D (24) 40 40 47 23 37.5

A 44 47 49 44 46

A (02) 36 40 42 44 40.5

A (03) 43 39 37 36 38.75

A (04) 28 30 33 41 33

A (05) 36 39 35 27 34.25

A (06) 41 52 55 65 53.25

A (07) 38 36 36 43 38.25

A (08) 40 50 33 40 40.75

A (09) 42 57 53 37 47.25

A (10) 35 35 31 33 33.5

A 2 42 30 28 33 33.25

A 2 (02) 24 23 37 33 29.25

A 2 (03) 39 39 41 39 39.5

A 2 (04) 43 37 39 27 36.5

A 2 (05) 43 37 37 38 38.75

A 2 (06) 36 34 39 34 35.75

B 30 33 41 26 32.5

B (02) 29 36 34 33 33

B (03) 34 33 35 35 34.25

B (04) 44 40 38 30 38

B (05) 32 39 40 33 36

B (06) 48 48 42 39 44.25

A 68 45 51 41 51.25

A (02) 50 52 53 52 51.75

A (03) 41 44 42 43 42.5

A (04) 50 49 51 48 49.5

A (05) 51 42 40 49 45.5

B 70 61 56 46 58.25

B (02) 52 50 59 38 49.75

B (03) 48 42 41 43 43.5

B (04) 54 46 39 60 49.75

B (05) 59 59 53 48 54.75

C 45 47 43 48 45.75

C (02) 46 45 42 40 43.25

C (03) 48 49 49 51 49.25

C (04) 60 49 44 52 51.25

C (05) 50 44 51 52 49.25
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One Way Analysis of Variance - Attachment Thursday, April 22, 2010, 11:04:04 PM 

 

Data source: Data 1 in 1 day thesis 

 

Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Thursday, April 22, 2010, 11:04:04 PM 

 

Data source: Data 1 in 1 day thesis 

 

Group N  Missing  Median    25%      75%     

none 131 0 35.250 30.250 39.500  

edc 89 0 41.250 35.625 47.500  

hep 89 0 45.750 39.250 51.375  

5fgf 103 0 39.750 34.250 46.000  

10fgf 77 0 38.500 35.250 42.000  

50fgf 55 0 39.250 35.750 46.000  

 

H = 90.121 with 5 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would be expected by chance; 

there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

hep vs none 196.912 9.120 Yes   

hep vs 10fgf 124.262 5.079 Yes   

hep vs 5fgf 101.712 4.471 Yes   

hep vs 50fgf 91.327 3.388 Yes   

hep vs edc 71.747 3.045 Yes   

edc vs none 125.164 5.797 Yes   

edc vs 10fgf 52.515 2.147 No   

edc vs 5fgf 29.964 1.317 Do Not Test   

edc vs 50fgf 19.580 0.726 Do Not Test   

50fgf vs none 105.585 4.181 Yes   

50fgf vs 10fgf 32.935 1.187 Do Not Test   

50fgf vs 5fgf 10.385 0.396 Do Not Test   

5fgf vs none 95.200 4.599 Yes   

5fgf vs 10fgf 22.550 0.952 Do Not Test   

10fgf vs none 72.650 3.219 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 

N # Image # 1 2 3 4 Average

B 23 23 23 24 23.25

B (03) 40 38 42 37 39.25

B (06) 37 36 33 45 37.75

B (07) 43 32 37 37 37.25

B (09) 41 43 44 46 43.5

C (06) 36 35 30 33 33.5

C (08) 39 37 38 39 38.25

C (09) 34 29 34 34 32.75

D 47 53 42 42 46

D (02) 52 44 32 35 40.75

D (03) 34 44 38 40 39

D (15) 40 43 28 43 38.5

D (16) 22 27 29 32 27.5

D (17) 36 26 26 32 30

D (20) 34 46 39 36 38.75

D (21) 55 42 39 27 40.75

D (22) 50 36 43 34 40.75

D (24) 40 40 47 23 37.5

A 44 47 49 44 46

A (02) 36 40 42 44 40.5

A (03) 43 39 37 36 38.75

A (04) 28 30 33 41 33

A (05) 36 39 35 27 34.25

A (06) 41 52 55 65 53.25

A (07) 38 36 36 43 38.25

A (08) 40 50 33 40 40.75

A (09) 42 57 53 37 47.25

A (10) 35 35 31 33 33.5

A 2 42 30 28 33 33.25

A 2 (02) 24 23 37 33 29.25

A 2 (03) 39 39 41 39 39.5

A 2 (04) 43 37 39 27 36.5

A 2 (05) 43 37 37 38 38.75

A 2 (06) 36 34 39 34 35.75

B 30 33 41 26 32.5

B (02) 29 36 34 33 33

B (03) 34 33 35 35 34.25

B (04) 44 40 38 30 38

B (05) 32 39 40 33 36

B (06) 48 48 42 39 44.25

A 68 45 51 41 51.25

A (02) 50 52 53 52 51.75

A (03) 41 44 42 43 42.5

A (04) 50 49 51 48 49.5

A (05) 51 42 40 49 45.5

B 70 61 56 46 58.25

B (02) 52 50 59 38 49.75

B (03) 48 42 41 43 43.5

B (04) 54 46 39 60 49.75

B (05) 59 59 53 48 54.75

C 45 47 43 48 45.75

C (02) 46 45 42 40 43.25

C (03) 48 49 49 51 49.25

C (04) 60 49 44 52 51.25

C (05) 50 44 51 52 49.25
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Multiple Comparison Graph

Symbol indicates significant difference.

none edc hep 5fgf 10fgf 50fgf

50fgf

10fgf

5fgf

hep

edc

none

 

Appendix C.2: Summary of Cell Distribution Data 

 
 

 

1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

41.75 38.25 43 51.75 29.75 35.25 34.75 30.5 37.5 27.25 39.75

39 46.75 42.75 39.5 50 35.75

Average 41.75 38.25 43 45.375 38.25 39 34.75 35 43.75 31.5 39.75

33 44.5 35.25 33.5 27 32.5 41.75

37

Average 33 44.5 36.125 33.5 27 32.5 41.75

30.25 34.25 30.75 39.25 38.5 30.5 44.75 50

35.25 36.5

Average 30.25 34.25 30.75 39.25 36.875 33.5 44.75 50

35 40.75 33 39.25 45 44.25 34.75 30 26.25 33.25 25

31.75 52.5 32.25

Average 35 36.25 33 39.25 48.75 44.25 33.5 30 26.25 33.25 25

38.375 34.91667 35.8125 39.96875 40.59375 38.40625 32.1875 35.5625 40.4375 32.375 32.375

4.772971 4.163332 4.827763 6.714703 5.591451 4.506217 3.508175 6.456182 10.08996 1.237437 10.42983

NONE

Standard Deviation
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1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

43.25 50.5 49.5 44.5 35.5 30 23.5 37 47.25

41.5

Average 43.25 50.5 45.5 44.5 35.5 30 23.5 37 47.25

36.5 41 35.25 37.5 36.5 36.25 42.25 32 38.75

Average 36.5 41 35.25 37.5 36.5 36.25 42.25 32 38.75

41.25 43.5 42.5 39.25 34 34.25 30.5 35.25 36.75

41.25 32

Average 41.25 42.375 37.25 39.25 34 34.25 30.5 35.25 36.75

46 40.75 37.75 42 38.75 32 40.25 40.75 36 42.5

38.5

Average 46 39.625 37.75 42 38.75 32 40.25 40.75 36 42.5

46 40.15625 42.90625 40 40 34.5 35.1875 34.25 35.0625 41.3125

2.85295 5.421192 4.632314 3.088959 1.95789 4.26407 8.867074 2.16386 4.620493

EDC/NHS

Standard Deviation

C
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Total Average
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1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

46.25 52.25 52 47.25 45.75 32.25 37.75 42.5 38.25 42.25 48

47

Average 46.25 52.25 52 47.125 45.75 32.25 37.75 42.5 38.25 42.25 48

48.25 48.25 31.75 37 31 42 40.5

Average 48.25 48.25 31.75 37 31 36.43 42 40.5

29.75 46.5 44.75 38 35.25 38 43.5 46 52 31.25

42 46.5 45.75 37.5 42.75 42

Average 29.75 44.25 45.625 41.875 36.375 38 43.125 44 52 31.25

37.75 37.5 36 50.5 46.25 47.25 44.25

44.25 44.75 41.75 36.25

Average 37.75 37.5 36 47.375 45.5 44.5 40.25

46.25 43.41667 45.5625 40.5 40.15625 36.75 40.41667 43.03125 40.75 47.125 39.625

12.00347 6.094311 7.204599 4.526974 7.446336 4.40407 1.08193 2.389212 6.894291 11.84404

HEP

Standard Deviation

C

D

Total Average

Section / Distance

Scaffold

A
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Cell Distribution Across EDC/NHS HEP Braids

1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

42.75 35.25 41.25 31.25 39.75 40 46.5 37.75 39 46.75

44.5

Average 42.75 35.25 42.875 31.25 39.75 40 46.5 37.75 39 46.75

37.25 41 44 35.25 40 43.75 38.5 40 40.75 31

39 38.5 39 46 48.75

Average 37.25 41 44 37.125 39.25 41.375 42.25 40 44.75 31

46.75 27.25 38 33.5 38.25 39.75 40 30.25 38 38.75 40.25

39.25 41.5 38.75

Average 46.75 27.25 38 36.375 39.875 39.75 40 30.25 38 38.75 40.25

42.25 34.5 41.625 34.91667 39.625 40.375 42.91667 36 40.58333 38.83333 40.25

4.769696 6.905614 3.189338 3.197493 0.330719 0.875 3.300884 5.105144 3.642915 7.875331

5 ng/mL FGF-2

Section / Distance

Scaffold

B

Standard Deviation

C

D

Total Average
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Cell Distribution Across 5 ng/mL FGF2 Braids

1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

47 40 43.75 42 42.5 36.75 38

39.5 34.25

Average 47 40 41.625 42 38.375 36.75 38

46.75 38 36 42.375 43.75 33.75 40.25 47.25 29.5

42.75 35.75 43.5 39.25 38.75 41.5 38.5 35

37

Average 44.75 36.875 38.83333 40.8125 41.25 37.625 39.375 41.125 29.5

36.25 34.75 47.75 37.25 33 34

42 38.5 41.5 35.75

Average 39.125 34.75 43.125 39.375 33 34.875

38.75 38.75 32.25 35.5 39 39.25 36.25 38.75 32.25

36.5 38.75 39.75 40.5 36.75

40

Average 38.75 37.625 32.25 35.5 38.875 39.66667 38.375 37.75 32.25

41.75 40.15625 36.45833 40.26563 40.375 37.16667 37.34375 38.95833 30.875

4.242641 4.657403 3.596874 3.318342 1.489547 2.902944 1.969494 1.880547 1.944544

10 ng/mL FGF-2

Standard Deviation

Total Average

B

D

Section / Distance

Scaffold

A

C
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1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

46 40.5 33 34.25 53.25 40.75 47.25 33.5

38.75 38.25

Average 46 39.625 33 34.25 45.75 40.75 47.25 33.5

32.5 33 34.25 38 36 44.25

Average 32.5 33 34.25 38 36 44.25

46 36.0625 33 34.25 41.875 38.375 45.75 33.5

5.038136 0 0 5.480078 3.358757 2.12132

50 ng/mL FGF-2

Standard Deviation

Total Average
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Scaffold

A

B

0

10

20

30

40

50

60

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

# 
o

f 
ce

lls
 /

 1
0

,0
0

0
 µ

m
2

Position on Braid (µm)

Cell Distribution Across 50 ng/mL FGF2 Braids



171 

 

Appendix D: Cell Growth Data 

Unseeded Control Scaffolds cultured for 7 days: 

 

 

Summary of cell growth calculations for 5 and 7 days, including individual counts for each 

image, statistics, and cell distribution data. 
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Appendix D.1: Cell Growth Data – 5 Days 

 

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 36.06863 8.906329 1.247136 Section 47.34043 7.277763 1.061571 Section 44.42 6.891921 0.974665

Section Section Section

Q1 32.375 Q1 42.5 Q1 41.0625

Q3 40.875 Q3 51.75 Q3 48.125

IQR 8.5 IQR 9.25 IQR 7.0625

LAV 19.625 LAV 28.625 LAV 30.46875

UAV 53.625 UAV 65.625 UAV 58.71875

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 39.48684 6.799445 1.5599 Section 41.94737 4.230822 0.970617 Section 49.42857 8.243233 1.798821

Section Section Section

Q1 35 Q1 37.75 Q1 44.75

Q3 44.125 Q3 44.625 Q3 52.75

IQR 9.125 IQR 6.875 IQR 8

LAV 21.3125 LAV 27.4375 LAV 32.75

UAV 57.8125 UAV 54.9375 UAV 64.75

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 36.92647 8.926245 2.164932 Section 38.4125 5.462356 1.22142 Section 47.41176 3.57393 0.866805

Section Section Section

Q1 27.75 Q1 34.9375 Q1 45

Q3 43.75 Q3 42.125 Q3 49.25

IQR 16 IQR 7.1875 IQR 4.25

LAV 3.75 LAV 24.15625 LAV 38.625

UAV 67.75 UAV 52.90625 UAV 55.625

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 36.98276 7.894918 0.846424 Section 44.07267 7.319582 0.789291 Section 46.19318 7.024662 0.748831

Section Section Section

Q1 31.875 Q1 39.625 Q1 42.6875

Q3 42.5 Q3 47.5 Q3 50.5625

IQR 10.625 IQR 7.875 IQR 7.875

LAV 15.9375 LAV 27.8125 LAV 30.875

UAV 58.4375 UAV 59.3125 UAV 62.375
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Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 44.3125 7.166801 1.034439 Section 39.83523 4.904597 0.739396 Section 42.55 5.199221 0.949243

Section Section Section

Q1 38.75 Q1 36.25 Q1 39.3125

Q3 49.375 Q3 44.0625 Q3 45.9375

IQR 10.625 IQR 7.8125 IQR 6.625

LAV 22.8125 LAV 24.53125 LAV 29.375

UAV 65.3125 UAV 55.78125 UAV 55.875

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 51.89474 5.927406 1.35984 Section 47.54412 6.500742 1.576662 Section 49.48438 8.12274 2.030685

Section Section Section

Q1 48.875 Q1 41.5 Q1 43

Q3 54.625 Q3 52.25 Q3 56.5

IQR 5.75 IQR 10.75 IQR 13.5

LAV 40.25 LAV 25.375 LAV 22.75

UAV 63.25 UAV 68.375 UAV 76.75

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 49.42105 4.246774 0.974277 Section 44.40625 5.283524 1.320881 Section 44.45588 7.740032 1.877233

Section Section Section

Q1 47 Q1 40.3125 Q1 40.75

Q3 51.875 Q3 47.125 Q3 50.5

IQR 4.875 IQR 6.8125 IQR 9.75

LAV 39.6875 LAV 30.09375 LAV 26.125

UAV 59.1875 UAV 57.34375 UAV 65.125

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 47.11628 7.098643 0.765466 Section 42.48701 6.211579 0.707875 Section 44.8254 7.225715 0.910355

Section Section Section

Q1 42.25 Q1 38 Q1 40

Q3 51.625 Q3 46.25 Q3 49.875

IQR 9.375 IQR 8.25 IQR 9.875

LAV 28.1875 LAV 25.625 LAV 25.1875

UAV 65.6875 UAV 58.625 UAV 64.6875
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N # Image # 1 2 3 4 Average

A 34 34 32 37 34.25

A (02) 22 23 21 25 22.75

A (03) 21 15 16 17 17.25

A (04) 33 45 33 29 35

A (05) 38 41 50 31 40

A (07) 34 49 85 80 62

A (08) 39 40 53 34 41.5

A (09) 44 45 33 58 45

A 2 45 47 55 43 47.5

A 2 (02) 60 40 41 39 45

A 2 (03) 12 24 34 54 31

A 2 (05) 43 24 32 43 35.5

B 42 35 38 49 41

B (02) 30 21 21 23 23.75

B (03) 19 34 28 25 26.5

B (04) 28 23 16 19 21.5

C (02) 42 35 38 46 40.25

C (03) 27 36 40 38 35.25

C (04) 35 30 27 51 35.75

C (05) 33 40 45 27 36.25

C (06) 52 34 33 40 39.75

C (07) 46 47 47 23 40.75

C (08) 54 27 53 41 43.75

C (09) 38 47 38 38 40.25

C (10) 28 39 28 28 30.75

C (11) 42 37 24 41 36

C (12) 49 46 45 36 44

C (13) 31 37 53 39 40

C (15) 46 41 17 39 35.75

C 2 23 40 40 41 36

C 2 (02) 15 21 43 19 24.5

C 2 (04) 18 17 27 18 20

C 2 (05) 39 35 26 34 33.5

C 2 (06) 35 33 28 37 33.25

D (02) 40 39 71 51 50.25

D (04) 35 26 49 32 35.5

D (05) 41 32 30 52 38.75

D (06) 39 38 22 27 31.5

D (07) 23 39 15 29 26.5

D (08) 29 22 23 17 22.75

D (09) 13 11 12 19 13.75

D (10) 43 47 30 40 40

D (11) 31 38 45 57 42.75

D (12) 45 30 42 39 39

D (13) 51 44 37 33 41.25

D (15) 51 30 36 36 38.25

D (17) 40 42 43 23 37

D (18) 37 42 39 38 39

D 2 45 38 41 34 39.5

D 2 (02) 66 53 27 18 41

D 2 (03) 62 56 34 38 47.5

A 71 65 33 14 45.75

A (02) 23 33 32 36 31

A( 03) 51 50 47 48 49

A(04) 47 33 46 35 40.25

A (05) 40 33 37 28 34.5

A 2 30 26 28 45 32.25

A 2 (02) 31 39 42 30 35.5

A 2 (03) 39 34 55 48 44

A 2 (05) 36 38 35 41 37.5

B 36 42 46 40 41

B (02) 43 29 53 52 44.25

B (03) 21 22 28 37 27

B (04) 26 45 41 49 40.25

B (05) 36 35 41 43 38.75

C 38 58 53 55 51

C (02) 44 43 45 42 43.5

C (03) 48 42 48 31 42.25

C (04) 25 31 25 29 27.5

C (05) 37 47 45 51 45

A 43 37 65 50 48.75

A (02) 22 20 22 30 23.5

A( 03) 34 29 29 29 30.25

A(04) 37 43 41 40 40.25

A (05) 47 48 35 44 43.5

A (06) 36 50 56 42 46

B 36 55 50 55 49

B (02) 33 42 29 43 36.75

B (03) 50 47 38 29 41

B (04) 46 54 41 34 43.75

B (05) 22 39 48 56 41.25

B (06) 40 40 38 63 45.25

C 30 29 32 20 27.75

C (02) 33 24 25 25 26.75

C (03) 29 22 25 23 24.75

C (04) 21 31 20 30 25.5

C (05) 31 32 39 33 33.75
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N # Image # 1 2 3 4 Average

A 34 34 32 37 34.25

A (02) 22 23 21 25 22.75

A (03) 21 15 16 17 17.25

A (04) 33 45 33 29 35

A (05) 38 41 50 31 40

A (07) 34 49 85 80 62

A (08) 39 40 53 34 41.5

A (09) 44 45 33 58 45

A 2 45 47 55 43 47.5

A 2 (02) 60 40 41 39 45

A 2 (03) 12 24 34 54 31

A 2 (05) 43 24 32 43 35.5

B 42 35 38 49 41

B (02) 30 21 21 23 23.75

B (03) 19 34 28 25 26.5

B (04) 28 23 16 19 21.5

C (02) 42 35 38 46 40.25

C (03) 27 36 40 38 35.25

C (04) 35 30 27 51 35.75

C (05) 33 40 45 27 36.25

C (06) 52 34 33 40 39.75

C (07) 46 47 47 23 40.75

C (08) 54 27 53 41 43.75

C (09) 38 47 38 38 40.25

C (10) 28 39 28 28 30.75

C (11) 42 37 24 41 36

C (12) 49 46 45 36 44

C (13) 31 37 53 39 40

C (15) 46 41 17 39 35.75

C 2 23 40 40 41 36

C 2 (02) 15 21 43 19 24.5

C 2 (04) 18 17 27 18 20

C 2 (05) 39 35 26 34 33.5

C 2 (06) 35 33 28 37 33.25

D (02) 40 39 71 51 50.25

D (04) 35 26 49 32 35.5

D (05) 41 32 30 52 38.75

D (06) 39 38 22 27 31.5

D (07) 23 39 15 29 26.5

D (08) 29 22 23 17 22.75

D (09) 13 11 12 19 13.75

D (10) 43 47 30 40 40

D (11) 31 38 45 57 42.75

D (12) 45 30 42 39 39

D (13) 51 44 37 33 41.25

D (15) 51 30 36 36 38.25

D (17) 40 42 43 23 37

D (18) 37 42 39 38 39

D 2 45 38 41 34 39.5

D 2 (02) 66 53 27 18 41

D 2 (03) 62 56 34 38 47.5

A 71 65 33 14 45.75

A (02) 23 33 32 36 31

A( 03) 51 50 47 48 49

A(04) 47 33 46 35 40.25

A (05) 40 33 37 28 34.5

A 2 30 26 28 45 32.25

A 2 (02) 31 39 42 30 35.5

A 2 (03) 39 34 55 48 44

A 2 (05) 36 38 35 41 37.5

B 36 42 46 40 41

B (02) 43 29 53 52 44.25

B (03) 21 22 28 37 27

B (04) 26 45 41 49 40.25

B (05) 36 35 41 43 38.75

C 38 58 53 55 51

C (02) 44 43 45 42 43.5

C (03) 48 42 48 31 42.25

C (04) 25 31 25 29 27.5

C (05) 37 47 45 51 45

A 43 37 65 50 48.75

A (02) 22 20 22 30 23.5

A( 03) 34 29 29 29 30.25

A(04) 37 43 41 40 40.25

A (05) 47 48 35 44 43.5

A (06) 36 50 56 42 46

B 36 55 50 55 49

B (02) 33 42 29 43 36.75

B (03) 50 47 38 29 41

B (04) 46 54 41 34 43.75

B (05) 22 39 48 56 41.25

B (06) 40 40 38 63 45.25

C 30 29 32 20 27.75

C (02) 33 24 25 25 26.75

C (03) 29 22 25 23 24.75

C (04) 21 31 20 30 25.5

C (05) 31 32 39 33 33.75
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N # Image # 1 2 3 4 Average

A (02) 68 77 71 42 64.5

A (03) 56 61 56 58 57.75

A (04) 54 50 60 51 53.75

A (05) 68 70 41 65 61

A (06) 54 44 62 45 51.25

A (07) 53 52 37 32 43.5

A (08) 42 43 48 38 42.75

A (09) 45 36 42 38 40.25

A (10) 54 54 49 40 49.25

B 59 53 52 51 53.75

B (02) 58 52 49 50 52.25

B (03) 43 38 51 48 45

B (04) 43 46 31 32 38

B (05) 46 44 30 40 40

B (06) 40 34 44 3 30.25

B (07) 47 40 37 41 41.25

B (08) 45 46 47 51 47.25

B (10) 50 46 77 38 52.75

C 42 32 38 31 35.75

C (02) 38 51 45 46 45

C (03) 54 44 41 37 44

C (04) 47 47 50 46 47.5

C (05) 42 51 50 53 49

C (06) 39 48 43 39 42.25

C (07) 46 43 46 38 43.25

C (08) 52 45 36 56 47.25

C (09) 41 44 41 37 40.75

C (10) 58 43 61 52 53.5

C (11) 55 44 48 48 48.75

C (12) 59 36 54 38 46.75

C (13) 55 68 52 48 55.75

C (14) 75 71 65 43 63.5

C (15) 45 43 39 31 39.5

C (16) 45 43 43 40 42.75

D 41 43 57 57 49.5

D (02) 57 46 47 43 48.25

D (03) 49 51 38 40 44.5

D (04) 40 42 35 36 38.25

D (05) 44 41 47 44 44

D (06) 47 43 46 50 46.5

D (07) 45 38 37 46 41.5

D (08) 58 55 73 60 61.5

D (09) 35 40 35 55 41.25

D (10) 50 61 40 39 47.5

D (11) 50 46 59 50 51.25

D (12) 58 57 46 54 53.75

D (13) 54 50 49 37 47.5

A 23 27 61 36 36.75

A (02) 50 49 36 52 46.75

A( 03) 39 36 34 45 38.5

A(04) 51 45 55 39 47.5

A (05) 54 50 39 51 48.5

A (06) 40 41 45 46 43

B 50 53 42 41 46.5

B (02) 41 41 40 48 42.5

B (03) 44 34 39 31 37

B (04) 39 43 48 36 41.5

B (05) 45 39 37 52 43.25

B (06) 46 48 50 33 44.25

C 46 47 45 33 42.75

C (02) 36 41 59 33 42.25

C (03) 36 24 50 33 35.75

C (04) 40 36 33 33 35.5

C (05) 32 28 38 45 35.75

C (06) 40 41 44 51 44

C (07) 46 38 43 53 45

A 51 46 57 47 50.25

A (02) 37 38 31 41 36.75

A( 03) 40 38 46 37 40.25

A(04) 37 39 37 40 38.25

A (05) 42 44 44 43 43.25

A 2 39 36 30 31 34

A 2 (02) 40 36 43 44 40.75

B 41 43 40 31 38.75

B (02) 35 35 27 38 33.75

B (03) 38 29 33 31 32.75

B (04) 25 25 26 29 26.25

B (05) 33 25 37 24 29.75

B (06) 37 32 37 35 35.25

B (07) 42 38 32 39 37.75

C 36 45 51 41 43.25

C (02) 40 35 39 54 42

C (03) 40 35 51 49 43.75

C (04) 43 46 40 26 38.75

C (05) 43 39 41 38 40.25

C (06) 52 41 36 41 42.5
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N # Image # 1 2 3 4 Average

A (02) 68 77 71 42 64.5

A (03) 56 61 56 58 57.75

A (04) 54 50 60 51 53.75

A (05) 68 70 41 65 61

A (06) 54 44 62 45 51.25

A (07) 53 52 37 32 43.5

A (08) 42 43 48 38 42.75

A (09) 45 36 42 38 40.25

A (10) 54 54 49 40 49.25

B 59 53 52 51 53.75

B (02) 58 52 49 50 52.25

B (03) 43 38 51 48 45

B (04) 43 46 31 32 38

B (05) 46 44 30 40 40

B (06) 40 34 44 3 30.25

B (07) 47 40 37 41 41.25

B (08) 45 46 47 51 47.25

B (10) 50 46 77 38 52.75

C 42 32 38 31 35.75

C (02) 38 51 45 46 45

C (03) 54 44 41 37 44

C (04) 47 47 50 46 47.5

C (05) 42 51 50 53 49

C (06) 39 48 43 39 42.25

C (07) 46 43 46 38 43.25

C (08) 52 45 36 56 47.25

C (09) 41 44 41 37 40.75

C (10) 58 43 61 52 53.5

C (11) 55 44 48 48 48.75

C (12) 59 36 54 38 46.75

C (13) 55 68 52 48 55.75

C (14) 75 71 65 43 63.5

C (15) 45 43 39 31 39.5

C (16) 45 43 43 40 42.75

D 41 43 57 57 49.5

D (02) 57 46 47 43 48.25

D (03) 49 51 38 40 44.5

D (04) 40 42 35 36 38.25

D (05) 44 41 47 44 44

D (06) 47 43 46 50 46.5

D (07) 45 38 37 46 41.5

D (08) 58 55 73 60 61.5

D (09) 35 40 35 55 41.25

D (10) 50 61 40 39 47.5

D (11) 50 46 59 50 51.25

D (12) 58 57 46 54 53.75

D (13) 54 50 49 37 47.5

A 23 27 61 36 36.75

A (02) 50 49 36 52 46.75

A( 03) 39 36 34 45 38.5

A(04) 51 45 55 39 47.5

A (05) 54 50 39 51 48.5

A (06) 40 41 45 46 43

B 50 53 42 41 46.5

B (02) 41 41 40 48 42.5

B (03) 44 34 39 31 37

B (04) 39 43 48 36 41.5

B (05) 45 39 37 52 43.25

B (06) 46 48 50 33 44.25

C 46 47 45 33 42.75

C (02) 36 41 59 33 42.25

C (03) 36 24 50 33 35.75

C (04) 40 36 33 33 35.5

C (05) 32 28 38 45 35.75

C (06) 40 41 44 51 44

C (07) 46 38 43 53 45

A 51 46 57 47 50.25

A (02) 37 38 31 41 36.75

A( 03) 40 38 46 37 40.25

A(04) 37 39 37 40 38.25

A (05) 42 44 44 43 43.25

A 2 39 36 30 31 34

A 2 (02) 40 36 43 44 40.75

B 41 43 40 31 38.75

B (02) 35 35 27 38 33.75

B (03) 38 29 33 31 32.75

B (04) 25 25 26 29 26.25

B (05) 33 25 37 24 29.75

B (06) 37 32 37 35 35.25

B (07) 42 38 32 39 37.75

C 36 45 51 41 43.25

C (02) 40 35 39 54 42

C (03) 40 35 51 49 43.75

C (04) 43 46 40 26 38.75

C (05) 43 39 41 38 40.25

C (06) 52 41 36 41 42.5
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N # Image # 1 2 3 4 Average

A 53 33 35 55 44

A (02) 23 38 37 44 35.5

A (03) 52 41 48 49 47.5

A (04) 40 44 38 34 39

A (05) 45 44 43 39 42.75

C 34 34 47 39 38.5

C (02) 44 37 47 50 44.5

C (03) 35 41 50 42 42

C (04) 43 39 48 46 44

C (05) 48 44 45 36 43.25

C (06) 48 57 49 44 49.5

C (07) 48 46 45 41 45

C (08) 49 46 45 40 45

C (09) 56 46 38 35 43.75

C (10) 33 49 30 23 33.75

C (11) 45 41 38 40 41

C (12) 48 44 48 53 48.25

C (13) 43 54 54 55 51.5

C (14) 38 41 34 58 42.75

C (15) 43 42 50 40 43.75

C (16) 50 53 41 40 46

C 2 (03) 50 45 52 39 46.5

C 2 (04) 43 37 47 38 41.25

C 2 (05) 37 33 44 30 36

C 2 (06) 35 33 30 39 34.25

C 2 (07) 45 56 43 47 47.75

C 2 (08) 48 40 40 37 41.25

C 2 (10) 39 36 24 35 33.5

C 2 (11) 42 33 31 36 35.5

C 2 (12) 42 39 50 39 42.5

C 2 (13) 43 62 55 31 47.75

C 2 (14) 24 39 36 38 34.25

D 26 29 16 35 26.5

D (02) 46 42 41 58 46.75

D (03) 50 73 43 30 49

D (04) 50 58 47 49 51

D (05) 48 66 61 52 56.75

D (06) 65 41 36 69 52.75

D (07) 54 70 60 53 59.25

D (08) 50 28 45 39 40.5

D (09) 62 41 45 40 47

D (10) 35 44 45 50 43.5

D (11) 45 76 75 55 62.75

D (12) 38 59 49 43 47.25

D (13) 42 44 61 52 49.75

D (14) 55 36 33 46 42.5

D (15) 48 42 50 74 53.5

D (16) 60 45 57 44 51.5

D (17) 59 47 28 64 49.5

D (18) 46 36 32 44 39.5

A 36 30 29 40 33.75

A (02) 30 35 35 35 33.75

A( 03) 39 54 34 48 43.75

A(04) 47 51 37 46 45.25

A (05) 51 48 38 42 44.75

B 57 44 55 45 50.25

B (02) 45 44 47 47 45.75

B (03) 56 48 45 57 51.5

B (04) 47 47 38 46 44.5

B (05) 46 37 56 64 50.75

B (06) 49 54 48 68 54.75

B (07) 51 57 46 57 52.75

B (08) 58 71 64 52 61.25

C 64 55 61 51 57.75

C (02) 38 42 39 39 39.5

C (03) 50 56 42 60 52

C (04) 56 50 46 50 50.5

C (05) 64 55 40 44 50.75

C (06) 53 50 47 57 51.75

C (07) 66 54 47 51 54.5

C (08) 77 69 74 54 68.5

A 59 45 65 44 53.25

A (02) 47 42 47 52 47

A( 03) 33 46 39 46 41

A(04) 49 44 48 49 47.5

A (05) 51 48 53 45 49.25

B 54 45 55 52 51.5

B (02) 53 42 40 57 48

B (03) 47 41 45 41 43.5

B (04) 59 52 45 40 49

B (05) 39 47 56 44 46.5

C 38 42 45 46 42.75

C (02) 44 40 47 49 45

C (03) 53 44 43 42 45.5

C (04) 42 38 50 48 44.5

C (05) 40 50 50 51 47.75

C (06) 52 68 48 48 54

C (07) 50 47 55 48 50
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N # Image # 1 2 3 4 Average

A 53 33 35 55 44

A (02) 23 38 37 44 35.5

A (03) 52 41 48 49 47.5

A (04) 40 44 38 34 39

A (05) 45 44 43 39 42.75

C 34 34 47 39 38.5

C (02) 44 37 47 50 44.5

C (03) 35 41 50 42 42

C (04) 43 39 48 46 44

C (05) 48 44 45 36 43.25

C (06) 48 57 49 44 49.5

C (07) 48 46 45 41 45

C (08) 49 46 45 40 45

C (09) 56 46 38 35 43.75

C (10) 33 49 30 23 33.75

C (11) 45 41 38 40 41

C (12) 48 44 48 53 48.25

C (13) 43 54 54 55 51.5

C (14) 38 41 34 58 42.75

C (15) 43 42 50 40 43.75

C (16) 50 53 41 40 46

C 2 (03) 50 45 52 39 46.5

C 2 (04) 43 37 47 38 41.25

C 2 (05) 37 33 44 30 36

C 2 (06) 35 33 30 39 34.25

C 2 (07) 45 56 43 47 47.75

C 2 (08) 48 40 40 37 41.25

C 2 (10) 39 36 24 35 33.5

C 2 (11) 42 33 31 36 35.5

C 2 (12) 42 39 50 39 42.5

C 2 (13) 43 62 55 31 47.75

C 2 (14) 24 39 36 38 34.25

D 26 29 16 35 26.5

D (02) 46 42 41 58 46.75

D (03) 50 73 43 30 49

D (04) 50 58 47 49 51

D (05) 48 66 61 52 56.75

D (06) 65 41 36 69 52.75

D (07) 54 70 60 53 59.25

D (08) 50 28 45 39 40.5

D (09) 62 41 45 40 47

D (10) 35 44 45 50 43.5

D (11) 45 76 75 55 62.75

D (12) 38 59 49 43 47.25

D (13) 42 44 61 52 49.75

D (14) 55 36 33 46 42.5

D (15) 48 42 50 74 53.5

D (16) 60 45 57 44 51.5

D (17) 59 47 28 64 49.5

D (18) 46 36 32 44 39.5

A 36 30 29 40 33.75

A (02) 30 35 35 35 33.75

A( 03) 39 54 34 48 43.75

A(04) 47 51 37 46 45.25

A (05) 51 48 38 42 44.75

B 57 44 55 45 50.25

B (02) 45 44 47 47 45.75

B (03) 56 48 45 57 51.5

B (04) 47 47 38 46 44.5

B (05) 46 37 56 64 50.75

B (06) 49 54 48 68 54.75

B (07) 51 57 46 57 52.75

B (08) 58 71 64 52 61.25

C 64 55 61 51 57.75

C (02) 38 42 39 39 39.5

C (03) 50 56 42 60 52

C (04) 56 50 46 50 50.5

C (05) 64 55 40 44 50.75

C (06) 53 50 47 57 51.75

C (07) 66 54 47 51 54.5

C (08) 77 69 74 54 68.5

A 59 45 65 44 53.25

A (02) 47 42 47 52 47

A( 03) 33 46 39 46 41

A(04) 49 44 48 49 47.5

A (05) 51 48 53 45 49.25

B 54 45 55 52 51.5

B (02) 53 42 40 57 48

B (03) 47 41 45 41 43.5

B (04) 59 52 45 40 49

B (05) 39 47 56 44 46.5

C 38 42 45 46 42.75

C (02) 44 40 47 49 45

C (03) 53 44 43 42 45.5

C (04) 42 38 50 48 44.5

C (05) 40 50 50 51 47.75

C (06) 52 68 48 48 54

C (07) 50 47 55 48 50
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N # Image # 1 2 3 4 Average

A 49 37 27 27 35

A (02) 39 38 52 33 40.5

A (03) 44 29 35 41 37.25

A (04) 33 39 47 39 39.5

A (05) 45 53 47 49 48.5

A (06) 45 35 34 32 36.5

A (07) 53 41 52 45 47.75

A (08) 48 58 54 41 50.25

A (09) 51 39 33 49 43

A (10) 47 39 40 53 44.75

A (11) 54 46 38 45 45.75

A (12) 33 64 39 37 43.25

A (13) 44 53 40 57 48.5

A (14) 62 47 37 53 49.75

A 2 38 49 40 41 42

A 2 (02) 57 36 38 45 44

A 2 (03) 39 30 38 39 36.5

A 2 (04) 33 39 38 36 36.5

A 2 (06) 46 44 42 36 42

A 2 (07) 52 44 34 60 47.5

A 2 (08) 35 40 28 56 39.75

A 2 (09) 38 43 28 36 36.25

A 2 (10) 29 26 32 44 32.75

B (02) 40 28 35 41 36

B (03) 44 56 54 53 51.75

B (04) 66 58 74 64 65.5

B (05) 54 50 49 56 52.25

B (06) 64 49 50 42 51.25

B (07) 40 41 39 36 39

B (08) 56 49 44 37 46.5

B (09) 32 36 31 31 32.5

B (11) 53 59 40 45 49.25

B (12) 46 50 48 32 44

B (13) 51 42 42 48 45.75

B (14) 49 52 52 48 50.25

B (15) 48 35 36 36 38.75

B (16) 50 35 29 28 35.5

D (04) 44 43 40 35 40.5

D (05) 40 45 42 59 46.5

D (06) 34 30 33 33 32.5

D (07) 57 54 57 60 57

D (08) 50 53 71 46 55

D (09) 50 49 52 49 50

D (12) 54 61 49 54 54.5

D (13) 59 55 47 44 51.25

D (14) 46 44 31 34 38.75

D (15) 52 51 44 46 48.25

D (18) 49 52 50 37 47

A 60 56 78 60 63.5

A (02) 43 57 56 54 52.5

A( 03) 60 71 52 46 57.25

A (04) 52 51 54 53 52.5

A (05) 41 41 56 40 44.5

A (06) 67 62 59 61 62.25

A (07) 39 32 42 46 39.75

A (08) 41 44 52 56 48.25

B 58 54 57 55 56

B (02) 62 54 45 36 49.25

B (03) 51 43 37 41 43

B (04) 58 41 47 48 48.5

B (05) 47 44 63 57 52.75

B (06) 61 54 59 52 56.5

C 48 51 58 52 52.25

C (02) 48 47 51 53 49.75

C (03) 56 56 54 47 53.25

C (04) 55 48 49 52 51

C (05) 53 49 50 61 53.25

A 47 45 50 46 47

A (02) 48 48 41 68 51.25

A( 03) 49 44 52 41 46.5

A (04) 50 54 46 45 48.75

A (05) 56 56 55 43 52.5

A (06) 46 44 65 48 50.75

B 70 52 42 49 53.25

B (02) 52 49 53 48 50.5

B (03) 51 47 52 42 48

B (04) 64 51 54 44 53.25

B (05) 50 47 49 54 50

B (06) 64 58 62 49 58.25

B (07) 48 59 41 67 53.75

C 40 39 37 35 37.75

C (02) 50 38 53 59 50

C (03) 40 45 51 52 47

C (04) 50 49 44 45 47

C (05) 47 50 49 46 48

C (06) 42 46 44 50 45.5
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N # Image # 1 2 3 4 Average

A 49 37 27 27 35

A (02) 39 38 52 33 40.5

A (03) 44 29 35 41 37.25

A (04) 33 39 47 39 39.5

A (05) 45 53 47 49 48.5

A (06) 45 35 34 32 36.5

A (07) 53 41 52 45 47.75

A (08) 48 58 54 41 50.25

A (09) 51 39 33 49 43

A (10) 47 39 40 53 44.75

A (11) 54 46 38 45 45.75

A (12) 33 64 39 37 43.25

A (13) 44 53 40 57 48.5

A (14) 62 47 37 53 49.75

A 2 38 49 40 41 42

A 2 (02) 57 36 38 45 44

A 2 (03) 39 30 38 39 36.5

A 2 (04) 33 39 38 36 36.5

A 2 (06) 46 44 42 36 42

A 2 (07) 52 44 34 60 47.5

A 2 (08) 35 40 28 56 39.75

A 2 (09) 38 43 28 36 36.25

A 2 (10) 29 26 32 44 32.75

B (02) 40 28 35 41 36

B (03) 44 56 54 53 51.75

B (04) 66 58 74 64 65.5

B (05) 54 50 49 56 52.25

B (06) 64 49 50 42 51.25

B (07) 40 41 39 36 39

B (08) 56 49 44 37 46.5

B (09) 32 36 31 31 32.5

B (11) 53 59 40 45 49.25

B (12) 46 50 48 32 44

B (13) 51 42 42 48 45.75

B (14) 49 52 52 48 50.25

B (15) 48 35 36 36 38.75

B (16) 50 35 29 28 35.5

D (04) 44 43 40 35 40.5

D (05) 40 45 42 59 46.5

D (06) 34 30 33 33 32.5

D (07) 57 54 57 60 57

D (08) 50 53 71 46 55

D (09) 50 49 52 49 50

D (12) 54 61 49 54 54.5

D (13) 59 55 47 44 51.25

D (14) 46 44 31 34 38.75

D (15) 52 51 44 46 48.25

D (18) 49 52 50 37 47

A 60 56 78 60 63.5

A (02) 43 57 56 54 52.5

A( 03) 60 71 52 46 57.25

A (04) 52 51 54 53 52.5

A (05) 41 41 56 40 44.5

A (06) 67 62 59 61 62.25

A (07) 39 32 42 46 39.75

A (08) 41 44 52 56 48.25

B 58 54 57 55 56

B (02) 62 54 45 36 49.25

B (03) 51 43 37 41 43

B (04) 58 41 47 48 48.5

B (05) 47 44 63 57 52.75

B (06) 61 54 59 52 56.5

C 48 51 58 52 52.25

C (02) 48 47 51 53 49.75

C (03) 56 56 54 47 53.25

C (04) 55 48 49 52 51

C (05) 53 49 50 61 53.25

A 47 45 50 46 47

A (02) 48 48 41 68 51.25

A( 03) 49 44 52 41 46.5

A (04) 50 54 46 45 48.75

A (05) 56 56 55 43 52.5

A (06) 46 44 65 48 50.75

B 70 52 42 49 53.25

B (02) 52 49 53 48 50.5

B (03) 51 47 52 42 48

B (04) 64 51 54 44 53.25

B (05) 50 47 49 54 50

B (06) 64 58 62 49 58.25

B (07) 48 59 41 67 53.75

C 40 39 37 35 37.75

C (02) 50 38 53 59 50

C (03) 40 45 51 52 47

C (04) 50 49 44 45 47

C (05) 47 50 49 46 48

C (06) 42 46 44 50 45.5
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N # Image # 1 2 3 4 Average

A 41 51 42 63 49.25

A (02) 42 38 32 37 37.25

A (04) 52 40 33 36 40.25

A (06) 35 33 24 27 29.75

A (07) 49 48 43 38 44.5

A (08) 41 42 46 53 45.5

A (10) 42 21 34 37 33.5

A (11) 34 34 25 26 29.75

A (13) 31 36 38 25 32.5

A (14) 35 39 42 33 37.25

A (16) 41 42 41 53 44.25

A (17) 44 38 44 42 42

A (18) 54 51 41 42 47

B 39 54 35 50 44.5

B (03) 38 31 44 43 39

B 2 (02) 41 40 52 47 45

B 2 (03) 39 34 39 39 37.75

B 2 (04) 41 33 50 56 45

B 2 (05) 45 36 30 42 38.25

B 2 (06) 33 33 56 39 40.25

B 2 (07) 34 33 32 44 35.75

B 2 (08) 34 36 42 33 36.25

B 2 (09) 34 35 46 30 36.25

C 35 38 33 31 34.25

C (02) 53 41 41 34 42.25

C (03) 37 33 35 33 34.5

C (04) 40 35 35 30 35

C (05) 23 39 30 46 34.5

C (06) 57 44 41 34 44

C (07) 40 30 37 39 36.5

C (09) 37 35 41 44 39.25

C (10) 55 43 41 44 45.75

C (11) 49 39 39 28 38.75

C 2 (02) 62 50 46 42 50

C 2 (05) 43 34 52 41 42.5

C 2 (06) 48 38 42 44 43

C 2 (07) 44 51 32 40 41.75

C 2 (08) 54 50 45 36 46.25

D 33 34 38 53 39.5

D (02) 43 35 37 40 38.75

D (03) 40 44 39 46 42.25

D (04) 46 47 37 31 40.25

D (05) 32 43 40 36 37.75

D (06) 34 32 42 33 35.25

A 67 54 57 41 54.75

A (02) 31 38 43 40 38

A (03) 43 51 50 51 48.75

A (04) 45 39 38 45 41.75

A (05) 49 51 64 47 52.75

B 74 70 42 36 55.5

B (02) 46 57 50 40 48.25

B (03) 35 45 40 46 41.5

B (04) 40 42 32 43 39.25

B (05) 40 40 39 34 38.25

C 81 52 50 50 58.25

C (02) 60 48 41 53 50.5

C (03) 57 60 42 49 52

C (04) 51 55 43 48 49.25

C (05) 40 34 46 43 40.75

C (06) 45 42 44 55 46.5

C (07) 56 50 52 51 52.25

A 47 39 41 47 43.5

A (02) 45 43 36 35 39.75

A (03) 48 40 27 31 36.5

A (04) 47 40 47 36 42.5

A (05) 53 45 34 40 43

B 58 41 51 30 45

B (02) 39 26 41 43 37.25

B (03) 43 36 44 39 40.5

B (04) 54 41 52 41 47

B (05) 40 43 57 45 46.25

C 48 48 42 52 47.5

C (02) 54 53 60 55 55.5

C (03) 57 49 51 56 53.25

C (04) 55 47 42 40 46

C (05) 49 45 50 47 47.75

C (06) 44 37 43 33 39.25
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N # Image # 1 2 3 4 Average

A 41 51 42 63 49.25

A (02) 42 38 32 37 37.25

A (04) 52 40 33 36 40.25

A (06) 35 33 24 27 29.75

A (07) 49 48 43 38 44.5

A (08) 41 42 46 53 45.5

A (10) 42 21 34 37 33.5

A (11) 34 34 25 26 29.75

A (13) 31 36 38 25 32.5

A (14) 35 39 42 33 37.25

A (16) 41 42 41 53 44.25

A (17) 44 38 44 42 42

A (18) 54 51 41 42 47

B 39 54 35 50 44.5

B (03) 38 31 44 43 39

B 2 (02) 41 40 52 47 45

B 2 (03) 39 34 39 39 37.75

B 2 (04) 41 33 50 56 45

B 2 (05) 45 36 30 42 38.25

B 2 (06) 33 33 56 39 40.25

B 2 (07) 34 33 32 44 35.75

B 2 (08) 34 36 42 33 36.25

B 2 (09) 34 35 46 30 36.25

C 35 38 33 31 34.25

C (02) 53 41 41 34 42.25

C (03) 37 33 35 33 34.5

C (04) 40 35 35 30 35

C (05) 23 39 30 46 34.5

C (06) 57 44 41 34 44

C (07) 40 30 37 39 36.5

C (09) 37 35 41 44 39.25

C (10) 55 43 41 44 45.75

C (11) 49 39 39 28 38.75

C 2 (02) 62 50 46 42 50

C 2 (05) 43 34 52 41 42.5

C 2 (06) 48 38 42 44 43

C 2 (07) 44 51 32 40 41.75

C 2 (08) 54 50 45 36 46.25

D 33 34 38 53 39.5

D (02) 43 35 37 40 38.75

D (03) 40 44 39 46 42.25

D (04) 46 47 37 31 40.25

D (05) 32 43 40 36 37.75

D (06) 34 32 42 33 35.25

A 67 54 57 41 54.75

A (02) 31 38 43 40 38

A (03) 43 51 50 51 48.75

A (04) 45 39 38 45 41.75

A (05) 49 51 64 47 52.75

B 74 70 42 36 55.5

B (02) 46 57 50 40 48.25

B (03) 35 45 40 46 41.5

B (04) 40 42 32 43 39.25

B (05) 40 40 39 34 38.25

C 81 52 50 50 58.25

C (02) 60 48 41 53 50.5

C (03) 57 60 42 49 52

C (04) 51 55 43 48 49.25

C (05) 40 34 46 43 40.75

C (06) 45 42 44 55 46.5

C (07) 56 50 52 51 52.25

A 47 39 41 47 43.5

A (02) 45 43 36 35 39.75

A (03) 48 40 27 31 36.5

A (04) 47 40 47 36 42.5

A (05) 53 45 34 40 43

B 58 41 51 30 45

B (02) 39 26 41 43 37.25

B (03) 43 36 44 39 40.5

B (04) 54 41 52 41 47

B (05) 40 43 57 45 46.25

C 48 48 42 52 47.5

C (02) 54 53 60 55 55.5

C (03) 57 49 51 56 53.25

C (04) 55 47 42 40 46

C (05) 49 45 50 47 47.75

C (06) 44 37 43 33 39.25
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N # Image # 1 2 3 4 Average

B (02) 61 56 54 43 53.5

B (03) 36 43 61 53 48.25

B (06) 35 34 43 32 36

B (08) 39 38 42 44 40.75

B (09) 44 44 39 41 42

B (10) 52 38 43 33 41.5

B (12) 40 42 43 34 39.75

B (13) 26 36 34 37 33.25

B (14) 38 40 41 38 39.25

B (15) 49 53 34 48 46

B (16) 34 38 43 41 39

B (17) 38 54 43 33 42

B 2 38 39 36 41 38.5

B 2 (02) 36 50 38 36 40

B 2 (03) 35 35 39 50 39.75

B 2 (04) 35 36 33 50 38.5

B 2 (05) 44 60 29 40 43.25

B 2 (07) 37 36 37 35 36.25

D 44 56 55 44 49.75

D (02) 57 53 51 48 52.25

D (03) 50 39 57 48 48.5

D (05) 52 51 42 38 45.75

D (06) 42 43 43 43 42.75

D (07) 42 43 41 39 41.25

D (08) 51 50 43 45 47.25

D (09) 52 55 50 50 51.75

D (10) 38 45 45 41 42.25

D (11) 42 31 37 30 35

D (12) 35 47 46 44 43

D (13) 24 55 52 27 39.5

A 40 43 39 38 40

A (02) 42 37 45 48 43

A (03) 40 52 43 37 43

A (04) 47 42 34 37 40

A (05) 38 35 45 42 40

B 58 56 47 44 51.25

B (02) 48 44 48 47 46.75

B (03) 65 65 54 41 56.25

B (04) 51 45 65 42 50.75

B (05) 61 66 57 55 59.75

B (06) 52 53 62 62 57.25

B (07) 63 65 51 53 58

B (08) 70 62 64 70 66.5

C 49 56 47 48 50

C (02) 52 46 42 43 45.75

C (03) 37 45 46 46 43.5

A 40 34 55 34 40.75

A (02) 37 43 42 43 41.25

A (03) 49 42 41 38 42.5

A (04) 45 49 33 37 41

A (05) 60 55 58 60 58.25

A (06) 47 52 42 48 47.25

B 50 60 57 43 52.5

B (02) 48 56 51 51 51.5

B (03) 52 52 43 45 48

B (04) 47 47 53 48 48.75

B (05) 58 58 49 53 54.5

B (06) 45 58 50 49 50.5

C 34 49 35 31 37.25

C (02) 34 32 36 41 35.75

C (03) 29 29 33 28 29.75

C (04) 40 33 39 30 35.5

C (05) 38 44 42 39 40.75
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One Way Analysis of Variance – 5 DAYS Tuesday, August 03, 2010, 8:21:34 AM 

 

Data source: Data 1 in Notebook1 

 

Normality Test (Shapiro-Wilk) Passed (P = 0.303) 

 

Equal Variance Test: Passed (P = 0.360) 

 

Group Name  N  Missing Mean Std Dev SEM  

5 NONE 87 0 36.983 8.515 0.913  

5 EDC 86 0 44.073 7.320 0.789  

5 HEP 88 0 46.193 7.025 0.749  

5 5FGF 86 0 47.116 7.099 0.765  

5 10FGF 77 0 42.487 6.212 0.708  

5 50FGF 63 0 44.825 7.226 0.910  

 

Source of Variation  DF   SS   MS    F    P   

Between Groups 5 5673.486 1134.697 21.374 <0.001  

Residual 481 25534.702 53.087    

Total 486 31208.188     

 

The differences in the mean values among the treatment groups are greater than would be expected by chance; there 

is a statistically significant difference  (P = <0.001). 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor:  

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

5 5FGF vs. 5 NONE 10.134 9.146 <0.001 0.003 Yes  

5 HEP vs. 5 NONE 9.210 8.361 <0.001 0.004 Yes  

5 50FGF vs. 5 NONE 7.843 6.507 <0.001 0.004 Yes  

5 EDC vs. 5 NONE 7.090 6.399 <0.001 0.004 Yes  

5 10FGF vs. 5 NONE 5.504 4.828 <0.001 0.005 Yes  

5 5FGF vs. 5 10FGF 4.629 4.050 <0.001 0.005 Yes  

5 HEP vs. 5 10FGF 3.706 3.260 0.001 0.006 Yes  

5 5FGF vs. 5 EDC 3.044 2.739 0.006 0.006 Yes  

5 HEP vs. 5 EDC 2.121 1.919 0.056 0.007 No  

5 5FGF vs. 5 50FGF 2.291 1.896 0.059 0.009 No  

5 50FGF vs. 5 10FGF 2.338 1.889 0.059 0.010 No  

N # Image # 1 2 3 4 Average

B (02) 61 56 54 43 53.5

B (03) 36 43 61 53 48.25

B (06) 35 34 43 32 36

B (08) 39 38 42 44 40.75

B (09) 44 44 39 41 42

B (10) 52 38 43 33 41.5

B (12) 40 42 43 34 39.75

B (13) 26 36 34 37 33.25

B (14) 38 40 41 38 39.25

B (15) 49 53 34 48 46

B (16) 34 38 43 41 39

B (17) 38 54 43 33 42

B 2 38 39 36 41 38.5

B 2 (02) 36 50 38 36 40

B 2 (03) 35 35 39 50 39.75

B 2 (04) 35 36 33 50 38.5

B 2 (05) 44 60 29 40 43.25

B 2 (07) 37 36 37 35 36.25

D 44 56 55 44 49.75

D (02) 57 53 51 48 52.25

D (03) 50 39 57 48 48.5

D (05) 52 51 42 38 45.75

D (06) 42 43 43 43 42.75

D (07) 42 43 41 39 41.25

D (08) 51 50 43 45 47.25

D (09) 52 55 50 50 51.75

D (10) 38 45 45 41 42.25

D (11) 42 31 37 30 35

D (12) 35 47 46 44 43

D (13) 24 55 52 27 39.5

A 40 43 39 38 40

A (02) 42 37 45 48 43

A (03) 40 52 43 37 43

A (04) 47 42 34 37 40

A (05) 38 35 45 42 40

B 58 56 47 44 51.25

B (02) 48 44 48 47 46.75

B (03) 65 65 54 41 56.25

B (04) 51 45 65 42 50.75

B (05) 61 66 57 55 59.75

B (06) 52 53 62 62 57.25

B (07) 63 65 51 53 58

B (08) 70 62 64 70 66.5

C 49 56 47 48 50

C (02) 52 46 42 43 45.75

C (03) 37 45 46 46 43.5

A 40 34 55 34 40.75

A (02) 37 43 42 43 41.25

A (03) 49 42 41 38 42.5

A (04) 45 49 33 37 41

A (05) 60 55 58 60 58.25

A (06) 47 52 42 48 47.25

B 50 60 57 43 52.5

B (02) 48 56 51 51 51.5

B (03) 52 52 43 45 48

B (04) 47 47 53 48 48.75

B (05) 58 58 49 53 54.5

B (06) 45 58 50 49 50.5

C 34 49 35 31 37.25

C (02) 34 32 36 41 35.75

C (03) 29 29 33 28 29.75

C (04) 40 33 39 30 35.5

C (05) 38 44 42 39 40.75

50 NG/ML FGF2
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5 EDC vs. 5 10FGF 1.586 1.387 0.166 0.013 No  

5 HEP vs. 5 50FGF 1.368 1.137 0.256 0.017 No  

5 5FGF vs. 5 HEP 0.923 0.836 0.404 0.025 No  

5 50FGF vs. 5 EDC 0.753 0.623 0.534 0.050 No  

 
Multiple Comparison Graph

Symbol indicates significant difference.

5 NONE 5 EDC 5 HEP 5 5FGF 5 10FGF 5 50FGF

5 50FGF

5 10FGF

5 5FGF

5 HEP

5 EDC

5 NONE

 
 

Appendix D.2: Cell Growth Data – 7 Days 

 

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 48.22093 7.885379 1.202509 Section 58.00862 6.653907 1.235599 Section 59.63393 11.98986 2.265871

Section Section Section

Q1 43.375 Q1 52.5 Q1 53.625

Q3 53 Q3 62.5 Q3 67.4375

IQR 9.625 IQR 10 IQR 13.8125

LAV 28.9375 LAV 37.5 LAV 32.90625

UAV 67.4375 UAV 77.5 UAV 88.15625

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 49.7875 7.017963 1.569264 Section 44.0375 5.37861 1.202694 Section 54 7.010139 1.461715

Section Section Section

Q1 45.9375 Q1 39.4375 Q1 48

Q3 51.125 Q3 46.8125 Q3 59.875

IQR 5.1875 IQR 7.375 IQR 11.875

LAV 38.15625 LAV 28.375 LAV 30.1875

UAV 58.90625 UAV 57.875 UAV 77.6875

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 44.09722 8.479274 1.998584 Section 46.52941 5.14469 1.247771 Section 46.55556 5.831302 1.374451

Section Section Section

Q1 38.5625 Q1 52.5 Q1 42.9375

Q3 47.9375 Q3 62.5 Q3 48.4375

IQR 9.375 IQR 10 IQR 5.5

LAV 24.5 LAV 37.5 LAV 34.6875

UAV 62 UAV 77.5 UAV 56.6875

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 47.69136 7.985952 0.887328 Section 50.81818 8.721718 1.073569 Section 54.3442 10.44507 1.257438

Section Section Section

Q1 43.5 Q1 45.0625 Q1 46.75

Q3 52.5 Q3 57.25 Q3 61.5

IQR 9 IQR 12.1875 IQR 14.75

LAV 30 LAV 26.78125 LAV 24.625

UAV 66 UAV 75.53125 UAV 83.625
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Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 61.625 10.47578 1.851874 Section 69.88793 11.71343 1.538048 Section 82.77273 10.90602 1.644145

Section Section Section

Q1 54.625 Q1 61 Q1 75.75

Q3 69.1875 Q3 75.5 Q3 88.8125

IQR 14.5625 IQR 14.5 IQR 13.0625

LAV 32.78125 LAV 39.25 LAV 56.15625

UAV 91.03125 UAV 97.25 UAV 108.4063

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 53.1125 4.828285 1.079637 Section 52.82895 4.66745 1.070786 Section 69.8125 5.471743 1.223519

Section Section Section

Q1 49.5625 Q1 50.125 Q1 66.3125

Q3 57.25 Q3 56.625 Q3 74.25

IQR 7.6875 IQR 6.5 IQR 7.9375

LAV 38.03125 LAV 40.375 LAV 54.40625

UAV 68.78125 UAV 66.375 UAV 86.15625

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 47.81944 5.419061 1.277285 Section 54.31944 11.67287 2.751322 Section 53.43056 6.155345 1.450829

Section Section Section

Q1 45.125 Q1 44.4375 Q1 50.8125

Q3 49.6875 Q3 57.375 Q3 55.6875

IQR 4.5625 IQR 12.9375 IQR 4.875

LAV 38.28125 LAV 25.03125 LAV 43.5

UAV 56.53125 UAV 76.78125 UAV 63

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 55.64286 9.868021 1.179454 Section 63.52632 13.2795 1.362448 Section 73.17073 14.75054 1.628925

Section Section Section

Q1 48.5625 Q1 53.5 Q1 64.8125

Q3 60.6875 Q3 72.375 Q3 81.875

IQR 12.125 IQR 18.875 IQR 17.0625

LAV 30.375 LAV 25.1875 LAV 39.21875

UAV 78.875 UAV 100.6875 UAV 107.4688
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N # Image # 1 2 3 4 Average

A 58 48 44 43 48.25

A (02) 50 60 63 41 53.5

A (03) 57 46 45 62 52.5

A (04) 61 57 50 62 57.5

A (05) 43 47 45 40 43.75

A (06) 50 57 35 45 46.75

A (07) 49 49 38 45 45.25

A (08) 59 54 52 48 53.25

A (09) 43 60 56 45 51

A (10) 63 52 54 58 56.75

A (11) 39 43 46 43 42.75

A (12) 64 59 47 32 50.5

A (13) 44 47 47 73 52.75

A (14) 60 48 56 69 58.25

B 27 35 40 29 32.75

B (02) 41 36 41 32 37.5

B (03) 58 52 49 42 50.25

B (04) 51 44 51 51 49.25

B (05) 53 41 36 54 46

B (06) 60 44 56 44 51

B (07) 44 50 57 40 47.75

B (08) 32 27 45 40 36

C 50 48 44 28 42.5

C (02) 45 49 33 52 44.75

C (03) 75 60 52 50 59.25

C (04) 43 49 46 42 45

C (05) 52 41 66 55 53.5

C (06) 93 66 45 44 62

C (07) 77 72 55 48 63

C (08) 48 59 40 56 50.75

C (10) 66 55 66 34 55.25

C 2 60 48 45 38 47.75

C 2 (02) 68 47 52 38 51.25

C 2 (03) 54 46 62 49 52.75

C 2 (04) 81 60 49 48 59.5

C 2 (05) 56 46 48 51 50.25

C 2 (06) 38 27 56 51 43

C 2 (07) 42 34 49 37 40.5

D 42 40 31 28 35.25

D (02) 31 27 29 19 26.5

D (03) 56 38 35 37 41.5

D (04) 42 47 36 39 41

D (05) 44 33 45 58 45

A 78 65 42 73 64.5

A (02) 54 47 57 44 50.5

A (03) 54 53 50 45 50.5

A (04) 51 34 51 56 48

A (05) 77 57 65 56 63.75

A (06) 36 43 49 53 45.25

A (07) 28 37 54 65 46

B 44 33 27 33 34.25

B (02) 49 50 70 29 49.5

B (03) 45 37 54 47 45.75

B (04) 34 54 40 46 43.5

B (05) 48 55 49 35 46.75

B (06) 51 48 43 38 45

C 56 56 64 66 60.5

C (02) 30 54 61 51 49

C (03) 62 59 47 49 54.25

C (04) 57 52 32 48 47.25

C (05) 59 53 44 56 53

C (06) 48 49 55 50 50.5

C (07) 56 45 46 45 48

A 31 35 27 30 30.75

A (02) 54 50 46 41 47.75

A (03) 36 45 45 57 45.75

A (04) 35 31 32 31 32.25

A (05) 35 34 34 31 33.5

A (06) 49 35 39 41 41

B 69 55 47 68 59.75

B (02) 55 47 62 31 48.75

B (03) 61 33 43 55 48

B (04) 68 59 62 56 61.25

B (05) 28 40 34 39 35.25

C 47 59 29 43 44.5

C (02) 51 52 47 26 44

C (03) 48 45 48 48 47.25

C (04) 71 48 35 52 51.5

C (05) 32 38 39 42 37.75

C (06) 47 44 38 39 42

C (07) 44 47 41 39 42.75
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N # Image # 1 2 3 4 Average

A 58 48 44 43 48.25

A (02) 50 60 63 41 53.5

A (03) 57 46 45 62 52.5

A (04) 61 57 50 62 57.5

A (05) 43 47 45 40 43.75

A (06) 50 57 35 45 46.75

A (07) 49 49 38 45 45.25

A (08) 59 54 52 48 53.25

A (09) 43 60 56 45 51

A (10) 63 52 54 58 56.75

A (11) 39 43 46 43 42.75

A (12) 64 59 47 32 50.5

A (13) 44 47 47 73 52.75

A (14) 60 48 56 69 58.25

B 27 35 40 29 32.75

B (02) 41 36 41 32 37.5

B (03) 58 52 49 42 50.25

B (04) 51 44 51 51 49.25

B (05) 53 41 36 54 46

B (06) 60 44 56 44 51

B (07) 44 50 57 40 47.75

B (08) 32 27 45 40 36

C 50 48 44 28 42.5

C (02) 45 49 33 52 44.75

C (03) 75 60 52 50 59.25

C (04) 43 49 46 42 45

C (05) 52 41 66 55 53.5

C (06) 93 66 45 44 62

C (07) 77 72 55 48 63

C (08) 48 59 40 56 50.75

C (10) 66 55 66 34 55.25

C 2 60 48 45 38 47.75

C 2 (02) 68 47 52 38 51.25

C 2 (03) 54 46 62 49 52.75

C 2 (04) 81 60 49 48 59.5

C 2 (05) 56 46 48 51 50.25

C 2 (06) 38 27 56 51 43

C 2 (07) 42 34 49 37 40.5

D 42 40 31 28 35.25

D (02) 31 27 29 19 26.5

D (03) 56 38 35 37 41.5

D (04) 42 47 36 39 41

D (05) 44 33 45 58 45

A 78 65 42 73 64.5

A (02) 54 47 57 44 50.5

A (03) 54 53 50 45 50.5

A (04) 51 34 51 56 48

A (05) 77 57 65 56 63.75

A (06) 36 43 49 53 45.25

A (07) 28 37 54 65 46

B 44 33 27 33 34.25

B (02) 49 50 70 29 49.5

B (03) 45 37 54 47 45.75

B (04) 34 54 40 46 43.5

B (05) 48 55 49 35 46.75

B (06) 51 48 43 38 45

C 56 56 64 66 60.5

C (02) 30 54 61 51 49

C (03) 62 59 47 49 54.25

C (04) 57 52 32 48 47.25

C (05) 59 53 44 56 53

C (06) 48 49 55 50 50.5

C (07) 56 45 46 45 48

A 31 35 27 30 30.75

A (02) 54 50 46 41 47.75

A (03) 36 45 45 57 45.75

A (04) 35 31 32 31 32.25

A (05) 35 34 34 31 33.5

A (06) 49 35 39 41 41

B 69 55 47 68 59.75

B (02) 55 47 62 31 48.75

B (03) 61 33 43 55 48

B (04) 68 59 62 56 61.25

B (05) 28 40 34 39 35.25

C 47 59 29 43 44.5

C (02) 51 52 47 26 44

C (03) 48 45 48 48 47.25

C (04) 71 48 35 52 51.5

C (05) 32 38 39 42 37.75

C (06) 47 44 38 39 42

C (07) 44 47 41 39 42.75
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N # Image # 1 2 3 4 Average

B 72 66 57 53 62

B (02) 107 52 60 78 74.25

B (03) 70 81 64 50 66.25

B (04) 80 49 52 75 64

B (05) 58 52 53 52 53.75

B (06) 43 59 52 81 58.75

B (07) 46 48 47 45 46.5

B (08) 54 40 49 53 49

B (09) 61 61 53 55 57.5

B (10) 75 71 55 53 63.5

C 70 54 43 63 57.5

C (02) 56 48 54 49 51.75

C (03) 43 58 50 54 51.25

C (04) 74 51 45 47 54.25

C (05) 60 50 44 48 50.5

C (06) 66 54 65 70 63.75

C (07) 63 65 73 49 62.5

D 60 78 52 67 64.25

D (02) 85 73 63 53 68.5

D (03) 48 54 62 62 56.5

D (04) 71 57 39 43 52.5

D (05) 61 54 54 46 53.75

D (06) 58 58 66 49 57.75

D (07) 44 46 49 55 48.5

D (08) 53 51 49 48 50.25

D (09) 62 61 62 62 61.75

D (10) 60 51 60 74 61.25

D (11) 55 50 48 85 59.5

D (12) 51 53 48 91 60.75

A 56 46 49 55 51.5

A (02) 48 52 50 44 48.5

A (03) 49 44 40 69 50.5

A (04) 34 43 40 41 39.5

A (05) 55 47 42 40 46

A (06) 57 50 41 43 47.75

A (07) 49 43 41 43 44

B 47 40 46 47 45

B (02) 38 33 42 44 39.25

B (03) 37 39 39 36 37.75

B (04) 42 38 32 40 38

B (05) 50 47 44 40 45.25

B (06) 43 45 45 44 44.25

B (07) 40 39 35 44 39.5

C 47 56 59 59 55.25

C (02) 52 42 37 55 46.5

C (03) 43 33 56 46 44.5

C (04) 54 40 44 45 45.75

C (05) 46 35 37 34 38

C (06) 36 33 33 34 34

A 52 49 49 47 49.25

A (02) 52 49 45 45 47.75

A (03) 50 43 42 51 46.5

A (04) 49 49 43 65 51.5

A (05) 52 47 51 63 53.25

B 60 48 44 45 49.25

B (02) 60 47 50 49 51.5

B (03) 52 45 46 61 51

B (04) 44 44 36 37 40.25

B (05) 44 33 44 41 40.5

B (06) 42 41 32 42 39.25

C 58 50 46 46 50

C (02) 56 47 58 51 53

C (03) 41 40 39 43 40.75

C (04) 40 31 43 45 39.75

C (05) 58 49 39 40 46.5

C (06) 39 44 46 35 41
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N # Image # 1 2 3 4 Average

B 72 66 57 53 62

B (02) 107 52 60 78 74.25

B (03) 70 81 64 50 66.25

B (04) 80 49 52 75 64

B (05) 58 52 53 52 53.75

B (06) 43 59 52 81 58.75

B (07) 46 48 47 45 46.5

B (08) 54 40 49 53 49

B (09) 61 61 53 55 57.5

B (10) 75 71 55 53 63.5

C 70 54 43 63 57.5

C (02) 56 48 54 49 51.75

C (03) 43 58 50 54 51.25

C (04) 74 51 45 47 54.25

C (05) 60 50 44 48 50.5

C (06) 66 54 65 70 63.75

C (07) 63 65 73 49 62.5

D 60 78 52 67 64.25

D (02) 85 73 63 53 68.5

D (03) 48 54 62 62 56.5

D (04) 71 57 39 43 52.5

D (05) 61 54 54 46 53.75

D (06) 58 58 66 49 57.75

D (07) 44 46 49 55 48.5

D (08) 53 51 49 48 50.25

D (09) 62 61 62 62 61.75

D (10) 60 51 60 74 61.25

D (11) 55 50 48 85 59.5

D (12) 51 53 48 91 60.75

A 56 46 49 55 51.5

A (02) 48 52 50 44 48.5

A (03) 49 44 40 69 50.5

A (04) 34 43 40 41 39.5

A (05) 55 47 42 40 46

A (06) 57 50 41 43 47.75

A (07) 49 43 41 43 44

B 47 40 46 47 45

B (02) 38 33 42 44 39.25

B (03) 37 39 39 36 37.75

B (04) 42 38 32 40 38

B (05) 50 47 44 40 45.25

B (06) 43 45 45 44 44.25

B (07) 40 39 35 44 39.5

C 47 56 59 59 55.25

C (02) 52 42 37 55 46.5

C (03) 43 33 56 46 44.5

C (04) 54 40 44 45 45.75

C (05) 46 35 37 34 38

C (06) 36 33 33 34 34

A 52 49 49 47 49.25

A (02) 52 49 45 45 47.75

A (03) 50 43 42 51 46.5

A (04) 49 49 43 65 51.5

A (05) 52 47 51 63 53.25

B 60 48 44 45 49.25

B (02) 60 47 50 49 51.5

B (03) 52 45 46 61 51

B (04) 44 44 36 37 40.25

B (05) 44 33 44 41 40.5

B (06) 42 41 32 42 39.25

C 58 50 46 46 50

C (02) 56 47 58 51 53

C (03) 41 40 39 43 40.75

C (04) 40 31 43 45 39.75

C (05) 58 49 39 40 46.5

C (06) 39 44 46 35 41
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N # Image # 1 2 3 4 Average

A 79 87 47 75 72

A (02) 67 89 56 64 69

A (03) 50 49 39 45 45.75

A (04) 38 32 32 29 32.75

A (07) 50 35 39 44 42

A (08) 43 67 72 40 55.5

A (09) 83 68 49 58 64.5

A (10) 74 74 65 118 82.75

A (11) 76 80 72 80 77

A (12) 76 77 72 78 75.75

A 2 (02) 61 57 48 44 52.5

A 2 (03) 43 41 42 43 42.25

B 91 63 76 90 80

B (02) 70 48 59 57 58.5

B (03) 59 62 68 57 61.5

C 48 49 45 45 46.75

C (02) 55 52 77 57 60.25

C (03) 59 49 46 62 54

C (04) 93 72 51 59 68.75

C (05) 65 58 51 47 55.25

C (06) 41 59 60 78 59.5

C (07) 45 54 78 63 60

C (08) 49 37 82 55 55.75

C (09) 55 59 62 58 58.5

C (10) 69 66 70 63 67

C (11) 61 70 56 60 61.75

C (12) 75 59 57 57 62

C (13) 55 50 47 42 48.5

A 72 74 72 46 66

A (02) 49 56 55 92 63

A (03) 61 55 49 54 54.75

A (04) 54 48 66 70 59.5

A (05) 50 45 45 56 49

A (06) 43 56 46 47 48

A (07) 64 54 52 53 55.75

A (08) 59 51 49 47 51.5

B 45 48 52 47 48

B (02) 42 41 48 41 43

B (03) 43 48 37 46 43.5

B (04) 46 41 43 57 46.75

B (05) 45 48 46 50 47.25

B (06) 51 46 55 56 52

B (07) 51 53 55 52 52.75

B (08) 49 53 46 39 46.75

C 64 59 52 47 55.5

C (02) 65 58 57 71 62.75

C (03) 44 54 69 66 58.25

C (04) 63 70 64 51 62

C (05) 61 59 58 63 60.25

C (06) 55 48 50 50 50.75

C (07) 67 58 59 76 65

A 41 41 42 47 42.75

A (02) 36 42 47 42 41.75

A (03) 46 37 37 38 39.5

A (04) 42 44 51 29 41.5

A (05) 44 43 51 45 45.75

A (06) 48 46 36 44 43.5

B 52 44 46 51 48.25

B (02) 49 51 56 53 52.25

B (03) 60 48 48 55 52.75

B (04) 42 42 49 48 45.25

B (05) 55 45 41 46 46.75

B (06) 51 48 52 50 50.25

B (07) 46 43 46 43 44.5

C 47 51 47 49 48.5

C (02) 69 66 60 57 63

C (03) 51 44 47 48 47.5

C (04) 54 40 48 46 47

C (05) 35 28 44 42 37.25
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N # Image # 1 2 3 4 Average

A 79 87 47 75 72

A (02) 67 89 56 64 69

A (03) 50 49 39 45 45.75

A (04) 38 32 32 29 32.75

A (07) 50 35 39 44 42

A (08) 43 67 72 40 55.5

A (09) 83 68 49 58 64.5

A (10) 74 74 65 118 82.75

A (11) 76 80 72 80 77

A (12) 76 77 72 78 75.75

A 2 (02) 61 57 48 44 52.5

A 2 (03) 43 41 42 43 42.25

B 91 63 76 90 80

B (02) 70 48 59 57 58.5

B (03) 59 62 68 57 61.5

C 48 49 45 45 46.75

C (02) 55 52 77 57 60.25

C (03) 59 49 46 62 54

C (04) 93 72 51 59 68.75

C (05) 65 58 51 47 55.25

C (06) 41 59 60 78 59.5

C (07) 45 54 78 63 60

C (08) 49 37 82 55 55.75

C (09) 55 59 62 58 58.5

C (10) 69 66 70 63 67

C (11) 61 70 56 60 61.75

C (12) 75 59 57 57 62

C (13) 55 50 47 42 48.5

A 72 74 72 46 66

A (02) 49 56 55 92 63

A (03) 61 55 49 54 54.75

A (04) 54 48 66 70 59.5

A (05) 50 45 45 56 49

A (06) 43 56 46 47 48

A (07) 64 54 52 53 55.75

A (08) 59 51 49 47 51.5

B 45 48 52 47 48

B (02) 42 41 48 41 43

B (03) 43 48 37 46 43.5

B (04) 46 41 43 57 46.75

B (05) 45 48 46 50 47.25

B (06) 51 46 55 56 52

B (07) 51 53 55 52 52.75

B (08) 49 53 46 39 46.75

C 64 59 52 47 55.5

C (02) 65 58 57 71 62.75

C (03) 44 54 69 66 58.25

C (04) 63 70 64 51 62

C (05) 61 59 58 63 60.25

C (06) 55 48 50 50 50.75

C (07) 67 58 59 76 65

A 41 41 42 47 42.75

A (02) 36 42 47 42 41.75

A (03) 46 37 37 38 39.5

A (04) 42 44 51 29 41.5

A (05) 44 43 51 45 45.75

A (06) 48 46 36 44 43.5

B 52 44 46 51 48.25

B (02) 49 51 56 53 52.25

B (03) 60 48 48 55 52.75

B (04) 42 42 49 48 45.25

B (05) 55 45 41 46 46.75

B (06) 51 48 52 50 50.25

B (07) 46 43 46 43 44.5

C 47 51 47 49 48.5

C (02) 69 66 60 57 63

C (03) 51 44 47 48 47.5

C (04) 54 40 48 46 47

C (05) 35 28 44 42 37.25
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N # Image # 1 2 3 4 Average

A 84 79 48 72 70.75

A (02) 70 67 67 56 65

A (03) 60 65 62 57 61

A (04) 60 59 59 52 57.5

A (05) 52 52 58 48 52.5

A (06) 54 44 38 32 42

A (07) 43 53 58 54 52

A (08) 87 33 48 53 55.25

A (09) 50 50 54 52 51.5

A (10) 48 42 51 42 45.75

B 72 78 67 65 70.5

B (02) 74 82 69 57 70.5

B (03) 75 57 51 63 61.5

B (04) 69 56 77 73 68.75

B (05) 68 76 81 102 81.75

B (06) 88 64 63 74 72.25

B (07) 67 61 60 65 63.25

B (08) 68 76 54 59 64.25

B 2 (02) 72 61 103 58 73.5

B 2 (03) 85 115 89 52 85.25

B 2 (04) 74 85 105 61 81.25

D 54 60 52 59 56.25

D (02) 57 66 64 73 65

D (03) 52 41 53 51 49.25

D (04) 52 50 41 68 52.75

D (05) 56 58 61 48 55.75

D (06) 48 71 76 49 61

D (07) 72 49 55 51 56.75

D (08) 71 49 60 68 62

D (09) 44 41 57 52 48.5

D (10) 81 51 61 46 59.75

D (11) 54 74 59 49 59

A 62 51 47 59 54.75

A (02) 49 58 60 46 53.25

A (03) 66 60 52 54 58

A (04) 56 48 54 50 52

A (05) 52 56 49 48 51.25

A (06) 55 50 54 45 51

A (07) 54 45 46 47 48

A (08) 42 33 42 57 43.5

B 40 46 52 51 47.25

B (02) 53 42 52 46 48.25

B (03) 44 45 54 48 47.75

B (04) 54 54 53 39 50

B (05) 64 58 58 49 57.25

C 58 60 60 51 57.25

C (02) 64 75 60 50 62.25

C (03) 61 62 58 52 58.25

C (04) 55 53 62 52 55.5

C (05) 52 56 62 64 58.5

C (06) 54 55 60 57 56.5

C (07) 51 50 55 51 51.75

A 44 44 40 52 45

A (02) 52 48 41 35 44

A (03) 51 50 54 43 49.5

A (04) 47 40 48 65 50

A (05) 55 50 44 43 48

B 56 55 46 50 51.75

B (02) 39 49 47 53 47

B (03) 51 47 46 54 49.5

B (04) 65 63 58 45 57.75

B (05) 66 69 52 51 59.5

B (06) 52 47 47 42 47

C 49 47 44 42 45.5

C (02) 45 44 42 35 41.5

C (03) 51 45 50 53 49.75

C (04) 48 40 48 43 44.75

C (05) 50 45 47 53 48.75

C (06) 45 47 44 6 35.5

C (07) 45 46 47 46 46
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N # Image # 1 2 3 4 Average

A 84 79 48 72 70.75

A (02) 70 67 67 56 65

A (03) 60 65 62 57 61

A (04) 60 59 59 52 57.5

A (05) 52 52 58 48 52.5

A (06) 54 44 38 32 42

A (07) 43 53 58 54 52

A (08) 87 33 48 53 55.25

A (09) 50 50 54 52 51.5

A (10) 48 42 51 42 45.75

B 72 78 67 65 70.5

B (02) 74 82 69 57 70.5

B (03) 75 57 51 63 61.5

B (04) 69 56 77 73 68.75

B (05) 68 76 81 102 81.75

B (06) 88 64 63 74 72.25

B (07) 67 61 60 65 63.25

B (08) 68 76 54 59 64.25

B 2 (02) 72 61 103 58 73.5

B 2 (03) 85 115 89 52 85.25

B 2 (04) 74 85 105 61 81.25

D 54 60 52 59 56.25

D (02) 57 66 64 73 65

D (03) 52 41 53 51 49.25

D (04) 52 50 41 68 52.75

D (05) 56 58 61 48 55.75

D (06) 48 71 76 49 61

D (07) 72 49 55 51 56.75

D (08) 71 49 60 68 62

D (09) 44 41 57 52 48.5

D (10) 81 51 61 46 59.75

D (11) 54 74 59 49 59

A 62 51 47 59 54.75

A (02) 49 58 60 46 53.25

A (03) 66 60 52 54 58

A (04) 56 48 54 50 52

A (05) 52 56 49 48 51.25

A (06) 55 50 54 45 51

A (07) 54 45 46 47 48

A (08) 42 33 42 57 43.5

B 40 46 52 51 47.25

B (02) 53 42 52 46 48.25

B (03) 44 45 54 48 47.75

B (04) 54 54 53 39 50

B (05) 64 58 58 49 57.25

C 58 60 60 51 57.25

C (02) 64 75 60 50 62.25

C (03) 61 62 58 52 58.25

C (04) 55 53 62 52 55.5

C (05) 52 56 62 64 58.5

C (06) 54 55 60 57 56.5

C (07) 51 50 55 51 51.75

A 44 44 40 52 45

A (02) 52 48 41 35 44

A (03) 51 50 54 43 49.5

A (04) 47 40 48 65 50

A (05) 55 50 44 43 48

B 56 55 46 50 51.75

B (02) 39 49 47 53 47

B (03) 51 47 46 54 49.5

B (04) 65 63 58 45 57.75

B (05) 66 69 52 51 59.5

B (06) 52 47 47 42 47

C 49 47 44 42 45.5

C (02) 45 44 42 35 41.5

C (03) 51 45 50 53 49.75

C (04) 48 40 48 43 44.75

C (05) 50 45 47 53 48.75

C (06) 45 47 44 6 35.5

C (07) 45 46 47 46 46

7 DAYS - 5 NG/ML FGF2

Cell Number/ Region

1
0

.5
-1

0
.1

2

1

2

3

8

9

1
1

.1
9

-1
1

.2
6

4

5

6

1
1

.1
8

-1
1

.2
5

7



196 

 

 

N # Image # 1 2 3 4 Average

A 48 43 36 40 41.75

A (02) 65 76 69 58 67

A (03) 107 88 91 68 88.5

A (04) 100 96 100 77 93.25

A (05) 69 65 47 59 60

A (06) 63 52 52 61 57

A (07) 45 40 56 52 48.25

A (08) 60 47 56 52 53.75

A (09) 49 55 64 48 54

A (10) 42 41 43 53 44.75

A (11) 80 68 62 62 68

A (12) 56 45 60 79 60

B 63 62 50 57 58

B (02) 74 71 56 73 68.5

B (03) 77 55 57 77 66.5

B (04) 69 63 68 75 68.75

B (05) 84 58 76 76 73.5

B (06) 71 65 105 54 73.75

B (07) 62 100 65 63 72.5

B (08) 80 52 46 99 69.25

B (09) 63 76 67 67 68.25

B (10) 68 105 104 79 89

B (11) 97 59 49 59 66

B (12) 93 65 68 62 72

B (13) 117 81 59 58 78.75

B (14) 72 64 75 104 78.75

B (15) 88 120 59 81 87

B (16) 75 86 73 111 86.25

B (17) 54 84 57 79 68.5

C 74 75 62 63 68.5

C (02) 65 73 73 70 70.25

C (03) 89 81 120 56 86.5

C (04) 68 79 70 75 73

C (05) 110 112 100 82 101

C (06) 65 84 91 97 84.25

C (07) 85 63 67 65 70

C (08) 77 72 85 70 76

C (09) 66 75 70 62 68.25

C (10) 67 61 58 57 60.75

C (11) 78 70 89 66 75.75

C (12) 49 70 80 48 61.75

D 76 75 80 88 79.75

D (02) 79 70 87 66 75.5

D (03) 61 65 62 68 64

D (04) 77 71 81 73 75.5

D (05) 94 83 86 83 86.5

D (06) 70 70 69 80 72.25

D (07) 76 75 77 72 75

D (08) 55 59 81 86 70.25

D (09) 68 49 63 60 60

D (10) 65 53 74 51 60.75

D (11) 71 45 69 47 58

D (12) 66 75 58 53 63

D (13) 70 74 79 78 75.25

D (14) 67 62 58 54 60.25

D (15) 65 72 77 71 71.25

D (16) 57 53 63 55 57

D (17) 64 70 80 73 71.75

A 56 59 57 57 57.25

A (02) 40 58 60 48 51.5

A (03) 59 45 54 47 51.25

A (04) 53 51 54 48 51.5

A (05) 63 45 43 53 51

A (06) 58 55 51 44 52

B 49 58 52 54 53.25

B (02) 60 54 59 70 60.75

B (03) 57 58 54 55 56

B (04) 54 48 54 84 60

B (05) 60 42 48 47 49.25

B (06) 50 56 52 38 49

B (07) 49 52 58 63 55.5

C 45 62 54 69 57.5

C (02) 61 56 62 51 57.5

C (03) 45 46 53 50 48.5

C (04) 35 48 49 35 41.75

C (05) 50 46 47 52 48.75

C (06) 51 50 50 55 51.5

A 71 74 67 58 67.5

A (02) 62 59 47 63 57.75

A (03) 41 42 47 44 43.5

A (04) 52 53 70 50 56.25

A (05) 53 52 53 61 54.75

A (06) 60 64 42 49 53.75

B 40 50 39 40 42.25

B (02) 49 46 45 53 48.25

B (03) 47 45 38 33 40.75

B (04) 49 47 44 49 47.25

B (05) 43 44 41 43 42.75

B (06) 47 48 32 44 42.75

C 75 78 67 66 71.5

C (02) 47 59 63 52 55.25

C (03) 73 71 78 93 78.75

C (04) 75 71 60 91 74.25

C (05) 45 43 55 62 51.25

C (06) 49 54 45 49 49.25
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N # Image # 1 2 3 4 Average

A 48 43 36 40 41.75

A (02) 65 76 69 58 67

A (03) 107 88 91 68 88.5

A (04) 100 96 100 77 93.25

A (05) 69 65 47 59 60

A (06) 63 52 52 61 57

A (07) 45 40 56 52 48.25

A (08) 60 47 56 52 53.75

A (09) 49 55 64 48 54

A (10) 42 41 43 53 44.75

A (11) 80 68 62 62 68

A (12) 56 45 60 79 60

B 63 62 50 57 58

B (02) 74 71 56 73 68.5

B (03) 77 55 57 77 66.5

B (04) 69 63 68 75 68.75

B (05) 84 58 76 76 73.5

B (06) 71 65 105 54 73.75

B (07) 62 100 65 63 72.5

B (08) 80 52 46 99 69.25

B (09) 63 76 67 67 68.25

B (10) 68 105 104 79 89

B (11) 97 59 49 59 66

B (12) 93 65 68 62 72

B (13) 117 81 59 58 78.75

B (14) 72 64 75 104 78.75

B (15) 88 120 59 81 87

B (16) 75 86 73 111 86.25

B (17) 54 84 57 79 68.5

C 74 75 62 63 68.5

C (02) 65 73 73 70 70.25

C (03) 89 81 120 56 86.5

C (04) 68 79 70 75 73

C (05) 110 112 100 82 101

C (06) 65 84 91 97 84.25

C (07) 85 63 67 65 70

C (08) 77 72 85 70 76

C (09) 66 75 70 62 68.25

C (10) 67 61 58 57 60.75

C (11) 78 70 89 66 75.75

C (12) 49 70 80 48 61.75

D 76 75 80 88 79.75

D (02) 79 70 87 66 75.5

D (03) 61 65 62 68 64

D (04) 77 71 81 73 75.5

D (05) 94 83 86 83 86.5

D (06) 70 70 69 80 72.25

D (07) 76 75 77 72 75

D (08) 55 59 81 86 70.25

D (09) 68 49 63 60 60

D (10) 65 53 74 51 60.75

D (11) 71 45 69 47 58

D (12) 66 75 58 53 63

D (13) 70 74 79 78 75.25

D (14) 67 62 58 54 60.25

D (15) 65 72 77 71 71.25

D (16) 57 53 63 55 57

D (17) 64 70 80 73 71.75

A 56 59 57 57 57.25

A (02) 40 58 60 48 51.5

A (03) 59 45 54 47 51.25

A (04) 53 51 54 48 51.5

A (05) 63 45 43 53 51

A (06) 58 55 51 44 52

B 49 58 52 54 53.25

B (02) 60 54 59 70 60.75

B (03) 57 58 54 55 56

B (04) 54 48 54 84 60

B (05) 60 42 48 47 49.25

B (06) 50 56 52 38 49

B (07) 49 52 58 63 55.5

C 45 62 54 69 57.5

C (02) 61 56 62 51 57.5

C (03) 45 46 53 50 48.5

C (04) 35 48 49 35 41.75

C (05) 50 46 47 52 48.75

C (06) 51 50 50 55 51.5

A 71 74 67 58 67.5

A (02) 62 59 47 63 57.75

A (03) 41 42 47 44 43.5

A (04) 52 53 70 50 56.25

A (05) 53 52 53 61 54.75

A (06) 60 64 42 49 53.75

B 40 50 39 40 42.25

B (02) 49 46 45 53 48.25

B (03) 47 45 38 33 40.75

B (04) 49 47 44 49 47.25

B (05) 43 44 41 43 42.75

B (06) 47 48 32 44 42.75

C 75 78 67 66 71.5

C (02) 47 59 63 52 55.25

C (03) 73 71 78 93 78.75

C (04) 75 71 60 91 74.25

C (05) 45 43 55 62 51.25

C (06) 49 54 45 49 49.25

7 DAYS - 10 NG/ML FGF2

9

10

1
1

.1
9

-1
1

.2
6

5

6

7

1
1

.1
8

-1
1

.2
5

8

Cell Number/ Region

1
0

.5
-1

0
.1

2

4

3

2

1



198 

 

 

N # Image # 1 2 3 4 Average

A 90 84 98 111 95.75

A (02) 76 83 85 92 84

A (03) 84 85 84 73 81.5

A (04) 87 81 82 72 80.5

A (05) 94 84 78 83 84.75

A (06) 83 74 67 73 74.25

A (07) 93 80 85 101 89.75

A (08) 86 76 71 79 78

A (09) 86 89 83 107 91.25

A (10) 70 75 68 87 75

A (11) 82 73 77 73 76.25

A (12) 94 81 78 79 83

A (13) 84 80 127 84 93.75

A (14) 92 90 82 76 85

A (15) 77 84 96 77 83.5

B 85 83 82 87 84.25

B (02) 83 71 73 82 77.25

B (03) 93 90 61 91 83.75

B (04) 94 93 82 85 88.5

B (05) 85 84 101 94 91

B (06) 142 139 95 116 123

B (07) 91 95 83 92 90.25

B (08) 89 125 87 91 98

B (09) 88 84 91 85 87

B (10) 139 90 82 138 112.25

B (11) 77 81 82 81 80.25

B (12) 52 89 78 75 73.5

B (13) 77 87 63 77 76

B (14) 80 73 79 68 75

D 73 73 61 68 68.75

D (02) 70 70 82 64 71.5

D (03) 67 71 96 70 76

D (04) 80 79 77 79 78.75

D (05) 75 65 82 63 71.25

D (06) 79 68 72 70 72.25

D (07) 92 83 60 71 76.5

D (08) 68 87 84 65 76

D 2 83 73 73 93 80.5

D 2 (02) 73 64 66 84 71.75

D 2 (03) 77 81 71 70 74.75

D 2 (04) 100 102 72 89 90.75

D 2 (05) 78 93 102 89 90.5

D 2 (06) 67 99 87 75 82

D 2 (07) 89 56 56 57 64.5

A 74 74 70 72 72.5

A (02) 65 70 68 94 74.25

A (03) 67 74 67 70 69.5

A (04) 72 70 65 72 69.75

A (05) 61 60 78 64 65.75

A (06) 72 76 65 71 71

A (07) 92 81 76 69 79.5

A (08) 82 66 68 81 74.25

B 75 90 56 48 67.25

B (02) 73 66 67 60 66.5

B (03) 70 71 68 54 65.75

B (04) 65 52 65 57 59.75

C 74 83 72 73 75.5

C (02) 66 74 70 61 67.75

C (03) 75 66 64 93 74.5

C (04) 71 73 56 52 63

C (05) 87 82 70 71 77.5

C (06) 60 57 68 55 60

C (07) 61 65 84 65 68.75

C (08) 61 75 82 76 73.5

A 46 47 44 53 47.5

A (02) 55 54 53 41 50.75

A (03) 58 51 48 55 53

A (04) 48 43 42 44 44.25

A (05) 51 38 40 42 42.75

B 70 69 79 66 71

B (02) 65 52 48 58 55.75

B (03) 54 70 60 50 58.5

B (04) 44 48 47 65 51

B (05) 49 50 56 49 51

B (06) 50 53 52 67 55.5

B (07) 50 51 52 48 50.25

C 64 48 44 64 55

C (02) 58 55 61 58 58

C (03) 56 53 58 61 57

C (04) 60 52 53 52 54.25

C (05) 53 50 55 53 52.75

C (06) 55 56 50 53 53.5
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One Way Analysis of Variance – 7 DAYS Friday, August 27, 2010, 1:50:38 AM 

 

Data source: Data 1 in all complete comparison 

 

Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, August 27, 2010, 1:50:38 AM 

 

Data source: Data 1 in all complete comparison 

 

Group N  Missing  Median    25%      75%     

7 NONE 81 0 47.750 43.250 52.625  

7 EDC 66 0 50.375 44.875 57.500  

7 HEP 69 0 52.750 46.750 61.625  

7 5FGF 70 0 54.000 48.438 61.000  

7 10FGF 95 0 60.750 53.250 72.500  

7 50FGF 82 0 74.250 64.125 82.250  

 

H = 160.922 with 5 degrees of freedom.  (P = <0.001) 

N # Image # 1 2 3 4 Average

A 90 84 98 111 95.75

A (02) 76 83 85 92 84

A (03) 84 85 84 73 81.5

A (04) 87 81 82 72 80.5

A (05) 94 84 78 83 84.75

A (06) 83 74 67 73 74.25

A (07) 93 80 85 101 89.75

A (08) 86 76 71 79 78

A (09) 86 89 83 107 91.25

A (10) 70 75 68 87 75

A (11) 82 73 77 73 76.25

A (12) 94 81 78 79 83

A (13) 84 80 127 84 93.75

A (14) 92 90 82 76 85

A (15) 77 84 96 77 83.5

B 85 83 82 87 84.25

B (02) 83 71 73 82 77.25

B (03) 93 90 61 91 83.75

B (04) 94 93 82 85 88.5

B (05) 85 84 101 94 91

B (06) 142 139 95 116 123

B (07) 91 95 83 92 90.25

B (08) 89 125 87 91 98

B (09) 88 84 91 85 87

B (10) 139 90 82 138 112.25

B (11) 77 81 82 81 80.25

B (12) 52 89 78 75 73.5

B (13) 77 87 63 77 76

B (14) 80 73 79 68 75

D 73 73 61 68 68.75

D (02) 70 70 82 64 71.5

D (03) 67 71 96 70 76

D (04) 80 79 77 79 78.75

D (05) 75 65 82 63 71.25

D (06) 79 68 72 70 72.25

D (07) 92 83 60 71 76.5

D (08) 68 87 84 65 76

D 2 83 73 73 93 80.5

D 2 (02) 73 64 66 84 71.75

D 2 (03) 77 81 71 70 74.75

D 2 (04) 100 102 72 89 90.75

D 2 (05) 78 93 102 89 90.5

D 2 (06) 67 99 87 75 82

D 2 (07) 89 56 56 57 64.5

A 74 74 70 72 72.5

A (02) 65 70 68 94 74.25

A (03) 67 74 67 70 69.5

A (04) 72 70 65 72 69.75

A (05) 61 60 78 64 65.75

A (06) 72 76 65 71 71

A (07) 92 81 76 69 79.5

A (08) 82 66 68 81 74.25

B 75 90 56 48 67.25

B (02) 73 66 67 60 66.5

B (03) 70 71 68 54 65.75

B (04) 65 52 65 57 59.75

C 74 83 72 73 75.5

C (02) 66 74 70 61 67.75

C (03) 75 66 64 93 74.5

C (04) 71 73 56 52 63

C (05) 87 82 70 71 77.5

C (06) 60 57 68 55 60

C (07) 61 65 84 65 68.75

C (08) 61 75 82 76 73.5

A 46 47 44 53 47.5

A (02) 55 54 53 41 50.75

A (03) 58 51 48 55 53

A (04) 48 43 42 44 44.25

A (05) 51 38 40 42 42.75

B 70 69 79 66 71

B (02) 65 52 48 58 55.75

B (03) 54 70 60 50 58.5

B (04) 44 48 47 65 51

B (05) 49 50 56 49 51

B (06) 50 53 52 67 55.5

B (07) 50 51 52 48 50.25

C 64 48 44 64 55

C (02) 58 55 61 58 58

C (03) 56 53 58 61 57

C (04) 60 52 53 52 54.25

C (05) 53 50 55 53 52.75

C (06) 55 56 50 53 53.5

7 DAYS - 50 NG/ML FGF-2

Cell Number/ Region

1
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The differences in the median values among the treatment groups are greater than would be expected by chance; 

there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

7 50FGF vs 7 NONE 230.303 10.987 Yes   

7 50FGF vs 7 EDC 195.916 8.854 Yes   

7 50FGF vs 7 HEP 158.301 7.242 Yes   

7 50FGF vs 7 5FGF 142.425 6.541 Yes   

7 50FGF vs 7 10FGF 71.139 3.527 Yes   

7 10FGF vs 7 NONE 159.164 7.866 Yes   

7 10FGF vs 7 EDC 124.777 5.820 Yes   

7 10FGF vs 7 HEP 87.162 4.118 Yes   

7 10FGF vs 7 5FGF 71.286 3.382 Yes   

7 5FGF vs 7 NONE 87.878 4.025 Yes   

7 5FGF vs 7 EDC 53.492 2.330 No   

7 5FGF vs 7 HEP 15.877 0.699 Do Not Test   

7 HEP vs 7 NONE 72.002 3.285 Yes   

7 HEP vs 7 EDC 37.615 1.633 Do Not Test   

7 EDC vs 7 NONE 34.387 1.550 No   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 

 
Multiple Comparison Graph

Symbol indicates significant difference.

7 NONE 7 EDC 7 HEP 7 5FGF 7 10FGF 7 50FGF

7 50FGF

7 10FGF

7 5FGF

7 HEP

7 EDC

7 NONE

 
 

Appendix D.3: Cell Growth Comparison for Each Treatment 

One Way Analysis of Variance - NONE Friday, August 27, 2010, 1:25:18 AM 

 

Data source: Data 1 in all complete comparison 

 

Normality Test (Shapiro-Wilk) Passed (P = 0.086) 

 

Equal Variance Test: Passed (P = 0.666) 

 

Group Name  N  Missing Mean Std Dev SEM  

1 NONE 131 0 34.929 7.885 0.689  

5 NONE 87 0 36.983 8.515 0.913  
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7 NONE 81 0 47.691 7.986 0.887  

 

Source of Variation  DF   SS   MS    F    P   

Between Groups 2 8643.320 4321.660 65.873 <0.001  

Residual 296 19419.292 65.606    

Total 298 28062.612     

 

The differences in the mean values among the treatment groups are greater than would be expected by chance; there 

is a statistically significant difference  (P = <0.001). 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor:  

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

7 NONE vs. 1 NONE 12.762 11.147 <0.001 0.017 Yes  

7 NONE vs. 5 NONE 10.709 8.563 <0.001 0.025 Yes  

5 NONE vs. 1 NONE 2.053 1.833 0.068 0.050 No  

 
Multiple Comparison Graph

Symbol indicates significant difference.

1 NONE 5 NONE 7 NONE

7 NONE

5 NONE

1 NONE

 
 
One Way Analysis of Variance – EDC/NHS Friday, August 27, 2010, 1:27:32 AM 

 

Data source: Data 1 in all complete comparison 

 

Normality Test (Shapiro-Wilk) Passed (P = 0.073) 

 

Equal Variance Test: Passed (P = 0.161) 

 

Group Name  N  Missing Mean Std Dev SEM  

1 EDC 89 0 41.643 7.170 0.760  

5 EDC 86 0 44.073 7.320 0.789  

7 EDC 66 0 50.818 8.722 1.074  

 

Source of Variation  DF   SS   MS    F    P   

Between Groups 2 3310.837 1655.419 28.096 <0.001  

Residual 238 14023.037 58.920    

Total 240 17333.874     

 

The differences in the mean values among the treatment groups are greater than would be expected by chance; there 

is a statistically significant difference  (P = <0.001). 
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All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor:  

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

7 EDC vs. 1 EDC 9.175 7.358 <0.001 0.017 Yes  

7 EDC vs. 5 EDC 6.746 5.370 <0.001 0.025 Yes  

5 EDC vs. 1 EDC 2.429 2.093 0.037 0.050 Yes  

 
Multiple Comparison Graph

Symbol indicates significant difference.

1 EDC 5 EDC 7 EDC

7 EDC

5 EDC

1 EDC

 
 
One Way Analysis of Variance - HEP Friday, August 27, 2010, 1:39:17 AM 

 

Data source: Data 1 in all complete comparison 

 

Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, August 27, 2010, 1:39:17 AM 

 

Data source: Data 1 in all complete comparison 

 

Group N  Missing  Median    25%      75%     

1 HEP 89 0 44.750 39.250 51.375  

5 HEP 88 0 46.250 42.563 50.688  

7 HEP 69 0 52.750 46.750 61.625  

 

H = 31.182 with 2 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would be expected by chance; 

there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

7 HEP vs 1 HEP 58.408 5.117 Yes   

7 HEP vs 5 HEP 54.043 4.723 Yes   

5 HEP vs 1 HEP 4.364 0.408 No   
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Note: The multiple comparisons on ranks do not include an adjustment for ties. 

 
Multiple Comparison Graph

Symbol indicates significant difference.

1 HEP 5 HEP 7 HEP

7 HEP

5 HEP

1 HEP

 
 
One Way Analysis of Variance – 5 NG/ML FGF2 Friday, August 27, 2010, 1:41:04 AM 

 

Data source: Data 1 in all complete comparison 

 

Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, August 27, 2010, 1:41:04 AM 

 

Data source: Data 1 in all complete comparison 

 

Group N  Missing  Median    25%      75%     

1 5FGF 103 0 39.750 34.250 46.000  

5 5FGF 86 0 48.125 42.000 51.875  

7 5FGF 70 0 54.000 48.438 61.000  

 

H = 95.291 with 2 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would be expected by chance; 

there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

7 5FGF vs 1 5FGF 112.371 9.684 Yes   

7 5FGF vs 5 5FGF 54.804 4.545 Yes   

5 5FGF vs 1 5FGF 57.567 5.261 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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Multiple Comparison Graph

Symbol indicates significant difference.

1 5FGF 5 5FGF 7 5FGF

7 5FGF

5 5FGF

1 5FGF

 
 
One Way Analysis of Variance – 10 NG/ML FGF2 Friday, August 27, 2010, 1:42:57 AM 

 

Data source: Data 1 in all complete comparison 

 

Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, August 27, 2010, 1:42:57 AM 

 

Data source: Data 1 in all complete comparison 

 

Group N  Missing  Median    25%      75%     

1 10FGF 77 0 38.500 35.250 42.000  

5 10FGF 77 0 42.000 37.875 46.375  

7 10FGF 95 0 60.750 53.250 72.500  

 

H = 148.620 with 2 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would be expected by chance; 

there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

7 10FGF vs 1 10FGF 126.448 11.449 Yes   

7 10FGF vs 5 10FGF 97.941 8.868 Yes   

5 10FGF vs 1 10FGF 28.506 2.456 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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Multiple Comparison Graph

Symbol indicates significant difference.

1 10FGF 5 10FGF 7 10FGF

7 10FGF

5 10FGF

1 10FGF

 
 
One Way Analysis of Variance – 50 NG/ML FGF2 Friday, August 27, 2010, 1:53:47 AM 

 

Data source: Data 1 in all complete comparison 

 

Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, August 27, 2010, 1:53:47 AM 

 

Data source: Data 1 in all complete comparison 

 

Group N  Missing  Median    25%      75%     

1 50FGF 55 0 39.250 35.750 46.000  

5 50FGF 63 0 43.000 40.000 50.000  

7 50FGF 82 0 74.250 64.125 82.250  

 

H = 131.530 with 2 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would be expected by chance; 

there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

7 50FGF vs 1 50FGF 105.103 10.419 Yes   

7 50FGF vs 5 50FGF 84.415 8.705 Yes   

5 50FGF vs 1 50FGF 20.688 1.937 No   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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Multiple Comparison Graph

Symbol indicates significant difference.

1 50FGF 5 50FGF 7 50FGF

7 50FGF

5 50FGF

1 50FGF

 

Appendix D.4: Summary of Cell Distribution Data – 5 Days 

 
 

 
 

1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

34.25 22.75 17.25 35 40 62 45

41.5

Average 34.25 22.75 17.25 35 40 51.75 45

41 23.75 26.5 21.5

Average 41 23.75 26.5 21.5

40.25 35.25 35.75 36.25 39.75 43.75 30.75 40 35.75

40.75 40.25 36

44

Average 40.25 35.25 35.75 36.25 40.25 42 36.91667 40 35.75

50.25 35.5 31.5 22.75 40 39 38.25 37

38.75 26.5 13.75 42.75 41.25 39

Average 50.25 37.125 29 18.25 41.375 40.125 38.25 38

45.25 35.54167 32.125 23.875 35.78125 35.90625 42.30556 41 35.75

7.071068 1.459523 7.949057 8.730932 6.782618 9.647633 8.206253 3.605551
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1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

64.5 57.75 61 51.25 43.5 42.75 40.25 49.25

53.75

Average 64.5 55.75 61 51.25 43.5 42.75 40.25 49.25

53.75 45 38 30.25 41.25 47.25 52.75

52.25 40

Average 53 45 39 30.25 41.25 47.25 50.32 52.75

35.75 45 47.5 42.25 47.25 53.5 46.75 63.5

44 49 43.25 40.75 48.75 55.75 39.5

42.75

Average 35.75 44.5 48.25 42.75 44 51.125 51.25 48.58333

49.5 48.25 38.25 46.5 61.5 47.5 53.75

44.5 44 41.5 41.25 51.25 47.5

Average 49.5 46.375 41.125 44 51.375 49.375 50.625

51.08333 48.6875 48.65625 41.34375 43.1875 48.125 46.95833 50.30208

14.47052 5.217658 9.146593 8.626132 1.312996 4.050463 5.884744 1.840068

EDC/NHS
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1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

44 35.5 47.5 39 42.75

Average 44 35.5 47.5 39 42.75

38.5 44.5 42 49.5 45 33.75 48.25 51.5 43.75 46

44 45 43.75 41 42.75

43.25

Average 38.5 44.5 43.08333 47.25 44.375 37.375 48.25 47.125 43.75 46

46.75 51 56.75 52.75 47 62.75 51.875 53.5 51.5 39.5

49 59.25 43.5 47.25 49.5

40.5 49.75

Average 47.875 51 56.75 50.83333 45.25 53.25 51.875 53.5 50.5 39.5

43.1875 47.75 47.94444 44.52778 45.70833 43.20833 47.625 50.3125 47.125 42.75

6.629126 4.596194 7.639596 8.020951 1.612129 8.734212 4.594494 4.507806 4.772971 4.596194

HEP

Standard Deviation

Total Average
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1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

35 40.5 37.25 39.5 48.5 47.75 44.75 43.25 48.5 49.75

36.5 50.25 45.75

43

Average 35 40.5 37.25 39.5 42.5 47 45.25 43.25 48.5 49.75

36 51.75 52.25 39 32.5 49.25 44 50.25 35.5

65.5 51.25 46.5 45.75 38.75

Average 36 58.625 51.75 42.75 32.5 49.25 44.875 44.5 35.5

40.5 57 50 54.5 51.25 38.75 48.25 47

46.5 55

32.5

Average 39.83333 56 50 54.5 51.25 38.75 48.25 47

36.94444 51.70833 46.33333 45.58333 42.08333 45 46.125 44.91667 42 49.75

2.551325 9.795035 7.914912 7.891187 9.381942 5.528336 1.849831 1.909407 9.192388

5 NG/ML FGF2

Standard Deviation

B

Total Average

Section / Distance

Scaffold

A

D
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1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

49.25 37.25 40.25 29.75 45.5 33.5 29.75 32.5 44.25 42

44.5 37.25 47

Average 49.25 37.25 40.25 37.125 45.5 33.5 29.75 34.875 44.25 44.5

45 37.75 38.25 35.75 36.25

45 40.25 36.25

Average 45 41.375 39.25 35.75 36.25

34.25 42.25 34.5 35 44 36.5 39.25 38.75

34.5 45.75

Average 34.25 42.25 34.5 34.75 44 36.5 42.5 38.75

39.5 38.75 42.25 40.25 37.75 35.25

Average 39.5 38.75 42.25 40.25 37.75 35.25

41.75 39.66667 39.625 38.875 42.25 35.875 35.9375 36.8125 44.25 44.5

10.6066 2.504163 4.332532 3.545831 2.979094 1.785357 5.225638 2.740039

10 NG/ML FGF2
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1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

53.5 36 40.75 41.5 39.75 33.25 39.25 42

48.25 42 46

39

Average 50.875 43.34 36 41.375 41.5 39.75 33.25 41.41667 42

49.75 52.25 48.5 45.75 41.25 51.75 35 43 39.5

42.75 47.25 42.25

Average 49.75 52.25 48.5 44.25 44.25 47 35 43 39.5

50.3125 52.25 42.25 42.8125 42.875 43.375 34.125 42.20833 40.75

0.795495 8.838835 2.032932 1.944544 5.126524 1.237437 1.119586 1.767767

50 NG/ML FGF2
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Appendix D.5: Summary of Cell Distribution Data – 7 Days  

 
 

 
 

1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

48.25 53.5 52.5 43.75 46.75 45.25 53.25 56.75 52.75

57.5 51 42.75 58.25

50.5

Average 48.25 53.5 55 43.75 46.75 45.25 52.125 50 55.5

32.75 37.5 50.25 46 47.75 36

49.25 51

Average 32.75 37.5 49.75 48.5 47.75 36

C 42.5 44.75 45 53.5 63 50.75 55.25

59.25 62

Average 42.5 52 45 57.75 63 50.75 55.25

35.25 26.5 41.5 41 45

Average 35.25 26.5 41.5 41 45

48.25 42.91667 44.9375 41.25 48.625 49.25 45.96875 52.625 55.5
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1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

62 74.25 66.25 64 53.75 58.75 46.5 49 57.5 63.5

Average 62 74.25 66.25 64 53.75 58.75 46.5 49 57.5 63.5

57.5 51.75 51.25 54.25 50.5 63.75 62.5

Average 57.5 51.75 51.25 54.25 50.5 63.75 62.5

64.25 68.5 52.5 57.75 50.25 61.25 59.5 60.75

56.5 53.75 48.5 61.75

Average 64.25 62.5 53.125 53.125 56 61.25 59.5 60.75

63.125 64.75 57.04167 56.125 54.66667 56.83333 56.58333 57.41667 57.5 63.5

1.59099 8.598692 8.004231 6.884085 1.181454 5.625463 8.98726 7.341378
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1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

72 69 45.75 32.75 42 55.5 82.75

64.5 77

75.75

Average 72 69 45.75 32.75 35.693 38.753 42 60 78.5

80 58.5 61.5

Average 80 58.5 61.5

46.75 60.25 68.75 59.5 60 58.5 67 61.75 62 48.5

54 55.25 55.75

Average 46.75 57.125 62 59.5 57.875 58.5 67 61.75 62 48.5

59.375 63.0625 53.875 57.41667 58.1875 60 54.5 60.875 70.25 48.5

17.85445 8.396893 11.49049 23.69379 0.441942 2.12132 17.67767 1.237437 11.66726

HEP

Standard Deviation

Total Average

Section / Distance
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A

B
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1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

70.75 65 57.5 42 52 55.25 51.5 45.75

61 52.5

Average 70.75 63 55 42 52 55.25 51.5 45.75
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1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

41.75 67 93.25 60 48.25 53.75 44.75 68 60

88.5 57 54

Average 41.75 77.75 93.25 58.5 48.25 53.875 44.75 68 60

58 68.5 66.5 73.5 72.5 68.25 89 72 78.75 86.25 68.5

68.75 73.75 69.25 66 78.75 87

Average 58 68.5 67.625 73.625 70.875 68.25 77.5 75.375 82.875 86.25 68.5

68.5 70.25 73 84.25 76 60.75 61.75

86.5 101 70 68.25 75.75

Average 68.5 78.375 87 77.125 72.125 68.25 61.75

79.75 64 86.5 72.25 70.25 60 60.75 63 75.25 71.25 57

75.5 75.5 75 58 60.25 71.75

Average 77.625 69.75 86.5 73.625 70.25 60 59.375 63 67.75 71.25 64.375

67.8125 60 75.09375 79.71875 71.65625 63.40625 65.71875 62.84375 70.09375 72.5 66.4375

13.87697 15.81732 8.877274 9.294586 11.7062 12.28794 10.95986 13.08521 8.997323 13.16957 2.916815

10 NG/ML FGF-2

Standard Deviation

Total Average
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Cell Distribution Across 10 ng/mL FGF2 Braids

1 2 3 4 5 6 7 8 9 10 11

900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900

95.75 84 81.5 84.75 89.75 78 76.25 83 85 83.5

80.5 74.25 91.25 93.75

75

Average 95.75 84 81 79.5 89.75 81.41667 76.25 88.375 85 83.5

84.25 83.75 88.5 123 98 112.25 73.5 75

77.25 91 90.25 87 80.25 76

Average 80.75 83.75 89.75 106.625 92.5 96.25 74.75 75

80.5 71.75 74.75 90.75 90.5 82 64.5

Average 80.5 71.75 74.75 90.75 90.5 82 64.5

88.25 82.75 80.83333 86.95833 91 89.38889 77.66667 75.95833 85 83.5

10.6066 1.952562 9.001157 17.19663 1.391941 7.478828 3.826988 11.96632

50 NG/ML FGF-2
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Total Average
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Appendix E: Total Cell Attachment Data 

Appendix E.1: Surface Area Calculations 
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One Way Analysis of Variance – surface area Friday, August 27, 2010, 2:18:22 PM 

 

Data source: Data 1 in perimeter 

 

Normality Test (Shapiro-Wilk) Passed (P = 0.097) 

 

Equal Variance Test: Passed (P = 0.130) 

 

Group Name  N  Missing Mean Std Dev SEM  

none 4 0 1230.759 290.599 145.300  

edc 4 0 1005.312 242.701 121.350  

hep 3 0 1071.840 166.443 96.096  

5fgf 4 0 972.048 146.665 73.332  

10fgf 4 0 818.664 30.403 15.202  

50fgf 4 0 953.568 51.568 25.784  

 

Source of Variation  DF   SS   MS    F    P   

Between Groups 5 371059.080 74211.816 2.250 0.096  

Residual 17 560743.898 32984.935    

Total 22 931802.978     

 

The differences in the mean values among the treatment groups are not great enough to exclude the possibility that 

the difference is due to random sampling variability; there is not a statistically significant difference  (P = 0.096). 
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Appendix E.2: Total Cell Attachment 

 

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

total 31276.96809 7734.956268 1128.259 total 36355.72222 3881.124914 914.7899 total 44528.075 4508.190346 1008.062

Section Section Section

Q1 25275.75 Q1 33763.875 Q1 42943.625

Q3 36216 Q3 39862.75 Q3 48602.375

IQR 10940.25 IQR 6098.875 IQR 5658.75

LAV 8865.375 LAV 24615.5625 LAV 34455.5

UAV 52626.375 UAV 49011.0625 UAV 57090.5

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

total 36782.94068 8012.499393 1043.139 total 38872.08537 5430.900335 848.1641 total 42051.82653 5979.18431 854.1692

Section Section Section

Q1 31437.5 Q1 35713 Q1 37976.5

Q3 41497.5 Q3 42252 Q3 46527.5

IQR 10060 IQR 6539 IQR 8551

LAV 16347.5 LAV 25904.5 LAV 25150

UAV 56587.5 UAV 52060.5 UAV 59354

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

total 38429.2 5611.003086 1448.755 total 49444.9 4888.609951 1262.234 total 59530.05 3004.11226 949.9837

Section Section Section

Q1 34832.75 Q1 45521.5 Q1 57342

Q3 42252 Q3 53066.5 Q3 62246.25

IQR 7419.25 IQR 7545 IQR 4904.25

LAV 23703.875 LAV 34204 LAV 49985.625

UAV 53380.875 UAV 64384 UAV 69602.625

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

total 38655.55 3598.100884 1137.819 total 49243.7 3933.382813 1015.595 total 58197.1 5150.396882 1628.699

Section Section Section

Q1 37033.375 Q1 47533.5 Q1 58348

Q3 39485.5 Q3 51809 Q3 60863

IQR 2452.125 IQR 4275.5 IQR 2515

LAV 33355.1875 LAV 41120.25 LAV 54575.5

UAV 43163.6875 UAV 58222.25 UAV 64635.5

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

total 35138.96565 7932.194732 693.0391 total 41893.11798 7213.520428 764.6316 total 46386.20787 8617.06239 913.4068

Section Section Section

Q1 30557.25 Q1 35964.5 Q1 39737

Q3 39611.25 Q3 47785 Q3 51054.5

IQR 9054 IQR 11820.5 IQR 11317.5

LAV 16976.25 LAV 18233.75 LAV 22760.75

UAV 53192.25 UAV 65515.75 UAV 68030.75
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One Way Analysis of Variance – total attachment Wednesday, August 25, 2010, 12:54:55 AM 

 

Data source: Data 1 in 1 day total thesis 

 

Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, August 25, 2010, 12:54:55 AM 

 

Data source: Data 1 in 1 day total thesis 

 

Group N  Missing  Median    25%      75%     

none 131 0 35461.500 30431.500 39737.000  

edc 89 0 41497.500 35838.750 47785.000  

hep 89 0 45018.500 39485.500 51683.250  

5fgf 103 0 39988.500 34455.500 46276.000  

10fgf 77 0 38731.000 35461.500 42252.000  

50fgf 55 0 39485.500 35964.500 46276.000  

 

H = 89.874 with 5 degrees of freedom.  (P = <0.001) 

 

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

total 36524.0875 6167.961985 975.2404 total 37138.16667 7116.108993 1677.283 total 37166.11111 5674.135059 1337.406

Section Section Section

Q1 32192 Q1 31940.5 Q1 34644.125

Q3 40114.25 Q3 38605.25 Q3 40617.25

IQR 7922.25 IQR 6664.75 IQR 5973.125

LAV 20308.625 LAV 21943.375 LAV 25684.4375

UAV 51997.625 UAV 48602.375 UAV 49576.9375

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

total 39356.82558 5037.291835 768.1798 total 38842.77778 3970.457068 540.3108 total 38250.86364 5713.988223 1218.226

Section Section Section

Q1 38228 Q1 36278.875 Q1 33889.625

Q3 44515.5 Q3 40680.125 Q3 40491.5

IQR 6287.5 IQR 4401.25 IQR 6601.875

LAV 28796.75 LAV 29677 LAV 23986.8125

UAV 53946.75 UAV 47282 UAV 50394.3125

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

total 51456.9 3625.634173 1146.526 total 53770.7 2847.619787 1273.494 total #DIV/0! #DIV/0! #DIV/0!

Section Section Section

Q1 49356.875 Q1 54324 Q1 #NUM!

Q3 54072.5 Q3 55330 Q3 #NUM!

IQR 4715.625 IQR 1006 IQR #NUM!

LAV 42283.4375 LAV 52815 LAV #NUM!

UAV 61145.9375 UAV 56839 UAV #NUM!

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

total 50476.05 3907.119033 1235.54 total #DIV/0! #DIV/0! #DIV/0! total 49310.76667 4386.563217 1132.606

Section Section Section

Q1 47973.625 Q1 #NUM! Q1 45898.75

Q3 52563.5 Q3 #NUM! Q3 51557.5

IQR 4589.875 IQR #NUM! IQR 5658.75

LAV 41088.8125 LAV #NUM! LAV 37410.625

UAV 59448.3125 UAV #NUM! UAV 60045.625

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

total 40511.03398 7468.478912 735.8911 total 39413.64286 6145.433187 700.3371 total 40912.19091 7414.718229 999.8004

Section Section Section

Q1 34455.5 Q1 35713 Q1 36090.25

Q3 45773 Q3 42252 Q3 46150.25

IQR 11317.5 IQR 6539 IQR 10060

LAV 17479.25 LAV 25904.5 LAV 21000.25

UAV 62749.25 UAV 52060.5 UAV 61240.25
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The differences in the median values among the treatment groups are greater than would be expected by chance; 

there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

hep vs none 196.566 9.104 Yes   

hep vs 10fgf 123.959 5.067 Yes   

hep vs 5fgf 101.302 4.453 Yes   

hep vs 50fgf 90.933 3.373 Yes   

hep vs edc 71.382 3.029 Yes   

edc vs none 125.184 5.798 Yes   

edc vs 10fgf 52.577 2.149 No   

edc vs 5fgf 29.919 1.315 Do Not Test   

edc vs 50fgf 19.551 0.725 Do Not Test   

50fgf vs none 105.634 4.183 Yes   

50fgf vs 10fgf 33.026 1.190 Do Not Test   

50fgf vs 5fgf 10.369 0.395 Do Not Test   

5fgf vs none 95.265 4.602 Yes   

5fgf vs 10fgf 22.657 0.957 Do Not Test   

10fgf vs none 72.608 3.217 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 

 
Multiple Comparison Graph

Symbol indicates significant difference.

none edc hep 5fgf 10fgf 50fgf

50fgf

10fgf

5fgf

hep

edc

none
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Appendix E.3: Attachment Percentage Data 

 

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Precent 20.85131206 5.156637512 0.752173 Percent 24.23714815 2.587416609 0.60986 Percent 29.68538333 3.00546023 0.672041

Section Section Section

Q1 16.8505 Q1 22.50925 Q1 28.62908333

Q3 24.144 Q3 26.57516667 Q3 32.40158333

IQR 7.2935 IQR 4.065916667 IQR 3.7725

LAV 5.91025 LAV 16.410375 LAV 22.97033333

UAV 35.08425 UAV 32.67404167 UAV 38.06033333

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Precent 24.52196045 5.341666262 0.695426 Percent 25.91472358 3.620600223 0.565443 Percent 28.03455102 3.986122874 0.569446

Section Section Section

Q1 20.95833333 Q1 23.80866667 Q1 25.31766667

Q3 27.665 Q3 28.168 Q3 31.01833333

IQR 6.706666667 IQR 4.359333333 IQR 5.700666667

LAV 10.89833333 LAV 17.26966667 LAV 16.76666667

UAV 37.725 UAV 34.707 UAV 39.56933333

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Precent 25.61946667 3.740668724 0.965837 Percent 32.96326667 3.259073301 0.841489 Percent 39.6867 2.002741507 0.633322

Section Section Section

Q1 23.22183333 Q1 30.34766667 Q1 38.228

Q3 28.168 Q3 35.37766667 Q3 41.4975

IQR 4.946166667 IQR 5.03 IQR 3.2695

LAV 15.80258333 LAV 22.80266667 LAV 33.32375

UAV 35.58725 UAV 42.92266667 UAV 46.40175

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Precent 25.77036667 2.398733922 0.758546 Percent 32.82913333 2.622255208 0.677063 Percent 38.79806667 3.433597921 1.085799

Section Section Section

Q1 24.68891667 Q1 31.689 Q1 38.89866667

Q3 26.32366667 Q3 34.53933333 Q3 40.57533333

IQR 1.63475 IQR 2.850333333 IQR 1.676666667

LAV 22.23679167 LAV 27.4135 LAV 36.38366667

UAV 28.77579167 UAV 38.81483333 UAV 43.09033333

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Precent 23.4259771 5.288129822 0.462026 Percent 27.92874532 4.809013618 0.509754 Percent 30.92413858 5.74470826 0.608938

Section Section Section

Q1 20.3715 Q1 23.97633333 Q1 26.49133333

Q3 26.4075 Q3 31.85666667 Q3 34.03633333

IQR 6.036 IQR 7.880333333 IQR 7.545

LAV 11.3175 LAV 12.15583333 LAV 15.17383333

UAV 35.4615 UAV 43.67716667 UAV 45.35383333
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One Way Analysis of Variance - Percentage Wednesday, August 25, 2010, 12:59:23 AM 

 

Data source: Data 1 in 1 day percent thesis 

 

Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, August 25, 2010, 12:59:23 AM 

 

Data source: Data 1 in 1 day percent thesis 

 

Group N  Missing  Median    25%      75%     

none 131 0 23.641 20.288 26.491  

edc 89 0 27.665 23.892 31.857  

hep 89 0 30.012 26.324 34.456  

5fgf 103 0 26.659 22.970 30.851  

10fgf 77 0 25.821 23.641 28.168  

50fgf 55 0 26.324 23.976 30.851  

 

H = 89.874 with 5 degrees of freedom.  (P = <0.001) 

 

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Percent 24.34939167 4.111974657 0.65016 Percent 24.75877778 4.744072662 1.118189 Percent 24.77740741 3.782756706 0.891604

Section Section Section

Q1 21.46133333 Q1 21.29366667 Q1 23.09608333

Q3 26.74283333 Q3 25.73683333 Q3 27.07816667

IQR 5.2815 IQR 4.443166667 IQR 3.982083333

LAV 13.53908333 LAV 14.62891667 LAV 17.12295833

UAV 34.66508333 UAV 32.40158333 UAV 33.05129167

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Percent 26.23788372 3.358194557 0.51212 Percent 25.89518519 2.646971379 0.360207 Percent 25.50057576 3.809325482 0.812151

Section Section Section

Q1 25.48533333 Q1 24.18591667 Q1 22.59308333

Q3 29.677 Q3 27.12008333 Q3 26.99433333

IQR 4.191666667 IQR 2.934166667 IQR 4.40125

LAV 19.19783333 LAV 19.78466667 LAV 15.99120833

UAV 35.9645 UAV 31.52133333 UAV 33.59620833

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Percent 34.3046 2.417089449 0.764351 Percent 35.84713333 1.898413191 0.848996 Percent #DIV/0! #DIV/0! #DIV/0!

Section Section Section

Q1 32.90458333 Q1 36.216 Q1 #NUM!

Q3 36.04833333 Q3 36.88666667 Q3 #NUM!

IQR 3.14375 IQR 0.670666667 IQR #NUM!

LAV 28.18895833 LAV 35.21 LAV #NUM!

UAV 40.76395833 UAV 37.89266667 UAV #NUM!

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Percent 33.6507 2.604746022 0.823693 Percent #DIV/0! #DIV/0! #DIV/0! Percent 32.87384444 2.924375478 0.755071

Section Section Section

Q1 31.98241667 Q1 #NUM! Q1 30.59916667

Q3 35.04233333 Q3 #NUM! Q3 34.37166667

IQR 3.059916667 IQR #NUM! IQR 3.7725

LAV 27.39254167 LAV #NUM! LAV 24.94041667

UAV 39.63220833 UAV #NUM! UAV 40.03041667

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Percent 27.00735599 4.978985941 0.490594 Percent 26.2757619 4.096955458 0.466891 Percent 27.27479394 4.943145486 0.666534

Section Section Section

Q1 22.97033333 Q1 23.80866667 Q1 24.06016667

Q3 30.51533333 Q3 28.168 Q3 30.76683333

IQR 7.545 IQR 4.359333333 IQR 6.706666667

LAV 11.65283333 LAV 17.26966667 LAV 14.00016667

UAV 41.83283333 UAV 34.707 UAV 40.82683333
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The differences in the median values among the treatment groups are greater than would be expected by chance; 

there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

hep vs none 196.566 9.104 Yes   

hep vs 10fgf 123.959 5.067 Yes   

hep vs 5fgf 101.302 4.453 Yes   

hep vs 50fgf 90.933 3.373 Yes   

hep vs edc 71.382 3.029 Yes   

edc vs none 125.184 5.798 Yes   

edc vs 10fgf 52.577 2.149 No   

edc vs 5fgf 29.919 1.315 Do Not Test   

edc vs 50fgf 19.551 0.725 Do Not Test   

50fgf vs none 105.634 4.183 Yes   

50fgf vs 10fgf 33.026 1.190 Do Not Test   

50fgf vs 5fgf 10.369 0.395 Do Not Test   

5fgf vs none 95.265 4.602 Yes   

5fgf vs 10fgf 22.657 0.957 Do Not Test   

10fgf vs none 72.608 3.217 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 
 

Multiple Comparison Graph

Symbol indicates significant difference.

none edc hep 5fgf 10fgf 50fgf

50fgf

10fgf

5fgf

hep

edc

none
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Appendix F: Total Cell Growth Data 

Appendix F.1: Total Cell Growth – 5 Days 
 

 

 
 

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 36285.04 8959.767 1254.618 Section 47624.47 7321.429 1067.94 Section 44686.52 6933.272 980.5128

Section Section Section

Q1 32569.25 Q1 42755 Q1 41308.88

Q3 41120.25 Q3 52060.5 Q3 48413.75

IQR 8551 IQR 9305.5 IQR 7104.875

LAV 19742.75 LAV 28796.75 LAV 30651.56

UAV 53946.75 UAV 66018.75 UAV 59071.06

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 39723.76 6840.242 1569.259 Section 42199.05 4256.207 976.4408 Section 49725.14 8292.693 1809.614

Section Section Section

Q1 35210 Q1 37976.5 Q1 45018.5

Q3 44389.75 Q3 44892.75 Q3 53066.5

IQR 9179.75 IQR 6916.25 IQR 8048

LAV 21440.38 LAV 27602.13 LAV 32946.5

UAV 58159.38 UAV 55267.13 UAV 65138.5

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 37148.03 8979.802 2177.922 Section 38642.98 5495.13 1228.749 Section 47696.24 3595.374 872.0063

Section Section Section

Q1 27916.5 Q1 35147.13 Q1 45270

Q3 44012.5 Q3 42377.75 Q3 49545.5

IQR 16096 IQR 7230.625 IQR 4275.5

LAV 3772.5 LAV 24301.19 LAV 38856.75

UAV 68156.5 UAV 53223.69 UAV 55958.75

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 37204.66 8565.764 918.3463 Section 44337.11 7363.499 794.0265 Section 46470.34 7066.81 753.3244

Section Section Section

Q1 32066.25 Q1 39862.75 Q1 42943.63

Q3 42755 Q3 47785 Q3 50865.88

IQR 10688.75 IQR 7922.25 IQR 7922.25

LAV 16033.13 LAV 27979.38 LAV 31060.25

UAV 58788.13 UAV 59668.38 UAV 62749.25
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One Way Analysis of Variance – Total cells: 5 days Friday, August 27, 2010, 3:19:51 PM 

 

Data source: Data 1 in Notebook2 

 

Normality Test (Shapiro-Wilk) Passed (P = 0.303) 

 

Equal Variance Test: Passed (P = 0.360) 

 

Group Name  N  Missing Mean Std Dev SEM  

none 5 87 0 37204.655 8565.764 918.346  

edc 5 86 0 44337.110 7363.499 794.027  

hep 5 88 0 46470.341 7066.810 753.324  

5 ng 5 86 0 47398.977 7141.235 770.059  

10 ng 5 77 0 42741.935 6248.848 712.122  

50 ng 5 63 0 45094.349 7269.069 915.817  

 

Source of Variation  DF   SS   MS    F    P   

Between Groups 5 5741772302.582 1148354460.516 21.374 <0.001  

Residual 481 25842037591.575 53725649.879    

Total 486 31583809894.157     

 

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 44578.38 7209.801 1040.645 Section 40074.24 4934.024 743.8321 Section 42805.3 5230.416 954.939

Section Section Section

Q1 38982.5 Q1 36467.5 Q1 39548.38

Q3 49671.25 Q3 44326.88 Q3 46213.13

IQR 10688.75 IQR 7859.375 IQR 6664.75

LAV 22949.38 LAV 24678.44 LAV 29551.25

UAV 65704.38 UAV 56115.94 UAV 56210.25

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 52206.11 5962.97 1367.999 Section 47829.38 6539.747 1586.122 Section 49781.28 8171.477 2042.869

Section Section Section

Q1 49168.25 Q1 41749 Q1 43258

Q3 54952.75 Q3 52563.5 Q3 56839

IQR 5784.5 IQR 10814.5 IQR 13581

LAV 40491.5 LAV 25527.25 LAV 22886.5

UAV 63629.5 UAV 68785.25 UAV 77210.5

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 49717.58 4272.254 980.1224 Section 44672.69 5315.225 1328.806 Section 44722.62 7786.472 1888.497

Section Section Section

Q1 47282 Q1 40554.38 Q1 40994.5

Q3 52186.25 Q3 47407.75 Q3 50803

IQR 4904.25 IQR 6853.375 IQR 9808.5

LAV 39925.63 LAV 30274.31 LAV 26281.75

UAV 59542.63 UAV 57687.81 UAV 65515.75

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 47398.98 7141.235 770.0592 Section 42741.94 6248.848 712.1223 Section 45094.35 7269.069 915.8166

Section Section Section

Q1 42503.5 Q1 38228 Q1 40240

Q3 51934.75 Q3 46527.5 Q3 50174.25

IQR 9431.25 IQR 8299.5 IQR 9934.25

LAV 28356.63 LAV 25778.75 LAV 25338.63

UAV 66081.63 UAV 58976.75 UAV 65075.63
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The differences in the mean values among the treatment groups are greater than would be expected by chance; there 

is a statistically significant difference  (P = <0.001). 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor:  

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

5 ng 5 vs. none 5 10194.322 9.146 <0.001 0.003 Yes  

hep 5 vs. none 5 9265.686 8.361 <0.001 0.004 Yes  

50 ng 5 vs. none 5 7889.694 6.507 <0.001 0.004 Yes  

edc 5 vs. none 5 7132.455 6.399 <0.001 0.004 Yes  

10 ng 5 vs. none 5 5537.280 4.828 <0.001 0.005 Yes  

5 ng 5 vs. 10 ng 5 4657.042 4.050 <0.001 0.005 Yes  

hep 5 vs. 10 ng 5 3728.406 3.260 0.001 0.006 Yes  

5 ng 5 vs. edc 5 3061.866 2.739 0.006 0.006 Yes  

hep 5 vs. edc 5 2133.230 1.919 0.056 0.007 No  

5 ng 5 vs. 50 ng 5 2304.628 1.896 0.059 0.009 No  

50 ng 5 vs. 10 ng 5 2352.414 1.889 0.059 0.010 No  

edc 5 vs. 10 ng 5 1595.175 1.387 0.166 0.013 No  

hep 5 vs. 50 ng 5 1375.992 1.137 0.256 0.017 No  

5 ng 5 vs. hep 5 928.636 0.836 0.404 0.025 No  

50 ng 5 vs. edc 5 757.239 0.623 0.534 0.050 No  

 

 
 

Multiple Comparison Graph

Symbol indicates significant difference.

none 5 edc 5 hep 5 5 ng 5 10 ng 5 50 ng 5

50 ng 5

10 ng 5

5 ng 5

hep 5

edc 5

none 5
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Appendix F.2: Increase over Attachment Data – 5 Days 

 
 

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 1.032615 0.254981 0.035704 Section 1.136809 0.174764 0.025492 Section 0.963358 0.149468 0.021138

Section Section Section

Q1 0.92687 Q1 1.020573 Q1 0.890542

Q3 1.170218 Q3 1.242698 Q3 1.04371

IQR 0.243348 IQR 0.222125 IQR 0.153168

LAV 0.561848 LAV 0.687386 LAV 0.66079

UAV 1.53524 UAV 1.575885 UAV 1.273462

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 1.130476 0.194663 0.044659 Section 1.007303 0.101597 0.023308 Section 1.071981 0.178775 0.039012

Section Section Section

Q1 1.002022 Q1 0.906509 Q1 0.970515

Q3 1.263263 Q3 1.071602 Q3 1.144015

IQR 0.261241 IQR 0.165093 IQR 0.1735

LAV 0.61016 LAV 0.65887 LAV 0.710265

UAV 1.655125 UAV 1.319241 UAV 1.404264

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 1.057175 0.255551 0.06198 Section 0.922418 0.13117 0.029331 Section 1.028242 0.07751 0.018799

Section Section Section

Q1 0.79446 Q1 0.838971 Q1 0.975937

Q3 1.252527 Q3 1.011568 Q3 1.068108

IQR 0.458067 IQR 0.172597 IQR 0.092172

LAV 0.107359 LAV 0.580076 LAV 0.837679

UAV 1.939627 UAV 1.270464 UAV 1.206366

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 1.058786 0.243768 0.026135 Section 1.058339 0.175769 0.018954 Section 1.001814 0.152347 0.01624

Section Section Section

Q1 0.912555 Q1 0.951535 Q1 0.925784

Q3 1.21674 Q3 1.140641 Q3 1.096573

IQR 0.304185 IQR 0.189106 IQR 0.170789

LAV 0.456278 LAV 0.667875 LAV 0.669601

UAV 1.673018 UAV 1.4243 UAV 1.352757
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One Way Analysis of Variance – 5 DAYS: FOLD INCREASE Friday, August 27, 2010, 3:40:27 PM 

 

Data source: Data 1 in Notebook3 

 

Normality Test (Shapiro-Wilk) Passed (P = 0.168) 

 

Equal Variance Test: Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, August 27, 2010, 3:40:27 PM 

 

Data source: Data 1 in Notebook3 

 

Group N  Missing  Median    25%      75%     

none 5 87 0 1.109 0.902 1.224  

edc 5 86 0 1.039 0.944 1.145  

hep 5 88 0 1.003 0.923 1.099  

5 ng 5 86 0 1.195 1.043 1.288  

10 ng 5 77 0 1.072 0.967 1.184  

50 ng 5 63 0 1.057 0.984 1.229  

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 1.100401 0.177971 0.025688 Section 1.016761 0.125186 0.018872 Section 1.046272 0.127845 0.023341

Section Section Section

Q1 0.962269 Q1 0.925251 Q1 0.966665

Q3 1.226117 Q3 1.124658 Q3 1.129569

IQR 0.263848 IQR 0.199407 IQR 0.162904

LAV 0.566497 LAV 0.626139 LAV 0.722309

UAV 1.621888 UAV 1.423769 UAV 1.373924

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 1.288689 0.147194 0.033769 Section 1.213524 0.165926 0.040243 Section 1.216784 0.199732 0.049933

Section Section Section

Q1 1.2137 Q1 1.059253 Q1 1.057338

Q3 1.356488 Q3 1.333637 Q3 1.389293

IQR 0.142788 IQR 0.274385 IQR 0.331955

LAV 0.999518 LAV 0.647675 LAV 0.559405

UAV 1.570671 UAV 1.745214 UAV 1.887225

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 1.22726 0.105459 0.024194 Section 1.133432 0.134857 0.033714 Section 1.093137 0.190322 0.04616

Section Section Section

Q1 1.167139 Q1 1.028943 Q1 1.002012

Q3 1.288198 Q3 1.202826 Q3 1.241757

IQR 0.12106 IQR 0.173883 IQR 0.239745

LAV 0.985549 LAV 0.768118 LAV 0.642394

UAV 1.469788 UAV 1.463651 UAV 1.601375

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 1.170026 0.176279 0.019009 Section 1.084445 0.158545 0.018068 Section 1.102223 0.177675 0.022385

Section Section Section

Q1 1.049183 Q1 0.969918 Q1 0.98357

Q3 1.28199 Q3 1.180492 Q3 1.226389

IQR 0.232807 IQR 0.210574 IQR 0.242819

LAV 0.699973 LAV 0.654057 LAV 0.619342

UAV 1.631201 UAV 1.496354 UAV 1.590617
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H = 40.281 with 5 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would be expected by chance; 

there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

5 ng 5 vs hep 5 131.629 6.169 Yes   

5 ng 5 vs edc 5 89.767 4.183 Yes   

5 ng 5 vs none 5 71.088 3.322 Yes   

5 ng 5 vs 10 ng 5 68.129 3.086 Yes   

5 ng 5 vs 50 ng 5 58.484 2.506 No   

50 ng 5 vs hep 5 73.145 3.149 Yes   

50 ng 5 vs edc 5 31.283 1.340 No   

50 ng 5 vs none 5 12.604 0.541 Do Not Test   

50 ng 5 vs 10 ng 5 9.645 0.403 Do Not Test   

10 ng 5 vs hep 5 63.500 2.892 No   

10 ng 5 vs edc 5 21.638 0.980 Do Not Test   

10 ng 5 vs none 5 2.959 0.134 Do Not Test   

none 5 vs hep 5 60.541 2.845 Do Not Test   

none 5 vs edc 5 18.679 0.873 Do Not Test   

edc 5 vs hep 5 41.862 1.962 Do Not Test   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 

 
Multiple Comparison Graph

Symbol indicates significant difference.
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Appendix F.3: Total Cell Growth – 7 Days 

 
 

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 48510.26 7932.691 1209.724 Section 58356.67 6693.83 1243.013 Section 59991.73 12061.8 2279.467

Section Section Section

Q1 43635.25 Q1 52815 Q1 53946.75

Q3 53318 Q3 62875 Q3 67842.13

IQR 9682.75 IQR 10060 IQR 13895.38

LAV 29111.13 LAV 37725 LAV 33103.69

UAV 67842.13 UAV 77965 UAV 88685.19

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 50086.23 7060.071 1578.68 Section 44301.73 5410.881 1209.91 Section 54324 7052.2 1470.485

Section Section Section

Q1 46213.13 Q1 39674.13 Q1 48288

Q3 51431.75 Q3 47093.38 Q3 60234.25

IQR 5218.625 IQR 7419.25 IQR 11946.25

LAV 38385.19 LAV 28545.25 LAV 30368.63

UAV 59259.69 UAV 58222.25 UAV 78153.63

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 44361.81 8530.149 2010.575 Section 46808.59 5175.558 1255.257 Section 46834.89 5866.29 1382.698

Section Section Section

Q1 38793.88 Q1 40994.5 Q1 43195.13

Q3 48225.13 Q3 51306 Q3 48728.13

IQR 9431.25 IQR 10311.5 IQR 5533

LAV 24647 LAV 25527.25 LAV 34895.63

UAV 62372 UAV 66773.25 UAV 57027.63

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 47977.51 8033.867 892.6519 Section 51123.09 8774.048 1080.011 Section 54670.27 10507.74 1264.983

Section Section Section

Q1 43761 Q1 45332.88 Q1 47030.5

Q3 52815 Q3 57593.5 Q3 61869

IQR 9054 IQR 12260.63 IQR 14838.5

LAV 30180 LAV 26941.94 LAV 24772.75

UAV 66396 UAV 75984.44 UAV 84126.75
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One Way Analysis of Variance – total cell growth: 7 days Friday, August 27, 2010, 4:03:39 PM 

 

Data source: Data 1 in Notebook5 

 

Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, August 27, 2010, 4:03:39 PM 

 

Data source: Data 1 in Notebook5 

 

Group N  Missing  Median    25%      75%     

none 7 81 0 48036.500 43509.500 52940.750  

edc 7 66 0 50677.250 45144.250 57845.000  

hep 7 69 0 53066.500 47030.500 61994.750  

5 ng 7 70 0 54324.000 48728.125 61366.000  

10 ng 7 95 0 61114.500 53569.500 72935.000  

50 ng 7 82 0 74695.500 64509.750 82743.500  

 

H = 160.922 with 5 degrees of freedom.  (P = <0.001) 

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 61994.75 10538.63 1862.985 Section 70307.26 11783.71 1547.276 Section 83269.36 10971.46 1654.01

Section Section Section

Q1 54952.75 Q1 61366 Q1 76204.5

Q3 69602.63 Q3 75953 Q3 89345.38

IQR 14649.88 IQR 14587 IQR 13140.88

LAV 32977.94 LAV 39485.5 LAV 56493.19

UAV 91577.44 UAV 97833.5 UAV 109056.7

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 53431.18 4857.255 1086.115 Section 53145.92 4695.455 1077.211 Section 70231.38 5504.573 1230.86

Section Section Section

Q1 49859.88 Q1 50425.75 Q1 66710.38

Q3 57593.5 Q3 56964.75 Q3 74695.5

IQR 7733.625 IQR 6539 IQR 7985.125

LAV 38259.44 LAV 40617.25 LAV 54732.69

UAV 69193.94 UAV 66773.25 UAV 86673.19

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 48106.36 5451.575 1284.949 Section 54645.36 11742.91 2767.83 Section 53751.14 6192.277 1459.534

Section Section Section

Q1 45395.75 Q1 44704.13 Q1 51117.38

Q3 49985.63 Q3 57719.25 Q3 56021.63

IQR 4589.875 IQR 13015.13 IQR 4904.25

LAV 38510.94 LAV 25181.44 LAV 43761

UAV 56870.44 UAV 77241.94 UAV 63378

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 55976.71 9927.23 1186.531 Section 63907.47 13359.17 1370.622 Section 73609.76 14839.05 1638.699

Section Section Section

Q1 48853.88 Q1 53821 Q1 65201.38

Q3 61051.63 Q3 72809.25 Q3 82366.25

IQR 12197.75 IQR 18988.25 IQR 17164.88

LAV 30557.25 LAV 25338.63 LAV 39454.06

UAV 79348.25 UAV 101291.6 UAV 108113.6
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The differences in the median values among the treatment groups are greater than would be expected by chance; 

there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

50 ng 7 vs none 7 230.303 10.987 Yes   

50 ng 7 vs edc 7 195.916 8.854 Yes   

50 ng 7 vs hep 7 158.301 7.242 Yes   

50 ng 7 vs 5 ng 7 142.425 6.541 Yes   

50 ng 7 vs 10 ng 7 71.139 3.527 Yes   

10 ng 7 vs none 7 159.164 7.866 Yes   

10 ng 7 vs edc 7 124.777 5.820 Yes   

10 ng 7 vs hep 7 87.162 4.118 Yes   

10 ng 7 vs 5 ng 7 71.286 3.382 Yes   

5 ng 7 vs none 7 87.878 4.025 Yes   

5 ng 7 vs edc 7 53.492 2.330 No   

5 ng 7 vs hep 7 15.877 0.699 Do Not Test   

hep 7 vs none 7 72.002 3.285 Yes   

hep 7 vs edc 7 37.615 1.633 Do Not Test   

edc 7 vs none 7 34.387 1.550 No   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 

 
Multiple Comparison Graph

Symbol indicates significant difference.
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Appendix F.4: Increase over Attachment Data – 7 Days  

 

 

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 1.380526 0.225752 0.034427 Section 1.392989 0.159784 0.029671 Section 1.29331 0.26003 0.049141

Section Section Section

Q1 1.241791 Q1 52815 Q1 1.162991

Q3 1.517347 Q3 62875 Q3 1.462549

IQR 0.275556 IQR 10060 IQR 0.299558

LAV 0.828457 LAV 37725 LAV 0.713654

UAV 1.930681 UAV 77965 UAV 1.911887

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 1.425376 0.200919 0.044927 Section 1.057494 0.129159 0.028881 Section 1.171124 0.152032 0.031701

Section Section Section

Q1 1.315153 Q1 0.947032 Q1 1.040999

Q3 1.463667 Q3 1.124132 Q3 1.298538

IQR 0.148514 IQR 0.177099 IQR 0.257539

LAV 1.092382 LAV 0.681383 LAV 0.654691

UAV 1.686438 UAV 1.389781 UAV 1.684846

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 1.262468 0.242755 0.057218 Section 1.117334 0.123542 0.029963 Section 1.009673 0.126466 0.029808

Section Section Section

Q1 1.104013 Q1 0.97855 Q1 0.931206

Q3 1.372412 Q3 1.224688 Q3 1.050487

IQR 0.268399 IQR 0.246138 IQR 0.119281

LAV 0.701415 LAV 0.609342 LAV 0.752284

UAV 1.77501 UAV 1.593895 UAV 1.229409

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 1.365365 0.228631 0.025403 Section 1.220322 0.209439 0.02578 Section 1.178589 0.226527 0.027271

Section Section Section

Q1 1.24537 Q1 1.082108 Q1 1.01389

Q3 1.503032 Q3 1.374772 Q3 1.33378

IQR 0.257663 IQR 0.292664 IQR 0.31989
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One Way Analysis of Variance – fold increase: 7 days Friday, August 27, 2010, 4:19:19 PM 

 

Data source: Data 1 in Notebook6 

 

Normality Test (Shapiro-Wilk) Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Friday, August 27, 2010, 4:19:19 PM 

 

Data source: Data 1 in Notebook6 

 

Group N  Missing  Median    25%      75%     

none 7 81 0 1.367 1.238 1.507  

edc 7 66 0 1.210 1.078 1.381  

hep 7 69 0 1.144 1.014 1.336  

5 ng 7 70 0 1.341 1.203 1.515  

10 ng 7 95 0 1.551 1.359 1.851  

50 ng 7 82 0 1.826 1.577 2.022  

 

H = 171.189 with 5 degrees of freedom.  (P = <0.001) 

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 1.530318 0.260142 0.045987 Section 1.783831 0.298975 0.039257 Section 2.035319 0.268171 0.040428

Section Section Section

Q1 1.356488 Q1 1.556974 Q1 1.862636

Q3 1.718115 Q3 1.927074 Q3 2.183833

IQR 0.361627 IQR 0.3701 IQR 0.321197

LAV 0.814048 LAV 1.001823 LAV 1.38084

UAV 2.260555 UAV 2.482224 UAV 2.665628

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 1.318929 0.1199 0.02681 Section 1.348414 0.119133 0.027331 Section 1.716637 0.134546 0.030085

Section Section Section

Q1 1.230773 Q1 1.279398 Q1 1.630574

Q3 1.421674 Q3 1.445305 Q3 1.825752

IQR 0.190902 IQR 0.165907 IQR 0.195177

LAV 0.94442 LAV 1.030538 LAV 1.337809

UAV 1.708027 UAV 1.694166 UAV 2.118517

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 1.187488 0.13457 0.031718 Section 1.386458 0.29794 0.070225 Section 1.313817 0.151355 0.035675
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Q1 1.120577 Q1 1.13423 Q1 1.249441

Q3 1.233877 Q3 1.464448 Q3 1.369314

IQR 0.113299 IQR 0.330219 IQR 0.119873

LAV 0.950628 LAV 0.638902 LAV 1.069632

UAV 1.403826 UAV 1.959777 UAV 1.549123

Average S.D. S.E. Average S.D. S.E. Average S.D. S.E.

Section 1.381765 0.24505 0.029289 Section 1.621456 0.338948 0.034775 Section 1.799213 0.362705 0.040054

Section Section Section

Q1 1.20594 Q1 1.365542 Q1 1.593691

Q3 1.507037 Q3 1.847311 Q3 2.013245

IQR 0.301097 IQR 0.481768 IQR 0.419554

LAV 0.754294 LAV 0.64289 LAV 0.96436

UAV 1.958682 UAV 2.569964 UAV 2.642576
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The differences in the median values among the treatment groups are greater than would be expected by chance; 

there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

50 ng 7 vs hep 7 230.010 10.523 Yes   

50 ng 7 vs edc 7 211.237 9.547 Yes   

50 ng 7 vs 5 ng 7 141.067 6.479 Yes   

50 ng 7 vs none 7 140.444 6.700 Yes   

50 ng 7 vs 10 ng 7 52.330 2.595 No   

10 ng 7 vs hep 7 177.680 8.395 Yes   

10 ng 7 vs edc 7 158.907 7.411 Yes   

10 ng 7 vs 5 ng 7 88.738 4.210 Yes   

10 ng 7 vs none 7 88.114 4.354 Yes   

none 7 vs hep 7 89.566 4.086 Yes   

none 7 vs edc 7 70.792 3.191 Yes   

none 7 vs 5 ng 7 0.623 0.0285 No   

5 ng 7 vs hep 7 88.943 3.918 Yes   

5 ng 7 vs edc 7 70.169 3.057 Yes   

edc 7 vs hep 7 18.773 0.815 No   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 

 
Multiple Comparison Graph

Symbol indicates significant difference.
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