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Abstract  
 

 Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which 

affects the motor neurons in the brain and spinal cord. Profilin1, is a protein that has been 

associated with the onset of ALS, as mutant profilin1 was discovered in the exome 

sequencing of those affected with familial ALS.  Profilin1 (PFN1) is crucial in the formation 

of the actin cytoskeleton and maintaining the proper amount of actin assembly in cells.  In 

order to analyze what occurs during profilin dysfunction, multiple experiments were 

completed. DNA was cloned containing both GFP, BFP, or Cherry DNA and Lifeact which is a 

marker that allows the visualization of actin in cells. Additionally, lentiviruses were created 

in order to create stable cells lines with profilin knockdown, allowing future experiments to 

be completed to analyze the effects of profilin knockdown compared to a non-silencing cell 

line. Next, three silent mutations were added to the plasmids in order to express 

endogenous PFN1 resistance to shRNA in stable cell lines. The mutations added did not 

restore the plasmid back to endogenous PFN1 expression, as the shRNA was still able to 

recognize the plasmid. Additionally, two different buffers were used to test the solubility of 

the ALS-mutant-PFN1-C71G protein, along with two different DNA expression vectors. The 

buffers had no effect on solubility of C71G, but expression of PFN1-C71G was lower in the 

PFN1-WT in the pDest vector than the pLenti vector. Lastly, the localization of exogenously 

expressed V5-PFN1 was analyzed in wildtype profilin, V5 vector, and mutant profilin 

transfected cells by staining with profilin and V5 antibodies and observing by 

immunofluorescence. Aggregates were observed in the C71G and M114T profilin ALS 

mutant expressing cells, suggesting further research focus on using these described 

experimental tools to further analyze profilin dysfunction.  
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Introduction 

 

 The project works under the research of Professor Daryl Bosco and Dr. Jeanne 

McKeon at Bosco Lab at the University of Massachusetts Medical School, analyzing 

amyotrophic lateral sclerosis associated proteins. Amyotrophic lateral sclerosis (ALS) is a 

fatal disease which effects the motor neurons in the brain and spinal cord. About 30,000 

Americans are affected by ALS, with a short projected lifespan of 2-5 years after the onset 

of the disease. There is no cure for ALS and the only FDA approved treatment extends life 

expectancy by a couple of months. The project focuses on the protein, profilin1 (PFN1). 

Profilin is crucial for the formation of the actin cytoskeleton in cells. Recently, it has been 

discovered that the mutations in the PFN1 gene profilin are present in patients with 

familial ALS via exome sequencing (5).  

 Through recent findings in Bosco Lab, it has been discovered that mutations cause 

PFN1 to become destabilized (2). It has been shown that mutant PFN1 aggregates in cells 

(5) but the protein stability was first analyzed during this study conducted by Bosco Lab. It 

was discovered that the mutants C71G and M114T destabilized the profilin protein by 

creating a cavity into the core of the protein which was visualized by X-ray crystallography 

or determined with predictive modeling studies (2). Since then, these mutants have 

become of interest in understanding the proteins affected in those with ALS.  

 This project focuses on gathering tools which can be used further analyze what 

occurs when profilin is not functioning normally in cells. The study uses various lab 

techniques which allow for actin to be visualized in cells along with profilin localization 

using immunofluorescence. In addition, lentiviruses were successfully created in order to 

generate stable cell lines with profilin knockdown. The study also attempts to rescue the 

knockdown lines to the wildtype phenotype and observes solubility of the C71G mutant.  

 

The profilin 1 protein & its ALS associated mutants  
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 Profilin 1 is a protein found in many organisms and binds to actin to play a role in 

the formation of the cytoskeleton. When found at high concentrations, profilin will prevent 

the polymerization of actin from occurring, while at low concentrations profilin will 

enhance the formation of the cytoskeleton. Recently discovered, mutations within profilin 

have been associated with ALS. It was discovered that PFN1 mutants bound lower amounts 

of actin in addition to altering the F to G actin ratio in cells (see actin dynamics). Such 

dysfunction which occurs in mutant profilin, have been linked to the pathogenesis of ALS. 

Through exome sequencing mutant C71G was identified in two families with familial ALS 

(5). The mutant M114T was identified in 1 family, in addition to mutants G118V, and 

E117G which were newly identified mutations discovered through exome sequencing (5).  

 In addition to identifying profilin mutants through exome sequencing, the Bosco Lab 

collaborated in a study with the Landers Lab in analyzing the destabilization mechanisms 

of ALS-linked mutant PFN1. It was discovered that the mutants C71G, M114T, and G118V 

are destabilized when compared to the PFN1 wildtype after undergoing chemical and 

thermal denaturation (2). Additionally, it was found that the mutants cause the PFN1 

protein to misfold. Through gel electrophoresis, multiple slower moving bands were 

observed for the C71G, M114T, and G118V mutants when compared to the faster moving 

single bands produced by the PFN1 wildtype and E117V mutant (2). Both these studies 

provide insight in that identified mutants play a role in the pathogenicity of ALS, driving 

more studies to be conducted in order to understand the role of profilin further.  

Actin Dynamics  
 

 Actin is a crucial component in cell motility. The network of actin proteins 

polymerize into filaments which can take on different types of structures. These structures 

are vital in allowing the cell to change shape and mobilize (1). There are two forms of actin 

found in the cell. Filamentous actin (F-actin) is primarily involved with cell motility and 

muscle contraction (3). Globular actin (G-actin) is the actin which produces F-actin. The 

profilin gene is responsible for converting G-actin to F-actin (5). G-actin has to successfully 

polymerize into F-actin in order for the cell to be mobile and signal controlled muscle 

contractions, an essential component in cellular function. 
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Using lentivirus to make stable cell lines  
 

 Lentivirus was created in order to make stable cell lines allowing the knockdown of 

profilin. This was done by co-expressing the lenti vector along with the packaging plasmids 

in HEK293T cells where the virus then 

gets packaged into particles. The purpose 

of this is to introduce exogenous DNA into 

cells enabling expression of the protein in 

which the introduced DNA encodes. 

There are many benefits to making 

lentivirus versus using transient 

transfection. Although transient 

transfection is faster, creating stable cell 

lines allows for more consistent 

expression (4). Figure 1 shows a lentiviral 

backbone in which DNA can be easily inserted and packaged. Making stable cells lines from 

lentiviral packaging plasmids are more efficient than transient transfection. It is proven 

that using lentivirus to package the DNA is more effective in getting the DNA into the cells. 

Using virus creates a more uniform gene expression throughout the cells which provides 

more consistency when analyzing results from experiments (4).  Transient transfection 

commonly does not efficiently deliver DNA into all of the cells which can create skewed 

experimental results. Thus, it is crucial that DNA be homogenously delivered into the cells, 

allowing for more accurate results.   

 
  

Figure 1: Lentiviral vector backbone plasmid (4).  
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Methodology  
 

 The methodology is organized into six sections where each major experiment was 

completed.  

 

1.  Cloning Lifeact into a pLenti plasmid to make lentivirus and visualize F-actin    

 DNA constructs, EGFP-Lifact, BFP-Lifeact and mCherry-Lifeact underwent a 

polymerase chain reaction (PCR) in order to amplify the Lifeact sequence (Table 1). The 

product was subjected to gel electrophoresis to confirm that Lifeact was amplified from the 

reaction. Lifeact was then ligated into the pENTR vector cut with SalI and NotI enzymes. 

The bands were then confirmed by size using gel electrophoresis. Next, the ligated DNA 

product was bacterially transformed using competent DH5 alpha cells. They were 

incubated on LB+ kanamycin plates overnight. Five colonies were then picked and cultured 

for the BFP and Cherry DNA. Six colonies were picked and cultured for the GFP DNA. The 

DNA was mini prepped and 400 nanograms were digested with 1 microliter of  SalI and 

NotI enzymes and 1 microliter of 10X Cutsmart Buffer. The digestions were analyzed using 

gel electrophoresis. The clones selected that showed the correct insert and backbone size 

were then sent out for sequencing to confirm identities. HeLa cells were then transfected 

using the GFP and Cherry DNA and imaged using the fluorescent microscope.  

 

Table 1: PCR Reaction for Lifeact Cloning 

Construct Primer F Primer R Template Annealing 

temp 

Extension 

(72 °C) 

Product 

size  

EGFP-

Lifeact 

Lifeact-

BGFPSalI_f 

LifeactEGFPcherr

y_r 

EGFP-

Lifeact 

63 30 sec ~790 

BFP-

Lifeact 

Lifeact-

BGFPSalI_f 

LifeactBFPNotI_r BFP-Lifeact 62 30 sec ~770 

mCherry-

Lifeact 

LifeactCherrySal

I_f 

LifeactEGFPcherr

y_r 

mCherry-

Lifeact 

64 30 sec ~730 
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Table 2: Ligation of Lifeact and DNA vector 

Tube pEntr BFP GFP Cherry 

Insert (Lifeact) (µl) 0 2  2  2  

Vector (100 ng) 

(µl) 

 1  1  1  1  

10X T4 Ligase 

Buffer (µl) 

2 2 2 2 

Water (µl) 16 14 14 14 

Ligase (µl)  1 1 1 1 

 

Table 3: Ligation digestion 

DNA EGFP BFP Cherry 

Enzymes SalI/NotI SalI/NotI SalI/NotI 

DNA (500 ng) (µl) 9.2 2.2 6 

10X Buffer 2 2 2 

Water 6.8 13.8 10 

Enzyme (1 µl each) 2 2 2 

 

2. Making lentiviral constructs to make stable cell lines & knockdown PFN1  

A lentiviral transfection protocol was followed to make three different strains of 

lentivirus (Tables 4-5). Two of the viruses (named 74 and 352 after the transfer vector 

used) were then used to make stable cell lines in HEK293 cells with the help from Dr. 

Jeanne McKeon. Three stable cell lines were made including a non-silencing lines, and 

knockdown profilin lines shRNA #1 and shRNA #2. A BCA assay was used to determine 

protein concentrations. The knockdown lines were then analyzed on a Western Blot to 

compare knockdown lines to the non-silencing line where 5 micrograms were loaded 

(Table 7). A GAPDH loading control was used for normalization and the knockdown was 

quantified by the intensity of the bands and graphed. The knockdown was statistically 

analyzed using a one-way analysis of variance test and Tukey’s multiple comparison test.  
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Table 4: Lentivirus packaging for transfer vector NS 

 Concentration (µg/µl) Volume (µl) 

Transfer vector (NS)  0.9651 18.65 

CMV 0.5744 31.34 

VSV-G 0.2622 45.77 

2.5 mm HEPES  587.35 

2M CaCl2  96.90 

2x HeBS  780 

 

Table 5: Lentivirus packaging for transfer vector 74 

 Concentration (µg/µl) Volume (µl) 

Transfer vector (74)  0.436 41.28 

CMV 0.5744 31.34 

VSV-G 0.2622 45.77 

2.5 mm HEPES  564.66 

2M CaCl2  96.90 

2x HeBS  780 

 

Table 6: Lentivirus packaging for transfer vector 352 

 Concentration (µg/µl) Volume (µl) 

Transfer vector (352)  0.3865 46.57 

CMV 0.5744 31.34 

VSV-G 0.622 45.77 

2.5 mm HEPES  559.42 

2M CaCl2  96.90 

2x HeBS  780 
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Table 7: Wildtype and knockdown profilin Western gel volumes 

Sample Concentration 

(µg/µl) 

Volume for  5 

µg (µl) 

Volume PBS 

(µl) 

Volume 6X 

Loading Dye 

(µl) 

NS 1 2.36 2.11 12.8 3 

74 1 1.52 3.28 11.7 3 

352 1  1.77 2.8 12.18 3 

NS 2  2.16 2.31 12.68 3 

74 2 2.13 2.34 12.65 3 

353 2  3.0 1.65 13.34 3 

NS 3 2.53 1.97 13.02 3 

74 3 2.74 1.8 13.17 3 

352 3  3.47 1.43 13.56 3 

 

3. Adding silent mutations to the plasmid in order to express endogenous PFN1  

In order to rescue the knockdown lines to the wildtype profilin, three silent 

mutations were introduced in order to change the gene sequence but not the amino acid 

sequence (Figure 2). The cell lines were then either induced with doxycycline or non-

induced. Next, a Western blot was run in order to compare profilin expression in the rescue 

constructs and wildtype profilin (Table 8).   
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Table 8: Rescue constructs and wildtype profilin volumes run on western gel 

Construct Volume for 5 µg 

(µl) 

Volume PBS  Volume 6X 

Loading Dye (µl) 

1- NS+ pLenti V5-

WT 

2 13 3 

2- NS + pLenti V5-

WT-74 

2.1 12.9 3 

3- NS + pLenti V5-

WT-352 

2.2 12.8 3 

4- NS+ pLenti V5-

WT 

2.2 12.8 3 

5- NS + pLenti V5-

WT-74 

2.2 12.8 3 

6- NS + pLenti V5-

WT-352 

2.1 12.9 3 

7- 74 +pLenti V5-

WT 

2.5 12.5 3 

Figure 2: Silent mutations added to shRNA #1 
and shRNA# 2 to rescue knockdown to wildtype 
phenotype. The silent mutations added are 
bolded and underlined. The first silent mutation 
is yellow, the second is blue, and the third is red. 
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8- 74+ pLenti V5-

WT-74 

2.7 12.3 3 

9- 74 +pLenti V5-

WT 

2.4 12.6 3 

10-74+ pLenti V5-

WT-74 

2.5 12.5 3 

11-352 +pLenti 

V5-WT 

2.2 12.8 3 

12-352+ pLenti 

V5-WT-352 

2.2 12.8 2 

13-352 +pLenti 

V5-WT 

2.2 12.8 3 

14-352+ pLenti 

V5-WT-352 

2.2 12.8 3 

 

 

4. Comparing solubility of C71G PFN1 mutant and PFN1 wildtype 

In order to analyze the solubility of C71G compared to WT PFN1, two different 

buffers were used (Table 9). Buffer A was made up of 1% Triton X-100, 50 mM Tris-HCl 

(pH 7.6), 150 mM NaCl, 5 mM EDTA, and 10% glycerol and Buffer B included 1% Igepal, 

0.1% Triton X-100, 50 mM Tris-HCl (pH 7.6) and 150 mM NaCl. The PFN1 mutant, wildtype 

PFN1, and V5 vector control were analyzed in the pLenti vector or the pDest vector. A 

western blot was run where profilin, V5 and GAPDH antibodies were used to analyze the 

profilin, V5 and GAPDH expression in the different buffers and vectors.  

 

Table 9: Solubility of C71G, WT, and V5 using two buffers and two DNA vectors 

Construct Concentration 

(µg/µl) 

Volume for 5 

µg (µl) 

Volume PBS 

(µl) 

Volume 6X 

Loading dye 

(µl) 

pLenti v5 A 1.15 4.3 10.6 3 
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pLenti v5 B 1.39 3.57 11.4 3 

pLenti WT A 1.11 4.48 10.5 3 

pLenti WT B 1.31 3.79 11.2 3 

pLenti C71G A 1.49 3.33 11.66 3 

pLenti C71G B 1.44 3.45 11.5 3 

pDest v5 A 1.42 3.49 11.5 3 

pDest v5 B  1.34 3.7 11.3 3 

pDest WT A 1.5 3.3 11.6 3 

pDest WT B  1.45 3.4 11.57 3 

pDest C71G A 1.54 3.22 11.77 3 

pDest C71G B  1.36 3.65 11.34 3 

 

 

5.  Determining optimal plating conditions for cells  

In order to determine the optimal plating density for HEK cells, cells were plated at 

different densities to observe which density produced the healthiest confluence. Cells were 

plated in a 24 well and 12 well plate and incubated overnight. The plating densities are 

shown in Figure 3. Three densities of cells were determined to produce the healthiest 

confluence of cells.  The cells were then stained with Phalloidin which allows F-actin to be 

observed in cells. The cells were then imaged under fluorescence microscopy.   

 

Figure 3: Plating densities (cells/well) for HEK cells in 24 well and 12 well plates. 
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6. Observing localization for PFN1 mutants, wildtype, and a V5 vector control.  

In order to observe profilin and V5 localization in HeLa cells, 4 mutant profilin 

constructs, wildtype profilin, and a V5 vector were midi prepped. Next, HeLa cells were 

transfected with the DNA. The cells were stained with profilin and V5 antibody, where the 

cells were imaged using fluorescence microscopy.   
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Results 
 

The results are organized into sections of major experiments which provide tools 

that allowed PFN1 dysfunction to be analyzed.   

 

1. Cloning Lifeact into DNA plasmids to visualize F-actin in Hela cells.  

 First, DNA constructs, BFP-Lifeact, Cherry-Lifeact, and GFP-Lifeact were amplified 

using PCR. A no DNA control was used. A DNA gel was run in order to ensure Lifeact was 

amplified from the constructs. The results are shown below in Figure 4.  

 

  The DNA gel shown in 

Figure 4 shows that the Lifeact 

sequence was amplified from 

the constructs according to its 

expected size. The PCR product 

was purified from the gel and 

used for the subsequent 

ligation. A ligation was then 

completed with the amplified Lifeact and DNA vectors, BFP, GFP, and Cherry. Gel 

electrophoresis was used to confirm that the recombinant DNA construction worked 

shown below in Figure 5.   

 

 The ligation was successful for all DNA 

vectors as the backbone and insert were of 

expected sizes when cut with SalI and NotI 

enzymes.  

 

 

 

Figure 4: Gel electrophoresis of PCR for the GFP, BFP, Cherry 
constructs and no DNA controls  

Figure 5: Gel electrophoresis of ligation of Lifeact 
with the pEntr, BFP, GFP, and Cherry DNA vectors. 
Digested with SalI and NotI enzymes. 
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 A bacterial transformation was then completed and 5 colonies were picked and 

cultured for the BFP and Cherry constructs. The cultures were then mini prepped to isolate 

the DNA and digested using enzymes SalI and NotI.  Gel electrophoresis was used to 

confirm that the cloning was successful from each particular colony (Figure 6).  

 

 Clones 3, 4 and 5, showed that the 

ligation was successful, as the bands 

were the expected size after 

digestion for BFP. For the cherry 

construct, clones 1, 2, 3, 4, and 5 

were successfully ligated, as all of the 

clones were of expected size after 

digestion.  

   

 

A bacterial transformation 

was then completed where 6 colonies were picked and cultured for the GFP constructs. The 

cultures were mini prepped and digested using SalI and NotI. Gel electrophoresis was used 

to confirm that the cloning was successful from each particular colony (Figure 7). 

 

Clones 2, 4, and 5 show 

successful ligation as the digested 

DNA was of expected size for the 

insert and backbone.  

 

 

 

Lastly, HeLa cells were transfected with the recombinant DNA. Filamentous actin 

was observed due to the inserted Lifeact marker. The cells were stained and observed 

Figure 6: Gel electrophoresis for BFP-Lifeact (top) and 
Cherry-Lifeact (bottom) recombinant DNA. DNA digested 
with SalI and NotI. C1-C5 denote clones 1-5 which were picked 
from each colony. 

Figure 7: Gel electrophoresis for GFP recombinant DNA. 
DNA digested with SalI and NotI. C1-C6 denote the clones 
which were picked from each colony. 
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under a fluorescent microscope (Figure 8). The BFP-Lifeact construct was not analyzed 

during this time.  

 

Figure 8: Filamentous actin observed through IF imaging 

  

The nuclei of the cells can be observed through the DAPI channel, while F-actin can 

be observed on the cherry and GFP channels for the Hela cherry and Hela GFP respectively.  

 

2.  Making lentiviral constructs to make stable cell lines & knockdown PFN1  

 Three types of lentivirus were harvested and named NS, 349, 352, and 74.  Types 

352 and 74 and HEK293 cells were used to make stable cell lines. Two cell lines contained 

PFN1 knockdown, while the third was a non-silencing line. In order to quantify knockdown, 

a Western Blot was run to compare PFN1 knockdown to a GAPDH loading control. The 

Western Blot is shown below in Figure 9.   
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Figure 9: Western blot of PFN1 knockdown lines and non-silencing line (3 replicates for each line 

from 3 independent experiments).  

  

As shown in Figure 9 all of the non-silencing line samples show a higher expression 

of PFN1 than the knockdown lines (74 and 352). The knockdown was then quantified by 

measuring the band intensity and shown in Figure 10. ShRNA #1 is the 74 line and shRNA 

#2 is the 352 line.  

  

 

 

 

 

 

 

 

 

 

 

  

When comparing the PFN1 expression in the non-silencing line and the shRNA 1 and 

2 lines, it can be determined that the expression is almost half the expression of NS. A 

statistical analysis was completed in order to determine if the knockdown data was 

significant.  

Figure 10: Quantification of PFN1 knockdown compared to non-
silencing cell line. The p value was determined to be 0.0007 using ANOVA. 
When comparing NS to shRNA #1 and NS to shRNA #2 p value was significant 
(under 0.05). When comparing shRNA #1 to shRNA #2 p value was not 
significant.  
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 The p value was calculated to be 0.0007 after an ANOVA was completed. Using 

Tukey’s multiple comparison test, it was determined that NS vs. shRNA #1 and NS vs. 

shRNA #2 were both significant. ShRNA #1 vs. shRNA #2 was not significant. 

 

3. Adding silent mutations to the plasmid in order to express endogenous PFN1  

 Three silent mutations were added to the coding sequence of WT-PFN1 plasmid to 

disrupt recognition by the shRNAs encoded by the shRNA #1 (74) and shRNA #2 (352) 

when expressed in those cell lines.  This was done so that the exogenously expressed PFN1 

would not be targeted by the shRNA and thus restore a WT expression level in the 

knockdown cells. The cells were then either induced with doxycycline to turn on 

expression of the shRNA or non-induced. A western blot was run in order to observe 

expression of the PFN1 protein shown in Figure 11.  

 

Figure 11: Western blot of rescue constructs induced with doxycycline or non-induced. 1- NS+ pLenti 
V5-WT;  2- NS + pLenti V5-WT-74 ; 3- NS + pLenti V5-WT-352 4- NS+ pLenti V5-WT;5- NS + pLenti V5-WT-
74; 6- NS + pLenti V5-WT-352; 7- 74 +pLenti V5-WT;  8- 74+ pLenti V5-WT-74 9- 74 +pLenti V5-WT;  10-74+ 
pLenti V5-WT-74;  11-352 +pLenti V5-WT; 12-352+ pLenti V5-WT-352 13-352 +pLenti V5-WT; 14-352+ 
pLenti V5-WT-352RNA 

Following induction, the shRNA#1 (pLenti V5-WT-74) and shRNA #2 (pLenti V5-

WT-352) rescued cells showed similar expression as the WT-PFN1 (no silent mutation) 

rescued cells indicating the exogenously expressed PFN1 is targeted by the shRNA despite 

the silent mutations. Without doxycycline added, the expression is the same for the 

wildtype profilin and knockdown profilin. In addition, knockdown was confirmed by 

blotting with the PFN1 antibody.  
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4. Comparing solubility of C71G PFN1 mutant and PFN1 wildtype  

 In order to compare the solubility of the C71G mutant and PFN1 wildtype, two 

different buffers were used. The experiment was completed with both pLenti and pDest 

expression plasmids to compare the vectors. The results are shown below in Figure 12.   

 

  

No difference was 

observed between the two 

buffers used, although pLenti 

showed a higher expression of 

C71G than the pDest vector.  

 

 

 

 

 

5. Determining optimal plating conditions for cells  

 HEK cells were plated at different cell densities and their confluence was observed 

under the microscope. Three cell densities which were determined to look the healthiest 

under the microscope (30,000; 40,000 and 50,000) were Phalloidin stained. This allowed 

for F-actin to be observed via IF imaging. The results are shown below in Figure 13.  

Figure 12: Solubility of C71G, V5 vector and PFN1 wildtype. Buffer 
A= 1% Triton; Buffer B= 1% Igepal 
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Figure 13: Phalloidin stain of HEK cells using three different cell densities 

  

It was determined from Figure 13 that 30,000 cells showed a sparse confluency, 

while 40,000 showed a denser confluency. It was determined that 35,000 cells would be 

the optimal plating density for cells. 

 

6. Observing localization for PFN1 mutants, wildtype, and a V5 vector control.  

 In order to observe PFN1 and V5 localization, HeLa cells were transfected with a 

plasmid encoding a wildtype PFN1, a V5 vector, or ALS mutant PFN1. The HeLa cells were 

then stained with V5 and PFN1 antibodies to observe localization. The results are shown 

below in Figure 14.   
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Figure 14: PFN1 and V5 localization in Hela cells transfected with WT PFN1, V5 vector, or ALS PFN1 

mutants 

 

 Aggregates are observed in the C71G and M114T mutants in the green PFN1 

channel. The WT PFN1 shows diffused aggregates in cells that are not transfected. No 

aggregates are observed in the red V5 channel.  
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Discussion 
 

 Profilin (PFN1) is a protein which is associated with ALS and understanding more 

about its function can provide more information in discovering potential therapies for the 

fatal disease. Multiple experiments were completed in order to provide tools which allow 

for profilin dysfunction to be analyzed.  

 First, recombinant DNA was created in order to introduce the marker Lifeact into 

the plasmid so F-actin could be visualized in transfected cells. This tool proved successful, 

as Lifeact was successfully ligated with the DNA constructs GFP, BFP, and Cherry (Figure 

5). Next, F-actin could be visualized in the GFP and Cherry immunofluorescent channels 

when HeLa cells were transfected (Figure 8) and Lifeact could be put into a pLenti vector to 

make lentivirus. As profilin is crucial in actin formation, this technique provides a useful 

tool in observing actin filaments in PFN1 mutant infected cells and in creating lentivirus.  

 Next, lentivirus was successfully made. The lentiviral constructs created worked, as 

stable cells lines were able to be created using HEK 293 cells. Additionally, it can be 

concluded from Figures 9 and 10 that profilin knockdown was successful. Profilin showed 

knockdown to nearly 50 percent for shRNA #1 and shRNA #2 when compared to the non-

silencing line. The profilin knockdown was significant for both shRNA #1 and shRNA #2 

compared to the non-silencing line indicating efficient PFN1 knockdown. This provides 

another experimental tool which can be used to analyze the effects of profilin in ALS.  When 

PFN1 undergoes knockdown, it can be used to simulate the effects of ALS affected cells, 

allowing more experiments to be completed to understand the role of profilin in ALS more 

explicitly.  

 PFN1 knockdown cell lines, shRNA #1 and shRNA #2 were attempted to be rescued 

to the wildtype PFN1. Three silent mutants were added to a PFN1 plasmid preventing the 

shRNA from recognizing the sequence. Shown in Figure 11, the knockdown lines were not 

completely rescued to the wildtype. Expression was lower in the PFN1 knockdown lines 

than in the wildtype in the induced plasmids. Thus, the shRNA was still recognizing the 

shRNA targeting sequence from the exogenously rescue plasmids  and continuing to 

knockdown profilin. Resulting from this, more silent mutations should be added to the 
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knockdown lines. Adding more silent mutations will alter the plasmid sequence more so 

that the shRNA will not recognize the sequence since the exogenously expressed PFN1 is 

still targeted by the shRNA when three silent mutations are added.  

 Next, the solubility of the PFN1 mutant, C71G was analyzed in two different buffers 

and two different DNA vectors. The solubility of C71G was compared to the wildtype 

profilin and a V5 vector. When comparing the solubility of C71G in two different buffers, 

there is no observed difference (Figure 12). Thus, it can be concluded that the two different 

buffers have no effect on the solubility of C71G as C71G solubility is the same in both 

buffers (Figure 12). Although, it can be concluded that the vectors have an effect on the 

expression of C71G. Shown in Figure 12, C71G expression is higher in the pLenti vector 

than the pDest vector. This could be due to the linker which attached to pDest which could 

have an effect on the C71G solubility. In order to completely understand why this occurs, 

further research and experimentation is recommended.  

 Next, HEK cells were plated in varying densities in order to determine the optimal 

plating density which would enable the cells to be the best visualized under 

immunofluorescence. It was determined from Figure 13 that the best plating density would 

be between 30,000 and 40,000 cells per 12 well plate as the cells showed a healthy 

confluence and can easily be stained and observed under IF.  

 HeLa cells were then plated using the optimal plating density of 35,000 cells. Hela 

cells were then transfected with wildtype profilin, a V5 vector, or mutant profilin. 

Aggregates were observed for the C71G mutant and M114T mutant in the profilin green 

channel shown in Figure 14. The aggregates showed a dense population in the middle of 

the transfected cells, implying the mutants have an effect on profilin localization. 

Additionally, aggregates were not observed in the V5 and observed in the wildtype green 

profilin channel. These aggregates appeared more diffuse than the mutant profilin, and 

appeared only in the non-transfected cells. It is unclear why no aggregates were observed 

in the red V5 channel for mutant profilin C71G and M114T, as it is expected that the 

aggregates that were observed in the green channel would also be observed in the red 

channel. Repeating the experiment could provide more information as to why this 

occurred, along with further experimentation with the C71G and M114T mutants.  
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 Cloning, transfection, immunofluorescent imaging, and creating stable cells lines of 

non-silencing and knockdown profilin, are all among experimental tools which were used 

to analyze profilin dysfunction. These tools can be used in further research to understand 

the role of profilin in ALS affected cells. As profilin is crucial in actin formation, enabling 

actin to be visualized by cloning DNA containing the F-actin marker Lifeact is an effective 

tool to have. Additionally, the stable cell lines created which showed sufficient profilin 

knockdown can be used to further understand what occurs in cells when the function of 

profilin is lost. Future directions can involve further experimentation with the knockdown 

cell lines and comparing what occurs in the knockdown cell lines compared to the non-

silencing cell lines. Additionally, more mutations to rescue the wildtype phenotype should 

be added in order to avoid shRNA recognition to the gene sequence. Rescuing the wildtype 

phenotype will provide information about how many mutations need to be added in order 

for knockdown cell line to show the same profilin expression as the wildtype. Additionally, 

further research can focus on analyzing the C71G an M114T profilin mutants as aggregates 

were localized in the profilin green channel. Research can also focus on why these 

aggregates are not present in the red V5 channel and why aggregates are observed in the 

wildtype and V5 vector controls in the non transfected cells. Such techniques and further 

directions can broaden understanding of the role of profilin and the actin cytoskeleton in 

those affected with ALS.  
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