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ABSTRACT

Alcoholism is a complex disease with a number of components. Understanding
ethanol preference, the tendency to choose ethanol over another drink, is the focus of this
report. Genes whose activities constitute a basis for the ethanol preference phenotype
have been previously reported. With the use of computational tools, high throughput
microarray data was analyzed to identify transcription regulating relationships between
subsets of specific genes of interest, including Carml, Ube2m, Crebl, Crebbp, Stat3,
Nfkbib and Atf2, among others. These findings confirm the importance of previously
identified genes, and identify complex inter-connections between the regulations of many

different pathways in the expression of the ethanol preference phenotype.
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BACKGROUND

Alcoholism is a complex disease with multiple components. Among current adult
drinkers in the United States, more than one-half say they have a blood relative who is or
was an alcoholic or problem drinker (GDCADA, 2006). The desire to drink excessive
amounts of alcohol may not only be due to lack of self-control, because alcoholism has
been linked to both hereditary and environmental influences, and it is estimated to have a

high heritability rate of 50-60% (Enoch, 2003).

Ethanol Preference

Ethanol preference is a difficult trait to understand due to the genetic complexity
of alcoholism and the environmental variability of the subjects involved. For these
reasons, it is extremely difficult to study alcoholism in humans. Some rodents, such as
certain strains of rats and mice, show a tendency to prefer alcohol over water when given
the choice of either. Among the many different types of ethanol preference testing
procedures, one common type is a two-bottle choice paradigm where the rodent is given
the choice between two solutions (Figure-1). The mouse is given two sources of liquid,
one of which contains an unsweetened concentration of ethanol, and one of which
contains another drink, usually water or a sucrose solution. Mice bred with the ethanol
preference phenotype significantly will choose the ethanol over the water (Green and

Grahame, 2008).



Figure 1: Test for Ethanol Preference with Mouse (Singh, 2006)

A group of rodent genes has been identified as contributing to the ethanol
preference phenotype, although there has been little discovered concerning how these
genes affect the phenotype (Mulligan et al., 2006). A Quantitative Trait Locus, QTL, is a
region of DNA that has been associated with a particular phenotype (Williams, 2004). A
QTL has been identified on chromosome 9 of mice that is associated with the ethanol
preference phenotype. This QTL contains a number of candidate genes for the study of
the phenotype. These genes have been previously associated with the regulation of
alcohol consumption and served as a starting point for the study of the ethanol preference

phenotype (Mulligan et al., 2006).

Inbred Mouse Strains

Inbred mouse strains facilitate a better control of experiments because they
provide an opportunity to study the effects of the environment on a specific genotype by

repeatedly accessing a genetically fixed population (Bogue, 2004). Such animals play an



important role in the study of the ethanol preference phenotype due the disease’s ability

to be influenced by both the environment and genetics.

Gene Regulatory Networks

Gene regulatory networks are a collection of DNA segments which interact, not
necessarily physically, with one another in the cell. These interactions control the rate at
which genes are transcribed into RNA. The RNA then proceeds to making a specific
protein through translation. As part of this process, a signal molecule contacts a receptor
protein, which then triggers a cascade of events throughout the cell. An inactive
transcription factor will then become active, and bind to a segment of DNA usually
upstream from the gene controlled by it, which then results in the transcription of RNA.
Once the RNA is translated into a protein, the process is complete (U.S. Department of
Energy Office of Science, 2006). Figure 2 shows the simplest type of network in which
DNA segments encoding a transcription factor and RNA polymerase affect the

transcription of a target gene.
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Figure 2: Diagram of a Simple Gene Regulatory Network. Based
on one created by the U.S. Department of Energy Office of Science,

2006.

Regulatory networks can include three-gene relationships referred to as feed-
forward loops (Figure-3). To summarize this process, consider three genes: X, Y, and Z.
Gene X is a transcription factor for gene Y. Once gene Y has been activated, both genes

X and Y together activate gene Z. This is commonly the case when gene Z requires both

X and Y to activate it (Kalir et al., 2005).
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Figure 3: Diagram of a Gene Network Feed-Forward Loop (Kalir, 2005)



Obtaining an understanding of the regulatory networks involved in alcohol
preference would greatly increase the possibility of new treatments for alcoholism, as the
identified networks could potentially be disrupted. Although few networks have been
discovered that affect alcoholism, many individual genes have been identified to be

possibly related (Mulligan et al., 2006).

Microarray Analysis

Microarray analysis is a technique that has become common among researchers in
the past 5-10 years. This technique allows for the study of the expression of thousands of
genes simultaneously. The process involves using gene-specific probes that represent
thousands of individual genes within the genome being studied. These synthetic DNA
oligos, representing specific genes, are spotted by the commercial vendor onto
membranes. Two membranes are then hybridized to fluorescently labeled cDNAs
synthesized from two different RNA populations. For example, one experiment might
involve comparing the RNAs expressed in control mouse brain versus RNAs expressed in
the brains of mice that prefer alcohol. The levels of fluorescence at each spot location are
assayed, a higher fluorescence (hybridization) implies a higher relative degree of
expression of that specific gene represented by the spot. The information obtained from
the microarray analyses differs depending on the statistical analysis applied to the data
(Quackenbush, 2006).

There are two common types of microarray data, two-color arrays and single

color arrays. In the two-color array, the test sample is labeled in one color and the



control sample is labeled in another, thus the two RNA (cDNA) samples can be
compared on one membrane while measuring fluorescence at two different wavelengths.
The expression of the test sample is then compared to that of the control sample. In the
single color array, the expression is measured by fluorescence at one wavelength but on
two different membranes, each hybridized to a different RNA (cDNA) population
(Quackenbush, 2006). The arrays are commonly analyzed using either Euclidean distance
or Pearson’s correlation-coefficient distances. Euclidean distance is used when the
magnitude of gene expression is important, and Pearson’s distance is used when the

pattern of expression is important (Quackenbush, 2006).

Computational Pharmacology

Among other things, computational pharmacology utilizes machine-based
learning to analyze high throughput microarray data. Both Biochemical and Computer
Science concepts have been combined to create algorithms that analyze data through a
process known as reverse engineering, the process of taking a massive set of gene
expression data and inferring the corresponding protein network. Two reverse
engineering algorithms were used in this MQP report. Computer programs play an
essential role in reverse engineering, they analyze and inform for efficient knowledge
discovery.

R (www.r-project.org) is a computational analysis tool which utilizes a unique

computer language. For this experiment, R was run using Linux, a UNIX-like platform.
Within R, specific functions are manually defined to allow the user to have control over

their data and algorithmic choices. Bioconductor (www.bioconductor.org) provides a

number of different packages to extend the statistical techniques available within R,

10



including  Affy, which analyzes information provided by  Affymetrix

(www.affymetrix.org).

The Algorithm for the Reconstruction of Gene Regulatory Networks (ARACNE)
(Margolin et al.,, 2006) is an algorithm which groups together genes with similar
transcriptional responses indicating their regulation of one another. This algorithm is able
to determine if the expression of any set of two genes are statistically dependent upon one
another. It can also distinguish between direct and indirect regulatory relationships, using
Data Processing Inequality (DPI). Two genes with a dependence upon each other have

mutual information that is statistically significantly greater than zero.

Mutual Information

Mutual Information (MI) is a measure of the statistical dependency of two genes
that are co-regulated, directly bound to one another, that participate in the same pathway,
or are co-expressed. Thus MI indicates a biological relationship between the genes.
Similar to a correlation coefficient, MI ranges between zero and one, with zero indicating
no relationship and one signifying the strongest relationship. In this report, the p-value at
which an MI value was deemed statistically different from zero was set at 1e10-7 for the

algorithm. The formula for MI between two random variables is defined as:

I(x:¥) = Z P(x..v;) lt:rg%

where P(x;) is the probability that X = x;. For genes, X and Y could represent a

transcription factor and its potential target gene, and x; and ); represent particular

expression levels (Faith et al., 2007).
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Bayesian Networks

A Bayesian network is a probabilistic graph model that describes the probability
distribution for a set of variables (Pearl, 1988). Bayesian Network Inference with Java
Objects, Banjo, is a software application that aids in learning the structural function of
both static and dynamic Bayesian networks. A Bayesian network is a probabilistic
graphical model that represents a set of variables and their dependency upon one another.
Banjo loops through four main steps looking for a network with the highest score
(Figure-4). Once the initial data has been put into Banjo, the proposer suggests a new
network to be considered, the cycle checker looks for cycles within the proposed
network, the evaluator computers a network score for the proposed network based on a
previously determined metric, and the decider determines whether or not to accept the
proposed network (Sladeczek et al., 2007). This process continues for the amount of time
chosen by the user, giving reports of the best network every ten minutes. Once the time
limit has terminated, the software reports the final determined network with the direction

of interaction.

Banjo Searcher

initial data
Proposer

loop Y
(Optional)
Cycle Checker

Y

Evaluator

¥

Decider

Figure 4: The Four Steps of Banjo (Sladeczek et al., 2007)

12



All of these computational tools work together to help gain a greater
understanding of gene regulatory networks. By using these tools, one is able to study and
analyze previously composed microarray data to look for an underlying gene regulatory
network. The analysis tools expand the ability to learn about the ethanol preference
phenotype without having to be in wet lab settings. This provides an opportunity to study
the phenotype without involving more test subjects. One can continue to learn about the

genes involved through mice that have already been sacrificed.
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PROJECT PURPOSE

It has already been discovered that specific genes including Carml1, Ube2m,
Crebl, Crebbp, Stat3, Nfkbib, and Atf2 contribute to the ethanol preference phenotype in
mice (Mulligan et al., 2006). This MQP project aims to shed light on potential regulatory
relationships among these genes using computational algorithms. By using different
computational tools, this project expands the general knowledge about the ethanol
preference phenotype, including increasing our knowledge of some of the genes
involved, and the transcription factors that regulate their expression. This type of
information can potentially be used in the future to disrupt the networks to help treat

alcohol dependency.
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METHODS

The process of inferring gene regulatory networks requires a long series of steps,
utilizing many different tools. Computational pharmacology uses statistics, biology,
chemistry, and computer science to solve biological problems at the molecular level. The
process applied in this project to learn more about the regulatory networks involved in the

ethanol preference phenotype is outlined below.

Obtaining the Data

Phenogen Informatics is a database that serves as a comprehensive toolbox for
scientists to store their microarray data for public use. Each hybridized array is the result
of a wet lab procedure that has been previously performed in a scientist’s laboratory and
is then placed online for others to analyze. A total of 569 “.CEL” files were obtained
from 705 mouse whole brain microarrays on seven Affymetrix (oligonucleotide)
platforms from the Phenogen Informatics database (http://phenogen.uchsc.edu). The 569
samples were sorted according to their platforms. The seven resulting platforms were:
Murine Genome U74A, Mouse Expression Set 430A, Mouse Expression Set 430B,
Mouse Genome 430 2.0 Array, Murine Genome U74Av2, Murine Genome U74Bv2, and

Murine Genome U74Cv2.

RMA Analysis

After obtaining the samples, the Robust Microarray Average (RMA) analysis was
performed on each of the seven platforms (Irizarry et al., 2003). With the use of program

R and the Bioconductor package “Afty”, background correction, normalization, and log-
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transformation was performed on the data. Background correction eliminates noise that
may have resulted from the scanning laser reflecting off the surface of the array and the
normalization step aims to correct any differences between the genes or arrays within
each platform (Tarca et al., 2006). The RMA analysis allowed for the compilation of all

“.CEL” file information to one file per platform.

Selecting Genes of Interest

Each file contained expression information for over 22,000 genes, only some of
which were important in the study of ethanol preference. Based on information obtained
in an article written by Mulligan et al. (2006), 75 candidate genes were isolated from
each platform using a parser-selector program written by Dr. Acquaah-Mensah. A
number of stress sensitive transcription factors were appended to the list of candidate
genes.

The parser-selector program searched through the 22,000+ genes located on each
of the platforms and secluded the information that corresponded to the genes of interest
and the transcription factors. A new file was created from the resulting information for

further analysis, and the remaining gene information was discarded.

Algorithm for the Reconstruction of Accurate Cellular Networks

The Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE)
is an “algorithm for the reverse-engineering of transcriptional networks from microarray
data” that is able to separate direct regulatory interactions from those that are indirect
(Margolin et al., 2006). This algorithm iterates through the gene list and, for each

possible pair, determines the amount of MI between the two genes.
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Once the Mutual Information has been determined, the algorithm evaluates the
Data Processing Inequality (DPI). “The DPI states that if genes gl and g3 interact only
through a third gene, g2, then:

I(gl,g3) <min [I(gl,g2);I(g2,g23)].” (Margolin et al., 2006)

Simply stated, in each iteration, the algorithm evaluates three sets of MI values and
removes all MI values that indicate an indirect relationship. Discarding indirect
relationships (i.e. relationships once removed) eliminates false MI values, such that if
gene X and gene Y have MI, gene Y and gene Z have MI, and gene X and gene Z have
MI but only because of the relationship between gene Y and gene Z, the MI value for
gene X and gene Z will be eliminated. The parameters were set to be conservative to
ensure the result to be statistically significant. The p-value for the algorithm was set to
le-7 (highly significant) and the DPI tolerance was set to 0.15. A DPI tolerance of 0.15
indicates that 15% of the MI estimations would be considered sampling errors.

The resulting information was put into an output file containing the pairs of genes
and their Mutual Information. These files were converted into a Simple Interaction File
(.sif) for use in Cytoscape. For each gene pair, this file type contains the probeset ID of
gene A on one side in column 1, the probeset ID of gene B on the other side in column 3,
and their calculated MI in column 2. A list of probeset to genecode conversions were
formatted into a file. A parser selector was used to convert the .sif probeset files to .sif
genecode files.

Some of the platforms used proved to have no gene pairs with MI statistically
significantly different from zero. These platforms were Mouse Expression Set 430B,

Murine Genome U74Bv2, and Murine Genome U74Cv2. The three platforms all
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originally contained 6 “.CEL” files. Because they did not have genes with mutual

information, the three platforms were eliminated from the remainder of the project.

Cytoscape

Cytoscape (www.cytoscape.org) is a bioinformatics platform that allows a user to
create visual networks, and integrate these networks with gene expression. These
networks can either consist of protein-protein interactions or protein-DNA interactions.
This tool visually represents gene regulatory networks in the form of nodes and edges.
There are a number of plugins that can be used in Cytoscape to allow the user to obtain
different types of networks.

The ARACNE output files were imported into this software, resulting in four
different visual networks. Of the four networks, Murine Genome U74Av2 had the
smallest network with only nine nodes. The Mouse Expression Set 2.0 platform data
yielded the largest inferred network. Due to the differences among the networks, they
required different plugins for facilitated analysis. The networks were visually represented
in a number of ways and each way was analyzed to search for new regulatory networks
involved in the ethanol preference phenotype.

One tool that was used to represent the four different visual networks was the
Collective Analysis Between Interactive Networks, CABIN (Singhal and Domico, 2007).
CABIN allowed for all four networks to be analyzed together. Subset regulatory
networks were then isolated using the genes of interest and their immediate neighbors.
Based on these networks, relationships were determined between genes. Once networks
had been created with the genes of interest, and the genes with which they were directly

related, another algorithm was used to determine the direction of the regulation.
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Bayesian Network Inference with Java Objects

A tool called the Bayesian Network Inference with Java Objects, Banjo, was used
to determine the direction of regulation between pairs of genes. This was only performed
with one gene pair at a time to build on the ARACNE findings while avoiding indirect
regulatory relationships. The program was used to determine the direction of interactions
between transcription factors and non-transcription factors. The program was run several
times, with an average length of approximately one hour for each run. The resulting
formation was incorporated into Cytoscape, replacing undirected edges with arrowed

edges to indicate direction of regulation.
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RESULTS

This project used a combination of different software applications to expand
knowledge about ethanol preference phenotype. Once the files underwent the preparatory
analysis, they were able to be imported into Cytoscape. This allowed for visual
representation of the gene regulatory networks.

One gene that was a focus of the project was Coactivator-Associated Arginine
Methyltransferase 1, Carml1. This gene is up-regulated in mice bred for the ethanol
preference phenotype, and is located on the quantitative trait locus for ethanol preference
on chromosome 9 (Mulligan et al., 2006). Carml did not have any direct statistical
dependencies on any of the other transcription factors considered to be associated with
the ethanol preference phenotype. Carml is up-regulated in ethanol-preferring mice. It
has direct statistical dependencies with several key ethanol preference genes involved in
signal transduction (Figure-5). Figure 5 depicts the resulting Cytoscape network for
Carml with its regulators and targets. The genes in blue are regulators of Carml, and
include Ubiquitin-conjugating enzyme E2M (Ube2m) and Cathepsin B (Ctsb), among
others. The genes in pink are regulated by Carml, and include Matrix metallopeptidase
17 (Mmp17), Defender against cell death 1 (Dadl), among others. Edge directionality for

the genes in grey could not be definitively determined using the Bayesian approach.
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Figure 5: Cytoscape View of Gene Carm1 With its Regulators and
Targets. Carml is shown in the center of the diagram. Genes shown
in blue denote Carm1 regulators, while those shown in pink are
regulated by Carml. Genes shown in grey have an unknown direction
of regulation of Carml.

Carml and one of its related genes, Protein Kinase C-epsilon (Prkce) (shown as
gray in Figure-5, upper left), have statistical dependencies with a number of the same
genes. The relationship between Carm1 and Prkce was predicted to be representative of a
feed-forward loop. Prkce is expected to be important to the ethanol preference phenotype
because mice in which the Prkce gene was knocked out show a drop in consumption of
ethanol drinking compared to mice with Prkce expression (Mulligan et al., 2006).

Figure 6, shows both Carm1 and Prkce with their targets. The horizontally lined
group in the middle represents the common targets for both genes, and the groups on the

sides are the ones they share statistical dependency with, independent of each other.
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Figure 6: Cytoscape Representation of Genes Carml and Prkce
With Their Regulators and Targets. Prkce is the center gene for the
top cluster, while Carml is the center gene for the bottom cluster. The
horizontally lined cluster in the middle represents the nodes that
interact with both Carm1 and Prkce.

The nodes that interact with both Carm1 and Prkce appear to have a number of
different roles. In some instances, Carm!l regulates a gene which then in turn regulates
Prkce. One example is Carm1l = 9130213B0OSRIK > Prkce. The opposite is also true
with Prkce = Ngef - Carml. Three genes regulate both Carm1 and Prkce, H2afz,
Ube2m, and Hs2stl. The original hypothesis of a feed-forward loop could be a possible
explanation for the relationship between Carml, Prkce, and Matrix metallopeptidase 17
(Mmp17). The relationships between Carml, Prkce, and their common regulators and

targets are shown in Table 1.

Table 1: Regulation by Carm1 and Prkce of Their Common Targets.

Mmpl7 | Maprel | H2afz | Ube2m Ngef Ctsb Hs2stl | 9130213BOSRIK
Regulated
by Prkce X X X X
Regulated
by Carml X X
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Another gene hypothesized to influence the ethanol preference phenotype is the
cAMP responsive element binding protein 1, Crebl. Crebl is studied for its effect on the
brain in processes involving addiction, depression, and memory (Carlezon, et al., 2005).
Crebl is a transcription factor that has regulatory relationships with many of the alcohol
preference candidate genes (Figure-7). One gene that has statistically significant Mutual
Information with Crebl is Zinc Finger Protein 143 (Zfp143). This is a transcription factor
that has been identified with the ethanol preference phenotype because it is significantly

up-regulated in models with high ethanol preference (Mulligan et al., 2006).
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Figure 7: Cytoscape View of Crebl, Crebbp, and the Genes With
Which They Share Mutual Information. Crebl1 is shown in the
center of the diagram. Genes shown in blue denote Creb1 regulators,
while those shown in pink are regulated by Crebl. Genes shown in
grey have an unknown direction of regulation of Crebl.

Each gene has a number of probeset identifiers, all of which were used in the
Banjo run. In some cases, different probeset IDs of the same gene indicated conflicting

directions of regulatory control. Table 2 shows the Banjo results for the comparison of
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Crebl and Zfp143. Because the algorithm bases its results on probabilities, the “majority”
outcome was used for determining which gene is the regulator and which is being
regulated. As an example, for these two genes in Table 2 Zfp143 is a regulating factor

for Crebl.

Table 2: Conflicting Directions of Regulatory Control Obtained with Different Probe Sets of the
Same Gene Pair

Regﬁg;ng Zfp143 | Crebl | Zfp143
Gene
Being Crebl Ztp143 Crebl
Regulated

Crebl and Activating transcription factor 2 (Atf2) have already been shown to
have a relationship on the mediating effects of AMP-activated protein kinase for the
expression of genes that have a cAMP-response element in their promoters (Thomson et
al., 2008). Crebl and Atf2 had statistically significant Mutual Information and, upon the
analysis of the Banjo results, it was determined that Atf2 regulates Crebl in mouse brain
(Figure-8). Atf2 also shared a statistical dependency with adipocyte specific protein 5
(9030425E11RIK) which has been previously identified as having a correlation between
gene expression and the ethanol preference phenotype based on recombinant inbred
strains (Mulligan et al., 2006). The algorithm results showed that Atf2 is a regulator of

9030425E11RIK.
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Figure 8: Cytoscape Representation of Atf2 and its Targets. Atf2 is
shown in the center of the diagram. Genes shown in blue denote Atf2
regulators, while those shown in pink are regulated by Atf2.

Atf2 is regulated by protein Hypoxia up-regulated 1 (Hyoul), a protein associated

with a response to stress. Atf2 has regulatory relationships with a number of the genes

targeted by both Carml and Prkce. The direction of the regulation between the genes

varies. Atf2 regulates 9130213BOSRIK, Ube2m, and H2afz, while it is regulated by

Maprel, Ctsb, and Hs2stl (Table-3). Table 3 shows a comparison of the Prkce, Carml,

and Atf2 with their regulation patterns. Aft2 regulates Ube2m and H2afz, two genes that

regulate both Carm1 and Prkce.

Table 3: Regulatory Relationships Between Prkce, Carm1, Atf2, and Common Targets.

Prkce

Carml

Atf2

9130213B0O5RIK > Prkce

Carml - 9130213B05RIK

Atf2 > 9130213B05SRIK

Prkce > Ngef

Ngef > Carml

Prkce > Mmpl7

Carml - Mmpl7

Prkce > Maprel

inconclusive

Maprel 2> Atf2

Ube2m - Prkce Ube2m - Carml Atf2 2 Ube2m
H2afz - Prkce H2afz - Carml Atf2 > H2afz
Prkce = Ctsb Ctsb = Carml Ctsb 2> Atf2

Hs2stl = Prkce

Hs2stl - Carml

Hs2stl > Atf2
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Other genes that have previously been identified as associated with the ethanol
preference phenotype also showed dependencies on Crebl. This includes forkhead box
A2, Foxa2, a transcription factor that is down-regulated in ethanol-preferring mice
(Mulligan et al., 2006). This gene has dependencies on several of the key ethanol
preference genes involved in signal transduction. Because it is down-regulated, its lack of
expression could allow for the expression of the key ethanol preference genes. This gene
also shows statistical dependencies on other transcription factors considered in this
project, including signal transducer and activator of transcription 3, Stat3, and nuclear
factor of kappa light chain gene enhancer in B-cells inhibitor-beta, Nfkbib. The Banjo

results concluded that both Stat3 and Nfkbib are regulated by the Foxa2 gene (Figure-9).
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Figure 9: Cytoscape Representation of the Foxa2 Gene and Its
Targets. Foxa2 is shown in the center of the diagram. Genes shown in
blue denote Foxa2 regulators, while those shown in pink are regulated
by Foxa2.
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Foxa2 regulates both Hyoul, a gene previously determined to have a regulatory

role over Atf2, and Heparan sulfate 2-O-sulfotransferase 1 (Hs2stl), a gene that regulates

Carml, Prkce, and Atf2 (Table-4). There are three instances where a gene regulated by

Atf2 in turn regulates Foxa2: 9130213BOSRIK, Ube2m, and H2afz. Both Atf2 and

Foxa2 are regulated by Maprel, which is regulated by Prkce.

Table 4: Regulatory Relationship Comparison Between Prkce, Carml1, Atf2, and Foxa2.

Prkce

Carml

Atf2

Foxa2

9130213BO5RIK > Prkce

Carml - 9130213B05RIK

Atf2 > 9130213B05RIK

9130213B05RIK - Foxa2

Prkce = Ngef

Ngef = Carml

Prkce > Mmpl17

Carml = Mmpl7

Foxa2 = Mmpl7

Prkce = Maprel

inconclusive

Maprel > Atf2

Maprel = Foxa2

Ube2m - Prkce

Ube2m - Carml

Atf2 2 Ube2m

Ube2m - Foxa2

H2afz - Prkce

H2afz = Carml

Atf2 > H2afz

H2afz - Foxa2

Prkce = Ctsb

Ctsb 2 Carml

Ctsb 2> Atf2

Hs2stl = Prkce

Hs2stl - Carml

Hs2stl > Atf2

Foxa2 - H2stl

A visual representation was created to show the relationships between Carml,

Prkce, Atf2, and Foxa2, along with their shared nodes in Table 4. Figure 10 shows the

complex interconnections between these four genes and only some of their common

targets. Although this is not a complete gene regulatory network, it is a good starting

point for further research. As can be seen in this figure, there is evidence of co-regulation

among this set of genes. Prkce has five genes that influence its regulation, and then in

turn regulates four genes. Ube2m is only regulated by one gene in this network, Atf2, and

it regulates three genes, Carm1, Prkce, and Foxa2.
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Figure 10: A Combination Diagram of Carml1, Prkce, Atf2, and
Foxa2 With Some of Their Common Targets. The arrows indicate
direction of regulation.

One gene that shares a number of statistical dependencies with various
transcription factors is the ubiquitin-conjugating enzyme E2M, Ube2m. Ube2m is
involved in post translational protein modification in the ubiquitin cycle. This gene shares
statistical dependencies with most of the transcription factors considered for this project,
and a number of the key ethanol preference genes as well. Figure 11 shows Ube2m with
its target genes. The blue genes are the ones which have a regulatory role over Ube2m,
which includes Atf2, Maprel, and Stat3. The genes in pink, however, are the genes
regulated or influenced by Ube2m, including Crebl, Carm1, Foxa2, Prkce, Nfkbib, and
many others. This relationship was interesting in that a non-transcription factor was
influencing a number of the transcription factors expected to be associated with the

ethanol preference phenotype.
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Figure 11: Cytoscape View of the Ube2m Gene and Its Targets.
Ube2m is shown in the center of the diagram. Genes shown in blue
denote Ube2m regulators, while those shown in pink are regulated by
Ube2m. Genes shown in grey have an unknown direction of regulation
of Ube2m.

The genes of focus for this MQP project have provided insight to the gene
regulatory networks involved in the ethanol preference phenotype. Many of the centers of
the gene regulatory networks for the ethanol preference phenotype have been determined.
For example, Prkce has been proven to play a role in drinking behaviors of mice, and the
results here show its relationship with many of the previously identified ethanol
preference genes. These findings, among others, indicate complex inter-connections
between the regulations of protein metabolism, stress-responsive, and signal transduction

pathways in the expression of the ethanol preference phenotype.
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DISCUSSION

Coactivator-Associated Arginine Methyltransferase 1 (Carm1) has been shown to
enhance transcriptional activation by nuclear receptors through interactions with a
number of coactivators (Miao et al., 2005). This transcriptional activation may play a role
in the ethanol preference phenotype. Carml is up-regulated in ethanol-preferring mice
(Mulligan et al., 2006), is located on a quantitative trait locus on chromosome 9
associated with ethanol preference (Ibid.), and was shown here (Figures 5 and 6) to have
Mutual Information with a number of previously identified key ethanol preference genes.
This project has shown there is a statistical dependency between Carml and Prkce,
another gene for which there is evidence of influencing alcohol drinking levels.

Protein Kinase C-epsilon (Prkce) catalyzes the phosphorylation of specific
proteins (Pan, et al., 2006). The phosphorylation of proteins affects the shape of the
protein, thus either activating or deactivating the newly phosphorylated protein. Prkce
may be influencing ethanol consumption through post translational modification.
Similarly, Ubiquitin-conjugating enzyme E2M (Ube2m), shown in this project to regulate
a number of the ethanol preference genes, has been proven to be involved in post
translational modification within the ubiquitin cycle (GO:0006512, 2008).

cAMP responsive element binding protein 1 (Crebl) has been previously studied
for its role in brain function including addiction, depression, and memory (Carlezon et
al., 2005). It has been determined in this project (Figure-7) that this gene is regulated by
Zinc Finger Protein 143 (Zfp143), which is up-regulated in ethanol-preferring mice. This

suggests the activation of Zfp143 in ethanol-preferring mice could then in turn regulate

30



Crebl. The discovery of this relationship links the level of ethanol consumption to brain
functions such as addiction and anxiety, both of which Creb1 is known to play a role in.

Activating transcription factor 2 (Atf2) is a member of the MAPKinase signaling
pathway in mice (Morton et al., 2004). Many of the Mapk genes are up-regulated in
ethanol-preferring mice. This project has determined that Atf2 (Figure-8) is regulated by
Hypoxia up-regulated 1 (Hyoul) a protein associated with a response to stress. This gene
also has a regulatory relationship with Crebl, Prkce, and Ube2m, among other ethanol
preference genes. It regulates Stat3, which is up-regulated in ethanol-preferring mice. The
regulatory relationship between Atf2 and a number of the previously identified ethanol
preference genes strongly suggests that it has an influence on the ethanol preference
phenotype.

Forkhead box 2 (Foxa2) is a down-regulated gene in ethanol-preferring mice
(Figure-9). This gene is regulated by Crebl, thus in ethanol-preferring mice the up-
regulated Zfp143 regulates Crebl which in turn regulates the down-regulated Foxa2.
Foxa2 regulates the expression of another transcription factor, Signal transducer and
activator of transcription 3 (Stat3). The suppression of Foxa2 may play an important role
in ethanol consumption and the ethanol preference phenotype.

This project extends the work of Mulligan et al. (2006) in the search for a better
understanding of the ethanol preference phenotype. The candidate genes were further
analyzed to begin to demonstrate relationships among them, developing a preliminary
network for the ethanol preference phenotype. Other than the identification of the
candidate genes, little was known about the regulatory networks involved in the ethanol

preference phenotype prior to the start of this project. This project uses computational
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tools to narrow the search for a regulatory network and determined centers of regulatory
networks which should be the focus of any further research.

Because of the previous lack of evidence for the regulatory networks involved in
the ethanol preference phenotype, many things can be done to continue with this project.
More algorithms can be applied to this data to confirm the networks identified here.
Also, wet lab verification can be performed to determine the validity of the algorithmic
predictions seen in this project. Ultimately an understanding of the regulatory networks
for alcohol preference could lead to methods for disrupting the networks as treatments for

alcoholism.
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