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ABSTRACT 
Pulse oximetry is used to measure heart rate (HR) and arterial oxygen saturation (SpO2) from 

photoplethysmographic (PPG) waveforms. PPG waveforms are highly sensitive to motion 

artifact (MA), limiting the implementation of pulse oximetry in mobile physiological monitoring 

using wearable devices. Previous studies have shown that multichannel pulse oximetry can 

successfully acquire diverse signal information during simple, repetitive motion, thus leading to 

differences in motion tolerance across channels. In this study, we introduce a multichannel 

forehead-mounted pulse oximeter and investigate the performance of this novel sensor under a 

variety of intense motion artifacts. We have developed a multichannel template-matching 

algorithm that chooses the channel with the least amount of motion artifact to calculate HR and 

SpO2 every 2 seconds. We show that for a wide variety of random motion, channels respond 

differently to motion, and the multichannel estimate outperforms single channel estimates in 

terms of motion tolerance, signal quality, and HR and SpO2 error. Based on 31 data sets of PPG 

waveforms corrupted by random motion, the mean relative HR error was decreased by an 

average of 5.6 bpm when the multichannel-switching algorithm was compared to the worst 

performing channel. The percentage of HR measurements with absolute errors ≤ 5 bpm during 

motion increased by an average of 27.8 % when the multichannel-switching algorithm was 

compared to the worst performing channel. Similarly, the mean relative SpO2 error was 

decreased by an average of 4.3 % during motion when the multichannel-switching algorithm was 

compared to each individual channel. The percentage of SpO2 measurements with absolute error 

≤ 3 % during motion increased by an average of 40.7 % when the multichannel-switching 

algorithm was compared to the worst performing channel. Implementation of this multichannel 

algorithm in a wearable device will decrease dropouts in HR and SpO2 measurements during 

motion. Additionally, the differences in motion frequency introduced across channels observed 

in this study shows precedence for future multichannel-based algorithms that make pulse 

oximetry measurements more robust during a greater variety of intense motion. 
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1.  INTRODUCTION 
Pulse oximetry uses light absorption to measure arterial blood oxygen saturation (SpO2) and 

heart rate (HR) from photoplethysmographic (PPG) waveforms. PPG waveforms are sensitive to 

motion artifacts (MA) that can corrupt the waveform and result in erroneous HR and SpO2 

calculations. The primary cause of MA in pulse oximetry is believed to be due to changes in the 

light path during sensor movements [1]. Pulse oximetry is widely used in hospitals where motion 

artifacts are generally less pronounced compared to mobile health applications. Motion artifacts 

are difficult to filter out since they do not have a predetermined frequency range and their 

spectral content often overlaps with the frequency band of the PPG waveform. If motion artifact 

persists long enough and has a frequency in the range of normal HR, the calculated HR and SpO2 

can be highly inaccurate. Clinicians have cited motion artifacts in pulse oximetry as the most 

common cause of false alarms, loss of signal, and inaccurate readings [2].  

The primary approach to reduce motion artifact is the implementation of software-based 

algorithms that attempt to extract a clean PPG waveform from a motion-corrupted PPG signal. 

Studies showed that multichannel pulse oximetry is advantageous over single channel pulse 

oximetry in obtaining diverse signal information during low-motion artifact conditions [3-5]. 

Furthermore, studies have attempted to better characterize the effects of motion artifact in pulse 

oximetry, and have shown that intense, aperiodic, random movements generate the most errors 

[6]. In this study we use a custom made 6 photodetector (PD), forehead-mounted pulse oximeter 

and investigate the performance of this wearable sensor under a variety of intense motion. We 

introduce an advanced multichannel-switching algorithm that selects the channel with the least 

amount of motion artifact to calculate HR and SpO2 every 2 seconds. We show that for a wide 

variety of random motion, channels respond differently to motion, and the multichannel estimate 

outperforms single channel estimates in terms of motion tolerance, signal quality, and HR and 

SpO2 errors. 

This thesis is divided into the following sections: Chapter 2 discusses the basic principles of 

pulse oximetry, how HR and SpO2 values are calculated from raw PPG signals, the two operating 

modes of pulse oximetry (2.1), the effects of motion artifacts, and the methods currently used to 

reduce these effects (2.2), an overview of previously designed multichannel pulse oximeters 

(2.3), and a description our forehead –mounted multichannel pulse oximetry device (2.4). 
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Chapter 3 outlines the research objectives of this study. Chapter 4 describes the data collection 

protocol and the type of data collected. Chapter 5 outlines the methods of data analysis used in 

this thesis including: motion quantification methods (5.1), frequency-based SNR (5.2), HR error 

metrics (5.3) and SpO2 error metrics (5.4). The multichannel template-matching algorithm we 

developed is explained in detail in section 5.1.1, and the analysis of the accompanying 

accelerometer data is explained in 5.1.2. Chapter 6 presents the results of this including the time-

domain response to motion across channels (6.1), the measured accelerometer motion (6.2), the 

frequency-based SNR values (6.3), the multichannel noise level (MCNL) values during motion 

and a comparison with the noise detection algorithm previously used in our lab (6.4), the HR 

errors during motion (6.5), and the SpO2 errors during motion (6.6).  Chapter 7 includes a 

discussion of the results and implications of our findings, Chapter 8 summarizes the conclusions 

of this study, and Chapter 9 provides recommendations for future multichannel-based 

algorithms. 
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2.  BACKGROUND 
 PULSE OXIMETRY AND PHOTOPLETHYSMOGRAPHY 2.1

Pulse oximetry is a non-invasive method used to measure arterial blood oxygen saturation levels 

based on the difference in optical absorption properties between reduced hemoglobin (Hb) and 

oxyhemoglobin (HbO2). Figure 1. Optical absorbance spectra of HbO2 and Hb; HbO2 absorbs 

less red (RD) light than Hb, and absorbs more infrared (IR) light than Hb. Two LEDs, typically 

around 660 nm and 940 nm, are used to shine light into the blood vessels and surrounding tissue. 

 

Figure 1. Optical absorbance spectra of HbO2 and Hb, taken from [7]. 

 
The relative amounts of RD and IR light absorbed by the blood correspond to the blood oxygen 

level. Tissue, bones, and non-pulsatile blood absorb some of the light, generating a DC offset in 

the PPG signal as shown in Figure 2. Arterial blood pulses with each heartbeat, creating an AC 

signal superimposed on top of a large DC offset. The signal produced by this absorption process 

is called a photoplethysmogram (PPG) waveform. Figure 2. Variations in light absorption due to 

blood and surrounding tissue, illustrating the PPG signal generation.depicts the composition of 

the PPG signal.  
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Figure 2. Variations in light absorption due to blood and surrounding tissue, illustrating the PPG signal 
generation. 

The AC signal is a measure of the pulsatile blood, with period corresponding to the cardiac cycle 

of the heart. A typical AC IR PPG waveform taken from a forehead sensor during rest is shown 

below in Figure 3. 

 

Figure 3. Typical AC PPG signal acquired during rest. 

 
2.1.1  SPO2 MEASUREMENTS 

 Blood oxygen levels estimated by a pulse oximeter are a function of the ratio of RD to IR 

light absorption. In order to minimize the effects of physiological and physical differences 

between patients, including different LED intensities, thickness or density of a tissue region, and 

color of the skin, the AC amplitude of each signal is normalized by the DC amplitude, creating a 

“ratio-of-ratios” (R) as follows. 
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R =

ACrd
DCrd
ACir
DCir

 (1) 

      

SpO2 is then clinically calibrated empirically as a linear function of the ratio-of-ratios, and a 

calibration curve specific to a single device is generated according to Equation 2, where A and B 

are the coefficients of the best fit linear regression line.  

 SpO! = A− B ∗ 𝐑 (2) 

   

Once A and B coefficients are determined for a particular device, a calibration curve is created, 

allowing all SpO2 measurements to be calculated based on the linear equation or a look-up table. 

A typical regression line of real SpO2 and R values is plotted in Figure 4. 

    

Figure 4. Typical calibration curve of SpO2 based on R values. 

 To separate the PPG waveform into AC and DC components, a low-pass filter (LPF) and 

a band-pass filter (BPF) are implemented. A 0.5 Hz LPF is used to extract the DC component, 

and a 0.5-12 Hz BPF is used to extract the AC component. To smooth out the AC portion of the 

signal, the RMS value of the AC signal is taken to calculate SpO2. Using the peak-to-peak 

amplitude of the AC PPG waveform resulted in SpO2 measurements with high variance during 

rest and sporadic SpO2 measurements with high error. Using the RMS of the AC PPG signal was 

found to result in more stable SpO2 measurements and overall less measurement error. 
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2.1.2  HEART RATE MEASUREMENTS 

 The pulsatile peaks of the PPG signal correspond to cardiac beats, allowing peak 

detection based algorithms to estimate HR from the PPG waveform. Figure 5 shows a typical 

ECG signal and the corresponding RR intervals and a typical PPG waveform with the peak-to-

peak intervals (PP) lined up with the R waves in the ECG signal.  

 

Figure 5. ECG waveform lined up with PPG waveforms, showing that the RR interval of ECGs correspond to 
the P-P intervals of PPG. 

 
A peak detection algorithm is used to find the peaks and troughs of the PPG waveform. The 

peak-to-peak period, T, is then used to measure HR in bpm using Equation 3. 

 

Figure 6. Peak and trough detection of an infrared PPG waveform. 

 
 

HR = 
60
T

 (3) 
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2.1.3  OPERATING MODES AND MEASUREMENT SITES 

 Pulse oximeters can operate in two different modes: transmittance and reflectance. Most 

pulse oximeters operate in transmittance mode; light is transmitted through a part of the body, 

such as an ear lobe or finger, and a PD on the opposite side from the LEDs detects the 

transmitted light. In reflectance mode, the PDs are placed adjacent to the LEDs, and the PD 

subsequently detects the light reflected by the bone. Figure 7 depicts the configuration of a 

typical transmittance-type pulse oximeter worn on the finger (left), and a reflectance-type pulse 

oximeter resting on top of the skin (right). 

 

Figure 7. Transmittance mode and reflectance mode configuration for pulse oximetry. 

 
Reflectance mode pulse oximetry allows for more sensor placement sites, including the forehead, 

which is less susceptible to motion artifacts and easier to wear during physical activity than a 

finger sensor. 

2.1.4  LIMITATIONS OF PULSE OXIMETRY 

 Pulse oximetry is highly accepted and accurate in clinical settings when a patient is at 

rest. During motion, low perfusion, and in the presence of electromagnetic interference, the PPG 

waveform is compromised, resulting in lower accuracy and more frequent error. Means have 

been taken to limit the effects of low perfusion and electromagnetic interference, but for active 

patients, motion artifacts are the primary limiting factor to using pulse oximetry in mobile health 

applications. 

 MOTION ARTIFACTS 2.2

The primary causes of MA include changes in the light path due to sensor movement in relation 

to the skin and introduction of venous blood pulsation. As shown in Figure 8, when the sensor is 

displaced in the plane that the sensor touches the skin, the light path changes and the light then 

travels differently to the photodiode. This motion of the sensor relative to the skin causes a 
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change in the optical coupling between the tissue and the sensor, which can cause a change in the 

PPG signal [9].  

 

Figure 8. Light path changes during sensor-skin displacement due to motion (adapted from [8]). 

Additionally, pulse oximetry assumes that the only pulsatile component is due to arterial blood 

pulsations. Arteriovenous (AV) shunting causes venous blood to change with arterial pulsing [3]. 

The presence of venous pulsation becomes more prevalent during motion, yielding false low 

SpO2
 values due to the lower oxygen saturation of venous blood. 

2.2.1 EFFECTS OF MOTION ARTIFACT  

Motion artifacts can affect the amplitude and frequency of the PPG waveform, making the peaks 

corresponding to the cardiac cycle unidentifiable. Particularly, if the motion artifact signal lasts 

long enough and has a frequency in the range of normal heart rate, the peak detection algorithm 

will measure motion frequency as HR and use incorrect AC amplitudes to calculate SpO2. Figure 

9 below shows an example AC PPG waveform that starts out clean and is then corrupted by 

motion artifact. Once motion artifact is present in the waveform, it becomes difficult to separate 

the physiological signal from the effects of motion. 
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Figure 9. Clean PPG waveform corrupted by motion artifacts 

It is clear that it would be difficult to extract the specified amplitude or frequency that 

corresponds to the true physiological signal from the motion-corrupted portion of the PPG 

waveform shown in Figure 9. The HR calculation algorithm would rely on the detection of false 

peaks, and the SpO2 algorithm would incorrectly use the amplitude of the motion noise, resulting 

in erroneous HR and SpO2 measurements.  

2.2.2  CURRENT APPROACHES TO LIMIT MOTION ARTIFACT 

 There are a number of software-based methods currently being used to limit the effects of 

motion artifacts on the PPG signal. The primary approach to reduce the effects of motion artifact 

is to try and extract a clean PPG waveform from the motion-corrupted PPG signal [10-25]. Fixed 

frequency filtering is helpful, but not very effective when MA has no predetermined frequency 

band. Baseline subtraction, use of frequency banks, moving average filtering, and removal of 

corrupted signal segments have shown improvement against MA in some cases, but are not 

robust against motion which may have varied dynamics [26-29].  

 Numerous studies have investigated the use of adaptive noise cancellation (ANC) to 

selectively filter out MA based on a specified reference signal. Reference signals used include: 

on-board accelerometers [10-13], a reference signal synthesized from the motion corrupted PPG 

signal [14-17], and a reference signal measured by an adjacent photoelectric device [18,19]. 

Correlations have been found between the distorted PPG data and the accelerometer data after a 

time delay [10], and the adaptive filters remove some of the noise that was correlated to the 

corrupted PPG, but the reconstruction is not perfect. Similarly, sensor motion measured using 

self-mixing interferometry more directly measures the light changes with respect to sensor 

movement and does reduce some motion artifacts, but does not fully suppress them [19]. 
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Separate reference signals are not always an accurate representation of the signal corruption, 

which can lead to unintentional filtering of a portion of the relevant PPG waveform.  

 Alternate algorithms have been developed to extract the clean PPG waveform from the 

motion-corrupted signal based on fundamental components of the PPG signal. These methods 

include: principle component analysis (PCA) [20], independent component analysis (ICA) [21-

23], and singular spectral analysis (SSA) [24]. Adaptive filtering with accelerometer data has 

been tested against the use of Independent Component Analysis (ICA). ICA outperforms 

adaptive filtering in terms of artifact removal [30]. ICA, however, has permutation and scale 

ambiguities, not always preserving the correct PPG. The use of a temporally constrained ICA in 

combination with an adaptive filter works better than either method individually, and can 

successfully output clean PPG signals. The ICA is performed and then provided as a reference 

for the adaptive filter, thus extracting the clean PPG signal, which has attributes of the ICA result 

[23]. Work in this lab has been done on the use of Iterative Motion Artifact Removal (IMAR) 

using Singular Spectral Analysis (SSA) and compared with time-domain ICA. The IMAR 

method outperforms ICA in terms of HR and SpO2 errors [24]. Most recently, algorithms based 

on filtering out the motion frequency as calculated from the accelerometer spectra have been 

useful in separating motion signal from PPG signal [31-33]. These algorithms have been proven 

effective during motion, but are currently designed to use one signal to extract information from, 

and when the single channel is too corrupted to reconstruct, or when the motion frequency 

overlaps with the HR frequency preventing motion from being filtered out, HR and SpO2 

information may be lost, leading to dropouts during monitoring. 

 MULTICHANNEL PULSE OXIMETERS 2.3

Multichannel devices have been used to improve HR and SpO2 measurements by capturing 

multiple PPG waveforms simultaneously. An PPG sensor placed on the sternum was developed 

that uses PCA in the frequency domain to find the most likely SpO2 estimation [4]. This PPG 

sensor has a total of 16 RD LEDs, 16 IR LEDs, and 8 PDs on one board, as shown in Figure 10. 

In the study, the investigators only used the 8 pairs of LEDs and 4 PDs circled in black in Figure 

10. 
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Figure 10. The 16-channel sternum sensor used by [4]. Only the 8 channels circled in black were used in their 
analysis. 

These investigators found that “the spatial diversity of the channels considerably increases the 

available photoplethysmographic information…however this requires a more sophisticated 

control and signal processing” [4]. Frequency information from an external BIOPAC ECG 

sensor and an on-board accelerometer was used to design a specified filtering window for each 

measurement. Spatio-temporal PCA was used to determine the most likely R value between 

channels, which was then used to calculate SpO2. Both a BIOPAC finger clip sensor and a 

NELLCOR finger clip sensor were used for reference SpO2 measurements. Ten subjects were 

subjected to hypoxia using a re-breathing system to slowly lower SpO2 values from 100 % down 

to 70 % and back up to 100 %. They found that multichannel SpO2 estimates were more robust 

than single channel SpO2 estimates, especially when considering the poor perfusion seen in PPG 

waveforms taken from the sternum. 

 A 3-channel reflectance earpiece PPG sensor was developed and tested during standing, sitting, 

and walking [5]. This sensor featured 2 IR LEDs and 3 PDs in a device that hooks around the 

ear, shown in Figure 11. This study only analyzed multichannel HR measurements, so only IR 

LEDs were used. 
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Figure 11. The 3PD ear sensor used in [5]. 

Ten subjects were tested wearing the ear sensor and a Nellcor PPG sensor for reference HR 

measurements. Subjects were instructed to perform normal daily activities consisting of standing, 

sitting, and walking, and were then instructed to walk on a treadmill at a speed starting at 

4km/hr, increasing to 7 km/hr, and then decreasing back down to 4 km/hr. To measure the 

motion frequency, the motion-induced current was measured by reading the output from the PDs 

when the LEDs were turned off. An adaptive notch filter was implemented at the measured 

motion frequency with a bandwidth of 0.4 Hz to reduce noise contribution. These investigators 

found that motion-induced current was channel-specific, and that the channel with the highest 

power around the HR frequency varied between experimental runs.  

These studies showed that multichannel pulse oximetry is advantageous over single channel 

pulse oximetry in obtaining diverse signal information during low-motion and periodic motion 

artifact conditions. However, studies have attempted to better characterize the effects of motion 

artifact in pulse oximetry, and have shown that intense, aperiodic, random movements generate 

the most errors [6]. Previously, we have shown that in a 6-channel prototype reflectance-based 

forehead pulse oximeter, during short up-down, left-right, and circular head motion, channels 

responded differently to motion [3]. These types of movements are periodic and are not very 

intense in amplitude. Users looking to wear a portable pulse oximetry sensor would not be 

experiencing only simple, low-amplitude movements, but a variety of different aperiodic 

movements. Examining how multichannel pulse oximetry responds to a wider variety of motion 
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would help to further assess the benefit of this unique design, and assist in developing future 

signal extraction algorithms that make use of multichannel waveforms to improve motion 

tolerance in pulse oximetry.  

 FOREHEAD MULTICHANNEL PULSE OXIMETER 2.4

We have developed a custom reflectance-type, forehead-mounted, multichannel pulse oximeter 

(MCPO) shown in Figure 10. Six PDs are positioned concentrically around two pairs of Red 

(660 nm) and IR (940 nm) light emitting diodes (LEDs) at an equidistant separation distance of 

10 mm [34]. An opaque ring was incorporated to minimize direct light shunting between the 

LEDs and PDs. The RD LEDs are shown in red in Figure 10 below, the IR LEDs are shown 

adjacent to the RD LEDs, and channels 1 through 6 are labeled in white, starting at the top of the 

sensor and incrementing clockwise.  

Figure 12. 6-PD forehead pulse oximeter. 

The sensor and battery are enclosed in a plastic casing. The sensor housing is attached to an 

elastic band worn as a headband, allowing the sensor to rest comfortably on the forehead. The 

sensor is also equipped with an on-board tri-axial accelerometer (Acc). When the sensor is 

placed on the forehead, the x-direction of the Acc corresponds to motion perpendicular to the 

transverse plane, the y-direction perpendicular to sagittal plane, and the z-direction perpendicular 

to the coronal plane. Previous data have shown that variations in sensor position and vasculature 

heterogeneity of the underlying tissue can cause measurement errors, as well as light diffusion by 

the subcutaneous tissues predominantly in the direction perpendicular to the emitting surface of 

the LEDs [3]. Different motions change the optical coupling between the sensor and the skin, 

yielding 6 independent channels with slightly different motion-corrupted PPG waveform 

characteristics.  

1 
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3.  RESEARCH OBJECTIVES 
The goal of this research was to investigate the feasibility of using multichannel pulse oximetry 

to estimate HR and SpO2 during random motion of varying amplitudes and frequencies.  

Objective 1: To collect random motion data from the prototype pulse oximetry sensor with a 

variety of frequencies and amplitudes. 

Objective 2: Validate differences in channel response to motion. 

Objective 3: Implement a channel-multiplexing algorithm to choose the cleanest channel from 

which to calculate HR and SpO2 estimates. 

Objective 4: Determine if multichannel pulse is significantly better than using single channel 

pulse oximetry during motion in terms of HR and SpO2 errors. 
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4.  DATA COLLECTION 
Data were collected from 15 healthy volunteers between the ages of 22 and 32. Worcester 

Polytechnic Institute IRB approved the study protocol and informed consent was required by all 

subjects prior to data recording. 

 

 
Figure 13. Experimental setup for generating random motion. 

Subjects were instructed to bounce on an exercise ball with varying amounts of movement while 

wearing the 6PD MCPO forehead sensor and a reference Masimo-57 Radical (Masimo SET®, 

Masimo Corporation, CA, USA) finger type transmittance pulse oximeter that was kept 

motionless by resting the left hand on a table, as shown in Figure 2. The type of movement each 

subject performed was free to interpretation by each person, resulting in different types of 

motion for each data set. Furthermore, by asking each subject to bounce on an exercise ball, each 

data set had increasing and decreasing HR, allowing us to track changes in HR. And, since no 

specified motion, walking, or running speed was given to each subject, the frequencies of motion 

will vary from subject to subject, yielding a variety of motion corruption data. Each subject was 

asked to alternate between 3 minutes of rest and 5 minutes of bouncing on the exercise ball for a 

total of 19 minutes. Six pairs of PPG waveforms corrupted by random motion artifacts were 

obtained from the forehead-mounted MCPO sensor. PPG waveforms from the MCPO were 

sampled at 80 Hz. Reference HR and SpO2 measurements were obtained from the Masimo pulse 
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oximeter every 2 seconds. All data were transferred to a PC and processed offline with 

MATLAB. The data were aligned by removing the first few measurements from either the 

Masimo estimates or the MCPO measurements until the MCPO HR data followed the Masimo 

HR measurements during rest. It was assumed that the SpO2 measurements were aligned when 

the HR measurements were aligned. The six raw IR PPG waveforms, the six raw RD PPG 

waveforms, the on-board tri-axial accelerometer signals, and the Masimo reference data were 

saved to MATLAB for further processing.  
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5.  DATA ANALYSIS 
The particular motion protocol we followed was meant to test the response of multichannel 

signals to a variety of non-uniform motion. It was important to quantify the level of motion 

present in the PPG waveforms, both across different data sets and during data collection across 

channels to determine which channel was the least affected by motion artifacts. To represent 

overall motion, RMS values from the on-board tri-axial accelerometer data were calculated for 

each data set. Furthermore, because HR calculations are highly dependent on the frequency 

content of the infrared PPG waveform, and the arterial oxygen measurements are highly 

dependent on the amplitudes of the PPG waveforms, to determine how motion affects the 

multichannel PPG waveforms, frequency-domain signal-to-noise-ratios (SNR) were calculated 

for each data set and channel.  

A measure of signal quality had to be implemented as a metric to choose between channels. 

Previous noise detection algorithms have implemented template matching to measure signal 

quality in terms of PPG morphology. To quantify instantaneous noise level for our multichannel 

pulse oximeter, a multichannel template-matching algorithm was developed that matches beats in 

a specified window to an average template representative of a clean PPG morphology. The 

output from this algorithm is a number between 0 and 1, representing the amount of noise in the 

signal at a specified time point. A MCNL of 0 means the signal has no noise and an MCNL of 1 

means that the PPG waveform is completely corrupted by motion noise. This resulting 

multichannel noise level (MCNL) will be measured during rest and during motion across all data 

sets and channels. 

Acceptable HR and SpO2 measurements during motion were taken from Masimo’s specifications 

during motion given that they considered the leading “motion-tolerant” pulse oximeter on the 

market and, therefore, were used as reference measurements in this study. Masimo specifications 

claim a ± 5 bpm HR error during motion and a ± 3 % SpO2 error during motion. HR and SpO2 

error measurements are quantified according to three different parameters: performance index, 

accuracy and accuracy, defined as the percent of measurements within the above specified 

tolerances during motion, the mean of the absolute relative error, and the standard deviation of 

the absolute relative error, respectively. The performance index, accuracy, and precision were 
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compared between each individual channel and the channel-multiplexing estimates. These 

parameters are explained in greater detail in the following sections.  

 MOTION QUANTIFICATION 5.1

5.1.1  MULTICHANNEL TEMPLATE MATCHING 

To quantify the noise level in each channel at a particular time point, we developed a 

multichannel template-matching algorithm. An algorithm has been developed based on creating a 

template from single channel IR PPG waveforms using an average of beats over a specified 

window [35]. In our algorithm, six IR PPG waveforms are used to create a template over a single 

time period, allowing more robust template formation. First, the raw PPG waveforms were 

digitally filtered with a 12th order, 0.5 Hz cut-off, Butterworth low-pass filter and a 12th order, 

0.5 to 12 Hz Butterworth band-pass filter to separate the raw PPG signals into their DC and AC 

components, respectively. The six IR AC components served as inputs to the multichannel 

template-matching algorithm.  

a) Template Formation 

Peak-trough detection was performed on each of the six IR AC components over a 12 s window. 

A 12 s window was chosen to ensure that an accurate HR could be calculated from a single 

channel, and that an accurate template could be formed from the data in the window. From the 

beats in the window, an average peak-peak period was calculated across all channels and was 

defined by a variable L. Peak-peak period values that are outside of L ± 0.2 s were removed to 

include only clean beats in the beat period calculation. The average peak-peak period is updated 

by taking the average of the remaining peak-peak period values. Individual beats were 

segmented at the indices of each trough. Beats across all channels for the entire 12 s of data were 

re-sampled to be the same length (L) and normalized to have maximum amplitude of one and 

zero minimum amplitude. A temporary template is created from the average of all individual 

beats in the 12 s window. The correlation between this template and all beats in the current 

window was computed, and if the correlation of a beat in the current window with this template 

was less than 0.95, the beat was removed from further calculations. Analysis of the correlation 

between beats in a window during rest showed that the lowest correlation during rest was 0.9572, 

so a 0.95 correlation was assumed to be the cutoff correlation for clean data verses noise-
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corrupted data. If the number of beats removed were greater than 1/3 of the total number of beats 

in the current window, the template from the previous window was used. If less than 1/3 of the 

beats are removed, taking the average of the remaining “good” beats in the window forms a new 

template. The average correlation of all individual beats in the window is again calculated with 

the latest template. If the average correlation across all beats in the window with this template is 

less than 0.98, the template from the previous window is used. If the average correlation across 

all beats in the window is greater than 0.98, the template from the previous step is maintained.  

b) Multichannel Noise Calculation 

With the final formation of the template for a given window, the template matching algorithm 

systematically overlays beats from each individual channel, cuts off each beat at L/2 in order to 

capture only the systolic morphology of the PPG beats, which are more indicative of clean 

signals, and normalizes each beat such that the minimum amplitude is 0 and the maximum 

amplitude is 1. If the noise is such that there are no beats detected in a given channel, the 

multichannel noise level (MCNL) is set to 1. Otherwise, the correlation between the template and 

each beat in a given channel is calculated, and the overall MCNL is calculated as (1-C), where C 

is the average correlation between beats in a single channel and the template. The specifics of the 

overall process are described in Figure 14. 
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Figure 14. Processing of the data with the multichannel template-matching algorithm to obtain noise level 
(MCNL) for each channel. 

Figure 15 shows sample beats overlaid from all 6 channels during rest and motion. Beats taken 

from clean data have high correlation (C) with the average beat template, and are similar across 

all channels. On the contrary, beats corrupted with motion artifact have low correlation with the 

average “beat”. In this case, the template from the previous window is used.  
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(a) 

 
(b) 

Figure 15. Beat detection and overlay for a multichannel device during rest (a) and motion (b). 

Figure 15 shows beats present during rest on the right and the average beat used as the template 

plotted in black. During motion, only the beats with a high correlation with the template are 

shown on the right; the template from the previous window is shown in black. Also during 

motion, some channels have higher correlation with the template than other channels, yielding 

different MCNL levels for each channel. Figure 16 shows beats overlaid in the window separated 

by channel during rest and motion. During rest, beats across all channels are have very similar 

morphology, are highly correlated with one another, and are highly correlated with the template 

shown in Figure 16. During motion, some channels have beats that remain highly correlated with 

the template, while some channels are highly corrupted with motion artifact. Therefore, the 

average correlation coefficient, and MCNL, will differ between channels, allowing the “best” 

channel to be chosen. The multichannel HR estimate was calculated by dividing 60 by the 

average peak-to-peak period of the individual waveforms in the 12 s window only from the 

channel with the lowest MCNL, in accordance with Equation 3. 
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Figure 16. Beats in window overlaid from each individual channel during rest (top) and motion (bottom). 

Because HR measurements are more dependent upon the frequency content of the PPG 

waveform and the SpO2 measurements are more dependent on the amplitude of the PPG 

waveforms, the channel chosen to calculate HR was not necessarily the same channel that was 

chosen to calculate SpO2. To choose the best channel for calculating SpO2, a weighted “noise 

level” was added based on the scaling factor used when the individual PPG waveforms were 

normalized to maximum amplitude of 1. The correlation of the beat with the template (C) was 

multiplied by the percent amplitude difference from the mean amplitude in the window. First, the 

average amplitude of each PPG waveform was calculated as A. This average amplitude was then 

divided by the maximum value of each individual waveform in the window. This relative 

(scaled) amplitude, a, was calculated for each waveform i in the 12-second window. Then, the 

relative amplitude of each waveform was either multiplied or divided by the correlation number 

to obtain an updated, amplitude-weighted correlation number, C’. The calculations for this 

amplitude-weighted correlation are denoted in Equations 4-6. 

 
A  =  mean(maximum value of each waveform in 12 s window for a single channel) (4) 

 

a i   =  
A

max(waveform i )
 (5) 
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C' i   =  
if a i <1

else if (a i ≥1
        

C i
a i

C(i) ∗ a(i)
 (6) 

The channel chosen to calculate SpO2 is still the minimum of (1-C), but with the updated 

amplitude-weighted correlation number C’. The SpO2 measurements from the channel with the 

lowest amplitude-weighted MCNL value were calculated by using the RMS of the AC/DC ratio 

for IR and the RMS of the AC/DC ratio for RD. This RMS-based ratio was used in the formula, 

125 – 38 * R. These A and B coefficient numbers were based on preliminary calibration data, 

but are not the final calibration numbers for our sensor. 

 

5.1.2  ACCELEROMETER AMPLITUDE 

The accelerometer signals measured during motion provide a way to quantify the amount of 

motion that was introduced into any particular data set. The RMS value of all 3 axes of the on-

board accelerometer was used to quantify motion, according to Equation 7. 

 
AccelRMS=

1
3
AccelX 2+ AccelY 2+ AccelZ 2  (7) 

Although these calculations do not translate directly into the level of noise introduced into the 

corrupted PPG waveforms during motion, they help to distinguish between high motion and low 

motion data sets based on the corresponding RMS values. 

 FREQUENCY DOMAIN SNR 5.2

Frequency domain SNR represents the power of the PPG signal inside of the HR frequency band 

relative to the power outside the HR frequency band, which corresponds to motion induced 

frequencies. First, we compute the power spectral density (PSD) of the entire waveform during 

motion, and then calculate the mean heart rate (MHR) during motion according to the reference 

readings obtained from the Masimo finger sensor. The first harmonic of the MHR is subtracted 

before integrating. We integrate the PSD inside the ± 0.2 Hz frequency band around the MHR 
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during motion and divide it by the integration of the PSD outside of the ± 0.2 Hz frequency band 

of the MHR, from 0.67 Hz to 3 Hz. The lower limit of 0.67 was chosen to eliminate the 

respiratory rate frequency in the calculation. An upper limit of 3 Hz was chosen because 3 Hz 

corresponds to a 180 bpm heart rate, which was deemed the upper limit for HR calculations. 

Furthermore, the frequencies introduced by the experimental protocol did not exceed 3 Hz. 

  

 HEART RATE ERROR METRICS 5.3

HR error was defined as the absolute error between the HR calculated by the multichannel 

device and the HR given by the Masimo-57 reference sensor, as shown in Equation 9. Absolute 

error was chosen over a relative, percent error so that a 3 bpm error on a 90 bpm heart rate would 

be the same as a 3 bpm error for a 140 bpm heart rate.  

 ErrHR = HRMCPO-HRMasimo  [bpm] (9) 

   

This HR error was analyzed during motion using three parameters: accuracy, precision, and 

performance index. Performance Index is an indication of the number of measurements taken 

that are within a specified tolerance. The Masimo-57 sensor claims HR error tolerance of ± 5 

bpm during motion; the upper limit used for performance index calculations matches the Masimo 

specifications during motion. Performance Index was chosen as an error metric because a higher 

PI from a channel or sensor indicates that that sensor or channel will experience less dropouts in 

readings and less overall false HR measurements. Accuracy was chosen as an error metric 

because accuracy is the degree to which HR measurements match the true, or accepted, values. 

High degrees of accuracy are important for medical device specifications, as clinical accuracy is 

of significant importance in medical device instrumentation. Precision refers to the exactness of 

measurements, or repeatability. Precision was chosen as the third error metric as it is a measure 

of the ability of a medical device to make the same measurements over time of the same true HR. 
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5.3.1 PERFORMANCE INDEX 

Performance index (PI) was defined as the percentage of the measurements that have absolute 

relative HR errors lower than 5 bpm during motion. The higher in performance index a channel 

is, the more “correct” measurements were taken during motion. PI is defined in Equation 10. 

 PI = # measurements (ErrHR ≤ 5 bpm)
total # of measurements

  [%] (10) 

5.3.2 ACCURACY 

Accuracy was defined as the offset that a HR measurement has in relation to the reference 

device. In this thesis, we assume that the accuracy is the mean absolute relative HR error during 

motion in relation to the measurements read by the Masimo-57 finger sensor. Accordingly, 

accuracy is defined in Equation 11. 

 Accuracy = AVERAGE(ErrHR) [bpm] (11) 

5.3.3 PRECISION 

Precision was defined as the ability of a device to make consistent measurements, the spread of 

measurements taken around one true value, or the repeatability to measure a single true value 

multiple times. Precision is measured as the standard deviation of the absolute relative error 

taken in relation to the reference Masimo-57 oximeter. Accordingly, precision was defined in 

Equation 12. 

 Precision = STD(ErrHR) [bpm] (12) 
 

 SPO2 ERROR METRICS 5.4

Given that SpO2 measurements depend on the clinical calibration curves for each individual 

device, and that subjects were not subjected to hypoxia in this study, SpO2 measurements from 

the multichannel device were compared against a constant blood oxygen level of 98 %. Similar 

to HR error, SpO2 error was defined as the absolute error against a constant oxygen saturation of 

98 %, as shown in Equation 13; absolute error was chosen over relative error so that the error 

calculation would not be dependent on the oxygen saturation level. 

 ErrSpO2 = SpO2 MCPO- 98  [%] (13) 
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Similar to HR error analysis, Performance Index was chosen as an error metric because a higher 

PI from a channel or sensor indicates that that sensor or channel will experience less dropouts in 

readings and less overall false SpO2 measurements. Accuracy was chosen as an error metric 

because accuracy is the degree to which SpO2 measurements match the true, or accepted, values. 

High degrees of accuracy are important for medical device specifications, as clinical accuracy is 

of significant importance in medical device instrumentation. Precision refers to the exactness of 

measurements, or repeatability. Precision was chosen as the third error metric as it is a measure 

of the ability of a medical device to make the same measurements over time of the same true 

SpO2  level. 

5.4.1 PERFORMANCE INDEX 

Performance index (PI) was defined as the percentage of the measurements that have SpO2 errors 

lower than 3 % during motion. The higher percentage a channel or device has in PI, the more 

“correct” measurements are taken during motion. Hence, PI was defined according to Equation 

14. 

 PI = 
# measurements (ErrSpO2 ≤ 3 %)

total # of measurements
  [%] (14) 

 
5.4.2 ACCURACY 

Accuracy was defined as the offset that a SpO2 measurement has in relation to the reference 

device. In this thesis, we defined accuracy as the mean absolute relative SpO2 error during 

motion in relation to a SpO2 of 98%. Accuracy was defined according to Equation 15. 

 

 Accuracy = AVERAGE(ErrSpO2 ) [%] (15) 
 
5.4.3 PRECISION 

Precision was defined as the ability for a device to make consistent measurements, the spread of 

measurements taken around one true value, or the repeatability to measure a true value multiple 

times. In this thesis, precision was determined based on the standard deviation of the absolute 

relative error taken in relation a SpO2 of 98 %. Precision is defined in Equation 16. 
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 Precision = STD(ErrSpO2) [%] (16) 
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6.  RESULTS 
 TIME-DOMAIN PPG WAVEFORM DIFFERENCES DURING MOTION 6.1

Though the range of differences in signal corruption varies from data set to data set, for all 31 

data sets we collected, the IR PPG waveforms were similar during rest across all channels, and 

differed in the levels of signal corruption between channels during motion. Figure 17 shows 

typical IR PPG waveforms recorded during rest and motion from data set 10. 

  

  
(a) 

  
(b) 

Figure 17. Typical differences in IR PPG waveforms from all six channels recorded during rest (a) and 
motion (b) in a 12-second window for data set 10. 

It is clear from Figure 17b that a channel with greater motion corruption, such as channels 3 and 

4, will have worse peak-detections than channels with less motion corruption, as seen in channels 

1 and 6. Therefore, the HR estimations from these channels will be better during motion.  
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 ACCELEROMETER AMPLITUDES DURING MOTION 6.2

The RMS amplitudes of the on-board tri-axial accelerometers provide an indirect measure of 

how much noise was introduced into the corrupted PPG waveforms in each data set, as 

summarized in Figure 18. 

  

Figure 18. Box and Whisker plot of RMS accelerometer amplitudes across all data sets during rest (left side 
of column) and motion (right side of column). RMS values were calculated using Equation 8. 

Generally, the larger the accelerometer RMS amplitudes are, the more intense is the motion 

performed by the subject during testing. The accelerometer amplitude is a good indication of the 

level of motion artifacts introduced, but is indirectly related to the motion artifact introduced into 

the corrupted PPG waveform. As seen in Figure 16, about half of the data sets have a relatively 

small range of RMS accelerometer amplitudes during motion, and median RMS accelerometer 

amplitudes below 500 au. Generally, these data sets showed greater differences in motion 

between channels. However, the pressure exerted by the headband to secure the sensor and the 

signal amplitude of the PPG, amongst other variables, can affect the quality of the recorded PPG 

waveforms. 
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 FREQUENCY SNR DURING MOTION 6.3

The PSD of each AC IR waveform was calculated using Welch’s method. The frequency-based 

SNR was calculated by integrating the area under the PSD of the IR PPG waveform during 

motion within a frequency band of ± 0.2 Hz around the MHR divided by the area outside of this 

range between 0.67 Hz and 3 Hz, as shown in Equation 8. The second harmonic of the HR 

(2*MHR) was subtracted out before calculations so as not to be added to the noise calculation. 

Table 1 shows the SNR values during motion for all 31 data sets and for each of the six channels. 

Table 1. Frequency-based SNR of the IR AC PPG waveforms for all 6 channels during motion. 

Frequency Band Signal-to-Noise Ratio (SNR) [dB] during motion 
Data Set Ch 1 Ch 2 Ch 3 Ch 4 Ch 5 Ch 6 

1 7.44 6.93 8.85 11.55 11.69 8.13 
2 3.24 3.50 2.70 2.65 2.28 2.62 
3 11.10 10.30 9.63 9.79 9.74 10.03 
4 11.36 10.13 9.31 10.02 10.43 9.94 
5 9.99 6.98 5.34 6.53 6.71 6.13 
6 16.24 9.21 12.87 14.10 12.13 14.15 
7 15.02 9.68 15.42 18.19 13.85 11.74 
8 10.28 6.24 6.58 7.55 7.22 10.27 
9 7.51 7.60 7.97 7.77 8.36 7.58 
10 5.47 5.45 2.71 2.83 4.68 5.27 
11 5.79 6.08 3.65 3.56 5.43 5.76 
12 10.96 11.55 16.08 18.04 17.23 13.24 
13 9.20 11.88 15.06 15.59 14.01 11.33 
14 14.38 15.93 17.45 16.35 13.44 16.08 
15 15.26 17.21 20.62 18.07 12.49 17.33 
16 5.61 4.00 3.49 3.87 3.88 4.48 
17 4.18 2.07 1.49 2.06 2.14 2.97 
18 8.88 8.51 11.15 12.08 11.49 8.95 
19 8.89 8.83 12.08 12.92 12.28 9.56 
20 5.31 1.85 -2.79 -1.97 1.08 5.53 
21 -1.30 -0.78 -3.81 -4.64 -6.02 -6.94 
22 11.88 14.94 10.54 9.38 8.84 9.46 
23 9.84 13.17 10.95 9.81 7.54 7.62 
24 -5.07 -4.37 -1.88 -4.54 -6.52 -7.96 
25 -6.08 -3.22 -3.32 -6.72 -7.02 -4.44 
26 -2.68 0.88 2.21 3.56 2.40 -1.22 
27 -7.71 -8.24 -6.84 -6.37 -7.81 -8.42 
28 -3.63 -3.19 -0.91 0.11 -0.64 -3.10 
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29 -0.39 0.08 -1.76 -2.44 -2.21 -0.80 
30 0.97 -0.41 -2.48 -2.06 -0.80 1.39 
31 -11.96 -8.01 -6.04 -7.96 -9.50 -10.46 

 

The motion frequency differences across channels can be visualized in comparison to the power 

spectral density (PSD) of the accelerometer signal during motion. Figures 19 and 20 show the 

PSD of the PPG waveform across all six channels, and the PSD of the tri-axial accelerometer 

waveform from two typical data sets where channels have different amplitudes of motion 

frequency. When the forehead sensor is placed on the forehead, the x-direction corresponds to 

motion perpendicular to the transverse plane, the y-direction perpendicular to sagittal plane, and 

the z-direction perpendicular to the coronal plane. The majority of the motion present in our data 

sets is in the x-direction, as shown in Figures 19 and 20. 
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Figure 19. Power Spectral Density (PSD) of all six channels during motion for data set 10. The PSD of the 
accelerometer is plotted below to show the dominant motion frequencies. 

Figure 19 shows where the MHR frequency is present in the PPG waveform and the motion 

frequency present in the PPG waveforms across all channels, corresponding to the spectra of the 

accelerometer during motion. In the spectra on the right, channels 2 and 5 show less amplitude in 

the PSD at the motion frequency than the remaining four channels. 
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Figure 20. Power Spectral Density (PSD) of multiple channels during motion for data set 20. The PSD of the 
accelerometer is plotted below to show the dominant motion frequencies. 

 
Figure 20 shows the PSD of the six AC PPG waveforms during motion and the PSD of the 

accelerometer data for data set 20. In this data set, channels 1 and 6 hardly show any amplitude 

in the motion frequency relative to the other 4 channels. Figure 21 shows the entire time-varying 

spectrogram from data set 14, channel 5. The prominent motion frequency, as calculated from 

the accelerometer PSD, is 1.72 Hz.  
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Figure 21. Time-varying spectrogram of the AC IR PPG waveform from channel 5. The heart rate frequency 
during motion and the dominant motion frequency, around 1.72 Hz, are labeled in white. 

Figure 22 shows the PSD centered on the dominant motion frequency of 1.72 Hz for each 

channel. From these plots, it is evident that the motion frequency is greater in channels 3 and 4 

and smaller in channels 1, 2, and 6, and that the amount of motion in each channel changes over 

time. 
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Figure 22. Time-varying spectrogram of AC IR PPG waveforms from all channels only centered on the 
dominant motion frequency around 1.72 Hz. 
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 MULTICHANNEL TEMPLATE MATCHING NOISE LEVEL (MCNL) 6.4

6.4.1 MCNL VS VFCDM 

Previous to development of the MCNL algorithm, noise detection performed in this lab was 

implemented using the Variable Frequency Complex Demodulation Method (VFCDM). To 

compare noise detection performance of the old method and our new method, VFCDM noise 

levels and MCNL values were compared for our motion data sets. Figure 23 shows the AC 

portion of the IR PPG waveform plotted against both the MCNL and VFCDM noise level. The 

accelerometer is plotted below both noise levels for motion reference. Although the trend of the 

noise level for each algorithm differs, both algorithms respond to and detect noise in the PPG 

waveform and both algorithms are sensitive to changes in the PPG waveform.  

 

Figure 23. Time-series of the IR AC PPG, the VFCDM approach, the noise level output by the multichannel 
template matching algorithm (MCNL), and the accelerometer data for motion reference. 

Generally, the MCNL was similar to the output from the VFCDM algorithm: low during rest, 

and higher during motion with varying levels of noise across channels. Figure 24 shows the same 
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four plots shown in Figure 23, but over the duration of an entire data set. The trends of both 

noise detection algorithms followed the same pattern, but spread across a different range of noise 

levels—the VFCDM noise level ranged from 0.07 to 1 during motion whereas the MCNL values 

tended to range between 0.002 and 0.4 during motion.  

 

Figure 24. Time-series of the IR AC PPG, the VFCDM approach, the noise level output by the multichannel 
template matching algorithm (MCNL), and the accelerometer data for motion reference for the duration of 

an entire data set. 

For the purpose of our algorithm, the noise level of each channel in relation to the other five 

channels is more important than the overall range of noise level output by our multichannel noise 

detection algorithm. Furthermore, the VFCDM was higher in computational time, making it less 

efficient than the MCNL computation. Because of this, it was determined that the MCNL was 

sufficient for detecting motion noise and as the basis for choosing channels. 
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6.4.2 MCNL VALUES DURING MOTION 

The overall MCNL across all six channels was averaged and the corresponding Box-and-

Whisker plots of the noise level during rest (left) and motion (right) are plotted in Figure 25 for 

all 31 data sets. 

 

Figure 25. Box-and-Whisker plots of the average Multichannel Noise Level (MCNL) across all data sets. The 
average MCNL across all channels during rest and motion are shown on the left and right hand side of each 

column, respectively. 

Multichannel noise level (MCNL) plots were used to illustrate how clean or corrupted different 

channels were during motion based on their respective signal morphology. During clean 

segments of the PPG waveforms that were recorded during rest, beats across all channels showed 

a relatively high degree of correlation (C) and low MCNL values. The differences in the medians 

and ranges of the MCNL, calculated by the multichannel template-matching algorithm during 

motion, showed high variation across data sets, hence displaying the variety of motions 

manifested by our experimental protocol. The data sets with low MCNL values during motion 

tended to have low accelerometer RMS amplitudes.  

Figure 26 shows the time-series MCNL of data set 20 across all channels, where each color 

indicates a different channel. The MCNL outputs low values during rest, high values during 
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motion, and varying values across channels during motion. In data set 20, we noticed that the 

channels were more consistently separated in terms of noise level, and it is clear that the channel 

shown in blue has the lowest noise level of all six channels during the majority of the motion. 

 

Figure 26. Multichannel template-matching noise level (MCNL) plotted for the duration of the first motion 
segment of data set 20. Accelerometer data is plotted below the MCNL to indicate where motion occurs. 

 

Figure 27 shows the MCNL plotted for a portion of rest and the entire duration of the first 

motion segment across all six channels. The filtered accelerometer signal is shown beneath the 

MCNL plot for motion reference. In data set 24, the noise levels across channels were closer 

together during motion. The channel shown in red was the lowest during a lot of the motion, but 

not at every time point. 
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Figure 27. Multichannel template-matching noise level (MCNL) plotted for the duration of the first motion 
segment from data set 24. Accelerometer data is plotted below the MCNL to indicate where motion occurs. 

 
6.4.3  SPREAD OF CHANNELS CHOSEN DURING MOTION 

To see how the channel-switching algorithm affected measurements taken during motion, the 

number of times that any individual channel had the lowest MCNL value during motion was 

calculated for each data set. Figure 28 shows the histograms of the spread of channels chosen 

during motion for fifteen different data sets. 
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Figure 28. Histograms of the number of times each channel was chosen during motion for 15 of the 31 data 
sets. 

Figure 28 shows the spread of measurements taken from each channel during motion for fifteen 

of the thirty-one data sets. For a majority of the data sets, most measurements were taken from 

one or two channels during motion. The channel chosen during motion did differ between data 
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sets, as shown in Figure 28. For example, data sets 6 and 14 used channel 5 for most of the 

measurements, while data set 20 used channel 1 for most of the measurements and data set 24 

used channel 3 for most of the measurements. And, some of the data sets used all six channels 

more evenly, as seen in the histograms for data sets 28 and 30. 

 HR ERRORS DURING MOTION 6.5

HR errors during motion were calculated in comparison to the Masimo reference sensor 

according to 3 separate statistical parameters: performance index (PI), accuracy, and precision. 

The PI, accuracy, and precision of each channel was calculated and put in order from worst 

performance to best performance for each data set. To compare the multichannel estimate against 

the single channel estimates for each parameter, six one-sided t-tests were performed; estimates 

from each individual channel were compared against the multichannel estimate for each 

parameter. The multichannel estimate (MC) corresponds to the HR calculated by switching 

between channels every 2 seconds using the multichannel template-matching algorithm. A 

confidence value of 95 % (α = 0.05) was used to find t-critical values for each t-test. Data sets 21 

and 31 showed extremely low SNR, high accelerometer amplitudes during motion, high MCNL 

during motion and high HR errors across all channels. Furthermore, the PPG waveforms across 

all channels were completely corrupted by motion artifacts; therefore, these data sets were 

eliminated from the statistical calculations. 

6.5.1 PERFORMANCE INDEX 

Table 2 summarizes the performance index calculated for each data set across all 6 channels, and 

the corresponding multichannel HR estimates. For each data set, the performance index of each 

channel was put in order of worst PI to best PI during motion. The mean performance index per 

each channel, the corresponding multichannel estimate, and the mean and standard deviation of 

the difference between the multichannel and each individual channel are given below. 

Table 2. Performance Indices of each individual channel and the multichannel estimate for HR 
measurements during motion. 

Performance Index: Percentage of HR error less than or equal to 5 bpm [%] 
Data Set Worst     ç Channel  è     Best MC 

1 95.7% 95.7% 96.0% 96.0% 97.4% 97.7% 98.0% 
2 96.7% 97.4% 98.0% 98.0% 99.3% 99.3% 98.7% 
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3 83.4% 87.4% 90.7% 91.4% 93.0% 95.7% 94.0% 
4 83.4% 88.7% 89.1% 89.7% 90.1% 91.1% 91.7% 
5 33.4% 48.0% 48.7% 69.2% 69.9% 74.8% 64.6% 
6 85.1% 88.1% 89.4% 90.1% 93.0% 94.4% 94.7% 
7 59.6% 65.2% 69.5% 77.5% 81.1% 83.8% 77.5% 
8 64.6% 65.6% 65.9% 66.9% 68.2% 69.2% 65.6% 
9 87.1% 87.4% 87.7% 88.1% 88.7% 88.7% 88.4% 
10 63.6% 69.2% 88.1% 89.1% 90.1% 91.7% 90.1% 
11 62.9% 63.2% 95.4% 98.3% 99.3% 99.7% 99.7% 
12 5.6% 6.0% 7.6% 7.9% 11.9% 22.5% 9.3% 
13 61.3% 63.9% 65.6% 67.2% 70.9% 78.8% 68.9% 
14 33.1% 34.4% 34.4% 34.8% 36.1% 36.8% 36.4% 
15 26.5% 26.5% 28.1% 28.8% 28.8% 29.5% 29.1% 
16 85.8% 91.7% 92.1% 93.7% 96.7% 98.0% 98.0% 
17 45.7% 58.6% 60.9% 62.9% 73.8% 85.8% 85.4% 
18 8.3% 11.3% 14.6% 79.8% 81.5% 90.1% 89.1% 
19 0.7% 1.3% 2.6% 61.6% 70.5% 76.2% 76.5% 
20 1.7% 2.0% 46.7% 76.8% 95.7% 96.0% 95.7% 
21* 0.3% 0.3% 0.3% 0.3% 1.0% 1.0% 0.3% 
22 25.5% 71.5% 72.2% 85.4% 85.8% 86.1% 85.4% 
23 32.5% 60.6% 85.4% 92.7% 94.7% 94.7% 94.7% 
24 8.9% 19.2% 20.5% 30.8% 37.7% 58.3% 50.7% 
25 5.3% 5.6% 5.6% 9.9% 11.6% 15.9% 11.9% 
26 1.3% 4.6% 15.2% 44.7% 54.0% 80.5% 61.3% 
27 23.8% 27.2% 31.1% 40.7% 43.7% 43.7% 38.7% 
28 15.6% 23.8% 35.8% 59.3% 62.3% 69.2% 61.9% 
29 28.8% 34.8% 51.7% 59.9% 59.9% 63.9% 60.6% 
30 23.5% 24.8% 28.5% 32.1% 40.1% 50.3% 39.4% 
31* 3.6% 4.0% 4.0% 4.0% 4.6% 5.6% 3.6% 

Mean (all) 40.4% 46.1% 52.3% 62.2% 65.5% 70.0% 66.4% 
Mean (excl. 21 & 31) 43.1% 49.1% 55.8% 66.3% 69.9% 74.6% 70.9% 

Mean diff. 27.81% 21.80% 14.61% 4.57% 1.04% -3.67% 
 Std Err diff. 5.04% 4.69% 3.86% 1.31% 0.79% 0.93% 
 T-statistic 

 
5.521 4.648 3.789 3.483 1.310 -3.942 

 T- critical 1.701 
       α 0.05 
        

The performance index for the multichannel switching estimate was better than five of the six 

channels across all six data sets. The PI was worse than the best performing channel by 3.7 %, 

but better than the worst performing channel by 27.8 %. In order of performance index, we found 

that the multichannel estimate was significantly higher in PI than four of the six channels. 
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6.5.2 ACCURACY 

The accuracy, or accuracy, was defined as the mean of the absolute relative error. The accuracy 

was calculated for all 6 channels and for the multichannel switching estimate. Six one-sided t-

tests were performed to compare each individual channel with the multichannel estimate in order 

to test the multichannel approach to the single channel based method for calculating HR in a 

conventional pulse oximeter. Table 3 summarizes the accuracy of each channel and of the 

multichannel estimate (MC) during motion. 

Table 3. Mean absolute HR errors for each individual channel and the multichannel estimate during motion. 

Mean HR error during motion [bpm] 
Data Set Worst          ç    Channel  è            Best MC 

1 1.8 1.8 1.7 1.7 1.7 1.6 1.5 
2 1.7 1.6 1.5 1.4 1.4 1.3 1.2 
3 3.6 2.8 2.7 2.5 2.5 2.2 2.3 
4 3.1 2.8 2.7 2.7 2.6 2.5 2.4 
5 9.5 7.5 7.1 4.5 4.3 4.1 5.0 
6 2.9 2.7 2.6 2.3 2.1 2.0 2.0 
7 4.7 4.4 4.0 3.5 3.2 3.1 3.6 
8 5.0 4.9 4.8 4.6 4.5 4.5 4.7 
9 2.5 2.5 2.5 2.4 2.4 2.4 2.5 
10 9.5 7.8 3.1 3.1 2.9 2.8 2.9 
11 13.0 12.2 2.3 1.6 1.3 1.2 1.2 
12 10.7 10.7 10.7 10.5 10.0 9.2 10.5 
13 4.7 4.4 4.3 4.1 4.0 3.5 4.2 
14 9.5 9.5 9.5 9.4 9.4 9.2 9.5 
15 11.6 11.6 11.4 11.4 11.2 11.2 11.3 
16 4.6 3.1 2.9 2.3 1.8 1.6 1.5 
17 16.4 12.2 11.2 10.4 6.5 2.7 2.8 
18 13.9 13.9 12.7 3.4 3.3 2.6 2.6 
19 13.7 13.6 13.6 5.5 4.7 3.9 3.9 
20 24.4 24.1 11.4 4.3 1.8 1.7 1.8 
21* 40.4 39.4 39.3 38.8 38.8 38.8 39.3 
22 8.2 4.1 4.0 2.8 2.7 2.6 2.8 
23 7.7 5.8 2.9 2.1 2.0 2.0 2.0 
24 20.4 15.1 14.2 11.1 10.1 7.1 10.0 
25 22.9 22.8 22.2 20.5 20.2 17.5 20.0 
26 44.5 42.6 34.0 19.2 15.8 6.1 17.7 
27 24.5 23.6 22.4 19.4 19.4 19.0 22.6 
28 22.1 20.0 13.7 9.9 9.2 6.7 8.7 
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29 10.4 9.5 7.4 6.8 6.7 6.1 6.9 
30 12.8 11.6 11.3 10.5 9.1 7.8 9.3 
31* 22.9 22.8 22.7 22.7 22.3 22.0 22.6 

Mean (all) 13.0 12.0 10.2 8.2 7.7 6.7 7.7 
Mean (excl. 21 & 31) 11.7 10.6 8.8 6.7 6.1 5.1 6.1 

Mean diff. 5.63 4.53 2.68 0.58 -0.02 -1.00 
 Std Err diff. 1.27 1.19 0.76 0.30 0.19 0.41 
 T-Statistic 

 
4.434 3.809 3.520 1.919 -0.092 -2.428 

 T-Critical 1.701 
       α 0.05 
        

The multichannel estimate was as low or lower than five of the six channels in accuracy of HR 

measurements over the remaining 29 data sets. A one-sided t-test was performed to compare the 

single channel estimates with the multichannel estimates. The multichannel estimate was 

statistically better in accuracy than four of the six channels. Data analysis showed that the 

average accuracy of HR error was 5.6 bpm lower than the worst performing channel and at 

worst, 1 bpm worse than the best performing channel.  

6.5.3 PRECISION 

The precision was defined as the standard deviation of the absolute relative error. Table 4 shows 

the precision calculated for all 6 channels and for the multichannel switching estimate (MC). A 

one-sided t-test was performed to compare the multichannel estimate against each individual 

channel to compare against a single-channel pulse oximeter. 

Table 4. Precision of absolute HR errors for each channel and the multichannel estimate during motion. 

Standard Deviation of HR error during motion [bpm] 
Data Set Worst       ç Channel è   Best MC 

1 2.5 2.0 1.9 1.8 1.6 1.6 1.6 
2 1.5 1.4 1.4 1.3 1.3 1.2 1.2 
3 3.5 2.9 2.6 2.1 1.9 1.8 2.2 
4 3.2 3.2 2.8 2.7 2.6 2.6 2.6 
5 6.4 5.9 5.7 3.7 3.4 3.4 4.3 
6 2.6 2.4 2.2 2.2 2.0 2.0 1.9 
7 3.7 3.5 3.2 2.8 2.8 2.6 3.2 
8 5.1 4.9 4.8 4.4 4.3 4.3 4.6 
9 3.9 3.9 3.9 3.9 3.9 3.8 4.0 
10 13.2 11.1 6.5 6.2 6.2 6.2 6.2 
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11 17.8 16.9 5.6 4.1 1.2 1.0 1.1 
12 4.5 4.0 3.8 3.4 3.3 3.3 3.6 
13 3.8 3.5 3.3 3.3 3.1 2.8 3.4 
14 6.5 6.5 6.4 6.4 6.4 6.4 6.5 
15 8.0 7.9 7.9 7.9 7.8 7.8 7.9 
16 9.5 6.7 6.3 3.9 1.9 1.6 1.6 
17 16.3 14.7 13.9 13.4 10.1 3.0 3.1 
18 6.0 5.9 5.1 3.4 2.7 2.4 2.4 
19 4.7 4.3 4.2 4.2 4.1 3.9 3.8 
20 10.8 6.0 5.9 5.2 2.0 1.9 1.9 
21* 7.1 6.4 4.0 4.0 3.9 3.7 6.0 
22 4.0 3.3 2.8 2.7 2.7 2.5 2.8 
23 5.0 4.6 2.4 2.0 1.9 1.9 1.9 
24 9.3 9.1 9.0 8.2 8.1 7.4 10.2 
25 10.0 9.9 9.9 9.2 9.0 8.8 10.0 
26 18.4 17.4 17.2 13.8 10.7 10.2 21.5 
27 23.6 23.2 22.8 21.9 21.7 21.5 23.9 
28 14.2 13.7 12.6 12.6 11.6 9.5 11.1 
29 8.7 8.0 7.4 7.0 6.6 6.5 7.6 
30 8.3 7.9 7.4 7.4 6.9 6.8 7.2 
31* 9.6 9.1 8.8 8.6 8.6 8.4 9.1 

Mean (all) 8.1 7.4 6.5 5.9 5.3 4.9 5.7 
Mean (excl. 21 & 31) 8.1 7.4 6.5 5.9 5.2 4.8 5.6 

Mean diff. 2.5 1.8 0.9 0.3 -0.4 -0.8  
Std Err diff. 0.8 0.7 0.5 0.5 0.5 0.4  

T-Statistic 
 

3.038 2.465 1.834 0.543 -0.835 -2.097  
T-Critical 1.701 

       α 0.05 
        

Data analysis showed that the precision of the multichannel estimate was better than four of the 

six channels, and statistically lower than three of the six channels. The multichannel-switching 

estimate increased precision by up to 2.5 bpm when compared to the worst performing channel, 

and was at worst 0.8 bpm worse than the best performing channel. 

Generally, the multichannel data can be divided into one of three scenarios for HR 

measurements: (1) during motion, the estimated HR values produce low-errors for all six 

channels, making the multichannel HR estimation approximately as good as any individual 

channel used in a conventional pulse oximeter, (2) during motion, HR estimations produce high-

errors in some of the channels, and low-errors in other channels, making the multichannel 
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derived HR estimate better than any individual channel, and (3) during motion, all six channels 

are corrupted by motion artifacts such that all six channels have large HR errors, and the 

multichannel estimate is not better than any individual channel. The first scenario is depicted in 

Figures 29 and 30. 
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Figure 29. Multichannel HR Estimates from data set 2.  
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Figure 30. Multichannel HR Estimates from data set 3. 

As stated earlier, we found that the signals recorded from the accelerometer do not necessarily 

indicate whether estimated HR values from all six channels will have a low-error or not. For 

example, for data sets 2 and 3 in Figures 29 and 30, where both data sets had low-error HR 

measurements across all channels, the overall accelerometer amplitudes during motion was 

vastly different. However, data sets 11 and 17, shown in Figures 31 and 32, have even lower 

accelerometer amplitudes than data sets 2 and 3 during motion, but have different levels of HR 

error across channels. 



 

50 

 

Figure 31. Multichannel HR estimates from data set 11.  
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Figure 32. Multichannel HR estimates from data set 17. 

This particular situation, where the multichannel was seen to be the most relevant, occurred in 9 

to 10 data sets out of 31 sets. The final situation is depicted below in Figures 33 and 34: where 

all six channels had produced high HR errors during motion, and therefore the multichannel 

estimate was not successful in lowering the overall HR error lower during motion.  
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Figure 33. Multichannel HR estimates from data set 21.  
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Figure 34. Multichannel HR estimates from data set 31. 

Note that the accelerometer amplitudes in these data sets are lower than the accelerometer 

amplitudes seen in Figure 31, further suggesting that the overall amplitude level of the 

accelerometer is not a direct measurement of how much motion frequency will be introduced 

into the PPG waveforms, or how severely HR measurements during motion will be affected. 

To further depict the accuracy (bias), precision, and differences in HR measurements, time-series 

of the HR measurements for the first 24 data sets during motion were plotted, as well as the 

correlation and the Bland Altman plots of the HR measurements taken with our multichannel 

device compared to the Masimo reference HR measurements. These plots for the first 24 data 

sets are shown in Appendix H.   

 
 SPO2 ERRORS DURING MOTION 6.6

Since subjects in this study did not undergo hypoxia, the SpO2 errors were calculated and 

compared to a constant SpO2 value of 98 %. SpO2 errors were separated into 3 distinct 

parameters: performance index (PI), accuracy, and precision. To compare the multichannel 
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estimates against the single channel estimates for each parameter, six one-sided t-tests were 

performed. Estimates from each individual channel were compared against the multichannel 

estimate for each parameter. The multichannel estimate (MC) corresponds to SpO2 

measurements taken by switching between channels every 2 seconds using the multichannel 

template-matching algorithm with amplitude-weighted correlation values. A confidence value of 

95 % (α = 0.05) was used to find t-critical values for each t-test. Data sets 6 showed relatively 

high-error SpO2 measurements during rest, so this data set was eliminated in the statistical 

analysis. Since data sets 21 and 31 showed extremely low SNR, high accelerometer amplitudes 

during motion, high MCNL during motion, and high HR errors across all channels, these data 

sets were also excluded from the statistical analysis in calculating estimated SpO2 errors. Data 

sets 27 and 30 showed less than 1% performance index for SpO2 measurements during motion, 

so these data were also eliminated from the statistics calculations. 

6.6.1 PERFORMANCE INDEX 

Table 5 summarizes the performance index calculated for each data set across all 6 channels, and 

the multichannel SpO2 estimates. The mean performance index per each channel, the 

corresponding multichannel estimate, and the mean and standard deviation of the difference 

between the multichannel and each individual channel are given below. 

Table 5. Performance Index for SpO2 during motion from all six channels and the multichannel estimate. 

Performance Index: % of SpO2 measurements with less than 3 % error during motion [%] 
Data Set Worst      ç Channel  è   Best MC 

1 64.57% 87.09% 95.03% 95.03% 96.69% 98.68% 95.03% 
2 93.71% 97.02% 98.34% 98.34% 100.00% 100.00% 100.00% 
3 2.98% 78.48% 85.43% 94.04% 97.68% 98.34% 83.44% 
4 4.97% 42.05% 64.24% 75.17% 85.10% 98.01% 69.21% 
5 2.65% 51.99% 64.57% 68.87% 74.50% 92.38% 78.81% 
6* 24.17% 44.70% 47.02% 62.91% 90.07% 97.68% 43.05% 
7 0.33% 32.12% 48.01% 73.18% 77.15% 98.68% 58.28% 
8 14.57% 18.21% 51.66% 67.55% 97.02% 98.34% 80.13% 
9 94.37% 99.01% 100.00% 100.00% 100.00% 100.00% 100.00% 
10 90.07% 91.39% 94.37% 95.36% 96.03% 96.36% 95.36% 
11 98.68% 99.01% 99.67% 100.00% 100.00% 100.00% 100.00% 
12 0.00% 0.99% 15.23% 17.55% 43.71% 100.00% 79.80% 
13 13.25% 22.19% 26.16% 34.11% 38.08% 53.64% 42.38% 
14 0.00% 0.66% 98.34% 98.34% 98.34% 100.00% 91.06% 
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15 0.00% 0.33% 92.72% 100.00% 100.00% 100.00% 80.13% 
16 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
17 99.01% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
18 98.68% 99.67% 100.00% 100.00% 100.00% 100.00% 100.00% 
19 97.35% 100.00% 100.00% 100.00% 100.00% 100.00% 99.34% 
20 1.99% 59.93% 91.72% 95.70% 100.00% 100.00% 100.00% 
21* 0.00% 0.66% 6.29% 97.35% 100.00% 100.00% 19.21% 
22 0.00% 16.56% 17.55% 79.14% 95.70% 97.68% 88.08% 
23 0.99% 3.64% 39.40% 92.72% 94.70% 99.34% 95.03% 
24 0.66% 0.99% 1.99% 5.63% 14.57% 19.54% 8.61% 
25 1.99% 2.65% 2.65% 4.30% 4.97% 97.35% 30.46% 
26 27.48% 30.13% 53.31% 58.61% 65.23% 84.11% 50.33% 
27* 0.00% 0.00% 0.33% 0.33% 0.66% 0.66% 0.33% 
28 0.00% 0.00% 0.66% 39.40% 42.38% 52.98% 30.79% 
29 3.31% 6.29% 6.95% 7.62% 11.26% 13.58% 12.58% 
30* 0.00% 0.00% 0.00% 0.00% 0.00% 0.66% 0.33% 
31* 2.32% 6.95% 6.95% 68.87% 91.72% 93.05% 50.66% 

Mean (all) 30.26% 41.70% 55.12% 68.71% 74.70% 83.58% 67.18% 
Mean (excl. *) 35.06% 47.71% 63.39% 73.10% 78.20% 88.42% 75.73% 

Mean diff. 40.7% 28.0% 12.3% 2.6% -2.5% -12.7% 
 Std Err diff. 7.1% 6.1% 4.2% 3.0% 2.4% 3.1% 
 T-statistic 5.74 4.60 2.90 0.88 -1.02 -4.06 
 T-Critical 1.706 

	
   	
   	
   	
   	
   	
   	
  α 0.05 
	
   	
   	
  

* Excluding data sets 6, 21, 27, and 31 

	
   	
   	
   	
   	
   	
   	
   	
   	
  For performance index in SpO2 measurements, the multichannel estimate (MC) was higher than 

four of the six channels, and statistically higher than three of the six channels. When compared to 

the worst performing channel, the multichannel estimate increased the PI by an average of 40.7 

% during motion.  

6.6.2 ACCURACY 

The accuracy, or accuracy, is defined as the mean of the absolute relative error. Table 6 shows 

the accuracy calculated for all 6 channels and for the multichannel switching estimate. Six one-

sided t-tests were performed to compare each individual channel to the multichannel estimate to 

test the multichannel estimate against the single channel pulse oximeter scenario. 

Table 6. Accuracy of absolute SpO2 error during motion from all six channels and the multichannel estimate.  

Mean SpO2 error during motion [%] 
Data Set Worst      ç Channel  è  Best MC 
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1 2.73 1.53 1.47 1.31 1.09 0.92 1.26 
2 1.38 1.28 0.68 0.64 0.43 0.30 0.57 
3 8.02 2.40 1.85 1.49 1.02 0.78 1.99 
4 6.31 3.14 2.68 2.31 2.21 0.86 2.53 
5 10.43 2.82 2.74 2.71 2.49 1.61 2.33 
6* 3.90 3.56 2.63 2.47 1.29 1.10 2.96 
7 7.44 5.74 2.83 2.54 2.43 1.56 3.03 
8 7.70 5.07 2.51 2.48 2.17 1.29 2.49 
9 0.94 0.89 0.72 0.63 0.48 0.34 0.52 
10 1.65 1.40 1.14 1.12 0.84 0.66 1.22 
11 0.90 0.85 0.82 0.60 0.60 0.54 0.80 
12 6.41 5.61 5.27 4.68 3.40 0.94 1.81 
13 8.30 8.16 5.56 4.22 3.75 3.01 4.76 
14 15.88 12.66 2.45 2.28 1.82 1.17 2.40 
15 12.67 10.52 2.55 2.24 1.26 0.77 3.57 
16 1.05 0.83 0.51 0.45 0.42 0.34 0.36 
17 1.77 1.00 0.91 0.52 0.50 0.46 0.46 
18 1.69 1.23 1.19 1.07 0.64 0.54 1.02 
19 1.78 1.30 1.25 1.14 0.61 0.53 0.95 
20 4.26 2.82 2.73 1.19 0.71 0.63 0.64 
21* 9.96 7.16 3.87 2.68 2.21 1.43 4.28 
22 12.94 6.39 5.12 2.25 1.45 1.24 1.83 
23 14.04 7.30 4.35 1.28 1.25 1.12 1.25 
24 13.67 13.60 7.43 7.23 5.66 3.47 8.24 
25 8.58 8.34 6.41 6.19 4.85 1.15 4.65 
26 5.09 4.56 3.03 2.95 2.37 1.29 3.35 
27* 15.90 14.18 11.50 10.15 10.12 8.23 10.76 
28 9.68 7.24 6.18 4.16 3.68 3.14 4.79 
29 8.49 7.01 7.00 6.83 5.36 4.84 6.15 
30* 13.58 13.22 11.78 11.37 10.66 8.43 10.25 
31* 8.30 5.84 5.35 2.37 1.28 1.21 3.30 

Mean (all) 7.27 5.41 3.69 3.02 2.49 1.74 3.05 
Mean (excl.*) 6.68 4.76 3.05 2.48 1.98 1.29 2.42 

Mean diff.  4.26 2.33 0.63 0.06 -0.44 -1.13 
 Std Err diff. 0.76 0.51 0.23 0.16 0.16 0.23 
 T-statistic 5.63 4.61 2.71 0.38 -2.83 -5.02 
 T-Critical 1.706 

	
   	
   	
   	
   	
   	
   	
  α 0.05 
	
   	
   	
  

* Excluding data sets 6, 21, 27, and 31 
 

For accuracy of SpO2 measurements, the multichannel estimate was better than four of the six 

channels, and statistically lower than three of the six channels. When compared to the worst 
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performing channel, the multichannel estimate increased the accuracy of SpO2 measurements 

during motion by 4.3 %, but was worse than the best performing channel by 1.13 %. 

6.6.3 PRECISION 

The precision is defined as the standard deviation of the absolute error. Table 7 shows the 

precision calculated for all 6 channels, in order from highest to lowest, and for the multichannel 

switching estimate (MC). A one-sided t-test was performed to compare the multichannel 

estimate against each individual channel. 

Table 7. Precision of the SpO2 measurements during motion from all six channels and the multichannel 
estimate. 

Precision: Standard Deviation of SpO2 error during motion [%] 
Data Set Worst         ç Channel   è   Best MC 

1 1.75 1.19 0.96 0.84 0.83 0.76 0.95 
2 1.41 1.05 0.97 0.55 0.25 0.19 0.37 
3 2.35 1.54 1.04 1.02 0.97 0.84 1.44 
4 2.04 2.04 1.25 1.09 1.00 0.83 2.01 
5 3.32 2.54 2.48 2.02 1.67 1.04 2.77 
6* 1.98 1.77 1.37 1.03 0.98 0.79 1.91 
7 4.34 1.73 1.01 1.00 0.77 0.70 2.55 
8 3.43 1.99 1.30 1.11 0.94 0.65 2.16 
9 0.91 0.55 0.51 0.38 0.33 0.25 0.39 
10 1.91 1.18 1.16 1.01 0.94 0.81 1.13 
11 0.64 0.64 0.62 0.56 0.30 0.24 0.60 
12 2.49 1.60 1.11 0.91 0.56 0.50 1.79 
13 4.24 4.20 2.93 2.16 1.67 0.95 3.75 
14 2.33 1.26 0.73 0.65 0.56 0.51 3.51 
15 1.87 0.89 0.50 0.42 0.29 0.00 3.37 
16 0.53 0.40 0.39 0.28 0.20 0.13 0.27 
17 0.70 0.50 0.50 0.06 0.04 0.01 0.05 
18 0.77 0.53 0.53 0.46 0.46 0.36 0.56 
19 0.62 0.52 0.51 0.50 0.49 0.43 0.61 
20 1.27 0.85 0.71 0.60 0.37 0.36 0.37 
21* 1.36 1.36 0.56 0.51 0.50 0.41 2.02 
22 3.04 2.70 1.45 1.42 0.95 0.88 2.05 
23 2.91 2.76 2.19 2.07 1.84 0.61 2.01 
24 3.63 2.41 2.36 2.20 2.12 0.58 5.05 
25 2.76 1.53 1.37 1.27 1.25 0.74 2.63 
26 2.17 2.08 2.08 1.94 1.73 1.18 2.56 
27* 4.02 2.90 2.41 2.26 2.25 2.20 3.12 



 

58 

28 2.67 2.39 2.16 1.52 1.25 1.12 3.02 
29 2.85 2.79 2.22 2.16 1.27 0.93 2.48 
30* 5.21 4.29 3.52 3.30 2.83 1.83 3.67 
31* 2.04 1.93 1.89 1.86 1.73 1.49 2.78 

Mean (all) 2.31 1.75 1.38 1.20 1.01 0.72 2.00 
Mean (excl.*) 2.19 1.59 1.24 1.05 0.85 0.58 1.84 

Mean diff. 0.36 -0.25 -0.59 -0.78 -0.98 -1.26 
 Std Err diff. 0.28 0.18 0.19 0.19 0.19 0.23 
 T-statistic 1.27 -1.40 -3.17 -4.17 -5.14 -5.53 
 T-Critical 1.706 

	
   	
   	
   	
   	
   	
   	
  α 0.05 
	
   	
   	
  

* Excluding data sets 6, 21, 27, and 31 
 

The precision of the SpO2 errors was worse than five of the six channels, and was not statistically 

lower than any individual channel. The multichannel estimate was at worse less than 1.3 % lower 

than any individual channel, making the precision approximately on par with single channel 

measurements.   

For all 31 data sets, the SpO2 measurements differed between channels during motion. Similar to 

the multichannel HR estimates, multichannel SpO2 measurements can be divided into three 

categories: (1) the multichannel SpO2 estimates were better than the worst channel during 

motion, but the channel-switching algorithm had difficulty choosing the channel with the lowest- 

SpO2 error (2) the multichannel SpO2 estimate was equal to the channel with the lowest SpO2 

error during motion, and the channel-switching algorithm successfully chose the lowest-error 

channel, and (3) all six channels produced high-error SpO2 measurements during motion, and the 

multichannel estimate was not able to obtain low-error SpO2 measurements during motion. 

Figures 35 and 36 show examples of two data sets where the multichannel SpO2 estimate was 

better than the worst channel, but the algorithm was not always able to choose the channel with 

the lowest SpO2 error. The accelerometer amplitude was high in both cases, and is plotted below 

the SpO2 measurements as a motion reference. 
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Figure 35. SpO2 measurements taken during random motion from data set 3.  
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Figure 36. SpO2 measurements taken during random motion from data set 4.  

 

Figures 37 and 38 show examples of two data sets where the multichannel SpO2 estimate 

produced the lowest SpO2 error during motion. The accelerometer amplitude was high in both 

cases, and is plotted below the SpO2 measurements as a motion reference. 
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Figure 37. SpO2 measurements taken during random motion from data set 20.  
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Figure 38. SpO2 measurements taken during random motion from data set 23.  

 

Figures 39 and 40 show examples of two data sets where the multichannel SpO2 estimate was 

poor because all six channels produced high-error SpO2 measurements during motion. The 

accelerometer amplitude is plotted below the SpO2 measurements as a motion reference. The 

Masimo SpO2 reference readings are plotted in red to show that the actual oxygen measurements 

did not drop during motion and to show where the baseline SpO2 is in relation to the motion-

corrupted estimates. 
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Figure 39. SpO2 measurements taken during random motion from data set 27.  
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Figure 40. SpO2 measurements taken during random motion from data set 30. 
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7.  DISCUSSION 
Motion artifacts are the primary limiting factor in the utilization of pulse oximetry for mobile 

health applications. Motion artifacts are hard to quantify and filter out given the unpredictable 

nature of motion induced PPG signal corruption. In this thesis we performed experiments to 

generate random, aperiodic, motion corrupted data from the forehead using a reflectance-type, 

multichannel pulse oximeter sensor, and introduced a multichannel-switching algorithm based on 

previously developed template-matching algorithms. We hypothesized that motion artifacts 

would affect PPG waveforms in each channel during random motion differently, and that the 

multichannel-switching algorithm would outperform single channel estimates during motion in 

terms of HR error, SpO2 error, and motion tolerance. 

We collected 31 data sets of motion-corrupted PPG waveforms with a wide variety of amplitudes 

and frequencies. The range of motion introduced into our data is seen in both the RMS 

accelerometer data and the range of MCNL values output by our multichannel template-

matching algorithm. Data analysis showed that channels responded differently to motion based 

on the frequency SNR differences between channels during motion. Depending on the severity of 

motion, we found that PPG waveforms in the time domain were visually different during motion 

across all data sets, as seen in Figure 15. Differences in motion frequency and amplitude across 

channels corroborate the benefits of multichannel pulse oximetry. In the case when the motion 

amplitude overwhelmed a single channel, but did not affect all six channels as severely, HR and 

SpO2 measurements can still be obtained from the cleanest channel during motion. In the case 

where the motion frequency overlaps with the HR frequency and would be difficult to filter out if 

a single IR channel pulse oximeter was used, we found that HR and SpO2 can still be extracted 

from the cleanest channel during motion with sufficient clinical accuracy when motion artifact 

did not affect all six channels to the same extent.  

The Box and Whisker plots of the MCNL showed a wide range of MCNL values for data sets 10, 

11, 17 - 20, 22, and 23. These data sets showed significant improvement when the multichannel 

switching estimate was implemented. We found that the multichannel approach shows the most 

improvement when channels differ significantly in signal quality and morphology, resulting in a 

high variance of MCNL values during motion. Particularly, shown in Fig. 10, when the MCNL is 

low for some channels during motion and high for other channels, the multichannel switching 
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algorithm can choose automatically the channel with the least amount of motion corruption from 

which to calculate the most accurate HR and SpO2 values. 

For HR measurements during motion, data sets 10, 11, 16, 17, 18, 19, 20, 22, and 23 showed 

significant improvement from individual channels compared to the multichannel estimates in 

absolute relative HR error. We found that one or more individual PPG channels were above the 

accepted tolerance in absolute relative HR error, while the multichannel estimate was at or below 

tolerance in absolute relative HR error. The accelerometer data showed that a wide variety of 

motion amplitudes were introduced across all 31 data sets. Of the 9 data sets where multichannel 

switching decreased the HR error significantly, only data sets 10, 11, 16, 17 and 20 had low 

median accelerometer amplitude. Hence, accelerometer amplitude is not an accurate measure of 

the level of motion artifact corruption present in the PPG waveform, or an indication of how the 

multichannel approach will affect estimated HR errors during motion. The frequency of the SNR 

values are also not a direct measure of how much motion is introduced into a signal, especially if 

the motion frequency overlaps the HR frequency, resulting in an incorrectly high SNR value. 

Nonetheless, the negative SNR values are indicators of poor signal quality, as seen in data sets 

21, and 24 through 31. When the motion frequency power is greater than the HR frequency 

power—for instance when then SNR is negative—the multichannel approach failed to 

significantly improve HR measurement errors during motion.  

The Box-and-Whisker plots of the MCNL showed a wide range of values for data sets 10, 11, 17 

- 20, 22, and 23. These data sets showed significant improvement when the multichannel 

switching estimate was implemented. We found that the multichannel approach shows the most 

improvement when channels differ significantly in signal quality and morphology, resulting in a 

high variance of MCNL values during motion. Particularly, as shown in Fig. 10, when the 

MCNL is low for some channels during motion and high for other channels, the multichannel 

switching algorithm can choose automatically the channel with the least amount of motion 

corruption from which to calculate the most accurate HR values. 

Although the benefit in performance index during motion in terms of HR error differed between 

data sets, when all data sets are considered, the multichannel switching estimate performed 

significantly better in performance index over the four worst performing channels. The PI was 

increased by 27.8 % when compared to the worst performing channel during motion across all 29 
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data sets. The benefit of multichannel-switching in accuracy of HR measurements during motion 

also varies across data sets, but was an improvement when all data sets were considered over the 

four worst performing channels during motion. The multichannel estimate increased accuracy of 

HR measurements by up to 5.6 bpm when compared to the worst performing channel over 29 

data sets. For precision, the multichannel-switching algorithm was better than the worst channel 

by 2.5 bpm over 29 data sets, and was statistically better than three of the six channels. One 

benefit of this method and algorithm is that a user is initially unsure of what channel may be the 

worst corrupted or which channel will generate HR measurements with the lowest error. 

Generally, data sets with less severe motion and more significant differences in signal quality 

between channels will benefit more from the application of the proposed multichannel-switching 

algorithm during motion. Furthermore, the channel choosing algorithm is not always perfect, and 

will not always pick the channel that will give the lowest-error measurements, given that the 

highest correlation with the template is not always 100 % correlated to the lowest HR error. The 

MC estimate is not as good as the best channel during motion, but the improvements over the 

worst channels during motion make this approach valuable. 

Furthermore, it is evident that the multichannel pulse oximetry approach investigated in this 

thesis has limitations when every channel is severely corrupted by motion artifacts, thus 

preventing highly accurate HR and SpO2 determination from any of the PPG channels in the 

wearable MCPO. Nonetheless, we think that that signal reconstruction techniques developed by 

our group may take advantage of the varying frequency content present in the six independent 

PPG channels to improve HR and SpO2 measurements during severe motion artifacts. 

The benefit in performance index during motion for SpO2 varied between data sets, and the 

multichannel estimate was not as good as the best channel for a majority of the data sets. Data 

sets 1, 3, 4, 5, 7, 8, 12, 14, 22, and 23 showed significant improvement in SpO2 measurements—

one or more channels were above tolerance in absolute relative SpO2 error during motion while 

the multichannel estimate was at or below tolerance during motion. Of these data sets, only one 

had low accelerometer RMS values during motion and all data sets had high MCNL levels 

during motion. Since SpO2 measurements depend highly on the amplitude of the signal, which is 

not necessarily correlated with the signal morphology, and both the RD and the IR PPG signal, it 

is more difficult to choose the correct channel at a given time point based on the IR PPG 
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morphology alone. Therefore, the multichannel-switching algorithm is currently not optimized to 

pick the best SpO2 measurement currently, but still proved that multichannel SpO2 estimates are 

statistically better than most of the single channel SpO2 estimates. Based on 27 data sets, the 

multichannel SpO2 estimates were overall 12.7 % worse than the best channel in performance 

index, but 40.7 % better than the worst channel in performance index. For accuracy, the 

multichannel SpO2 estimate was 1.1 % worse than the best channel, but 4.3 % better than the 

worst channel.  For precision, although the multichannel estimate was worse than any individual 

channel for SpO2 measurements, the multichannel estimate was only worse by up to 1.3 %. As 

1.3 % trade-off in precision for an overall higher percentage of low-error SpO2 measurements 

during motion is considered reasonable, low-error SpO2 measurements can be obtained during 

motion with a multichannel sensor for a larger range of motion compared to a single-channel 

pulse oximeter. 
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8.  CONCLUSION 
The work presented in this thesis proves the advantage of multichannel pulse over conventional 

single-channel pulse oximetry during a wide variety of random motion, much like the type of 

motion that can be expected from mobile patients wearing portable pulse oximetry sensors. We 

believe that multichannel pulse oximeters would yield more robust, motion-tolerant 

measurements than conventional single channel pulse oximeters. The overall accuracy of the 

measurements was increased by 5.6 bpm for HR and 4.3 % for SpO2 when compared to the worst 

performing channel during motion. While this improvement is not a huge difference, since 

clinical accuracy is imperative for medical device measurements, and measurements must meet a 

narrow tolerance, even this small improvement can bring otherwise motion-corrupted 

measurements into the realm of clinically accurate measurements. The number of measurements 

within tolerance during motion was increased by 27.8 % for HR and 40.7 % for SpO2 when 

compared to the worst performing channel during motion. This implies that the number of 

dropouts for HR and SpO2 during motion would be decreased significantly when using a 

multichannel pulse oximeter, thus improving the performance of pulse oximetry in terms of 

combatting motion artifacts.  

Furthermore, in addition to showing that HR and SpO2 measurements are significantly different 

between channels during random motion, this study also showed that the motion corruption 

frequency present in the PPG waveforms varied significantly across channels. Although the 

multichannel pulse oximetry approach presented in this paper has limitations when every channel 

is severely corrupted by motion artifacts, thus preventing accurate HR or SpO2 measurements 

from any of the PPG channels in the MCPO, we believe that the signal reconstruction techniques 

developed by our group may take advantage of the varying frequency content present in the six 

independent PPG channels to further improve HR and SpO2 measurements during severe motion 

artifacts 
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9.  FUTURE RECOMMENDATIONS 
The type of motion introduced by our experimental protocol is consistent, aperiodic, and varying 

in intensity. The algorithms currently being implemented in software to combat motion artifacts 

have not been tested with this type of motion. Performance of these algorithms on our data in 

comparison with the multichannel-switching algorithm would be interesting to see, and allow a 

better analysis and comparison of our algorithm against the methods currently being 

implemented. Furthermore, the type of motion we introduced was constant over each of the five-

minute motion segments and largely present in one-axis. Testing our sensor and multichannel-

switching algorithm on random motion where the axis of motion would change occasionally, and 

where the motion segments were integrated more authentically, such as in someone running 

through an obstacle course, would be interesting. 

Currently, a certain level of motion corruption limits the multichannel approach. Specifically, if 

all six channels are severely corrupted by motion, then the multichannel sensor would not be 

superior compared to a conventional single-channel pulse oximeter. For example, data sets 21 

and 31 were eliminated from the statistical calculations because all 6 channels were severely 

corrupted by the dominant motion frequency. Initial work has been done on implementing a 

notch filter on the primary motion frequency (see: Appendix D). Using a notch filter on data set 

21 brought previously corrupted channels back into the range of useable data with low-error 

measurements, likely making the multichannel-switching algorithm beneficial to a data set that 

was previously unusable. Keep in mind that the notch filter must be updated when the motion 

frequency changes, and will not be useful when the motion frequency overlaps the HR 

frequency, but development of a real-time notch filter in conjunction with the multichannel-

switching algorithm would lead to more robust motion-tolerance, and lead to better results from 

the multichannel pulse oximeter. 

Furthermore, the multichannel switching algorithm is limited to estimates from one channel 

every two seconds, ignoring data from the other five channels. Moreover, the multichannel-

switching algorithm is not perfect all of the time, and on occasion chooses a channel that will 

produce large measurement errors. Investigation was started on implementation of a Kalman 

filter weighed by MCNL values (see: Appendix C). Preliminary results showed that the output of 

this filter yields smoother results on some data sets, and would likely make multichannel HR and 

SpO2 estimates more accurate and precise than measurements based on the multichannel-
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switching algorithm alone. Furthermore, for the purpose of this study, HR and SpO2 

measurements were calculated from all time points in each data set, even if the level of signal 

corruption was high. Elimination of HR or SpO2 measurements when one or all of the channels 

fall above a specified threshold of MCNL could further improve the algorithm, leading to more 

accurate HR and SpO2 measurements during motion.  

Finally, since subjects in this study were not subjected to hypoxia during motion. The 

multichannel SpO2 measurements analyzed in this study were limited to a constant SpO2 level 

throughout the duration of the experiment. Introducing a drop in O2 would allow more accurate 

calibration of our prototype device, and enable more accurate measurements, especially if SpO2 

measurements across channels require different empirical calibrations. 
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APPENDICES 

A. FINGER AND EAR SENSORS 
Originally, the scope of this project included testing two other transmittance-based multichannel 

pulse oximeters, utilizing a 3PD finger sensor and a 3PD ear sensor. After analyzing preliminary 

data, the two 3PD multichannel sensors were deemed less beneficial than the 6PD forehead 

sensor. First, the ear and the finger are both small surfaces, and the area available to place 

multiple PDs is much more constrained than the forehead. Since the PDs are built into a smaller 

area, the PPG waveforms are more likely to be much more similar during motion. Second, the 

differences in path length displacement between channels are more likely to differ in reflectance 

pulse oximetry than in transmittance pulse oximetry. Time series plots of the AC IR PPG 

waveforms from three channels in the 3PD ear sensor and the 3PD finger sensor are shown for 

comparison in Figure A1, confirming that motion artifacts affect all three channels similarly. In 

general, differences in channels were much greater in the 6PD forehead sensor than in either of 

the 3PD sensors. Based on these observations, it was determined that multichannel pulse 

oximetry works best in reflectance pulse oximetry, and future devices that make use of the 

multichannel hardware design should be limited to reflectance-based sensors. 
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Figure A1. Time series plots of the 3 RD and 3 IR AC PPG waveforms from the 3PD ear sensor. 
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Figure A2. Time series plots of the 3 RD and 3 IR AC IR PPG waveforms from the 3PD finger sensor. 
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B. RAW SIGNAL FUSION: MCAF/GALL FILTERS 
Silva et. al. created a multichannel adaptive filter (MCAF) algorithm that was implemented by 

fusing together the raw signals using a series of adaptive filters [36]. One channel is chosen as 

the reference channel, and the rest of the channels are put through a GALL Filter and then fused 

together with a Kalman filter. The diagrams of these filters are shown below in Figure 29.  

 
(a) 

 
(b) 

 
 

 

Figure B1. Diagrams of the (a) GALL filter and (b) complete filter bank used in the MCAF algorithm. 

This raw signal fusion was implemented on a few of the random motion data sets and then the 

HR was calculated from each of the six individual PPG waveforms and from the PPG output of 

the MCAF filter. The inputs and output of this algorithm on a section of random motion are 

shown in Figure 30. 
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Figure B2. Time series of the AC IR signal from all 6 channels and the output of the MCAF algorithm. 

We found that the output did not always reflect the best channel, and at best the output of the raw 

signal fusion was as good as the best channel. Furthermore, we found that using adaptive filters 

on multiple raw signals was time consuming, making this algorithm slow and computationally 

less efficient. In future development of data fusion algorithms for multichannel data, raw signal 

fusion is not recommended. 
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C. KALMAN FILTERING 
Initial investigation was done on data fusion algorithms to try and fuse HR and SpO2 estimates 

together from all six channels. This data fusion development was determined to be outside of the 

scope of this thesis, but initial development was done on a weighted Kalman filter based on the 

model used in [37]. Implementation of a weighted Kalman filter fuses together estimates from all 

six channels, and takes past measurements into consideration, theoretically making estimates 

more accurate. The Kalman update equations are shown below in Equations 17-23. 

 
 (17) 

 
  (18) 

 
 

(19) 

 
  (20) 

 
  (21) 

 
 (22) 

 
 

(23) 

The random variables w and v are independent noise normally distributed with p(w) ~N(0,Q) 

and p(v) ~N(0,R). In our particular implementation, the measurement noise covariance matrix R 

was updated based on the MCNL for each measurement. The HR and SpO2 measurements from 

each channel are then weighted by a combination of the MCNL and the Kalman residual taken 

after each measurement. The residual, weight and final estimate equations are shown below.  

 
R→R·exp

1
MCNL2

-1  (24) 

 
rk=zk-xk-  (25) 

 
σk2=

rk
MCNLk

2
 (26) 
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SpO2= 
σi26
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6

k=1

 (28) 

 
While implementation of the Kalman filter did not change the final results significantly for all 

data sets, it was quite beneficial for other data sets, such as the data sets shown in Figures C1 and 

C2. Figure C1 shows HR estimations before and after the Kalman filter was used for data set 28 

and Figure C2 shows SpO2 estimations before and after the Kalman filter was used for data set 

13. It is clear that the Kalman filter smoothed HR estimates for data set 28, making the output 

more stable and less sporadic. For the SpO2 estimates in data set 13, the SpO2 estimates from the 

multichannel Kalman filter were much better than the SpO2 estimates calculated just by 

switching channels.  
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Figure C1. Multichannel estimates of before and after implementation of an MCNL-weighted Kalman Filter 
for HR measurements from data set 28.  
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Figure C2. Multichannel estimates of before and after implementation of an MCNL-weighted Kalman Filter 
for SpO2 estimates from data set 13. 

The exact specifications of the multichannel MCNL-weighted Kalman filter were not fully 

explored in this thesis, but I believe that this algorithm would further improve multichannel 

estimates with a bit of further development. The MCNL weights ensures that the measurements 

are still based on the signal morphology of the PPG, but the fusion of all 6 channels’ estimates 

and the consideration of previous measurements would prevent extraneous high or low 

measurements when the multichannel-switching algorithm incorrectly chooses a channel that 

produces high error measurements. 
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D. NOTCH FILTERING 
Spectrograms of all 31 data sets were plotted for the entire duration of the 19-minute segment of 

alternating rest and motion periods. We noticed that for the majority of data sets, the motion 

frequency was easily identifiable from the HR frequency, and that the primary motion frequency 

remained relatively constant during both motion segments. Figure D1 shows an example 

spectrogram for two different channels from the same data set. It can be clearly seen that the 

motion frequency appears during the motion segments around 2 Hz.  

 

Figure D1. Spectrogram of channel 4 and channel 5 for the duration of one data set. 

Since the motion frequency was visibly separate from the HR frequency, a notch filter at the 

primary motion frequency with a bandwidth of 0.4 Hz was used on the entire data set to decrease 

the effects of motion artifact on all six channels. PPG waveforms before and after 

implementation of the notch filter are shown in Figure D2. Post-filtering, the PPG looks much 

cleaner, and the peaks are more easily identifiable. 
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Figure D2. Time series of AC IR PPG before implementing a notch filter (top) and after implementing a 
notch filter (bottom) at the primary motion frequency. 

Two examples of multichannel HR estimates taken from two different data sets before and after 

implementation of a notch filter at the primary motion frequency are shown in Figures D3 and 

D4. For data set 16, before implementation of the notch filter, some channels had high error in 

HR and some had low error in HR, making the multichannel estimate better than any individual 

channel in its mean relative HR error. After the notch filter was applied, all channels had a 

relatively low error. For data set 21, which was deleted from the statistic calculations because all 

six channels had a high HR error, after the notch filter was applied, the HR estimations across 

channels looked more similar to data sets where the multichannel estimate significantly 

outperformed the individual channel estimates and the signal was no longer overpowered by the 

motion frequency in such a way where the data were unusable.  
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Figure D3. Time-series heart rate plots before (top) and after (bottom) implementation of a notch filter at the 
primary motion frequency for data set 16. Masimo reference HR is plotted in red. 
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Figure D4. Time-series heart rate plots before (top) and after (bottom) implementation of a notch filter at the 
primary motion frequency for data set 21. Masimo reference HR is plotted in red. 

Based on this initial observation, we believe that implementation of a real-time notch filter based 

on the motion frequency as seen in the accelerometer data could further improve the benefits of 

multichannel estimates during motion and allow the multichannel switching to cover a larger 

range of motion artifacts.  
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E. CONTROLLED MOTION 
After initial multichannel analysis was performed, we thought it was possible that the channel 

that remained low in HR or SpO2 error was dependent on the axis of motion, and/or the type of 

motion that was introduced during the recordings. To test this hypothesis, five different trials of 

left-right, up-down, and circular head motion were performed for one minute with the 6PD 

forehead sensor. The Masimo finger sensor was used for HR reference. SpO2 measurements 

were compared against the SpO2 estimates from the multichannel device calculated during rest 

for each channel. For HR, the channel that remained low in error changed between trials, and 

was not consistent for the same motion between all five trials. This led to the conclusion that the 

channel with the lowest error was not dependent on the type or axis of motion, but on other 

factors. Figure E1 depicts the percent HR error for all five trials across all 6 channels for each of 

the three head movements and during rest. 
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Figure E1. Percent HR errors for 5 trials of controlled motions across 6 channels recorded by the 6PD 
forehead sensor. 

For SpO2 error, we found that the channel with the highest and lowest errors did not fluctuate 

very much at all between channels across trials, but the low and high error channel did not 

fluctuate between head motions either. From this, we concluded that the channel with the lowest 

or highest error for SpO2 is also not dependent on the type or axes of motion, but upon other 

factors. Figure E2 shows the percent SpO2 error for all five trials for all six channels in during 

the three types of head movements and during rest. 
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Figure E2. Percent SpO2 errors for 5 trials of controlled motions across 6 channels of the 6PD forehead 
sensor. 
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F. TREADMILL DATA 
Our colleagues at the University of Connecticut took data from 10 different subjects walking at 

three different speeds on a treadmill while wearing the 6PD forehead sensor, a Masimo finger 

sensor, and an ECG monitor. In order to see how the multichannel data and algorithm responded 

to repetitive treadmill motion, the multichannel template-matching algorithm was applied to the 

data. For this data, the periodic motion induced by the walking or running on the treadmill 

caused the template to start taking the shape of the treadmill motion, leading the algorithm to 

incorrectly pick the channel most affected by the motion frequency instead of the channel with 

the correct HR frequency. In order to combat this shortcoming, for the treadmill data only, the 

algorithm was updated such that the template could not be updated if the RMS of the 

accelerometer exceeded 50 au. This allowed the algorithm to choose the “best” channel based on 

the template created during rest.  

We found that in data sets 5 and 8, the multichannel estimate outperformed the single channel 

estimates while the subject was running on the treadmill; some channels remained in the low-

error HR range during treadmill motion while other channels remained high. The results were 

plotted in Figures F1 and F2. The multichannel estimate is shown in black, the Masimo reference 

is shown in dashed red, and the ECG HR estimate is shown in blue. The accelerometer data is 

shown below the HR estimates as a motion reference. 
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Figure F1. Treadmill data from subject 5 taken from the 6PD forehead sensor. 
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Figure F2. Treadmill data from subject 8 taken from the 6PD forehead sensor. 

Similar to the random motion data, the multichannel data did not always vary in HR error during 

motion, and sometimes all six channels were overwhelmed with excessive motion frequency, 

thus preventing any channel from measuring a correct HR estimate during motion. These types 

of data sets in the treadmill data are shown in Figures F3 and F4. 
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Figure F3. Treadmill data from subject 2 taken from the 6PD forehead sensor. 
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Figure F4. Treadmill data from subject 3 taken from the 6PD forehead sensor. 

We concluded that the benefits of the multichannel data were less apparent in data sets similar to 

the sample data shown above. The HR errors calculated for all 10 subjects from the treadmill 

data are summarized in Tables 8 and 9.  

Table F1. Performance Index for each individual channel and for the multichannel estimate  (MC) taken 
from the treadmill data. 

Performance Index: Percentage of HR error less than or equal to 5 bpm [%] 
Subject Ch 1 Ch 2 Ch 3 Ch 4 Ch 5 Ch 6 MC 

1 64.6% 63.1% 66.2% 69.2% 67.5% 71.7% 69.4% 
2 68.8% 67.4% 70.0% 63.2% 69.1% 71.2% 66.8% 
3 59.5% 54.9% 71.5% 69.6% 62.0% 57.7% 66.6% 
4 84.2% 84.0% 73.8% 75.6% 76.2% 81.8% 80.0% 
5 86.9% 70.3% 64.0% 57.0% 59.6% 86.9% 86.6% 
6 55.6% 64.3% 54.0% 29.9% 42.4% 52.7% 46.3% 
7 68.8% 67.9% 64.5% 57.6% 63.2% 63.9% 69.2% 
8 85.8% 74.8% 66.5% 62.5% 69.5% 74.5% 83.1% 
9 63.5% 64.3% 62.1% 57.3% 60.5% 60.3% 64.3% 

10 53.0% 62.8% 82.2% 73.1% 80.2% 69.2% 79.4% 
Mean 69.1% 67.4% 67.5% 61.5% 65.0% 69.0% 71.2% 
Mean Diff 2.1% 3.8% 3.7% 9.7% 6.1% 2.2% 

 Std Err Diff 3.1% 3.3% 3.0% 3.2% 2.7% 1.9% 
 t-stat 0.677 1.142 1.211 3.050 2.279 1.148 
 t-crit 1.812 
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The Performance Index for the multichannel treadmill data was higher than any individual 

channel, but only statistically significantly higher than channels 4 and 5.  

Table F2. Mean HR error for each individual channel and for the multichannel estimate for ten subjects 
treadmill data compared against the Masimo finger sensor. 

Mean HR error across entire data set [bpm] 
Subject Ch 1 Ch 2 Ch 3 Ch 4 Ch 5 Ch 6 MC 

1 15.9 15.0 11.2 10.3 12.1 8.8 10.8 
2 9.0 9.7 10.1 11.3 10.1 9.7 9.6 
3 9.5 9.1 7.1 7.1 9.3 9.9 7.7 
4 3.3 3.5 5.2 5.0 4.5 3.9 4.2 
5 2.6 8.0 9.4 12.7 11.5 2.4 2.7 
6 16.4 10.8 16.5 32.6 16.4 14.3 21.9 
7 12.6 12.7 13.2 14.7 13.5 13.6 12.7 
8 5.2 7.5 11.3 12.5 7.7 7.3 6.1 
9 14.6 12.5 13.7 16.7 14.1 16.7 13.4 

10 24.9 21.8 4.0 6.7 5.7 15.1 6.0 
Mean 11.4 11.1 10.2 13.0 10.5 10.2 9.5 
Mean Diff 1.9 1.6 0.7 3.5 1.0 0.7 

 Std Err Diff 2.1 2.1 1.1 1.3 1.1 1.3 
 t-stat 0.921 0.735 0.635 2.632 0.912 0.507 
 t-crit 1.812 

       

The mean relative error, or accuracy, of the multichannel estimate for the treadmill data was 

lower than any individual channel across 10 subjects, however, the multichannel estimate was 

only statistically lower than channel 3.   
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G. MASIMO HR VS ECG 
ECG data were taken for the last 7 of the 31 random motion data sets used for the HR reference 

during motion, data sets 25 through 31. Since the first 24 data sets were taken with just the 

Masimo finger sensor for HR reference, and it was important to include these 24 data sets in the 

analysis done in this thesis, the correlation between the ECG HR measurements and Masimo HR 

measurements for our motion protocol was measured and plotted. Three example correlations 

between the Masimo and the ECG HR measurements are shown in Figure G1. 

 
(a) 

 
(b) 

 
(c) 

Figure G1. Correlation between Masimo HR estimates and ECG HR estimates throughout the duration of 
three different data sets: (a) data set 26 (b) data set 28 and (c) data set 30. 

The remaining four data sets where ECG data were collected have similar correlations between 

the Masimo HR estimates and the ECG HR estimates. To show this more clearly, the time series 

of both HR estimations are shown in Figure G2. 
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Figure G2. Time series HR estimates from the Masimo sensor and the ECG data during the duration of one 
complete data set. 

Although there are occasional differences between the Masimo HR and the ECG estimation for 

these seven data sets, because of the high correlation between the two HR estimates and how 

closely the Masimo HR estimation generally follows the ECG HR estimation, we determined 

that it was sufficient to calculate HR errors by comparing the multichannel HR estimates to the 

Masimo pulse oximeter as a gold standard reference instead of the ECG derived HR estimates. 
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H. MULTICHANNEL HR BLAND-ALTMAN PLOTS 
To compare how HR measurements differ across channels during motion, for the 24 data sets 

with only the Masimo HR reference, Bland-Altman and regression plots were created for each 

data set for each channel, and for the multichannel estimate. These Bland-Altman plots measure 

the bias and precision of the HR measurements from our device compared to the HR 

measurements from the Masimo reference sensor. 

 

Figure H1. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 1. 

 

 

Figure H2. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 1. 
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Figure H3. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 2. 

 
 

 

Figure H4. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 2. 
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Figure H5. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 3. 

 
 

 

Figure H6. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 3. 
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Figure H7. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 4. 

 
 

 

Figure H8. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 4. 
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Figure H9. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 5. 

 

 

Figure H10. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 5. 
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Figure H11. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 6. 

 
 

 

Figure H12. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 6. 
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Figure H13. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 7. 

 
 

 

Figure H14. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 7. 
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Figure H15. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 8. 

 
 

 

Figure H16. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 8. 
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Figure H17. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 9. 

 

Figure H18. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 9. 
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Figure H19. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 10. 

 

 

Figure H20. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 10. 
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Figure H21. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 11. 

 

 

Figure H22. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 11. 
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Figure H23. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 12. 

 
 

 

Figure H24. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 12. 
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Figure H25. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 13. 

 
 

 

Figure H26. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 13. 
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Figure H27. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 14. 

 

 

 

Figure H28. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 14. 
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Figure H29. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 15. 

 

 

 

Figure H30. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 15. 
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Figure H31. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 16. 

 

 

Figure H32. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 16. 

  



 

116 

 

Figure H33. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 17. 

 

 

Figure H34. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 17. 
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Figure H35. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 18. 

 

Figure H36. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 18. 
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Figure H37. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 19. 

 

 

 

Figure H38. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 19. 
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Figure H39. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 20. 

 
 

 

Figure H40. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 20. 
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Figure H41. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 21. 

 
 

 

Figure H42. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 21. 
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Figure H43. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 22. 

 

 

Figure H44. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 22. 
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Figure H45. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 23. 

 

 

 

Figure H46. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 23. 
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Figure H47. Time series plots of HR measurements from our multichannel device and from the Masimo 
reference sensor only during motion for data set 24. 

 
 

 

Figure H48. Correlation and Bland-Altman plots for all six individual channels and for the multichannel 
switching algorithm compared to the Masimo reference HR measurements during motion for data set 24. 

 

 

  

 

 


