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ABSTRACT
Pulse oximetry is used to measure heart rate (HR) and arterial oxygen saturation (SpO;) from
photoplethysmographic (PPG) waveforms. PPG waveforms are highly sensitive to motion
artifact (MA), limiting the implementation of pulse oximetry in mobile physiological monitoring
using wearable devices. Previous studies have shown that multichannel pulse oximetry can
successfully acquire diverse signal information during simple, repetitive motion, thus leading to
differences in motion tolerance across channels. In this study, we introduce a multichannel
forehead-mounted pulse oximeter and investigate the performance of this novel sensor under a
variety of intense motion artifacts. We have developed a multichannel template-matching
algorithm that chooses the channel with the least amount of motion artifact to calculate HR and
SpO, every 2 seconds. We show that for a wide variety of random motion, channels respond
differently to motion, and the multichannel estimate outperforms single channel estimates in
terms of motion tolerance, signal quality, and HR and SpO; error. Based on 31 data sets of PPG
waveforms corrupted by random motion, the mean relative HR error was decreased by an
average of 5.6 bpm when the multichannel-switching algorithm was compared to the worst
performing channel. The percentage of HR measurements with absolute errors < 5 bpm during
motion increased by an average of 27.8 % when the multichannel-switching algorithm was
compared to the worst performing channel. Similarly, the mean relative SpO, error was
decreased by an average of 4.3 % during motion when the multichannel-switching algorithm was
compared to each individual channel. The percentage of SpO, measurements with absolute error
< 3 % during motion increased by an average of 40.7 % when the multichannel-switching
algorithm was compared to the worst performing channel. Implementation of this multichannel
algorithm in a wearable device will decrease dropouts in HR and SpO, measurements during
motion. Additionally, the differences in motion frequency introduced across channels observed
in this study shows precedence for future multichannel-based algorithms that make pulse

oximetry measurements more robust during a greater variety of intense motion.

i



ACKNOWLEDGEMENTS

I express my gratitude to the following people for their contribution and support in my research:

My advisor, Prof. Yitzhak Mendelson, for his guidance and patience over the past two years, and

for believing in me and pushing me to finish.

My thesis committee, Prof. Ki Chon and Prof. Patrick Flaherty, for their knowledge, perspective

and suggestions.

Corinne Nawn for allowing me to be involved in her MQP project and introducing me to pulse

oximetry.

Duy Dao for working closely with me during his time here at WPI and helping me figure out the

devices and algorithms needed to complete this project.

Joshua Harvey for being an excellent lab mate over the last year, helping me recruit subjects, and

providing valuable insight, discussions, support, and laughter during my days in lab.
My family and friends for believing in me and supporting me in this endeavor.

This work was supported by the US Army Medical Research and Materiel Command
(USAMRMC) under Grant No. W81 XWH-12-1-0541. The views, opinions, and/or findings are
those of the author and should not be construed as an official Department of the Army position,

policy, or decision unless designated by other documentation.

111



TABLE OF CONTENTS

ABSTRACT ... ettt ettt sa e e bt e s ht e e bt e e aee et e e sabeebeesateenbeesateans i
ACKNOWLEDGEMENTS ...ttt ettt e sb e st et esate e b e ssbeeaeens 111
TABLE OF CONTENTS ...ttt et ettt et esat e e b e sateebeens v
LIST OF FIGURES ... ettt ettt ettt et e st e b e saeeeeeas vii
LIST OF TABLES ...ttt ettt ettt et et et esateebeesaees XVvi
GLOSSARY OF ABBREVIATIONS ...ttt Xvii
1. INTRODUCTION ...ttt ettt ettt ettt et esat e e bt e s it e ebeesaneenbeeeae 1
2. BACKGROUND ...ttt ettt e b e sttt e et e e b e sabeebee e 3
2.1 Pulse Oximetry and PhotoplethySmography ...........cccoeeviieriiieriieeciieeee e 3
2. 1.1 SPO2 MEASUTEIMENLES .....veeeeeiiiiieeeiiiieeeeiiieeeesiteeeeesteeeeeseteeeessnsreeeesnssaeesssnseeessnnsseeesnnns 4
2.1.2 Heart Rate MeasUIrEMENLS. ......ccc.eeiiiiiiiiiiiiiie ettt 6
2.1.3  Operating Modes and Measurement SiteS ...........cecvveeerieeerieeenieeeiieeecieeeieeeevee e e 7
2.1.4 Limitations Of PulS€ OXIMEtTY......ccueeruiiiiiiieiiieeiiieeriee et erireeeereesrreeeveeeereeeeaeees 7

2.2 MOtION ATEITACES ..ottt ettt ettt et e st e b e e 7
2.2.1 Effects Of Motion ATtIfact .......cooiuiiiiiiiiiieeiee et 8
2.2.2 Current Approaches To Limit Motion Artifact ..........cccceeevvieeiieeeiiiieeieeceeeeee e, 9

2.3 Multichannel Pulse OXIMELErS .........cccueeriiiriiiiiieiiieiieieeee ettt 10
2.4 Forehead Multichannel Pulse OXIMEter..........cccooouieiiiiiiiiiiiiiieiieieeeeseeeee e 13
3. RESEARCH OBJIECTIVES ... ettt ettt et 14
4. DATA COLLECTION ..ottt sttt sttt e be e st e b et e eeeas 15
5. DATA AN ALY SISttt ettt ettt et esateebeesaaeens 17
5.1 Motion QUantifiCAtiON ........cc.uiiiieiiiiee ettt e e e e e e 18
5.1.1 Multichannel Template MatChing ..........ccceeeiieeiiieiiiieeie e 18
5.1.2  Accelerometer AMPItUAE........ccooviiiiiiieiiecieece e 23

v



5.2 Frequency Domain SNR .......ooooiiiiiieeee ettt 23

5.3 Heart Rate Error MEtIICS ...co.eiiuiiiiiiiie ettt 24
5.3.1  Performance INAEX.........coouiiiiiiiiiie e 25
5.3.2  ACCUTACY wettieeiiiiiee ettt e ettt e e ettt e e e ettt e e et e e e e e s atteeeeesaseeessnstaeeesansseaeesnnsseeesansaeeeannns 25
5.3.3 PIECISION .eutiiiiieiie ettt ettt ettt et e at e et e b te et e e s bt e e bt e sabe et e e saeeenbeenaee 25

I N o 1O L 2y () aLY (5 2 (o1 PSSR 25
5.4.1  Performance INAEX.........cooiiiiiiiiiiii i 26
S:4.2  ACCUTACY ..vtieiiiiiiee ettt e ettt e e ettt e e ettt e e e ettt e e e nsteeeeasataeesanssaeesaansseeeesnnsseeesansaeaeannns 26
543 PIECISION .eutiiiieiie ettt ettt ettt et sa e et esat e et e e b eeeabeesabeeabeeeabeeabeesaneenbeennee 26

0. RESULTS L.ttt et s e et e s hb e e bt e s st e e beesateenbeesabeebeenaeeans 28

6.1 Time-Domain PPG Waveform Differences During Motion..........cccceeeveeecieeecireenneeennne. 28

6.2 Accelerometer Amplitudes During MOtiON...........cocviieriieeiiieeciie e 29

6.3  Frequency SNR DUring MOtION ........eeeiiiieiiieeiiieeciee ettt e e e e sveeeeaee e 30

6.4 Multichannel Template Matching Noise Level (MCNL) ......ccccveviiieeiiieeiieeeieeeeeee 36
6.4.1 MOCNL VS VEFCDM ...ttt st st 36
6.4.2 MCNL Values DUring MOtION ........ceecuiiiiiiiieeiiieciieeciee et eeeee e eieeeeveeesveeeenee s 38
6.4.3 Spread Of Channels Chosen During Motion ...........ccccveerveeeiieeeiiee e 40

6.5 HR Errors DUring MOTION .......cccuvieiiiieiiie ettt et e et eeetae e st eeeaaeesveeeesveeeeens 42
6.5.1  Performance IAEX ........c.coiiiiiiiiiiiiee e e 42
0.5.2  ACCUTACY ..uvtiieeiiiee ettt ettt e ettt e e e ettt e e ettt eeesaataeesennsaeeeeansaaeasnnssaeesennsseeeannns 44
0.5.3  PIECISION ..ottt ettt ettt et st e b e et e b e et e ebee e 45

6.6 SpO; Errors DUIING MOTION ....cc.vvieiiiieciieeciie ettt et e e eeeaee e 53
6.6.1 Performance INeX..........coouiiiiiiiiiie e 54
0.0.2  ACCUTACY ...vtieeeiiiee ettt te ettt e ettt e e e ettt e e e s tbaeeeesataee s e nsaeeeeannsaeeasnnssaeesennsseeeannns 55
0.0.3  PIECISION ..outiiniiiiiieiie ettt et e et et e s e e bt e et et e e eateebeeeaee 57



7. DISCUSSION ..ottt ettt ettt et e sttt e et e s bt etesatesteenseeseesseenseeneenseensesneanseennas 65
8. CONCLUSION ... .ottt ettt ettt ettt e te st e teesae e st ebeeneeeseenseeneesseenseeneesaeenseeneans 69
9.  FUTURE RECOMMENDATIONS ..ottt ettt 70
REFERENCES ...ttt ettt ettt ettt et e est e s st et e entesaeenseeneesneenseeneesneenee 72
APPENDICES ...ttt ettt ettt et e st e et e e et e st e st e ente bt enaeeneebeenneeneenee 76
A.  Finger and Ear SENSOTS ........ciiuiiiiiiiiiie ettt e et e e e e e e e b e e snree s 76
B. Raw Signal Fusion: MCAF/GALL FIlters ........cccviiiiiiiiiieeieecieeeeee et 79
C.  Kalman Filtering ......ccceeeiiiieiiieeiee ettt ettt e et estee e st e e s teeessaeeesaeeesaeesssneesnseeenns 81
D.  NOECh FIEETING ..eueviieiieeiieeeee ettt ettt et e e st e e s aeeesaeeessaeeesaeeessneesnseeenns 85
E.  Controlled MOTION .....coiiiiiiiiiieiie ettt ettt et e st ebeesateeneeas 89
F. Treadmill Data........cooiiiiiiieee ettt ettt st e 92
G. Masimo HR VS ECG ...cuuiiiii ettt 98
H. Multichannel HR Bland-Altman PIots..........ccoooiiiiiiiiiiiceee e 100

vi



LIST OF FIGURES
Figure 1. Optical absorbance spectra of HbO, and Hb, taken from [7].......cccceeviiieiiiinciieniieeee, 3

Figure 2. Variations in light absorption due to blood and surrounding tissue, illustrating the PPG

SIZNAL GENETALION. ....eiiiiieeieiieeiiee et e ettt e ette e et e e e teeesteeesssaeessseeesssaeesseeessseeessseesssseessseeesseeens 4
Figure 3. Typical AC PPG signal acquired during rest. .........ccceeevreecieeeniiieeniieeeiee e 4
Figure 4. Typical calibration curve of SpO, based on R values. ..........cccccveeveiiiiniiieniiieieecee 5

Figure 5. ECG waveform lined up with PPG waveforms, showing that the RR interval of ECGs

correspond to the P-P intervals of PPGu.........cooovviiiiieeeeeeeee e 6
Figure 6. Peak and trough detection of an infrared PPG waveform. ...........ccccoevvvieiiieecinennienee, 6
Figure 7. Transmittance mode and reflectance mode configuration for pulse oximetry. ............... 7

Figure 8. Light path changes during sensor-skin displacement due to motion (adapted from [8]).8
Figure 9. Clean PPG waveform corrupted by motion artifacts..........ccceeeeveeerciieeniieeecieeeiee e 9

Figure 10. The 16-channel sternum sensor used by [4]. Only the 8 channels circled in black were

USEd 1N their ANALYSIS. .iieviiieiiiieiie e ste e et e et eeetaeeetaeeesaeeenseeennnes 11
Figure 11. The 3PD ear sensor US€d 1N [5]....cccueieeiiieeiiieeiiie ettt esee e et e e svne e 12
Figure 12. 6-PD forehead pulSe OXIMELET. ........cceecueiiiiieiiiieeiiiecee et e svee e 13
Figure 13. Experimental setup for generating random motion. ..........c..ceecveeerveeerieeeseveessneeeeeneenn 15

Figure 14. Processing of the data with the multichannel template-matching algorithm to obtain

noise level (MCNL) for each channel............ccccooeiiiiiiiiiciiicce e 20
Figure 15. Beat detection and overlay for a multichannel device during rest (a) and motion (b).21

Figure 16. Beats in window overlaid from each individual channel during rest (top) and motion

(007870751 ) TS USSR 22

Figure 17. Typical differences in IR PPG waveforms from all six channels recorded during rest

(a) and motion (b) in a 12-second window for data set 10. .........c.cceevreeiieeecieencieeeeeeeen 28

vil



Figure 18. Box and Whisker plot of RMS accelerometer amplitudes across all data sets during
rest (left side of column) and motion (right side of column). RMS values were calculated

USING EQUALION 8. o.eeeiiiieece ettt e et e et e e et e e esaeeetaeeennaeeenseeennnes 29

Figure 19. Power Spectral Density (PSD) of all six channels during motion for data set 10. The

PSD of the accelerometer is plotted below to show the dominant motion frequencies........ 32

Figure 20. Power Spectral Density (PSD) of multiple channels during motion for data set 20. The

PSD of the accelerometer is plotted below to show the dominant motion frequencies........ 33

Figure 21. Time-varying spectrogram of the AC IR PPG waveform from channel 5. The heart
rate frequency during motion and the dominant motion frequency, around 1.72 Hz, are

JADEIEA 11 WHITE. .o e e e e e e e e e e e e e et ea e e e e e e e eraaaaaaaens 34

Figure 22. Time-varying spectrogram of AC IR PPG waveforms from all channels only centered

on the dominant motion frequency around 1.72 Hz. .........ccccooviiiiiiiiiiiieieeeeeee e 35

Figure 23. Time-series of the IR AC PPG, the VFCDM approach, the noise level output by the
multichannel template matching algorithm (MCNL), and the accelerometer data for motion

TEEETEIICE . .o et e e e e et e e e e e e e e e e eaee e e e e e e e aaeeeeeeaeaanraaaeeaeaene 36

Figure 24. Time-series of the IR AC PPG, the VFCDM approach, the noise level output by the
multichannel template matching algorithm (MCNL), and the accelerometer data for motion

reference for the duration of an eNtire data SET. «...... e eeeeeeeeeeeeee e eeeeeeeeeeeeeaeees 37

Figure 25. Box-and-Whisker plots of the average Multichannel Noise Level (MCNL) across all
data sets. The average MCNL across all channels during rest and motion are shown on the

left and right hand side of each column, respectively........cccevvuereiiieiiiieeieeceeee e 38

Figure 26. Multichannel template-matching noise level (MCNL) plotted for the duration of the
first motion segment of data set 20. Accelerometer data is plotted below the MCNL to

INAICALE WHETE ITIOTION OCCULS. w.vveneeeeeeeeeeeeee e e e e e e et e e e e e e e eeeeee e aeeeeeeeeeeeeaaaaeeeeereaanenaaaaens 39

Figure 27. Multichannel template-matching noise level (MCNL) plotted for the duration of the
first motion segment from data set 24. Accelerometer data is plotted below the MCNL to

INAICALE WHETE ITIOTION OCCULS. .evvneeeeeeeeeeee e e e e e e e e et e e e e e e e e e et aeeeeeeeeeeannnaaaeseeereaanenaaaaens 40

viil



Figure 28. Histograms of the number of times each channel was chosen during motion for 15 of

the 3T data SELS. ..eueiiiiiiiie ettt et et e b e eaeas 41
Figure 29. Multichannel HR Estimates from data set 2.........ccccoecviieiiiiniiiiciieciee e 48
Figure 30. Multichannel HR Estimates from data set 3.........ccccoocviieiiieniiieiiiecee e 49
Figure 31. Multichannel HR estimates from data set 11. .......ccccccvieeiiiieniiieciieeee e 50
Figure 32. Multichannel HR estimates from data set 17. .......ccccoovieeiiiieeiiieeciie e 51
Figure 33. Multichannel HR estimates from data set 21. .........ccccoveeeiiiieriieeiiie e 52
Figure 34. Multichannel HR estimates from data set 31. .......ccccocvieeiiiieniiieciecee e 53
Figure 35. SpO, measurements taken during random motion from data set 3. ............ccccveeenenne 59
Figure 36. SpO, measurements taken during random motion from data set 4. .............ccceeeeneenne 60
Figure 37. SpO, measurements taken during random motion from data set 20. ............ccceeuveenne 61
Figure 38. SpO, measurements taken during random motion from data set 23. ............ccccceveeene 62
Figure 39. SpO, measurements taken during random motion from data set 27. ............ccoeeeuneeene 63
Figure 40. SpO, measurements taken during random motion from data set 30. ............ccceeuneene 64

Figure Al. Time series plots of the 3 RD and 3 IR AC PPG waveforms from the 3PD ear sensor.

Figure A2. Time series plots of the 3 RD and 3 IR AC IR PPG waveforms from the 3PD finger

SEIISOT . et e et e e et e e e et e e e et e e e et e e e et ee e et e et a——e et .. eeta——aeenn——.eenn———aaun———anan—.aann. 78

Figure B1. Diagrams of the (a) GALL filter and (b) complete filter bank used in the MCAF
] Fod0) 11 110 0 DO SRR 79

Figure B2. Time series of the AC IR signal from all 6 channels and the output of the MCAF
] Fod0) 11 110 0 DO SRR 80

Figure C1. Multichannel estimates of before and after implementation of an MCNL-weighted

Kalman Filter for HR measurements from data SEt 28. ....cooeeveeeemeeeeeeeeeeeeeeeeeee e &3

X



Figure C2. Multichannel estimates of before and after implementation of an MCNL-weighted

Kalman Filter for SpO; estimates from data set 13. ........ccceeeiiiieiiiieiiieeeeeeeee e 84
Figure D1. Spectrogram of channel 4 and channel 5 for the duration of one data set.................. 85

Figure D2. Time series of AC IR PPG before implementing a notch filter (top) and after

implementing a notch filter (bottom) at the primary motion frequency. .........cccccccveeruveennee. 86

Figure D3. Time-series heart rate plots before (top) and after (bottom) implementation of a notch
filter at the primary motion frequency for data set 16. Masimo reference HR is plotted in

L. et ee ettt ————————aeeeeeteu———————aeeeeeeeua————————aaeeeeenan————————aaae 87

Figure D4. Time-series heart rate plots before (top) and after (bottom) implementation of a notch
filter at the primary motion frequency for data set 21. Masimo reference HR is plotted in

L. et ee et ————————aeeeeteeu———————aeeeeteeua————————aeeeeenan——————aaaane 88

Figure E1. Percent HR errors for 5 trials of controlled motions across 6 channels recorded by the

OPD fOr€REAA SEIISOT. ..o e e e e e e e e e e e e e e e e eaaeeeeeeeeeenanan 90

Figure E2. Percent SpO; errors for 5 trials of controlled motions across 6 channels of the 6PD

TOTEREAA SEINSOT. ....eitiiiiiiie ettt et et e st e b e e st eebeesaeeens 91
Figure F1. Treadmill data from subject 5 taken from the 6PD forehead sensor.............ccccuue.. 93
Figure F2. Treadmill data from subject 8 taken from the 6PD forehead sensor.............cc.ccuue... 94
Figure F3. Treadmill data from subject 2 taken from the 6PD forehead sensor.............cc.ccuuee... 95
Figure F4. Treadmill data from subject 3 taken from the 6PD forehead sensor.............ccccuue.. 96

Figure G1. Correlation between Masimo HR estimates and ECG HR estimates throughout the
duration of three different data sets: (a) data set 26 (b) data set 28 and (c) data set 30........ 98

Figure G2. Time series HR estimates from the Masimo sensor and the ECG data during the

duration of one complete data SEt. .........ceccuiiieiiieiiie e 99

Figure H1. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 1.........ccccceevvveviiieniiiencieenieeens 100



Figure H2. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion fOr data SEt 1. ........ccciiiiiiiiiiece e 100

Figure H3. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 2..........c.cceevveeeeieencieeniieeniieeens 101

Figure H4. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion fOr data SEt 2. ........cccuiiiiiiiiieiieecie et e saee e 101

Figure HS5. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 3..........cccceevveeeiiieniieencieeeieen, 102

Figure H6. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion fOr data SEt 3. ........cciiiiiiieieeee e 102

Figure H7. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 4............ccecoveeeeiieniiiencieeniieenns 103

Figure H8. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion fOr data SEt 4. ........cccueiiiiiiiiiiie et aee e 103

Figure H9. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 5..........cccoeevveeviiieniiienciieenieen, 104

Figure H10. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion fOr data SEt 5. .......cccciiiiiiieeieece e 104

Figure H11. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 6............cccccveeveieencieencieencieeens 105

X1



Figure H12. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion fOr data SEt 6. ........cccuiiiiiiiieiie et e 105

Figure H13. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 7.........cccceeeveeveiienciiencieeeieens 106

Figure H14. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion fOr data SEt 7. ........cccuiiiiiiiieiie et aae e 106

Figure H15. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 8..........c.cccevveeveiiencieencieenieen, 107

Figure H16. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion fOr data SEt 8. .........cceiiiiiiiiieeee e 107

Figure H17. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 9..........c.cceevveeeeieenciieecieenieene 108

Figure H18. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion fOr data SEt 9. ........cccuiiiiiiieie e 108

Figure H19. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 10...........ccccueeveiienciiercieeninenen, 109

Figure H20. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion for data SEt 10. ........ceeeviiiiiieeie e 109

Figure H21. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 11..........ccccoveeveiieniiiencieeniieen, 110

xil



Figure H22. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion for data SEt 1 1. .......cccviiiiiiiiiece e 110

Figure H23. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 12..........cccccveeveiieniieencieencieeens 111

Figure H24. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion for data SEt 12. .......ccviiiiiiiiiecee e 111

Figure H25. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 13..........cccccveeveieeniiiencieenieeens 112

Figure H26. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion for data SEt 13, ......ccciiiiiiieieee e 112

Figure H27. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 14...........ccccveeveieencieencieenieeen, 113

Figure H28. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion for data SEt 14. .......cc.eiiiiiiieeee e 113

Figure H29. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 15..........cccccvveveiieniieencieenieen, 114

Figure H30. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion for data SEt 15. ......ccciiiiiiiee e 114

Figure H31. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 16...........ccccueeveviencieencieenineeens 115

Xiil



Figure H32. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion fOr data SEt 16. ........ceeeiiiiiiiie e 115

Figure H33. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 17........c.cceevvveveiieniieencieencieen, 116

Figure H34. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion fOr data SEt 17. ......cccuiiiiiiiiiie e e 116

Figure H35. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 18...........ccccveeveiieniiiencieenieeen, 117

Figure H36. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion for data SEt 18. ......ccciiiiiiiiieee e 117

Figure H37. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 19..........cccccveeveiieviiiencieeneen, 118

Figure H38. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion for data SEt 19. .......cceiiiiiiiiie e 118

Figure H39. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 20...........ccccveevevieriiiencieenieeens 119

Figure H40. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion for data SEt 20. ........ceeeeiiiiiiiieeriie et 119

Figure H41. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 21..........cccccveeveiieniiiencieenceeen, 120

Xiv



Figure H42. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion fOr data SEt 21. ......cccuiiiiiiiiiieeeie e 120

Figure H43. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 22..........cccccveeveieencieencieenceeenns 121

Figure H44. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion fOr data SEt 22. .......cceieiiiiiiiie et aee e 121

Figure H45. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 23..........cccccveeveieencieeniieenieeens 122

Figure H46. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion fOr data SEt 23. .......ccuiiiiiiieeieecee e 122

Figure H47. Time series plots of HR measurements from our multichannel device and from the

Masimo reference sensor only during motion for data set 24...........cccceeveieeviieencieenineeenns 123

Figure H48. Correlation and Bland-Altman plots for all six individual channels and for the
multichannel switching algorithm compared to the Masimo reference HR measurements

during motion fOr data SEt 24 . .........c.eeeiiiiiiiieeee e 123

XV



LIST OF TABLES
Table 1. Frequency-based SNR of the IR AC PPG waveforms for all 6 channels during motion.

Table 2. Performance Indices of each individual channel and the multichannel estimate for HR

measuremMents during MOTION. .. ....ccuieeeueeiiiieeriee et e eieeeetreesteeesaeeessreeessseeesseessseesseeennnes 42

Table 3. Mean absolute HR errors for each individual channel and the multichannel estimate

QLYo 10107 10 s USSP 44

Table 4. Precision of absolute HR errors for each channel and the multichannel estimate during

INLOTIONN. vt ee e et e e e e e e et e e e e e e e e e e e e aeeeeeeeaaa e aaeeeeeeaaeennaaeeeeeeeaaa e aaaeeeeeenenannaaaaeaeaane 45

Table 5. Performance Index for SpO, during motion from all six channels and the multichannel

ESTIITIALE. e e e e ettt e e e e e et e e e e e e e e e e e eeeeee e e et e e aeeeee et e a——————aaeeaeeraa—————————aaerraann—————_ 54

Table F1. Accuracy of absolute SpO; error during motion from all six channels and the

MUIICHANNEL ESTIMATE. ...oeeeeeeiieeeee ettt e e e e e e e e e e e e e eaeeeeeeeeaaraaaeeeeaeaes 55

Table F2. Precision of the SpO, measurements during motion from all six channels and the

MUIICHANNEL ESTIMATE. ...oeeeeeeiieeeee et e e e e e e e e e e e aaeeeeeeeeaanaaaaeeeeaeaes 57

xvi



BPF
DSP
ECG
FFT
Hb
HbO,
HPF
HR

IR
LED
LPF
MA
MCNL
MCPO
PD

PI

PO
PPG

PSD

RD

SaOz

GLOSSARY OF ABBREVIATIONS
Band-Pass Filter

Digital Signal Processing
Electrocardiogram

Fast Fourier Transform
Deoxyhemoglobin

Oxygenated Hemoglobin
High-Pass Filter

Heart Rate

Infrared

Light Emitting Diode
Low-Pass Filter

Motion Artifact

Multichannel Noise Level
Multichannel Pulse Oximeter
Photodetector

Performance Index

Pulse Oximetry/Pulse Oximeter
Photoplethysmogram / Photoplethysmography
Power Spectral Density
Ratio-of-Ratios

Red

Arterial Oxygen Saturation

xvii



SpO, Estimate of Arterial Oxygen Saturation
SNR Signal-to-Noise Ratio

SQI Signal Quality Index

xviii



1. INTRODUCTION

Pulse oximetry uses light absorption to measure arterial blood oxygen saturation (SpO,) and
heart rate (HR) from photoplethysmographic (PPG) waveforms. PPG waveforms are sensitive to
motion artifacts (MA) that can corrupt the waveform and result in erroneous HR and SpO,
calculations. The primary cause of MA in pulse oximetry is believed to be due to changes in the
light path during sensor movements [1]. Pulse oximetry is widely used in hospitals where motion
artifacts are generally less pronounced compared to mobile health applications. Motion artifacts
are difficult to filter out since they do not have a predetermined frequency range and their
spectral content often overlaps with the frequency band of the PPG waveform. If motion artifact
persists long enough and has a frequency in the range of normal HR, the calculated HR and SpO,
can be highly inaccurate. Clinicians have cited motion artifacts in pulse oximetry as the most

common cause of false alarms, loss of signal, and inaccurate readings [2].

The primary approach to reduce motion artifact is the implementation of software-based
algorithms that attempt to extract a clean PPG waveform from a motion-corrupted PPG signal.
Studies showed that multichannel pulse oximetry is advantageous over single channel pulse
oximetry in obtaining diverse signal information during low-motion artifact conditions [3-5].
Furthermore, studies have attempted to better characterize the effects of motion artifact in pulse
oximetry, and have shown that intense, aperiodic, random movements generate the most errors
[6]. In this study we use a custom made 6 photodetector (PD), forehead-mounted pulse oximeter
and investigate the performance of this wearable sensor under a variety of intense motion. We
introduce an advanced multichannel-switching algorithm that selects the channel with the least
amount of motion artifact to calculate HR and SpO; every 2 seconds. We show that for a wide
variety of random motion, channels respond differently to motion, and the multichannel estimate
outperforms single channel estimates in terms of motion tolerance, signal quality, and HR and

SpO; errors.

This thesis is divided into the following sections: Chapter 2 discusses the basic principles of
pulse oximetry, how HR and SpO, values are calculated from raw PPG signals, the two operating
modes of pulse oximetry (2.1), the effects of motion artifacts, and the methods currently used to
reduce these effects (2.2), an overview of previously designed multichannel pulse oximeters

(2.3), and a description our forehead —mounted multichannel pulse oximetry device (2.4).



Chapter 3 outlines the research objectives of this study. Chapter 4 describes the data collection
protocol and the type of data collected. Chapter 5 outlines the methods of data analysis used in
this thesis including: motion quantification methods (5.1), frequency-based SNR (5.2), HR error
metrics (5.3) and SpO; error metrics (5.4). The multichannel template-matching algorithm we
developed is explained in detail in section 5.1.1, and the analysis of the accompanying
accelerometer data is explained in 5.1.2. Chapter 6 presents the results of this including the time-
domain response to motion across channels (6.1), the measured accelerometer motion (6.2), the
frequency-based SNR values (6.3), the multichannel noise level (MCNL) values during motion
and a comparison with the noise detection algorithm previously used in our lab (6.4), the HR
errors during motion (6.5), and the SpO, errors during motion (6.6). Chapter 7 includes a
discussion of the results and implications of our findings, Chapter 8 summarizes the conclusions
of this study, and Chapter 9 provides recommendations for future multichannel-based

algorithms.



2. BACKGROUND

2.1 PULSE OXIMETRY AND PHOTOPLETHYSMOGRAPHY

Pulse oximetry is a non-invasive method used to measure arterial blood oxygen saturation levels
based on the difference in optical absorption properties between reduced hemoglobin (Hb) and
oxyhemoglobin (HbO,). Figure 1. Optical absorbance spectra of HbO, and Hb; HbO, absorbs
less red (RD) light than Hb, and absorbs more infrared (IR) light than Hb. Two LEDs, typically

around 660 nm and 940 nm, are used to shine light into the blood vessels and surrounding tissue.
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Figure 1. Optical absorbance spectra of HbO, and Hb, taken from [7].

The relative amounts of RD and IR light absorbed by the blood correspond to the blood oxygen
level. Tissue, bones, and non-pulsatile blood absorb some of the light, generating a DC offset in
the PPG signal as shown in Figure 2. Arterial blood pulses with each heartbeat, creating an AC
signal superimposed on top of a large DC offset. The signal produced by this absorption process
is called a photoplethysmogram (PPG) waveform. Figure 2. Variations in light absorption due to
blood and surrounding tissue, illustrating the PPG signal generation.depicts the composition of

the PPG signal.
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Figure 2. Variations in light absorption due to blood and surrounding tissue, illustrating the PPG signal
generation.

The AC signal is a measure of the pulsatile blood, with period corresponding to the cardiac cycle
of the heart. A typical AC IR PPG waveform taken from a forehead sensor during rest is shown

below in Figure 3.
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Figure 3. Typical AC PPG signal acquired during rest.

2.1.1 SprO; MEASUREMENTS

Blood oxygen levels estimated by a pulse oximeter are a function of the ratio of RD to IR
light absorption. In order to minimize the effects of physiological and physical differences
between patients, including different LED intensities, thickness or density of a tissue region, and
color of the skin, the AC amplitude of each signal is normalized by the DC amplitude, creating a

“ratio-of-ratios” (R) as follows.



(ACir) 0

SpO; is then clinically calibrated empirically as a linear function of the ratio-of-ratios, and a
calibration curve specific to a single device is generated according to Equation 2, where A and B

are the coefficients of the best fit linear regression line.

SpO, =A—B*R @)

Once A and B coefficients are determined for a particular device, a calibration curve is created,
allowing all SpO, measurements to be calculated based on the linear equation or a look-up table.

A typical regression line of real SpO; and R values is plotted in Figure 4.
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Figure 4. Typical calibration curve of SpO, based on R values.

To separate the PPG waveform into AC and DC components, a low-pass filter (LPF) and
a band-pass filter (BPF) are implemented. A 0.5 Hz LPF is used to extract the DC component,
and a 0.5-12 Hz BPF is used to extract the AC component. To smooth out the AC portion of the
signal, the RMS value of the AC signal is taken to calculate SpO,. Using the peak-to-peak
amplitude of the AC PPG waveform resulted in SpO, measurements with high variance during
rest and sporadic SpO, measurements with high error. Using the RMS of the AC PPG signal was

found to result in more stable SpO, measurements and overall less measurement error.



2.1.2 HEART RATE MEASUREMENTS

The pulsatile peaks of the PPG signal correspond to cardiac beats, allowing peak
detection based algorithms to estimate HR from the PPG waveform. Figure 5 shows a typical
ECG signal and the corresponding RR intervals and a typical PPG waveform with the peak-to-
peak intervals (PP) lined up with the R waves in the ECG signal.

RR, RR, RR,
R e

PP, PP, PP,
m

Figure 5. ECG waveform lined up with PPG waveforms, showing that the RR interval of ECGs correspond to
the P-P intervals of PPG.

A peak detection algorithm is used to find the peaks and troughs of the PPG waveform. The

peak-to-peak period, T, is then used to measure HR in bpm using Equation 3.
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Figure 6. Peak and trough detection of an infrared PPG waveform.
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2.1.3 OPERATING MODES AND MEASUREMENT SITES

Pulse oximeters can operate in two different modes: transmittance and reflectance. Most
pulse oximeters operate in transmittance mode; light is transmitted through a part of the body,
such as an ear lobe or finger, and a PD on the opposite side from the LEDs detects the
transmitted light. In reflectance mode, the PDs are placed adjacent to the LEDs, and the PD
subsequently detects the light reflected by the bone. Figure 7 depicts the configuration of a
typical transmittance-type pulse oximeter worn on the finger (left), and a reflectance-type pulse

oximeter resting on top of the skin (right).

[ 1FDs B PD |

Figure 7. Transmittance mode and reflectance mode configuration for pulse oximetry.

Reflectance mode pulse oximetry allows for more sensor placement sites, including the forehead,
which is less susceptible to motion artifacts and easier to wear during physical activity than a

finger sensor.
2.1.4 LIMITATIONS OF PULSE OXIMETRY

Pulse oximetry is highly accepted and accurate in clinical settings when a patient is at
rest. During motion, low perfusion, and in the presence of electromagnetic interference, the PPG
waveform is compromised, resulting in lower accuracy and more frequent error. Means have
been taken to limit the effects of low perfusion and electromagnetic interference, but for active
patients, motion artifacts are the primary limiting factor to using pulse oximetry in mobile health

applications.
2.2 MOTION ARTIFACTS

The primary causes of MA include changes in the light path due to sensor movement in relation
to the skin and introduction of venous blood pulsation. As shown in Figure 8, when the sensor is
displaced in the plane that the sensor touches the skin, the light path changes and the light then

travels differently to the photodiode. This motion of the sensor relative to the skin causes a



change in the optical coupling between the tissue and the sensor, which can cause a change in the

PPG signal [9].
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Figure 8. Light path changes during sensor-skin displacement due to motion (adapted from [8]).

Additionally, pulse oximetry assumes that the only pulsatile component is due to arterial blood
pulsations. Arteriovenous (AV) shunting causes venous blood to change with arterial pulsing [3].
The presence of venous pulsation becomes more prevalent during motion, yielding false low

SpO, values due to the lower oxygen saturation of venous blood.
2.2.1 EFFECTS OF MOTION ARTIFACT

Motion artifacts can affect the amplitude and frequency of the PPG waveform, making the peaks
corresponding to the cardiac cycle unidentifiable. Particularly, if the motion artifact signal lasts
long enough and has a frequency in the range of normal heart rate, the peak detection algorithm
will measure motion frequency as HR and use incorrect AC amplitudes to calculate SpO,. Figure
9 below shows an example AC PPG waveform that starts out clean and is then corrupted by
motion artifact. Once motion artifact is present in the waveform, it becomes difficult to separate

the physiological signal from the effects of motion.
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Figure 9. Clean PPG waveform corrupted by motion artifacts

It is clear that it would be difficult to extract the specified amplitude or frequency that
corresponds to the true physiological signal from the motion-corrupted portion of the PPG
waveform shown in Figure 9. The HR calculation algorithm would rely on the detection of false
peaks, and the SpO, algorithm would incorrectly use the amplitude of the motion noise, resulting

in erroneous HR and SpO, measurements.
2.2.2 CURRENT APPROACHES TO LIMIT MOTION ARTIFACT

There are a number of software-based methods currently being used to limit the effects of
motion artifacts on the PPG signal. The primary approach to reduce the effects of motion artifact
is to try and extract a clean PPG waveform from the motion-corrupted PPG signal [10-25]. Fixed
frequency filtering is helpful, but not very effective when MA has no predetermined frequency
band. Baseline subtraction, use of frequency banks, moving average filtering, and removal of
corrupted signal segments have shown improvement against MA in some cases, but are not

robust against motion which may have varied dynamics [26-29].

Numerous studies have investigated the use of adaptive noise cancellation (ANC) to
selectively filter out MA based on a specified reference signal. Reference signals used include:
on-board accelerometers [10-13], a reference signal synthesized from the motion corrupted PPG
signal [14-17], and a reference signal measured by an adjacent photoelectric device [18,19].
Correlations have been found between the distorted PPG data and the accelerometer data after a
time delay [10], and the adaptive filters remove some of the noise that was correlated to the
corrupted PPG, but the reconstruction is not perfect. Similarly, sensor motion measured using
self-mixing interferometry more directly measures the light changes with respect to sensor

movement and does reduce some motion artifacts, but does not fully suppress them [19].



Separate reference signals are not always an accurate representation of the signal corruption,

which can lead to unintentional filtering of a portion of the relevant PPG waveform.

Alternate algorithms have been developed to extract the clean PPG waveform from the
motion-corrupted signal based on fundamental components of the PPG signal. These methods
include: principle component analysis (PCA) [20], independent component analysis (ICA) [21-
23], and singular spectral analysis (SSA) [24]. Adaptive filtering with accelerometer data has
been tested against the use of Independent Component Analysis (ICA). ICA outperforms
adaptive filtering in terms of artifact removal [30]. ICA, however, has permutation and scale
ambiguities, not always preserving the correct PPG. The use of a temporally constrained ICA in
combination with an adaptive filter works better than either method individually, and can
successfully output clean PPG signals. The ICA is performed and then provided as a reference
for the adaptive filter, thus extracting the clean PPG signal, which has attributes of the ICA result
[23]. Work in this lab has been done on the use of Iterative Motion Artifact Removal (IMAR)
using Singular Spectral Analysis (SSA) and compared with time-domain ICA. The IMAR
method outperforms ICA in terms of HR and SpO; errors [24]. Most recently, algorithms based
on filtering out the motion frequency as calculated from the accelerometer spectra have been
useful in separating motion signal from PPG signal [31-33]. These algorithms have been proven
effective during motion, but are currently designed to use one signal to extract information from,
and when the single channel is too corrupted to reconstruct, or when the motion frequency
overlaps with the HR frequency preventing motion from being filtered out, HR and SpO,

information may be lost, leading to dropouts during monitoring.
2.3 MULTICHANNEL PULSE OXIMETERS

Multichannel devices have been used to improve HR and SpO, measurements by capturing
multiple PPG waveforms simultaneously. An PPG sensor placed on the sternum was developed
that uses PCA in the frequency domain to find the most likely SpO, estimation [4]. This PPG
sensor has a total of 16 RD LEDs, 16 IR LEDs, and 8 PDs on one board, as shown in Figure 10.
In the study, the investigators only used the 8 pairs of LEDs and 4 PDs circled in black in Figure
10.

10



Figure 10. The 16-channel sternum sensor used by [4]. Only the 8 channels circled in black were used in their
analysis.

These investigators found that “the spatial diversity of the channels considerably increases the
available photoplethysmographic information...however this requires a more sophisticated
control and signal processing” [4]. Frequency information from an external BIOPAC ECG
sensor and an on-board accelerometer was used to design a specified filtering window for each
measurement. Spatio-temporal PCA was used to determine the most likely R value between
channels, which was then used to calculate SpO,. Both a BIOPAC finger clip sensor and a
NELLCOR finger clip sensor were used for reference SpO, measurements. Ten subjects were
subjected to hypoxia using a re-breathing system to slowly lower SpO; values from 100 % down
to 70 % and back up to 100 %. They found that multichannel SpO, estimates were more robust
than single channel SpO, estimates, especially when considering the poor perfusion seen in PPG

waveforms taken from the sternum.

A 3-channel reflectance earpiece PPG sensor was developed and tested during standing, sitting,
and walking [5]. This sensor featured 2 IR LEDs and 3 PDs in a device that hooks around the
ear, shown in Figure 11. This study only analyzed multichannel HR measurements, so only IR

LEDs were used.
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Figure 11. The 3PD ear sensor used in [5].

Ten subjects were tested wearing the ear sensor and a Nellcor PPG sensor for reference HR
measurements. Subjects were instructed to perform normal daily activities consisting of standing,
sitting, and walking, and were then instructed to walk on a treadmill at a speed starting at
4km/hr, increasing to 7 km/hr, and then decreasing back down to 4 km/hr. To measure the
motion frequency, the motion-induced current was measured by reading the output from the PDs
when the LEDs were turned off. An adaptive notch filter was implemented at the measured
motion frequency with a bandwidth of 0.4 Hz to reduce noise contribution. These investigators
found that motion-induced current was channel-specific, and that the channel with the highest

power around the HR frequency varied between experimental runs.

These studies showed that multichannel pulse oximetry is advantageous over single channel
pulse oximetry in obtaining diverse signal information during low-motion and periodic motion
artifact conditions. However, studies have attempted to better characterize the effects of motion
artifact in pulse oximetry, and have shown that intense, aperiodic, random movements generate
the most errors [6]. Previously, we have shown that in a 6-channel prototype reflectance-based
forehead pulse oximeter, during short up-down, left-right, and circular head motion, channels
responded differently to motion [3]. These types of movements are periodic and are not very
intense in amplitude. Users looking to wear a portable pulse oximetry sensor would not be
experiencing only simple, low-amplitude movements, but a variety of different aperiodic

movements. Examining how multichannel pulse oximetry responds to a wider variety of motion

12



would help to further assess the benefit of this unique design, and assist in developing future
signal extraction algorithms that make use of multichannel waveforms to improve motion

tolerance in pulse oximetry.
2.4 FOREHEAD MULTICHANNEL PULSE OXIMETER

We have developed a custom reflectance-type, forehead-mounted, multichannel pulse oximeter
(MCPO) shown in Figure 10. Six PDs are positioned concentrically around two pairs of Red
(660 nm) and IR (940 nm) light emitting diodes (LEDs) at an equidistant separation distance of
10 mm [34]. An opaque ring was incorporated to minimize direct light shunting between the
LEDs and PDs. The RD LEDs are shown in red in Figure 10 below, the IR LEDs are shown
adjacent to the RD LEDs, and channels 1 through 6 are labeled in white, starting at the top of the

sensor and incrementing clockwise.

Figure 12. 6-PD forehead pulse oximeter.

The sensor and battery are enclosed in a plastic casing. The sensor housing is attached to an
elastic band worn as a headband, allowing the sensor to rest comfortably on the forehead. The
sensor is also equipped with an on-board tri-axial accelerometer (Acc). When the sensor is
placed on the forehead, the x-direction of the Acc corresponds to motion perpendicular to the
transverse plane, the y-direction perpendicular to sagittal plane, and the z-direction perpendicular
to the coronal plane. Previous data have shown that variations in sensor position and vasculature
heterogeneity of the underlying tissue can cause measurement errors, as well as light diffusion by
the subcutaneous tissues predominantly in the direction perpendicular to the emitting surface of
the LEDs [3]. Different motions change the optical coupling between the sensor and the skin,
yielding 6 independent channels with slightly different motion-corrupted PPG waveform

characteristics.
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3. RESEARCH OBJECTIVES

The goal of this research was to investigate the feasibility of using multichannel pulse oximetry

to estimate HR and SpO; during random motion of varying amplitudes and frequencies.

Objective 1: To collect random motion data from the prototype pulse oximetry sensor with a

variety of frequencies and amplitudes.
Objective 2: Validate differences in channel response to motion.

Objective 3: Implement a channel-multiplexing algorithm to choose the cleanest channel from

which to calculate HR and SpO, estimates.

Objective 4: Determine if multichannel pulse is significantly better than using single channel

pulse oximetry during motion in terms of HR and SpO, errors.
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4. DATA COLLECTION
Data were collected from 15 healthy volunteers between the ages of 22 and 32. Worcester
Polytechnic Institute IRB approved the study protocol and informed consent was required by all

subjects prior to data recording.

Figure 13. Experimental setup for generating random motion.

Subjects were instructed to bounce on an exercise ball with varying amounts of movement while
wearing the 6PD MCPO forehead sensor and a reference Masimo-57 Radical (Masimo SET®,
Masimo Corporation, CA, USA) finger type transmittance pulse oximeter that was kept
motionless by resting the left hand on a table, as shown in Figure 2. The type of movement each
subject performed was free to interpretation by each person, resulting in different types of
motion for each data set. Furthermore, by asking each subject to bounce on an exercise ball, each
data set had increasing and decreasing HR, allowing us to track changes in HR. And, since no
specified motion, walking, or running speed was given to each subject, the frequencies of motion
will vary from subject to subject, yielding a variety of motion corruption data. Each subject was
asked to alternate between 3 minutes of rest and 5 minutes of bouncing on the exercise ball for a
total of 19 minutes. Six pairs of PPG waveforms corrupted by random motion artifacts were
obtained from the forehead-mounted MCPO sensor. PPG waveforms from the MCPO were

sampled at 80 Hz. Reference HR and SpO, measurements were obtained from the Masimo pulse
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oximeter every 2 seconds. All data were transferred to a PC and processed offline with
MATLAB. The data were aligned by removing the first few measurements from either the
Masimo estimates or the MCPO measurements until the MCPO HR data followed the Masimo
HR measurements during rest. It was assumed that the SpO, measurements were aligned when
the HR measurements were aligned. The six raw IR PPG waveforms, the six raw RD PPG
waveforms, the on-board tri-axial accelerometer signals, and the Masimo reference data were

saved to MATLAB for further processing.
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5. DATA ANALYSIS

The particular motion protocol we followed was meant to test the response of multichannel
signals to a variety of non-uniform motion. It was important to quantify the level of motion
present in the PPG waveforms, both across different data sets and during data collection across
channels to determine which channel was the least affected by motion artifacts. To represent
overall motion, RMS values from the on-board tri-axial accelerometer data were calculated for
each data set. Furthermore, because HR calculations are highly dependent on the frequency
content of the infrared PPG waveform, and the arterial oxygen measurements are highly
dependent on the amplitudes of the PPG waveforms, to determine how motion affects the
multichannel PPG waveforms, frequency-domain signal-to-noise-ratios (SNR) were calculated

for each data set and channel.

A measure of signal quality had to be implemented as a metric to choose between channels.
Previous noise detection algorithms have implemented template matching to measure signal
quality in terms of PPG morphology. To quantify instantaneous noise level for our multichannel
pulse oximeter, a multichannel template-matching algorithm was developed that matches beats in
a specified window to an average template representative of a clean PPG morphology. The
output from this algorithm is a number between 0 and 1, representing the amount of noise in the
signal at a specified time point. A MCNL of 0 means the signal has no noise and an MCNL of 1
means that the PPG waveform is completely corrupted by motion noise. This resulting
multichannel noise level (MCNL) will be measured during rest and during motion across all data

sets and channels.

Acceptable HR and SpO, measurements during motion were taken from Masimo’s specifications
during motion given that they considered the leading “motion-tolerant” pulse oximeter on the
market and, therefore, were used as reference measurements in this study. Masimo specifications
claim a = 5 bpm HR error during motion and a + 3 % SpO, error during motion. HR and SpO,
error measurements are quantified according to three different parameters: performance index,
accuracy and accuracy, defined as the percent of measurements within the above specified
tolerances during motion, the mean of the absolute relative error, and the standard deviation of

the absolute relative error, respectively. The performance index, accuracy, and precision were
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compared between each individual channel and the channel-multiplexing estimates. These

parameters are explained in greater detail in the following sections.
5.1 MOTION QUANTIFICATION
5.1.1 MULTICHANNEL TEMPLATE MATCHING

To quantify the noise level in each channel at a particular time point, we developed a
multichannel template-matching algorithm. An algorithm has been developed based on creating a
template from single channel IR PPG waveforms using an average of beats over a specified
window [35]. In our algorithm, six IR PPG waveforms are used to create a template over a single
time period, allowing more robust template formation. First, the raw PPG waveforms were
digitally filtered with a 12th order, 0.5 Hz cut-off, Butterworth low-pass filter and a 12th order,
0.5 to 12 Hz Butterworth band-pass filter to separate the raw PPG signals into their DC and AC
components, respectively. The six IR AC components served as inputs to the multichannel

template-matching algorithm.
a) Template Formation

Peak-trough detection was performed on each of the six IR AC components over a 12 s window.
A 12 s window was chosen to ensure that an accurate HR could be calculated from a single
channel, and that an accurate template could be formed from the data in the window. From the
beats in the window, an average peak-peak period was calculated across all channels and was
defined by a variable L. Peak-peak period values that are outside of L & 0.2 s were removed to
include only clean beats in the beat period calculation. The average peak-peak period is updated
by taking the average of the remaining peak-peak period values. Individual beats were
segmented at the indices of each trough. Beats across all channels for the entire 12 s of data were
re-sampled to be the same length (L) and normalized to have maximum amplitude of one and
zero minimum amplitude. A temporary template is created from the average of all individual
beats in the 12 s window. The correlation between this template and all beats in the current
window was computed, and if the correlation of a beat in the current window with this template
was less than 0.95, the beat was removed from further calculations. Analysis of the correlation
between beats in a window during rest showed that the lowest correlation during rest was 0.9572,

so a 0.95 correlation was assumed to be the cutoff correlation for clean data verses noise-

18



corrupted data. If the number of beats removed were greater than 1/3 of the total number of beats
in the current window, the template from the previous window was used. If less than 1/3 of the
beats are removed, taking the average of the remaining “good” beats in the window forms a new
template. The average correlation of all individual beats in the window is again calculated with
the latest template. If the average correlation across all beats in the window with this template is
less than 0.98, the template from the previous window is used. If the average correlation across

all beats in the window is greater than 0.98, the template from the previous step is maintained.
b) Multichannel Noise Calculation

With the final formation of the template for a given window, the template matching algorithm
systematically overlays beats from each individual channel, cuts off each beat at L/2 in order to
capture only the systolic morphology of the PPG beats, which are more indicative of clean
signals, and normalizes each beat such that the minimum amplitude is 0 and the maximum
amplitude is 1. If the noise is such that there are no beats detected in a given channel, the
multichannel noise level (MCNL) is set to 1. Otherwise, the correlation between the template and
each beat in a given channel is calculated, and the overall MCNL is calculated as (1-C), where C
is the average correlation between beats in a single channel and the template. The specifics of the

overall process are described in Figure 14.

19



TEMPLATE FORMATION
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Figure 14. Processing of the data with the multichannel template-matching algorithm to obtain noise level
(MCNL) for each channel.

Figure 15 shows sample beats overlaid from all 6 channels during rest and motion. Beats taken

from clean data have high correlation (C) with the average beat template, and are similar across

all channels. On the contrary, beats corrupted with motion artifact have low correlation with the

average “beat”. In this case, the template from the previous window is used.
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Figure 15. Beat detection and overlay for a multichannel device during rest (a) and motion (b).

Figure 15 shows beats present during rest on the right and the average beat used as the template
plotted in black. During motion, only the beats with a high correlation with the template are
shown on the right; the template from the previous window is shown in black. Also during
motion, some channels have higher correlation with the template than other channels, yielding
different MCNL levels for each channel. Figure 16 shows beats overlaid in the window separated
by channel during rest and motion. During rest, beats across all channels are have very similar
morphology, are highly correlated with one another, and are highly correlated with the template
shown in Figure 16. During motion, some channels have beats that remain highly correlated with
the template, while some channels are highly corrupted with motion artifact. Therefore, the
average correlation coefficient, and MCNL, will differ between channels, allowing the “best”
channel to be chosen. The multichannel HR estimate was calculated by dividing 60 by the
average peak-to-peak period of the individual waveforms in the 12 s window only from the

channel with the lowest MCNL, in accordance with Equation 3.
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Figure 16. Beats in window overlaid from each individual channel during rest (top) and motion (bottom).

Because HR measurements are more dependent upon the frequency content of the PPG
waveform and the SpO, measurements are more dependent on the amplitude of the PPG
waveforms, the channel chosen to calculate HR was not necessarily the same channel that was
chosen to calculate SpO,. To choose the best channel for calculating SpO,, a weighted “noise
level” was added based on the scaling factor used when the individual PPG waveforms were
normalized to maximum amplitude of 1. The correlation of the beat with the template (C) was
multiplied by the percent amplitude difference from the mean amplitude in the window. First, the
average amplitude of each PPG waveform was calculated as A. This average amplitude was then
divided by the maximum value of each individual waveform in the window. This relative
(scaled) amplitude, a, was calculated for each waveform i in the 12-second window. Then, the
relative amplitude of each waveform was either multiplied or divided by the correlation number
to obtain an updated, amplitude-weighted correlation number, C’. The calculations for this

amplitude-weighted correlation are denoted in Equations 4-6.

A =mean(maximum value of each waveform in 12 s window for a single channel) 4)

A
max(waveform(i))

a(i) = C))
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ifa(i)<1) C(@
C'() = a(i) (6)
elseif (a(D)>1  C(i) * a(i)

The channel chosen to calculate SpO; is still the minimum of (1-C), but with the updated
amplitude-weighted correlation number C’. The SpO, measurements from the channel with the
lowest amplitude-weighted MCNL value were calculated by using the RMS of the AC/DC ratio
for IR and the RMS of the AC/DC ratio for RD. This RMS-based ratio was used in the formula,
125 — 38 * R. These A and B coefficient numbers were based on preliminary calibration data,

but are not the final calibration numbers for our sensor.

5.1.2 ACCELEROMETER AMPLITUDE

The accelerometer signals measured during motion provide a way to quantify the amount of
motion that was introduced into any particular data set. The RMS value of all 3 axes of the on-

board accelerometer was used to quantify motion, according to Equation 7.

1
ceelpne= [= ((Accely)2+(Accely)?+(Acce
Accelgys \]3 ((Accelx)?+(Accely)?+(Accel)?) )

Although these calculations do not translate directly into the level of noise introduced into the
corrupted PPG waveforms during motion, they help to distinguish between high motion and low

motion data sets based on the corresponding RMS values.
5.2 FREQUENCY DOMAIN SNR

Frequency domain SNR represents the power of the PPG signal inside of the HR frequency band
relative to the power outside the HR frequency band, which corresponds to motion induced
frequencies. First, we compute the power spectral density (PSD) of the entire waveform during
motion, and then calculate the mean heart rate (MHR) during motion according to the reference
readings obtained from the Masimo finger sensor. The first harmonic of the MHR is subtracted

before integrating. We integrate the PSD inside the + 0.2 Hz frequency band around the MHR
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during motion and divide it by the integration of the PSD outside of the + 0.2 Hz frequency band
of the MHR, from 0.67 Hz to 3 Hz. The lower limit of 0.67 was chosen to eliminate the
respiratory rate frequency in the calculation. An upper limit of 3 Hz was chosen because 3 Hz
corresponds to a 180 bpm heart rate, which was deemed the upper limit for HR calculations.
Furthermore, the frequencies introduced by the experimental protocol did not exceed 3 Hz.

MHR*1.2Hz
) PSD,,

MHR*0.8 Hz

MHR*0.8Hz 3Hz
) PSD,ps + [ PSD,,

0.67Hz MHR*1 2Hz

SNR

frequency = 10 loglo [dB] (8)

5.3 HEART RATE ERROR METRICS

HR error was defined as the absolute error between the HR calculated by the multichannel
device and the HR given by the Masimo-57 reference sensor, as shown in Equation 9. Absolute
error was chosen over a relative, percent error so that a 3 bpm error on a 90 bpm heart rate would

be the same as a 3 bpm error for a 140 bpm heart rate.

Erryr =|HRyicpo-HRasimo| [bpm] )

This HR error was analyzed during motion using three parameters: accuracy, precision, and
performance index. Performance Index is an indication of the number of measurements taken
that are within a specified tolerance. The Masimo-57 sensor claims HR error tolerance of £ 5
bpm during motion; the upper limit used for performance index calculations matches the Masimo
specifications during motion. Performance Index was chosen as an error metric because a higher
PI from a channel or sensor indicates that that sensor or channel will experience less dropouts in
readings and less overall false HR measurements. Accuracy was chosen as an error metric
because accuracy is the degree to which HR measurements match the true, or accepted, values.
High degrees of accuracy are important for medical device specifications, as clinical accuracy is
of significant importance in medical device instrumentation. Precision refers to the exactness of
measurements, or repeatability. Precision was chosen as the third error metric as it is a measure

of the ability of a medical device to make the same measurements over time of the same true HR.
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5.3.1 PERFORMANCE INDEX

Performance index (PI) was defined as the percentage of the measurements that have absolute
relative HR errors lower than 5 bpm during motion. The higher in performance index a channel

is, the more “correct” measurements were taken during motion. PI is defined in Equation 10.

__ # measurements (Errgr < 5 bpm)

PI

[%0] (10)

total # of measurements

5.3.2 ACCURACY

Accuracy was defined as the offset that a HR measurement has in relation to the reference
device. In this thesis, we assume that the accuracy is the mean absolute relative HR error during
motion in relation to the measurements read by the Masimo-57 finger sensor. Accordingly,

accuracy is defined in Equation 11.

Accuracy = AVERAGE(ErryR) [bpm] (11)

5.3.3 PRECISION

Precision was defined as the ability of a device to make consistent measurements, the spread of
measurements taken around one true value, or the repeatability to measure a single true value
multiple times. Precision is measured as the standard deviation of the absolute relative error
taken in relation to the reference Masimo-57 oximeter. Accordingly, precision was defined in

Equation 12.
Precision = STD(Erryg) [bpm] 12)
5.4 SrPO; ERROR METRICS

Given that SpO, measurements depend on the clinical calibration curves for each individual
device, and that subjects were not subjected to hypoxia in this study, SpO, measurements from
the multichannel device were compared against a constant blood oxygen level of 98 %. Similar
to HR error, SpO; error was defined as the absolute error against a constant oxygen saturation of
98 %, as shown in Equation 13; absolute error was chosen over relative error so that the error

calculation would not be dependent on the oxygen saturation level.

Errgp0, = [SpO 98 | [%] 13)

2 MCPO"~
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Similar to HR error analysis, Performance Index was chosen as an error metric because a higher
PI from a channel or sensor indicates that that sensor or channel will experience less dropouts in
readings and less overall false SpO, measurements. Accuracy was chosen as an error metric
because accuracy is the degree to which SpO, measurements match the true, or accepted, values.
High degrees of accuracy are important for medical device specifications, as clinical accuracy is
of significant importance in medical device instrumentation. Precision refers to the exactness of
measurements, or repeatability. Precision was chosen as the third error metric as it is a measure
of the ability of a medical device to make the same measurements over time of the same true

SpO, level.
5.4.1 PERFORMANCE INDEX

Performance index (PI) was defined as the percentage of the measurements that have SpO, errors
lower than 3 % during motion. The higher percentage a channel or device has in PI, the more
“correct” measurements are taken during motion. Hence, PI was defined according to Equation

14.

__ # measurements (Errgp02 <3 %)

PI=

(%] (14)

total # of measurements

5.4.2 ACCURACY

Accuracy was defined as the offset that a SpO, measurement has in relation to the reference
device. In this thesis, we defined accuracy as the mean absolute relative SpO, error during

motion in relation to a SpO; of 98%. Accuracy was defined according to Equation 15.

Accuracy = AVERAGE(Errgp0, ) [%] 15)
5.4.3 PRECISION

Precision was defined as the ability for a device to make consistent measurements, the spread of
measurements taken around one true value, or the repeatability to measure a true value multiple
times. In this thesis, precision was determined based on the standard deviation of the absolute

relative error taken in relation a SpO; of 98 %. Precision is defined in Equation 16.
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Precision = STD(Errgp02) [%]

(16)
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6. RESULTS

6.1 TIME-DOMAIN PPG WAVEFORM DIFFERENCES DURING MOTION

Though the range of differences in signal corruption varies from data set to data set, for all 31
data sets we collected, the IR PPG waveforms were similar during rest across all channels, and

differed in the levels of signal corruption between channels during motion. Figure 17 shows

typical IR PPG waveforms recorded during rest and motion from data set 10.
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Figure 17. Typical differences in IR PPG waveforms from all six channels recorded during rest (a) and
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It is clear from Figure 17b that a channel with greater motion corruption, such as channels 3 and

4, will have worse peak-detections than channels with less motion corruption, as seen in channels

1 and 6. Therefore, the HR estimations from these channels will be better during motion.
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6.2 ACCELEROMETER AMPLITUDES DURING MOTION

The RMS amplitudes of the on-board tri-axial accelerometers provide an indirect measure of
how much noise was introduced into the corrupted PPG waveforms in each data set, as

summarized in Figure 18.
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Figure 18. Box and Whisker plot of RMS accelerometer amplitudes across all data sets during rest (left side
of column) and motion (right side of column). RMS values were calculated using Equation 8.

Generally, the larger the accelerometer RMS amplitudes are, the more intense is the motion
performed by the subject during testing. The accelerometer amplitude is a good indication of the
level of motion artifacts introduced, but is indirectly related to the motion artifact introduced into
the corrupted PPG waveform. As seen in Figure 16, about half of the data sets have a relatively
small range of RMS accelerometer amplitudes during motion, and median RMS accelerometer
amplitudes below 500 au. Generally, these data sets showed greater differences in motion
between channels. However, the pressure exerted by the headband to secure the sensor and the
signal amplitude of the PPG, amongst other variables, can affect the quality of the recorded PPG

waveforms.
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6.3 FREQUENCY SNR DURING MOTION

The PSD of each AC IR waveform was calculated using Welch’s method. The frequency-based

SNR was calculated by integrating the area under the PSD of the IR PPG waveform during

motion within a frequency band of = 0.2 Hz around the MHR divided by the area outside of this

range between 0.67 Hz and 3 Hz, as shown in Equation 8. The second harmonic of the HR

(2*MHR) was subtracted out before calculations so as not to be added to the noise calculation.

Table 1 shows the SNR values during motion for all 31 data sets and for each of the six channels.

Table 1. Frequency-based SNR of the IR AC PPG waveforms for all 6 channels during motion.

Frequency Band Signal-to-Noise Ratio (SNR) [dB] during motion

Data Set Ch1 Ch2 Ch3 Ch4 ChSs Ché6
1 7.44 6.93 885 11.55 11.69 8.13
2 3.24 3.50 2.70 2.65 2.28 2.62
3 11.10  10.30 9.63 9.79 9.74 10.03
4 11.36  10.13 9.31 10.02 10.43 9.94
5 9.99 6.98 5.34 6.53 6.71 6.13
6 16.24 921 1287 14.10 12.13 14.15
7 15.02 9.68 1542 18.19 13.85 11.74
8 10.28 6.24 6.58 7.55 7.22 10.27
9 7.51 7.60 7.97 7.77 8.36 7.58
10 5.47 5.45 2.71 2.83 4.68 5.27
11 5.79 6.08 3.65 3.56 543 5.76
12 1096 11.55 16.08 18.04 17.23 13.24
13 920 11.88 15.06 15.59 14.01 11.33
14 1438 1593 1745 1635 13.44 16.08
15 1526 1721 20.62 18.07 12.49 17.33
16 5.61 4.00 3.49 3.87 3.88 4.48
17 4.18 2.07 1.49 2.06 2.14 2.97
18 8.88 851 11.15 12.08 11.49 8.95
19 8.89 8.83 12.08 1292 12.28 9.56
20 5.31 1.85  -2.79 -1.97 1.08 5.53
21 -1.30 -0.78 -381 -4.64 -6.02 -6.94
22 11.88 1494 10.54 9.38 8.84 9.46
23 9.84 13.17 10.95 9.81 7.54 7.62
24 -5.07  -437 -1.88 454  -6.52 -7.96
25 -6.08 -322 332 -6.72 -7.02 -4.44
26 -2.68 0.88 2.21 3.56 2.40 -1.22
27 =771 -824 -6.84  -6.37  -7.81 -8.42
28 -3.63  -3.19  -0091 0.11 -0.64 -3.10
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29 -0.39 0.08 -1.76 -2.44 -2.21 -0.80
30 097 -041 -248 -2.06 -0.80 1.39
31 -11.96 -8.01 -6.04 -796 -9.50 -10.46

The motion frequency differences across channels can be visualized in comparison to the power
spectral density (PSD) of the accelerometer signal during motion. Figures 19 and 20 show the
PSD of the PPG waveform across all six channels, and the PSD of the tri-axial accelerometer
waveform from two typical data sets where channels have different amplitudes of motion
frequency. When the forehead sensor is placed on the forehead, the x-direction corresponds to
motion perpendicular to the transverse plane, the y-direction perpendicular to sagittal plane, and
the z-direction perpendicular to the coronal plane. The majority of the motion present in our data

sets is in the x-direction, as shown in Figures 19 and 20.
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Periodogram of PPG During Motion: Data Set 10
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Figure 19. Power Spectral Density (PSD) of all six channels during motion for data set 10. The PSD of the
accelerometer is plotted below to show the dominant motion frequencies.

Figure 19 shows where the MHR frequency is present in the PPG waveform and the motion
frequency present in the PPG waveforms across all channels, corresponding to the spectra of the
accelerometer during motion. In the spectra on the right, channels 2 and 5 show less amplitude in

the PSD at the motion frequency than the remaining four channels.
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Periodogram of PPG During Motion: Data Set 20
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Figure 20. Power Spectral Density (PSD) of multiple channels during motion for data set 20. The PSD of the

accelerometer is plotted below to show the dominant motion frequencies.

Figure 20 shows the PSD of the six AC PPG waveforms during motion and the PSD of the

accelerometer data for data set 20. In this data set, channels 1 and 6 hardly show any amplitude

in the motion frequency relative to the other 4 channels. Figure 21 shows the entire time-varying

spectrogram from data set 14, channel 5. The prominent motion frequency, as calculated from

the accelerometer PSD, is 1.72 Hz.
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Periodogram of PPG at P.r‘iingry Motion Frequency: Data Set 14 Channel §

»

Motion Frequency -

. ikl
A ir(_,“"“‘

«—————Heart Rate Frequency

15 1000

Frequency sz) 800

1

Time (s)

0 0

Figure 21. Time-varying spectrogram of the AC IR PPG waveform from channel 5. The heart rate frequency
during motion and the dominant motion frequency, around 1.72 Hz, are labeled in white.

Figure 22 shows the PSD centered on the dominant motion frequency of 1.72 Hz for each
channel. From these plots, it is evident that the motion frequency is greater in channels 3 and 4

and smaller in channels 1, 2, and 6, and that the amount of motion in each channel changes over

time.
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Periodogram of PPG at Primary Motion Frequency: Data Set 14
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Figure 22. Time-varying spectrogram of AC IR PPG waveforms from all channels only centered on the
dominant motion frequency around 1.72 Hz.
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6.4 MULTICHANNEL TEMPLATE MATCHING NOISE LEVEL (MCNL)
6.4.1 MCNL vs VFCDM

Previous to development of the MCNL algorithm, noise detection performed in this lab was
implemented using the Variable Frequency Complex Demodulation Method (VFCDM). To
compare noise detection performance of the old method and our new method, VFCDM noise
levels and MCNL values were compared for our motion data sets. Figure 23 shows the AC
portion of the IR PPG waveform plotted against both the MCNL and VFCDM noise level. The
accelerometer is plotted below both noise levels for motion reference. Although the trend of the
noise level for each algorithm differs, both algorithms respond to and detect noise in the PPG

waveform and both algorithms are sensitive to changes in the PPG waveform.
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Figure 23. Time-series of the IR AC PPG, the VFCDM approach, the noise level output by the multichannel
template matching algorithm (MCNL), and the accelerometer data for motion reference.

Generally, the MCNL was similar to the output from the VFCDM algorithm: low during rest,

and higher during motion with varying levels of noise across channels. Figure 24 shows the same
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four plots shown in Figure 23, but over the duration of an entire data set. The trends of both
noise detection algorithms followed the same pattern, but spread across a different range of noise
levels—the VFCDM noise level ranged from 0.07 to 1 during motion whereas the MCNL values

tended to range between 0.002 and 0.4 during motion.
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Figure 24. Time-series of the IR AC PPG, the VFCDM approach, the noise level output by the multichannel
template matching algorithm (MCNL), and the accelerometer data for motion reference for the duration of
an entire data set.

For the purpose of our algorithm, the noise level of each channel in relation to the other five
channels is more important than the overall range of noise level output by our multichannel noise
detection algorithm. Furthermore, the VFCDM was higher in computational time, making it less
efficient than the MCNL computation. Because of this, it was determined that the MCNL was

sufficient for detecting motion noise and as the basis for choosing channels.
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6.4.2 MCNL VALUES DURING MOTION

The overall MCNL across all six channels was averaged and the corresponding Box-and-
Whisker plots of the noise level during rest (left) and motion (right) are plotted in Figure 25 for
all 31 data sets.
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Figure 25. Box-and-Whisker plots of the average Multichannel Noise Level (MCNL) across all data sets. The
average MCNL across all channels during rest and motion are shown on the left and right hand side of each
column, respectively.

Multichannel noise level (MCNL) plots were used to illustrate how clean or corrupted different
channels were during motion based on their respective signal morphology. During clean
segments of the PPG waveforms that were recorded during rest, beats across all channels showed
a relatively high degree of correlation (C) and low MCNL values. The differences in the medians
and ranges of the MCNL, calculated by the multichannel template-matching algorithm during
motion, showed high variation across data sets, hence displaying the variety of motions
manifested by our experimental protocol. The data sets with low MCNL values during motion

tended to have low accelerometer RMS amplitudes.

Figure 26 shows the time-series MCNL of data set 20 across all channels, where each color

indicates a different channel. The MCNL outputs low values during rest, high values during
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motion, and varying values across channels during motion. In data set 20, we noticed that the
channels were more consistently separated in terms of noise level, and it is clear that the channel

shown in blue has the lowest noise level of all six channels during the majority of the motion.
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Figure 26. Multichannel template-matching noise level (MCNL) plotted for the duration of the first motion
segment of data set 20. Accelerometer data is plotted below the MCNL to indicate where motion occurs.

Figure 27 shows the MCNL plotted for a portion of rest and the entire duration of the first
motion segment across all six channels. The filtered accelerometer signal is shown beneath the
MCNL plot for motion reference. In data set 24, the noise levels across channels were closer

together during motion. The channel shown in red was the lowest during a lot of the motion, but

not at every time point.
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Figure 27. Multichannel template-matching noise level (MCNL) plotted for the duration of the first motion
segment from data set 24. Accelerometer data is plotted below the MCNL to indicate where motion occurs.

6.4.3 SPREAD OF CHANNELS CHOSEN DURING MOTION

To see how the channel-switching algorithm affected measurements taken during motion, the

number of times that any individual channel had the lowest MCNL value during motion was

calculated for each data set. Figure 28 shows the histograms of the spread of channels chosen

during motion for fifteen different data sets.
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Figure 28. Histograms of the number of times each channel was chosen during motion for 15 of the 31 data
sets.

Figure 28 shows the spread of measurements taken from each channel during motion for fifteen
of the thirty-one data sets. For a majority of the data sets, most measurements were taken from

one or two channels during motion. The channel chosen during motion did differ between data

4
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sets, as shown in Figure 28. For example, data sets 6 and 14 used channel 5 for most of the
measurements, while data set 20 used channel 1 for most of the measurements and data set 24
used channel 3 for most of the measurements. And, some of the data sets used all six channels

more evenly, as seen in the histograms for data sets 28 and 30.
6.5 HR ERRORS DURING MOTION

HR errors during motion were calculated in comparison to the Masimo reference sensor
according to 3 separate statistical parameters: performance index (PI), accuracy, and precision.
The PI, accuracy, and precision of each channel was calculated and put in order from worst
performance to best performance for each data set. To compare the multichannel estimate against
the single channel estimates for each parameter, six one-sided t-tests were performed; estimates
from each individual channel were compared against the multichannel estimate for each
parameter. The multichannel estimate (MC) corresponds to the HR calculated by switching
between channels every 2 seconds using the multichannel template-matching algorithm. A
confidence value of 95 % (a = 0.05) was used to find t-critical values for each t-test. Data sets 21
and 31 showed extremely low SNR, high accelerometer amplitudes during motion, high MCNL
during motion and high HR errors across all channels. Furthermore, the PPG waveforms across
all channels were completely corrupted by motion artifacts; therefore, these data sets were

eliminated from the statistical calculations.
6.5.1 PERFORMANCE INDEX

Table 2 summarizes the performance index calculated for each data set across all 6 channels, and
the corresponding multichannel HR estimates. For each data set, the performance index of each
channel was put in order of worst PI to best PI during motion. The mean performance index per
each channel, the corresponding multichannel estimate, and the mean and standard deviation of
the difference between the multichannel and each individual channel are given below.

Table 2. Performance Indices of each individual channel and the multichannel estimate for HR
measurements during motion.

Performance Index: Percentage of HR error less than or equal to S bpm [%]

Data Set Worst € Channel = Best MC
1 95.7% 95.7% 96.0% 96.0% 97.4% 97.7%  98.0%
2 96.7% 97.4% 98.0% 98.0% 99.3% 99.3%  98.7%

42



3 83.4%  87.4%  90.7% 91.4% 93.0% 95.7% 94.0%
4 83.4%  88.7%  89.1% 89.7% 90.1% 91.1% 91.7%
5 334%  48.0%  487% 69.2% 69.9% 74.8% 64.6%
6 85.1%  88.1%  89.4% 90.1% 93.0% 94.4% 94.7%
7 59.6%  652%  69.5% T77.5% 81.1% 83.8% 77.5%
8 64.6%  65.6%  659% 669% 682% 69.2% 65.6%
9 87.1%  87.4%  87.7% 88.1% 88.7%  88.7% 88.4%

10 63.6% 69.2% 88.1% 89.1% 90.1% 91.7% 90.1%
11 62.9% 63.2% 954% 983% 99.3% 99.7% 99.7%
12 5.6% 6.0% 7.6% 79% 11.9% 22.5% 9.3%
13 61.3% 63.9% 65.6% 672% 709% 78.8% 68.9%
14 33.1% 34.4% 344% 34.8% 36.1% 36.8% 36.4%
15 26.5% 26.5% 28.1% 28.8% 28.8% 29.5% 29.1%
16 85.8% 91.7% 92.1% 93.7% 96.7%  98.0% 98.0%
17 45.7% 58.6% 609% 629% 73.8% 858% 85.4%
18 8.3% 11.3% 14.6% 79.8% 81.5% 90.1% 89.1%
19 0.7% 1.3% 26% 61.6% 70.5% 762% 76.5%
20 1.7% 2.0% 46.7% 76.8% 957%  96.0% 95.7%
21* 0.3% 0.3% 0.3% 0.3% 1.0% 1.0% 0.3%
22 25.5% 71.5% 72.2% 854% 858% 86.1% 85.4%
23 32.5% 60.6% 85.4% 92.7% 94.7%  94.7% 94.7%
24 8.9% 19.2% 20.5% 30.8% 37.7% 58.3% 50.7%
25 5.3% 5.6% 5.6% 99% 11.6% 159% 11.9%
26 1.3% 4.6% 152% 44.7% 54.0% 80.5% 61.3%
27 23.8% 27.2% 31.1% 40.7% 43.7%  43.7% 38.7%
28 15.6% 23.8% 358% 593% 623% 69.2% 61.9%
29 28.8% 34.8% 51.7% 59.9% 59.9% 63.9% 60.6%
30 23.5% 24.8% 28.5% 32.1% 40.1% 50.3% 39.4%
31* 3.6% 4.0% 4.0% 4.0% 4.6% 5.6% 3.6%
Mean (all) 40.4% 46.1% 523% 62.2% 65.5% 70.0% 66.4%
Mean (excl. 21 & 31) 43.1% 49.1% 55.8% 66.3% 69.9% 74.6% 70.9%
Mean diff. 27.81% 21.80% 14.61% 4.57% 1.04% -3.67%
Std Err diff. 5.04% 4.69% 386% 1.31% 0.79%  0.93%
T-statistic 5.521 4.648 3.789  3.483 1.310 -3.942
T- critical 1.701
o 0.05

The performance index for the multichannel switching estimate was better than five of the six
channels across all six data sets. The PI was worse than the best performing channel by 3.7 %,
but better than the worst performing channel by 27.8 %. In order of performance index, we found

that the multichannel estimate was significantly higher in PI than four of the six channels.
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6.5.2 ACCURACY

The accuracy, or accuracy, was defined as the mean of the absolute relative error. The accuracy

was calculated for all 6 channels and for the multichannel switching estimate. Six one-sided t-

tests were performed to compare each individual channel with the multichannel estimate in order

to test the multichannel approach to the single channel based method for calculating HR in a

conventional pulse oximeter. Table 3 summarizes the accuracy of each channel and of the

multichannel estimate (MC) during motion.

Table 3. Mean absolute HR errors for each individual channel and the multichannel estimate during motion.

Mean HR error during motion [bpm]

Data Set Worst € Channel 2 Best MC
1 1.8 1.8 1.7 1.7 1.7 1.6 1.5
2 1.7 1.6 1.5 1.4 14 1.3 1.2
3 3.6 2.8 2.7 2.5 2.5 2.2 2.3
4 3.1 2.8 2.7 2.7 2.6 2.5 2.4
5 9.5 7.5 7.1 4.5 4.3 4.1 5.0
6 2.9 2.7 2.6 2.3 2.1 2.0 2.0
7 4.7 4.4 4.0 3.5 3.2 3.1 3.6
8 5.0 4.9 4.8 4.6 4.5 4.5 4.7
9 2.5 2.5 2.5 24 2.4 2.4 2.5
10 9.5 7.8 3.1 3.1 2.9 2.8 2.9
11 13.0 12.2 2.3 1.6 1.3 1.2 1.2
12 10.7 10.7 10.7 10.5 10.0 9.2 10.5
13 4.7 4.4 4.3 4.1 4.0 3.5 4.2
14 9.5 9.5 9.5 94 94 9.2 9.5
15 11.6 11.6 114 114 11.2 11.2 11.3
16 4.6 3.1 2.9 2.3 1.8 1.6 1.5
17 16.4 12.2 11.2 104 6.5 2.7 2.8
18 13.9 13.9 12.7 34 3.3 2.6 2.6
19 13.7 13.6 13.6 5.5 4.7 3.9 39
20 24.4 24.1 114 4.3 1.8 1.7 1.8
21* 40.4 394 39.3 38.8 38.8 38.8 39.3
22 8.2 4.1 4.0 2.8 2.7 2.6 2.8
23 7.7 5.8 2.9 2.1 2.0 2.0 2.0
24 20.4 15.1 14.2 11.1 10.1 7.1 10.0
25 22.9 22.8 22.2 20.5 20.2 17.5 20.0
26 44.5 42.6 34.0 19.2 15.8 6.1 17.7
27 24.5 23.6 22.4 194 19.4 19.0 22.6
28 22.1 20.0 13.7 9.9 9.2 6.7 8.7
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29 10.4 9.5 7.4 6.8 6.7 6.1 6.9

30 12.8 11.6 11.3 10.5 9.1 7.8 9.3
31* 22.9 22.8 22.7 22.7 22.3 22.0 22.6
Mean (all) 13.0 12.0 10.2 8.2 7.7 6.7 7.7
Mean (excl. 21 & 31) 11.7 10.6 8.8 6.7 6.1 5.1 6.1
Mean diff. 5.63 4.53 2.68 0.58 -0.02 -1.00
Std Err diff. 1.27 1.19 0.76 0.30 0.19 0.41
T-Statistic 4434 3.809 3.520 1.919 -0.092 -2.428
T-Critical 1.701
o 0.05

The multichannel estimate was as low or lower than five of the six channels in accuracy of HR
measurements over the remaining 29 data sets. A one-sided t-test was performed to compare the
single channel estimates with the multichannel estimates. The multichannel estimate was
statistically better in accuracy than four of the six channels. Data analysis showed that the
average accuracy of HR error was 5.6 bpm lower than the worst performing channel and at

worst, 1 bpm worse than the best performing channel.
6.5.3 PRECISION

The precision was defined as the standard deviation of the absolute relative error. Table 4 shows
the precision calculated for all 6 channels and for the multichannel switching estimate (MC). A
one-sided t-test was performed to compare the multichannel estimate against each individual

channel to compare against a single-channel pulse oximeter.

Table 4. Precision of absolute HR errors for each channel and the multichannel estimate during motion.

Standard Deviation of HR error during motion [bpm]|
Data Set Worst € Channel 2 Best MC

1 2.5 2.0 1.9 1.8 1.6 1.6 1.6
2 1.5 1.4 1.4 1.3 1.3 1.2 1.2
3 3.5 2.9 2.6 2.1 1.9 1.8 2.2
4 3.2 3.2 2.8 2.7 2.6 2.6 2.6
5 6.4 59 5.7 3.7 34 34 4.3
6 2.6 24 2.2 2.2 2.0 2.0 1.9
7 3.7 3.5 3.2 2.8 2.8 2.6 3.2
8 5.1 4.9 4.8 4.4 4.3 4.3 4.6
9 3.9 3.9 3.9 3.9 3.9 3.8 4.0
10 132 11.1 6.5 6.2 6.2 6.2 6.2
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11 17.8 169 5.6 4.1 1.2 1.0 1.1
12 4.5 4.0 3.8 34 33 33 3.6
13 3.8 3.5 3.3 3.3 3.1 2.8 34
14 6.5 6.5 6.4 6.4 6.4 6.4 6.5
15 8.0 7.9 7.9 7.9 7.8 7.8 7.9
16 9.5 6.7 6.3 3.9 1.9 1.6 1.6
17 16.3 14.7 13.9 134 10.1 3.0 3.1
18 6.0 5.9 5.1 34 2.7 2.4 2.4
19 4.7 4.3 4.2 4.2 4.1 3.9 3.8
20 10.8 6.0 5.9 5.2 2.0 1.9 1.9
21* 7.1 6.4 4.0 4.0 3.9 3.7 6.0
22 4.0 3.3 2.8 2.7 2.7 2.5 2.8
23 5.0 4.6 2.4 2.0 1.9 1.9 1.9
24 9.3 9.1 9.0 8.2 8.1 7.4 10.2
25 10.0 9.9 9.9 9.2 9.0 8.8 10.0
26 184 174 17.2 13.8 10.7 10.2  21.5
27 23.6 232 228 219 21.7 21.5 239
28 142  13.7 12.6 126 11.6 9.5 11.1
29 8.7 8.0 7.4 7.0 6.6 6.5 7.6
30 8.3 7.9 7.4 7.4 6.9 6.8 7.2
31* 9.6 9.1 8.8 8.6 8.6 8.4 9.1
Mean (all) 8.1 7.4 6.5 5.9 5.3 4.9 5.7
Mean (excl. 21 & 31) 8.1 7.4 6.5 5.9 5.2 4.8 5.6
Mean diff. 2.5 1.8 0.9 0.3 -0.4 -0.8
Std Err diff. 0.8 0.7 0.5 0.5 0.5 0.4
T-Statistic 3.038 2465 1.834 0.543 -0.835 -2.097
T-Critical 1.701
a 0.05

Data analysis showed that the precision of the multichannel estimate was better than four of the

six channels, and statistically lower than three of the six channels. The multichannel-switching

estimate increased precision by up to 2.5 bpm when compared to the worst performing channel,

and was at worst 0.8 bpm worse than the best performing channel.

Generally, the multichannel data can be divided into one of three scenarios for HR

measurements: (1) during motion, the estimated HR values produce low-errors for all six

channels, making the multichannel HR estimation approximately as good as any individual

channel used in a conventional pulse oximeter, (2) during motion, HR estimations produce high-

errors in some of the channels, and low-errors in other channels, making the multichannel
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derived HR estimate better than any individual channel, and (3) during motion, all six channels
are corrupted by motion artifacts such that all six channels have large HR errors, and the
multichannel estimate is not better than any individual channel. The first scenario is depicted in

Figures 29 and 30.
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Figure 29. Multichannel HR Estimates from data set 2.
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Figure 30. Multichannel HR Estimates from data set 3.

As stated earlier, we found that the signals recorded from the accelerometer do not necessarily
indicate whether estimated HR values from all six channels will have a low-error or not. For
example, for data sets 2 and 3 in Figures 29 and 30, where both data sets had low-error HR
measurements across all channels, the overall accelerometer amplitudes during motion was
vastly different. However, data sets 11 and 17, shown in Figures 31 and 32, have even lower

accelerometer amplitudes than data sets 2 and 3 during motion, but have different levels of HR

error across channels.
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Figure 31. Multichannel HR estimates from data set 11.
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Figure 32. Multichannel HR estimates from data set 17.

This particular situation, where the multichannel was seen to be the most relevant, occurred in 9
to 10 data sets out of 31 sets. The final situation is depicted below in Figures 33 and 34: where
all six channels had produced high HR errors during motion, and therefore the multichannel

estimate was not successful in lowering the overall HR error lower during motion.
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Figure 33. Multichannel HR estimates from data set 21.
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Figure 34. Multichannel HR estimates from data set 31.

Note that the accelerometer amplitudes in these data sets are lower than the accelerometer
amplitudes seen in Figure 31, further suggesting that the overall amplitude level of the
accelerometer is not a direct measurement of how much motion frequency will be introduced

into the PPG waveforms, or how severely HR measurements during motion will be affected.

To further depict the accuracy (bias), precision, and differences in HR measurements, time-series
of the HR measurements for the first 24 data sets during motion were plotted, as well as the
correlation and the Bland Altman plots of the HR measurements taken with our multichannel
device compared to the Masimo reference HR measurements. These plots for the first 24 data

sets are shown in Appendix H.

6.6 SPO; ERRORS DURING MOTION

Since subjects in this study did not undergo hypoxia, the SpO, errors were calculated and
compared to a constant SpO; value of 98 %. SpO, errors were separated into 3 distinct

parameters: performance index (PI), accuracy, and precision. To compare the multichannel
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estimates against the single channel estimates for each parameter, six one-sided t-tests were
performed. Estimates from each individual channel were compared against the multichannel
estimate for each parameter. The multichannel estimate (MC) corresponds to SpO;
measurements taken by switching between channels every 2 seconds using the multichannel
template-matching algorithm with amplitude-weighted correlation values. A confidence value of
95 % (o= 0.05) was used to find t-critical values for each t-test. Data sets 6 showed relatively
high-error SpO, measurements during rest, so this data set was eliminated in the statistical
analysis. Since data sets 21 and 31 showed extremely low SNR, high accelerometer amplitudes
during motion, high MCNL during motion, and high HR errors across all channels, these data
sets were also excluded from the statistical analysis in calculating estimated SpO, errors. Data
sets 27 and 30 showed less than 1% performance index for SpO, measurements during motion,

so these data were also eliminated from the statistics calculations.
6.6.1 PERFORMANCE INDEX

Table 5 summarizes the performance index calculated for each data set across all 6 channels, and
the multichannel SpO, estimates. The mean performance index per each channel, the
corresponding multichannel estimate, and the mean and standard deviation of the difference

between the multichannel and each individual channel are given below.

Table 5. Performance Index for SpO, during motion from all six channels and the multichannel estimate.

Performance Index: % of SpO; measurements with less than 3 % error during motion [%]

Data Set Worst <€ Channel =2 Best MC
1 64.57%  87.09%  95.03%  95.03% 96.69% 98.68% 95.03%
2 93.71%  97.02%  98.34%  98.34% 100.00% 100.00% 100.00%
3 2.98%  78.48% 85.43% 94.04% 97.68% 98.34%  83.44%
4 4.97% 42.05% 64.24% 75.17% 85.10% 98.01% 69.21%
5 2.65% 51.99% 64.57% 68.87% 74.50% 92.38% 78.81%

6* 24.17%  44.70%  47.02% 6291% 90.07%  97.68%  43.05%

7 0.33% 32.12% 48.01% 73.18%  77.15%  98.68%  58.28%
8 14.57%  18.21%  51.66%  67.55% 97.02% 98.34%  80.13%
9 94.37%  99.01% 100.00% 100.00% 100.00% 100.00% 100.00%
10 90.07% 91.39% 94.37% 9536% 96.03% 96.36%  95.36%
11 98.68%  99.01%  99.67% 100.00% 100.00% 100.00% 100.00%
12 0.00% 0.99% 15.23% 17.55% 43.71% 100.00%  79.80%
13 13.25%  22.19%  26.16% 34.11% 38.08%  53.64% 42.38%
14 0.00% 0.66%  98.34%  98.34%  98.34% 100.00%  91.06%
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15 0.00% 0.33%  92.72% 100.00% 100.00% 100.00%  80.13%
16 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
17 99.01% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
18 98.68%  99.67% 100.00% 100.00% 100.00% 100.00% 100.00%
19 97.35% 100.00% 100.00% 100.00% 100.00% 100.00%  99.34%
20 1.99% 59.93% 91.72%  95.70% 100.00% 100.00% 100.00%
21% 0.00% 0.66% 6.29%  97.35% 100.00% 100.00%  19.21%
22 0.00% 16.56% 17.55%  79.14%  95.70%  97.68%  88.08%
23 0.99% 3.64% 39.40% 92.72%  94.70%  99.34%  95.03%
24 0.66% 0.99% 1.99% 5.63% 14.57%  19.54% 8.61%
25 1.99% 2.65% 2.65% 4.30% 4.97%  97.35%  30.46%
26 27.48%  30.13% 53.31% 58.61% 65.23% 84.11%  50.33%
27* 0.00% 0.00% 0.33% 0.33% 0.66% 0.66% 0.33%
28 0.00% 0.00% 0.66%  39.40% 42.38%  52.98%  30.79%
29 3.31% 6.29% 6.95% 7.62% 11.26%  13.58%  12.58%
30* 0.00% 0.00% 0.00% 0.00% 0.00% 0.66% 0.33%
31* 2.32% 6.95% 6.95% 68.87% 91.72%  93.05%  50.66%
Mean (all) 30.26% 41.70%  55.12%  68.71%  74.70%  83.58%  67.18%
Mean (excl. ¥) 35.06% 47.711% 63.39% 73.10% 78.20% 88.42% 75.73%
Mean diff. 40.7% 28.0% 12.3% 2.6% -2.5%  -12.7%
Std Err diff. 7.1% 6.1% 4.2% 3.0% 2.4% 3.1%
T-statistic 5.74 4.60 2.90 0.88 -1.02 -4.06

T-Critical 1.706
o 0.05

* Excluding data sets 6, 21, 27, and 31

For performance index in SpO, measurements, the multichannel estimate (MC) was higher than

four of the six channels, and statistically higher than three of the six channels. When compared to

the worst performing channel, the multichannel estimate increased the PI by an average of 40.7

% during motion.

6.6.2 ACCURACY

The accuracy, or accuracy, is defined as the mean of the absolute relative error. Table 6 shows

the accuracy calculated for all 6 channels and for the multichannel switching estimate. Six one-

sided t-tests were performed to compare each individual channel to the multichannel estimate to

test the multichannel estimate against the single channel pulse oximeter scenario.

Table 6. Accuracy of absolute SpO, error during motion from all six channels and the multichannel estimate.

Data Set

Mean SpO; error during motion [%]

Worst

€ Channel 2>

Best

MC
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1 2.73 1.53 1.47 1.31 1.09 0.92 1.26

2 1.38 1.28 0.68 0.64 0.43 0.30 0.57

3 8.02 2.40 1.85 1.49 1.02 0.78 1.99

4 6.31 3.14 2.68 2.31 2.21 0.86 2.53

5 10.43 2.82 2.74 2.71 2.49 1.61 2.33

6* 3.90 3.56 2.63 2.47 1.29 1.10 2.96

7 7.44 5.74 2.83 2.54 243 1.56 3.03

8 7.70 5.07 2.51 2.48 2.17 1.29 2.49

9 0.94 0.89 0.72 0.63 0.48 0.34 0.52

10 1.65 1.40 1.14 1.12 0.84 0.66 1.22

11 0.90 0.85 0.82 0.60 0.60 0.54 0.80

12 6.41 5.61 5.27 4.68 3.40 0.94 1.81

13 8.30 8.16 5.56 4.22 3.75 3.01 4.76

14 15.88 12.66 2.45 2.28 1.82 1.17 2.40

15 12.67 10.52 2.55 2.24 1.26 0.77 3.57

16 1.05 0.83 0.51 0.45 0.42 0.34 0.36

17 1.77 1.00 091 0.52 0.50 0.46 0.46

18 1.69 1.23 1.19 1.07 0.64 0.54 1.02

19 1.78 1.30 1.25 1.14 0.61 0.53 0.95

20 4.26 2.82 2.73 1.19 0.71 0.63 0.64

21% 9.96 7.16 3.87 2.68 2.21 1.43 4.28

22 12.94 6.39 5.12 2.25 1.45 1.24 1.83

23 14.04 7.30 4.35 1.28 1.25 1.12 1.25

24 13.67 13.60 7.43 7.23 5.66 3.47 8.24

25 8.58 8.34 6.41 6.19 4.85 1.15 4.65

26 5.09 4.56 3.03 2.95 2.37 1.29 3.35

27* 15.90 14.18 11.50 10.15 10.12 8.23 10.76

28 9.68 7.24 6.18 4.16 3.68 3.14 4.79

29 8.49 7.01 7.00 6.83 5.36 4.84 6.15

30% 13.58 13.22 11.78 11.37 10.66 8.43 10.25

31* 8.30 5.84 5.35 2.37 1.28 1.21 3.30

Mean (all) 7.27 541 3.69 3.02 2.49 1.74 3.05

Mean (excl.*) 6.68 4.76 3.05 2.48 1.98 1.29 2.42
Mean diff. 4.26 2.33 0.63 0.06 -0.44 -1.13
Std Err diff. 0.76 0.51 0.23 0.16 0.16 0.23
T-statistic 5.63 4.61 2.71 0.38 -2.83 -5.02

T-Critical 1.706
o 0.05 * Excluding data sets 6, 21, 27, and 31

For accuracy of SpO, measurements, the multichannel estimate was better than four of the six

channels, and statistically lower than three of the six channels. When compared to the worst
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performing channel, the multichannel estimate increased the accuracy of SpO, measurements

during motion by 4.3 %, but was worse than the best performing channel by 1.13 %.

6.6.3 PRECISION

The precision is defined as the standard deviation of the absolute error. Table 7 shows the

precision calculated for all 6 channels, in order from highest to lowest, and for the multichannel

switching estimate (MC). A one-sided t-test was performed to compare the multichannel

estimate against each individual channel.

Table 7. Precision of the SpO, measurements during motion from all six channels and the multichannel
estimate.

Precision: Standard Deviation of SpO; error during motion [%]

Data Set
1

N A W N

L

10
11
12
13
14
15
16
17
18
19
20
21%
22
23
24
25
26
27*

Worst
1.75 1.19
1.41 1.05
2.35 1.54
2.04 2.04
3.32 2.54
1.98 1.77
4.34 1.73
343 1.99
0.91 0.55
1.91 1.18
0.64 0.64
2.49 1.60
4.24 4.20
2.33 1.26
1.87 0.89
0.53 0.40
0.70 0.50
0.77 0.53
0.62 0.52
1.27 0.85
1.36 1.36
3.04 2.70
291 2.76
3.63 2.41
2.76 1.53
2.17 2.08
4.02 2.90

€ Channel >

0.96
0.97
1.04
1.25
2.48
1.37
1.01
1.30
0.51
1.16
0.62
1.11
2.93
0.73
0.50
0.39
0.50
0.53
0.51
0.71
0.56
1.45
2.19
2.36
1.37
2.08
241

0.84
0.55
1.02
1.09
2.02
1.03
1.00
1.11
0.38
1.01
0.56
0.91
2.16
0.65
0.42
0.28
0.06
0.46
0.50
0.60
0.51
1.42
2.07
2.20
1.27
1.94
2.26

Best
0.83
0.25
0.97
1.00
1.67
0.98
0.77
0.94
0.33
0.94
0.30
0.56
1.67
0.56
0.29
0.20
0.04
0.46
0.49
0.37
0.50
0.95
1.84
2.12
1.25
1.73
2.25

0.76
0.19
0.84
0.83
1.04
0.79
0.70
0.65
0.25
0.81
0.24
0.50
0.95
0.51
0.00
0.13
0.01
0.36
0.43
0.36
0.41
0.88
0.61
0.58
0.74
1.18
2.20

MC
0.95
0.37
1.44
2.01
2.77
1.91
2.55
2.16
0.39
1.13
0.60
1.79
3.75
3.51
3.37
0.27
0.05
0.56
0.61
0.37
2.02
2.05
2.01
5.05
2.63
2.56
3.12
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28 2.67 2.39 2.16 1.52 1.25 1.12 3.02

29 2.85 2.79 222 2.16 1.27 0.93 2.48

30* 5.21 4.29 3.52 3.30 2.83 1.83 3.67

31* 2.04 1.93 1.89 1.86 1.73 1.49 2.78
Mean (all) 231 1.75 1.38 1.20 1.01 0.72 2.00
Mean (excl.*) 2.19 1.59 1.24 1.05 0.85 0.58 1.84

Mean diff.  0.36 -0.25 -0.59 -0.78 -0.98 -1.26
Std Err diff.  0.28 0.18 0.19 0.19 0.19 0.23
T-statistic  1.27 -1.40 -3.17 -4.17 -5.14 -5.53
T-Critical 1.706
o 0.05 * Excluding data sets 6, 21, 27, and 31

The precision of the SpO, errors was worse than five of the six channels, and was not statistically
lower than any individual channel. The multichannel estimate was at worse less than 1.3 % lower
than any individual channel, making the precision approximately on par with single channel

measurements.

For all 31 data sets, the SpO, measurements differed between channels during motion. Similar to
the multichannel HR estimates, multichannel SpO, measurements can be divided into three
categories: (1) the multichannel SpO, estimates were better than the worst channel during
motion, but the channel-switching algorithm had difficulty choosing the channel with the lowest-
SpO, error (2) the multichannel SpO, estimate was equal to the channel with the lowest SpO,
error during motion, and the channel-switching algorithm successfully chose the lowest-error
channel, and (3) all six channels produced high-error SpO, measurements during motion, and the

multichannel estimate was not able to obtain low-error SpO, measurements during motion.

Figures 35 and 36 show examples of two data sets where the multichannel SpO, estimate was
better than the worst channel, but the algorithm was not always able to choose the channel with
the lowest SpO; error. The accelerometer amplitude was high in both cases, and is plotted below

the SpO, measurements as a motion reference.
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Figure 35. SpO, measurements taken during random motion from data set 3.
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Figure 36. SpO, measurements taken during random motion from data set 4.

Figures 37 and 38 show examples of two data sets where the multichannel SpO, estimate

produced the lowest SpO; error during motion. The accelerometer amplitude was high in both

cases, and is plotted below the SpO, measurements as a motion reference.
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Figure 37. SpO; measurements taken during random motion from data set 20.
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Figure 38. SpO, measurements taken during random motion from data set 23.

Figures 39 and 40 show examples of two data sets where the multichannel SpO, estimate was
poor because all six channels produced high-error SpO, measurements during motion. The
accelerometer amplitude is plotted below the SpO, measurements as a motion reference. The
Masimo SpO; reference readings are plotted in red to show that the actual oxygen measurements
did not drop during motion and to show where the baseline SpO; is in relation to the motion-

corrupted estimates.
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Figure 40. SpO; measurements taken during random motion from data set 30.
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7. DISCUSSION

Motion artifacts are the primary limiting factor in the utilization of pulse oximetry for mobile
health applications. Motion artifacts are hard to quantify and filter out given the unpredictable
nature of motion induced PPG signal corruption. In this thesis we performed experiments to
generate random, aperiodic, motion corrupted data from the forehead using a reflectance-type,
multichannel pulse oximeter sensor, and introduced a multichannel-switching algorithm based on
previously developed template-matching algorithms. We hypothesized that motion artifacts
would affect PPG waveforms in each channel during random motion differently, and that the
multichannel-switching algorithm would outperform single channel estimates during motion in

terms of HR error, SpO, error, and motion tolerance.

We collected 31 data sets of motion-corrupted PPG waveforms with a wide variety of amplitudes
and frequencies. The range of motion introduced into our data is seen in both the RMS
accelerometer data and the range of MCNL values output by our multichannel template-
matching algorithm. Data analysis showed that channels responded differently to motion based
on the frequency SNR differences between channels during motion. Depending on the severity of
motion, we found that PPG waveforms in the time domain were visually different during motion
across all data sets, as seen in Figure 15. Differences in motion frequency and amplitude across
channels corroborate the benefits of multichannel pulse oximetry. In the case when the motion
amplitude overwhelmed a single channel, but did not affect all six channels as severely, HR and
SpO, measurements can still be obtained from the cleanest channel during motion. In the case
where the motion frequency overlaps with the HR frequency and would be difficult to filter out if
a single IR channel pulse oximeter was used, we found that HR and SpO, can still be extracted
from the cleanest channel during motion with sufficient clinical accuracy when motion artifact

did not affect all six channels to the same extent.

The Box and Whisker plots of the MCNL showed a wide range of MCNL values for data sets 10,
11,17 - 20, 22, and 23. These data sets showed significant improvement when the multichannel
switching estimate was implemented. We found that the multichannel approach shows the most
improvement when channels differ significantly in signal quality and morphology, resulting in a
high variance of MCNL values during motion. Particularly, shown in Fig. 10, when the MCNL is

low for some channels during motion and high for other channels, the multichannel switching
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algorithm can choose automatically the channel with the least amount of motion corruption from

which to calculate the most accurate HR and SpO,; values.

For HR measurements during motion, data sets 10, 11, 16, 17, 18, 19, 20, 22, and 23 showed
significant improvement from individual channels compared to the multichannel estimates in
absolute relative HR error. We found that one or more individual PPG channels were above the
accepted tolerance in absolute relative HR error, while the multichannel estimate was at or below
tolerance in absolute relative HR error. The accelerometer data showed that a wide variety of
motion amplitudes were introduced across all 31 data sets. Of the 9 data sets where multichannel
switching decreased the HR error significantly, only data sets 10, 11, 16, 17 and 20 had low
median accelerometer amplitude. Hence, accelerometer amplitude is not an accurate measure of
the level of motion artifact corruption present in the PPG waveform, or an indication of how the
multichannel approach will affect estimated HR errors during motion. The frequency of the SNR
values are also not a direct measure of how much motion is introduced into a signal, especially if
the motion frequency overlaps the HR frequency, resulting in an incorrectly high SNR value.
Nonetheless, the negative SNR values are indicators of poor signal quality, as seen in data sets
21, and 24 through 31. When the motion frequency power is greater than the HR frequency
power—for instance when then SNR is negative—the multichannel approach failed to

significantly improve HR measurement errors during motion.

The Box-and-Whisker plots of the MCNL showed a wide range of values for data sets 10, 11, 17
- 20, 22, and 23. These data sets showed significant improvement when the multichannel
switching estimate was implemented. We found that the multichannel approach shows the most
improvement when channels differ significantly in signal quality and morphology, resulting in a
high variance of MCNL values during motion. Particularly, as shown in Fig. 10, when the
MCNL is low for some channels during motion and high for other channels, the multichannel
switching algorithm can choose automatically the channel with the least amount of motion

corruption from which to calculate the most accurate HR values.

Although the benefit in performance index during motion in terms of HR error differed between
data sets, when all data sets are considered, the multichannel switching estimate performed
significantly better in performance index over the four worst performing channels. The PI was

increased by 27.8 % when compared to the worst performing channel during motion across all 29
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data sets. The benefit of multichannel-switching in accuracy of HR measurements during motion
also varies across data sets, but was an improvement when all data sets were considered over the
four worst performing channels during motion. The multichannel estimate increased accuracy of
HR measurements by up to 5.6 bpm when compared to the worst performing channel over 29
data sets. For precision, the multichannel-switching algorithm was better than the worst channel
by 2.5 bpm over 29 data sets, and was statistically better than three of the six channels. One
benefit of this method and algorithm is that a user is initially unsure of what channel may be the
worst corrupted or which channel will generate HR measurements with the lowest error.
Generally, data sets with less severe motion and more significant differences in signal quality
between channels will benefit more from the application of the proposed multichannel-switching
algorithm during motion. Furthermore, the channel choosing algorithm is not always perfect, and
will not always pick the channel that will give the lowest-error measurements, given that the
highest correlation with the template is not always 100 % correlated to the lowest HR error. The
MC estimate is not as good as the best channel during motion, but the improvements over the

worst channels during motion make this approach valuable.

Furthermore, it is evident that the multichannel pulse oximetry approach investigated in this
thesis has limitations when every channel is severely corrupted by motion artifacts, thus
preventing highly accurate HR and SpO, determination from any of the PPG channels in the
wearable MCPO. Nonetheless, we think that that signal reconstruction techniques developed by
our group may take advantage of the varying frequency content present in the six independent

PPG channels to improve HR and SpO, measurements during severe motion artifacts.

The benefit in performance index during motion for SpO, varied between data sets, and the
multichannel estimate was not as good as the best channel for a majority of the data sets. Data
sets 1, 3,4,5,7,8, 12, 14, 22, and 23 showed significant improvement in SpO, measurements—
one or more channels were above tolerance in absolute relative SpO; error during motion while
the multichannel estimate was at or below tolerance during motion. Of these data sets, only one
had low accelerometer RMS values during motion and all data sets had high MCNL levels
during motion. Since SpO; measurements depend highly on the amplitude of the signal, which is
not necessarily correlated with the signal morphology, and both the RD and the IR PPG signal, it

is more difficult to choose the correct channel at a given time point based on the IR PPG
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morphology alone. Therefore, the multichannel-switching algorithm is currently not optimized to
pick the best SpO, measurement currently, but still proved that multichannel SpO, estimates are
statistically better than most of the single channel SpO, estimates. Based on 27 data sets, the
multichannel SpO, estimates were overall 12.7 % worse than the best channel in performance
index, but 40.7 % better than the worst channel in performance index. For accuracy, the
multichannel SpO; estimate was 1.1 % worse than the best channel, but 4.3 % better than the
worst channel. For precision, although the multichannel estimate was worse than any individual
channel for SpO, measurements, the multichannel estimate was only worse by up to 1.3 %. As
1.3 % trade-off in precision for an overall higher percentage of low-error SpO, measurements
during motion is considered reasonable, low-error SpO, measurements can be obtained during
motion with a multichannel sensor for a larger range of motion compared to a single-channel

pulse oximeter.
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8. CONCLUSION

The work presented in this thesis proves the advantage of multichannel pulse over conventional
single-channel pulse oximetry during a wide variety of random motion, much like the type of
motion that can be expected from mobile patients wearing portable pulse oximetry sensors. We
believe that multichannel pulse oximeters would yield more robust, motion-tolerant
measurements than conventional single channel pulse oximeters. The overall accuracy of the
measurements was increased by 5.6 bpm for HR and 4.3 % for SpO, when compared to the worst
performing channel during motion. While this improvement is not a huge difference, since
clinical accuracy is imperative for medical device measurements, and measurements must meet a
narrow tolerance, even this small improvement can bring otherwise motion-corrupted
measurements into the realm of clinically accurate measurements. The number of measurements
within tolerance during motion was increased by 27.8 % for HR and 40.7 % for SpO, when
compared to the worst performing channel during motion. This implies that the number of
dropouts for HR and SpO; during motion would be decreased significantly when using a
multichannel pulse oximeter, thus improving the performance of pulse oximetry in terms of

combatting motion artifacts.

Furthermore, in addition to showing that HR and SpO, measurements are significantly different
between channels during random motion, this study also showed that the motion corruption
frequency present in the PPG waveforms varied significantly across channels. Although the
multichannel pulse oximetry approach presented in this paper has limitations when every channel
is severely corrupted by motion artifacts, thus preventing accurate HR or SpO, measurements
from any of the PPG channels in the MCPO, we believe that the signal reconstruction techniques
developed by our group may take advantage of the varying frequency content present in the six
independent PPG channels to further improve HR and SpO, measurements during severe motion

artifacts
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9. FUTURE RECOMMENDATIONS

The type of motion introduced by our experimental protocol is consistent, aperiodic, and varying
in intensity. The algorithms currently being implemented in software to combat motion artifacts
have not been tested with this type of motion. Performance of these algorithms on our data in
comparison with the multichannel-switching algorithm would be interesting to see, and allow a
better analysis and comparison of our algorithm against the methods currently being
implemented. Furthermore, the type of motion we introduced was constant over each of the five-
minute motion segments and largely present in one-axis. Testing our sensor and multichannel-
switching algorithm on random motion where the axis of motion would change occasionally, and
where the motion segments were integrated more authentically, such as in someone running

through an obstacle course, would be interesting.

Currently, a certain level of motion corruption limits the multichannel approach. Specifically, if
all six channels are severely corrupted by motion, then the multichannel sensor would not be
superior compared to a conventional single-channel pulse oximeter. For example, data sets 21
and 31 were eliminated from the statistical calculations because all 6 channels were severely
corrupted by the dominant motion frequency. Initial work has been done on implementing a
notch filter on the primary motion frequency (see: Appendix D). Using a notch filter on data set
21 brought previously corrupted channels back into the range of useable data with low-error
measurements, likely making the multichannel-switching algorithm beneficial to a data set that
was previously unusable. Keep in mind that the notch filter must be updated when the motion
frequency changes, and will not be useful when the motion frequency overlaps the HR
frequency, but development of a real-time notch filter in conjunction with the multichannel-
switching algorithm would lead to more robust motion-tolerance, and lead to better results from
the multichannel pulse oximeter.

Furthermore, the multichannel switching algorithm is limited to estimates from one channel
every two seconds, ignoring data from the other five channels. Moreover, the multichannel-
switching algorithm is not perfect all of the time, and on occasion chooses a channel that will
produce large measurement errors. Investigation was started on implementation of a Kalman
filter weighed by MCNL values (see: Appendix C). Preliminary results showed that the output of
this filter yields smoother results on some data sets, and would likely make multichannel HR and

SpO, estimates more accurate and precise than measurements based on the multichannel-
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switching algorithm alone. Furthermore, for the purpose of this study, HR and SpO,
measurements were calculated from all time points in each data set, even if the level of signal
corruption was high. Elimination of HR or SpO, measurements when one or all of the channels
fall above a specified threshold of MCNL could further improve the algorithm, leading to more
accurate HR and SpO, measurements during motion.

Finally, since subjects in this study were not subjected to hypoxia during motion. The
multichannel SpO, measurements analyzed in this study were limited to a constant SpO; level
throughout the duration of the experiment. Introducing a drop in O, would allow more accurate
calibration of our prototype device, and enable more accurate measurements, especially if SpO,

measurements across channels require different empirical calibrations.
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APPENDICES

A. FINGER AND EAR SENSORS

Originally, the scope of this project included testing two other transmittance-based multichannel
pulse oximeters, utilizing a 3PD finger sensor and a 3PD ear sensor. After analyzing preliminary
data, the two 3PD multichannel sensors were deemed less beneficial than the 6PD forehead
sensor. First, the ear and the finger are both small surfaces, and the area available to place
multiple PDs is much more constrained than the forehead. Since the PDs are built into a smaller
area, the PPG waveforms are more likely to be much more similar during motion. Second, the
differences in path length displacement between channels are more likely to differ in reflectance
pulse oximetry than in transmittance pulse oximetry. Time series plots of the AC IR PPG
waveforms from three channels in the 3PD ear sensor and the 3PD finger sensor are shown for
comparison in Figure A1, confirming that motion artifacts affect all three channels similarly. In
general, differences in channels were much greater in the 6PD forehead sensor than in either of
the 3PD sensors. Based on these observations, it was determined that multichannel pulse
oximetry works best in reflectance pulse oximetry, and future devices that make use of the

multichannel hardware design should be limited to reflectance-based sensors.
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Figure Al. Time series plots of the 3 RD and 3 IR AC PPG waveforms from the 3PD ear sensor.
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Figure A2. Time series plots of the 3 RD and 3 IR AC IR PPG waveforms from the 3PD finger sensor.
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B. RAW SIGNAL FusioN: MCAF/GALL FILTERS
Silva et. al. created a multichannel adaptive filter (MCAF) algorithm that was implemented by

fusing together the raw signals using a series of adaptive filters [36]. One channel is chosen as
the reference channel, and the rest of the channels are put through a GALL Filter and then fused

together with a Kalman filter. The diagrams of these filters are shown below in Figure 29.
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gradient adaptive lattice filter, but with delays replaced by Laguerre functions. S:fl‘:l‘]:‘l':"‘ 0 are then linearly combined through a Kalman filter for the final
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Figure B1. Diagrams of the (a) GALL filter and (b) complete filter bank used in the MCAF algorithm.

This raw signal fusion was implemented on a few of the random motion data sets and then the
HR was calculated from each of the six individual PPG waveforms and from the PPG output of
the MCATF filter. The inputs and output of this algorithm on a section of random motion are

shown in Figure 30.
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Figure B2. Time series of the AC IR signal from all 6 channels and the output of the MCAF algorithm.

We found that the output did not always reflect the best channel, and at best the output of the raw
signal fusion was as good as the best channel. Furthermore, we found that using adaptive filters
on multiple raw signals was time consuming, making this algorithm slow and computationally
less efficient. In future development of data fusion algorithms for multichannel data, raw signal

fusion is not recommended.
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C. KALMAN FILTERING

Initial investigation was done on data fusion algorithms to try and fuse HR and SpO, estimates
together from all six channels. This data fusion development was determined to be outside of the
scope of this thesis, but initial development was done on a weighted Kalman filter based on the
model used in [37]. Implementation of a weighted Kalman filter fuses together estimates from all
six channels, and takes past measurements into consideration, theoretically making estimates

more accurate. The Kalman update equations are shown below in Equations 17-23.

Xy = Axp_1 + Bug + wi_ 17)

zk = Hxg + v (18)

X, = AX_ + Buy (19)

K :APk_IAT+Q (20)
Ki=P,H'(HP H" +R)™! 21)
X=X, +Ky(zp — HX,) 22)
Py=I-KH)P, (23)

The random variables w and v are independent noise normally distributed with p(w) ~N(0,Q)
and p(v) ~N(0,R). In our particular implementation, the measurement noise covariance matrix R
was updated based on the MCNL for each measurement. The HR and SpO, measurements from
each channel are then weighted by a combination of the MCNL and the Kalman residual taken

after each measurement. The residual, weight and final estimate equations are shown below.

1
R—R-exp {—2 -1 } (24)
MCNL
[ =Z- X (25)
2— r—k)2 26
%k (MCNLk 20
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While implementation of the Kalman filter did not change the final results significantly for all
data sets, it was quite beneficial for other data sets, such as the data sets shown in Figures C1 and
C2. Figure C1 shows HR estimations before and after the Kalman filter was used for data set 28
and Figure C2 shows SpO, estimations before and after the Kalman filter was used for data set
13. It is clear that the Kalman filter smoothed HR estimates for data set 28, making the output
more stable and less sporadic. For the SpO, estimates in data set 13, the SpO, estimates from the
multichannel Kalman filter were much better than the SpO, estimates calculated just by

switching channels.
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Figure C1. Multichannel estimates of before and after implementation of an MCNL-weighted Kalman Filter

for HR measurements from data set 28.
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Figure C2. Multichannel estimates of before and after implementation of an MCNL-weighted Kalman Filter
for SpO, estimates from data set 13.

The exact specifications of the multichannel MCNL-weighted Kalman filter were not fully
explored in this thesis, but I believe that this algorithm would further improve multichannel
estimates with a bit of further development. The MCNL weights ensures that the measurements
are still based on the signal morphology of the PPG, but the fusion of all 6 channels’ estimates
and the consideration of previous measurements would prevent extraneous high or low

measurements when the multichannel-switching algorithm incorrectly chooses a channel that

produces high error measurements.
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D. NOTCH FILTERING

Spectrograms of all 31 data sets were plotted for the entire duration of the 19-minute segment of
alternating rest and motion periods. We noticed that for the majority of data sets, the motion
frequency was easily identifiable from the HR frequency, and that the primary motion frequency
remained relatively constant during both motion segments. Figure D1 shows an example
spectrogram for two different channels from the same data set. It can be clearly seen that the

motion frequency appears during the motion segments around 2 Hz.
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Figure D1. Spectrogram of channel 4 and channel 5 for the duration of one data set.

Since the motion frequency was visibly separate from the HR frequency, a notch filter at the
primary motion frequency with a bandwidth of 0.4 Hz was used on the entire data set to decrease
the effects of motion artifact on all six channels. PPG waveforms before and after
implementation of the notch filter are shown in Figure D2. Post-filtering, the PPG looks much

cleaner, and the peaks are more easily identifiable.
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Figure D2. Time series of AC IR PPG before implementing a notch filter (top) and after implementing a
notch filter (bottom) at the primary motion frequency.

Two examples of multichannel HR estimates taken from two different data sets before and after
implementation of a notch filter at the primary motion frequency are shown in Figures D3 and
D4. For data set 16, before implementation of the notch filter, some channels had high error in
HR and some had low error in HR, making the multichannel estimate better than any individual
channel in its mean relative HR error. After the notch filter was applied, all channels had a
relatively low error. For data set 21, which was deleted from the statistic calculations because all
six channels had a high HR error, after the notch filter was applied, the HR estimations across
channels looked more similar to data sets where the multichannel estimate significantly
outperformed the individual channel estimates and the signal was no longer overpowered by the

motion frequency in such a way where the data were unusable.

86



HR without notch filter: Data Set 16
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Figure D3. Time-series heart rate plots before (top) and after (bottom) implementation of a notch filter at the

primary motion frequency for data set 16. Masimo reference HR is plotted in red.
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Figure D4. Time-series heart rate plots before (top) and after (bottom) implementation of a notch filter at the
primary motion frequency for data set 21. Masimo reference HR is plotted in red.

Based on this initial observation, we believe that implementation of a real-time notch filter based
on the motion frequency as seen in the accelerometer data could further improve the benefits of
multichannel estimates during motion and allow the multichannel switching to cover a larger

range of motion artifacts.
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E. CONTROLLED MOTION

After initial multichannel analysis was performed, we thought it was possible that the channel
that remained low in HR or SpO; error was dependent on the axis of motion, and/or the type of
motion that was introduced during the recordings. To test this hypothesis, five different trials of
left-right, up-down, and circular head motion were performed for one minute with the 6PD
forehead sensor. The Masimo finger sensor was used for HR reference. SpO, measurements
were compared against the SpO; estimates from the multichannel device calculated during rest
for each channel. For HR, the channel that remained low in error changed between trials, and
was not consistent for the same motion between all five trials. This led to the conclusion that the
channel with the lowest error was not dependent on the type or axis of motion, but on other
factors. Figure E1 depicts the percent HR error for all five trials across all 6 channels for each of

the three head movements and during rest.

89



% HR errors during Controlled Motions
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Figure E1. Percent HR errors for 5 trials of controlled motions across 6 channels recorded by the 6PD
forehead sensor.

For SpO, error, we found that the channel with the highest and lowest errors did not fluctuate
very much at all between channels across trials, but the low and high error channel did not
fluctuate between head motions either. From this, we concluded that the channel with the lowest
or highest error for SpO, is also not dependent on the type or axes of motion, but upon other
factors. Figure E2 shows the percent SpO; error for all five trials for all six channels in during

the three types of head movements and during rest.
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F. TREADMILL DATA

Our colleagues at the University of Connecticut took data from 10 different subjects walking at
three different speeds on a treadmill while wearing the 6PD forehead sensor, a Masimo finger
sensor, and an ECG monitor. In order to see how the multichannel data and algorithm responded
to repetitive treadmill motion, the multichannel template-matching algorithm was applied to the
data. For this data, the periodic motion induced by the walking or running on the treadmill
caused the template to start taking the shape of the treadmill motion, leading the algorithm to
incorrectly pick the channel most affected by the motion frequency instead of the channel with
the correct HR frequency. In order to combat this shortcoming, for the treadmill data only, the
algorithm was updated such that the template could not be updated if the RMS of the
accelerometer exceeded 50 au. This allowed the algorithm to choose the “best” channel based on

the template created during rest.

We found that in data sets 5 and 8, the multichannel estimate outperformed the single channel
estimates while the subject was running on the treadmill; some channels remained in the low-
error HR range during treadmill motion while other channels remained high. The results were
plotted in Figures F1 and F2. The multichannel estimate is shown in black, the Masimo reference
is shown in dashed red, and the ECG HR estimate is shown in blue. The accelerometer data is

shown below the HR estimates as a motion reference.
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Figure F1. Treadmill data from subject 5 taken from the 6PD forehead sensor.



Treadmill Data Heart Rate: Subject8
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Figure F2. Treadmill data from subject 8 taken from the 6PD forehead sensor.

Similar to the random motion data, the multichannel data did not always vary in HR error during
motion, and sometimes all six channels were overwhelmed with excessive motion frequency,
thus preventing any channel from measuring a correct HR estimate during motion. These types

of data sets in the treadmill data are shown in Figures F3 and F4.
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Figure F3. Treadmill data from subject 2 taken from the 6PD forehead sensor.
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Treadmill Data Heart Rate: Subject3
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Figure F4. Treadmill data from subject 3 taken from the 6PD forehead sensor.
We concluded that the benefits of the multichannel data were less apparent in data sets similar to

the sample data shown above. The HR errors calculated for all 10 subjects from the treadmill

data are summarized in Tables 8 and 9.

Table F1. Performance Index for each individual channel and for the multichannel estimate (MC) taken
from the treadmill data.

Performance Index: Percentage of HR error less than or equal to 5 bpm [%]

Subject Chl1 Ch2 Ch3 Ch4 Ch5 Ch 6 MC
1 64.6% 63.1% 662% 69.2% 67.5% T71.7% 69.4%
2 68.8% 67.4% 70.0% 632% 69.1% 71.2% 66.8%
3 59.5% 549% T71.5% 69.6% 62.0% 57.7%  66.6%
4 84.2% 84.0% 73.8% 75.6% 762% 81.8% 80.0%
5 86.9% 70.3% 64.0% 57.0% 59.6% 86.9% 86.6%
6 55.6% 643% 54.0% 299% 42.4% 52.7% 46.3%
7 68.8% 67.9% 64.5% 57.6% 632% 63.9% 69.2%
8 85.8% T74.8% 66.5% 62.5% 69.5% 74.5% 83.1%
9 63.5% 643% 62.1% 573% 60.5% 603% 64.3%

—
(e)

53.0% 62.8% 822% 73.1% 80.2% 69.2% 79.4%
Mean 609.1% 67.4% 67.5% 61.5% 65.0% 69.0% 71.2%
Mean Diff 2.1% 3.8% 3.7% 9.7% 6.1% 2.2%

Std Err Diff 3.1% 3.3% 3.0% 3.2% 2.7% 1.9%

t-stat 0.677 1.142 1.211 3.050 2.279 1.148

t-crit 1.812
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The Performance Index for the multichannel treadmill data was higher than any individual

channel, but only statistically significantly higher than channels 4 and 5.

Table F2. Mean HR error for each individual channel and for the multichannel estimate for ten subjects
treadmill data compared against the Masimo finger sensor.

Mean HR error across entire data set [bpm]|

Subject Chl1 Ch 2 Ch3 Ch4 Ch 5 Ch 6 MC

1 15.9 15.0 11.2 10.3 12.1 8.8 10.8
2 9.0 9.7 10.1 11.3 10.1 9.7 9.6
3 9.5 9.1 7.1 7.1 9.3 9.9 7.7
4 33 35 5.2 5.0 4.5 3.9 4.2
5 2.6 8.0 9.4 12.7 11.5 2.4 2.7
6 16.4 10.8 16.5 32.6 16.4 14.3 21.9
7 12.6 12.7 13.2 14.7 13.5 13.6 12.7
8 5.2 7.5 11.3 12.5 7.7 7.3 6.1
9 14.6 12.5 13.7 16.7 14.1 16.7 13.4
10 24.9 21.8 4.0 6.7 5.7 15.1 6.0

Mean 11.4 11.1 10.2 13.0 10.5 10.2 9.5

Mean Diff 1.9 1.6 0.7 35 1.0 0.7

Std Err Diff 2.1 2.1 1.1 1.3 1.1 1.3

t-stat 0.921 0.735 0.635 2.632 0.912 0.507

t-crit 1.812

The mean relative error, or accuracy, of the multichannel estimate for the treadmill data was
lower than any individual channel across 10 subjects, however, the multichannel estimate was

only statistically lower than channel 3.
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G. MAsiIMO HR vs ECG

ECG data were taken for the last 7 of the 31 random motion data sets used for the HR reference

during motion, data sets 25 through 31. Since the first 24 data sets were taken with just the

Masimo finger sensor for HR reference, and it was important to include these 24 data sets in the

analysis done in this thesis, the correlation between the ECG HR measurements and Masimo HR

measurements for our motion protocol was measured and plotted. Three example correlations

between the Masimo and the ECG HR measurements are shown in Figure G1.
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Figure G1. Correlation between Masimo HR estimates and ECG HR estimates throughout the duration of
three different data sets: (a) data set 26 (b) data set 28 and (c) data set 30.

The remaining four data sets where ECG data were collected have similar correlations between

the Masimo HR estimates and the ECG HR estimates. To show this more clearly, the time series

of both HR estimations are shown in Figure G2.
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Figure G2. Time series HR estimates from the Masimo sensor and the ECG data during the duration of one

complete data set.

Although there are occasional differences between the Masimo HR and the ECG estimation for

these seven data sets, because of the high correlation between the two HR estimates and how
closely the Masimo HR estimation generally follows the ECG HR estimation, we determined
that it was sufficient to calculate HR errors by comparing the multichannel HR estimates to the

Masimo pulse oximeter as a gold standard reference instead of the ECG derived HR estimates.
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H. MULTICHANNEL HR BLAND-ALTMAN PLOTS

To compare how HR measurements differ across channels during motion, for the 24 data sets

with only the Masimo HR reference, Bland-Altman and regression plots were created for each

data set for each channel, and for the multichannel estimate. These Bland-Altman plots measure

the bias and precision of the HR measurements from our device compared to the HR

measurements from the Masimo reference sensor.
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Figure H1. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 1.
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Figure H2. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 1.
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Figure H3. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 2.

100 50947 x+433 © 2
[r?=0.8031 I RPC: 3.8 {4.5%)
ISSE=1.9 H cv:2.3%
Dlo=zag 5 g 0 o,
= L 3.7 (+1.965D)
80 o HF . <0 0.066 [p=0.53]
758 3 3.9 (-1.96SD)
70 § 10
g
=
60 20
60 80 106 60 80 100
Masimo HR Mean Masimo HR & HR Channel 1
100 09184753 z 5
r?=0.7585 z RPC: 4.2 (5%)
SSE=2.1 E CV:26%
90 =349 g 10 B
= 4.7 (#1.96SD)
80 <+ 0 -—0.44 [p=0.00015]
3 8 3.8 (-1.96SD)
70 § 10
£
Q
60 & .20
60 80 108 60 80 100

Masimo HR

Mean Masimo HR & HR Channel 4

HR Channel § HR Channel 2

HR MCPO CChoser

¥=0.957x+3.51

Daéa Set2 vs Masimo: Motion Segments

10012_ 8250 T 20 RPC:3.6 (4.3%)
SSE=1.8 L=H E CV:2.2%
90 =349 s 10
S = 3.4 (+1.96SD)
80 ° & 0 .11 [p=0.25]
s 37 (-1.965D)
70 § 10
£
=
60 & 20
60 80 106 60 80 100
Masimo HR Mean Masimo HR & HR Channel 2
100 V50807 x+8.18 5
r2=0.7667 z RPC: 4.1 (4.9%)
SSE=2.1 E CV:25%
90 =349 g1
= 4.5 (+1.96SD)
80 0 0 0.37 [p=0.0012]
3 3.7 (1.965D)
70 § 10 °
£
=
60 % .20
60 80 108 60 80 100
Masimo HR oMean Masimo HR & HR Channel §
100 Y50S5K+4.04 I
r?=0.8279 E RPC:35 (4.2%)
SSE=1.8 ] cV:2.1%
90 =349 =10
s 3.4 (+1.96SD)
80 2 0 0.13 [p=0.18]
o é 3.6 (-1.965D)
70 o 10
o
=3
60 = 20
60 80 10g 60 80 100
Masimo HR MEan Masimo HR & HR MCPO CChoset

HR Channel 3

HR Channel 6

100 V0933x+5.85 z 20
r?=0.7919 ST RPC:3.9 (4.6%)
?f"“’ E CV: 24%
90 =349 I
= 2++4.1 (+1.96SD)
© 0 0.23 [p=0.028]
K] 8 3.7 (1.965D)
§ 10 °
£
=l
€ 20
60 80 106 60 80 100
Masimo HR Mean Masimo HR & HR Channel 3
100 V05784531 5
I RPC: 3.8 (4.6%)
s E CV:2.3%
90 =349 e 810 .
o @ = 3.9 (+1.965D)
80 a® © 0 0.034 [p=0.74]
3 3.8 (-1.965D)
70 ° § 10
£
o
60 & .20
60 80 108 60 80 100
Masimo HR Mean Masimo HR & HR Channel §

Figure H4. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 2.
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Figure HS5. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 3.
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Figure H6. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 3.
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Figure H8. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 4.

103



Heart Rate (bpm)

HR Channel 1

HR Channel 4

Data Set 5: Motion Segments

I I I I I
120~
100 —
80— ey’
| | |—CH1 — CH2 —CH3 CH4 —CHS CH6 —Channel Switching —— Masimo HR‘
60
0 50 100 150 200 250 300

350

Figure H9. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 5.
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Figure H10. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 5.
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Figure H11. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 6.
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Figure H12. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 6.
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Figure H13. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 7.
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Figure H14. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 7.
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Figure H15. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 8.
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Figure H16. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 8.
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Data Set 9: Motion Segments
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Figure H17. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 9.
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Figure H18. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 9.
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Data Set 10: Motion Segments

-
L4
o

Heart Rate (bpm)
2
o

(o]
o

T

IiCH1 —CH2 — CH3 — CH4 — CH5

CH6 —Channel Switching —— M.

Figure H19. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 10.
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Figure H20. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 10.
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Data Set 11: Motion Segments
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Figure H21. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 11.
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Figure H22. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 11.
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Figure H23. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 12.
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Figure H24. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 12.
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Figure H25. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 13.
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Figure H26. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 13.
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Figure H27. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 14.
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Figure H28. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 14.
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Figure H29. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 15.
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Figure H30. Correlation and Bland-Altman plots for all six individual channels and for the multichannel

switching algorithm compared to the Masimo reference HR measurements during motion for data set 15.
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reference sensor only during motion for data set 16.
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Figure H32. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 16.
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Figure H33. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 17.
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Figure H34. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 17.
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Figure H3S. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 18.
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Figure H36. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 18.
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Figure H37. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 19.
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Figure H38. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 19.
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Figure H39. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 20.
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Figure H40. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 20.
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Figure H41. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 21.
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Figure H42. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 21.

120



-
>
o

Heart Rate (bpm)

HR Channel 1

HR Channel 4

=
[=
o

Data Set 22: Motion Segments

@ ©
o O

~
=]

|_CH1 — CH2 — CH3 — CH4 — CHS

CH6 —Channel Switching —— Masimo HR|

150 200

250 300 350

Figure H43. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 22.
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Figure H44. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 22.
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Figure H45. Time series plots of HR measurements from our multichannel device and from the Masimo
reference sensor only during motion for data set 23.
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Figure H46. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 23.
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Figure H48. Correlation and Bland-Altman plots for all six individual channels and for the multichannel
switching algorithm compared to the Masimo reference HR measurements during motion for data set 24.
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