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ABSTRACT 

Expanded Bed Chromatography (EBC) is rapidly becoming the preferred choice 

for initial product recovery from crude process streams as it enables direct protein 

recovery from culture broths after appropriate dilution.  However, the process is time 

intensive, and there are still some difficulties with very high cell density cultures in the 

500 g/L range.  Problems include in-column clogging and poor column efficiency.  With 

the development of a new prototype EBC column capable of product recovery from 

undiluted culture broth, it is proposed in this study to combine the fermentation with EBC 

recovery.  This strategy was tested using a wild type, non-producing strain of Pichia 

pastoris.  Culture broths were spiked with 200 mg/L lysozyme to mimic actual 

production fermentation.  Key parameters for the process were identified and tested 

independently to better assess system performance: potential toxic effects of the resin on 

the culture, nutrient deprivation of the cells as they pass through the column and binding 

of the target protein from whole broth.  The cation exchanger had a negligible effect on 

cell proliferation in shake flask studies using YNB Medium.  Isolation of the culture from 

the fermenter for up to two hours appeared to have minimal effect on overall cell viability 

and the ability to metabolize methanol.  The dynamic binding capacity for lysozyme was 

50 mg/mL in buffer, and 20 mg/mL in undiluted fermentation broth containing 500 g/L 

cells.  When harvested undiluted fermentation broth was allowed to recirculate through 

the EBC column, the binding capacity was increased to 30 mg/mL.  The combination of 

the fermentation and recovery process allowed for a binding capacity of 30-40 mg/mL, 

with no dramatic effects on biomass accumulation or metabolic rate. 
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INTRODUCTION 

Protein manufacturing via transgenic organisms has become an important and 

growing business in today’s society.  As the demand for additional pharmaceutical and 

industrial proteins increases, new technology must be developed to make the recovery of 

these proteins both more economical and efficient  

Pichia pastoris, a methylotrophic yeast, has been developed into a heterologous 

protein expression system (Higgins and Cregg, 1998).  Pichia combines many of the 

benefits of E. coli expression, such as high biomass and yield, with the advantages of 

expression in a eukaryotic system (Wegner, 1990).  Eukaryotic systems allow for more 

advanced post-translational modifications, such as glycosylation, disulfide-bond 

formation and proteolytic processing (Cregg et al., 2000).  Also, protein expression levels 

can be high, with levels as high as 14.8 g/L of clarified supernatant reported (Werten et 

al., 1999).  Pichia may be grown at a pH range of 3-6.   

One of the two genes which encode alcohol oxidase in P. pastoris is the AOX1 

gene, the expression of which is controlled at the level of transcription (Lin Cereghino 

and Cregg, 1999).  When the cells are grown on methanol, approximately 5% of poly(A)+ 

RNA is from AOX1, however the AOX1 message is not detectable when grown on other 

carbon sources (Cregg and Madden, 1988).  When the yeast are grown on methanol as 

the sole carbon source, alcohol oxidase may contribute up to 35% of the total cellular 

protein (Couderc and Baratti, 1980).  The Pichia pastoris system has been genetically 

engineered so that an upregulation in the AOX1 promoter causes an induction of a target 

foreign protein. 
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Despite the fact that methanol serves as a carbon source for P. pastoris, if allowed 

to accumulate it is toxic to the cells.  For this reason the methanol feeds are well defined, 

so as not to cause significant stress to the yeast.  Studies have shown that 10 g/L 

methanol causes only a slight lessening in specific growth rates; growth is not fully 

inhibited until 30 g/L (Katakura et al., 1998; Charoenrat et al., 2005).  Methanol levels 

are generally maintained at a nearly undetectable level such that as a drop of methanol is 

added to the culture, it is immediately consumed.  A simple test for this can be done 

using what is referred to as a DO (dissolved oxygen) spike test.  If the culture is truly 

limited on methanol, i.e. there is no residual methanol in the fermenter, than an 

interruption of the methanol fed will cause a rapid and immediate spike in DO since no 

carbon source is available.  If residual methanol is present, than an interruption of the 

feed will have no effect on DO. 

In addition, the presence of too much molecular oxygen in culture can lead to 

significant stress on the cells.  In culture medium, molecular oxygen may form several 

reactive oxygen species: superoxide radicals (O2
•-), hydrogen peroxide (H2O2), or 

hydroxyl radicals (HO•) (Tran et al., 1993).  These reactive oxygen species attack nearly 

all cell parts and cause DNA strand breaks, as well (Cantoni et al., 1986; Tran et al., 

1993).  Other stressing factors which may also lead to the formation of reactive oxygen 

species within the cell (Hristozova et al., 2002) include osmotic stress, hypoxic 

conditions, excessive transcription of the target protein, carbon starvation, change of 

carbon sources, temperature and pH changes, or toxic chemicals (Gasser et al., 2006; 

Sinha et al., 2005; Shi et al., 2003; Vijayasankaran et al., 2005).  The perennial difficulty 

when working with P. pastoris, or any other recombinant microorganism, is to moderate 
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the negative effects caused by culture conditions with the positive effects those 

conditions have on the production and quality of the target protein.  Consequently, 

specific protein production per cell is often at odds with an increased cell count within 

the fermenter; usually neither are at their maximal level, since the two aspects must be 

balanced to create a maximal protein titer. 

Pichia pastoris fermentations can reach very high cell densities, with wet weights 

nearing 500 g/L and viscosities higher than 40 mPas (Anspach et al, 1999).  Traditional 

recovery methods which have been used include tangential flow filtration (TFF) and 

centrifugation.  Because of the high solids concentration and ionic strength of the 

fermentation broth, the broth must be diluted and run at a low flow rate; consequently 

these processes are relatively slow and inefficient.  In addition, during centrifugation a 

significant amount of broth is lost with subsequent loss of product; with TFF the 

membranes are easily plugged by a layer of cells and cell debris, leading to a decrease in 

trans-membrane flux, and thus low flow rates and high backpressures.   

It has been proposed that replacing the traditional steps involved in cell separation 

and product recovery with expanded bed chromatography (EBC) will increase the 

efficiency of purification.  While traditional chromatography generally uses a packed bed 

design, EBC employs a specialized resin to adsorb the target protein while in a fluidized 

bed (Figure 1).  The resin is designed to have a high density and smaller radius than 

many resins used in other chromatography applications.  This alteration of physical 

properties allows for the beads to remain suspended and uniformly distributed in the 

media, without sinking or being washed away. 
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Figure 1 - Expanded Bed Chromatography Steps (Amersham Biosciences) 

 
The high cell densities achieved in Pichia pastoris fermentations also have the 

potential to cause adverse effects in an EBC column.  The high cell densities can cause 

clogging of the distributor and frit entering the EBC column, leading to uneven flow and 

poor adsorption in the column.   

Numerous techniques and alterations in design have been used to address the 

difficulties noted in EBC operation.  One of the most common and successful methods 

has been to increase the density of the chromatography resin by using zirconium oxide 

(bead density of 3.2 g/ml) as a backbone which allows for an increased feedstock density 

(Charoenrat et al., 2006).  This resin also utilizes a higher charge density as shown in 

Figure 2, by creating a hydrogen matrix containing the binding sites, thereby improving 

mass transfer and allowing for a high fluidization velocity (Shiloach et al, 2003).  This 

resin, which was used throughout this study, is currently marketed as CM-Hyper-Z and is 

available from Pall Corp.  Another common approach has been to alter the basic design 

of the EBC column from having the entire incoming stream pass up through the 

distributor and into the column, to using a tangential flow type design which circulates 

broth under the distributor, causing a scrubbing effect and preventing debris from 

accumulating under the distributor.  This column will be referred to as the “T-column” 
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(Biseps Inc., Monroe, WA) and was used throughout this study.  Operation of the T-

column is as described in Figure 1. 

 
Figure 2 - Expanded Bed Chromatography Bead (Pall Corporation) 

 
The concept of coupling a fermentation with a recovery column is not new, 

however, coupling a column with a high cell density fermentation in which the cells are 

recycled has never been recorded in the literature.  Other systems, where the cells are not 

recycled, are more common.  One of these systems was used by Charoenrat et al., (2006) 

where the EBC Streamlinetm column, from GE EBC was used to compare a newer, 

denser, resin to an older resin, and were able to improve their binding efficiency using 

unclarified broth by 25%.  They were unable to run undiluted whole broth however and 

instead diluted 450 g/L fermentation broth to 246 g/L.  Brobjer et al., (1999) performed 

an EBC separation on a dense culture of crude Escherichia coli homogenate.  In other 

systems where the cells and products are considered to be more valuable, such as 

mammalian cell culture, undiluted hybridoma cells have been passed through a fluidized 

bed to absorb monoclonal antibodies but these were not recycled back to the production 

fermenter (Erickson et al., 1994; Lütkemeyer et al., 1999).  Another system used in 
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mammalian cell culture is the perfusion reactor, where the cells are actively retained in 

the bioreactor using a membrane separation, while cell-free product is removed.  A 

separate stream is typically drawn off to help remove any dead cells.  Perfusion reactors 

are similar to a combined fermentation and recovery system, but do not allow for cells to 

pass through the adsorbent, and instead only pass spent media through.  A great deal of 

research has been performed to increase the perfusion system (Gray et al., 1996; Hu and 

Adams, 1997). 

Even with the advantages EBC provides for recovery of fermentation products, 

one of the main issues which must be addressed is the extended time required to perform 

a single EBC process (up to 24 hrs).  Since the T-column allows for capture and recovery 

from undiluted cell broth, the fermentation step may be combined with an EBC cation 

exchange step without adverse effects on the culture. 

The purpose of this study was to determine the feasibility of combining an active 

fermentation with product recovery by recycling cells back to the fermenter after passing 

through the EBC column.  A non-producing strain of P. pastoris was used and during 

methanol induction, the culture was spiked with a known amount of lysozyme.  

Lysozyme was used due to the high isoelectric point, and that it has a well-characterized 

assay.  Studies were performed to isolate and test individual parameters which were 

expected to cause adverse effects on the culture.  The individual parameters examined 

were (1) the effect of the CM-Hyper-Z resin on the cells; (2) the effect on the culture of 

nutrient deprivation caused by passing out of the fermenter and through the EBC column; 

and (3) the determination of the binding capacity for lysozyme under test-tube or static, 

dynamic or flow-through, and recirculating binding conditions. 
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MATERIALS AND METHODS 

The chemicals and gasses used were of analytical grade whenever available and 

were obtained from Sigma, Fisher Scientific, or Merriam Graves.  CM-Hyper-Z resin 

(CMHZ), manufactured by Pall Corporation, was the sole resin used throughout these 

experiments.  Reagent grade, 18 Mohm, de-ionized water was used for all experiments. 

1. Pichia pastoris 

An empty-vector parent strain of Pichia pastoris, X-33, was obtained from Blue 

Sky Biotech, Inc. (Worcester, MA).  Cryostocks were generated by taking the original 

sample and inoculating into 40 mL of BMGY media, in a 250 mL Erlenmeyer flask for 

11.5 hours at 28°C and 200 RPM.  The 40mL of liquid was then divided equally into two 

2L Erlenmeyer flasks, with 500 mL BMGY media in each of them, and grown at 26°C 

for 15 hours, until the OD600 reached 11.48.  The cells were harvested aseptically and 

centrifuged at 4,000 RPM for 20 minutes in pre-sterilized 500 mL centrifuge bottles in a 

Beckman J2-21 centrifuge, with a JA-10 rotor at 4°C.  The cell pellet was resuspended in 

an equal volume of sterile 80% glycerol, and divided into sixty cryovials each containing 

0.5mL apiece.  The cryovials were stored until used in a -80°C chest freezer (Thermo 

Electron Corp, model #5472, Waltham, MA). 

2. Fermentation Procedure 

2.1. Operation of the Bioflo 3000 Fermenter 

A typical P. pastoris fed-batch fermentation was performed as follows: 
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1. The desired volume of BSM was prepared and introduced into the reactor.  

DO and pH probes, a nutrient feed port, a line for air and oxygen feeding, a 

harvest line, a sampling port, as well an agitator motor of the correct size for 

the fermentation vessel were attached to the fermenter. 

2. The reactor was sterilized at 15 PSI for 35 minutes. Any lines which might 

allow air in or out were clamped. 

3. The night prior to the experiment the pH of the medium was adjusted to 3.0 

with concentrated ammonium hydroxide (NH4OH), the DO probe was 

connected to the instrument power in order to polarize and stabilize the signal, 

and the temperature was set to 30°C.  

4. The following morning the pH was adjusted to 4.5 using concentrated 

NH4OH. 

5. With the aeration to the vessel activated, a 20 min. time interval was allowed 

to pass for the NH3 fumes to clear from the vessel headspace.  After this time, 

the trace metal solution was added (PTM1 salts) at 4.35 mL/L and 

0.435 mL/L of 0.4 g/L D-biotin was also added to the fermenter(s). 

6. The DO probe was calibrated to 100% once the DO signal stabilized.  

7. When applicable, the resin was placed aseptically into the fermenter. 

8. The fermenter was inoculated. 

a. P. pastoris was grown in batch culture until all of the fixed-carbon 

(glycerol) in the fermenter was consumed, which was usually 20-24 hours.  

The pH was maintained at 4.5 using concentrated NH4OH and the Bioflo 
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3000’s control system, and the DO concentration was maintained at 40% - 

50% saturation. 

b. KFO™ 880 anti-foam (Kabo Chemicals, Inc., Cheyenne, WY) was used 

to control the foaming within the fermenter. 

9. A 50% glycerol solution was fed at 
umeInitialVolL

hrmL /15.18  for four hours.  The 

glycerol feed contained 12 mL/L PTM1 and 1.2 mL/L of 0.4 g/L biotin.   

10. After glycerol feeding, methanol feed was introduced to the culture and the 

pH set point was decreased to 3.0, mimicking a typical Pichia process. In this 

way, the metabolism of the culture would drop the pH gradually to the set 

point of 3.0.  The methanol feed also contained 12 mL/L PTM1 and 1.2 mL/L 

of 0.4 g/L biotin.  

a. Methanol feeding was introduced at a low feed rate initially to allow the 

culture to adapt.  
umeInitialVolL

hrmL /63.3  of pure methanol for a minimum of two 

hours was fed, or until a successful dissolved oxygen (DO) spike is 

obtained.  A DO spike is determined by stopping the nutrient feed, in this 

case methanol, and measuring the time required for the DO to rise at least 

20%.  If the DO rises by at least 20% in under a minute, the spike is 

considered successful. 

b. The flow rate was the increased to 
umeInitialVolL

hrmL /26.7 methanol for at least 

one hour, or until a successful DO spike was obtained. 
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c. The flow rate was increased again to the maximum feed rate of 

umeInitialVolL
hrmL /89.10 methanol for the remainder of the experiment. 

11. In the recirculation, and combined fermentation and recovery experiments, 46 

hours after beginning methanol feeding, an Expanded Bed Chromatography 

separation was performed using the Bioseps, Inc. 1.1 cm EBC T-column.  See 

Methods section (3.1) for the operational procedure to run the EBC. 

 

3. Expanded Bed Chromatography (EBC)  

3.1. Operational Procedure 

A 1.1 cm diameter T-column, manufactured by Biseps Inc. (Monroe, WA), was 

used for all EBC studies.  The column was cleaned by passing at least 10 column 

volumes of 1 M NaOH through in up-flow mode, followed by sufficient deionized water 

to remove all NaOH until the pH at the column outlet was less than 9. 

Prior to the introduction of culture broth, the column was equilibrated with 

20 mM sodium citrate buffer, pH 3.0 in up-flow mode until the resin bed height had 

equilibrated and the effluent pH was 3.0.  The sample (containing lysozyme) was then 

applied by switching the feed tube from the equilibrating solution to the sample solution.  

For samples with a high density, the flow rate through the column was lowered in order 

to prevent overexpansion and maintain column expansion at approximately 2X.  After the 

sample load was complete, the column was washed with 20 bed volumes of 20 mM 

sodium citrate buffer, pH 3.5 in up-flow mode to remove solids and weakly bound 

proteins.  The resin was then allowed to settle, and the column was further washed with 7 
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bed volumes of 20 mM sodium citrate buffer, pH 3.5 in down-flow mode.  Early EBC 

runs utilized an application of 10 bed volumes of 20 mM tris-acetate buffer, pH 7.5 in 

down-flow mode in order to remove undesired proteins from the resin.  In those runs, to 

recover the lysozyme, 20 mM tris-acetate buffer with 1 M NaCl, pH 9.5 was applied 

followed by 20 mM tris-acetate buffer with 2 M NaCl, pH 9.5 in order to collect all of the 

lysozyme from the resin.  Later EBC runs used 40 mM, pH 7.5 tris-acetate buffer in order 

to remove the undesired proteins, and 40 mM tris-acetate buffer with 1 M and 2 M NaCl, 

pH 8.5 in order to collect the lysozyme from the resin since it was found that lysozyme 

stability was affected above pH 9. 

Following the removal of the lysozyme from the resin, the column was washed 

employing the original cleaning procedure.  When not in use the resin was stored in 20% 

ethanol. 

4. Determination of Resin Effects upon Cells 

4.1. Sterilization Procedure 

The CM Hyper-Z resin was sterilized by rinsing in several changes of sterile 

dH2O in a pre-sterilized flask, followed by incubation in 1 M NaOH for one hour, and 

then rinsed with sterile dH2O until a pH measurement of less than 9 verified removal of 

the NaOH. 

To sterilize the 0.5 mm glass beads, the beads were rinsed, placed into a sealed 

Erlenmeyer flask, and autoclaved for a minimum of 30 minutes at 121°C. 

All flasks containing media were autoclaved for a minimum of 30 minutes at 

121°C prior to the addition of resin or glass beads. 
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4.2. Maceration Effects of the Resin on P. pastoris in a Bioflo 3000 

Fermenter 

To determine the effect of the resin on cell growth, an experiment was performed 

in two 5 L Bioflo 3000 fermenters (New Brunswick Scientific, Edison, NJ).  One reactor 

was used as a control, and run as previously described for 72 hours.  Into the other 

fermenter, was placed 250 mL of resin just prior to inoculation.  Later, additional PTM1 

solution was added to the fermenter containing the resin to determine if the resin was 

adsorbing the heavy metals. 

4.3. Maceration Effects of the Resin on P. pastoris in Shake Flasks 

The seven flasks prepared contained the following in 500 mL Erlenmeyer flasks: 

1. 85 mL YNB media. 

2. 115 mL YNB media. 

3. 100 mL YNB media; 15mL CMHZ resin. 

4. 100 mL YNB media; 15mL CMHZ resin; 20mg lysozyme.  

5. 100 mL YNB media; 15mL CMHZ resin; 20mg lysozyme. 

6. 100 mL YNB media; 15mL glass beads. 

7. 100 mL YNB media; 15mL glass beads. 

A 10 mg/mL stock solution of lysozyme was made in 100 mM phosphate buffer, 

pH 7.0 and filter-sterilized (Cameo 25GAS, 0.22 µm pore size), and 2 mL of this stock 

solution was aseptically pipetted into flasks #4 and 5.  Flask #1 was inoculated the night 

before with P. pastoris and grown up for 18.5 hours.  It was used to inoculate flasks #2, 

3, 4 and 6 with 10 mL each.  Flasks #5 and 7 were not inoculated and were left sterile to 
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act as a sterility control.  The 0.5 mm glass beads were used to test the maceration effects 

on the cells, since glass beads are approximately the same size, but unlike the resin, will 

not absorb nutrients under the experimental conditions used.  The flasks were incubated 

for two days at 28°C and 200 RPM.  Cell counts were performed using a Reichert 

hemocytometer (Bright-Line, Buffalo, NY).  A 0.1 mL droplet of medium was placed 

onto the hemocytometer, at a dilution of 1:105, and the number of counted cells was 

multiplied by 104 in order to calculate the cells/mL concentration.  All counts were 

performed in at least triplicate. 

Separate experiments were also performed using YEP plates.  In these 

experiments, an additional flask was prepared in the same manner as flask #3.  This flask 

was inoculated at the same time as the other flasks, but the resin was added 10 hours after 

flask inoculation.  The samples were plated on YEP plates at dilutions of 1:10-7, 10-8 and 

10-9.  All platings occurred in duplicate. 

5. Determining the Effect of Nutrient Deprivation on P. pastoris  

5.1. Operational Setup of the System 

Nutrient deprivation while the cells were away from the primary fermenter had 

the potential to have a large negative effect on cell viability.  To isolate the possible 

effect of nutrient deprivation on P. pastoris, another, smaller, fermenter was added into a 

loop together with the main fermenter.  The main fermenter was a 5 L Bioflo 3000 

fermenter containing 3 L of BSM media initially.  The second fermenter was a 1 L Bioflo 

3000 fermenter which was maintained at a fluid volume of 1 L.  The fermenters were 

connected by #16 Masterflex tubing and fluid was circulated between the fermenters 

using a Cole-Parmer Instrument Company Masterflex pump (Vernon Hills, Illinois) at 
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140 mL/min between the fermenters, in order to ensure that the DO and pH in both 

fermenters were maintained at similar levels.  Both fermenters were fed, aerated, and 

controlled at the DO, pH and temperature set points until 20 hours after the start of 

methanol.  At this point, all controls other than agitation and temperature, including 

aeration and the methanol feed, to the 1 L fermenter were terminated.  Residence time 

studies were performed where the average time fermentation broth spent away from the 

5 L fermenter was 7.5, 60, or 130 minutes.  A control was also run where the 1 L 

fermenter was aerated and fed methanol throughout the entire experiment. 

During the course of the residence time studies, both the wet weight and CO2 

outputs were monitored in order to determine if the yeast were negatively affected.  The 

CO2 was monitored using an EX-2000 on-line gas analyzer (New Brunswick Scientific, 

Edison, NJ).   

6. Determination of the Lysozyme Binding Capacity 

6.1. Protocol for Determination of Lysozyme Concentration 

A 0.3 g/mL Micrococcus lysodeikticus substrate solution was prepared in 0.1 M 

phosphate buffer, pH 7.0.  A Beckman DU530 spectrophotometer was set to 450 nm and 

was zeroed using a macro (1 cm path) visible light transmitting cuvette containing 3 mL 

phosphate buffer. 

To test samples, 2.9 mL of substrate solution was placed into a macro visible-light 

cuvette and allowed to equilibrate at ambient temperature.  The reaction was begun by 

adding 100 μL of the enzyme solution to the cuvette and mixing gently, but thoroughly, 

with the pipette tip.  The spectrophotometer was then closed and the timer started.  Once 

the timer was running the OD450 was recorded every 15 seconds for a total of 2 minutes.  
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The assay tests for a decrease in absorbance as the lysozyme, an enzyme, breaks down 

the cell walls of Micrococcus lysodeikticus. 

If the reaction velocity was not between 0.02 and 0.04 absorbance units/minute 

the solution was diluted until it fell within that range and the assay run again.  The 

reaction velocity (ΔA/min) was calculated for all the possible one-minute intervals, and 

the initial reaction velocity, the largest ΔA, was used for further calculations.  The 

units/mL of the original sample was calculated using the following formula, where the 

volume assayed was 100μL, and by definition, 1 unit is a ΔA of 0.001/minute: 

 

( )( )
Assayed

AssayedUndiluted

Vol
ctorDilutionFaUnits

mL
Units

ocityInitialVeledUnitsAssay

=

=
001.0

 

Equation 1 - Activity of Lysozyme 

6.2. Effect of Basal Salt Media on the Binding Capacity of the Resin 

In order to determine the effect of the basal salt media on the binding capacity of 

the CMHZ resin, an experiment was performed testing each of the individual media 

components separately.  Two sets of seven 100 mL samples were prepared, each at the 

same concentrations as in the BSM media: 

1) H3PO4 (392 mM), pH adjusted to pH 3.0 with KOH. 

2) H3PO4 (392 mM) and MgSO4•7H2O (153 mM), pH adjusted to pH 3.0 

with KOH. 

3) H3PO4 (392 mM) and CaSO4 (392 mM), pH adjusted to pH 3.0 with KOH. 

4) H3PO4 (392 mM) and K2SO4 (104 mM), pH adjusted to pH 3.0 with KOH. 
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5) H3PO4 (392 mM) and trace salts to 10 μL/mL, pH adjusted to pH 3.0 with 

KOH. 

6) Basal salt media without glycerol. 

7) 20 mM sodium citrate buffer (control). 

With the exception of trial 7, 1 mL of each solution was pipetted into a 2 mL 

Eppendorf microfuge tube containing 0.5 mL of settled resin and 15 mg of lysozyme.  

Trial 7 did not include resin and served as a control.  The tubes were inverted every half 

hour for two hours, and then assayed for lysozyme as previously described. 

6.3. Test-tube Binding Capacity 

A stock solution of 5 mg/mL lysozyme was prepared in 20 mM sodium citrate 

buffer, pH 3.3.  A combination of the stock solution and 20 mM sodium citrate buffer, pH 

3.3 were put into 2 mL Eppendorf tubes with 100 μL of settled resin, and put on a Clay 

Adams Nutator Mixer (BD Diagnostic Systems, Parsippany, NJ) for two hours.  Tubes 

were adjusted so that they had 0, 5, 10, 25, 50, or 75 milligrams of lysozyme per milliliter 

of resin.  After allowing the resin to settle, the supernatant in the tube was tested to 

determine binding capacity. 

6.4. Dynamic Binding Capacity in Whole Fermentation Buffer 

The dynamic binding capacity of a system is the amount of target protein the 

system will bind under actual flow conditions before significant breakthrough of unbound 

protein occurs.  It is considered more reliable for predicting real process performance 

than static binding capacity.  Significant breakthrough is defined on a case-by-case basis, 

and thus dynamic binding capacities are often accompanied with a context value, such as 
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stating it is at 2% breakthrough, signifying that 2% of the target protein entering the 

system is leaving unbound. 

To determine the binding capacity in buffer, after setting up the EBC column with 

a resin bed depth of 19 cm, a stock solution of 5 mg/mL lysozyme in pH 3.1, 20 mM 

sodium citrate buffer was passed through the column at multiple flow rates in order to 

determine the dynamic binding capacity.  Stock solution was passed through the column 

at 250 and 347 cm/hr, which corresponds to 3.9 and 5.4 mL/minute, respectively.  These 

flow rates resulted in overall bed expansion of 1.6 and 2.0-fold, for the 250 and 

347 cm/hr trials, respectively.  Binding experiments were performed until significant 

breakthrough was detected. 

6.5. Dynamic Binding Capacity in Whole Fermentation Broth 

To determine the binding capacity using fermentation broth, the EBC column was 

set up with a resin bed depth of 15 cm, and fresh fermentation broth was harvested and 

spiked to 200 mg/L with lyophilized commercial lysozyme.  The fermentation broth had 

a wet weight of 476 g/L.  The spiked fermentation broth was applied to the EBC column, 

which had been pre-expanded with pH 3, 20 mM sodium citrate buffer.  Initially, the 

sample was applied at 6 mL/min, but this was later reduced to 4.9 mL/min, to maintain 

the bed expansion between 2-3X.  Binding experiments were performed until significant 

breakthrough was detected. 

6.6. Recirculating Binding Capacity in Fermentation Broth 

The binding capacity in recirculation mode was tested in order to determine the 

saturation point of the resin, as well as to simulate and prepare for conditions to be tested 
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in later experiments when the active fermentation was coupled to the recovery column.  

A 3 L batch of Pichia pastoris was grown under normal conditions in a 5 L fermenter, 

and attained a final wet weight of 424 g/L before the run was ended, and all controls 

other than temperature and agitation were terminated.  Prior to terminating the 

fermentation, the EBC column was prepared by equilibrating and expanding the resin in 

upflow mode with 20 mM sodium citrate buffer, pH 3.0 flowing at 10 mL/min.  The 

fermentation broth was then applied from the fermenter to the column at 3 mL/min.  All 

fluid leaving the EBC column, prior to cells exiting the column, was discarded.  Once 

cells began exiting the column, the EBC exit tube was reattached to the fermenter and all 

material leaving the EBC was allowed to return to the fermenter. 

A sample was removed from the experiment approximately every 30-60 minutes 

and assayed for lysozyme activity as described in Materials section 6.1 on page 14. 

Originally the temperature was maintained at 30°C; however the temperature was 

lowered to 20.5° approximately 6 hours into the binding experiment because it was 

thought that lowering the temperature could possibly increase binding.  The binding 

experiment was allowed to run a total of 30 hours or until the lysozyme activity in the 

fermenter remained constant, signifying that no more lysozyme was being removed from 

the broth by the resin. 
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7. The Combined Fermentation and Recovery System 

7.1. System Set-up and Operation 

 
Figure 3 - Schematic of Operating System 

The fermenter was set up, inoculated, and run as described in Methods section 2.1 

throughout batch phase, and glycerol fed-batch.  Forty six hours after starting the low 

feed-rate of methanol, lysozyme was added to a concentration of approximately 

200 mg/L.   

The 1.1cm EBC column was prepared by equilibrating and expanding the resin in 

up-flow mode with pH 3, 20 mM sodium citrate buffer flowing at 10 mL/min, which 

maintained a bed expansion of 2-2.5-fold.  

Figure 3 shows the schematic of the system used in these experiments.  The 

fermentation broth was pumped out of the fermenter (indicated by green line) into a small 

container, which had a holding volume of 20 mL.  The holding container was used to 

allow the entrained gasses in fermentation broth to escape so as not to introduce air into 

the EBC column.  Introduction of bubbles into the EBC would pose a significant bed 
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stability problem.  A level controller, controlled by the Bioflo 3000, was placed into the 

holding container to ensure that the liquid level was maintained.  A Cole-Parmer 

peristaltic pump was used to recirculate the fermentation broth through the EBC column.  

This loop served to keep the mesh at the bottom of the column from clogging up.  As the 

broth was then pumped into the EBC, and as soon as cells began to enter the column, the 

feed rate was reduced immediately to 3 mL/min, a previously determined flow rate which 

would give a 2-2.5-fold expansion.  All fluid leaving the EBC column, prior to cells 

exiting the column, was not recirculated to the fermenter.  Once cells began leaving the 

column, the EBC exit tube was reattached to the fermenter and all material leaving the 

EBC was allowed to return to the fermenter.  The fluid exiting the EBC column was 

returned to the fermenter via gravity.  The residence time outside of the bioreactor 

(including the column) was reduced from 60 minutes, to 30 minutes, due to 

improvements made on the design of the air removal trap.  Throughout the entire 

experiment, the fermenter was maintained under optimal conditions as described in 

Methods section 2.1. 

Samples were taken every 1-3 hours and centrifuged 4,000 RPM for 20 minutes in 

a Beckman J2-21 centrifuge, with a JA-18 rotor at 4°C.  The pellet and supernatant were 

separated, and the wet weight was determined.  In several experiments, the CO2 

concentration in the off-gas was also determined as described in Methods section 5.1.  

The experiment was conducted for 24 hours, and then all feeds and controls, with the 

exception of temperature and agitation, were terminated.  The temperature control was 

lowered to 18°C, and the agitation was lowered to 200 rpm.  The culture was recirculated 
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for an additional 20 hours, in order to determine if the resin had been saturated, as well as 

to monitor the fermentation. 

7.2. Lysozyme Recovery 

To recover the lysozyme from the resin, the resin was first washed in up-flow 

mode with 20 mM sodium citrate, pH 3.5 until all traces of cell debris were removed 

from the column.  The resin was then allowed to settle, and was washed in down-flow 

mode with 250 mL of 20 mM sodium citrate buffer, pH 3.5 and sequentially in down-

flow mode, the resin was washed with 20 mM tris-acetate buffer, pH 7.5, to remove 

loosely bound undesired proteins.  In run #1, the target protein, lysozyme, was then 

eluted using 20 mM tris-acetate buffer, pH 9.5 with 1 M sodium chloride, followed by 20 

mM tris-acetate buffer, pH 9.5 with 2 M sodium chloride.  In run #2 the lysozyme was 

eluted using 20 mM tris-acetate buffer, pH 8.5 with 1 M sodium chloride, followed by 

20 mM tris-acetate buffer, pH 8.5 with 2 M sodium chloride.  Each of the tris-acetate 

elutions were performed until an OD280 reading upon them showed no additional protein 

being eluted. 

A benchtop experiment was also performed to determine whether lysozyme 

activity was degraded in fermentation broth under ambient conditions.  This was 

performed by removing a sample from the fermentation, and placing it in a microfuge 

tube, and leaving it on the bench for 24 hours, and then centrifuging and assaying the 

supernatant for lysozyme activity. 
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RESULTS 

 

1. Determination of Resin Effects upon Cells 

1.1. Effects of the Resin on P. pastoris in a Bioflo 3000 Fermenter 

The comparison between cell density increases in single runs of fermenters with 

and without resin appears in Figure 4.  In the control, the glycerol feed began at 47:23 

EFT (Elapsed Fermentation Time, in hours), and the low methanol feed began at 51:48 

EFT.     

The experimental fermenter with resin was terminated early due to the unusually 

slow growth rate, and that the fermentation had not gone limited on the batch-phase 

carbon, even eight hours after the control fermentation had.  In order to isolate the cause 

of the slow growth, at 12:35 EFT a dose of 1 mL of PTM1 salts were added to the 

fermenter.  The subsequent decrease in dissolved oxygen (DO) indicated a high demand 

for oxygen, most likely due to an increase in culture metabolism.  To ensure this decrease 

was not due to the metals actually affecting the probe itself, a trial was run where metals 

were added to an operating probe without culture and the DO was found to not be 

affected.  The increased metabolism noted by the decreasing DO lasted for approximately 

fifteen minutes, and then the DO returned to the original level.  The addition of PTM1 

salts was tested at other times during the fermentation, and a similar effect occurred each 

time.  The addition of glycerol or ammonium, a nitrogen source, had no effect on DO.  A 

similar dose of PTM1 salts to the control fermentation had no similar effect (data not 

shown). 
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Figure 4 - Cell Density Comparison Between Fermenters With and Without Resin Present. 
 

1.2. Maceration Effects of the Resin on P. pastoris in Shake Flasks 

Similar cell densities were found between all medium formulations containing 

glass beads and resin as in the control (Table 1).  Each value is the average of at least 

three readings.  Similar results were found in a later study (Table 2), where the cell 

densities determined were comparable to the control among the flasks containing resin 

and glass beads.  Interestingly, the flask which had the resin added many hours after 

inoculation had a higher level of cell growth than any of the other flasks.  Several 

repetitions of this experiment showed that this occurred regularly and was not an isolated 

incident (data not shown).  The 10-9 dilution is not shown due to non-growth. 
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 Cell Counts (cell/mL)
115 mL media, no resin (control), inoculated 6.50 x 1010 

100 mL media, 15 mL glass beads, inoculated 2.63 x 1010 
100 mL media, 15 mL resin, Lysozyme, inoculated 3.00 x 1010 
100 mL media, 15 mL resin, inoculated 2.66 x 1010 

Table 1 – Cell Counts in Shake Flask Study 
 
 

 Colony count 
(10-7 dilution) 

Colony count 
(10-8 dilution) 

Average cell density 
(cells/mL) 

100 mL media,  
15 mL glass beads 
Not inoculated 

Both plates sterile 

100 mL media,  
15 mL resin 
Not inoculated 

Both plates sterile 

69 7 100 mL media, 
Inoculated (Control) 100 6 7.4 x 109 

61 9 100 mL media,  
15 mL resin, Inoculated 79 9 

8.0 x 109 

70 11 100 mL media,  
15 mL resin, Lysozyme, 
Inoculated 92 6 

8.3 x 109 

154 18 100 mL media,  
15 mL resin (Late), 
inoculated 129 14 

15.8 x 109 

79 8 100 mL media,  
15mL glass beads 81 7 7.8 x 109 

Table 2 - Plate Counts From a Shake Flask Maceration Study 
 

2. Determining the Effect of Nutrient Deprivation on P. Pastoris  

Figure 5 shows the effect of residence time biomass accumulation, measured as 

wet weight.  The residence time is defined in this study as the average amount of time 

which fermentation culture spends away from both a carbon and oxygen source, i.e., the 

primary or 5 L fermenter.  The control fermentation, however was fed carbon and 

supplied with oxygenation continuously, even while in the secondary, or 1 L fermenter.  

The results of the residence time experiments, especially at high residence times were 
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unexpected.  Even for a 130 minute residence time in the 1 L fermenter, the wet weight 

and CO2 output did not appear to decrease to the extent expected (Figure 5 and Figure 6) 

and were very similar to those values obtained for the control and the other residence 

times.    The units used in Figure 5 are the wet weight of biomass, in grams per liter.  

Since the control was in effect fed proportionally more carbon (4/3 more carbon) the 

corresponding wet weights must be adjusted accordingly.  For this reason, the rate of 

change for the wet weight in the control system was lowered by 25%.  The data from the 

experimental system was not altered.  Since the increase in feed rates is directly 

proportional to the increase in volume, this adjustment is justified.  The units used in 

Figure 6 are milliliters of CO2 evolved from the 5 L fermenter per minute, and were not 

adjusted since the CO2 evolved in the small fermenter was allowed to exit through the 

condenser attached to the small fermenter. 
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Figure 5 - Wet Weight as a Function of Residence Time, Adjusted for Feed Volume 
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Figure 6 - Milliliters Carbon Dioxide per Minute Evolved from the  
5 L Fermenter as a Function of Time 

 

3. Determination of the Lysozyme Binding Capacity 

3.1. Effect of Basal Salt Media on the Binding Capacity of the Resin 

Table 3 shows the effect of Basal Salt Media (BSM), and its components, on the 

binding capacity of the CM Hyper-Z resin for lysozyme.  The samples tested were 

supernatants after exposure to the resin for a period of 2 hours.  The average activity 

shown in Table 3 is the average of a minimum of two assays performed in multiple 

independent microfuge tubes. 
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 Residual activity 
(U/mL) 

Percentage 
Bound 

Control with resin (20 mM citrate buffer, pH 3) ND 100% 

Control without resin (20 mM citrate buffer, pH 3) 137,000 0% 

H3PO4 (392 mM) + KOH 2,383 98.3% 

H3PO4 (392 mM) + MgSO4•7H2O  (153 mM) + KOH 3,675 97.3% 

H3PO4 (392 mM) + CaSO4 (392 mM) + KOH 3,548 97.4% 

H3PO4 (392 mM) + K2SO4 (104 mM) + KOH 3,868 97.2% 

H3PO4 (392 mM) + PTM1 trace salts 2,432 98.2% 

BSM w/o glycerol 7,765 94.3% 
Table 3 - - The Effect of Basal Salt Media, and its Components, on CM Hyper-Z Binding Capacity, 

and Binding Percentages 
 

3.2. Test-Tube Binding Capacity 

The data presented in Table 4 show the static binding capacity of the CM Hyper-

Z resin in microfuge tubes.  From these data, it appears that breakthrough occurs at just 

under 25 mg/mL.   

 
 Units/mL of lysozyme activity % of lysozyme bound 
0 mg/mL starting concentration 0 ― 
10 mg/mL starting concentration 0 100% 
25 mg/mL starting concentration 510 80% 
50 mg/mL starting concentration 8320 20% 
75 mg/mL starting concentration 9330 10% 

Table 4 - Static Binding Capacity of Lysozyme With CM Hyper-Z 
 

3.3. Dynamic Binding Capacity in Buffer 

The dynamic binding capacity of lysozyme in 20 mM sodium citrate buffer, pH 

3.1, was determined at flow rates of 250 and 350 cm/hr in a 1.1 cm column (Figure 7).  

The 2% breakthrough points for 250 and 350 cm/hr with 20 mL of CM Hyper-Z resin at 
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1.6-2.0-fold expansion were determined to be 50 and 75 mg/mL, respectively.  C/C0 

represents the ratio of the lysozyme concentration leaving the column, to that entering the 

expanded bed chromatography (EBC) column.  A ratio of 1.0 signifies that no material 

entering the EBC column is being bound to the resin before leaving the column.  These 

values indicate individual runs. 
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Figure 7 - The Dynamic Binding Capacity of Lysozyme in Citrate Buffer 

 

3.4. Dynamic Binding Capacity in Whole Fermentation Broth 

The dynamic binding capacity (DBC) of hen egg lysozyme in whole fermentation 

broth was determined by harvesting the culture, then passing the undiluted fermentation 

broth, spiked with 200 mg/L lysozyme, through the EBC column.  The initial linear 

velocity was 6.31 cm/min or 6 mL/min, but was lowered to 5.16 cm/min (4.9 mL/min) 

after 207 mg of lysozyme had passed through the column, due to the bed being over-

expanded.  When 300 mg of lysozyme had passed through the column, 2% breakthrough 
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was achieved (Figure 8).  Since there was 15 mL of resin in the column, this translated to 

a 2% breakthrough at 20 mg/mL resin.  This level of lysozyme was chosen in order to 

provide resin saturation; despite that strains of P. pastoris producing 1 - 3 g/L of product 

are common in industrial settings. 

Despite the higher initial flow rate, the 2% breakthrough determined is considered 

to be applicable for the 4.9 mL/min flow rate, because the bed had come to equilibrium at 

4.9 mL/min.  Breakthrough occurred during the 4.9 mL/min flow rate after having been 

at equilibrium for 100 minutes. 
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Figure 8 - Binding Capacity of Lysozyme in Whole Pichia pastoris Fermentation Broth 
 

3.5. Recirculating Binding Capacity in Whole Fermentation Broth 

To determine the saturation point of the CM Hyper-Z resin under conditions 

similar to the complete system, a recirculation binding study was performed.  Figure 9 

shows the lysozyme activity within the fermenter for one run.  The long running time was 
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specified in order to ensure resin saturation, which was determined to be approximately 

30 mg/mL. 

The conditions in the fermenter were changed during the experiment, to lower the 

temperature from 30 to 20.5°C just less than 6 hours into the experiment, to determine if 

temperature had an effect on binding.  In order to maintain 2-2.5-fold bed expansion, the 

experiment was run at 3 mL/min.   
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Figure 9 - Recirculating Binding Capacity Study in Whole Broth 

4. The Combined Fermentation and Recovery System 

In the combined fermentation and recovery apparatus, the activity within the 

fermenter was measured and plotted against the running time of the EBC column.  

Figure 10 and Figure 11 show the results from two separate sets of experiments, but had 
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similar behaviors.  In both experiments there was little additional binding after 24 hours.  

The binding capacities of the experiments were different though; the first run 

demonstrated a binding capacity of 43 mg/mL at 496 g/L wet weight, whereas the second 

experiment showed a 31 mg/mL binding capacity at 478 g/L wet weight. 

The total activities within the reactors were 10 x 106 and 5.5 x 106 units for runs 

#1 and #2, respectively, as calculated by the starting lysozyme concentration within the 

fermenter and the initial volume within the fermenter.  Using the final lysozyme activities 

and reactor volumes, there were 3.2 x 106 and 2.5 x 106 units of activity remaining in the 

reactors at the ends of Runs #1 and #2, respectively.  As shown in Table 5, 5.02 x 106 

units were eluted from the resin, leaving 1.8 x 106 units unaccounted for in run #1.  In run 

#2, 1.77 x 106 units were recovered from the resin (Table 6), which leaves 1.23 x 106 

units unaccounted for. 
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Figure 10 - Whole Broth Binding Study While Recirculating and Growing Pichia pastoris; Run 1 
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Average activity 
(U/mL 
undiluted) 

Amount applied Total Units 

Wash (up-flow with 
20 mM sodium citrate 
buffer, pH 3.5) 

ND >1 L 0 

DW (Down-flow with 
20 mM sodium citrate 
buffer, pH 3.5) 

ND 150 mL 0 

Down-flow with tris-
acetate 20 mM, pH 7.5 ND 100 mL 0 

Down-flow with tris-
acetate 20 mM + 1 M 
NaCl, pH 9.5 

24,700 100 mL 2.47 x 106 

Down-flow with tris-
acetate 20 mM + 2 M 
NaCl, pH 9.5 

17,000 150 mL 2.55 x 106 

Table 5 - Elution Volumes and Enzyme Activity for Run #1 
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Figure 11 - Whole Broth Binding Study While Recirculating and Growing Pichia pastoris; Run 2 
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 Average activity 
(U/mL undiluted) Amount applied Total Units 

Wash (up-flow with 
20 mM sodium citrate 
buffer, pH 3.5) 

NQ >1 L 0 

DW (Down-flow with 
20 mM sodium citrate 
buffer, pH 3.5) 

NQ 150 mL 0 

Down-flow with tris-
acetate 40 mM, pH 7.5 NQ 200 mL 0 

Down-flow with tris-
acetate 40 mM + 1 M 
NaCl, pH 8.5 

5,800 200 mL 1.16 x 106 

Down-flow with tris-
acetate 40 mM + 2 M 
NaCl, pH 8.5 

3,040 200 mL 0.608 x 106 

Table 6 - Elution Volumes and Enzyme Activity for Run #2 
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DISCUSSION 

The model protein used in these trials, hen egg lysozyme, has an isoelectric point 

of 11.0, and a molecular weight of 14,400 Da.  Lysozyme is responsible for breaking 

down the polysaccharide walls of many kinds of bacteria and thus it provides some 

protection against infection.  Lysozyme functions by serving as an unspecific innate 

opsonin by binding to the bacterial surface to reduce the negative charge and facilitate 

phagocytosis of the bacterium before opsonins from the acquired immune systems attack 

the bacterium.  Lysozyme attacks peptidoglycans and hydrolyzes the bond that connects 

N-acetyl muramic acid with the fourth carbon atom of N-acetylglucosamine.  Hen egg-

white lysozyme is a single chain of 129 residues. It has an alpha+beta fold, consisting of 

five to seven alpha helices and a three-stranded antiparallel beta sheet. The enzyme is 

approximately ellipsoidal in shape, with a large cleft in one side forming the active site 

(Figure 12).  Lysozyme is considered to be a stable protein under most conditions, 

although low temperatures and low pH further enhance stability.  Lysozyme was chosen 

for this experiment due to its apparent stability and high isoelectric point, which causes 

the lysozyme to bind strongly to the cation exchange resin used, even with the low pH 

condition at pH 3 used in these trials. 
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Figure 12 - Lysozyme Structure (Rypniewski et al., 1993) 

The experimental hypothesis that cell viability would not be strongly affected by a 

combined fermentation and recovery system was examined by investigating several key 

parameters thought to be of critical importance: 1) the effect of the resin itself on growth 

of the culture; 2) the determination of any toxic or nutrient-binding effects of the resin 

which would reduce capacity for protein binding; 3) the assessment of nutrient 

deprivation the culture would experience while passing through the EBC column; and 4) 

the determination of the lysozyme binding capacity under various conditions including 

the combined fermentation and recovery process. 

Although the CM Hyper-Z resin has the ability to bind positively charged metal 

components in the trace metal supplement (Figure 4, page 23), it is apparent that during 

an actual fermentation induced with methanol, this binding effect will be reduced due to 

the presence of competing secreted proteins in the culture medium.  This conclusion is 



 37

supported by the fact that during the actual combined recovery process, the cells were not 

limited by heavy metal uptake of the resin.  The difference between the heavy metal 

result noted in Figure 4 and the combined fermentation and recovery trial is that during 

the combined recovery trial, the resin was not exposed to the culture medium until 20 

hours into the induction phase.  The heavy metal trial, which showed limitation on heavy 

metals due to resin binding, was in effect a worst case scenario.  Further, the 

demonstrated maceration effect of the resin on the cells indicated that more significant 

factors were present in the heavy metal trial which had shown adverse effects on the 

culture.   

The effect of nutrient deprivation was evaluated by substituting a second, smaller 

bioreactor for the EBC column, and using residence times, or the total time a portion of 

fermentation broth is out of the main fermenter, to determine whether the deprivation of a 

carbon and oxygen source was harmful to the fermentation.  The second fermenter was 

presumed to be ideally mixed (Equation 2).  Since the control experiments were fed 33% 

more methanol over the course of the study compared to the experimental fermenters, due 

to both the small and large fermenters feeding methanol, the data for the control system 

wet weights were normalized to the volume being fed.  The rate of change after the 

experiment was begun was lowered by 25%, due to the increased volume of methanol fed 

to the system.  The data was not altered for the entire course of the experiment, due to 

that the control and experimental systems were fed the same during glycerol batch, 

glycerol fed-batch, and 20 hours of methanol feeding, and that it was only then that the 

systems began to differ.  The values of CO2 evolution were not altered, due to that it is a 

reading of an instantaneous flow rate, whereas wet weight is a cumulative value. 
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  This study showed that CO2 is being evolved at a slower rate, with increased 

residence times, and that the trend is inconclusive for wet weight comparison (Table 7 

and Table 8).  There is a statistically significant difference between the experimental 

systems for the CO2 measurements (P < 0.001), but not for the wet weights (P > 0.3).  

There was also sufficient data to produce a statistically significant correlation 

(P < 0.001).  This suggests that there is something adverse occurring to the cells, but it is 

not a major problem, as the cells within the system were not strongly affected.  Using a 

producing strain, the change in product titer will prove to be an important parameter to be 

studied in the future to determine the cause of these effects. 
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Equation 2 - Equation for the Determination of Ideal Residence Time 

 Slope (g/L·hr) Average slope (g/L·hr) 
Control 3.588 

Control (2) 3.244 3.416 

7.5 minute residence time 3.216 
7.5 minute residence time (2) 3.387 3.302 

60 minute residence time 3.036 3.036 
130 minute residence time 3.139 

130 minute residence time (2) 4.061 3.600 

Table 7 - Rate of Change in Wet Weight, Normalized for Feed Volume 

 Slope 
(mL CO2 per minute/hr) 

Average slope 
(mL CO2 per minute/hr) 

Control 1.440 
Control (2) 1.273 1.356 

7.5 minute residence time 0.944 
7.5 minute residence time (2) 1.055 1.000 

60 minute residence time 0.940 0.940 
130 minute residence time 0.852 

130 minute residence time (2) 0.889 0.870 

Table 8 - Rate of Change in CO2 Output, Normalized for Feed Volume 
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In order to assess factors which might potentially affect binding capacity, the 

effect of various BSM components on the binding capacity of lysozyme was investigated.  

All BSM components were used in the same concentrations as the media.  As may be 

seen in Table 3, irrespective of the medium component, binding was always greater than 

94% which indicates a minimal affect on binding capacity. 

The binding capacity of the resin for lysozyme ascertained in the test-tube study 

was low, as expected, due to inefficient binding kinetics inherent in the system.  This 

study was used to gain a basic understanding as to the approximate binding capacity of 

the resin.  The test-tube binding capacity of the resin was determined to be just below 

25 mg/mL.  Using this data, a dynamic binding study in sodium citrate buffer was 

performed.  The data showed that the 2% breakthrough for flow-through speeds of 250 

and 350 cm/hr, occurred at 50 and 75 mg/mL, respectively.  While it is often the case that 

an increased flow rate through the EBC column corresponds to decreased binding 

efficiency, the opposite was found here.  This was likely due to poor binding kinetics in 

the slower feed rate due to insufficient expansion.  Using the data, a dynamic binding 

capacity study was performed using whole broth, to model conditions inside the column, 

and prepare for later experiments.  In this study harvested, undiluted broth was passed 

through the T-column containing 15 mL of resin, reaching 2% breakthrough at 300 mg of 

lysozyme (Figure 8), which corresponds to a 20 mg/mL dynamic binding capacity.  As 

expected, the binding in whole broth was less efficient than in buffer, due to the very high 

ionic strength and density of the whole broth.  The feed rate into the column was lowered 

partially into the experiment due to that the resin bed was over-expanded.  In subsequent 

runs the feed rate was lower, in order to avoid this difficulty. 
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Using the experience gained in the whole broth DBC study, a recirculating 

binding study was performed.  The goal of this study was to determine the saturation 

capacity of the resin, as well as determine a binding profile for a recirculating system.  

For this reason, there was insufficient resin provided to bind all of the lysozyme added.  

This study determined that the majority of the binding lysozyme was adsorbed within 12 

hours, reaching a saturation capacity of 30 mg/mL (Figure 9). 

The combined fermentation and recovery process was performed using data from 

previous studies in order to maximize efficiency.  The binding capacities of the resin for 

lysozyme determined were 31-43 mg/mL, which was an improvement on traditional, one-

pass, binding capacities.  It was also determined that the binding capacities in the second 

run were lower than those in the first run, likely due to that the resin wasn’t as fresh in the 

second run.  Also, all runs performed showed approximately a 20% disappearance of the 

lysozyme (Table 9).  It is not fully understood where this portion of the lysozyme went, 

but it is possible that the remainder is being degraded by the low pH of the fermentation, 

or that a byproduct of the fermentation is acting as an inhibitor.  Known inhibitors of hen 

egg lysozyme include heparin, histidine methylester, chitotriose, and chitobiose as well as 

large, acidic polymers, some of which may possibly be found in P. pastoris cultures 

(Valisena et al., 1996; Wang et al., 1991; Skarnes and Watson, 1955).  It is also possible 

that X-33, the P. pastoris strain used, was releasing proteases into the culture medium, as 

it is unknown if X-33 is a protease deficient mutant (Cereghino and Cregg, 2000).  It is 

likely that X-33 produces proteases, as protease-deficient mutants are known to be less 

vigorous, and have slower growth rates (Cereghino and Cregg, 2000).  The effects of 

proteases on the assays performed would be similar to those of inhibitors; the proteases 
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would lower the apparent activity of the lysozyme.  During the course of these studies, a 

container of lysozyme purchased was determined to contain proteases, and while the 

lysozyme activity was decreased, the effects were significantly more pronounced than in 

the experimental studies.  For this reason, it is unlikely that proteases alone are the cause 

for the difference in the lysozyme quantities added, and the apparent loss of 20% of the 

lysozyme by the end of the study.  Due to the mechanism of proteases, it would be 

possible to determine the presence of proteases by using gel electrophoresis, and 

determined if there are cleaved pieces of lysozyme in the culture medium.  This test may 

be complicated by the large quantities of other proteins, excreted by the P. pastoris, in the 

culture medium.  It may also be complicated by that the gel electrophoresis would only 

show the presence of cleaved pieces of lysozyme if the lysozyme is uniformly degraded.  

If the lysozyme structure was degraded at random points, then a gel would not be able to 

show what happened to the lysozyme.  The previously encountered difficulty with the 

resin absorbing the PTM1 salts and causing diminished growth was not noticed over the 

course of the combined system.   
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Lysozyme Activity 

(106 Units)  

Percent of Initial 

Lysozyme Activity

Initially in the fermenter 10.0  

Remaining in the fermenter 3.20  32% 

Recovered from the EBC 5.02 50% 
First Run 

Not fully accounted for 1.80 18% 

Initially in the fermenter 5.50  

Remaining in the fermenter 2.50 46% 

Recovered from EBC 1.77 32% 
Second Run 

Not fully accounted for 1.23 22% 

Table 9 - Combined Fermentation and Recovery Results 

The use of a combined fermentation and recovery process was determined to be 

an effective method for separations of high cell density cultures.  There appeared to be no 

major loss of viability caused by the binding conditions.  The binding of the target protein 

to the resin increased with recirculation, as compared to a single-pass study using whole 

broth (Table 10).   
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 Binding Capacity (mg/mL) 

Test-tube binding 25 

DBC in sodium citrate buffer 50 – 75 

DBC using Whole Broth 20 

Recirculating in Whole Broth 30 

Combined Fermentation and 
Recovery Process 31 – 43 

Table 10 - Comparison of Binding Capacities 

Due to the significant loss of activity encountered using a lysozyme system; 

future studies should investigate other, more stable, protein systems which are available.  

A study should also be performed to determine the cause of the activity loss although 

choosing the right production system and protein should eliminate this degradation factor.  

The efficiency of the fermentation and recovery processes should be improved upon by 

isolating and improving the aspects deemed important.  One of the more important 

aspects should be the scale-up of the recovery process.  The 200 mg/L protein 

concentrations used in this experiment are lower than a typical Pichia pastoris titer.  It 

would be a worthwhile study to determine if this process would work efficiently with 

higher titers, a larger EBC column, and more resin.  It would also be important to use a 

strain of P. pastoris which produces protein, in order to gain a better understanding of the 

effect of carbon and oxygen deprivation.  Such a strain would allow the investigator to 

monitor the AOX1 gene for changes during the deprivation, as well as provide the ability 

to analyze titer for metabolic changes. 
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APPENDIX 

1. Process Recipes: 

1.1. BSM (Basal Salt Media): 
 Concentration 
H3PO4 (conc.) 26.7 mL/L 
CaSO4 0.93 g/L 
K2SO4 18.2 g/L 
MgSO4·7H2O  18.4 g/L 
KOH 4.13 g/L 
Glycerol 40 g/L 

1.2. Biotin Solution: 
 Concentration 
Sterile DI water 10 mL 
2M NaOH A few drops 
D-biotin 0.4 g/L 
Sterile DI water Remaining vol. 

1.3. BMGY (Buffered Minimal Glycerol complex) Medium: 
 Concentration 
Biotin 400 µg/L 
Peptone 20 g/L 
Yeast Extract 10 g/L 
Glycerol 10 mL 
Yeast Nitrogen 
Base 13.4 g/L 
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1.4. PTM1 Trace Salts: 
 Concentration 
H2SO4 5 mL/L 
CuSO4·5H2O 6 g/L 
NaI 0.08 g/L 
MnSO4·H2O 3.36 g/L 
Molybdic acid 0.2 g/L 
Boric acid 0.02 g/L 
CoCl2·6H2O 0.82 g/L 
ZnCl2 (work in 
hood) 20 g/L 

FeSO4·7H2O 64.6 g/L 

1.5. YEP (Yeast Extract Peptone) Plates: 
 Concentration 
Yeast Extract 5 g/L 
Peptone  10 g/L 
Glucose  10 g/L 
Agar 20 g/L 

Autoclave, mix, and pour at 50-60°C 

1.6. YNB (Yeast Nitrogen Base) media: 
 Concentration 
Yeast Nitrogen 
Base 6.7 g/L 

KH2PO4 11.5 g/L 
K2HPO4 2.66 g/L 
Glycerol 20 g/L 

1.7. Phosphate Buffer, 0.1 M, pH 7.0: 
 Concentration 
0.1M Na2HPO4 800 mL 
0.1M NaH2PO4 200 mL 
Concentrated 
NaOH To pH 7.0 

1.8. Tris-acetate buffer: 

1.8.1 Tris-acetate buffer, 20 mM, pH 7.5 
 Concentration 
Tris (base) 0.484 g/L 
C2H4O2 To pH 7.5 



 48

1.8.2 Tris-acetate buffer, 20 mM, pH 9.5 + 1 M NaCl 
 Concentration 
Tris (base) 0.484 g/L 
NaCl 58.44 g/L 
C2H4O2 To pH 9.5 

 

1.8.3 Tris-acetate buffer, 20 mM, pH 9.5 + 2 M NaCl 
 Concentration 
Tris (base) 0.484 g/L 
NaCl 116.88 g/L 
C2H4O2 To pH 9.5 

1.8.4 Tris-acetate buffer, 40 mM, pH 8.5 + 1 M NaCl 
 Concentration 
Tris (base) 0.969 g/L 
NaCl 58.44 g/L 
C2H4O2 To pH 8.5 

1.8.5 Tris-acetate buffer,40 mM, pH 8.5 + 2 M NaCl 
 Concentration 
Tris (base) 0.969 g/L 
NaCl 116.88 g/L 
C2H4O2 To pH 8.5 

2. Pump Calibration 
The Cole-Farmer Instrument Company Masterflex three-roller peristaltic pumps 

were calibrated using #16 Pharmed Masterflex tubing ranging in flowrates from 

7.67 mL/min to 180 mL/min.  The settings are arbitrary values written on the pump 

motor.  All calibrations used fermentation broths which were both growing and aerated. 

(Table 11) 
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Setting mL Time (minutes) mL/min Residence Time for 1L (minutes) 
0.5 23 3 7.67 130.4 
0.75 35 2 17.5 57 
1.00 43 2 21.5 46.5 
1.50 47 1 47 21.27 
2.00 70 1 70 14.28 
2.50 170 2 85 11.76 
3.00 212 2 106 9.43 
3.50 125 1 125 8.00 
3.75 135 1 135 7.40 
4.00 150 1 150 6.67 
4.50 165 1 165 6.06 
5.00 180 1 180 5.55 

Table 11 - Cole-Farmer Masterflex Pump Calibration Using  
#16 Tubing and Aerated Fermentation Broth 

3. Growth curve of Pichia pastoris 
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Figure 13 - Growth curve of P. pastoris at 27°C and 200 RPM in YNB media. 
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4. Maceration Effects of the CM Hyper-Z Resin on P. pastoris in a 
Bioflo 3000 Fermenter 

Time 
Since 
inoculation

With 
Resin 

Without 
Resin 

0.566667 0.445  
1.25  0.69 
2.833333 0.707  
4.75  1.396 
21.15 2.252  
21.91667  4.9 
22.73333 3.182  
24.16667  5.82 
24.21667 4.11  
25.5  6.28 
28.75  7.04 
32.23333 4.82  
32.91667  9.56 
51.75  65.4 
56.11  77.6 
57.65  86 
72.4  117.5 

Table 12 – Maceration Effects of CM Hyper-Z in a Bioflo 3000 on P. pastoris 

5. Determining the Effect of Nutrient Deprivation on P. pastoris 

Time into Methanol (hours) Wet weight (g/L) Adjusted Wet weight (g/L) CO2 (mL/min) 
20:13 266 266 146.115 
22:34 286 281 149.24 
26:38 318 305 148.46 
29:58 348 327.5 156.78 
42:09 384 354.5 176 
45:08 390 359 177.38 
49:06 418 380 187.92 
Table 13 - The Effect of Residence Time on CO2 and Wet Weight – Control 

Time into Methanol (hours) Wet weight (g/L) Adjusted Wet weight (g/L) CO2 (mL/min) 
20:05 290 290 144.12 
21:00 296 294.5 149.89 
22:35 304 300.5 149.84 
25:40 322 314 155.68 
40:10 368 348.5 169.6 
43:15 394 368 178.41 
45:00 398 371 178.57 
48:30 422 389 182.85 

Table 14 - The Effect of Residence Time on CO2 and Wet Weight – Control (2) 
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Time into Methanol (hours) Wet weight (g/L) CO2 (mL/min) 
19:29 280 144.56 
22:22 302 147.68 
25:28 302 152.36 
29:33 328 158.6 
40:58 344 163.8 
44:10 372 169.78 
46:34 374 171.6 

Table 15 - The Effect of Residence Time on CO2 and Wet Weight – 7.5 Minutes 

Time into Methanol (hours) Wet weight (g/L) CO2 (mL/min) 
20:15 294 150.24 
23:31 328 148.96 
27:54 326 155.28 
32:35 350 156.16 
43:40 375.1 171.2 
48:25 403.6 178.8 

Table 16 - The Effect of Residence Time on CO2 and Wet Weight - 7.5 Minutes (2) 

Time into Methanol (hours) Wet weight (g/L) CO2 (mL/min) 
20:25 280 143.1 
23:45 312 153.9 
25:25 326 157.68 
29:15 346 155.25 
32:55 358 163.08 
44:05 376 169.56 
49:30 404 173.61 
52:55 418 180.9 
55:35 420 180.125 
67:25 434 192.78 
69:30 448 195.48 

Table 17 - The Effect of Residence Time on CO2 and Wet Weight - 60 Minutes 

Time into Methanol (hours) Wet weight (g/L) CO2 (mL/min) 
19:55 316 154.71 
22:40 318 156.87 
25:24 326 156.87 
27:34 346 159.3 
29:59 358 160.38 
32:12 352 162 
43:48 394 170.395 
47:32 398 180.63 
49:45 408 178.345 

Table 18 - The Effect of Residence Time on CO2 and Wet Weight - 130 Minutes 



 52

Time into Methanol (hours) Wet weight (g/L) CO2 (mL/min) 

19:30 298 CO2 detection 
system error 

24:00 344 148.19 
27:25 352 150.8 
30:55 364 153.8125 
33:15 360 156.6875 
44:10 414 166.32 
48:05 426 169.12 

Table 19 - The Effect of Residence Time on CO2 and Wet Weight - 130 Minutes 

5.1. Statistical Analysis of the CO2 Output using SPSS 14.00 
Univariate Analysis of Variance 
 
 Between-Subjects Factors 
 

  Value Label N 
1 Control (1) 7
2 Control (2) 8
3 7.5 Min (1) 7
4 7.5 Min (2) 6
5 60 Min 11
6 130 Min (1) 9

Condition 

7 130 Min (2) 6
 
 Tests of Between-Subjects Effects 
 
Dependent Variable: CO2  

Source 
Type III Sum 
of Squares df Mean Square F Sig. 

Corrected Model 9354.776(a) 13 719.598 122.657 .000 
Intercept 70838.835 1 70838.835 12074.590 .000 
Condition 201.476 6 33.579 5.724 .000 
Time 6270.374 1 6270.374 1068.795 .000 
Condition * Time 266.492 6 44.415 7.571 .000 
Error 234.671 40 5.867    
Total 1446849.585 54     
Corrected Total 9589.447 53     

a  R Squared = .976 (Adjusted R Squared = .968) 
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 Parameter Estimates 
 
Dependent Variable: CO2  

95% Confidence Interval 
Parameter B Std. Error t Sig. Lower Bound Upper Bound 
Intercept 126.684 4.066 31.160 .000 118.467 134.901
[Condition=1] -12.059 5.059 -2.384 .022 -22.284 -1.834
[Condition=2] -5.450 4.866 -1.120 .269 -15.284 4.384
[Condition=3] .818 5.086 .161 .873 -9.461 11.097
[Condition=4] -1.099 5.242 -.210 .835 -11.694 9.497
[Condition=5] 2.651 4.533 .585 .562 -6.511 11.813
[Condition=6] 9.408 4.874 1.930 .061 -.443 19.260
[Condition=7] 0(a) . . . . .
Time .889 .114 7.811 .000 .659 1.119
[Condition=1] * Time .551 .142 3.874 .000 .263 .838
[Condition=2] * Time .384 .137 2.806 .008 .108 .661
[Condition=3] * Time .055 .145 .381 .705 -.237 .348
[Condition=4] * Time .166 .149 1.110 .274 -.136 .467
[Condition=5] * Time .051 .122 .421 .676 -.195 .298
[Condition=6] * Time -.037 .138 -.269 .789 -.315 .241
[Condition=7] * Time 0(a) . . . . .
a  This parameter is set to zero because it is redundant. 
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5.2. Statistical Analysis of the Wet Weight using SPSS 14.00 

Univariate Analysis of Variance 
 
 Between-Subjects Factors 
 
  Value Label N 

1 Control (1) 7
2 Control (2) 8
3 7.5 Min (1) 7
4 7.5 Min (2) 6
5 60 Min 11
6 130 Min (1) 9

Condition 

7 130 Min (2) 7
 
 Tests of Between-Subjects Effects 
 
Dependent Variable: WetWeight  

Source 
Type III Sum 
of Squares df Mean Square F Sig. 

Corrected Model 103158.047(a) 13 7935.234 85.345 .000 
Intercept 265192.159 1 265192.159 2852.191 .000 
Condition 1166.652 6 194.442 2.091 .075 
Time 69563.009 1 69563.009 748.163 .000 
Condition * Time 683.887 6 113.981 1.226 .313 
Error 3812.114 41 92.978    
Total 6825723.220 55     
Corrected Total 106970.161 54     

a  R Squared = .964 (Adjusted R Squared = .953) 
 
 
 Parameter Estimates 
 
Dependent Variable: WetWeight  

95% Confidence Interval 
Parameter B Std. Error t Sig. Lower Bound Upper Bound 
Intercept 233.557 12.820 18.218 .000 207.666 259.448
[Condition=1] -29.690 17.551 -1.692 .098 -65.134 5.755
[Condition=2] -7.057 16.662 -.424 .674 -40.707 26.593
[Condition=3] -9.700 17.674 -.549 .586 -45.393 25.993
[Condition=4] 1.732 18.384 .094 .925 -35.394 38.859
[Condition=5] 11.241 15.104 .744 .461 -19.262 41.744
[Condition=6] 19.584 16.702 1.173 .248 -14.146 53.314
[Condition=7] 0(a) . . . . .
Time 4.061 .378 10.729 .000 3.296 4.825
[Condition=1] * Time -.473 .508 -.930 .358 -1.499 .554
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[Condition=2] * Time -.817 .485 -1.686 .099 -1.796 .162
[Condition=3] * Time -.845 .519 -1.627 .111 -1.893 .204
[Condition=4] * Time -.674 .539 -1.249 .219 -1.763 .416
[Condition=5] * Time -1.025 .416 -2.460 .018 -1.866 -.183
[Condition=6] * Time -.922 .488 -1.891 .066 -1.907 .062
[Condition=7] * Time 0(a) . . . . .

a  This parameter is set to zero because it is redundant. 
 
 
 

6. Binding Experiments 

6.1. Dynamic Binding Capacity in Buffer 

time (minutes) mg Lys UV 280 C/C0 
10 195 0.006 0.000968
25 487.5 0.01 0.001613
35 682.5 0.011 0.001774
45 877.5 0.028 0.004516
55 1072.5 0.176 0.028387
65 1267.5 2.01 0.324194
75 1462.5 3.96 0.63871 
95 1852.5 5.2 0.83871 
105 2047.5 5.7 0.919355
115 2242.5 6.13 0.98871 

Table 20 - Dynamic Binding Capacity in Buffer - 250 cm/hr 

time 
(minutes) mg Lys UV280 C/Co 

10 270 0.007 0.001129
20 540 0.014 0.002258
30 810 0.005 0.000806
40 1080 0.006 0.000968
50 1350 0.033 0.005323
60 1620 0.338 0.054516
70 1890 2.52 0.406452
80 2160 4.56 0.735484

Table 21 - Dynamic Binding Capacity in Buffer - 350 cm/hr 
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6.2. Dynamic Binding Capacity in Whole Fermentation Broth 

 Max 
U/min

ml into 
the 

column 

Amt gone 
into column 

(mg) 
9:12    
9:27 0 90 18 
9:35 0 138 27.6 
9:53 0 246 49.2 

10:00 0 288 57.6 
10:12 0 360 72 
10:29 0 462 92.4 
10:40 0 528 105.6 
10:56 0 624 124.8 
11:09 0 702 140.4 
11:24 0 792 158.4 
11:43 0 906 181.2 
12:05 0 1038 207.6 
12:26 0 1140.9 228.18 
12:53 0 1273.2 254.64 
13:15 0 1381 276.2 
13:29 0 1449.6 289.92 
13:45 100 1528 305.6 
13:58 120 1591.7 318.34 
14:14 0 1670.1 334.02 
14:46 220 1826.9 365.38 
15:10 180 1944.5 388.9 
15:43 250 2106.2 421.24 
16:15 340 2263 452.6 
16:56 420 2463.9 492.78 
17:22 530 2591.3 518.26 
17:45 620 2704 540.8 
18:20 920 2875.5 575.1 
18:51 1050 3027.4 605.48 
19:50 1700 3316.5 663.3 

Ingoing 2500   
Table 22 - Binding Capacity of Lysozyme in Whole Pichia pastoris Fermentation Broth 
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6.3. Recirculating Binding Capacity in Whole Fermentation Broth 

Hours 
into 
Methanol

Hours from 
Experimental 
Start 

Max 
U/min 

10:12:00 0:00:00 2350 
10:35:00 0:23:00 2300 
11:07:00 0:55:00 2300 
11:26:00 1:14:00 2200 
11:43:00 1:31:00 2250 
12:04:00 1:52:00 2250 
12:32:00 2:20:00 2725 
13:01:00 2:49:00 2275 
13:33:00 3:21:00 2650 
14:36:00 4:24:00 1750 
14:59:00 4:47:00 1700 
15:30:00 5:18:00 1750 
16:04:00 5:52:00* 1550 
16:45:00 6:33:00 1700 
17:26:00 7:14:00 1500 
18:39:00 8:27:00 1400 
19:05:00 8:53:00 1525 
19:33:00 9:21:00 1125 
21:15:00 11:03:00 1650 
22:10:00 11:58:00 1050 
34:27:00 24:15:00 900 
37:00:00 26:48:00 1180 
37:57:00 27:45:00 1200 
39:29:00 29:17:00 1000 

Table 23 - Recirculating Binding Capacity in Whole Pichia pastoris Fermentation Broth 
(* Temperature lowered from 30 to 20.5°C) 
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7. The Complete Experimental System 

Hours into 
fermentation

Hours from 
Column Start 

U/mL in 
fermenter 

73.67 0.00 3033 
76.05 2.38 3000 
79.33 5.67 2130 
82.93 9.27 1620 
95.42 21.75 1350 
98.87 25.20 1000 
100.65 26.98 1000 
103.40 29.73 960 
120.35 46.68 795 

Table 24 - Run #1 of the Complete Experimental System 
 
 

Hours into 
fermentation

Hours from 
Column Start 

U/mL in 
fermenter 

74.93 0.00 1350.00 
76.77 1.83 1200.00 
83.50 8.57 1095.00 
91.45 16.52 905.00 
96.28 21.35 780.00 
99.70 24.77 750.00 
102.87 27.93 740.00 
119.70 44.77 610.00 

Table 25 - Run #2 of the Complete Experimental System 
 
 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


