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Abstract

With the rapid advances in deep learning, many pre-trained models have been released for

reuse to researchers and practitioners. These pre-trained models are invaluable, as they often

perform better than models that can be trained using the limited resources and data avail-

able to the majority of the parties who utilize deep learning. These models typically contain

unique knowledge derived from the tasks and datasets on which they were pre-trained. In

consequence, reusing them may be difficult in practice because a downstream task may either

require a knowledge base that is not completely captured by any single pre-trained model, or

may not exactly match the task that had previously been solved by a specific model. This mo-

tivates the use of multiple pre-trained models simultaneously to expand the knowledge scope

beyond any individual model. However, pre-trained models are usually large, leading the size

of their ensemble to be huge and causing scalability problems on applications with limited re-

sources such as mobile devices. This dissertation thus studies knowledge amalgamation, which

is the problem of how best to combine complementary knowledge from multiple heterogeneous

pre-trained models, referred to as teachers, into a lightweight student model. We propose four

challenging knowledge amalgamation tasks corresponding to four different aspects of com-

plementary knowledge inherent among teachers.

Task 1: Meta-Embedding. This task studies the combination of complementary knowledge

from pre-trained word embedding models (teachers) in NLP such as Word2Vec or GloVe that

contain representations for different words and encode distinct relationships between words.

Often times, each individual teacher cannot fully meet the language needs for downstream

text mining tasks, e.g., neither teacher contains all the words used in a task, typically forcing

a user to choose which teacher to use. Many works tackle this ambiguity by learning a meta-

embedding model (student) to extend the word coverage captured in the union of multiple

teachers into one model. However, they learn a meta-embedding for each word by recon-

structing its corresponding representations in each source model without regarding the key in-

formation of the relations between the encodings of each model. In this task, we thus propose

a meta-embedding method that directly preserves word-pair relations from multiple teachers.

Task 2: Amalgamating Discriminative Knowledge. A popular type of teacher model is a pre-

trained multi-class classifier. Each teacher typically contains unique discriminative knowledge

on a specific class set. This creates some restrictions when reusing an individual teacher on

some downstream task, as this task may cover more classes than the teacher’s specialized

classes. For example, a downstream activity recognition task may contain more activities than

were included in any individual teacher. Several studies in knowledge amalgamation thus



combine multiple teachers into one student model that becomes an expert on the union of the

teachers’ classes. Unfortunately, recent works focus exclusively on image classification and

develop methods purely under the unsupervised setting that suffer heavily when an overcon-

fident teacher provides inaccurate predictions with high confidence. In this task, we extend

this study to the open problem of semi-supervised knowledge amalgamation, broadening the

setting to a more realistic case in which we also explore sequence classification for the first time.

Task 3: Amalgamating Label Dependencies. In this task, we study pre-trained multi-label teacher

models. These teachers usually contain complementary knowledge about the inter-class de-

pendencies among class labels informed by the particular label sets that were given during

their training. Unlike traditional supervised methods for multi-label classification that require

huge labeled datasets, knowledge amalgamation approaches combine such multiple teachers

into a student model to tackle multi-label problems without using any labeled data. However,

the existing works train each label as an independent binary classification problem. They over-

look the information on label inter-dependency, which is crucial for multi-label classification.

To this end, we seek a solution to amalgamate heterogeneous teachers into a student model

that aims to capture dependencies among the union of labels between all teachers.

Task 4: Multi-Tasking Knowledge Amalgamation. This study focuses on amalgamating knowl-

edge from pre-trained multi-task teacher models. The key knowledge contained in these multi-

task teachers is the shared representation that benefits the generalization of all tasks simultane-

ously. However, each teacher encodes different generalized knowledge as they aim to learn the

shared representation to be applied to the different sets of tasks. Thus, some existing knowl-

edge amalgamation works aim to combine this complementary knowledge in order to improve

the common knowledge to be used for all tasks handled across all teachers. Unfortunately,

they make the unrealistic assumption that all teachers and the student have an identical ar-

chitecture and develop the layer-to-layer approaches to train the student. In practice, teachers

often come with different architectures as they are pre-trained separately. Therefore, this task

aims to develop the student model that can effectively amalgamate the complementary shared

knowledge captured across multi-task teachers with heterogeneous architectures in order to

learn high-quality common feature used for all tasks across all teachers.
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1 Introduction

1.1 Motivation

Deep learning has received significant attention in the past decade due to its unprece-

dented success on several real-world tasks such as sentiment analysis [36, 122, 115], ob-

ject detection [40, 54, 99], activity recognition [74, 111, 116], and clinical diagnosis [84, 76,

39]. These advances have mostly occurred using conventional supervised learning ap-

proaches that require substantial computing resources and huge datasets to train large

models. Unfortunately, acquiring labeled data in practice is very expensive and several

domains rarely have publicly-available data due to privacy concerns. For example, health

records and customer activity data often contain sensitive private information, and are

thus often unavailable to outside practitioners. This dramatically hinders the training of

robust models from scratch, a problem that is compounded by limitations on computa-

tional resources.

Several research groups attempt to support other researchers and practitioners in over-

coming these burdens by using their powerful computing resources to train a model on

some large dataset and releasing pre-trained models [65, 77, 39, 40, 45, 114, 5, 94, 81, 122]

for reuse in various domains. Each of these models, referred to as a teacher model, is

typically trained to solve a specific problem, which leads it to have unique characteris-

tics and knowledge specific to its own task. Therefore, reusing individual teachers for a

downstream task in practice may be limited due to: (1) The knowledge base required for a

downstream task may not be completely captured by any arbitrary teacher. For instance, a

text-mining task of using Twitter to support clinical diagnosis needs word representations

that can capture language use by both Twitter users and clinicians. However, the existing

off-the-shelf word representations (teachers) are pre-trained on only either source which

cannot fully cover the knowledge needed for the task. (2) A reuse task may not exactly

match the task solved by any individual teacher. For example, a task to identify human
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activities on a set of classes {standing, sitting, walking} but the two available teachers are

trained on {standing, sitting} and {sitting, walking}, respectively.

These restrictions encourage the use of multiple teachers simultaneously, which can

expand the knowledge scope to solve a broader set of tasks. Unfortunately, pre-trained

teachers usually come with a very large size e.g., 117M parameters for ResNet152 [40],

138M for VGG16 [94], or 88M for YOLOv5 [48] which could drive the size of their ensem-

bles to be prohibitively huge. This significantly restricts their use for some applications

with limited resources such as mobile devices, smart watches, or smart home appliances.

1.2 Knowledge Amalgamation

To maximize benefit from such available pre-trained models, researchers have studied a

variety of directions for their reuse. The simplest method is ensemble learning [49, 25]

that combines the outputs from multiple models by averaging their predicted scores or

using majority voting. The latest ensemble methods apply deep learning techniques such

as Drop Connection [109], Stochastic Depth [46], and Swapout [96]. These approaches

require all models to tackle exactly the same task and to be run simultaneously which

could cause scalability problem.

Later, with original goal to address such the scalability issue, knowledge distillation

[42] propose to compress a large teacher model into a compact student model by using the

teacher’s soft predictions (logits) to supervise the student model. [1, 110] extend this idea

to learning also from the other intermediate layers. However, these works focus mainly

on single teacher - single student manner that assumes the teacher and the student solve

the same task.

Inspired by these works, several researchers have been established numerous works

[120, 9, 10, 119, 93, 108, 92, 60] towards Knowledge Amalgamation or KA to extend the study

towards a more comprehensive objective. Knowledge amalgamation aims to combine

complementary knowledge from multiple pre-trained models, referred to as heterogeneous
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teachers, into one student model that is significantly smaller than the ensemble of origi-

nal large teachers. It advances beyond knowledge distillation by combining teachers that

specialize in different tasks, which is a more general form of the knowledge distillation

problem. In this dissertation, as illustrated in Figure 1, we cover four types of comple-

mentary knowledge existing among teachers which can be summarized as follows:

Teacher 1 Teacher 2

Medical Source Twitter Source

Word embedding

Word similarity

(a) Instance Relation Knowledge. Each teacher learns
representations for different instances (words) and
captures their relation differently.

Teacher 1 Teacher 2

Specialized classes Specialized classes

(b) Discriminative Knowledge. Individual teacher has
specific knowledge to discriminate a different set of
classes.

car
Teacher 1 Teacher 2

garage

cartree

street

building

Labels

Label Dependencies
(bolder shows stronger)

(c) Label Dependency Knowledge. Teachers capture
unique dependencies among class labels regarding
the label sets they have experienced differently.

Task A: 
Traffic lights

Task B: 
Direction control

Task C: 
Pedestrian detection

Red  Yellow  Green Left Right Straight Stop Pedestrian No-Pedestrian
STOP

Teacher 1 Teacher 2

(d) Multi-Tasking Knowledge. Each teacher contains
different generalized knowledge shared between
different sets of related tasks.

Figure 1: Four types of knowledge inherent complementarily among pre-trained models (teachers)
that are studied in this dissertation.

Instance Relation Knowledge. Several research groups [63, 77, 82, 124, 45] invest their

resources to publish a pre-trained model that aims to obtain powerful instance represen-

tations to be used across a broad range of downstream tasks. As these representations are

not specific to a task, these models usually learn high-quality representations that capture

inherent relationship among instances. However, each of them is trained on a different

dataset, leading them to represent different perspectives on how instances relate to each

other. For example, in Natural Language Processing (NLP), there are many available
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pre-trained word embedding models. Each captures a different vocabulary and encodes

word relations differently depending on their context in their training corpus. As shown

in Figure 1a, a teacher may be trained on a medical corpus capturing a set of words in-

cluding flu, heatstroke, cold, and hot while another teacher may be trained on data collected

from Twitter, capturing a different set of words including drink, food, cold, and hot. In this

case, the two teachers encode a relation between cold and hot differently, being far apart

in Teacher 1 while similar in Teacher 2, which are induced from their distinct context.

Discriminative Knowledge. Many other researchers [39, 40, 44, 72, 51] pre-train multi-

class classification teachers. These models are trained on different datasets and typically

solve different sets of classes. This leads each to contain discriminative information on a

unique class set, such that their complement may contain knowledge beyond any indi-

vidual teacher. For instance, consider a human activity recognition task as illustrated in

Figure 1b. As shown, a set of three classes (standing, sitting, walking) might be the target

in Teacher 1 while the other set of classes (walking, cycling, running) might be all that is

known by Teacher 2. Their discriminative knowledge on such different activity sets com-

plements each other to support the broader task of identifying all five activities: standing,

sitting, walking, cycling, running.

Label Dependency Knowledge. Multi-label classification is another task that has gained

increased attention from groups that publish pre-trained models [114, 48] since this task

is applicable to a large variety of real-world problems [123, 55, 90, 31, 107]. Depending

on which training data are used, each pre-trained model has been trained on a different

label set and consequently captures different key knowledge of the dependencies among

the labels. Figure 1c depicts an example of this setting. A dataset, used for Teacher 1, may

cover the labels of tree, car, and garage. On the other hand, Teacher 2 may use another

dataset containing the other labels including car, building, and street. The two teachers

capture label dependencies limited to their experience which introduces different knowl-
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edge among them. Some label dependencies may appear only in one teacher, for example

car and garage in Teacher 1 or car and street in Teacher 2. Moreover, their predictions on

the shared labels (e.g., car) may be different depending on their own particular context.

Multi-Tasking Knowledge. Other research groups [91, 68, 2] release their pre-trained mod-

els for multi-task learning. Each of these models is trained to learn the shared feature that

benefits the generalization across a set of tasks. However, the task set handled by each

teacher is typically different depending on their particular study. As illustrated in Figure

1d, Teacher 1 may learn to detect the traffic lights (task A) and predict the direction (task

B) while Teacher 2 may learn another set of tasks including predicting the direction (task

B) and detecting pedestrians (task C). Therefore, the two teachers capture the generalized

knowledge specifically to the different related tasks. Combining their complementary

knowledge would ideally improve the shared feature that could boost the performance

of the three tasks simultaneously.

1.3 Dissertation Tasks

In this dissertation, we study four tasks of knowledge amalgamation according to the pre-

viously described types of complementary knowledge captured among multiple teachers.

Task 1. Meta-Embedding. This task focuses on pre-trained representation learning models

that capture complementary knowledge of relationship among instances. We particularly

focus on the NLP domain as this problem is prevalent among the available pre-trained

word embedding models, which we consider as teachers. Our goal is to combine these pre-

trained models into one student model, called a meta-embedding. A good solution to learn

meta-embeddings should retain word relations that are encoded thoroughly in each pre-

trained teacher. Also, it should be able to handle the words that only have embeddings

in some but not all of the teachers.
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Task 2. Amalgamating Discriminative Knowledge. In many cases, pre-trained models, or

teachers, handle distinct and complementary sets of specialized classes for multi-class clas-

sification. This task aims to combine such heterogeneous teachers into a student model the

can predict over the union of their classes. In this study, we assume access to few labeled

samples along with many unlabeled samples. Additionally, we devote our study to se-

quence classification, which has never been explored in this context. An ideal solution

should effectively fuse heterogeneous knowledge from teachers that may contain unre-

lated information as they are trained on different problems. Moreover, such a solution

should be robust to the challenging case when a teacher provides inaccurate predictions

with high confidence.

Task 3. Amalgamating Label Dependencies. In this task, we study knowledge amalgama-

tion on multi-label classification. Each teacher is trained on a different label set and thus

encodes label dependencies limited only to its known labels. Our task is to fuse the dis-

tinct knowledge from teachers into a student model that captures all dependencies among

labels from all teachers, trained from only unlabeled data. Without any supervision, it

is very challenging to learn such dependencies between all label-pairs in the union label

set from teachers. This is especially true for label-pairs that have never been observed

by any teacher, e.g., learning dependency between garage and street that no teacher has

knowledge about, as depicted in Figure 1c.

Task 4. Multi-Tasking Knowledge Amalgamation. Lastly, we explore the open problem of

knowledge amalgamation for multi-task learning. In this setting, each teacher captures dif-

ferent shared representations that benefit the different sets of related tasks. Existing works

assume strongly that the teachers and the student have an identical architecture while, in

practice, they are pre-trained separately and may have different architectures. Therefore,

in this task, we aim to train a student that can effectively combine knowledge from multi-

task teachers with heterogeneous architectures. The ultimate goal of the student model is
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to fuse their knowledge into the rich common feature that is effectively generalizable for

all tasks across teachers.
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edge Amalgamation for Multi-Task Models with Heterogeneous Architectures. In prepara-

tion for submission to CIKM 2023.

• Thomas Hartvigsen, Jidapa Thadajarassiri, Xiangnan Kong, Elke Rundensteiner.

Continuous-Time Attention Networks for Irregularly-Sampled Time Series Classification.
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Kong, Elke Rundensteiner. Human-like Explanation for Text Classification With Limited
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densteiner. Learning Similarity-Preserving Meta-Embedding for Text Mining. In Proceed-

ings of IEEE BigData, 2020.
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Transformer-based Network for Clinical Notes Series Prediction. In Proceedings of MLHC,

2020.
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densteiner. Comparing General and Locally-Learned Word Embeddings for Clinical Text

Mining. In Proceedings of IEEE BHI, 2019.
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2 Meta-Embedding

This task is published at IEEE BigData 2020 [102].

2.1 Motivation

The progress of deep learning methods generally depends on how good a model can

generate data representations to be used for a task. However, powerful representations

should express fundamental information from data that is most useful for general prob-

lems, i.e. not task-specific. Thus, data representations should be able to capture inherent

relation or similarity among instances so as to most benefit any downstream tasks. To

achieve this, massive training data along with substantial computational resources are

required which practically prohibit most practitioners to acquire.

To accelerate advances to deep learning community, many research groups [63, 77,

82, 124, 40, 45] invest their resources for such persistent training and release the pow-

erful representation models for publicly use. However, each organization pre-trains its

model from different data that consequently each of them encodes relations among in-

stances differently regarding the unique context inherent in a specific training data. In

this task, we focus particularly on Natural Language Processing (NLP) domain where

the problem presents outstanding across various choices of pre-trained word embedding

hot
hot

Twitter Source

drink

food

Medical Source

flu

heatstroke

cold

cold

Meta-embeddings

. . . 

. . . . . . . 

+  + 
+  +

*

. . . 

. . . . . . . #

flu

heatstroke
hot

cold
drink

food
#

. . . 

. . . . . . . 

+  + 
+  +

*
Word similarity
Word embedding

Figure 2: Learning meta-embeddings from multiple pre-trained embedding models that each
source contains different vocabulary and endoce different relations among words.



PhD Dissertation: Jidapa Thadajarassiri 16

models. Each covers different words and encodes their relations differently which suffers

the reuse purpose significantly when a downstream task requires knowledge not limited

to only individual pre-trained model but instead across multiple of them.

For example, as shown in Figure 2, assume our task involves a set of 6 words (flu, heat-

stroke, cold, hot, drink, and food) while there are two available embedding models trained

from medical corpus and Twitters respectively. Neither model can fully support the need

in our task as only a subset of the 6 words is provided in each source. However, their

complement could support us perfectly in this case.

To this end, our goal is to amalgamate complementary knowledge from multiple pre-

trained embedding models, referred to as teachers, into a student model which is called

meta-embedding. We aim to learn a meta-embedding model to cover words needed for a

downstream task. More importantly, such an integrated model should effectively retain

all informative relations among words that are carefully captured by each teacher model.

2.2 Related Works

Among many existing pre-trained word embeddings [64, 77, 82, 124], several studies [18,

113] show that a task performance varies dramatically across such pre-trained models

while identifying which one is the best choice for which task remains unclear.

Recent works on meta-embedding [120, 20, 9, 10, 69] aim to overcome the choice issue

by integrating multiple pre-trained embeddings into a new integrated space to be used

across many downstream tasks. Most of them focus mainly on word-encoder methods

by reconstructing encoded values of individual word from multiple pre-trained models.

The two simplest approaches are averaging [20] and concatenating [120] while the latter

increases dimensionality issue. More powerful methods, named 1toN and 1toN+ [120],

train a shallow network to learn meta-embedding for each word by optimizing its values

to be most similar to the corresponding raw values in original embedding sources. [10]

consider neighbor words into account by training a meta-embedding for a word from lin-
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ear weighted sums of its k-nearest neighboring words. This requires a hand-selection on

the number of the neighbors to be counted. Most recently, [9] propose to apply autoen-

coder approach to encode the source embeddings to a meta-embedding that is decoded

to the source with three operations including averaging, concatenating and decoupling.

None of these methods explicitly capture informative knowledge about the relations

between words that are carefully encoded in each pre-trained embedding models. More-

over, most of these works approach words that not appear in only some sources (out-

of-vocabulary or OOV) ineffectively. They develop random embeddings for these OOV

words in each source which lead some bias information to learning meta-embeddings for

them.

2.3 Problem Definition

Considering a task related to a vocabulary set V that consists of t unique words, i.e. V =

{wk}tk=1, the goal is to learn a meta-embedding space M that generates meta-embeddings

corresponding to each word in V from complementary knowledge encoded in multiple

pre-trained embedding sources. Let d be a pre-defined dimension of meta-embeddings in

M. For each wk ∈ V , we denote the d-dimensional meta-embedding of wk as ek. Thus, the

target space M = {ek}tk=1 and its size is t × d in corresponding to the target vocabulary

size, |V| = t.

Let P = {pi}ni=1 denote a set of word-pairs composed from all words in V . Given a set

of pre-trained sources S = {Sj}mj=1, the number of words in each source may differ de-

noted by V1,V2, . . . ,Vm respectively. Note that the embedding dimension in each source

may also differ. For each embedding source Sj , if both words in a word-pair pi appear in

Sj , we measure their relation by computing cosine similarity score between their corre-

sponding embeddings encoded in Sj . We notate such score as yjpi .

Our goal is to learn the t meta-embeddings in M that preserve their relations as ob-

served across embedding sources in S. Therefore, we train meta-embeddings that the
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similarity score of each word-pair pi in M, denoted as ypi , is most similar to its corre-

sponding scores in the sources {yjpi}
m
j=1. For the case of pi that does not appear in all

sources, its similarity score should be optimized by only the scores from sources that

truly observe such word-pair.

2.4 Challenges

Amalgamating knowledge from multiple pre-trained embedding models associates with

two main challenges as follows:

• Preservation of word similarity. The most informative knowledge captured by each

pre-trained embedding model is relative distance between words encoding relation

among words from their training corpus. By directly projecting actual values of

word embeddings from original sources into a meta-embedding space does not

guarantee to preserve their distances. The successful meta-embedding learning should

instead consider carefully on how to preserve such meaningful distances. This may

challenge further as the observed relations of a word-pair across pre-trained sources

may contradict one another, leading conflicts to be handled by the learning process

such as the relation between hot and cold, shown in Figure 2, is captured to be close

in the pre-trained model from Twitter while far apart in the other model trained on

medical corpus.

• Out-of-vocabulary (OOV) words. Word coverage by each pre-trained embedding model

depends entirely on its training corpus. Thus, several words may not exist in all em-

bedding sources, referred to as out-of-vocabulary or OOV words. For example, {flu

and heatstroke} or {drink and food} appear only in one source as illustrated in Figure

2. Meta-embeddings for these OOV words might become biased if they are learned

from the source that does not really contain information regarding these words. It is

therefore challenging to train a meta-embedding space that could extract only such
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accurate knowledge from multiple sources.

2.5 Proposed Method: Similarity-Preserving Meta-Embedding (SimME)

In this work, we propose the relation-based learning method for meta-embeddings named

Similarity-Preserving Meta-Embedding (SimME). Our approach trains a joint space M

that directly preserves relations among words encoded in multiple pre-trained embed-

ding models. Figure 3 depicts the overall architecture of the proposed SimME that con-

sists of two key ingredients: the Relation-Encoder and the Maskout.

2.5.1 Relation-Encoder

This network maps a word-pair through the meta-embedding space M to encode their

similarity. As illustrated in Figure 3, it first feeds a word-pair pi consisting of two words
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Figure 3: The proposed relation-based meta-embedding learning.
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wk and wl into the network simultaneously. The Relation-Encoder then extracts the d-

dimensional meta-embeddings for both words by applying an affine transformation on

their one-hot vectors, denoted as xk and xl respectively, via the latent space M as shown

in Equation 1.

ek = Mxk + b (1)

where ek is the meta-embedding of wk and b is a bias vector. Extracting el for wl takes

place simultaneously with the same operation. Then the cosine similarity score between

their meta-embeddings, notated by ypi , is measured as follows:

ypi =
ek
> · el

‖ek‖ · ‖el‖
(2)

where ‖‖ indicates cardinality and · is the dot product.

Similarly for each original pre-trained source that contain both wk and wl in a pair pi,

the cosine similarity score between their corresponding embeddings is each pre-trained

model is computed. This yield a collection of similarity scores from the m pre-trained

sources which are denoted as y1
pi
, y2
pi
, . . . , ympi . To preserve this collection of similarities,

SimME is trained to minimize the mean squared error between such a collection and the

similarity score in the meta-embedding space as shown in Equation 2. All parameters in

M are thus updated through the following loss function:

J(M) =
1

n

n∑
i=1

m∑
j=1

(
ypi − yjpi

)2 (3)

where m is the number of pre-trained models and n is the number of word-pairs.
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2.5.2 Maskout

Regarding the prevalent existence of OOV words across pre-trained sources, several word-

pairs related to them are observed sparsely and not presented in all sources. For example

in Figure 2, flu and heatstroke exist only in the medical source that are considered as OOV

words with respect to the pre-trained embeddings trained from Twitter. These two words

involve with several word-pairs including (flu, heatstroke), (hot, heatstroke) and (cold, flu)

that are also observed from one source only. We refer to these pairs as nonmutual relation.

In contrast to other state-of-the-art approaches [120, 9] that create artificial embeddings

for these OOV words to be used for their training process, we propose a new loss term

for meta-embedding, called maskout. Maskout steers the learning to adaptively train meta-

embeddings based solely on the sources that actually observe such nonmutual relations.

SimME, therefore, succeeds to avoid biased information from synthetic embeddings.

To achieve this, we employ an indicator function to modify the loss function in Equa-

tion 3. This allow SimME to be flexibly undated based on the sources that contain accurate

information. The new loss function is:

J(M) =
1

n

n∑
i=1

m∑
j=1

1pi∈Sj

(
ypi − yjpi

)2 (4)

where pi is a word-pair in P and 1 is an indicator function:

1pi∈Sj =


1 if pi ∈ Sj

0 otherwise
(5)

For the other word-pairs that their relations observed across all sources, SimME is

optimized to preserve all similarity scores with equal weight which yields the consensus

of word-pair relations among multiple pre-trained embedding sources.
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2.6 Evaluation

We investigate amalgamating three popular pre-trained word embeddings which could

form four possible meta-embedding spaces. The proposed SimME is trained to obtain

such four spaces to be evaluated on four text mining tasks against six alternative methods.

Pre-trained Word Embeddings. We conduct our experiments using three word embed-

dings pre-trained from different corpus as follows:

• Wikipedia [77] covers 400,000 word embeddings that are trained on Wikipedia 2014

and Gigaword 5.

• BioMed [82] contains word embeddings for 2.4 million words that are trained from

documents in PubMed and PubMed Central.

• Twitter [77] provides 1.2 million word embeddings that are trained from tweets.

Meta-Embedding Spaces. There are four possible meta-embedding spaces to be consid-

ered by amalgamating the three pre-trained embedding sources described above.

• WIKI-BIO combines word relations encoded in medical context from BioMed and

general use from Wikipedia. While the two sources have only 124K words in com-

mon, their union improves the coverage to 2.6M words.

• BIO-TWITTER integrates word relations captured in social communication from Twit-

ter and clinical style from BioMed. The two sources contain 63K words in their over-

lap while 3.5M words in their union.

• WIKI-TWITTER fuses word relations used for general purpose in Wikipedia and so-

cializing use in Twitter. Combining these sources drive vocabulary coverage to 1.4M

words, although the number of words covered in both sources is low as 145K words.
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• WIKI-BIO-TWITTER amalgamates all three pre-trained sources promoting their vo-

cabulary union to 3.7M words while there are only 59K appear in all sources.

Compared Methods. We compare SimME against seven alternative methods as follows:

• Individual Sources. This baseline uses each pre-trained embedding model in isolation.

There is no incremental information from knowledge amalgamation.

• Average [20]. The embeddings of the same words in all sources are averaged, requir-

ing them to have equal dimension.

• Concat: Concatenation [120]. This method simply concatenates the embeddings of the

same words in all sources, increasing the dimension of meta-embeddings propor-

tionally to the number of sources.

• LLE: Locally Linear Meta-Embedding [10]. This learns meta-embedding for each word

from a linearly weighted sum of its k-nearest neighbor embeddings which may not

capture relations to other words outside the neighborhood but are needed to be used

in a downstream task.

• AAEME: Averaged Auto-encoded Meta-Embedding [9]. This method encodes raw em-

beddings of each word from each pre-trained source. Such encoded outputs are av-

eraged to form the word’s meta-embedding that is trained to decode or reconstruct

each raw embedding.

• CAEME: Concatenated Auto-encoded Meta-Embedding [9]. Similar to AAEME, a meta-

embedding is now formed by concatenating the encoded outputs.

• DAEME: Decoupled Auto-encoded Meta-Embedding [9]. Similar to CAEME, the en-

coded outputs are concatenated to form a meta-embedding. However, instead of

using this meta-embedding to decode each raw embedding, each encoded output as
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a part of the meta-embedding is separately trained to decode its corresponding raw

embedding.

Original sources assign the special unknown-token embedding for OOV words. This

influences to the average and concatenation methods that feed such unknown-token into

their operations when a word does not exist in any source. LLE does not have the OOV

issue as every word can be constructed from its own neighbor words. The other methods

create synthetic embeddings for OOV words in the sources that are used to train meta-

embeddings but also are self-trained simultaneous.

Experiments and Results. Our experiments are conducted to prove the key idea that an

effective learning process for meta-embeddings should improve the quality of word rep-

resentations that are beneficial to broad tasks in text mining. Thus, we evaluate SimME

on four text mining tasks: (1) Semantics similarity prediction evaluated on Card [80],

RareWord [61], and WordNet [66]. (2) Synonym detection evaluated on WordRep [33],

and WordNet [66]. (3) Text classification evaluated on movie reviews [75], ProCon re-

views [32], and the public Kaggle Dataset: Twitter US Airline Sentiment. (4) Concept

categorization evaluated on ESSLLI [7].

Table 1 reports the performance on four tasks compared across all methods. The dif-

ferent appropriate metrics are used on each task as described in Table 1. These results

show strong performance of SimME that achieves the top average rank across all tasks

in all combinations. The success of SimME on semantics similarity prediction shows that

it successfully learns meta-embeddings that capture semantic similarities of word-pairs

to be most analogous to human-rated scores. Moreover, SimME achieves in not only

projecting the meta-embeddings of synonymous words into the same neighborhoods in

the learned space but also projecting words in the same category closed together. This

is shown by the impressive performance on the experiments on synonym detection and

concept categorization. Lastly, the results on text classification indicate that SimME suc-
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Semantics prediction Synonym detection Text Classification Concept

Methods
Datasets

Card RareWord WordNet WordRep WordNet Airline Movie ProCon ESSLLI Ave.
Rank

WIKI-BIO

Wiki .10 (7) .33 (5) .49 (4) .66 (8) .79 (5) .83 (4) .59 (1) .87 (5) .17 (8) 5.2
Biomed .12 (2) .24 (7) .18 (8) .70 (4) .67 (8) .81 (6) .56 (5) .86 (6) .19 (5) 5.7
Average .10 (5) .33 (6) .51 (3) .68 (5) .80 (4) .83 (2) .56 (5) .87 (4) .19 (6) 4.4
Concat .10 (4) .34 (4) .51 (2) .68 (6) .80 (3) .83 (3) .57 (3) .88 (2) .16 (9) 4.0
LLE .03 (9) .21 (9) .09 (9) .65 (9) .54 (9) .81 (7) .54 (7) .85 (8) .22 (1) 7.6
AAEME .09 (8) .22 (8) .28 (7) .72 (1) .74 (7) .81 (7) .50 (9) .88 (3) .20 (2) 5.8
CAEME .10 (3) .37 (1) .47 (5) .70 (3) .83 (2) .80 (9) .56 (4) .74 (9) .19 (4) 4.4
DAEME .10 (6) .36 (2) .47 (6) .67 (7) .75 (6) .82 (5) .50 (8) .85 (7) .18 (7) 6.0
SimME .14 (1) .34 (3) .57 (1) .71 (2) .88 (1) .85 (1) .58 (2) .89 (1) .20 (3) 1.7

BIO-TWITTER

Biomed .12 (2) .24 (3) .45 (5) .70 (4) .83 (4) .81 (5) .56 (4) .86 (3) .19 (5) 3.9
Twitter .05 (8) .15 (8) .31 (8) .62 (9) .61 (8) .83 (3) .56 (3) .87 (2) .19 (4) 5.9
Average .04 (9) .09 (9) .37 (7) .64 (7) .68 (7) .80 (7) .55 (5) .84 (4) .19 (6) 6.8
Concat .07 (6) .20 (5) .40 (6) .65 (6) .69 (6) .83 (2) .57 (2) .75 (7) .18 (8) 5.3
LLE .07 (7) .15 (6) .04 (9) .63 (8) .51 (9) .79 (9) .50 (7) .83 (5) .21 (1) 6.8
AAEME .07 (5) .15 (7) .51 (3) .72 (1) .83 (3) .80 (8) .50 (8) .72 (8) .21 (2) 5.0
CAEME .09 (3) .25 (2) .55 (2) .70 (3) .83 (2) .82 (4) .50 (9) .60 (9) .18 (9) 4.8
DAEME .09 (4) .23 (4) .49 (4) .69 (5) .77 (5) .80 (6) .52 (6) .77 (6) .18 (7) 5.2
SimME .14 (1) .27 (1) .56 (1) .70 (2) .85 (1) .84 (1) .59 (1) .89 (1) .21 (2) 1.2

WIKI-TWITTER

Wiki .10 (2) .33 (1) .56 (2) .66 (3) .86 (2) .83 (4) .59 (4) .87 (6) .17 (8) 3.6
Twitter .05 (8) .15 (9) .04 (8) .62 (9) .49 (9) .83 (5) .56 (5) .87 (5) .19 (4) 6.9
Average .09 (5) .30 (4) .41 (7) .65 (5) .75 (7) .83 (3) .60 (1) .85 (7) .16 (9) 5.3
Concat .09 (4) .29 (5) .41 (6) .65 (6) .75 (6) .84 (2) .60 (1) .85 (7) .17 (7) 4.9
LLE .03 (9) .20 (8) -.02 (9) .63 (7) .50 (8) .80 (8) .43 (9) .83 (9) .19 (5) 8.0
AAEME .08 (7) .30 (3) .54 (3) .68 (1) .84 (3) .79 (9) .50 (7) .91 (1) .19 (3) 4.1
CAEME .09 (3) .28 (6) .52 (4) .66 (4) .82 (4) .82 (6) .44 (8) .89 (4) .20 (1) 4.4
DAEME .09 (6) .28 (7) .50 (5) .63 (8) .81 (5) .80 (7) .56 (6) .91 (1) .17 (6) 5.7
SimME .15 (1) .31 (2) .59 (1) .66 (2) .91 (1) .84 (1) .60 (1) .91 (1) .20 (1) 1.2

WIKI-BIO-TWITTER

Wiki .10 (5) .33 (4) .56 (2) .66 (8) .86 (2) .83 (2) .59 (3) .87 (7) .17 (10) 4.8
Biomed .12 (2) .24 (8) .34 (8) .70 (4) .74 (8) .81 (7) .56 (6) .86 (8) .19 (2) 5.9
Twitter .05 (9) .15 (10) .06 (9) .62 (10) .49 (10) .83 (3) .56 (5) .87 (6) .19 (1) 7.0
Average .09 (7) .30 (7) .42 (7) .67 (6) .76 (7) .82 (5) .59 (4) .88 (5) .18 (9) 6.3
Concat .09 (6) .30 (6) .42 (6) .67 (7) .76 (6) .82 (4) .61 (2) .83 (9) .19 (4) 5.6
LLE .04 (10) .19 (9) -.01 (10) .64 (9) .50 (9) .80 (9) .54 (7) .81 (10) .19 (3) 8.4
AAEME .11 (4) .37 (1) .51 (3) .72 (1) .82 (3) .81 (8) .51 (8) .91 (4) .18 (5) 4.1
CAEME .11 (3) .35 (2) .46 (4) .71 (3) .78 (4) .82 (6) .50 (9) .93 (3) .18 (5) 4.3
DAEME .09 (7) .31 (4) .44 (4) .69 (4) .77 (4) .79 (9) .44 (9) .94 (1) .18 (5) 5.2
SimME .18 (1) .35 (3) .61 (1) .71 (2) .92 (1) .85 (1) .64 (1) .94 (1) .18 (5) 1.8

Table 1: Compared results on 4 text mining tasks: (1) Semantics prediction (metric: correlation). (2)
Synonym detection (metric: AUC). (3) Text classification (metric: Accurary). (4) Concept catego-
rization (metric: NMI). The number in parenthesise shows ranking performance (rank 1 indicates
the best performance against the other methods). Average rank shows the overview compared
performance across all experiments. Bold: best scores.
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ceeds in generating meta-embeddings to support the most common task in text mining.

All in all, these results indicate that SimME successfully amalgamates complementary

knowledge about word relations among multiple pre-trained embedding models into one

powerful meta-embedding space.

2.7 Conclusions

In this work, we propose SimME, a novel learning method for meta-embeddings, to

preserve the most meaningful information of word relations encoded differently across

multiple pre-trained embedding models. Our proposed method overcomes the perva-

sive challenge of out-of-vocabulary (OOV) words by adopting maskout optimization that

steers the model to learn adaptively from the only pre-trained models that truly observe

information regarding OOV words. The meta-embeddings trained by our approach offer

an integrated source of high quality word representations that combine knowledge from

multiple sources which could support the broaden use in text mining tasks.
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3 Amalgamating Discriminative Knowledge

This task is published at AAAI 2021 [101].

3.1 Motivation

Many advances on multi-class classification have been propelled by conventional super-

vised learning approaches which require a significant large amount of labeled data to

train for a robust model. Unfortunately, data labeling in practice is very expensive and

proprietary in many cases such as health records or customer activities. Often times, only

few labels are obtainable that seriously hinder training a robust model from scratch.

Fortunately, several research groups owning access to huge confidential data train a

model on their private data and release such pre-train model offering reuse for other users

[39, 40, 45]. These pre-trained models are obviously trained on different private datasets

and mostly solve different specific tasks, leading each to obtain discriminative knowledge

on a unique class set. Thus, reusing these pre-trained models are practically limited as a

Teacher 1

Teacher 2

Labeled Unlabeled
Sequence Data

Student

Comprehensive classes

Pre-Trained 
Sequence Models

Teacher 1

Teacher 2

Specialized classes

Specialized classes

Neural networks ClassesLabeled data Unlabeled  data

Figure 4: Amalgamating multiple pre-trained multi-class classifiers (teachers), that specialize on
different sets of classes, into a student model to comprehend on the union of classes covered in all
teachers. Assuming only few labeled data are available along with some large unlabeled data.
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user’s task may be different, even slightly, than the task solved by a pre-trained model.

Recently, knowledge amalgamation proposes to combine different discriminative ex-

pertise from multiple pre-trained models (teachers) into a student model. The goal of this

student model is to comprehend on the union of their specialized classes that would sup-

port reusing on a broaden task. However, recent works [92, 119, 60, 108] study mainly

on the unsupervised setting that suffer heavily when an overconfident teacher provides

inaccurate prediction with high confidence for instances belonging to classes which it had

never actually experienced on. For example as shown in Figure 4, due to similarities be-

tween cycling and sitting, Teacher 1 may confidently predict sitting for a person that in fact

cycling since the teacher has no experience on detecting cycling. Moreover, these works

focus exclusively on images with no works to-date explore this problem for sequences.

In this work, we explore this problem to sequence classification and broaden its setting

to more practical cases when few labeled data are available. We define the new setting as

the problem of semi-supervised knowledge amalgamation (SKA) for sequence classifica-

tion, as depicted in Figure 4.

3.2 Related Works

There are several knowledge amalgamation (KA) works aiming to combine multiple

teachers that specialize in different class sets. [92] have a strong assumption on the ar-

chitecture of all teachers and students to be identical. This work proposes the student

model to imitate the compressed features from multiple teachers layer by layer. At each

layer, they first concatenates the features from all teachers then applies autoencoder tech-

nique to extract their compact feature set which then used to supervise the corresponding

feature layer in the student model.

Most recent works of [60] and [108] relax the strong assumption in the previous work

that allow each teacher to have different architectures. [60] propose to train a student to

imitate both from the teachers’ logits and their final feature layers. On the other hand,
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[108] split a student’s classes into multiple subsets to be trained in corresponding to each

teacher’s specialty.

All of these methods study mainly on the unsupervised setting. Thus, none of them

utilize any labeled data into the training even few some annotations may available. More-

over, they have been studied exclusively on images which no works explore yet on se-

quences.

3.3 Problem Definition

In this work, we are first to study the open semi-supervised knowledge amalgamation problem

for sequence classification.

Let X be an input sequence of length m where xt denotes its value at timestep t. Given

a training dataset D, it consists of two subset: (1) a tiny subset of labeled data Dl which

each instance has an associated yj ∈ Y where Y = {yj}cj=1, and (2) a subset of unlabeled

data Du, proportionately large with respect to Dl. Thus, we have D = Dl ∪ Du where

Dl = {(X l, ylj)}
nl
l=1 and Du = {Xu}nu

u=1. All n training instances are denoted by X =

{X l}nl
l=1 ∪ {Xu}nu

u=1 which n = nl + nu. They can be depicted as:

X =


x1

1 x1
2 · · · x1

m

...
... . . . ...

xn1 xn2 · · · xnm


︸ ︷︷ ︸
Sequence of length m


n instances

Assume that we are given a set of p pre-trained sequence classifiers (teachers), we de-

note them as T = {Tk}pk=1. We note that each Tk specializes in classifying a set of classes

Yk which is a subset of Y , i.e. Y =
⋃p
k=1 Yk.

Our goal is to train a student model that, for an instance X , the model can predict

accurately its associated class yj from the c classes in Y .
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3.4 Challenges

There are several open challenges related to SKA problem. Here we summarize the three

major challenges:

• Very limited supervision: While modern multi-class classifiers [30, 62] require access to

a large amount of labeled training data, this problem is impeded significantly from

having only few available labeled data. This could cause high risk of overfitting

raising limitation on model generalization.

• Disparate teachers: An individual teacher is typically trained on different private

training data to tackle a specific class set. Thus, its prediction is meaningful re-

garding only the classes existing in such specialized set which cannot infer any in-

formative knowledge to the other classes out of scope that may be specialized by

the other teachers. This means there is no relation between the predictions provided

across multiple teachers creating a challenge in amalgamating such heterogeneous

information from these disparate teachers.

• Overconfident teachers: The scales of raw predicted scores produced by each teacher

may differ drastically since it is trained from completely different sets of classes. This

situation exists prevalently when a teacher deals with the sheer number of classes

as it has to produce clearly discriminative scores among lots of classes. However,

such teacher may become a troublesome overconfident teacher if it in fact has no

knowledge about the true class which could transfer misleading knowledge to a

student. Therefore, this untrustworthy information should be effectively handled

by the amalgamating process.
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3.5 Proposed Method: Teacher Coordinator (TC)

We propose the Teacher Coordinator (TC), as shown in Figure 5, to address these chal-

lenges in the SKA problem. The main idea of TC to achieve estimating the probability

over all target classes, combined from disparate teachers, is by rescaling predicted outputs

of each teacher based on how trustworthy it is. For the sake of readability, we describe

our method in terms of one instance.

The proposed TC is the two step training paradigm. We first train the Teacher Trust

Step 1: Training Teacher Trust Learner (TTL) Model

Ground-truth 

Knowledge Amalgamator

Teacher 1

Teacher 2

Pre-trained Models StudentTTL Model 
(from Step 1)
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No gradient
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Figure 5: The proposed Teacher Coordinator.
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Learner to estimate trustworthy teachers. It is then passed through the Knowledge Amal-

gamator that is used to normalize and fuse the predictions from each teacher to form the

complete distribution over all classes which is served as a surrogate target for the student

training.

3.5.1 Teacher Trust Learner

First, we train the Teacher Trust Learner (TTL) to estimate, for a given instance, which

teacher to trust. Since multiple teachers could specialize on an instance’s class simultane-

ously, the TTL naturally deals with a multi-label problem. That is, given an instance, TTL

predicts one probability per teacher to estimate the likelihood such teacher is an expert

on the class that this instance belongs to. We use the tiny available labeled dataset Dl to

train TTL which is modeled as a Recurrent Neural Network with Long Short-Term Mem-

ory cells (LSTM) [43]. Given a sequence X , we denote the whole process of the LSTM

network as one function:

ha = LSTMθa(X) (6)

where ha is the final hidden state and θa are all learnable parameters regarding the LSTM

network. To estimate how likely each teacher is an expert on X’s true label yj , we apply

the sigmoid function on Equations 6 to map each vector element into the range [0, 1].

e = σ(Wa · ha + ba) (7)

where Wa, ba are learnable parameters and σ is the sigmoid function. Here, each element

of e shows the probability of the corresponding teacher to be associated to the given in-

stance. The vector e is then normalized through a softmax function to extract relative

scores distributed over all teachers:

P (yj ∈ Yk|X) = softmax(e). (8)
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This probability distribution in then used as our target in the following training objective:

J(θTTL) = −
p∑

k=1

(
1Tk log(ek) + (1− 1Tk)log(ek)

)
(9)

where 1Tk is 1 if yj ∈ Yk and 0 otherwise. θTTL refers to all parameters that are updated

through the training including θa, Wa, and ba. Once the training is done, this TTL is

forwarded to be used statically in Step 2.

3.5.2 Knowledge Amalgamator

At the second step, Knowledge Amalgamator uses the TTL’s outputs to rescale the predicted

information of disparate teachers to form the final distribution over all classes in Y . The

goal here is to estimate P (yj|X), where yj ∈ Y for a given instance X which could be

achieved using the relationship between two conditional probabilities:

(1) The probability of trustworthy teachers estimated by the TTL, P (yj ∈ Yk|X), and

(2) The probability ofX’s class being yj given a teacher model. More clearly, since each

teacher, Tk, specializes on a corresponding set of classes Yk, the output of each teacher is:

P (yj|yj ∈ Yk, X). (10)

These two conditional probabilities are used to estimate the P (yj|X) as follows:

P (yj|yj ∈ Yk, X) ∗ P (yj ∈ Yk|X)

=
P (yj, yj ∈ Yk, X)

P (yj ∈ Yk, X)
∗ P (yj ∈ Yk, X)

P (X)

=
P (yj, yj ∈ Yk, X)

P (X)

= P (yj, yj ∈ Yk|X)

= P (yj|X) (11)

Finally, we model the Student Network by another LSTM network to generateQ(yj|X),

the probability of X’s label being yj ∈ Y which is trained to imitate P (yj|X), the output

from the Knowledge Amalgamator. We again denote the whole process of the LSTM
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network as one function:

hS = LSTMθS (X) (12)

where hS is the final features and θS are all learnable parameters in this LSTM network.

These features are finally passed through the softmax function to produce the probability

distribution over all classes as:

Q(yj|X) =
exp(WS · hS + bS)∑
j exp(WS · hS + bS)

(13)

where yj ∈ Y , WS and bS are trainable parameters.

The student network uses P (yj|X) as a surrogate target and is trained to iteratively

update θS , WS and bS , grouped as θSN , by optimizing the binary cross entropy:

J(θSN) = −
c∑
j=1

P (yj|X)log(Q(yj|X)). (14)

3.6 Evaluation

We evaluate the proposed TC on four datasets, which are compared against the other

eight methods.

Datasets. We conduct our experiments on four time series datasets including Synthet-

icControl (SYN) [3], MelbournePedestrian (PED) [14], Human Activity Recognition Us-

ing Smartphones (HAR) [6], and ElectricDevices (ELEC) [56]. The number of instances,

timesteps, and classes for each dataset are shown in Table 2. Note that, for each dataset

(D), we assume there is a tiny subset of labeled data (Dl) and a large subset of unlabeled

data (Du).

Dataset Instances Timesteps Classes

SYN 600 60 6
PED 3,633 24 10
HAR 10,299 561 6
ELEC 16,637 96 7

Table 2: Details of 4 sequential datasets used for evaluation.
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Compared Methods. As the SKA problem is newly defined in this work, there is no state-

of-the-art approaches that are directly designed for this problem. However, there are

eight alternative methods that can apply to this problem which could be divided into

three categories.

Baselines: Assume no amalgamating learning, there methods have no benefit from

complementary knowledge among teachers.

• Original Teachers. Individual teacher is used independently which limits its predic-

tion only on its specialized class set.

• SupLSTM. This is a standard LSTM, trained from scratch, supervised on the few

available labeled data.

• SelfTrain [86]. This method iteratively learns pseudo-labels for unlabeled data then

such predictions that pass a confident threshold are added into the training set.

Unsupervised KA methods: These methods combine knowledge from all teachers in

T and train on all data in D without incorporating any labels.

• KD [42]. Knowledge distillation trains a student to imitate the average of teachers’

logits or their concatenation if class sets are disjoint.

• CFL [60]. This trains a student to imitate not only the teachers’ logits but also their

final hidden features which are mapped to be trained via a common space.

• UHC [108]. This method splits the student’s output into subsets that each of which

is trained to imitate the prediction of the corresponding teacher.

Supervised KA methods: These methods combine knowledge from all teachers in T

and utilize also the available labels in Dl.

• SupKD. It trains a student on a few amount of labeled data to imitate the teachers’

logits while to make correct prediction on such labels.
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SYN PED

Ratio of labeled data Ratio of labeled data
Methods 2% 4% 6% 8% 2% 4% 6% 8%

Teacher 1 .66±.00 .66±.00 .66±.00 .66±.00 .55±.00 .55±.00 .55±.00 .55±.00
Teacher 2 .64±.00 .64±.00 .64±.00 .64±.00 .49±.00 .49±.00 .49±.00 .49±.00

SupLSTM .51±.11 .58±.10 .66±.12 .71±.06 .27±.05 .49±.03 .52±.06 .57±.06
SelfTrain .58±.06 .65±.04 .75±.04 .79±.05 .48±.03 .65±.02 .65±.02 .68±.06

KD .87±.01 .87±.01 .87±.01 .87±.01 .61±.03 .61±.03 .61±.03 .61±.03
CFL .63±.01 .63±.01 .63±.01 .63±.01 .48±.02 .48±.02 .48±.02 .48±.02
UHC .86±.01 .86±.01 .86±.01 .86±.01 .60±.03 .60±.03 .60±.03 .60±.03

SupKD .55±.04 .61±.14 .67±.08 .69±.01 .51±.07 .61±.02 .64±.05 .67±.01
SupUHC .47±.07 .58±.12 .66±.13 .70±.04 .46±.04 .58±.02 .65±.03 .64±.01

TC (Ours) .90±.02 .91±.04 .92±.02 .93±.01 .69±.01 .70±.02 .75±.04 .76±.03

HAR ELEC

Ratio of labeled data Ratio of labeled data
Methods 2% 4% 6% 8% 2% 4% 6% 8%

Teacher 1 .51±.00 .51±.00 .51±.00 .51±.00 .47±.00 .47±.00 .47±.00 .47±.00
Teacher 2 .58±.00 .58±.00 .58±.00 .58±.00 .41±.00 .41±.00 .41±.00 .41±.00

SupLSTM .42±.07 .50±.12 .61±.03 .68±.07 .52±.06 .62±.05 .69±.04 .69±.01
SelfTrain .46±.06 .54±.06 .64±.05 .65±.10 .56±.03 .62±.01 .70±.03 .69±.02

KD .60±.01 .60±.01 .60±.01 .60±.01 .65±.01 .65±.01 .65±.01 .65±.01
CFL .30±.00 .30±.00 .30±.00 .30±.00 .58±.02 .58±.02 .58±.02 .58±.02
UHC .66±.10 .66±.10 .66±.10 .66±.10 .62±.01 .62±.01 .62±.01 .62±.01

SupKD .48±.09 .58±.06 .64±.04 .64±.03 .45±.04 .64±.03 .69±.04 .68±.01
SupUHC .41±.06 .46±.05 .49±.05 .65±.12 .52±.05 .61±.04 .62±.05 .63±.02

TC (Ours) .75±.01 .77±.02 .78±.01 .78±.02 .66±.01 .68±.03 .71±.02 .71±.02

Table 3: Compared performance (Accuracy±SD) on varied tiny rates of available labeled data in
the training data.

• SupUHC. This method extend UHC by adding a supervised objective into the loss

function of the original UHC method to encourage correct prediction informed by

the small set of labeled data.

Experiments and Results. We perform experiments to investigate three main properties

regarding the SKA problem.

First, we observe how effective each method can utilize few annotations to solve SKA

by setting available label proportions varying from 2%-8% of the training data. Table
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Overlapping class sets Exclusive class sets

Methods SYN PED HAR SYN PED HAR

Teacher 1 .66±.00 .55±.00 .51±.00 .50±.00 .43±.00 .38±.00
Teacher 2 .64±.00 .49±.00 .58±.00 .47±.00 .44±.00 .45±.00

SupLSTM .51±.11 .27±.05 .42±.07 .51±.11 .27±.05 .42±.07
SelfTrain .58±.06 .48±.03 .46±.06 .58±.06 .48±.03 .46±.06

KD .87±.01 .61±.03 .60±.01 .54±.04 .44±.03 .55±.02
CFL .63±.01 .48±.02 .30±.00 .50±.03 .30±.05 .50±.08
UHC .86±.01 .60±.03 .66±.10 .61±.02 .43±.02 .55±.01

SupKD .55±.04 .51±.07 .48±.09 .48±.12 .48±.02 .50±.02
SupUHC .47±.07 .46±.04 .41±.06 .53±.02 .43±.09 .22±.11

TC (Ours) .90±.02 .69±.01 .75±.01 .77±.07 .64±.04 .84±.04

Table 4: Accuracy±SD when combining disparate teachers. Left: teachers are partially related,
sharing 2 classes. Right: teachers are disjoint, sharing no classes.

Methods SYN PED HAR ELEC

Teacher 1 .33±.00 .30±.00 .28±.00 .32±.00
Teacher 2 .64±.00 .64±.00 .58±.00 .44±.00

SupLSTM .51±.11 .27±.05 .42±.07 .52±.06
SelfTrain .58±.06 .48±.03 .46±.06 .56±.03

KD .66±.01 .66±.02 .57±.02 .37±.00
CFL .64±.01 .63±.01 .53±.04 .36±.01
UHC .66±.03 .64±.02 .49±.10 .36±.03

SupKD .49±.03 .55±.04 .31±.13 .34±.06
SupUHC .51±.05 .46±.06 .35±.07 .39±.05

TC (Ours) .85±.07 .70±.08 .75±.01 .64±.01

Table 5: Learning from overconfident teachers. Teacher 2 has roughly twice as many classes as
Teacher 1 for all tasks.

3 shows all results on these experiments. As expected, we found that when very small

amount of labels available (at 2% or 4%) the unsupervised KA methods outperform base-

lines and the supervised KA. This shows that the teachers’ knowledge is needed when too

few annotations are available. However, once label ratios go up to 6% and 8%, the results

do begin to switch which indicates the power of labels no matter how few are available

which need to be carefully incorporate into the SKA problem. In all cases, we found that

the proposed TC outperforms across the board significantly. It drives an accuracy up

by 6% on average over the second best method. This clearly shows that TC successfully
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incorporates both benefits from teachers’ knowledge and the available annotations even

very tiny amount are available.

Second, we investigate the performance of TC when it is challenged to learn from dis-

parate teachers. We assume that teachers are more disparate when they have less overlap

classes meaning that they have less information in common. Therefore, we set this ex-

periment using two scenarios: (1) Overlapping class sets refer to cases when teachers has

some shared classes. In this setting, we set both teachers to share exactly two classes. (2)

Exclusive class sets refer to cases when the teachers have completely disjoint class sets. Our

results in Table 4 shows that the student models in all other methods suffer heavily from

fusing different knowledge from disparate teachers especially when they have completely

disjoint. However, TC combine their heterogeneous sources of knowledge successfully by

rescaling the output of each disparate teacher to learn for their joint probability. TC can

improve accuracy by 14% on average.

Lastly, our proposed method is tested to overcome the impact of overconfident teach-

ers. We observe that a teacher with more classes usually generates a large range of its

logits and such large logits can produce overconfident predictions which may dominate

the predictions of other teachers. Thus, in this experiment, we set the number of special-

ized classes in Teacher 2 to be roughly twice that of Teacher 1. As a result as shown in

Table 5, we notice that since the Teacher 2 provides its predictions with high confidence,

the student models in other KA methods are dominated by Teacher 2 and cannot improve

the performance over such the overconfident teacher. On the other hand, our TC is able to

extract the accurate predictions from the trustworthy teachers that can boost the accuracy

up to 13% higher on average.

3.7 Conclusions

In this work, we introduce the challenging problem of semi-supervised knowledge amal-

gamation (SKA) for sequence classification. This new setting broadens the study of knowl-
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edge amalgamation to more realistic case when only few annotations are available. We

propose the novel solution, named the Teacher Coordinator (TC), to combine knowledge

from multiple pre-trained teachers based on the teachers’ trustworthiness. The key suc-

cess of TC is by effectively rescaling the predicted output of disparate teachers. Our in-

tensive experiments on four real datasets show that TC performs successfully even when

the labeled data are available as little as 2% of the training data. It outperforms other

alternative methods across a wide variety of tasks that could boost the accuracy over the

second best method by 15% on average.
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4 Amalgamating Label Dependencies

This task is published at AAAI 2023 [100].

4.1 Motivation

Recently, multi-label classification has received increased attention because a wide variety

of real world applications [123, 55, 90, 31, 107] are naturally multi-label, as often multiple

classes or labels can apply to a single instance simultaneously. The key success of mod-

ern multi-label classifiers is driven by its ability to capture dependencies among labels.

However, in order to learn these dependencies these models need to observe many if not

all possible label combinations. This means that training such models requires massive
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Figure 6: Given a set of pre-trained multi-label models (teachers) and unlabeled data, our goal is
to train a student model to become an expert in capturing all dependencies among the union of
teachers’ labels.
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labeled datasets. Acquiring such data is practically infeasible when the number of labels

increases as their potential combinations grow exponentially.

Some pre-trained multi-label classifiers, trained by various groups [114, 48, 16], are

thus made publicly available to support users that cannot obtain or work with the massive

datasets required by these models. However, each of these released models are trained on

different label sets and consequently capture different knowledge on label dependencies.

Reusing each model is thus restricted to their original scope. Figure 6 shows an example

of this; in the figure, reusing Teacher 1 is limited to a task related to the label set of {ocean,

bird, sky}while reusing Teacher 2 is restricted to another label set of {ocean, bird, tree}.

To broaden the reuse potential of these pre-trained multi-label classifiers (teachers), as

depicted in Figure 6, knowledge amalgamation proposes to train a student model to be

knowledgeable on all labels in the union of the multiple teacher model’s knowledge base.

Specifically, we aim to do this using only the pre-trained teachers and unlabeled data,

such that the student model can effectively infer all label dependencies from multiple

subsets of label dependencies captured by each teacher.

4.2 Related works

Multi-Label Classification (MLC). MLC is a classification setting where multiple labels

can correspond to the same instance simultaneously. Traditional approaches transform

this problem into multiple binary classification tasks, one for each label [105, 37]. These

methods fail to achieve the key task of MLC in exploiting dependencies between labels.

The best-known method for capturing label dependencies, Classifier Chain (CC) [23,

22, 85], has a long track record of successful use for challenging MLC tasks. CCs pre-

dict labels sequentially, conditioning each label prediction on those previously predicted.

Classic CCs require a predefined order of labels for their training, which is rarely avail-

able in practice. Several recent works thus propose CCs that can be trained without a

predefined label order, making them order free [71, 17, 70, 104]. These methods typically
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use Recurrent Neural Networks (RNNs) to predict labels one by one while modeling the

transition between the predicted labels. This is achieved by feeding predicted labels back

into the network at each step. Order-free CCs are currently the state-of-the-art solution to

MLC—they achieve strong performance in many impactful applications [19, 38, 121].

Knowledge Amalgamation (KA). KA [119] is a learning paradigm that, using only un-

labeled data, combines the knowledge of multiple pre-trained models (teachers) into one

student. The student then handles a broader task set than that of any of its teachers by

covering the union of their labels. Ideally, KA could be used to combine the knowledge

of multi-label classifiers to extend their knowledge-base without the expense of collecting

more labeled data.

However, to date, no works study KA for multi-label classification yet. Most existing

works [92, 60, 108, 101] study KA for the simpler single-label classification. The student is

trained to predict one class per instance from the union of all the teachers’ classes. With

the context of these works, they do not consider informative dependencies between labels,

which is essential in MLC. Some existing KA works [119, 93] study multi-task classifica-

tion which can apply to the multi-label setting by treating each label as an independent

task. However, by doing so, the student model will overlook the label dependencies

needed to solve the MLC problem.

4.3 Problem Definition

We study the open problem of knowledge amalgamation for multi-label classification

(KA-MLC). In this setting, we are given unlabeled data, denoted as X = {xi}ni=1 where

xi ∈ Rd represents an instance with d features, and a set of m powerful pre-trained clas-

sifier chain based models (teachers), T = {Tt}mt=1. Each teacher specializes in solving a

particular multi-label task for a set of `t distinct labels, denoted by the label set Y t. Thus,

the predicted outputs for each instance xi from each teacher Tt are Ŷ t,i = {ŷt,ij }yj∈Yt where
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ŷt,ij = 1 (positive) if Tt predicts that the label yj associates with instance xi or 0 (negative)

otherwise.

Our goal is to train a student model that accurately classifies xi to its associated labels

in the union of specialized labels of all teachers, Y = {yj}`j=1 where ` is the number of

distinct labels. We note that Y =
⋃m
t=1 Y t. The student’s outputs for the given xi are thus

Ŷ i = {ŷij}`j=1 where ŷij ∈ {0, 1}. To improve readability, we describe the rest of the paper

in terms of one instance xi and drop the superscript i hereafter.

State-of-the-art multi-label classifiers tend not to merely predict the probability of each

individual label conditioned only on the input x. Instead, leading approaches also model

the joint dependencies between labels [23, 22, 85], using either graph-based approaches

[112, 53] or by iteratively predicting each label using information from previously pre-

dicted label [17, 70, 104]. The latter approach, referred to as Order-Free Classifier Chains

[17], have become particularly popular in recent years. Thus, we describe our approach

in terms of Order-free Classifier Chain-based teachers; however, with only slight modifi-

cations our method could equally be applied to other multi-label approaches that likewise

model dependencies between labels.

4.4 Challenges

Amalgamating label dependencies from multiple teachers is challenging due to the three

reasons as following.

• No labeled data. Traditional methods for MLC require access to a huge amount of

training data with ground truth annotations. With only unlabeled training data,

conventional supervised methods are not applicable, thus necessitating the devel-

opment of a novel solution requiring no human annotations.

• Teacher disagreement. Each teacher may learn different knowledge as they are trained
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on their own private data, respectively. In some cases, teachers may disagree about a

label. For example, it may be unclear whether an instance in Figure 6 contains a bird.

So Teacher 1 may predict positive while Teacher 2 predicts negative. To combine

such contradictory predictions into one prediction, a good solution must determine

which teacher should be trusted.

• Partially overlapping label sets between teachers. Depending on the training data, each

teacher may specialize on a unique label set. This set is generally a subset of the

labels to be learned by the student. Thus, each teacher may have incomplete knowl-

edge with respect to the student’s task, e.g., sky and sea are not shared by the teachers

in Figure 6. However, these disjoint labels may still be related. Knowledge must be

leveraged across the teachers to train a comprehensive student that relates all labels

to each other.

4.5 Proposed Method: Adaptive Knowledge Transfer (ANT)

We propose Adaptive Knowledge Transfer (ANT) to solve the KA-MLC problem. ANT

trains a student model to integrate the label dependency knowledge of the teachers. With

ANT, each teacher is encouraged to revise its predictions using knowledge transferred
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from a more-competent teacher to adaptively boost the accuracy of its predictions by

leveraging label dependencies.

The proposed ANT consists of three major components: (1) When teachers disagree

on a class label, the Transfer Indicator decides which teacher should be trusted to trans-

fer its prediction to which teacher; (2) the Knowledge Transfer Module revises a teacher’s

prediction, conditioned on the prediction of the more-competent teacher indicated by the

Transfer Indicator; (3) the Prediction Integrator combines all teachers’ final predictions into

one integrated prediction that is used to train the student.

4.5.1 Transfer Indicator (TI)

TI first extracts the set of teacher relations R, containing teacher-pairs and the shared la-

bel that the teachers may potentially have beneficial knowledge to be transferred between

them through such shared label: R = {ro}ro=1. Each ro consists of two teachers and the la-

bel yc that they specialize in common without regard for the teachers’ order. For example,

as shown in Figure 7,R = {(T1,T2, y2)} since both T1 and T2 specialize on the label y2.

Considering each instance x and ro = (Tm,Tn, yc), each teacher outputs the soft pre-

dictions or logits (L) for its specialized labels that are passed through the sigmoid function

(σ) to acquire their predicted probabilities (P) as follows:

Lm = Tm(x) and Pm = σ(Lm) (15)

Ln = Tn(x) and Pn = σ(Ln) (16)

where P t = {ptj}yj∈Yt and ptj = P (yj|x) which is the predicted probability of yj provided

by Tt. Then the hard prediction for each label is obtained by binarizing ptj with a threshold

of 0.5—positive if over 0.5 and negative otherwise.

In some cases, the features of the input x alone do not contain enough information

in order to yield an agreed prediction between the teachers on the common label yc, i.e.
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one predicts positive while the other one predicts negative. Fundamentally, the multi-

label teachers commonly predict low probabilities for this label since multi-label models

are known as a standard method for rejecting instances when observing a novel class [41].

Regarding this principle, the teacher that provides positive prediction evidently shows

stronger knowledge achieved by utilizing the dependencies between yc and the other la-

bels it specializes on. Therefore, to integrate the knowledge between teachers adaptively

for any instance, TI indicates the more-competent teacher (transferor) to transfer its posi-

tive prediction of yc toward the other teacher (transferee). For example, as depicted in Fig-

ure 7, p1
2 yields positive prediction while p2

2 yields negative prediction. Thus, TI indicates

the transfer pattern to be T1 → T2. This transfer pattern is then used in the Knowledge

Transfer Module to encourage the transferee teacher to revise its predictions.

4.5.2 Knowledge Transfer Module

For a given ro = (Tm,Tn, yc), assume TI indicates that Tm is the transferor and Tn is the

transferee. The transferee Tn revises its predictions by conditioning on the prediction of

the shared label yc informed by the transferor Tm.

We show below that the prediction of the other labels specialized by Tn can benefit

additional information provided by Tm.

Analysis of Information Gain: Let Ym and Yn be the specialized label sets of the

transferor Tm and the transferee Tn, respectively. Assume that yc is their shared label

and y∗c is its ground truth while ŷmc and ŷnc denote its predictions given by Tm and Tn,

respectively. We use I(X;Y ) to represent the mutual information between any random

variables X and Y .

As we assume that transferor has made a more accurate prediction for yc, the mu-

tual information shared between ŷmc and y∗c is higher than the mutual information shared

between ŷnc and y∗c , which is formalized in Assumption 1 as follow:
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Assumption 1 (A1):

I(y∗c ; ŷ
m
c ) > I(y∗c ; ŷ

n
c ) (17)

i.e.∃λ ∈ (0, 1), λI(y∗c ; ŷ
m
c ) = I(y∗c ; ŷ

n
c ) (18)

Additionally, we assume that ŷmc and ŷnc are not biased with respect to y∗j , the ground

truth for the label yj that is another label that Tn specializes in. Thus, if the transferee

contains λ (less) of the information between itself and yc than the transferor does, then

it likewise contains λ (less) information between itself and the information content of yj

that is independent from yc. This is stated formally in Assumption 2:

Assumption 2 (A2): Let y∗j be the ground truth for the label yj that is specialized particu-

larly by Tn.

λI(y∗c ; ŷ
m
c ) = I(y∗c ; ŷ

n
c ) =⇒ λI(y∗c ; ŷ

m
c |y∗j ) = I(y∗c ; ŷ

n
c |y∗j ) (19)

The following theorem provides justification for updating the predictions of the trans-

feree using the more knowledgeable predictions from the transferor:

Theorem 1: Let A1 and A2 hold. Then, I(ŷmc ; y∗j ) > I(ŷnc ; y∗j ).

Proof. By applying the chain rule of mutual information:

I(y∗c ; ŷ
m
c ) = I(y∗c ; ŷ

m
c |y∗j ) + I(y∗j ; ŷ

m
c ) (20)

I(y∗c ; ŷ
n
c ) = I(y∗c ; ŷ

n
c |y∗j ) + I(y∗j ; ŷ

n
c ) (21)

From A1 and A2, we have

λ(I(y∗c ; ŷ
m
c |y∗j ) + I(y∗j ; ŷ

m
c ))

A1
= I(y∗c ; ŷ

n
c |y∗j ) + I(y∗j ; ŷ

n
c ) (22)

λI(y∗c ; ŷ
m
c |y∗j ) + λI(y∗j ; ŷ

m
c ) = I(y∗c ; ŷ

n
c |y∗j ) + I(y∗j ; ŷ

n
c ) (23)

λI(y∗c ; ŷ
m
c |y∗j ) + λI(y∗j ; ŷ

m
c )

A2
= λI(y∗c ; ŷ

m
c |y∗j ) + I(y∗j ; ŷ

n
c ) (24)

λI(y∗j ; ŷ
m
c ) = I(y∗j ; ŷ

n
c ) (25)

Since λ ∈ (0, 1), I(ŷmc ; y∗j ) > I(ŷnc ; y∗j )
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Theorem 1 states that the information between the ground truth for yj , which is a

label that the transferee Tn particularly specializes in, and the prediction of the shared

label from the transferor (ŷmc ) is greater than it is between the ground truth for yj and the

transferee’s prediction for the shared label (ŷnc ). Thus, we should instead use ŷmc to infer

ŷnj .

To achieve this, Tn sets the initial predicted probability for yc by using its predicted

probability from Tm. Thus, the predicted logits and probabilities of specialized labels in

Tn in Equation 16 are revised to be:

Ln′
= Tn(x) and Pn′

= σ(Ln′
) (26)

To amalgamate many teachers, this transfer process proceeds recursively if the revised

predictions in Equation 26 change the hard prediction for a label to contradict further

with the other teachers.

4.5.3 Prediction Integrator

We finally combine the probabilities from all teachers—some of which may have been

revised according to Equations 15 and 26—to compute predictions for all labels in Y . To

obtain this final probability for each label yj , ANT acquires the most confident prediction

from all teachers that specialize on yj . Let Bj denote a set of teachers that specialize on yj

and Cj denote a set of candidate probabilities of yj provided by these teachers:

Cj = {ptj}Tt∈Bj (27)

For the case that all ptj ∈ Cj are less than or equal to 0.5 indicating that all teachers agree on

predicting negative for yj , the smallest probability is used as the final probability for yj .

Otherwise, the highest is used when all indicate positive. When the teachers’ predictions

contradict, we again take the highest probability based on the same principle used in the
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Transfer Indicator. Thus, the final integrated probability for each label is obtained as:

P (yj|x) =


min(Cj) if ∀ptj ∈ Cj, ptj <= 0.5

max(Cj) otherwise.
(28)

Training a student model. We use an RNN with Long Short-Term Memory cells

(LSTM) to feed back the previously predicted labels into the model, allowing to learn

each label conditioned on the other labels. The model is fed three input components at

each time step including the input features (x), and both the soft predictions or logits (L)

and the hard predictions (Ŷ) from the previous time step. At the first time step, the initial

hard predictions Ŷ0 are all set as negative while the initial soft predictions (L0) are set by

passing the features x through a linear layer. Therefore, the initial input vector (x0) is:

L0 = W · x + b and Ŷ0 = [0]` (29)

x0 = [x,L0, Ŷ0] (30)

where W and b are learnable parameters.

For the time step k, Lk is updated using the three input components together with the

previous hidden state as:

xk = [x,Lk−1, Ŷk−1] (31)

Lk = LSTMθ(xk, hk−1) (32)

where LSTM denotes the entire process of an LSTM model, θ denotes all parameters for

such the LSTM, and hk−1 denotes its previous hidden state.

To obtain Ŷk, all positive labels in Ŷk−1 are removed from the candidate labels for

prediction at the current step. Then the probabilities for all candidate labels are computed

by passing the logits in Equation 32 through the sigmoid function. The label with the

highest probability is predicted to be positive at this time step. Let zk denote such the

label that gets positive prediction at time step k. Thus, the joint probability of all labels at
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the last time step is:

Q(Y|x) = P (z1|x) ·
∏̀
j=2

P (zj|x, z1, . . . , zj−1) (33)

The final logit for each label is obtained by carrying its logit from the time step that its

hard prediction is selected to be positive. We denote these final logits for all labels in Y

as:

Ls = {v1, . . . , v`} (34)

This Ls is passed through the sigmoid function (σ) to obtain the predicted probabilities

for each label as:

Ps = σ(Ls) (35)

where Ps = {psj}`j=1 and psj = Q(yj|x) (36)

We note that Q(yj|x) denotes the predicted probability of the label yj learned by the stu-

dent model. The hard prediction for each label (ŷsj ) is obtained by binarizing psj with a

threshold of 0.5.

Finally, the student is trained to update θ iteratively by minimizing binary cross en-

tropy between the predicted probability Q(yj|x) in Equation 36 and the integrated proba-

bility P (yj|x) in Equation 28 as follows:

J(θ) = −
∑̀
j=1

(
P (yj|x)log(Q(yj|x))

+ (1− P (yj|x))log(1−Q(yj|x))
)
.

(37)

4.6 Evaluation

Datasets. We conduct experiments on eight well-established benchmark datasets for eval-

uating multi-label classifiers. These datasets are from several applications in various do-

mains as follows.
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Dataset Domain #Instances Ave. #Labels #Unique Labels #Unique Label Sets

EMOTIONS Media 593 1.87 6 27
SCENE Media 2,407 1.07 6 15
YELP Text 10,806 1.64 8 118
YEAST Biology 2,417 4.24 14 198
BIRD Media 645 1.01 19 133
TMC Text 28,596 2.16 22 1,341
GENBASE Biology 662 1.25 27 32
MEDICAL Text 978 1.25 45 94

Table 6: Details of 8 benchmark datasets used for evaluation.

•Media: EMOTIONS [103], SCENE [11] and BIRD [12].

• Text: YELP [89], TMC [97] and MEDICAL [78].

• Biology: YEAST [28] and GENBASE [26].

The number of instances, average labels per instance, unique labels and label sets per

dataset are shown in Table 6.

Compared Methods. We compare ANT to five state-of-the-art alternatives:

• Baseline (BL): The student is trained from the combined hard predictions from all

teachers. We aggregate their predictions using majority voting. However, if the

votes are even, we assume the instance is positive.

• AKA [93]: This method first trains an individual network for each label, acting as

a student, from the teacher that is most confident in predicting such label. Then it

trains one final student to combine all such networks, using them as teachers. At

each stage, these teachers’ features and the student’s feature are trained to be as

most similar.

• FKA [119]: Knowledge between the student and teachers is exchanged by projecting

each layer of the student to the corresponding layer of each teacher (teacher-layer
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EMO Dataset SCENE Dataset
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓ S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .9500±.0273 .3726±.0359 .4351±.0621 .4539±.0492 3.8 .6615±.0273 .1953±.0359 .4592±.0621 .4490±.0492 3.0
AKA .9786±.0273 .4346±.0611 .3184±.0848 .2069±.1308 5.8 .8490±.0273 .2416±.0611 .4038±.0848 .4092±.1308 5.0
FKA .9714±.0404 .4417±.0840 .3812±.0757 .2662±.0951 5.3 1.000±.0404 .5680±.0840 .2784±.0757 .2339±.0951 6.0
CFL .9357±.0273 .3464±.0416 .4372±.0815 .4193±.1194 3.0 .6684±.0273 .1933±.0416 .4552±.0815 .4450±.1194 3.8
TC .9143±.0234 .3452±.0228 .4366±.0542 .4548±.0354 2.0 .6424±.0234 .1869±.0228 .4645±.0542 .4459±.0354 2.3

ANT(Ours) .9286±.0286 .3345±.0211 .4545±.0398 .4559±.0177 1.3 .6077±.0286 .1765±.0211 .4840±.0398 .4675±.0177 1.0

YELP Dataset YEAST Dataset
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓ S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .9723±.0070 .3297±.0087 .4151±.0121 .3945±.0080 2.3 .9983±.0035 .4135±.1233 .4733±.0614 .3345±.0245 4.5
AKA .9796±.0064 .3698±.0198 .3925±.0186 .3725±.0165 4.3 .9966±.0040 .3409±.0347 .4749±.0167 .3630±.0106 2.3
FKA 1.000±.0000 .5807±.0722 .3540±.0430 .3031±.0793 6.0 1.000±.0000 .5390±.0640 .3884±.0361 .3047±.0429 5.8
CFL .9769±.0133 .3290±.0119 .3778±.0175 .3635±.0143 4.3 .9948±.0066 .3514±.0119 .4792±.0081 .3200±.0107 3.0
TC .9734±.0039 .3228±.0050 .3921±.0168 .3779±.0109 3.0 1.000±.0000 .3487±.0083 .4917±.0050 .3383±.0146 3.0

ANT(Ours) .9730±.0030 .3177±.0063 .4217±.0113 .4044±.0060 1.3 .9948±.0066 .3553±.0112 .5073±.0061 .3535±.0091 2.0

BIRD Dataset TMC Dataset
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓ S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .5855±.0543 .0630±.0129 .0000±.0000 .0000±.0000 4.5 .9997±.0003 .1877±.0097 .0910±.0225 .0733±.0055 3.3
AKA 1.000±.0000 .3850±.0621 .0928±.0576 .0682±.0276 3.5 1.000±.0000 .4075±.0166 .1967±.0023 .1874±.0069 3.3
FKA 1.000±.0000 .5613±.0339 .0937±.0295 .0779±.0159 3.3 1.000±.0000 .5477±.1077 .2045±.0068 .1459±.0077 3.5
CFL .5592±.0584 .0575±.0110 .0000±.0000 .0000±.0000 3.3 .9997±.0006 .1810±.0015 .0761±.0025 .0713±.0053 4.0
TC .5592±.0584 .0599±.0093 .0114±.0228 .0038±.0075 3.0 .9997±.0003 .1820±.0036 .0793±.0048 .0725±.0056 3.8

ANT(Ours) .5592±.0584 .0561±.0100 .0132±.0263 .0053±.0106 2.0 .9994±.0005 .1784±.0015 .0825±.0033 .0746±.0013 2.3

GENBASE Dataset MEDICAL Dataset
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓ S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .9295±.0385 .0833±.0077 .0734±.0261 .0370±.0000 2.5 .9957±.0086 .0519±.0029 .0067±.0134 .0078±.0156 3.5
AKA 1.000±.0000 .3991±.0642 .1748±.0299 .1853±.0307 3.0 1.000±.0000 .4013±.0300 .0655±.0037 .0832±.0098 2.5
FKA 1.000±.0000 .6769±.1180 .0808±.0136 .0600±.0047 3.8 1.000±.0000 .5403±.0166 .0574±.0046 .0373±.0063 3.3
CFL .9295±.0385 .0845±.0097 .0728±.0268 .0370±.0000 3.5 1.000±.0000 .0467±.0053 .0114±.0146 .0041±.0049 3.8
TC .9295±.0385 .0836±.0091 .0734±.0265 .0370±.0000 3.0 1.000±.0000 .0432±.0037 .0046±.0092 .0005±.0011 4.0

ANT(Ours) .9295±.0385 .0829±.0083 .0740±.0266 .0370±.0000 2.0 .9957±.0086 .0458±.0018 .0119±.0151 .0089±.0117 2.3

Table 7: Compared performance (mean±std) on eight benchmark datasets. Subset Loss and Ham-
ming Loss are abbreviated as S-Loss and H-Loss, respectively. Rank shows overall performance
across all metrics. ↑/↓ indicates the larger/smaller the better.

filtering). Each layer is optimized by minimizing the loss between the outputs of the

teacher that is modified and its original outputs without the layer replaced.

• CFL [60]: This method extends the student to not only imitate the teachers’ logits

but also the teachers’ final representations. CFL maps the final representations of

the student and the teachers into one common space where their similarities are

minimized.

• TC [101]: TC trains the student to imitate the weighted average logits among the

teachers. With only unlabeled data available, such weights are set equally. If a label
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3 Teachers 4 Teachers
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓ S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .9302±.0126 .2987±.0126 .4787±.0113 .3752±.0115 3.5 .9707±.0068 .3645±.0053 .3729±.0074 .2793±.0106 3.8
AKA .9796±.0056 .3696±.0200 .3945±.0155 .3819±.0061 4.3 .9796±.0058 .3794±.0156 .3847±.0105 .3709±.0126 3.0
FKA .9977±.0030 .4951±.0622 .3491±.0135 .3085±.0111 6.0 .9981±.0029 .5055±.0387 .3405±.0406 .3062±.0429 5.0
CFL .9209±.0110 .2829±.0031 .4726±.0069 .3654±.0100 3.5 .9676±.0095 .3487±.0071 .3576±.0079 .2655±.0043 3.8
TC .9198±.0058 .2805±.0028 .4812±.0041 .3718±.0078 2.3 .9618±.0060 .3410±.0031 .3614±.0051 .2644±.0040 3.0

ANT(Ours) .9178±.0054 .2857±.0043 .4879±.0104 .3825±.0104 1.5 .9668±.0051 .3553±.0052 .3733±.0031 .2808±.0039 2.5

5 Teachers

Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .9769±.0045 .3738±.0033 .3732±.0088 .2809±.0105 3.8
AKA .9896±.0041 .3899±.0095 .3967±.0109 .3837±.0077 3.0
FKA .9965±.0026 .4621±.0276 .3403±.0351 .2845±.0137 5.3
CFL .9641±.0100 .3376±.0138 .3495±.0085 .2552±.0145 3.5
TC .9564±.0110 .3415±.0055 .3581±.0042 .2669±.0087 3.0

ANT(Ours) .9703±.0051 .3649±.0053 .3821±.0016 .2890±.0080 2.5

Table 8: Amalgamating many teachers observed on YELP.

100% of labels shared between teachers 75% of labels shared between teachers
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓ S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .7830±.0215 .2749±.0177 .2977±.0302 .3035±.0237 3.8 .7761±.0285 .2665±.0078 .3121±.0170 .3229±.0247 4.0
AKA .8924±.0509 .2578±.0442 .3278±.0665 .3412±.0608 2.8 .8577±.0509 .2610±.0474 .3779±.0428 .4112±.0370 2.8
FKA .9948±.0066 .4586±.0938 .2480±.0529 .1939±.0743 6.0 .9948±.0104 .4757±.1056 .3158±.0575 .2937±.1123 4.8
CFL .7761±.0302 .2454±.0104 .2742±.0194 .2780±.0133 3.5 .7760±.0104 .2434±.0024 .2972±.0156 .2915±.0183 3.3
TC .7795±.0307 .2422±.0074 .2889±.0087 .2857±.0126 3.0 .7760±.0418 .2474±.0087 .2835±.0175 .2845±.0148 4.0

ANT(Ours) .7639±.0321 .2555±.0153 .3012±.0244 .3042±.0198 2.0 .7431±.0204 .2474±.0095 .3273±.0225 .3366±.0222 1.8

50% of labels shared between teachers 25% of labels shared between teachers
Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓ S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .7795±.0208 .2630±.0104 .2916±.0125 .3047±.0207 4.3 .6389±.0589 .1794±.0141 .4730±.0342 .4559±.0225 2.3
AKA .8837±.0622 .2593±.0548 .3752±.0421 .3818±.0587 2.8 .8490±.0521 .2193±.0553 .3344±.1254 .2857±.1632 5.0
FKA 1.000±.0000 .5440±.0672 .2463±.0555 .1907±.0455 6.0 .9913±.0104 .3927±.0623 .2698±.0468 .1840±.0427 6.0
CFL .7847±.0205 .2506±.0076 .2949±.0150 .3032±.0237 3.8 .6719±.0582 .1843±.0143 .4579±.0493 .4470±.0320 4.0
TC .7743±.0230 .2419±.0095 .2987±.0097 .3081±.0142 2.3 .6372±.0398 .1812±.0105 .4687±.0297 .4500±.0213 2.8

ANT(Ours) .7656±.0173 .2535±.0047 .3046±.0090 .3087±.0209 2.0 .6181±.0567 .1771±.0201 .4914±.0417 .4696±.0242 1.0

0% of labels shared between teachers

Methods S-Loss↓ H-Loss↓ F1 Micro↑ F1 Macro↑ Rank↓

BL .4983±.0262 .1221±.0123 .6540±.0412 .6597±.0460 3.0
AKA .8906±.0545 .2737±.0241 .3847±.0381 .3976±.0569 5.0
FKA 1.000±.0000 .5324±.0735 .3013±.0250 .2975±.0378 6.0
CFL .5174±.0370 .1204±.0101 .6579±.0276 .6615±.0324 2.8
TC .5052±.0414 .1227±.0133 .6514±.0332 .6622±.0422 3.3

ANT(Ours) .4392±.0313 .1056±.0115 .6846±.0322 .6901±.0372 1.0

Table 9: Results of various number of labels shared between teachers observed on SCENE.

appears in one teacher, its logit is used directly.

Metrics. We use four standard multi-label metrics and the averaged rank to show the

overall performance as follows:
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• Subset Loss (S-Loss): measures the label-set based performance by strictly assigning

0 if all elements in the predicted label-set match entirely the true label-set or 1 other-

wise. The lower score indicates the better performance.

• Hamming Loss (H-Loss): considers instead each label (label based) which can measure

differences between the almost correct and completely wrong predictions. Again, the

lower score is better.

• F1 Micro: is the harmonic mean between the global values of precision and recall. In

the context of MLC, this metric measures label based performance much like H-Loss.

However, a higher score indicates a better performance.

• F1 Macro: pays more attention on minority class labels by averaging the F1 scores

calculated separately for each label yj . A higher score is preferred.

Since each metric evaluates a different property of a model’s performance, we also

report each model’s rank across all metrics—1 indicates the best performance.

Experiments and Results. We firstly demonstrate that ANT outperforms the five alterna-

tive methods on eight benchmark datasets by successfully leveraging label dependency

knowledge captured differently between teachers. For this experiment, we train a stu-

dent from two teachers trained on different data—from each original dataset—that cover

different subsets of labels. For each dataset, teachers learn from an equal number of labels

with half of their labels overlapping. The results on eight datasets are shown in Table 7.

ANT consistently achieves the highest rank averaged across all metrics across the board

while the second-best methods alternate between BL, AKA, and TC depending on dif-

ferent datasets. We notice that BL performs quite good comparing to the other methods.

This is because we apply the same core rationale in the proposed ANT to trust more on the

teacher that predicts positive when there is contradictory predictions between the teach-



PhD Dissertation: Jidapa Thadajarassiri 55

ers. Moreover, as expected, ANT is clearly the strongest method particularly for Ham-

ming Loss and Subset Loss, achieving the best performance for six out of eight datasets

for both metrics. This demonstrates ANT’s success at predicting both the individual la-

bels and entire label sets, both of which are core tasks for multi-label learning.

Next, to investigate the case where teachers learn vastly different knowledge from

each other, we follow other recent work [101] by varying the number of shared labels be-

tween teachers. Using the SCENE dataset, where most methods perform their best across

all metrics, we vary the proportion of labels shared between two teachers from 100%

(identical label sets) to 0% (completely distinct label sets). As expected, the results—

shown in Table 9—indicate that as the teachers share fewer labels, the resulting students

become more effective. This is because, with fewer shared labels, the teachers have less

common labels that their predictions may contradict each other and provide contradic-

tory knowledge for the student. All in all, ANT achieves the top average rank across

the board on average. This shows that ANT can extract predictions from heterogeneous

sources more reliably than state-of-the-art alternatives in all cases. ANT especially shows

impressive performance in winning all other methods on the Subset Loss which is the

only metric that can measure the effective method for MLC in terms of the label-set based

performance. Furthermore, even for the simplest cases of 0% of labels shared between

teachers which does not contain any disagreed prediction, ANT also achieves the best

performance by integrating predictions based on the most confident predicted probabil-

ity among teachers.

Finally, we explore the more-challenging case of amalgamating many teachers which

naturally create several potential unobserved dependencies between labels that each label

exists across teachers. We thus conduct experiments using three, four, and five teachers

on the YELP dataset. We select YELP because it has many instances, which allows us

to train more independent teachers. Furthermore, as reported in Table 7, all methods

achieve good performance across all metrics for this dataset. The results on these settings
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are shown in Table 8. Once again, ANT achieves the highest rank for all settings. This in-

dicates that ANT not only learns the dependency knowledge from each particular teacher

but also effectively infers unobserved dependencies between labels that exist across teach-

ers. This is achieved by allowing the transferee teacher to revise its predictions based on

the predictions of the more-competent teacher. The recursive learning aids ANT’s suc-

cess in inferring these dependencies even across many teachers where knowledge must

be transferred between more teachers or different subsets of teachers.

4.7 Conclusions

We propose Adaptive KNowledge Transfer (ANT), the first solution for the open problem

of knowledge amalgamation for multi-label classification (KA-MLC). The key idea is to

train a student from teachers that transfer adaptively their label dependency knowledge

to each other. This encourages each teacher to revise its prediction based on the knowl-

edge from more competent teachers that can utilize other labels effectively to yield more

accurate predictions. The biggest benefit arises when the features of an instance alone

do not contain enough information to make confident predictions and thus there are dis-

agreements between teachers. Moreover, this adaptive approach leads ANT to succeed

in learning to infer dependencies between all labels across all teachers. Our comprehen-

sive experimental study on eight real-world datasets demonstrates that ANT significantly

outperforms the state-of-the-art alternatives by achieving the best averaged rank across

many standard multi-label metrics for all datasets.
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5 Multi-Tasking Knowledge Amalgamation

This task is in preparation for submission to CIKM 2023.

5.1 Motivation

Over the past decades, Multi-Task Learning (MTL) has gained attention in deep learn-

ing community that attempts to mimic human learning ability in using the knowledge

learned from one task to support the learning for another task. For example, humans

can use the skill learned from playing tennis to help learning to play squash. In princi-

ple, MTL aims to leverage the common knowledge contained in multiple related tasks to

improve the generalization performance of all tasks simultaneously.

Teacher 2

Teacher 1

Pre-Trained 
Multi-Task Models

Teacher 2

Teacher 1

Task A: Traffic lights Task B: Direction control Task C: Pedestrian detection

Red     Yellow    Green Left Right Straight Stop Pedestrian No-Pedestrian
STOP

Task A

Task B

Task B

Task C

Self-driving car
Sample 1 Sample 2

Task A

Task B

Task B

Task C

✔

✖

✔

✔

✔

✖

✔

✔

STOP

STOP

Given

Output
Student Task A

Task B
Task C ✔

✔

✔

✔

✔

✔
STOPSTOP

Unlabeled Data

Figure 8: Learning a student model to handle multiple tasks by amalgamating multiple pre-trained
multi-task models (teachers), which their specialized task sets related to each other.



PhD Dissertation: Jidapa Thadajarassiri 58

Most existing MTL methods [57, 50, 67, 88] are developed for standard supervised

learning that requires a huge amount of labeled training data. Unfortunately, acquiring

such labeled data is practically hard to come by and even more severe as the number of

tasks grows. To support the community, some institutes that own private datasets may re-

lease their pre-trained models without sharing the data themselve. However, each model

may be trained on a different set of tasks leading them to contain different fundamental

knowledge as they aim to generalize such knowledge on the different task sets.

To this end, as depicted in Figure 8, we study the problem of knowledge amalgamation

for multi-task learning. More specifically, we aim to learn one unified multi-task model

(student) from multiple pre-trained multi-task models (teachers) using purely unlabeled

training data. The goal is to develop a student model that can effectively leverage funda-

mental knowledge among all tasks specialized across all teachers in order to improve the

performance of all tasks at hand.

5.2 Related works

Multi-Task Learning (MTL). MTL is the learning paradigm where the training data from

multiple tasks are used simultaneously. It aims to fuse the knowledge among the related

tasks into a powerful shared representation that could be used to improve the generalized

performance of all the tasks [15, 21]. The MTL works are typically studied using either

hard parameter sharing or soft parameter sharing approaches [87].

Hard parameter sharing approach has been long studied since the early stage of devel-

oping the study of MTL [15]. Several works based on this approach [57, 50, 73, 8] output

ultimately one model used across tasks which significantly reduce the computation issue,

especially when dealing with a large number of tasks. Many existing works apply the

hard parameter sharing approach to various variations in several domains. For exam-

ple, in computer vision, [58] train all tasks to share the first five layers of AlexNet before
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applying the task-specific fully-connected layers for each task. [57] propose MTAN to

learn a task-specific layer with attention mechanism branching out of the shared repre-

sentation between all tasks. Several other works also apply the hard parameter sharing

for NLP such as [118, 4] introduce methods that jointly learn the shared parameters for

sequence-tagging tasks across languages.

On the other hand, the other works based on the soft parameter sharing approach

[67, 59, 88, 34] train each task with its own model with its own separate parameters. To

encourage the share information across the tasks, they usually apply some regulariza-

tion techniques to add a constraint on the parameters between the parallel layers from

all models to be similar. For instance, [27] apply l2 distance between the layers across

the models; [117] use instead the trace norm; or [67] develop the cross-stitch units that

combine the information for the other tasks by applying the linear combination of the

previous layer from all models as the input to each layer. These methods however suffer

heavily from computational or memory inefficient since their techniques require a huge

amount of resources which grows proportionally with the number of tasks.

Most importantly, the above existing MTL works have been developed using stan-

dard supervised learning, They require a huge amount of labeled data especially when

the number of tasks grows. However, our AmalMTH problem assumes no labels are

available.

Knowledge Amalgamation (KA). Several existing KA works [92, 60, 108, 101] focus on

single-task learning. That is the teachers and the student solve the same task. The first

work proposed by [92] assume the architectures of the teachers and student are homo-

geneous, i.e. their structures have an aligned layer-to-layer. Thus, they propose a layer-

to-layer training method to fuse knowledge from the teachers into the student model.

Some later works [60, 101] extend the scope to handle cases when the teachers may have

different structures but still develop the student model for the single-task learning.
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Recently, some works [119, 93] study KA for multi-task classification. Unfortunately,

they assume the architectures of the teachers and students contain identical number of

layers for which they propose the layer-to-layer based approaches. For each correspond-

ing layer between the teachers and the student, [119] modify each teacher by using the

student’s layer instead of its original layer. Then such student’s layer is updated to en-

sure that the modified teacher still makes the same prediction with the original teacher.

Similarly, [93] develop a layer-to-layer method by encouraging the corresponding layers

of the teachers and the student to be similar through a transfer bridge. This work pro-

poses the dual-stage training by firstly training one student model per each individual

task. Then these students are finally combined into one student model to handle multi-

ple tasks. This method could easily cause a computational issue, especially when dealing

with many numbers of tasks.

Most importantly, in practice, the teacher models are pre-trained separately, leading

them to often come with heterogeneous architectures. Thus, these layer-to-layer based

approaches are not applicable to realistic cases.

5.3 Problem Definition

This task addresses the problem of Amalgamating Multi-Task Models with Heteroge-

neous Architectures (AmalMTH). We are given an unlabeled dataset containing n in-

stances with d features, denoted as X = {xi}ni=1 where xi ∈ Rd, and also given a set

of m powerful pre-trained multi-task models (teachers),M = {Mj}mj=1. Each teacher Mj

handles a particular task set of the tj distinct tasks, represented by T j = {Tj
k}

tj
k=1. We note

that the teachers’ task sets may or may not overlap with each other.

For simplicity, in this problem, we define each task as a binary classification task.

Therefore, for each instance xi, the prediction from each teacher Mj on its specialized

task Tj
k is ŷj,ik where ŷj,ik = 1 if the teacher Mj predicts that the task Tj

k associates (posi-
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tive) with instance xi or 0 (negative) otherwise.

The ultimate goal is to train a student model to master all tasks in the union of the

teachers’ task sets, T =
⋃m
j=1 T j . For clarity, T = {Tk}tk=1 where t is the number of distinct

tasks in the union of all teachers’ task sets. Thus, for each instance xi, the student outputs

the prediction for all tasks as Ŷ i = {ŷik}tk=1 where ŷik ∈ {0, 1}. To improve readability,

we describe the rest of the paper in terms of one instance xi and drop the superscript i

hereafter.

5.4 Challenges

There are three challenges associated with this new amalgamating task which are sum-

marized as follows:

• No labeled data. Traditional MTL methods are developed under the standard super-

vised setting, which requires labeled data for training. With only the availability of

unlabeled data in this problem, these existing models are not applicable. Therefore,

developing a solution for MTL that does not need the labeled data is challenging.

• Disparate knowledge captured across teachers. Since each teacher is pre-trained sepa-

rately, they are typically trained to handle a different set of tasks. Each of which

contains a different subset of the tasks handled by the student. Consequently, the

internal representations learned by each teacher may capture different information

as they aim to generalize to the different task sets. Worst yet, when the teachers han-

dle partial tasks in common, such different information captured between them may

lead to their conflict predictions on their shared tasks. For example, both teachers in

Figure 8 are trained to handle the direction control task but, for sample 1, Teacher

1 predicts to go straight while Teacher 2 predicts to stop. These conflicts definitely

cause the troublesome in training the student. Thus, an ideal student should com-
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bine the disparate knowledge from teachers effectively.

• Combining knowledge from heterogeneous architecture teachers. Learning from the teacher’s

internal layers is shown success in preserving the teacher’s knowledge [119, 93].

However, the teachers may have different architectures. They may come with a

different number of layers or different sizes/scales for each layer. This raises a chal-

lenge in training a student since there is no alignment between the architectures of

teachers and student. Moreover, there is no ground truth on which layers of the

teachers the student should learn from.

5.5 Proposed Method: Versatile Common Feature Consolidator (VENUS)

To overcome these challenges, we propose Versatile Common Feature Consolidator (VENUS)

to solve the open problem of AmalMTH. VENUS improves the common feature shared

across all tasks by fusing the generalizable knowledge captured differently in the final

shared representation across all teachers. This learning is trained through the Feature

Consolidator that is designed to allow the student to learn versatilely from teachers that

may have different architectures.

In this problem, we are given the m multi-task pre-trained models (teachers), M =

{Mj}mj=1. Each teacher model consists of two main parts: the layers shared among all

tasks and the task-specific layers.

Let c be the number of the shared layers in the teacher Mj where F j
c is the final layer

of these c shared layers. We call the F j
c as the final shared representation. We denote the

shared layers as {hju}cu=1 and thus F j
c is outputted as:

F j
c = hjc(· · · (h

j
2(hj1(x)))). (38)

For each task Tj
k ∈ T j , assuming that there are uj task-specific layers branching out

of F j
c . We denote the logit obtained from these layers as `jk. Then the logit `jk is passed
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through the sigmoid function (σ) to acquire the predicted probability (pjk) as follow:

`jk = hjuj(· · · (h
j
c+2(hjc+1(F j

c )))) (39)

pjk = σ(`jk). (40)

Our goal is to train a student model that can combine the shared knowledge across all

tasks in the teachers’ union set of tasks into the common feature that could generalize for
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Figure 9: The proposed Versatile Common Feature Consolidator (VENUS).
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better performance of all tasks. Our proposed student model also consists of two main

parts, which are the shared layers and task-specific layers. We describe each part of the

model as follows.

5.5.1 Backbone Model.

In our method, we call the shared layers as the backbone model, which consists of the

s layers shared across all tasks in T . We note that this backbone model can adopt any

arbitrary architectures, e.g., ResNet, DenseNet, VGG, or any customized architecture from

scratch. The aim of this part is to unify the common feature (Fs) that can benefit all tasks

simultaneously:

Fs = HΘS
(x) (41)

where HΘS
(x) = hs(· · · (h2(h1(x)))), (42)

and ΘS are learnable parameters. (43)

In order to extract the shared knowledge across all tasks, this common feature Fs is

trained to imitate the final shared representations captured in all teachers. That is the

student model is trained to learn Fs to be most similar to each F j
c from all teachers, i.e. ΘS

is updated according to the following loss function.

J(ΘS) =
1

m

m∑
j=1

(
Fs − F j

c

)2
. (44)

However, the given teachers and the student may have heterogeneous architectures.

That is their features may contain different scales or sizes, raising the computational in-

compatibility in Equation 44. Therefore, the proposed VENUS is designed to handle this

issue through the Feature Consolidator, which is described next.
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5.5.2 Feature Consolidator.

The feature consolidator, as shown in Figure 9, learns to align the common feature Fs of

the student versatilely to each individual teacher’s final shared presentation (F j
c ). For

this purpose, we develop a particular adapter for each teacher. An individual adaptor

is a network that is designed to learn a mapping from the student’s common feature to

the particular teacher’s shared representation. Thus, for each teacher Mj , the adaptor is

defined as the trainable network:

F̂ j
c = ReLU(W j · Fs + bj) (45)

where W j and bj are learnable parameters. ReLu is the rectified linear unit activation

function.

These adaptors enable the student model to unify knowledge from the heterogeneous

teachers by adjusting their different scales and biases through the learnable parameters.

Specifically, the weight matrix W j is trained to transform the student’s feature into the

same size as the teacher’s features while the bj is trained to capture their shifting. More-

over, the ReLU function supports the learning to capture the non-linearity transforma-

tion between their features. Once the training procedure is done; these adaptors can be

removed at the inference time for unseen data.

Then the loss function in Equation 44 is modified to be:

J(ΘS) =
1

m

m∑
j=1

(
F̂ j
c − F j

c

)2
. (46)

5.5.3 Task-Specific Layers.

After obtaining the common feature shared across all tasks from Equation 45, the student

model branches out task-specific layers for each task Tk ∈ T . These layers aim to learn

the specific information for each task on top of the generalized knowledge so as to make

the final prediction for the individual task Tk. Let `k represent the logit for the task Tk.
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We learn `k as:

`k = HΘk
(Fs); HΘk

(Fs) = hok(· · · (hs+2(hs+1(Fs)))) (47)

where ok and Θk are respectively the number of layers and the learnable parameters

specifically to the task Tk. Then the predicted probability for Tk, denoted by qk, is calcu-

lated by passing the sigmoid function (σ) to its corresponding logit `k. The final prediction

is obtained by binarizing qk with a threshold of 0.5.

qk = σ(`k) (48)

ŷk =


1 if qk > 0.5

0 otherwise.
(49)

Let Lk be the set of logits for the task Tk gathered from all teachers specializing on

the task Tk. The consensus predicted probability for the task Tk, denoted as pk, is thus

obtained by passing the sigmoid function (σ) on the average logits in Lk.

∀`a ∈ Lk, pk = σ
( 1

|Lk|

|Lk|∑
a=1

`a
)
. (50)

For each task Tk, its task-specific layers are trained to minimize the cross entropy loss

between the predicted probability qk and the consensus predicted probabilities from the

teachers specializing on the task Tk. That is the parameters Θk are trained to minimize

the task-specific loss for the task Tk as:

J(Θk) = −pklog(qk). (51)

Finally, The student model is trained to combine the common knowledge across all

teachers for all tasks and also imitate the teachers’ consensus predictions simultaneously.

Let ω denote all trainable parameters used for the whole training, which includes ΘS , Θk,

W j , and bj for all tasks. These parameters are iteratively updated by minimizing the final
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loss, combining both loss functions in Equation 46 and 51, defined as follows.

J(ω) =
1

m

m∑
j=1

(
F̂ j
c − F j

c

)2 − 1

t

t∑
k=1

(
pklog(qk)

)
. (52)

5.6 Evaluation

Our proposed method, VENUS, is evaluated against three alternative methods on two

benchmark datasets.

Datasets. The two datasets used in our experiments are described as the following. We

note that each dataset contains multiple labels, each of which is treated as an independent

binary classification task.

• PASCAL VOC 2007: This dataset is the PASCAL Visual Object Classes Challenge 2007

[29] that comes with 9,963 images. Each image can relate to 20 object labels. We conduct

20 different tasks to predict the presence or absence of each label.

• 3D: The 3D dataset contains four tasks that is extracted from the original 3d-shapes

dataset [13]. The four tasks are to identify (1) whether the object’s color is blue, (2)

whether the floor’s color is green, (3) whether the wall’s color is purple, and (4) whether

the wall’s color is pink. The dataset contains 168,959 images in total.

Compared Methods. Since we are the first to define the AmalMTH in this work, the state-

of-the-art approaches for knowledge amalgamation are not applicable to this setting. We,

therefore, compare the proposed VENUS against three methods adapting based on some

existing literature as follows:

• MuST [35]: This method follows the idea of pseudo labeling from [35] to train a

student model that imitates the pseudo-predictions generated by the teacher models.

• KD [42]: The student model is trained using the Knowledge Distillation paradigm by
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learning the student’s soft targets (logits) to imitate the average of all teachers’ logits.

• CFL [60]: CFL trains the student to imitate the teachers’ logits and their final layers.

It maps the final layers of the student and teacher into a common space and trains them

to be similar.

Experiments and Results. All experiments are evaluated using both accuracy and AUC.

We report the results of each task for each dataset. However, to show the overall perfor-

mance for a dataset, we report the average rank across all tasks where 1 indicates the best

performance. For a fair comparison, we use ResNet18 [40] as the backbone model for the

student in all experiments.

Effectiveness of VENUS in learning the common feature for all tasks across teach-

ers. We first investigate how effective our proposed method is when compared against

the other methods across all datasets. To observe this, for each dataset, we train a stu-

dent from the two teachers with heterogeneous architectures—DenseNet [45] for Teacher

1 and ResNet18 [40] for Teacher 2. Each of them is trained on the same number of tasks

with 30% of their tasks shared. Thus, the final shared representation learned by each

teacher contains different knowledge since they aim to benefit the generalization toward

the different sets of tasks.

The results, as shown in Table 10, show that the proposed VENUS outperforms al-

ternative methods significantly as it reaches the best average rank for both metrics in all

datasets. We observe that MuST shows consistently the worst performance. This suggests

that using purely the pseudo-predictions from the teachers cannot provide enough infor-

mation for the student to learn high-quality common feature to be used across all tasks in

all teachers.

In all settings, we see that CFL and VENUS outperform clearly over MuST, indicating

that incorporating the learning from teachers’ final shared layers could lead the student
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Dataset: PASCAL VOC 2007

Accuracy AUC

Tasks
Methods

MuST KD CFL Ours: VENUS MuST KD CFL Ours: VENUS

Aeroplane .5692±.0332 .7642±.0163 .7799±.0054 .8145±.0109 .5767±.0415 .7913±.0085 .8042±.0131 .7938±.0137
Bicycle .5206±.0310 .6127±.0220 .6174±.0073 .6079±.0099 .5257±.0331 .6074±.0161 .6125±.0131 .6257±.0021
Boat .5758±.0449 .7333±.0344 .7455±.0273 .7576±.0292 .5787±.0505 .7451±.0288 .7506±.0308 .7465±.0232
Bus .5513±.0462 .6688±.0134 .7073±.0196 .6923±.0192 .5419±.0320 .6603±.0100 .6994±.0105 .6908±.0230
Car .6242±.0241 .6634±.0087 .6577±.0166 .6757±.0153 .6126±.0145 .6456±.0119 .6453±.0101 .6569±.0209
Motorbike .5604±.0306 .6996±.0282 .6813±.0291 .6850±.0510 .5699±.0319 .6895±.0191 .6689±.0143 .6790±.0463
Train .6201±.0599 .6274±.0307 .6078±.0443 .6054±.0237 .6067±.0567 .6274±.0181 .6126±.0230 .6320±.0100
Bottle .5413±.0546 .6320±.0183 .6320±.0302 .6307±.0083 .5488±.0613 .6535±.0113 .6440±.0334 .6518±.0064
Chair .5063±.0055 .5890±.0129 .5993±.0078 .5982±.0245 .5076±.0075 .6084±.0128 .6102±.0050 .6163±.0235
Dining-table .6083±.0449 .6643±.0062 .6702±.0273 .6893±.0217 .6204±.0440 .6840±.0022 .6926±.0157 .6939±.0141
Potted-plant .6142±.0104 .6037±.0060 .5958±.0231 .6076±.0378 .6354±.0170 .6137±.0050 .6256±.0094 .6301±.0070
Sofa .5654±.0752 .6577±.0087 .6335±.0179 .6398±.0194 .5691±.0818 .6686±.0059 .6554±.0026 .6602±.0091
TV .5403±.0048 .6500±.0341 .6444±.0064 .6222±.0292 .5398±.0090 .6416±.0172 .6437±.0099 .6315±.0210
Bird .5556±.0315 .5711±.0154 .5844±.0139 .6067±.0611 .5425±.0217 .5717±.0046 .5637±.0149 .5877±.0286
Cat .7078±.0149 .6648±.0065 .6798±.0313 .6910±.0195 .6936±.0145 .6743±.0052 .6684±.0248 .6912±.0148
Cow .5606±.0546 .6162±.0487 .5808±.0315 .6414±.0175 .5450±.0566 .5635±.0227 .5575±.0217 .6107±.0106
Dog .6224±.0303 .6142±.0205 .5956±.0228 .6131±.0020 .6248±.0225 .6082±.0135 .5985±.0184 .6022±.0023
Horse .5278±.0141 .6193±.0247 .6307±.0453 .6406±.0102 .5369±.0080 .6393±.0057 .6570±.0301 .6654±.0083
Sheep .7179±.0555 .7500±.0333 .6859±.0294 .6987±.0618 .7764±.0445 .7628±.0287 .7362±.0573 .7365±.0756
Person .5650±.0338 .6234±.0129 .6263±.0045 .6265±.0067 .5863±.0258 .5951±.0123 .5954±.0046 .5966±.0084

Ave. RANK 3.35 2.25 2.40 1.95 3.40 2.40 2.50 1.70

Dataset: 3D

Accuracy AUC

Tasks
Methods

MuST KD CFL Ours: VENUS MuST KD CFL Ours: VENUS

Blue object .9087±.0080 .9157±.0055 .9137±.0061 .9147±.0026 .9086±.0068 .9164±.0053 .9150±.0066 .9158±.0031
Green floor .6005±.0661 .8102±.0077 .8027±.0099 .8268±.0098 .6006±.0662 .8106±.0066 .8024±.0095 .8276±.0082
Purple wall .9630±.0011 .9699±.0037 .9736±.0006 .9713±.0007 .9632±.0015 .9698±.0034 .9739±.0009 .9709±.0006
Pink wall .7204±.0530 .9126±.0072 .9244±.0174 .9357±.0175 .7201±.0527 .9131±.0075 .9243±.0167 .9361±.0170

Ave. RANK 4.00 2.25 2.25 1.50 4.00 2.25 2.25 1.50

Table 10: Compared performance on the two datasets: PASCAL VOC 2007 and 3D.

to learn better common feature generalizable across all tasks. However, we notice that

unlike VENUS that clearly performs better than KD, CFL does not show a clear superior

performance over KD. That means although both CFL and VENUS utilize more informa-

tion from the teachers’ final shared representation, our proposed method comes with a

more successful strategy in fusing such knowledge through the Feature Consolidator.

Amalgamating disparate knowledge across teachers. In practice, teachers typically

contain disparate knowledge since they are pre-trained separately on different task sets

and also different datasets. To evaluate how well the student model can combine their

disparate knowledge, we follow the recent work [101] by observing the cases when the
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Accuracy
75% of tasks shared between teachers 50% of tasks shared between teachers 25% of tasks shared between teachers

Tasks
Methods MuST KD CFL Ours:

VENUS MuST KD CFL Ours:
VENUS MuST KD CFL Ours:

VENUS
Aeroplane .868±.038 .808±.011 .783±.016 .789±.044 .918±.005 .786±.029 .764±.016 .818±.039 .610±.076 .802±.028 .774±.009 .815±.011
Bicycle .584±.068 .613±.052 .629±.013 .619±.058 .608±.012 .606±.027 .633±.022 .630±.015 .543±.048 .600±.021 .606±.019 .608±.010
Boat .882±.009 .755±.018 .758±.010 .764±.055 .618±.036 .694±.038 .733±.014 .739±.014 .558±.014 .718±.036 .745±.027 .758±.029
Bus .878±.006 .667±.006 .699±.013 .699±.034 .513±.022 .607±.061 .641±.034 .643±.036 .571±.032 .692±.023 .716±.027 .692±.019
Car .635±.050 .703±.010 .712±.005 .725±.012 .591±.043 .710±.016 .680±.015 .718±.015 .619±.017 .660±.023 .658±.017 .676±.015
Motorbike .861±.017 .705±.013 .722±.006 .711±.021 .559±.042 .711±.014 .669±.059 .718±.027 .544±.038 .665±.027 .672±.014 .685±.051
Train .588±.029 .676±.034 .733±.004 .735±.039 .549±.036 .630±.066 .672±.077 .703±.024 .640±.027 .615±.022 .603±.037 .605±.024
Bottle .765±.020 .611±.019 .623±.045 .637±.029 .505±.009 .664±.004 .631±.053 .681±.030 .561±.052 .636±.008 .633±.031 .631±.008
Chair .591±.016 .639±.010 .663±.016 .665±.019 .592±.037 .659±.044 .659±.039 .666±.018 .503±.006 .598±.006 .606±.007 .598±.024
Dining-table .846±.014 .688±.011 .701±.009 .696±.013 .630±.025 .679±.050 .670±.058 .704±.037 .557±.059 .663±.009 .669±.028 .689±.022
Potted-plant .731±.026 .606±.008 .616±.002 .631±.040 .740±.010 .593±.011 .617±.047 .593±.006 .617±.008 .600±.016 .601±.019 .608±.038
Sofa .813±.009 .629±.021 .660±.013 .668±.036 .573±.060 .643±.011 .652±.024 .667±.013 .553±.054 .640±.003 .638±.010 .640±.019
TV .593±.086 .601±.002 .590±.036 .678±.019 .554±.048 .628±.036 .629±.055 .663±.025 .532±.017 .644±.013 .636±.015 .622±.029
Bird .567±.033 .662±.037 .667±.018 .633±.018 .558±.062 .638±.027 .680±.023 .673±.059 .547±.031 .593±.037 .578±.023 .607±.061
Cat .777±.012 .631±.009 .672±.009 .663±.028 .809±.006 .631±.025 .648±.037 .637±.058 .695±.009 .661±.014 .674±.031 .691±.019
Cow .566±.038 .621±.026 .621±.015 .712±.040 .551±.023 .687±.057 .626±.009 .707±.032 .566±.053 .626±.009 .601±.053 .641±.017
Dog .769±.018 .606±.051 .611±.016 .626±.034 .810±.013 .573±.011 .638±.020 .606±.059 .606±.029 .605±.011 .572±.023 .613±.002
Horse .845±.019 .631±.033 .670±.027 .698±.010 .850±.006 .659±.020 .645±.006 .663±.030 .525±.018 .619±.008 .609±.042 .641±.010
Sheep .821±.011 .641±.089 .705±.059 .724±.011 .853±.040 .718±.087 .686±.011 .692±.039 .750±.000 .692±.088 .686±.029 .699±.062
Person .561±.046 .592±.011 .599±.017 .622±.012 .590±.017 .568±.020 .592±.010 .573±.013 .579±.019 .620±.010 .625±.005 .627±.007
Ave. Rank 2.15 3.35 2.50 1.95 2.95 2.85 2.45 1.70 3.30 2.45 2.60 1.55

AUC
75% of tasks shared between teachers 50% of tasks shared between teachers 25% of tasks shared between teachers

Tasks
Methods MuST KD CFL Ours:

VENUS MuST KD CFL Ours:
VENUS MuST KD CFL Ours:

VENUS
Aeroplane .870±.019 .817±.005 .806±.006 .806±.021 .915±.015 .799±.021 .786±.029 .823±.031 .626±.082 .804±.023 .789±.016 .794±.014
Bicycle .584±.067 .597±.025 .614±.015 .637±.051 .610±.013 .595±.007 .618±.010 .639±.013 .549±.045 .605±.025 .604±.005 .626±.002
Boat .871±.013 .745±.024 .741±.016 .736±.030 .615±.034 .704±.025 .744±.020 .735±.013 .555±.010 .733±.021 .762±.026 .746±.023
Bus .848±.003 .672±.021 .693±.013 .687±.033 .513±.022 .612±.045 .647±.019 .647±.024 .560±.018 .681±.018 .697±.006 .691±.023
Car .636±.050 .681±.009 .695±.009 .692±.018 .588±.040 .688±.016 .669±.010 .690±.006 .609±.010 .645±.005 .644±.007 .657±.021
Motorbike .860±.004 .693±.016 .691±.015 .697±.031 .560±.041 .687±.020 .651±.021 .702±.013 .552±.042 .662±.031 .663±.005 .679±.046
Train .586±.030 .705±.060 .752±.020 .728±.033 .550±.037 .646±.087 .682±.083 .728±.031 .632±.013 .628±.015 .617±.031 .632±.010
Bottle .776±.018 .608±.028 .624±.050 .651±.028 .505±.009 .658±.013 .636±.043 .679±.014 .571±.059 .648±.017 .643±.033 .652±.006
Chair .592±.015 .665±.014 .685±.018 .686±.014 .592±.036 .674±.033 .674±.040 .685±.014 .504±.008 .614±.010 .614±.010 .616±.024
Dining-table .861±.019 .690±.007 .709±.008 .700±.019 .637±.022 .686±.039 .677±.063 .707±.031 .567±.065 .681±.004 .691±.017 .694±.014
Potted-plant .765±.021 .615±.009 .615±.008 .645±.034 .758±.006 .614±.019 .615±.044 .607±.005 .640±.016 .612±.014 .631±.006 .630±.007
Sofa .830±.008 .659±.024 .681±.021 .692±.026 .578±.068 .666±.021 .663±.010 .693±.013 .553±.054 .659±.002 .658±.006 .660±.009
TV .592±.084 .614±.008 .604±.025 .685±.012 .553±.047 .639±.032 .625±.057 .657±.023 .533±.020 .625±.018 .633±.010 .631±.021
Bird .566±.032 .646±.014 .657±.020 .645±.013 .556±.061 .623±.039 .675±.032 .682±.027 .534±.022 .586±.023 .561±.019 .588±.029
Cat .813±.012 .652±.007 .675±.006 .678±.030 .821±.017 .663±.006 .666±.016 .650±.053 .686±.011 .677±.026 .664±.024 .691±.015
Cow .563±.038 .584±.025 .623±.003 .676±.007 .548±.021 .651±.051 .624±.032 .669±.009 .548±.055 .584±.019 .556±.021 .611±.011
Dog .785±.021 .611±.042 .616±.015 .637±.010 .804±.023 .585±.012 .627±.017 .597±.049 .613±.024 .601±.025 .583±.019 .602±.002
Horse .846±.013 .639±.046 .681±.016 .718±.005 .866±.010 .644±.014 .662±.020 .682±.025 .536±.009 .647±.013 .644±.029 .665±.008
Sheep .840±.004 .692±.100 .751±.030 .772±.014 .879±.037 .751±.053 .723±.007 .743±.028 .782±.038 .707±.072 .710±.045 .737±.076
Person .599±.038 .561±.008 .561±.018 .596±.016 .626±.015 .521±.029 .551±.018 .525±.015 .594±.018 .588±.015 .593±.005 .597±.008
Ave. Rank 2.05 3.25 2.55 2.10 2.90 2.80 2.50 1.80 3.25 2.70 2.65 1.40

Table 11: Compared performance when combining disparate teachers. The fewer the teachers
share the tasks, the more they contain more disparate knowledge.

number of shared tasks is varied between the teachers. With that, the fewer the teachers

share the tasks, the more their specialized task sets are diverse, i.e. the more they have

disparate knowledge.

We use the PASCAL VOC 2007 dataset which contains 20 tasks, allowing us to vary



PhD Dissertation: Jidapa Thadajarassiri 71

the proportion of the tasks shared between teachers. We conduct the experiments by

reducing the proportion of the number of shared tasks between the teachers from 75%,

50%, to 25%. The fewer they share reflects the increment of disparate knowledge captured

between them. In all settings, we use DenseNet [45] for Teacher 1 and ResNet18 [40] for

Teacher 2.

As shown in Table 11, we first notice that as the teachers share fewer tasks, MuST

performs worse. This indicates that when the teachers share more tasks, they tend to cap-

ture similar knowledge and thus they provide uniform pseudo-predictions, resulting in a

good performance by MuST. On the other hand, when the teachers share fewer tasks, they

capture more diverse knowledge and provide less uniformity in their pseudo-predictions.

As a result, MuST performs worse and worse. In contrast, KD that learns from the teach-

ers’ average logits performs better when the teachers share fewer tasks. This is because

learning from the average logits could incorporate more information about predicted con-

fidence between the teachers.

More observations on the cases where teachers provide more disparate knowledge,

especially at 25% shared tasks, show that utilizing the teachers’ internal representation

as done by CFL and the proposed VENUS shows significant improvement in the stu-

dent’s performance. It is because CFL and VENUS do not rely purely on the teachers’

predictions but also incorporate their final shared representation which could generalize

better to the unseen data. All in all, the proposed VENUS outperforms CFL consistently.

This shows that allowing the student’s common feature to learn knowledge adaptively

from each teacher through the teacher-specific adaptor succeeds clearly in unifying the

disparate knowledge between teachers.

Consolidating knowledge from heterogeneous teachers. Lastly, we explore more

cases of learning from teachers with heterogeneous architectures. In this experiment, we

pre-train the teachers using the three popular models including DenseNet [45], VGG [95],



PhD Dissertation: Jidapa Thadajarassiri 72

Teacher 1: DenseNet, Teacher 2: VGG

Accuracy AUC

Tasks
Methods

MuST KD CFL Ours: VENUS MuST KD CFL Ours: VENUS

Blue object .9369±.0112 .9370±.0036 .9218±.0071 .9397±.0029 .9374±.0116 .9373±.0042 .9215±.0093 .9393±.0032
Green floor .6514±.0939 .8253±.0154 .8180±.0181 .8158±.0282 .6520±.0943 .8275±.0152 .8176±.0193 .8173±.0280
Purple wall .9637±.0016 .9539±.0128 .9660±.0037 .9662±.0041 .9633±.0020 .9546±.0110 .9663±.0030 .9661±.0042
Pink wall .5382±.0333 .8926±.0202 .8996±.0414 .8991±.0205 .5382±.0333 .8931±.0199 .8993±.0432 .9002±.0209

Ave. RANK 3.50 2.50 2.25 1.75 3.25 2.75 2.25 1.75

Teacher 1: DenseNet, Teacher 2: AlexNet

Accuracy AUC

Tasks
Methods

MuST KD CFL Ours: VENUS MuST KD CFL Ours: VENUS

Blue object .9189±.0061 .9194±.0017 .9141±.0118 .9332±.0132 .9197±.0069 .9195±.0025 .9154±.0131 .9339±.0125
Green floor .5649±.0279 .8070±.0207 .8036±.0082 .8090±.0173 .5650±.0276 .8079±.0204 .8034±.0102 .8100±.0161
Purple wall .9563±.0020 .9605±.0017 .9628±.0023 .9620±.0086 .9563±.0010 .9611±.0025 .9634±.0016 .9622±.0082
Pink wall .5002±.0003 .9196±.0143 .8981±.0101 .8980±.0180 .5002±.0003 .9193±.0151 .8958±.0119 .8970±.0177

Ave. RANK 3.75 2.00 2.50 1.75 3.50 2.25 2.75 1.50

Teacher 1: VGG, Teacher 2: AlexNet

Accuracy AUC

Tasks
Methods

MuST KD CFL Ours: VENUS MuST KD CFL Ours: VENUS

Blue object .9183±.0096 .9081±.0039 .9097±.0041 .9098±.0010 .9168±.0084 .9070±.0040 .9103±.0053 .9076±.0039
Green floor .5313±.0257 .8582±.0141 .8500±.0092 .8327±.0177 .5314±.0258 .8566±.0132 .8502±.0097 .8306±.0176
Purple wall .9334±.0061 .9209±.0183 .9374±.0111 .9490±.0037 .9344±.0064 .9219±.0177 .9374±.0107 .9502±.0028
Pink wall .5052±.0062 .9011±.0219 .8963±.0137 .9057±.0029 .5052±.0062 .8993±.0209 .8946±.0127 .9092±.0060

Ave. RANK 3.00 2.75 2.50 1.75 3.00 2.75 2.25 2.00

Table 12: Compared performance on more cases of combining teachers with different architec-
tures.

or AlexNet [52]. Then we train the student from the three different pairs of these pre-

trained teachers including (1) Teacher 1 is DenseNet and Teacher 2 is VGG, (2) Teacher 1

is DenseNet and Teacher 2 is AlexNet, and (3) Teacher 1 is VGG and Teacher 2 is AlexNet.

In each setting, the two teachers are trained using different data from the 3D dataset and

they have shared tasks at approximately 50%.

Table 12 shows all results for this experiment. We find that VENUS consistently out-

performs the other methods by achieving the best average rank across the board. This

ascertains that our proposed method achieves in combining knowledge across hetero-

geneous teachers into a high-quality common feature that could generalize to all tasks

effectively. Moreover, the results show that, for all settings, MuST performs the worst.
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Once again, this indicates that learning only from the teachers’ pseudo-predictions is not

enough for the student to learn good common feature to be used across all tasks. That

is learning from the teachers’ final shared representations is necessary for the multi-task

student model.

5.7 Conclusions

We introduce the new open problem of Amalgamating Multi-Task Models with Hetero-

geneous Architectures (AmalMTH) and propose the first solution, named Versatile Com-

mon Feature Consolidator (VENUS). Our proposed method trains the student which im-

proves successfully the performance of all tasks existing across all teachers without using

any labeled data. The key success of VENUS is by amalgamating the rich information

encoded in the shared representations among the teachers. Moreover, VENUS intro-

duces the Feature Consolidator, which is the cutting-edge module that allows the student

model to learn from heterogeneous teachers. The extensive experiments demonstrate that

VENUS significantly outperforms the alternative methods by achieving the top average

rank across all settings.
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6 Conclusions

6.1 Summary of Contributions

We study the problem of knowledge amalgamation (KA) that aims to combine comple-

mentary knowledge captured by heterogeneous pre-trained models (teachers). In this dis-

sertation, we explore four different KA tasks regarding four different aspects of comple-

mentary knowledge inherent among the teachers.

First, we focus on the pre-trained models that learn representations for instances.

These teachers are trained to capture different knowledge of relationships among in-

stances. This phenomenon exists prevalently among the available pre-trained word em-

bedding models in the NLP domain. Therefore, in this task, our study focuses on com-

bining the pre-trained word embedding teachers into a meta-embedding student model.

We propose Similarity-Preserving Meta-Embedding (SimME) to learn high-quality word

representations that can preserve word relationships captured across the teacher models.

SimME consistently outperforms state-of-the-art methods by 10% on average and with

up to 20% across several core metrics in 4 popular text mining tasks.

Second, we broaden the KA study for the first time to the semi-supervised setting. In

this work, we define the new challenging problem of semi-supervised knowledge amal-

gamation (SKA) for sequence classification. We propose Teacher Coordinator (TC) to

combine complementary discriminative knowledge from the pre-trained teachers that

handle different sets of classes. TC overcomes the challenging issue of overconfident

teacher by effectively rescaling the predicted output of disparate teachers. The compre-

hensive experiments demonstrate that TC significantly outperforms eight state-of-the-art

alternatives on four datasets by an average of 15% in accuracy.

Third, we define the new open problem of knowledge amalgamation for multi-label

classification (KA-MLC). The goal is to combine the label dependency knowledge that are
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captured differently across teachers. We propose Adaptive Knowledge Transfer (ANT)

that facilitates the teachers to transfer their label dependency knowledge to each other.

This way each teacher is encouraged to revise its prediction based on the knowledge from

more competent teacher, allowing the student to learn the new dependency between the

labels that exist across teachers. Our extensive experiments on eight real-world datasets

show that ANT consistently outperforms the other methods on four standard metrics for

multi-label classification across all datasets.

Lastly, we extend the KA problem for multi-task learning to a more realistic setting

where the teachers and student may have heterogeneous architectures. In this setting,

each multi-task teacher may encode different knowledge in their representation since

they aim to generalize their representation to the different sets of tasks. Our proposed

method, named Versatile Common Feature Consolidator (VENUS), consists of the key

module of the Feature Consolidator that enables the student to learn knowledge versa-

tilely from each teacher through the teacher-specific adaptor. VENUS shows impressive

performance by achieving the top average rank across all experiments on two multi-task

datasets.

6.2 Future Direction

In this dissertation, we broaden some existing knowledge amalgamation problems and

also define some new problem settings for knowledge amalgamation. Here, we will dis-

cuss some ideas for future studies extending to the problems in this dissertation.

• In the first task, we focus our study on static language models that provide comple-

mentary knowledge on word embeddings. However, in NLP, this study can be ex-

tended to a more challenging task in combining some pre-trained language models

such as BERT [24], ELMo [79], or the GPT series [83]. This study is very challenging

since there is no clear information of what knowledge is encoded in each of them.
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• Since we are the first to extend KA study for multi-class classification to the semi-

supervised setting, there are still more potential techniques that could be applied

to the problem. For example, we can apply reinforcement learning [98] or adapt

Gumbel-Softmax Sampling [47] to learn a teacher trustworthy policy.

• Some other directions can be studied in the problem of KA for multi-label classifica-

tion. One interesting direction is applying Graph Neural Networks (GNNs) to learn

the dependency between the labels. For this setting, the models could be similar to

those in [19].

• Several ideas can be explored in our last task of multi-tasking KA. For example, since

there is no ground-truth available on which layers of the teachers the student should

learn from, we can apply attention techniques [106] to allow the student to extract

knowledge from the best informative layers of each teacher.
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