

Project Number. GFP1205

Automated Testing For Mercury Computers

A Major Qualifying Project Report:

submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by:

Christopher Donnelly

Date: March 12, 2013

Approved:

Professor Gary F. Pollice, Major Advisor

1. Automated Testing

2. Linux

3. Component Discovery

 i

Abstract

Mercury desires software that can self-discover the hardware components on the

board and the system. Lshw+ is a tool developed from an open source program, lshw,

capable of discovering components in a system and gathering all possible information

into a database. Lshw+ reads certain system files to discover these components and

gather all their information. It has a built-in capability to output this information into

multiple formats, but more importantly, it saves all this information into an SQLite

database.

 ii

Acknowledgements

I would like to thank Joe Plunkett and Jason Beauvais for allowing me to do this

project and giving me access to systems to test lshw+.

I would also like to thank Professor Gary Pollice for helping me with the project

and guiding me through any problems I encountered.

 iii

Table of Contents

Abstract .. i

Acknowledgements ... ii
List of Tables ... iv
1. Introduction ... 1
2. Background ... 3
3. Methodology ... 6

4. Results and Analysis ... 10
5. Future Work and Conclusions .. 11
Appendix A: LSHW+ Documentation.. 13
References ... 25

 iv

List of Tables

Table 1. Benefits of Test Automation ... 5

1

1. Introduction

Mercury needs system level Acceptance Test (AT) software that provides 80-90%

coverage at both a board and system level. The company desires software that can self-

discover the hardware components on the board and the system. After the self-discovery,

the software will choose the best test(s) to determine whether the component is

operational and up to the customer’s standards. The company has already developed

many tests for these hardware components. Mercury tests and delivers systems on a

mutually agreed acceptance test procedure. The mutually agreed ATP is designed to

validate system functionality and performance characteristics that are important to the

customer. The ATP is performed manually but is driven by an ATP procedure document

that governs the testing process. If the procedure is followed correctly then it is by

definition not error prone. The ATP document and tests developed for a particular system

validates the requirements a customer has defined in their requirements to Mercury. The

purpose of this project is to allow Mercury to identify testable units or functional blocks

that they can then cross reference to their test database and identify areas that do not have

test coverage. This project takes on the component discovery portion of the test software.

The component discovery software will have to scan the system for all components and

find as much information as possible on these components. This information will then

need to be stored in a database for quick access later during the test selection process.

 The remaining portions of this paper will include a background, methodology,

results, and future work and conclusions. The Background section will go into more

detail about Mercury. The Background also talks about automated testing and its

2

importance to this project along with some history about automated testing. The

Methodology explains the original requirements and how some of those requirements did

not make it to the final product. It also includes the reasoning behind the database chosen

and research for other known component discovery programs. The bulk of the

Methodology section describes the work that was done to create the new component

discovery software, how that software saves all the necessary information to a database,

and the problems encountered and solved during the project. The Results section goes

over what was completed for the project along with details into why certain aspects of the

original requirements were removed from the project. Finally, the Future Work and

Conclusions section explains the overall project results and how this author believes it

can be expanded.

3

2. Background

2.1. Mercury

“Mercury is the leading supplier of very high-performance digital image, signal

and sensor processing solutions for prime contractor customers in the defense industry, as

well as the Intelligence Community” (Mercury Systems). Their expertise and capabilities

across sensor processing enables their customers to minimize program risk and shorten

time to deployment. Their success comes from the ability to provide open, commercially

developed subsystems for the Intelligence, Surveillance and Reconnaissance (ISR)

market. In addition to serving the defense industry, Mercury also creates applications in

other areas such as homeland security, telecommunications and semiconductor

manufacturing. Throughout Mercury’s 30-year history, they have worked with 26 prime

contractors to execute more than 300 deployments on things such as Aegis, Global Hawk,

JCREW, Patriot, Predator, and SEWIP.

Over the summer of 2012, the author worked as a co-op at Mercury, where he

worked on three major projects. Working over the summer he learned about Mercury’s

systems and their software. With that knowledge of their systems he could create a

program capable of discovering both the common components in many computers along

with the components that may only exist in Mercury systems.

2.2. Automated Test Coverage Analysis

As Mercury builds very large (with 10 to 100 elements) of systems with a very

large number of permutations and combinations of hardware elements, it is difficult to

4

ensure that a given set of hardware has complete coverage, or that hardware, when used

in new combinations has tests that cover the particular configuration in question. Add to

this the variables of firmware versions, hardware revisions, driver versions, and OS

versions and there are a truly intimidating number of possible variables for any given

system.

Complicating this problem is that the analysis for test coverage must actually be

examined months or years before the system is actually built so that Mercury can assess

the amount of work needed to augment a given test set to ensure adequate coverage for a

given configuration. Therefore the initial need was to be able to evaluate the need for

new tests to be created or for old tests to be modified (based upon software or firmware

version changes). A substantial benefit to this type of analysis is that it can also lead to

the ability to automatically select and execute tests.

All programmers make mistakes; the difference between the good ones and the

bad ones is testing for these mistakes (Automated Tests). Testing for errors and mistakes

in code is hard to do manually as the programmer has to check each and every test to

make sure the expected output is the same as what the program outputs. Manual testing is

also error prone and is not very effective at finding certain mistakes (Test Automation).

This is where automated testing comes in; automated testing will run all of these tests and

require almost no attention from the programmer. Automated tests will usually throw an

exception or do something to tell the programmer there is a problem in a certain test.

These tests can be run quickly and repeatedly every time the code is changed. Many

times even minor patches to an application can cause other features to stop working (Test

5

Automation). Table 1 below shows many of the main benefits to automated testing (What

are the Main Benefits of Test Automation?).

Test Automation

Benefit
Here's How

Save time : Generally

increases the speed of

the testing process and

shortens the testing

lifecycle

You can run scripts

in the night,

effectively giving

you a day shift and

night shift

You can run scripts

on multiple machines-

multiple platforms

simultaneously

Scripts run faster

than a manual

tester

Increase quality:

Through repeatability,

reliability and

comprehensiveness

Provides reusability

and repeatability

that can be run

each time the

application is

changed

Accuracy in testing is

increased by reducing

possibility of human

error and making less

dependent on

individual capabilities

Facilitates

creation of tests

that check all

aspects of the

application

leading to an

overall increase

in quality

Utilize manpower

more effectively: Apply

your skills and time

where they are needed

most

Manual testing can

be used for new

feature validation

while automation

can be used for

regression

Most functional and

regression testing can

execute unattended

Focus efforts

where you didn’t

have time for

before, such as

performance and

security

Increase coverage:

You can test how the

software reacts under

repeated execution of

the same operations

Do the same tests

on multiple

Configurations,

more

configurations,

more benefit here

Regression suites can

cover every feature in

your application

which may be difficult

to accomplish

manually depending

on your application’s

size

Different

versions can

reuse the same

automation code

with minor

modifications

Programmable: You

can program

sophisticated logic

Some web

applications use

hidden information

like session id, and

account information

which are

impossible or

difficult to manually

verify

Some applications

have no UI, and are

best suited or can

only be tested

with automation

rather than manual

testing

You can program

logic to respond

differently to

different

environments

and situations

Table 1. Benefits of Test Automation

6

3. Methodology

3.1. First Requirements

The original objective was to write a program that would discover all the

components on a motherboard and store as much information about them as possible in a

database. These boards are embedded systems so the program could not involve large

libraries due to memory limitations. The database this program would need to create

would also have to be fairly small and easy to use. After storing the information, a

separate program would use this database along with a test database to select tests for the

board. These tests would help Mercury validate their boards are functioning correctly.

Along with selecting tests the original specifications included a website that

would print all the information from the component database. This was too much to be

completed in a single project; the scope was revised and the component discovery portion

was chosen to be the only deliverable.

3.2. Initial Thoughts and Plans

One solution considered using built-in Linux commands to discover these

components and record all the information. That would involve building a parser to pull

all the important information out of the output of these commands. As for the database,

the two main choices suggested were MySQL and SQLite. MySQL has several

advantages over SQLite. MySQL is a database server with different ways of storing its

data and the ability to serve its data out to incoming requests. It also has many additional

features like: user permissions, performance tuning, and the ability to scale in large

7

applications, however, it is large. SQLite is a database based on a single file and is useful

in embedded systems. It does not have any of the MySQL features mentioned above

(SQLite vs MySQL). SQLite is easy to setup and only needs one library included in the

program to work. Since this project is being built for embedded systems and user

permissions and scaling are not issues, SQLite was clearly the better choice.

3.3. Research

 Instead of initially starting out writing the program that uses the built-in Linux

commands, research was done on other options. Research showed that multiple programs

exist, but one of them stood out above all others. Lshw (HardWareLiSter) is an open

source program that is capable of discovering the components of most Linux systems

(HardwareLiSter (lshw)). Lshw is easy to implement on the embedded systems and does

not require any libraries other than default libraries already installed on the system. This

program was selected to complete this project.

3.4. Creating Lshw+

 After first tests at Mercury, lshw showed all components that a normal Linux

system would include. Unfortunately, Mercury had some of their own components on this

board and they were not found. This meant lshw needed to be expanded to include these

components and still needed a way to store all the information.

Lshw has three main outputs for its information: HTML, XML, and plain text. At

first thought, the XML output could be used along with a parser to grab all the

information and then could be stored into a database. Upon further investigation there

turned out to be a dump file in the source code for lshw. Inside this dump file was

8

mentions of an SQLite database and pre-written commands to create tables and store

data. Unfortunately, not all of these commands were written and there was no mention of

this dump option in the help menu when running lshw. This dump file is only included in

the program if the Makefile is told to build lshw with SQLite. The Makefile also tells the

main file whether or not to include the dump option in the help menu. Fixing the

Makefile introduced many errors that had to be fixed before continuing. The main file

only needed to activate the dump option so most of the errors were coming from the

dump file itself. Most of these errors from the dump file were due to the fact that the code

was not completely written. Once all this code was completed, lshw built with no errors

and the dump option worked perfectly. The database portion of the project was complete

and now all that was left was the final Mercury components and information towards

those.

 HTML, XML, and plain text outputs would only show certain components in the

system and hide some others that lshw had found. In the database was a mention of four

unknown components and these components had a Mercury vendor label. Apparently,

Mercury does not give Linux much information as far as a device or class id for these

components so they all came up as unknown devices and were not included in any other

output. For this particular board, the only Mercury components missing were two Serial

RapidIO (SRIO) boards that actually allow this board to communicate to other boards in

the entire system. The SRIO board appears multiple times because there are two different

field-programmable gate arrays (FPGAs) for each board, the “IOM” and the “POET”.

The only way to tell the difference between the two was a sub_device id. This id could be

found using Linux commands outputting the highest amount of detail. Since these

9

commands read the same system files that lshw does; lshw should have all the

information somewhere in the database.

Lshw creates multiple tables in its database. One of them being the components

and most of the information needed; the rest being extra information for each component

that is not always needed or useful. One of these tables gave sub_device ids which were

all that was needed to determine the “IOM” and “POET” FPGAs. Lshw had to be

changed to include this data in the main component table. This information was then used

to update the device descriptions of the Mercury components. Each description was

originally “Unknown class” but was changed respectively to “IOM FPGA” and “POET

FPGA.” With that done, lshw+ was finished and all that was needed was more testing.

Once testing was complete, lshw+ performed wonderfully and discovered all components

for all the boards tested.

10

4. Results and Analysis

4.1. Lshw+

 Lshw+ worked wonderfully; after the second round of testing Mercury boards, it

proved successful and discovered all the components on the board. All the information

was stored in an SQLite database for future use. Lshw+ works well with embedded

systems as it is small and does not rely on large external libraries. This project was a

success and will lead Mercury closer to having their finished testing software.

4.2. Remains of the testing software

At the beginning of the project, the requirements were revised so that this project

could be finished within the time constraints. The test selection portion of the original

requirements was removed because Mercury did not have a database of their tests to

compare with the component database. The website was removed to be used in a separate

Mercury project. Lshw+ and the component database are being used in this website to

give the user a graphical look at the components on the board.

The project may not have been completed as originally planned; it is still a big

step towards the final product for Mercury. The component discovery was completed

successfully including all of the Mercury-specific components. Finishing up the final

portions of the project will involve work on the test database and the test selection

software.

11

5. Future Work and Conclusions

There is much of work that can come out of this project; lshw+ can be expanded

even more to include other systems and possibly expand to support other output formats

or database formats instead of just SQLite. Mercury will most likely continue on this

project to finish up their original plan of a testing system that will discover all

components and select tests suitable for each board. Future work would have to setup the

test database along with creating the test selection program. Many of the tests will be

easy to add to the database. Some tests have certain criteria to be selected for

components. These specific criteria will make creating this database a challenge. Mercury

could also expand this project farther and have the system automatically run all the tests

to provide more confidence their products are working correctly and speed up the entire

process of testing their products. Mercury currently runs their ATP software manually; if

the procedure document is followed correctly then there are no errors in testing but if

something is not done correctly then some aspect of this document can be skipped.

Someone in the future could automate this procedure to guarantee no possible errors in

the ATP testing. The website was already expanded to not only create a graphical view of

the components database but also a system manager to allow for quick views into

temperature readings and hard drive diagnostics.

 This project was successful even though not everything originally planned was

completed. The component discovery portion of this project was finished completely

which gave Mercury a large step towards being done with their automated testing system.

12

The best part of lshw+ is that it can be used in future versions of Linux because system

files that contain this information will not change.

13

Appendix A: LSHW+ Documentation

DOCUMENTATION FOR LSHW+

AUTHOR: CHRISTOPHER DONNELLY

VERSION 1.0

Building the Program

LSHW+ is simple to build. Just move to the lshw+ directory and run make there

or in the src directory inside. The lshw+ executable will appear in the src directory and

can be moved anywhere to run. This executable may also be built on one system and

copied to others without any problems or need to rebuild.

cd lshw+

make

or

cd lshw+

cd src

make

14

Running LSHW+

LSHW+ does not have many option so it is pretty easy to run. Only the basic

output formats along with the database dump will be discussed in this documentation but

if there are any other options you would like to explore, you can read LSHW+ help page.

lshw –h

The simplest way to run this program is to just execute the command with no

options but there is not much usable information there. LSHW+ outputs the information

in text format onto the terminal screen.

lshw

XML Output

lshw -xml > <file_name>

HTML Output

lshw -html > <file_name>

15

SQL Dump

lshw -dump <sql db name>

XML and HTML outputs will output their information straight to the terminal

window so it needs to be piped to a file. The dump option will take a database name and

create a database in the working directory of all the information stored. This database

contains 5 tables: nodes, capabilities, configurations, hints, and logicalnames. Lshw+ has

been updated for a website view in use with WT webtoolkit so there are three columns in

the nodes table that contain information from configurations, hints and logicalnames in

order to keep the web view simple and easy to work with. This setup makes these three

columns fairly unreadable.

The Database

There is one main file in the source that deals with the database: dump.cpp. This

file deals with all the database dumping commands and can be modified to match certain

database needs. All commands are pre-written and just require binding certain variables.

The Dump File

The first function in the dump file handles creating the tables and putting information into

the “META” table. The META table includes basic information like the application name

and the name of the operating system.

16

1. static bool createtables(database & db){

2. try {

3. db.execute("CREATE TABLE IF NOT EXISTS META(key TEXT PRIMARY KEY COLLATE

NOCASE, value BLOB)");

Create the META table.

4. statement stm(db, "INSERT OR IGNORE INTO META (key,value) VALUES(?,?)");

Setup the command that will insert data into the META table.

5. stm.bind(1, "schema");

6. stm.bind(2, 1.0);

7. stm.execute();

8. stm.reset();

9. stm.bind(1, "application");

10. stm.bind(2, "lshw+");

11. stm.execute();

12. stm.reset();

13. stm.bind(1, "creator");

14. stm.bind(2, "lshw+/" + string(getpackageversion()));

15. stm.execute();

16. stm.reset();

17. stm.bind(1, "OS");

18. stm.bind(2, operating_system());

19. stm.execute();

20. stm.reset();

21. stm.bind(1, "platform");

22. stm.bind(2, platform());

23. stm.execute();

These lines bind variables to the two different positions in the above command. Reset

will clear the previous binding so execute does not add incorrect data.

17

This portion handles creating all the tables. The most important part is the first table. This

table is the table of all the nodes and their information.

24. db.execute("CREATE TABLE IF NOT EXISTS nodes(path TEXT PRIMARY KEY, id TEXT

NOT NULL COLLATE NOCASE, parent TEXT COLLATE NOCASE, class TEXT NOT NULL

COLLATE NOCASE, enabled BOOL, claimed BOOL, description TEXT, vendor TEXT, product

TEXT, version TEXT, serial TEXT, businfo TEXT, physid TEXT, slot TEXT, size INTEGER,

capacity INTEGER, clock INTEGER, width INTEGER, dev TEXT, logicalname TEXT,

configurations TEXT, hints TEXT)");

25. db.execute("CREATE TABLE IF NOT EXISTS logicalnames(path TEXT PRIMARY KEY,

logicalname TEXT NOT NULL, node TEXT NOT NULL COLLATE NOCASE)");

26. db.execute("CREATE TABLE IF NOT EXISTS capabilities(capability TEXT NOT NULL

COLLATE NOCASE, node TEXT NOT NULL COLLATE NOCASE, description TEXT,

UNIQUE (capability,node))");

27. db.execute("CREATE TABLE IF NOT EXISTS configuration(config TEXT NOT NULL

COLLATE NOCASE, node TEXT NOT NULL COLLATE NOCASE, value TEXT, UNIQUE

(config,node))");

28. db.execute("CREATE TABLE IF NOT EXISTS hints(hint TEXT NOT NULL COLLATE

NOCASE, node TEXT NOT NULL COLLATE NOCASE, value TEXT, UNIQUE (hint,node))");

29. db.execute("CREATE TABLE IF NOT EXISTS resources(node TEXT NOT NULL COLLATE

NOCASE, type TEXT NOT NULL COLLATE NOCASE, resource TEXT NOT NULL,

UNIQUE(node,type,resource))");

30. db.execute("CREATE VIEW IF NOT EXISTS unclaimed AS SELECT * FROM nodes WHERE

NOT claimed");

31. db.execute("CREATE VIEW IF NOT EXISTS disabled AS SELECT * FROM nodes WHERE

NOT enabled");

32. }

33. catch(exception & e)

34. {

35. return false;

36. }

37. return true;

38. }

18

The next function is the actual dump function that handles putting the rest of the

information into all the tables we just created. Lshw+ calls each component a node.

39. bool dump(hwNode & n, database & db, const string & path, bool recurse){

40. if(!createtables(db))

41. return false;

Try to create the tables. If it fails then return.

42. try {

43. unsigned i = 0;

44. statement stm(db, "INSERT OR REPLACE INTO nodes

(id,class,product,vendor,description,size,capacity,width,version,serial,enabled,claimed,slot,clock,b

usinfo,physid,path,parent,dev) VALUES(?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)");

45. string mypath = path+(path=="/"?"":"/")+n.getPhysId();

Setup the command to add the first set of information into the nodes table.

46. stm.bind(1, n.getId());

47. stm.bind(2, n.getClassName());

48. if(n.getProduct() != "") stm.bind(3, n.getProduct());

49. if(n.getVendor() != "") stm.bind(4, n.getVendor());

50. if(n.getDescription() != "") stm.bind(5, n.getDescription());

51. if(n.getSize()) stm.bind(6, (long long int)n.getSize());

52. if(n.getCapacity()) stm.bind(7, (long long int)n.getCapacity());

53. if(n.getWidth()) stm.bind(8, (long long int)n.getWidth());

54. if(n.getVersion() != "") stm.bind(9, n.getVersion());

55. if(n.getSerial() != "") stm.bind(10, n.getSerial());

56. stm.bind(11, (long long int)n.enabled());

57. stm.bind(12, (long long int)n.claimed());

58. if(n.getSlot() != "") stm.bind(13, n.getSlot());

59. if(n.getClock()) stm.bind(14, (long long int)n.getClock());

60. if(n.getBusInfo() != "") stm.bind(15, n.getBusInfo());

61. if(n.getPhysId() != "") stm.bind(16, n.getPhysId());

62. stm.bind(17, mypath);

63. if(path != "") stm.bind(18, path);

64. if(n.getDev() != "") stm.bind(19, n.getDev());

65. stm.execute();

19

Bind the variables for the information about this component and execute the command to

add the information to the table.

66. stm.prepare("INSERT OR REPLACE INTO logicalnames (node,logicalname) VALUES(?,?)");

67. vector<string> keys = n.getLogicalNames();

68. for(i=0; i<keys.size(); i++)

69. {

70. stm.reset();

71. stm.bind(1, mypath);

72. stm.bind(2, keys[i]);

73. stm.execute();

74. }

75. //Take what was just put into logicalnames and put it into nodes.

76. //Slight difference. This is setup for internet view.
 for the line break.

77. stm.prepare("UPDATE nodes SET logicalname=? WHERE path=?");

78. stm.reset();

79. stm.bind(2, mypath);

80. string lnames = "";

81. for(i=0; i<keys.size(); i++)

82. {

83. if(i == 0) lnames = keys[i];

84. else lnames += "
" + keys[i];

85. }

86. stm.bind(1, lnames);

87. stm.execute();

Add logicalname information to the logicalnames table and the logicalnames column of

the nodes table.

88. stm.prepare("INSERT OR REPLACE INTO capabilities (capability,node,description)

VALUES(?,?,?)");

89. keys = n.getCapabilitiesList();

90. for(i=0; i<keys.size(); i++)

91. {

92. stm.reset();

93. stm.bind(1, keys[i]);

94. stm.bind(2, mypath);

95. stm.bind(3, n.getCapabilityDescription(keys[i]));

96. stm.execute();

97. }

Add capabilities information to the capabilities table.

20

98. stm.prepare("INSERT OR REPLACE INTO configuration (config,node,value) VALUES(?,?,?)");

99. keys = n.getConfigKeys();

100. for(i=0; i<keys.size(); i++)

101. {

102. stm.reset();

103. stm.bind(1, keys[i]);

104. stm.bind(2, mypath);

105. stm.bind(3, n.getConfig(keys[i]));

106. stm.execute();

107. }

108. //Place configurations into the nodes again with html web view.

109. stm.prepare("UPDATE nodes SET configurations=? where path=?");

110. stm.reset();

111. stm.bind(2, mypath);

112. string myconfigs;

113. for(i=0; i<keys.size(); i++)

114. {

115. if(i==0) myconfigs = keys[i] + "=" + n.getConfig(keys[i]);

116. else myconfigs += "
" + keys[i] + "=" + n.getConfig(keys[i]);

117. }

118. stm.bind(1, myconfigs);

119. stm.execute();

Add configuration information to both the configuration table and the configuration

column of the nodes table.

120. stm.prepare("INSERT OR IGNORE INTO resources (type,node,resource) VALUES(?,?,?)");

121. keys = n.getResources(":");

122. for(i=0; i<keys.size(); i++)

123. {

124. string type = keys[i].substr(0, keys[i].find_first_of(':'));

125. string resource = keys[i].substr(keys[i].find_first_of(':')+1);

126. stm.reset();

127. stm.bind(1, type);

128. stm.bind(2, mypath);

129. stm.bind(3, resource);

130. stm.execute();

131. }

Add resource information to the resource table.

21

132. stm.prepare("INSERT OR REPLACE INTO hints (hint,node,value) VALUES(?,?,?)");

133. keys = n.getHints();

134. for(i=0; i<keys.size(); i++)

135. {

136. stm.reset();

137. stm.bind(1, keys[i]);

138. stm.bind(2, mypath);

139. stm.bind(3, n.getHint(keys[i]).asString());

140. stm.execute();

141. }

142. //Place hints into the nodes database.

143. stm.prepare("UPDATE nodes SET hints=? where path=?");

144. stm.reset();

145. stm.bind(2, mypath);

146. string myhints;

147. for(i=0; i< keys.size(); i++)

148. {

149. if(i==0) myhints = keys[i] + "=" + n.getHint(keys[i]).asString();

150. else myhints += "
" + keys[i] + "=" + n.getHint(keys[i]).asString();

151. }

152. stm.bind(1, myhints);

153. stm.execute();

Add the hints information to the hints table and the hints column in the nodes tables.

Hints are extra information for each node like the device and sub_device id.

154. stm.prepare("INSERT OR REPLACE INTO hints (hint,node,value) VALUES(?,?,?)");

155. stm.reset();

156. stm.bind(1,"run.root");

157. stm.bind(2,"");

158. stm.bind(3,(long long int)(geteuid() == 0));

159. stm.execute();

160. stm.reset();

161. stm.bind(1,"run.time");

162. stm.bind(2,"");

163. stm.bind(3,(long long int)time(NULL));

164. stm.execute();

165. stm.reset();

166. stm.bind(1,"run.language");

167. stm.bind(2,"");

168. stm.bind(3,getenv("LANG"));

169. stm.execute();

22

Add extra information to the hints table; whether or not lshw+ was run as root and the

time.

This final portion of code will recall the dump function to run on this node’s children and

continue to run through all the nodes in the system.

170. if(recurse)

171. for(i=0; i<n.countChildren(); i++)

172. dump(*(n.getChild(i)), db, mypath, recurse);

173. }

174. catch(exception & e){

175. return false;

176. }

177. return true;

178. }

The Nodes Table

The Node Table is explained in the original lshw website (http://ezix.org/project/

wiki/HardwareLiSter). The information follows:

lshw displays nodes with attributes in a tree-like structure. Each node has its

individual status: it beCLAIMED (potentially usable) or UNCLAIMED (no driver has

been detected for this node), ENABLED (this device is supported and can be used)

or DISABLED (this device is supported but has been disabled).

Attribute Meaning Example 1 Example 2 Example 3

id

internal identifier used

by lshw

cpu:2 network:1 cdrom:0

class device's class (see processor network disk

http://ezix.org/project/%20wiki/HardwareLiSter
http://ezix.org/project/%20wiki/HardwareLiSter

23

below)

descriptio

n

human-readable

description of the

hardware node

CPU Ethernet interface

DVD

reader

vendor

vendor/manufacturer of

the device

Intel Corp.

Advanced Micro

Devices [AMD]

product

product name of the

device

Intel(R)

Pentium(R) 4 CPU

1.90GHz

79c970 [PCnet32

LANCE]

Hewlett-

Packard

DVD

Writer 100

version

version/release of the

device

15.1.2 25 1.37

serial

serial number of the

device

00:60:b0:87:86:22

CN1AA078

6J

capacity

maximum capacity rep

orted by the device

100000000 (100M

B/s)

size actual size of the device

1900000000 (1.9G

Hz)

10000000 (10MB/

s)

clock

bus clock (in Hz) of the

device

100000000 (100M

Hz)

33000000 (33MHz

)

width address width of the 32 32

24

device (32 or 64 bits)

this has nothing to do

with having 32bit or

64bit driver

slot

slot where the device is

connected

Processor 1

logicalna

me

logical name under

which the node is

known to the system

eth0 /dev/hdc

dev

device number

(major.minor)

22d:0d

businfo bus information cpu@0 pci@02:0a.0 ide@1.0

physid physical id 4 a 0

25

References

Automated Tests. (n.d.). Retrieved February 2, 2013, from PHPUnit:

http://www.phpunit.de/manual/current/en/automating-tests.html

HardwareLiSter (lshw). (n.d.). Retrieved February 22, 2013, from ezix:

http://ezix.org/project/wiki/HardwareLiSter

Mercury Systems. (n.d.). Who We Are. Retrieved February 22, 2013, from Mercury

Systems: http://www.mrcy.com/company-information/who-we-are/

SQLite vs MySQL. (n.d.). Retrieved February 22, 2013, from All About Programming:

http://schimpf.es/sqlite-vs-mysql/

Test Automation. (n.d.). Retrieved February 22, 2013, from Wikipedia:

http://en.wikipedia.org/wiki/Test_automation

What are the Main Benefits of Test Automation? (n.d.). Retrieved February 22, 2013,

from XBOSOFT: http://www.xbosoft.com/test-automation-benefits/

