
Faculty Code: EAR
Project Number: 0112

Hyreminder: A Hand Hygiene Tracking System
with Mobile Sensors

A Major Qualifying Project Report:
Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the
Degree of Bachelor of Science

Submitted by:

Leah Greer
Christian Mortensen

Corey Phillips
Hanxiong Shi
Jeffery Stokes

Date: March 12, 2013

Approved by:

Professor Elke A. Rundensteiner

ii

Abstract

The purpose of this project is to extend the functionality and improve the performance

of the hand hygiene monitoring system (Hyreminder). This system is in place at the

University of Massachusetts Memorial Hospital in the intensive care unit, where it helps

prevent the spread of infection in the hospital. Our reengineering of the system under

the Java Spring framework improves the usability, performance, and maintainability of

the system. This allows for faster webpage loading times and improves code readability.

It also enables a more scalable system now ready to deploy at hospitals of varying

size. Additionally, the system adds support for tracking moving beds via hardware

sensors. Thoroughly documenting and testing the code ensures that others can develop

the system further.

iii

Acknowledgements

Our team would like to thank the following individuals for their help and support throughout our

project.

• Our advisor from Worcester Polytechnic Institute, Professor Elke Rundensteiner, for her guid-

ance and support throughout our project.

• Doctor Richard Ellison, director of Infection Control at the University of Massachusetts

Memorial campus. Thanks for his creation of the project and for his ideas and suggestions

on feature implementation.

• Lei Cao, graduate student at Worcester Polytechnic Institute and member of the Database

System Research Group, for his valuable opinions through development and his assistance

with answering our questions.

• Di Wang, graduate student at Worcester Polytechnic Institute, for her work creating the

original system.

TABLE OF CONTENTS iv

Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

Table of Figures viii

Table of Tables xi

1 Introduction 1

2 Background 4

2.1 Importance of Hand Hygiene . 4

2.2 About Hyreminder . 5

2.3 Hyreminder System and Usage . 6

2.3.1 Group Based Functionality . 7

2.3.2 ID Based Functionality . 11

2.3.3 Multi-ICU Functionality . 16

2.3.4 Anomaly Functionality . 19

2.3.5 General Architecture . 21

2.3.6 Database Tables . 21

2.3.7 Additional Programs . 25

3 Reengineering Hyreminder 26

3.1 Analysis of Existing Hyreminder System . 26

3.1.1 Comments and Class Files . 26

3.1.2 Testing . 26

3.1.3 Usability . 26

3.2 Options for Going Forward . 27

3.2.1 Why Not Google Web Toolkit? . 27

3.2.2 Why Spring? . 28

3.3 The Reengineering . 28

3.3.1 The Model-View-Controller Pattern . 29

3.4 Static Code Analysis Statistics . 29

3.4.1 CodePro Metrics . 30

3.4.2 CodePro Code Audit . 31

TABLE OF CONTENTS v

4 New Features 32

4.1 More Reports Available . 32

4.2 Sensor Commenting . 33

4.3 Mapping Sensors . 33

4.3.1 Restructuring Sensors . 34

4.3.2 Tracking Moving Sensors . 34

5 Graphical User Interface Design 36

5.1 Browser Based Improvements . 36

5.2 Work Flow Improvements . 37

5.3 Anomaly Interface . 38

5.4 Mapping Interface . 41

5.5 User Interface Revisions . 46

6 Technologies Used 49

6.1 Accounts and Security . 49

6.2 Charting Libraries . 50

6.3 Mapping Labrary . 53

6.4 Additional UI Libraries . 55

6.4.1 jQuery Datepicker . 56

6.4.2 jQuery Dialog . 57

6.4.3 Chosen . 58

7 Testing 59

7.1 Stress Testing . 60

7.1.1 Framework . 60

7.1.2 Supported Tests . 61

7.1.3 Results and Analysis . 62

7.2 Efficiency Improvements . 64

7.2.1 Chart Creation Performance . 65

7.2.2 Report Creation Performance . 68

8 Conclusion 74

9 Future Works 75

Works Cited 77

TABLE OF CONTENTS vi

Appendix A User Guide of Activities on Web Application 80

A.1 Current Errors . 80

A.2 Sensor Details . 81

A.3 Map . 83

A.4 Maintenance . 85

A.4.1 Sensor Maintenance . 85

A.4.2 Map Maintenance . 87

A.5 Options . 88

A.5.1 Change Password . 89

A.5.2 Edit Room Details . 89

A.6 Setting Up a New ICU . 89

Appendix B User Accounts and Security Development Docs 91

B.1 User Accounts Database Design . 91

B.1.1 users table . 91

B.1.2 user roles table . 92

B.2 Inserting New Data . 92

B.2.1 Adding a New User . 92

B.2.2 Adding User Roles . 92

B.3 Security . 93

B.3.1 Verifying Login Credentials . 93

B.3.2 Securing URLs . 93

Appendix C Excerpt from XML Config File for Spring Security 95

Appendix D Reporting Module Developer Documentation 96

D.1 Reporting Module Structure (Relation Diagram) . 96

D.2 POI 3.8 framework & XLS templates . 97

D.3 Reporting Module Logic . 97

D.3.1 Controller Mapping . 97

D.3.2 XLS Template . 98

D.3.3 Date & Time API . 99

D.3.4 Aggregation . 100

D.3.5 Parse dataset . 100

D.3.6 POI I/O . 100

D.4 Stored Procedures Used . 101

TABLE OF CONTENTS vii

Appendix E Selenium Tests and Stress Tests Developer Docs 103

E.1 Selenium . 103

E.2 Stress Tests . 105

TABLE OF FIGURES viii

Table of Figures

1 The Hyreminder System . 6

2 Original Login . 7

3 Original Group Based Overall-Compliance View . 8

4 Original Group Based Detailed-Statistics View . 9

5 Original Group Based Reporting Tools . 10

6 Original Group Based Reporting Example . 10

7 Original Group Based Options . 11

8 Original ID Based Overall-Compliance View . 12

9 Original ID Based HCW Comparison View . 13

10 Original ID Based HCW Time-Based View . 14

11 Original ID Based Reporting Tools . 15

12 Original ID Based Options . 15

13 Original Multi-ICU Overall-Compliance View . 16

14 Original Multi-ICU Units Comparison View . 17

15 Original Multi-ICU HCW Time-Based View . 17

16 Original Multi-ICU Reporting . 18

17 Original Multi-ICU Options . 18

18 Original Current Errors View . 19

19 Original Sensor Detail View . 20

20 Original Sensor History View . 20

21 Original Anomaly Options View . 21

22 Table Schema: enexlive . 22

23 Table Schema: washtablelive . 22

24 Table Schema: contact1 . 23

25 Table Schema: user . 23

26 Table Schema: sensor real . 24

27 Table Schema: sensorErrorCur . 24

28 Table Schema: sensorErrorHistory . 24

29 Query Example: Google Web Toolkit . 32

30 Query Example: Spring . 33

31 Table Schema: sensorComments . 33

32 Full Screen . 36

33 Reduced Screen Size . 37

34 ICU Switching Interface . 38

35 Overlapping Text in Original Anomaly . 38

TABLE OF FIGURES ix

36 New Sensor Details . 39

37 Commenting Interface . 40

38 New Current Errors . 40

39 Edit Room Details . 41

40 Map . 42

41 Sensor Maintenance on Page Load . 43

42 Sensor Maintenance After Stationary Sensor Selected 44

43 Map Maintenance . 45

44 Table Schema: proximity . 46

45 Highlighting the selected sensor . 46

46 Original Aggregate option . 47

47 New Grouping option . 47

48 JQuery Visualize Charts . 53

49 Example of Raphaël: One Selected Sensor . 54

50 Example of Raphaël: Sensors of Different Statuses 55

51 Example of Raphaël’s Animation . 55

52 jQuery Datepicker . 56

53 jQuery Dialog Boxes . 57

54 Searchable Drop-downs . 58

55 Charting Revised Time Taken (%) . 66

56 Charting Revised Time Taken (sec) . 67

57 Reporting Revised Time Taken(%) . 71

58 Reporting Revised Time Taken, Short (sec) . 72

59 Reporting Revised Time Taken, Long (sec) . 73

A1 Current Errors . 80

A2 Sensor Detail Screen . 81

A3 Sensor Comment Section . 82

A4 Map Screen . 83

A5 Sensor Maintenance Screen . 85

A6 Map Maintenance Screen . 87

A7 Options Screen . 88

B1 Table Schema: users . 91

B2 Table Schema: user roles . 92

C1 XML Config File Except . 95

D1 Reporting Module Structure . 96

D2 Reporting Module Logic . 97

D3 XLS Template Files . 98

TABLE OF FIGURES x

D4 Date Selector . 99

D5 Date Selected . 100

TABLE OF TABLES xi

Table of Tables

1 CodePro Metric Comparison . 30

2 CodePro Audit Results . 31

3 Stress Test Results . 63

4 Stress Test Results with Lower Limits . 64

5 Hand Hygiene Charting Performance Comparison . 65

6 Hand Hygiene Cached Charting Performance Comparison 68

7 Hand Hygiene Reporting Performance Comparison 69

1 INTRODUCTION 1

1 Introduction

Maintaining good hygiene in hospital settings has been repeatedly shown to be critical in preventing

the spread of infection. In 2006 a study involving 168 hospitals discovered that hospital-acquired

infections (HAI) extend an average hospital stay from five to twenty-one days, and multiply the

cost of the stay by a factor of six.1 Infections acquired while in a hospital can result in extended

stays and exacerbated illnesses, as well as cost the hospital and the patients more time and money.

A system to monitor and improve hygiene is therefore beneficial to both patients and hospital staff

alike. To that end, the Hyreminder system was developed by the Worcester Polytechnic Institute

Database System Research Group in collaboration with UMass Memorial Hospital. The system is

designed to electronically monitor hygiene and report compliance statistics via web interface that

is accessed by head nurses, doctors, and supervisors (see Section 2.1).

The goal of this project was to improve the Hyreminder system. We were to improve the

maintainability and performance of the Hyreminder web application, and to add new functional-

ity. The team approached maintainability by improving code readability and reusability, in code,

developer and user documentation, and automated testing. We increased performance by looking

into database query structure, system architecture, and tools used for data visualization. We also

upgraded the system’s security and made several improvements to the interface’s usability.

The first step to achieving our goal was to examine the current Hyreminder web application.

The original system was inefficient, with several large blocks of commented out code, duplicated

code, and insufficiently documented functions (see Section 3.1). Additionally, the code was built

using the Google Web Toolkit2 framework, which is useful for smaller applications, but can cause

issues for larger, more complex applications (see Section 3.2.1). After this analysis we decided that

it would be in the best interest of the project to reengineer using the Spring Web MVC Framework3.

The Spring framework is designed to allow for simplicity and rapid deployment of enterprise level

solutions. Spring Core, the foundation package of the framework, has a heavy emphasis on managing

the “plumbing” code of an application allowing the developers to focus on the important business

logic of the application. This allows for clean, focused code that is easily maintained. Spring does

this while allowing the developers to make use of dependency free plain-old-java-objects (POJOs)

that are not heavily coupled with interfaces or APIs common to other frameworks. Thus, it is

trivial to add or change packages or frameworks at some point in the future if needed. These all

come together to deliver clean, maintainable, scalable code as quickly as possible.

While reengineering we took it upon ourselves to work on the maintainability and performance

of the web application. As we wrote code, we added in-line documentation. We revised code we

1Lee, Christopher. (2006, November). Studies: Hospitals Could Do More to Avoid Infections. The Washington
Post.

2Google Developers. (2012). Google Web Toolkit. https://developers.google.com/web-toolkit/
3Spring Source Community. (2013). http://www.springsource.org/

https://developers.google.com/web-toolkit/
http://www.springsource.org/

1 INTRODUCTION 2

wrote to be more reusable, for example, much of the code involved in reporting is similar. By pulling

the similarities out into their own functions, we decreased the amount of code that henceforth would

need to be maintained. We evaluated the queries in use, consolidated them where possible, and

added stored procedures in order to increase their performance and reduce load times.

When we changed from using Google Web Toolkit to Spring, we needed to completely rebuild the

front end of the web application. We kept the look of the system the same, but were able increase

the usability by rearranging user interface elements on each page to better suit the workflow.

We also added more browser support from only Internet Explorer 8 to Chrome, Firefox, Internet

Explorer 8 and 9, and Safari. We added enhancements that make it easier for the user to use the

web application, such as easier switching of ICUs and URLs for each of the tabs. With the new

front end, we had to find a new way to display charts. After exploring a number of options (see

Section 6.2 for more detail), we chose to go with JQuery Visualize.4 This library had the basic

features we needed, however we put extensive amounts of work into adding more features to the

library to more fully accommodate our requirements. For example, we added support for charts

with two y-axes and to allow a small pop-up window on mouse hover for more information about a

particular data point. The two y-axes were required for the compliance charts which have sensors

hits on the left y-axis and percent compliance on the right y-axis. Mouse hovers were a feature in

the original Hyreminder system that we wanted to preserve.

During development we tested the system in several ways. We performed correctness testing to

verify that the system’s output matched what the original system was outputting (See Section 7).

We also ran performance testing to determine how much we gained from our redesign in terms of

time taken to execute various tasks (results in Section 7.2). Lastly, we implemented and performed

stress testing to test the limits of the system, for instance, how many sensors could be hooked up

to one ICU before the system began to slow down (results in Section 7.1).

After the new framework was swapped in, and the web application was back to running to the

original level of functionality, we added new features. We now provide complete reporting in the

ID Based and the Multi-ICU types. This involved writing the queries and processing for both,

and creating a user interface for Multi-ICU (see Section 4.1). The second feature we added was

commenting on sensors in the Anomaly system. Users can now add and remove comments on a

sensor.

The major feature we added was the tracking of mobile beds. This feature was requested to be

able to track the beds as they move through the ICUs, enabling better maintenance of the system,

to aid in replacing malfunctioning sensors. The sensors are an expensive resource to lose. Because

the beds are mobile, and the only fixed points that the system can use are the soap dispenser

sensors, we had to develop logic to connect sensor hits with locations. By measuring the time

between dispenser and bed sensor hits, we derive an estimate of a bed’s probable locations. (see

4Jehl, Scott. (2013). JQuery Visualize. https://github.com/filamentgroup/jQuery-Visualize

https://github.com/filamentgroup/jQuery-Visualize

1 INTRODUCTION 3

Section 4.3.2).

Tracking beds involved adding more screens to the Anomaly system’s user interface (see Sec-

tion 5.4 for full details). The first screen is used for viewing a map of the current sensor locations.

The second screen is for map maintenance, where the user will set up locations on the map and

which locations are close to each other. The last screen is used for setting up which sensor is at a

location for the stationary sensors, while the mobile sensor locations are determined by our system.

Maps on all of these screens are implemented using Raphal,5 a JavaScript drawing library (see

Section 6.3).

While implementing the moving bed functionality, we solved another maintainability issue. We

improved the system of replacing sensors with new ones. Previously this was done by replacing the

old ID with the new ID. Now we have an abstraction from the sensor and the physical device. We

created a logical sensor with a unique ID for use in the sensor hit tables and each logical sensor will

have a list of physical sensors IDs, only one active at a time. Section 5.4 explains in more detail.

Our team came up with a good workflow early on in the project. We met together three times

a week: one meeting we held shortly after our weekly meetings with Professor Rundensteiner to

discuss work to be completed the following week, and two other meetings to catch up with each

other and discuss any issues that had arisen. As a team, we divided up the project requirements

into smaller tasks, and each person chose one or more tasks to complete each week. Anytime a

team member encountered sufficient difficulty so as to slow progress, other group members were

willing and able to step in and assist so that the project could proceed as close to schedule as

possible. Some members were focused on particular areas of the project, but in general we all

covered multiple parts of the project.

In conclusion we have added onto and improved the Hyreminder and Anomaly web applications.

With the framework change, we created a more efficient and maintainable software. We have added

documentation and testing, both essential components for a maintainable and expandable project.

Performance gains were seen in the largest two features: report generation and chart creation. We

added the the interface and backend for setting up ICUs and their sensor networks, and created a

basic algorithm for tracking moving sensors such as bed.

In the future, teams will have our documentation to aid them through learning the system. The

system itself is modular due to the use of the Model View Controller pattern, thus pieces can be

replaced without affecting the system as a whole. New features can be added easily, again without

affecting other pieces. While there are still some user interface issues that need to be resolved (see

Section 9), the Hyreminder system is in a solid state to which others can add on to in the future.

5Baranovskiy, Dmitry. (2012). Raphaël. http://raphaeljs.com/

http://raphaeljs.com/

2 BACKGROUND 4

2 Background

Since the goal of this project was to improve and extend the Hyreminder system, it is useful to

describe the reasons for Hyreminder’s existence, and to describe how the Hyreminder system works.

2.1 Importance of Hand Hygiene

With nurses and doctors treating large numbers of patients daily, controlling the spread of infection

is a critical component to effective medical care. Infections can be spread several ways: through

physical contact, by surgical tools such as scalpels or thermometers not being cleaned properly, or

via airborne transmission. Although a person’s immune system can protect against many infections,

patients tend to have weaker immune systems due to the nature of being sick or recovering from

surgery, and are therefore at a higher risk of getting infected.6 Infections acquired while in a hospital

can extend a patient’s stay by several days, and the increased stay results in additional costs and

less space available for incoming patients. A study conducted in 2006 involving 168 hospitals and

1.6 million patients discovered that hospital-acquired infections extended the average stay from five

to twenty-one days, and correspondingly the cost was about six times more than those that did not

acquire an infection during their stay.7

The basic principle to reduce infection risk is through proper hygiene. This can include using

gloves and masks, covering up coughs, keeping immunizations up to date, and proper hand washing.8

A study on a program to increase hand washing in the United Kingdom that started in 2004 and

ran for six years, found that soap use nearly tripled and rates of notable infections such as MRSA

dropped by approximately 50%.9 The efforts of this drive are estimated to have saved 10,000 lives,

in addition to the cost savings from increased hospital stays.

Several hospitals have tried different strategies in attempts to increase hand washing compliance.

The strategies employed in these initiatives vary greatly. A study at Duke University Hospital

in 2009 found that by using observers to record hygiene compliance and report that data to a

central web service, compliance ratios soared to over 90%, far exceeding the national average of

approximately 40%. This study was so successful that the program was expanded to cover more

areas of the hospital.10 In a similar but more electronic way, an Alabama hospital piloted a more

6Prüss, A., Giroult, E. & Rushbrook, P. (1999). Hospital Hygiene and Infection Control. In Safe management of
wastes from healthcare activities. World Health Organization. http://www.who.int/water sanitation health/medi

calwaste/148to158.pdf
7Lee, Christopher. (2006, November). Studies: Hospitals Could Do More to Avoid Infections. The Washington

Post.
8MedlinePlus. (2013, February). Infection Control. http://www.nlm.nih.gov/medlineplus/infectioncontrol.h

tml
9Hospital Hygiene Drive ‘Saved 10,000 Lives’. (2012, May). The Guardian. http://www.guardian.co.uk/societ

y/2012/may/04/hospital-hygiene-drive
10Duke Medicine News and Communications. (2010, March). Technology-Based Hand Hygiene Monitoring Im-

proves Compliance at Duke Hospital. Duke Medicine. http://www.dukehealth.org/health library/news/technolo

gy based hand hygiene monitoring improves compliance at duke hospital

http://www.who.int/water_sanitation_health/medicalwaste/148to158.pdf
http://www.who.int/water_sanitation_health/medicalwaste/148to158.pdf
http://www.nlm.nih.gov/medlineplus/infectioncontrol.html
http://www.nlm.nih.gov/medlineplus/infectioncontrol.html
http://www.guardian.co.uk/society/2012/may/04/hospital-hygiene-drive
http://www.guardian.co.uk/society/2012/may/04/hospital-hygiene-drive
http://www.dukehealth.org/health_library/news/technology_based_hand_hygiene_monitoring_improves_compliance_at_duke_hospital
http://www.dukehealth.org/health_library/news/technology_based_hand_hygiene_monitoring_improves_compliance_at_duke_hospital

2 BACKGROUND 5

automated system in 2010. Giving each person a badge that triggered when a soap dispenser was

used, the system tracked hygiene activity over seven months and found that by the end of the study,

there was a 22% drop in infections and a correlation between increased soap usage and decreased

infection rates.11

The Hyreminder system is one implementation of a hygiene monitoring program that uses

sensors to gather hygiene related information electronically. The Hyreminder system is a multi-

part system, involving a screensaver for reporting the short term degree of success to nurses and

doctors in the unit; a web interface for reporting the short and long term degree of success to

supervisors, government and the boardroom; and several supplementary programs for getting and

processing data from the sensors.

2.2 About Hyreminder

Hyreminder is a real-time monitoring system created by the Worcester Polytechnic Institute Database

System Research Group, in collaboration with several partners, notably UMASS Memorial Hos-

pital and a sensor hardware device company. Hyreminder tracks “hand washes performance with

different time and space granularity, including group based, ID based, Multi-ICU and Anomaly

functionality.”12 The system is made of five parts: the hardware sensor network, the complex event

processing (CEP) engine, the database, the application server and multiple clients, refer to Figure 1.

11Brazzell, Brena Edwards, et. al. (2011, June). Efficacy of an Electronic Hand Hygiene Surveillance and Feedback
Monitoring Device Against Healthcare Associated Infections. American Journal of Infection Control. 39, 5, E172-
E173.

12Worcester Polytechnic Institute Database System Research Group. (2011). Hyreminder IDE Setup & User
Manual.

2 BACKGROUND 6

Figure 1: The Hyreminder system shown in five parts: the hardware sensor network, the complex
event processing (CEP) engine, the database, the application server and multiple clients.13

The hardware sensor network is created by a company, name withheld. They currently have

sensors installed in selected intensive care units (ICUs) of UMASS Memorial Hospital. There are

sensors on the doorways of rooms tracking enters and exits, and sensors on hand wash stations. The

WPI Database System Research Group’s CEP engine collects data from their network, analyzes the

data to detect violations and compliances and sends them to database at the end.”14 Head nurses,

doctors and other users send requests using the web interface, the application server retrieves data

from the database server and returns it back to the requesting user.

2.3 Hyreminder System and Usage

The Hyreminder system was originally designed to track two basic types of events – hand washes

and enters/exits from rooms – at a group-based level. Some ICUs added functionality for using ID

badges that corresponded to the events, so that patient contacts could be tracked. For this, two

different functionalities are required, so Professor Rundensteiner’s team developed the Group Based

and ID Based functionalities. The Group Based solution uses physical sensors that monitor the hand

washes and enters/exits from rooms to compute the hygiene compliance. The ID Based solution

also uses the hand washes to compute the hygiene compliance, however the patient contacts are

also used. Each employee would have a sensor attached to their ID badge, so that each individual’s

hygiene compliance could be monitored. A patient contact is triggered when a hospital staff member

13Ibid.
14Ibid.

2 BACKGROUND 7

approaches the patient’s bed.

When we got the system, the Group Based functionality was more fully featured, while the

ID Based lacked some features. The two functionalities exist in the same web application, called

Hand Hygiene Performance, and the user is seamlessly switched between the two functionalities

depending on the ICU being viewed. Professor Rundensteiner’s team also developed the Multi-

ICU functionality for comparing the compliance between ICUs, which has also been incorporated

into the same web application. After seeing some faulty data from sensors that weren’t working

correctly, the team developed a separate Anomaly application, which consists of two parts: the

Anomaly Detector and the web application. The Anomaly detector is used for offline correction of

the data, to avoid reporting incorrect data created by faulty sensors. The Anomaly web application

displays which sensors had errors and is used for maintenance purposes.

Upon loading any of the applications, the user is prompted to login with username and password

at the Login Screen (see Figure 2). The password string is then encoded into a sequence of bytes and

run through SHA-1 encryption before it is compared to the value in the database. Once successfully

verified, a unique session ID is generated for the user. This ID along with the user’s access level is

added to the current HttpSession. By doing this, the system can easily verify the authenticity of

the session when the user accesses other parts of the website. When the user logs out, the session

is invalidated.

Figure 2: Login - a screenshot from the original Hyreminder application. The user must authenticate
before accessing the application.

2.3.1 Group Based Functionality

The Group Based interface is composed of tabs. The first tab is Overall-Compliance View (see

Figure 3). The purpose of this tab is to give users a brief, easy to understand overview of how the

selected ICU is performing. There are counts of hand washes and enters/exits from a room, and a

2 BACKGROUND 8

percent compliance. These numbers reflect the data from the past hour and is refreshed from the

database every twenty seconds.

Figure 3: Group Based Overall-Compliance View - a screenshot from the original Hand Hygiene
Performance application. Used for short term statistics on the ICU’s performance.

The second tab is Detailed-Statistics View (see Figure 4). The purpose of this tab is to give

users a more detailed understanding of past compliance. On the screen are four charts that display

compliance rates over different time periods: the last twenty-four hours, seven days, eight weeks,

and twelve months. The charts show the counts of hand wash and enter/exit events and are overlaid

by a compliance ratio. There are two y-axes: the one on the left shows the number of sensor hits,

and the one on the right shows the percent compliance. The charts are created at the time of page

request, and were created as .swf files (shockwave-flash) on the server and then sent to the client,

taking between one and five minutes, on average, to fully load (see Section 7.2.1 for more details).

2 BACKGROUND 9

Figure 4: Group Based Detailed-Statistics View - a screenshot from the original Hand Hygiene
Performance application. Used for longer term statistics on the ICU’s performance.

The third tab is Reporting Tools (see Figure 5). The purpose of this tab is to allow users to

download statistics for showing at staff meetings. The user can retrieve more detailed statistics than

they can on the previous tab. At the top of the screen are four preset buttons, for downloading

charts with the same information from the previous tab (compliance rates in the past twenty-four

hours, seven days, eight weeks, and twelve months). At the bottom of the screen are drop-downs

for selecting a time unit (e.g. month, day, shift) and time range (e.g. last 6 months, custom time

range), and an option for aggregation.

2 BACKGROUND 10

Figure 5: Group Based Reporting Tools - a screenshot from the original Hand Hygiene Performance
application. Used for downloading long term statistics on the ICU’s performance.

The data is downloaded as an Excel file. The charts are rendered using Excel’s charting capa-

bilities. See Figure 6 for an example download.

Figure 6: Group Based Reporting Tools - a screenshot from the original Hand Hygiene Performance
application.

2 BACKGROUND 11

The fourth tab is Options (see Figure 7). The purpose of this tab is to allow users to change

their password, using a standard change password form. This tab also allows users to switch which

ICU’s statistics they were viewing. If the user switches to a different type of ICU (e.g., from ID

Based to Group Based) they are brought back to the Overall Compliance tab. If they stay in the

same type of ICU they remain on the same tab.

Figure 7: Group Based Options - a screenshot from the original Hand Hygiene Performance appli-
cation. Used for changing the user’s password and switching ICUs.

2.3.2 ID Based Functionality

The ID Based interface is similar to the Group Based interface. It too is composed of different tabs.

This interface is filled by dummy data, so some tabs may show strange readings. Again, the first

tab is the Overall-Compliance View (see Figure 8). The difference from Group Based is that ID

Based uses patient contacts instead of enters and exits for determining compliance.

2 BACKGROUND 12

Figure 8: ID Based Overall-Compliance View - a screenshot from the original Hand Hygiene Per-
formance application. Used for short term statistics on the ICU’s performance.

The second tab is a new tab, HCW Comparison View (see Figure 9). The purpose of this

tab is to give users the ability to review compliant versus non-compliant patient contacts within

an ICU. The user applies filters on the right side of the screen to generate a chart on the right.

The user first picks which ID badge group they wanted to review (e.g. all, occupation like RN,

shift or individual ID) and the time range (the same four default time ranges used throughout the

Hyreminder system).

2 BACKGROUND 13

Figure 9: ID Based HCW Comparison View - a screenshot from the original Hand Hygiene Perfor-
mance application. Used for comparing the performance of workers in the ICU. There is no data
for some workers because this system was never live, and those workers didn’t get any dummy data.

The third tab is HCW Time-based View (see Figure 10). This tab has the same purpose as

Group Based’s Detailed Statistics, and is similar in that it has four charts with compliance rates over

the same four time ranges. The difference is that the ratio is between compliant and noncompliant

patient contacts. The user selects which ID badge groups, using the same options as on HCW

Comparison (Figure 9), to see charts for.

2 BACKGROUND 14

Figure 10: ID Based HCW Time-Based View - a screenshot from the original Hand Hygiene Per-
formance application. Used for longer term statistics on the ICU’s performance.

The fourth tab is Reporting (see Figure 11). This tab is similar to Group Based’s Reporting,

however the ID Based Reporting doesn’t have any preset buttons. The user can use the drop-down

menus to build a custom report. First they select which ID Badge group to use, with the same

options from HCW Comparison, and then select a time unit, time range and aggregation, same as

Group Based’s Reporting.

2 BACKGROUND 15

Figure 11: ID Based Reporting - a screenshot from the original Hand Hygiene Performance appli-
cation. Used for downloading long term statistics on the ICU’s performance.

The fifth tab is Options (see Figure 12). The tab is identical to the Group Based Options tab.

Figure 12: ID Based Options - a screenshot from the original Hand Hygiene Performance applica-
tion. Used for changing the user’s password and switching ICUs.

2 BACKGROUND 16

2.3.3 Multi-ICU Functionality

The Multi-ICU interface has similar tabs to both the Group Based and the ID Based interfaces.

The first Multi-ICU tab is the Overall-Compliance View (see Figure 13). This tab allows users to

see the compliance of all units. Displayed on the screen is the hand wash count, the total room

enters/exits, and the patient contacts. Again displayed in a large font is the overall performance.

Figure 13: Multi-ICU Overall-Compliance View - a screenshot from the original Hand Hygiene
Performance application. Used for short term statistics on all ICUs performance.

The second tab is the Units Comparison View (see Figure 14). This tab allows the user to select

ICUs for comparison and the time range to compare by (the same four time ranges). After selecting

ICUs and a time range, a chart is populated on the left side of the screen. The chart shows ICUs

across the x-axis and event counts on the left y-axis, with a ratio overlaid on top (right y-axis).

2 BACKGROUND 17

Figure 14: Multi-ICU Units Comparison View - a screenshot from the original Hand Hygiene
Performance application. Used for comparing performance between ICUs.

The third tab is the Time-based View (see Figure 15). This tab is similar to the Group Based

Detailed Statistics and the ID Based HCW Time-Based interfaces. On the left of the screen, the

user selects ICUs to compare and four charts are populated in the standard time ranges.

Figure 15: Multi-ICU Time-based View - a screenshot from the original Hand Hygiene Performance
application. Used for longer term statistics on all ICUs performance.

The fourth tab is Reporting (see Figure 16). This tab was not completed, and thus is shown to

2 BACKGROUND 18

the users as a blank tab. The fifth tab is again Options (see Figure 17), same as the Group Based

and the ID Based interfaces.

Figure 16: Multi-ICU Reporting - a screenshot from the original Hand Hygiene Performance appli-
cation. Would be used for downloading long term statistics on all ICUs performance.

Figure 17: Multi-ICU Options - a screenshot from the original Hand Hygiene Performance appli-
cation. Used for changing the user’s password and switching ICUs.

2 BACKGROUND 19

2.3.4 Anomaly Functionality

As described above in Section 2.3, the Anomaly interface allows an IT staff the ability to trou-

bleshoot the system by providing them the needed information on malfunctioning sensors. The

Anomaly basic interface is the same as the Hand Hygiene Performance application’s interface,

however the tabs are different. The first tab of the Anomaly application is Current Errors (see

Figure 18). The purpose of this tab is to see all of the sensors in an ICU with errors. The user

first selects an ICU from the drop-down menu on the right side of the screen. A list of sensors with

errors is populated on the left. Each sensor has a location, type, and error type and reported time.

The user can then locate the sensor in the hospital and attempt to fix it.

Figure 18: Current Errors - a screenshot from the original Anomaly application. Used for viewing
which sensors have errors in the selected ICU.

The second tab is Sensor Detail (see Figure 19). This tab gives the user details on a particular

sensor. The user first selects a sensor from the drop-down menu of the right side of the screen. The

details of the sensor appear on the left. Details include the name, location, and current status. The

page also contains the history of the sensor – including events in the past month and a count of

each type of error – located in the middle of the screen. This screen wasn’t properly finished, as

text goes off the screen and there is no scroll bar.

2 BACKGROUND 20

Figure 19: Sensor Detail - a screenshot from the original Anomaly application. Used for viewing
details about a specific sensor.

The third tab is Sensor History (see Figure 20). This tab gives a chart with the hits on a

particular sensor in the past twenty-four hours. The user selects a particular sensor from the drop-

down on the right, and a chart is populated on the left. The user can scroll backward and forward

in time using the arrows at the bottom of the chart.

Figure 20: Sensor History - a screenshot from the original Anomaly application. Used for viewing
hits on the selected sensor.

2 BACKGROUND 21

The fourth tab is Options (see Figure 21). This tab is nearly identical to the Options tabs

in Hand Hygiene Performance, however there is no drop-down for switching between different

ICUs – the user is always in all ICUs. The typical user for the Anomaly application is a system

administrator who takes care of the full system, and didn’t need to get a view into a particular

subspace configuration like an ICU.

Figure 21: Options - a screenshot from the original Anomaly application. Used for changing the
user’s password.

2.3.5 General Architecture

The general architecture of the original Hyreminder system with the Google Web Toolkit framework

consists of two main packages: com.mycompany.project.client and com.mycompany.project.server.

The client package has the GroupView class, that contains all of the user interface elements

(com.google.gwt.user.client.ui). Also in the client package are interfaces that contain methods

to be called by the client, for example, there’s the GetHCWList and GetHCWListAsync. The

server package contains implementations for these methods, for example GetHCWListImpl. These

implementations contain code for getting information from the database and perform any needed

calculations before the client is able to display the information. All database calls are handled in

the DB Operations class in the com.mycompany.project.server.db package.

2.3.6 Database Tables

The data from the sensor hits are stored in three tables: enexlive (Figure 22), washtablelive (Fig-

ure 23), and contact1 (Figure 24). These tables are populated by the Data Grabber program (see

2 BACKGROUND 22

Section 2.3.7). These three tables contain the majority of the information used in the Hyreminder

web application.

Figure 22: The enexlive table schema. This tables contains the door sensor hits.

Figure 23: The washtablelive table schema. This tables contains the hand wash sensor hits.

2 BACKGROUND 23

Figure 24: The contact1 table schema. This tables contains the patient contact sensor hits.

In addition to the sensor hits tables, Hyreminder also uses the user table (Figure 25). This table

is used for checking log in details. Additionally, the table is used in the ID Based system to get

details about the staff responsible for the patient contact.

Figure 25: The user table schema. This tables contains the user information

In the Anomaly application, three tables are used to store information about sensors: sensor real

(Figure 26), sensorErrorCur (Figure 27), and sensorErrorHistory (Figure 28). Discovery of these

errors, identification of the error type, and anomaly correction are all challenging issues that are

beyond the scope of this MQP.

2 BACKGROUND 24

Figure 26: The sensor real table schema. This tables contains sensor information.

Figure 27: The sensorErrorCur table schema. This tables contains currently with an error.

Figure 28: The sensorErrorHistory table schema. This tables contains the history of sensor errors.

2 BACKGROUND 25

2.3.7 Additional Programs

In addition to the Hyreminder web interface we worked on, there are additional parts to the system,

including the Performance Screensaver, the Data Grabber, the Anomaly Detector and the Alerting

System. All of these programs are beyond the scope of this MQP, however a brief overview can be

useful to understand context for the work that we completed.

The Performance Screensaver is on display in the ICUs where all of the nurses and doctors can

see it. It’s used to display real time feedback on how the staff are performing. It appears similar

to the Overall Compliance tab, displaying counts of hand washes, enters and exits, and patient

contacts, as well as the compliance rate.

The Data Grabber is the bridge between the physical sensors and the Hyreminder system. At

periodic intervals, it grabs in near normal time new events sensed in the physical environment and

pushes them into the Hyreminder system database. The Data Grabber, in addition to detecting

events on-the-fly, will also collect statistics about expected behavior of sensors. The Data Grabber

takes care of filtering some outliers, such as the large numbers of hits that could result from a

malfunctioning sensor, to give the Hyreminder system cleaner input. Last but not least, this

module also inserts the relevant event data in the above Hyreminder System’s tables for use by the

Hyreminder web application.

The Anomaly Detector reads the stream of data from the sensors and detects information that

varies from the norm. Once an anomaly is detected, the information displayed is corrected, so that

performance is not skewed by malfunctioning hardware. The anomaly is noted in a table in the

database, where the Anomaly web interface pulls from. Additionally, the Alerting System alerts

the admin staff of the Hyreminder system when an anomaly is detected in a sensor.

3 REENGINEERING HYREMINDER 26

3 Reengineering Hyreminder

The Hyreminder System had a number of issues with the code itself, as we will discuss in detail

below. These issues then lead our team to research alternative frameworks, ultimately deciding to

rebuild the project in the Spring MVC Framework.

3.1 Analysis of Existing Hyreminder System

In this section we will discuss how we evaluated the Hyreminder system and what shortcomings we

discovered.

3.1.1 Comments and Class Files

Several issues with the code base were found by performing static analysis of the code. Using the

PMD15 plugin for Eclipse, approximately 12% of the lines of code had a significant warning or

error. Some of these errors included a class with only a private constructor, variables that could

be declared final to allow more compiler optimizations, and variables that were declared but then

never used. While many of these found violations would be trivial to fix, some, such as classes

being too large or program flow issues, would require much more time and effort to clean up.

The code base also had very little commenting, either in the form of inline comments or Javadoc

style class methods. Additionally, large portions of unused or inactive code were present in several

files as block comments.

3.1.2 Testing

The Hyreminder system had very little testing attached to it. There were no unit tests, and the

only method to determine if the system was working correctly was to perform manual testing in the

browser itself. From a maintainability standpoint, this was very bad, since if a developer decided to

make a change there was very little the developer could do to ensure that the change didn’t break

something else other than by manual testing, which is time consuming and unreliable.

3.1.3 Usability

To test the usability of the applications, we simply used them ourselves. As we had little interaction

with the application before, we were perfect to test the system as new users. We noticed several

aspects that were difficult or confusing to use. One usability issue was the fixed size of the browser

window. Due to the lack of scaling, the Overall Compliance tab, for example, would always be

rendered as if it was on a large screen, which caused scrollbars to appear if the browser window

was resized or the screen resolution was too low. Additionally, there was a lack of cross-browser

15PMD. (2013). http://pmd.sourceforge.net/

http://pmd.sourceforge.net/

3 REENGINEERING HYREMINDER 27

compatibility. The system would work only with Internet Explorer 8; any other browser (e.g.

Firefox, Chrome, Internet Explorer 9, or Safari) would result in a message stating the incompatibility

instead of bringing up the normal login screen. As the system was built with Google Web Toolkit,

it was confusing as to why it could not be displayed on Google Chrome.

Another usability issue was the navigation. To change ICUs, a user would have to first go to

the Options tab, then select an ICU from a drop-down menu, which would then redirect the user

to the new ICU’s Overall Compliance tab. For the ordinary user, a head nurse with only one ICU,

this wouldn’t be a problem. However, for administrators with access to multiple ICUs, this would

make it a tedious process to download reports for multiple different ICUs. Another aspect of poor

navigation was in the Anomaly web application. There was no connection between pages with

reference to a sensor ID number, so the user would have to continuously relocate the number in a

drop-down.

Some other issues that we noticed were problems were the speed at which the charts were loaded

and the reports were generated. In some cases, these tasks were so slow that we wondered if they

were functioning or not. We made note of all of these usability issues – browser and navigation

issues and the speed of charts and reports – and knew we wanted to fix them.

3.2 Options for Going Forward

After reviewing the current state of the code, we knew we needed to make some major changes to

it, in order to align with our main goal of creating a flexible and maintainable system. The most

obvious option would be to clean up the shortcomings in the existing code. The second option

would be to to rebuild the system from near scratch, either using the existing framework, Google

Web Toolkit, or a new framework such as Spring MVC.

3.2.1 Why Not Google Web Toolkit?

GWT attempts to bring the desktop application paradigm to the web and causes more problems

than solutions. One feature of GWT is the abstraction of Javascript into Java. According to

Jeff Atwood, “all good programming abstractions are failed abstractions.”16 In his article Atwood

brings up the fact that heavily abstracted frameworks result in unnecessary overhead on simple

tasks. GWT not only abstracts Javascript, but it also abstracts away HTML. The commonly used

markup language is interwoven into Java objects resulting in a complicated series of parent-child

relationships. With multiple developers the task of deciphering this code at a later date could prove

problematic.

The ThoughtWorks Technology Advisory Board has stated its opinion of GWT by saying “GWT

16Atwood, Jeff. (2009, June). All Abstractions Are Failed Abstractions. http://www.codinghorror.com/blog/
2009/06/all-abstractions-are-failed-abstractions.html

http://www.codinghorror.com/blog/2009/06/all-abstractions-are-failed-abstractions.html
http://www.codinghorror.com/blog/2009/06/all-abstractions-are-failed-abstractions.html

3 REENGINEERING HYREMINDER 28

is a reasonable implementation of a poor architectural choice. GWT attempts to hide many of the

details of the web as a platform by creating desktop metaphors in Java and generating JavaScript

code to implement them.’17 They go on to agree with the statements of Atwood by saying that

it is impossible to hide such complex abstractions without some problems eventually popping up.

Javascript is a useful language by itself for client-side scripting. When abstracted into Java, you

end up with a union of the problems and an intersection of the benefits.18 GWT is a good choice

for building a simple, desktop-like application on the Web, however when the application becomes

sufficiently complex, any advantages brought by GWT become moot.

3.2.2 Why Spring?

The Spring Web MVC Framework19 is a well-designed, robust and flexible framework especially for

those rapidly developing web applications using the Model-View-Controller (MVC) design pattern.

Spring is a lightweight framework that enables developers to build enterprise-level applications

with Plain Old Java Objects (POJOs). The Spring Framework itself is open-source with numerous

developers. However it is also supported commercially by VMware who makes profit through selling

books and consulting on Spring. This means that Spring has a large development and support

network which makes it ideal for a long-term project. Much of Spring is designed with the idea of

“convention-over-configuration” to allow for rapid development. In other words, Spring by default

will be configured the way that the majority of the developers will use it, allowing those developers

to skip the necessary configuration. Despite this, it is still possible to configure Spring to fit specific

needs that may not be the convention, a developer would be required to take the configuration

steps that would be standard with a different framework. Spring also provides an easier testing

experience for unit testing by injecting test data into JavaBeans20 and building mock classes to

simulate Java HTTP objects.

3.3 The Reengineering

After getting permission to reengineer the Hyreminder web applications we first created the new

Spring project. An early simple Spring MVC project with bare bones functionality was created for

us to use as a base as we added more content. The CSS and general Hyreminder page template

was copied over from the GWT system to be used as a starting point.

We started re-coding with the Group Based functionality. Each of us took different sections to

work on. We reused the original code where possible, cleaning it up as we went. The database queries

17ThoughtWorks Technology Advisor Board. (2011, July). Technology Radar.
18C, Nick. (2011, January). When not to use Google Web Toolkit?. http://programmers.stackexchange.com/que

stions/38441/when-not-to-use-google-web-toolkit
19Spring Source Community. (2013). http://www.springsource.org/
20Vogel, Lars. (2009, August). Dependency Injection with the Spring Framework - Tutorial. http://www.vogella

.com/articles/SpringDependencyInjection/article.html

http://programmers.stackexchange.com/questions/38441/when-not-to-use-google-web-toolkit
http://programmers.stackexchange.com/questions/38441/when-not-to-use-google-web-toolkit
http://www.springsource.org/
http://www.vogella.com/articles/SpringDependencyInjection/article.html
http://www.vogella.com/articles/SpringDependencyInjection/article.html

3 REENGINEERING HYREMINDER 29

were reused, modifying them where necessary to make them run more efficiently (see Section 4.1).

After the Group Based functionality was brought up to the original system’s level of functionality,

we moved on to the ID Based and Multi-ICU functionalities. These two functionalities had some

similarities to the Group Based functionality, so we were able to refactor and reuse some of the code

we previously wrote. Both the ID Based and Multi-ICU versions had some incomplete functionality

in the original system, such as reporting, so we finished those off (see Section 4.1). Lastly, we worked

on the Anomaly web application, which also had an uncompleted feature: sensor commenting (see

Section 4.2).

3.3.1 The Model-View-Controller Pattern

Spring uses the Model-View-Controller design pattern, which is an effective way to develop a Web

Application.21

We created numerous models, such as a Room, Sensor and SensorLocation. These models hold

information that we pulled from the database, so they can be easily manipulated and displayed.

The original code had no notion of models, so all of these were created from scratch. In general,

these models are simple Java objects with just constructors, getters and setters.

Views are .jsp (JavaServer Pages) files that dynamically create an HTML document. We needed

to rebuild the user interface as none of the original code was compatible with the .jsp files. We

used the styles defined in the original code to create the .css (Cascading Style Sheets) files and we

modeled the placement of HTML elements off the original. This preserved the look and feel of the

original Hyreminder web application.

Controllers link the models and views. In Spring, the controller receives the page request and

orchestrates getting the data from the database, manipulated as needed, and given to the view for

display. The controllers make use of services for retrieving and manipulating the data.

For example, when the OverallComplianceController receives the request from the client for

/ICU6/hygiene it calls methods from the OverallComplianceService for the appropriate data. The

controller puts the data into a Spring Model for use in the view: hygiene.jsp.

3.4 Static Code Analysis Statistics

To compare the old code with our new, reengineered code in a concrete and objective manner,

we used CodePro Analytix22 to analyze both systems for quality metrics and rule violations. The

quality metrics measure statistics such as lines of code, average number of lines of code per method,

and the abstractness of the code. The rule violations flag segments of code that break design

21msdn. Model View Controller. http://msdn.microsoft.com/en-us/library/ff649643.aspx
22CodePro Analytix. https://developers.google.com/java-dev-tools/codepro/doc/

http://msdn.microsoft.com/en-us/library/ff649643.aspx
https://developers.google.com/java-dev-tools/codepro/doc/

3 REENGINEERING HYREMINDER 30

practices based on a ruleset. These flags are different colors based on severity, and range from the

minor warning of a blue flag up to the critical issue red flag.

3.4.1 CodePro Metrics

There were several metrics generated by the CodePro tool that we used to compare the two systems.

This section first shows how our code compares to the original GWT version in several metrics in

Table 1, and then describes what each of those metrics mean.

Table 1: CodePro Metric comparison of the old and new systems.

Metric Old (GWT) New (Spring)
Abstractness 19.9% 15.5%
Average Block Depth 1.42 0.92
Average Cyclomatic Complexity 3.59 1.48
Comments Ratio 17.4% 7%
Lines of Code 19,169 11,372

Abstractness - Abstractness measures the ratio of abstract classes and interfaces to total types.

In general, more abstractness is better.

Average Block Depth - This averages the nested block levels over each method. A getter or

setter would have a block depth of 0, while a complicated nested for loop would have a much higher

depth. Having low average block depth is desirable.

Average Cyclomatic Complexity - This metric represents the average cyclomatic complexity

of each method in the project. The cyclomatic complexity of a method measures how many distinct

execution paths exist in it. For example, a simple getter would have a complexity of 1, while a

method with many if statements would have a much higher complexity. In general, the smaller the

average cyclomatic complexity, the less each individual method has to do, and thus a small value

for this metric is ideal.

Comments Ratio - This is computed simply as the number of comment lines divided by the

total number of lines of code. This is a rough metric for measuring how much documentation is in

the code. This can be misleading, as this does not measure how useful the comments are, however

in general a higher ratio is better to have than a lower ratio.

Lines of Code - This is not very useful in and of itself for comparing projects, but it does give

an indication of the scale of a project.

Overall, these metrics provide some interesting results. It is important not to only look at the

numbers but also what the numbers mean. For example, with the comment ratio, our system has

about half the original system’s ratio. However, large sections of the old code are commented out,

and there are multiple instances of unnecessary comments that do not contribute much to under-

standing the code. By contrast, when developing our code we strived to make it self-documenting,

3 REENGINEERING HYREMINDER 31

so that the code structure and variable names would explain themselves, reducing the need for

comments on every line. The reason that our code has a much lower average cyclomatic complexity

is because it is much more streamlined into methods. We have many private helper methods that

do one task only. Similarly, with our code having a lower average block depth, we designed our

methods to be as simple as possible, avoiding nested conditionals or loops where possible.

3.4.2 CodePro Code Audit

The ruleset we used for the code audit was a modified version of the standard ruleset used by

CodePro. Our version was scaled down from the normal ruleset, as we removed rules that we as a

group disagreed with based on our programming experiences. Our final ruleset included 325 rules.

By applying the same rules to both systems, we were able to compare the frequency of moderate

yellow and severe red flags in both systems, as seen in Table 2.

Table 2: CodePro Audit results, as total flags and percent of total code.

Flag Type GWT Total GWT Percentage Spring Total Spring Percentage
Yellow (Medium) 98 0.51% 9 0.08%
Red (High) 1568 8.18% 0 0%

In the process of completing our reengineering, we addressed all of the rule violations in our code,

fixing nearly all of them. Some of the red flag violations on the original system mark critical areas

where the application’s security could be compromised, such as code that allows SQL injections.

However, the real difference between our code and the original is that, since we wanted to make a

well-built and reliable codebase, we made sure we went through the code and cleared any critical

violations. The remaining yellow violations in our code are actual violations of the rules, but for

which there is no easy solution. For example, in one method in the stress test framework, we used

the thread.stop() method, which is deprecated. Although this is a violation and flagged as such,

our reasons for use of the method are documented thoroughly right before the statement itself.

4 NEW FEATURES 32

4 New Features

After converting the Hyreminder system from Google Web Toolkit to Spring and the web application

was back to running to the original level of functionality, we implemented more features for the

system. We started by completing the reports for ID Based and Multi-ICU. We added commenting

on sensors. Lastly, we tackled the issue of tracking and mapping moving sensors.

4.1 More Reports Available

The original Hyreminder system had the Group Based reporting completed with unstable per-

formance which varies from less than ten seconds to several minutes to generate the report (see

Section 7.2.2 for more details). ID Based was only a user interface with no database calls, and

Multi-ICU had neither. We implemented the reporting functionality for the ID Based and Multi-

ICU systems. While similar to the existing reporting functionality, the different nature of the ID

Based system means that there are more options available to the user. For example, the user can

choose to group by employee ID or by work shift, and get reports based on those criteria instead

of the entire ICU.

In general we preserved the original user interface design from the Google Web Toolkit version.

The ID based and Multi-ICU versions both implement drop-down menus for users to select different

time units, time ranges and group types. In the ID based version we added parameters of occupation,

shift and ID number. In the Multi-ICU version we added checkboxes for each individual ICU unit,

enabling users to generate flexible reports based on their needs by indicating their desired settings.

As we updated and added queries associated with the reporting module, we improved perfor-

mance in reducing the time cost for downloading reports. This was accomplished by combining

multiple queries into large queries so that there were less round trips to the database, greatly de-

creasing the time cost. All queries were moved from database operations class to the database as

stored procedures to reduce the queries transmission time cost. See code clips from the two versions:

Google Web Toolkit in Figure 29 and Spring in Figure 30.

Figure 29: Code clip in Google Web Toolkit version. This code shows the query for getting the
Group Based past 8 weeks report data.

4 NEW FEATURES 33

Figure 30: Code clip in Spring version. This code shows the query for getting the Group Based
past 8 weeks report data.

From the code comparison example above, the reengineered hyreminder system is able to gen-

erate data of all requests by calling a query only once instead of looping and calling the query eight

times to generate the data for the past eight weeks. This has a major impact on the performance

by minimizing round-trip transmission costs.

See the developer documentation in Appendix D for more information.

4.2 Sensor Commenting

One desired feature was to be able to add comments on a sensor, such as “battery changed.” Since

this action is being performed on one particular sensor, we added the commenting interface onto

the Sensor Details tab (see Figure 37). After the user submits a comment, the comment details are

stored in the newly created sensorComments table (see Figure 31).

Figure 31: The sensorComments table schema. This tables is used to hold comments on a sensor.

4.3 Mapping Sensors

Doctor Ellison asked us to display where within which ICU each static and moving sensor was

located. For the moving sensors, such as those on beds and equipment, this requires storing locations

of each sensor. The recent history of a moving sensor is used to determine its current or last

known location. Additionally, having the map of where sensors are believed to be will help with

maintenance of the system. Sensors could go missing for a number of reasons - either the bed has

4 NEW FEATURES 34

moved outside of the sensor net area, for example to an operating room without no sensors, or the

sensor is malfunction due to battery or other hardware issues.

4.3.1 Restructuring Sensors

When we started to discuss how to implement mapping of sensors, we learned that physical sensor

IDs could be recycled after being deactivated. To account for this, when a sensor was replaced

in the past, all instances of the old ID were replaced with the new ID in the database. As the

database grows this will become increasingly resource consuming. To deal with this problem, we

implemented a logical sensor concept in addition to the physical sensor concept. A logical sensor

has a unique ID that will be used as a primary key in the tables, which will be connected to one

“current” physical ID that represents the actual sensor hardware unit. In addition, the logical

sensor will have a list of physical sensor IDs that have been connected in the past to the logical

sensor. Only one physical sensor at a time will be active per logical sensor. Lastly, a logical sensor

will have a location. For static sensors, this will be set at creation of the logical sensor. However,

mobile sensors will be attached to hospital beds and will have their locations calculated based on

proximal sensor hits logic, explained in more detail below.

4.3.2 Tracking Moving Sensors

The sensor tracking system keeps a record of the time difference between a worker triggering a

handwash event and triggering a patient contact event - which is a nurse approaching a bed sensor.

Since the handwash sensors are fixed in location, by setting distances of each handwash sensor

to several nearby rooms during the initial setup, the travel times for an employee to get from a

handwash sensor to a bed sensor will allow the system to get a fairly accurate location for the bed,

mostly due to the relatively large number of encounters a bed will have with one or more employees

throughout any given day. Though it will be impossible to achieve 100% accuracy about the precise

physical location of a bed, a good enough estimate provides a good starting point to search for a

missing bed.

The logic for determining a bed location comes in two parts. The first part generates a number

of separate confidence events for a given bed and location based on information about bed contacts

and handwash sensors. These are generated using the distances between the sensors and locations

as described above. When a hand wash sensor and a bed sensor have events logically close to each

other, in time, this will generate and store a confidence event for each configured location between

the location and the bed. The confidence is calculated using an exponential scaling on the time

difference between the two events. If there is no difference, the confidence is 100%, whereas if the

time difference is equal to or greater than the configured distance then the confidence 0%. If a

sensor has no configured distances it will not be considered for these calculations.

4 NEW FEATURES 35

The second part of the logic uses the confidence events generated by the first part to determine

a list of location confidence pairs for a given bed. It aggregates all of the recent confidence events

for the bed within a certain threshold. Each confidence is decayed slightly based on how long it

has been since the event has happened. Next, all of the decayed confidence events are weighted

exponentially based on how recent they are and then averaged together to produce a total confidence

for a given location and bed. We used one minute as a default threshold, however experimentation

would need to be used to determine a more accurate threshold for an active ICU.

For example, given a threshold of one minute, if there was one confidence event of 100% 30

seconds ago, we would report a 96% confidence due to the confidence decay. We are still pretty

sure it is there, but given it has been 30 seconds we are not 100% sure. For another example, if

we had two events, the first one second ago with 100 confidence, and one 50 seconds ago with 1%

confidence, we would report 99% confidence as the 1% confidence event is weighted so negligibly in

comparison to the 100% confidence event.

In the case where we don’t have any events within our one minute threshold, the system will

attempt to find the most recent event for a given bed and use just that, no matter how far into

the past it will need to go and stretch the threshold accordingly. This will at least give us the last

known location of the bed with a relative confidence. As an example, if the last event we had was

3 hours ago with 100% confidence, we would report that we are 38% confident that the bed is in

the stated room.

This system is not perfect, as we have had no real data to test it with. Realistically, many of the

constants would need to be configured through rigorous data collection and user testing in order

to produce accurate estimates. What we have provided is a system that would allow for a future

team to easily implement such a system once the data is available.

5 GRAPHICAL USER INTERFACE DESIGN 36

5 Graphical User Interface Design

This next section describes changes to the graphical user interface. We start with general im-

provements such as browser compliance, scaling to screen size, and navigation. Next we discuss

the changes to the anomaly interface. Lastly, we explain the new user interface used for mapping

sensors.

5.1 Browser Based Improvements

One noticeable improvement regarding the user interface is that users can access the application

using more browsers. The original system used only Internet Explorer 8. However now users can

access the site using additional browsers including Internet Explorer 8 and 9, Chrome, Firefox and

Safari. We developed and tested on a number of operating systems including Windows 7, Windows

XP and Mac OS.

In addition to cross browser support, there is now better support for window sizes. The original

system had the browser use the full screen size instead of the window size. Now users can keep the

window at their desired size without needing to horizontally scroll on the page. In Figure 32 the

user has the window at their full screen width (1681px x 652px) and in Figure 33 they have reduced

the window size to 1020px x 652px. In both versions, they do not need to horizontally scroll. This

is accomplished by not setting elements on the page to reside in specific pixel locations based on

the screen size.

Figure 32: An example of how the web application acts at a resolution larger than the minimum:
at a resolution of 1681px x 652px.

5 GRAPHICAL USER INTERFACE DESIGN 37

Figure 33: An example of the same screen as Figure 32 reduced the the minimum resolution width:
at a resolution of 1020px x 652px.

While this flexibility is good, we still need to keep in mind that layouts can become messed

up on small screens. The W3 Consortium advises that many countries still use 800px by 600px

screens, but the U.S. typically has larger than 1024px by 768px screens.23 We have set a minimum

width of 1000px, which is the smallest we could set due to the horizontal space needed for the logo

and title. With window sizes less than 1000px, the user will still need to horizontally scroll. We

deemed this an acceptable trade for keeping the layout looking clean.

5.2 Work Flow Improvements

We improved the user experience by reducing the effort it takes to change the ICU. In the old

system, they needed to go to the Options tab, select a new ICU, and be redirected to the Overall

Compliance tab. Now there is a drop-down menu at the top of every screen, in the tab bar next

to the current ICU (see Figure 34). Changing the ICU keeps the user on the same tab, assuming

that the current tab exists in both ICUs, otherwise a similar tab is selected. For example, when

switching from an ID Based “HCW Time Based” tab to a Group Based, which has no “HCW

Time Based” tab, the system will redirect the user to the Group Based equivalent, the “Detailed

Statistics” tab. We added this navigation to both the Hyreminder and Anomaly web application.

23W3 Consortium. (2010, November). Display capabilities. http://www.w3.org/International/questions/qa-
display-capabilities.en.php

http://www.w3.org/International/questions/qa-display-capabilities.en.php
http://www.w3.org/International/questions/qa-display-capabilities.en.php

5 GRAPHICAL USER INTERFACE DESIGN 38

Figure 34: A screenshot showing the ICU switching interface. The user selects the desired ICU
from the drop-down and they are automatically redirected to the appropriate ICU.

Another workflow improvement we accomplished through the switch from the Google Web

Toolkit framework to the Spring framework was adding different urls for different screens. In the

original system, all pages of the application were at: /liveGroupbased/. With our system the main

page is at: /SpringHyreminder. However the reporting is at /SpringHyreminder/ALL/reporting

and ICUs have different URLs: /SpringHyreminder/ICU6/reporting. This becomes extremely

useful in the Anomaly interface where the individual sensor ID is used as in: /SpringAnomaly/ICU

6/sensor/1000009. The ability to have the sensor ID number in the URL is helpful for switching

pages. A user can click on a link on the Sensor Details page to either the Map or Maintenance

pages and the sensor number will be remembered for them.

5.3 Anomaly Interface

The Anomaly system underwent a number of changes. The font size was decreased throughout this

system due to the fact that this system is used for maintenance and doesn’t need to be read from a

distance. The smaller font makes the screen easier to read, allows more text to fit on a screen and

reduces the need for scrolling.

The first fix made was on the Sensor Details tab. Observe how in Figure 35 the text goes off

the screen and is covered by the copyright text, without a scrollbar to remedy the issue.

Figure 35: A screenshot of overlapping text in the original Hyreminder system.

With the reengineering of the Hyreminder system, we were able to fix this. In the original

system the text was inside of a container with a predefined size. The new system allows the text to

take as much room as needed, however the smaller font generally removes this issue (see Figure 36).

/liveGroupbased/
/SpringHyreminder
/SpringHyreminder/ALL/reporting
/SpringHyreminder/ICU6/reporting
/SpringAnomaly/ICU6/sensor/1000009
/SpringAnomaly/ICU6/sensor/1000009

5 GRAPHICAL USER INTERFACE DESIGN 39

Figure 36: Sensor Details - a screenshot from the revised Anomaly application.

The second change made was to combine the Sensor Details and Sensor History tabs into the

Sensor Details tab. It made sense to combine these tabs as they both contain information on one

sensor. With the font size decreased, it was easy to fit the chart from the Sensor History onto the

Sensor Details tab.

The last change to the Sensor Details tab was the addition of Comments (see Figure 37). The

user first chooses an existing comment or types in their own. After adding the comment the page

is reloaded and the new comment appears. Comments are sorted with the most recent first. Lastly,

comments can be removed in case they had been erroneously added.

5 GRAPHICAL USER INTERFACE DESIGN 40

Figure 37: Commenting interface on the Sensor Details tab.

(a) Adding a comment (b) After adding a comment

The Current Errors tab had improvements to the layout of the reported errors to maximize the

screen space (see Figure 38). The sensor errors are filtered by which ICU the user is currently in.

We added a drop-down for filtering by the types of errors. With the smaller font size, it was harder

for the user to tell where the description of one error ended and the next began, so we added a

thin box around each error. The box is not of a predefined size, so it will always be big enough to

fit the text. Lastly, we utilized white space by allowing the boxes containing errors to fit as many

horizontally across the screen as possible, before going to the next line.

Figure 38: Current Errors - a screenshot from the revised Anomaly application.

5 GRAPHICAL USER INTERFACE DESIGN 41

To the Options tab we added a form for editing a hospital subspace details, such as one ICU’s

details (see Figure 39). This includes a display name and the type of subspace: Group Based or

Id Based. Additionally there’s a file upload dialogue for adding the floor plans for the specific

subspace. This floor plan should be an image file, for example .jpg or .png. This floor plan should

just have the physical aspects of the subspace: individual rooms, doors and hallways and labels as

needed, and doesn’t need to have sensors as they may change. Full details for setting up a new

subspace can be seen in Appendix A.

Figure 39: Edit Room Details section on Options page

5.4 Mapping Interface

The first screen used for mapping sensors that we designed is a screen for viewing sensors on a map.

There are numerous ways to access this page: clicking on a link from either the Current Errors tab

or the Sensor Details tab, or clicking directly on the Map tab. The Map tab (see Figure 40) allows

the user to quickly see where a sensor is located and its status. Using a link from either the Current

Errors tab or the Sensor Details tab will instantly show a map of the correct ICU with only the

selected sensor highlighted. Accessing the Maps screen directly from the maps tab will show the

map of the ICU with no sensors. A user can then choose which sensors to show on the map: all

sensors in the ICU, all sensors with errors in the ICU or select a subset of sensors. The user can

hover over a sensor to see basic details such as its ID, location and status. Additionally they can

click on a sensor to go to the corresponding Sensor Details page.

5 GRAPHICAL USER INTERFACE DESIGN 42

Figure 40: Map- a screenshot from the new screen in Sensor Maintenance.

We considered a couple of ways for the system administrator to set up the locations on a

map, including a configuration file and a user interface. Once we added the sensor abstraction by

separating the concept of logical and physical sensor identification, we had to decide how a user

could add or modify existing sensors. After considering using a configuration file or a user interface,

we decided that a user interface would be the most straightforward for the user. A user interface

would allow more flexibility in making sure a sensor was in the correct location since we could show

a map of the ICU where the sensor was being placed. We determined two main tasks that a user

would need to accomplish: creating and editing the logical sensors; and setting up the coordinates

of where a sensor will appear on the map. We created a new tab, the Maintenance tab, that is

divided into two sub-tabs: Sensor Maintenance and Map Maintenance.

The Sensor Maintenance sub-tab (see Figure 41) is used for creating and editing the logical

sensors. After choosing to create a new logical sensor or edit an existing one, the user must

fill in the details of the logical sensor. This includes tasks such as adding new physical sensors,

activating and deactivating physical sensors, and updating its location when applicable. The steps

for this process is numbered out on the screen, starting with choosing a sensor or adding a new

5 GRAPHICAL USER INTERFACE DESIGN 43

one, then updating the physical sensor information, and lastly specifying whether the sensor moves

or is stationary at a location. If the sensor is stationary, fields for entering a location appear (see

Figure 42).

Figure 41: Sensor Maintenance on page load - a screenshot from the new screen in Sensor Mainte-
nance.

5 GRAPHICAL USER INTERFACE DESIGN 44

Figure 42: Sensor Maintenance after selecting a Stationary sensor - a screenshot from the new
screen in Sensor Maintenance.

To enter a location for the sensor, a user can choose to select an existing location (e.g. Outside

Room 663, see Section for more information of logical vs physical sensors) or add a new one to the

map. If they pick an existing logical sensor, its location will show up on the map as a green sensor.

Alternatively, the user can click “Add New Location” and will be taken to the Map Maintenance

page (explained below). Also in the location section of the screen, there is a checkbox for showing

all existing sensors. The user can hover over a sensor on the map to see the description of its

location.

The Map Maintenance sub-tab (see Figure 43) can be used for creating new sensor locations

or editing existing ones. There are several fields with information for a sensor location, including

5 GRAPHICAL USER INTERFACE DESIGN 45

sensor type (wash, door, or bed), description, and x- and y-coordinates. A user can click and drag

a sensor on the map to update the coordinates.

Figure 43: Map Maintenance - a screenshot from the new screen in Sensor Maintenance.

The last thing a user needs to do on this page is enter the proximity from a bed sensor to

another sensor. These proximities are used for determining the location of the bed as explained

in Section 4.3. The user can add as many proximities as needed by clicking on the “Add Another

Proximity” button and filling in the sensor and proximity. After saving the form the proximities

go into the proximity table (see Figure 44).

5 GRAPHICAL USER INTERFACE DESIGN 46

Figure 44: The proximity table schema. The table is used for storing the proximities between
sensors.

When selecting a sensor location from either the drop-down at the top of the page, or from one

of the proximity sensor location drop-downs, the selected sensor location will be highlighted on the

map. The sensor location is highlighted by two concentric circles zeroing in on the icon on the map

(see Figure 45).

Figure 45: Highlighting the selected sensor location.

(a) Start (b) Middle (c) End

The full steps for using these new screens can be found in the User Documentation, Appendix A.

5.5 User Interface Revisions

The interface shown in the previous sections are the final interfaces we created. As we developed we

got feedback at our weekly meetings with Professor Elke Rundensteiner and Lei Cao. They made

suggestions on wording and consistency with titles. One example is with the Reporting screen. In

the original system the user was asked if they wanted the data Aggregated or not (see Figure 46).

While this term made sense to us as computer scientists, it is not a clear term for the average

user. We ended up renaming the option to Group Values and spelling out exactly what the user

will receive as a report (see Figure 47). While this is more verbose and unnecessary after a user

understands the intended meaning, we decided this was a clearer way for a new user to understand.

5 GRAPHICAL USER INTERFACE DESIGN 47

Figure 46: Aggregate option in original Hyreminder system

Figure 47: Grouping option in the reengineered Hyreminder system

Professor Elke Rundensteiner also had suggestions for creating a more consistent layout, for

example having filters on the same place on all screens, which previously had different spacing

around them. She also had us condense white space on all screens, so that more would fit on a

screen reducing the need for scrolling on a page.

In addition to feedback from ourselves and our weekly meetings with Professor Elke Runden-

steiner, we performed some informal user testing. This involved us asking several peers to look at

and use the Maintenance interfaces, and requesting their feedback. We gave them a brief introduc-

tion of the Hyreminder system – there are sensors on hand wash units and beds and we are tracking

hand hygiene in doctors and nurses. Then we told them that they are the system administrator

and are responsible for the maintenance of the sensor system. We asked them to add a new sensor

to the system and took notes on what they said and did. At the end, we asked them for any general

feedback they hadn’t yet said and if they had any ideas on how to improve the usability.

One peer said there was a lot of information on the Sensor Maintenance screen, and wasn’t sure

where to start. She suggested that we number the steps, and that would have helped guide her

through the screen. As she was filling out the form she skipped entering a physical device I (due to

being given a poor explanation of the task). When asked about it, she hadn’t even realized there

5 GRAPHICAL USER INTERFACE DESIGN 48

was a section for it, despite having found the save button underneath.

On the Map Maintenance screen, one peer got confused with the legend next to the drop-down

for type selection, and tried to click the legend. She suggested making it clearer as to which type

of sensor has been selected. She really liked the click and drag on the sensors.

Another peer had a number of comments on the layout, saying that it doesn’t feel like a form,

and that spacing between elements would make it less of an information explosion. He didn’t even

realize it was a form right away, because he didn’t see the Save button; he suggested that the save

button should always be on the left of the screen, not the right, and that it should always be at

the bottom of a form. He felt that we should move the physical ID section underneath the map.

After explaining why we placed it above the map he said “scrolling is not the end of the world” but

agreed that it might be missed.

After hearing their feedback, we were able to implement some of their suggestions. We numbered

the steps in Sensor Maintenance to aid the user in working through the slightly unusual form. We

moved the physical ID section to the left of the screen and the location section to the right; this

allowed the screen to better follow the “F-Shaped pattern.”24

24Nielsen, J. (2006). F-Shaped Pattern For Reading Web Content. http://www.nngroup.com/articles/f-shaped-
pattern-reading-web-content/

http://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/
http://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/

6 TECHNOLOGIES USED 49

6 Technologies Used

Over the course of this project, we employed several different technologies to achieve our objec-

tives. Each choice we made regarding the use of a particular technology was thought through and

considered before we began using it, to ensure that we were making the best possible decision given

our requirements and the capabilities and limitations of the technology in question.

6.1 Accounts and Security

With the reengineering of the Hyreminder system to incorporate the Spring framework comes a

change to the way user accounts and security issues are handled. The original Google Web Toolkit

Hyreminder system offered no easy way to handle accounts and security so it had to be custom

made. This included the addition of code to verify passwords on login and to issue session tokens

to maintain login sessions. The Spring framework offered a simpler way to accomplish these tasks,

plus more, with the use of Spring Security. 25

Spring Security is a customizable module for the Spring framework that simplified the handling

of logging into the system and preventing unauthorized access to parts of the website. Unlike other

Java standards such as Java Authentication and Authorization Service26 or Java EE Security,27,

Spring Security combines everything into one concise solution for application security.28 By config-

uring Spring Security with an XML config file (see Appendix C), Spring Security will automatically

verify passwords, create a session cookie, and log in the account without the need for any additional

Java code like with the old Google Web Toolkit system. If, in the future, the default methods used

by Spring Security are no longer viable, custom Java classes can be made to override the defaults.

It is both simple to use to accomplish easy tasks and heavily customizable to handle more complex

tasks.

Security should always be a concern for modern day web sites. Associated with each Hyreminder

account is an account role that denotes what parts of the website the account should have access

to this. Spring Security has another feature that has allowed for specific URLs to require certain

account roles in order to be accessed. For example an account with the ICU5 Nurse role can gain

access to the data from ICU5, but will not be able to access any other ICUs unless those roles are

also assigned to the account. By limiting access based on account roles, those accounts with the

correct roles will be able to access their data easily. Yet any unauthorized accounts will not be able

25SpringSource. Spring Security Documentation. http://static.springsource.org/spring-security/site/refe
rence.html

26Oracle. (2011). JAAS Reference Guide. http://docs.oracle.com/javase/6/docs/technotes/guides/security
/jaas/JAASRefGuide.html

27Oracle. (2013). Introduction to Security in the Java EE Platform. http://docs.oracle.com/javaee/6/tutorial
/doc/bnbwj.html

28Mularien, Peter. (2010). Spring Security 3: Secure Your Web Applications against Malicious Intruders with
This Easy to Follow Practical Guide. p18. Birmingham UK: Packt Publishing.

http://static.springsource.org/spring-security/site/reference.html
http://static.springsource.org/spring-security/site/reference.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://docs.oracle.com/javaee/6/tutorial/doc/bnbwj.html
http://docs.oracle.com/javaee/6/tutorial/doc/bnbwj.html

6 TECHNOLOGIES USED 50

to view that data.

For a more detail about the database table structure relating to user accounts, how to modify

data in the accounts, and how to secure URLs, see the developer documentation in Appendix B.

6.2 Charting Libraries

Hyreminder makes heavy use of charts in its pages. Previously, the charts were created with

a library designed for the Google Web Toolkit called Open Flash Charts for GWT.29 Due to the

move over to the Spring Framework, usage of the Open Flash Charts was no longer an option. Thus,

it was necessary to find a framework that would facilitate the creation of charts. After some initial

research, four libraries were considered in greater depth: Highcharts30, JQuery Visualize31, and

JavaScript InfoVis Toolkit (JIT)32, all client-side javascript libraries, and JFreeChart33, a server-

side java library. Based on discussions with both Doctor Ellison and Professor Rundensteiner on

what information they wanted to display in those charts, we put together the following list of design

requirements to aid us in deciding which charting library to use:

• Ability to make both bar and line charts.

• Ability to plot a bar and line chart on the same chart.

• Ability to have two different value scales on the y axis, such as a number and a percent.

• Ability for mouseover popups of datapoint values.

• A free and unrestricted licensing option.

• In the absence of any of the above features, the ability to add them if possible.

In addition to these required features, we also considered performance and usability of the li-

braries as well as the quality of the appearance of the produced charts. Ultimately, none of the four

libraries satisfied all of the requirements, so we were forced to make a choice based on the strengths

and weaknesses of each library. The pros and cons of each library are detailed below:

HighCharts

• Pros

– Has all of the desired features except for a free and unrestricted licensing option.

29Open Flash Chart for GWT. http://code.google.com/p/ofcgwt/
30Highsoft Solutions JS. http://www.highcharts.com/
31Jehl, Scott. (2013). JQuery Visualize. https://github.com/filamentgroup/jQuery-Visualize
32 Belmonte, Nicolas Garcia. (2013). SenchaLabs. JFreeChart. http://philogb.github.com/jit/
33Viklund, Andreas. (2012). Object Refinery Limited. JFreeChart. http://www.jfree.org/jfreechart/

http://code.google.com/p/ofcgwt/
http://www.highcharts.com/
https://github.com/filamentgroup/jQuery-Visualize
http://philogb.github.com/jit/
http://www.jfree.org/jfreechart/

6 TECHNOLOGIES USED 51

– Is well documented and easy to use.

– Produces aesthetically pleasing and highly customizable charts.

• Cons

– The only free licensing option is an educational license which would not work due to the

end goal of this project being commercial viability. Highcharts would either need to be

replaced or licensing would need to be purchased for its continued use.

JQuery Visualize

• Pros

– Simple and easy to understand library, in particular, it is easy to modify.

– Is able to produce line and bar charts.

– Licensed under the MIT license.34

• Cons

– Does not have the ability to plot bar and line charts on the same chart.

– Does not have the ability to have two different y axis scales.

– The only satisfied requirements are the ability to make line and bar charts, as well as

the licensing option.

JavaScript InfoVis Toolkit

• Pros

– Well documented API.

– Is able to produce line and bar charts.

– Also produces high quality graph and tree charts if those should be desired.

– Allows for mouseover hover popups

– Licensed under the new BSD license.35

• Cons

– Does not have the ability to plot bar and line charts on the same chart.

– Does not have the ability to have two different y axis scales.

34MIT License. http://opensource.org/licenses/MIT
35BSD 2 License. http://opensource.org/licenses/BSD-2-Clause

http://opensource.org/licenses/MIT
http://opensource.org/licenses/BSD-2-Clause

6 TECHNOLOGIES USED 52

– Very limited customization of charts.

– While the API is well documented, it is hard to use.

– The library is large and has many features we would not use, it would be particularly

difficult to modify.

JFreeChart

• Pros

– Satisfies all requirements except the ability for mouseover hover popups.

– Well documented API.

• Cons

– It is a serverside chart generation library, this means that the server instead of the client

would generate the charts causing a heavier load on the server.

– The web based implementation of JFreeChart only allows for generated images to be

provided to the client. Not only does this take several times more bandwidth than the

other options, it makes it almost impossible to add mouseover hover to the library itself.

The mouseover hover would need to be a completely separate feature on top of it.

– Since the framework is server-side, it would take quite a bit of configuration to properly

integrate with the Spring server model.

– The library is large and has many features we would not use, it would be particularly

difficult to modify.

Of these four libraries, the option of using HighCharts was discarded rather quickly due to the

licensing option. We decided that it would be better to use one of the free options even if they

would take more work. JavaScript InfoVis Toolkit was discarded mostly due to the rigidity and

complexity of the framework. It was incredibly difficult to figure out how to customize charts to

look the way we wanted them too, and any changes to the framework would not be trivial due to the

complexity. JavaScript InfoVis Toolkit is good assuming you want to produce charts that are very

similar to the charts that it produces. However, the graph and tree charts for JavaScript InfoVis

Toolkit seemed to be easier to work with than the bar and line charts. Due to it’s quality, it may be

a good option if a future project wishes to add charts of this type. The last option to be discarded

was JFreeCharts. While this would be an ideal solution for a desktop application, it is not as good

an option for a web based applications due to the above mentioned limitations of server-side related

challenges. However, it did not meet our needs well. Since it would be a significant investment to

add hover effects to this library, we decided against using it.

6 TECHNOLOGIES USED 53

Having eliminated three of the four options, this left us with JQuery Visualize as the remaining

charting solution available to us. While, of the four options, it has the fewest of the requirements

that we wanted, it is also the easiest library to extend due to its straightforward API and simplicity.

In order to deal with this key limitation, we wrote a significant extension to the library to add

functionality that was required for our project. In particular, we added support for plotting both

bar and line charts on the same graph, functionality for displaying two different scales on the y axis,

and functionality for mouseover hover effects. Since this is an open source library released under

the MIT license, these extensions were released back to the community as a fork of the original

library36. A screenshot of the charts used for the detailed statistics page, created using this charting

library, can be seen in Figure 48. For full information about the details of this extension, please

refer to Appendix ??.

Figure 48: The modified JQuery Visualize37charts displaying the Hand Hygiene Events / Room
Entries-Exists for ICU6 in the last 24 hours. See Figure 4 for a comparable chart.

6.3 Mapping Labrary

With the addition of the sensor tracking, the Hyreminder web application needed a way to visually

display the location of sensors to the user. We wanted to host just one map image per ICU on

36The library can be found on github here: https://github.com/newdog/jQuery-Visualize
37Ibid.

https://github.com/newdog/jQuery-Visualize

6 TECHNOLOGIES USED 54

the server, but we also had to be able to display different sets of sensors depending on the page

and options selected by the user. To satisfy these requirements, we looked for a client-side drawing

library, not a server side one for the same reasons described in Section 6.2. As with charts, we

needed an open license.

We found the JavaScript library Raphaël.38 After looking at demos using the tool and reading

some of the documentation, we added it to Hyreminder. Raphaël allows you to add images to

the canvas, draw shapes, and add text. Elements added to the canvas can be animated, and have

mouseover and click effects. All of these aspects were needed for displaying a map that is dynamic

to the user’s needs. Additionally, the Raphaël library is released under the MIT license.39

When we use the library on a page, we first add the image of the floor plan, stored in the

database, to be the background of the map. Then with information about sensors, also stored in

the database, we can draw them on top of the floor plan. This allows us to have many dynamic

maps, with various sensors shown with a different status, and yet we only need to host one image

file on the server. Because the map is generated with JavaScript, the user can show and hide sensors

without needing to go back to the server for a new map every time.

In addition to adding the floor plan image and drawing sensors, we took advantage of animations

to highlight sensors with two circles zeroing in on the sensor and to click and drag a sensor when

editing the location. We used mouseover effects to show more details about the sensor, and click

effects to direct the user’s browser to the sensor’s page. See Figures 49, 50 and 51 for example of

the Raphaël library used in the Hyreminder application.

Figure 49: Example of Raphaël. This is a map with many sensors (blue shapes) and only one
selected (green).

38Baranovskiy, Dmitry. (2012). Raphaël. http://raphaeljs.com/
39MIT License. http://opensource.org/licenses/MIT

http://raphaeljs.com/
http://opensource.org/licenses/MIT

6 TECHNOLOGIES USED 55

Figure 50: Example of Raphaël. This is a map with many sensors, with two different statuses:
normal (green) and error (red).

Figure 51: Example of Raphaël’s animation capabilities, used to highlight a sensor that has been
selected.

(a) Start (b) Middle (c) End

6.4 Additional UI Libraries

In addition to the two main graphical libraries that we used, JQuery Visualize and Raphaël, we

used a number of other UI libraries to achieve our desired user interface. These libraries include

jQuery Datepicker for picking custom date ranges, jQuery Dialog for user friendly dialog boxes, and

Chosen for searchable drop-down menus.

6 TECHNOLOGIES USED 56

6.4.1 jQuery Datepicker

The Report tabs allow for custom date ranges to be picked by the user (see Figure 52). To aid the

user in entering valid dates, we used the jQuery Datepicker.40 This datepicker is an improvement

on the date picker in the old system for several reasons. First, the user can use drop-downs to pick

month and year instead of needing to scroll back months. The datepicker shows three months at

a time. Lastly, the order of dates is enforced, so that the start date will always be before the end

date.

Figure 52: jQuery Datepicker41with Jan 7 selected as the beginning, so no date before then can be
selected for the end date.

40jQuery Foundation, The. (2013). jQuery UI Datepicker. http://jqueryui.com/datepicker/
41Ibid.

http://jqueryui.com/datepicker/

6 TECHNOLOGIES USED 57

6.4.2 jQuery Dialog

One user feedback that we received was that an information button created a dialog box that made

a warning system sound, making her think something was wrong with the webpage. To improve

the user’s experience, we added the jQuery Dialog42 library. This enables us to create user friendly

dialog boxes, that don’t create a negative sound (see Figure 53 for examples).

Figure 53: Two different example of jQuery Dialog boxes used in the Hyreminder web applications.

(a) An information dialog (b) A logout prompt

42jQuery Foundation, The. (2013). jQuery UI Dialog. http://jqueryui.com/dialog/

http://jqueryui.com/dialog/

6 TECHNOLOGIES USED 58

6.4.3 Chosen

One difficulty with using drop-downs for a long lists of items, such as sensor IDs, badge IDs and

locations, is that it is difficult for the user to find a particular item. To help with this problem, we

used Chosen,43 a JavaScript library that allows the user to search the drop-down. In Figure 54a

a user has clicked on a long drop-down list of sensors. As they begin typing, the list is shorted to

only entries matching what the user has typed, as seen in Figure 54b.

Figure 54: An example of the searchable drop-downs in the Hyreminder application.

(a) Long drop down list of sensors.
(b) A filtered list of sensors based on user’s search
text.

43Harvest. (2011). Chosen. http://harvesthq.github.com/chosen/

http://harvesthq.github.com/chosen/

7 TESTING 59

7 Testing

As mentioned in our analysis of the Hyreminder system (see Section 3.1), the state of testing in the

previous code base was nonexistent. One of our goals was to provide multiple forms of testing that

can sufficiently test the functions and features of the new Hyreminder web application. These tests

not only help to verify that the current code works as intended and is as efficient as possible, but

they also verify that future development will not inadvertently break any functionality. Our tests

can be divided into four main categories: standard JUnit44 unit tests, performance tests by both

stopwatch and the not-so-standard Selenium WebDriver45 tests, correctness testing to verify that

our system performs as desired, and a series of stress tests that push the system to its limit. For

documentation on how to run the tests, see Appendix E.1.

JUnit is an open source framework designed for the writing and running of tests in Java. The

unit tests for Hyreminder are designed to test single units of code such as a function or a class

and verify that that code is functioning as desired. The unit tests are the first layer of defense in

preventing faulty code from being implemented. After making a change to the code, unit tests are

run to verify that nothing broke.

Selenium is a framework that supports web browser automation. The primary benefit of Sele-

nium is that tests can be written to actively navigate a website in multiple web browsers. Selenium

tests offer a huge advantage to verifying correct functionality since it emulates the exact tasks that

the average user would be doing, and thus helps us to identify and fix bugs before a user experi-

ences them. The tests that we have implemented include verifying page loads and verifying report

downloads for each ICU. To verify that all pages of the website load without error, our Selenium

test will open an instance of Internet Explorer, Chrome, and Firefox and proceed to navigate to

every part of the website. Once it opens a page the test checks that it receives a status code of 200,

meaning that the page loaded correctly, and then moves on to the next page. This test ensures that

the system is compatible with the three major browsers. The second set of Selenium tests open the

same three browsers and download every combination of time unit, time range, and aggregation

reports. This makes sure the download links work and acts as a measurement for how long each

download takes. Not only did we test the download speeds of our new reengineered system, but

also the GWT system as well. The test TestGWTReporting measured the time it took to download

all iterations of reports from the GWT system to use as a comparison. These download tests were

used to automate the process of recording times found in the Efficiency Improvements Section 7.2.

A full list of Selenium tests include the following:

• Page Load

– SeleniumPageLoadTests

44JUnit. http://junit.sourceforge.net/
45Selenium Browser Automation. http://docs.seleniumhq.org/

http://junit.sourceforge.net/
http://docs.seleniumhq.org/

7 TESTING 60

• Report Downloads

– SeleniumICU5DownloadTests

– SeleniumICU6DownloadTests

– SeleniumICU7DownloadTests

– TestGWTReporting

The correctness testing was done to ensure that our reengineered system output correct data.

Since our reengineered system was supposed to perform the same tasks as the original, we ran several

correctness tests on our database queries and reporting functions. These reports were generated on

both the old system and on ours, and the data was checked to ensure consistent results. Any errors

we found were investigated and fixed, until we had tested and confirmed that our system was as

accurate as the original.

7.1 Stress Testing

In addition to the testing performed above, we also conducted a series of stress tests on our system.

This has two purposes. The first is that it allows us to identify portions of the system that are

bottlenecks and thus good candidates for performance improvements. Secondly, this allows us to

discover the limits of the system in terms of variables such as hospital size or employee numbers as

well as time. In other words, this helps us to determine at what point these variables become too

high for the system to perform within a reasonable amount of time. For example, the system may

take longer than is acceptable to generate a report if there are more than some threshold of beds in

use in a given ICU. The Hyreminder system has the potential to be deployed at a hospital of any

size. It is crucial that our system is scalable to avoid any bottlenecks or slow loading speeds when

processing large amounts of data.

7.1.1 Framework

For stress testing we went in with the goal of not only producing a set of stress tests, but also

providing an easy way for stress tests to be initialized and used in the future. To achieve this we

developed a simple stress test framework that would allow us and future developers to create and

run their own stress tests with minimal effort. The framework consists of individual test units,

which are written by the developer, and a runner that runs them as per an xml configuration file.

Inside of the xml file are configurations for setting the number of times the test is repeated, a list of

all the parameters as well as the starting value and step value of each, and the number of times to

increment the parameters. The runner creates a report with the results of the test in a number of

possible formats such as text, xml or html format. As of the end of our project the only currently

supported format was html. More information about the framework can be found in Appendix E.2.

7 TESTING 61

7.1.2 Supported Tests

When choosing which parts of our system to test, we focused on both database queries and service

methods that are either used frequently or that require the most time to execute. It is at these

two points where a bottleneck would be most problematic. We selected tests that would cover the

following categories: Chart generation, database operations, reporting, and sensor details. Each of

these areas represent potential weak spots in the system. Significant load times here would limit

the usability of the entire system.

Generating charts is one of the most time consuming portions of our system. Thus is only

natural to stress it to see how it performs with a large number of events in the database. In this

series of tests, we stress the service methods that are called to generate Group Based, ID Based,

and Multi-ICU charts. The test will scale the number of tuples stored in a local database and

simulate the time it takes to generate a single chart of the given type. Thus it effectively judges

the performance of pages such as the Detailed Statistics page which generates four of these charts.

The database operation stress tests target frequently used database queries that do not take

much time to run. Rather than tests the service methods, these tests focus on testing the raw

queries run on the database. The queries selected are those that are run very frequently and often

run multiple times by other parts of the system. The most important of these queries is the one

that retrieves a count of all hand wash events, enter/exit events, and patient contact events and

calculates the compliance ratio. Because of the importance of this query, we’ve tested it with two

varying values. Overall Compliance (Incrementing Rows) stresses how the query performs when

the number of event rows in the data is incremented. The second version of this test, Overall

Compliance (Incrementing Rooms), will measure how the query performs when it retrieves the

compliance ratio across multiple ICUs. It is important to separate out these two variables so that

if there is a problem, the true source can be found.

The reporting stress tests call the service method used to generate an excel spreadsheet while

incrementing the number of events in the database. The execution of the test is similar to the chart

stress tests, we keep adding more events to the database and see how long it takes for the data to

be gathered and inserted into an excel document.

In order to cover every part of the system, we also dive into the Sensor Maintenance component

with the final test. This sensor stress test adds additional sensors with a static amount of sensor

history and sensor comments and tests how long it takes to gather the details of a single sensor.

This type of information would be requested when visiting the Sensor Details page (see Figure 36).

A full list of all stress tests include:

• Charts

– Group Based

– ID Based

7 TESTING 62

– Multi-ICU

• DB Operations

– Overall Compliance (Incrementing Rows)

– Overall Compliance (Incrementing Rooms)

– MICU Compliance (Incrementing Rows)

– Unit Comparison

– Worker Comparison

• Reporting

– Aggregate

– Non-aggregate

• Sensors

– Sensor Details

7.1.3 Results and Analysis

The stress tests listed below were ran ten times at the given limit and the average execution time

was recorded. The computer used to run the tests had the following specifications:

• Operating System - Windows 7 x64 Home Premium

• CPU - AMD Phenom II x4 3.4Ghz

• RAM - 8 Gigs

• Application Environment - Spring Tool Suite 3.1.0

• Java Version - 1.7.0 15

7 TESTING 63

Table 3: Stress Test Results

Stress Test 50,000 500,000 1,000,000 5,000,000
Limit Limit Limit Limit

Overall Compliance 0.678 sec 6.268 sec 16.082 sec 79.698 sec
(Incrementing Rows)
Overall Compliance FAILED @ N/A N/A N/A

(Incrementing Rooms) 1.500 ICUs
MICU Compliance 0.314 sec 3.469 sec 10.102 sec 57.680 sec

Group Based Charts 0.669 sec 3.545 sec 10.280 sec 52.084 sec
ID Based Charts 0.185 sec 2.000 sec 3.739 sec 19.257 sec

MICU Charts 1.442 sec 16.448 sec 43.890 sec 210.058 ms
Worker Comparison 196.059 sec N/A N/A N/A

Unit Comparison 0.357 sec 3.929 sec 8.192 sec 39.028 sec
MakeExcel Day 0.345 sec 3.591 sec 10.916 sec 53.316 sec

Aggregate
MakeExcel Day 0.346 sec 3.587 sec 10.516 sec 51.953 sec
NonAggregate

Table 3 explains the amount of time it took to execute each test at a given maximum limit. For

eight out of ten46 tests, the limit represents the number of tuples inserted into each of the following

tables: washtablelive, enexlive, contact1. The maximum limits were chosen in order to cover the

low, average, and high ranges. To put it into perspective, over the past year the two ICUs the

system is deployed in at UMass Memorial had 2,087,988 enter/exit sensor hits, 953,588 hand wash

sensor hits, and 0 contact sensor hits47 for a total of 3 million rows across the three tables. Our 1

million limit tests will add 1 million rows to each of the three tables resulting in a similar number

of rows as UMass. To test our system on an even larger amount of data, we chose an even higher

limit of 5 million rows of data in each of the three tables. The remaining two tests that were not

mentioned, Overall Compliance (Incrementing number of rooms) and Worker Comparison, have

incrementing number of ICUs and workers respectively rather than sensor hits.

With the exception of one issue that is discussed later, the system performed very well with a

large amount of data. As we increased the maximum limit, the execution time increased at a linear

rate. For example, running the Overall Compliance (Incrementing Rows) test at the 50,000 limit

compared to the 500,000 limit resulted in a 9.24x increase in execution time, which is close to the

10x limit increase. This proves that our system backend is capable of handling a growing amount of

data. When dealing with a realistic48 amount of data, we found no bottlenecks in the areas tested

that could halt the system or result in errors.

46Overall Compliance (Incrementing Rows), MICU Compliance, Group Based Charts, ID Based Charts, MICU
Charts, Unit Comparison, MakeExcel Day Aggregate, and MakeExcel Day NonAggregate

47There were 0 hits in the past year because the contact sensor is used in ID based which is not implemented at
the hospital yet.

48Thousands of ICUs or tens of thousands of workers is considered unrealistic for a single hospital.

7 TESTING 64

When attempting to run the overall compliance query with a list of 1500 ICUs, we received

a Data Integrity Violation Exception. The stored procedure being tested takes in a list of ICU

codes as one of its parameters. This exception was caused because the comma separated values

being passed in was too long resulting in a MySQL Data Truncation error. This limits the number

of ICUs in our system to under 1,500. Such a high number of ICUs is very improbable and it is

unlikely that a single hospital will ever reach that number.

Another data point that stands out is the large execution time of Worker Comparison at the low

limit. The reason behind this is that Worker Comparison is incrementing the number of workers

in the system.Looking at Table 3, the low limit added 50,000 workers to the database. Such a high

number of workers is not likely to occur in a hospital so it is unlikely that it will ever see execution

times as high as the low limit. Setting the limit to 1,000 workers showed a more reasonable execution

time of 2.426 sec. Table 4 shows the run speeds of the two problematic tests at a much lower limit.

Table 4: Stress Test Results with Lower Limits

Stress Test 100 Limit 500 Limit 1,000 Limit
Overall Compliance 0.87 sec 0.288 sec 1.042 sec

(Incrementing Rooms)
Worker Comparison 0.49 sec 0.625 sec 2.426 sec

Due to time constraints, there was no data collected from the Sensor Details stress test. The task

of running and monitoring this test has been moved to the Future Works section (see Section 9).

7.2 Efficiency Improvements

One of the goals of this project is to enhance performance by reducing the time cost caused by

chart creation and report downloading. Generating charts and reports involves querying data from

the database, performing calculations on the data, and putting the data into a user friendly format.

We used three different computers to measure the performance of the Hyreminder application

and averaged the times. In the first trial, we used one computer to run all of the possible tests,

timing them with a stopwatch. In the second trial, we used another computer to run the tests

using Selenium. After the first two trials, we reviewed the times we got for variability. The tests

with high variability were marked for a third trial run, in order to make the average as correct as

possible. The third trial was run on a third computer, again using a stopwatch. After all three

trials were completed, we reviewed the times and removed outliers. For example, one test – the

Spring 12 Month Button in Group Based Reporting – had 14 times, thirteen of which were between

9.0 and 10.3 seconds. The fourteenth time was 15.2 seconds, a clear outlier.

From the averages on both the old application and the reengineered application, we calculated

one value to represent how well our system did. We used the percent formula below. A negative

7 TESTING 65

number indicates a performance gain (faster), while a positive number indicates a performance loss

(slower).

Percent =
New −Original

Original
∗ 100

7.2.1 Chart Creation Performance

For the chart creation performance testing, we used the three computer procedure described above.

First we tested the charts in the main Hand Hygiene system. This includes:

• the four charts on the Detailed Statistics page, one test per type of ICU (Group Based, ID

Based and Multi-ICU);

• comparing all ICUs on the Units Comparison page, one test per time frame;

• comparing workers on the HCW Comparison page, one test per grouping of workers.

See our results summarized in Table 5.

Table 5: Hand Hygiene Charting Performance Comparison

Chart Type GWT Spring Time Percent
System System Difference Change

Detailed Statistics (IC6) 41.71 sec 24.78 sec –16.92 sec –40.58%
Detailed Statistics (IC5)1 40.07 sec 2.51 sec –37.57 sec –93.74%
Detailed Statistics (ALL) 199.38 sec 40.28 sec –159.11 sec –79.80%

Units Comparison, 24 Hours 31.51 sec 4.82 sec –26.69 sec –84.70%
Units Comparison, 7 Days 30.18 sec 4.87 sec –25.31 sec –83.86%

Units Comparison, 8 Weeks 12.06 sec 5.94 sec –6.12 sec –50.74%
Units Comparison, 12 Months 15.83 sec 15.87 sec 0.04 sec 0.25%

HCW Comparison, All Workers, 12 Months 4.21 sec 1.47 sec –2.74 sec –65.07%
HCW Comparison, MDs, 12 Months 2.69 sec 1.18 sec –1.51 sec –56.24%

HCW Comparison, By Shift, 12 Months 9.43 sec 1.04 sec –8.39 sec –88.97%
HCW Comparison, Individuals: 3, 12 Months N/A2 0.93 sec N/A N/A
1 These charts have no current data. Thus this comparison shows how long the trip to the
database and any formatting performed takes to complete.
2 This chart rarely completed on the original system, and when testing the trial was stopped
after 5 minutes of waiting. When the chart did complete, the x-axis showed all workers
instead of the one selected.

All but one of the charts has improved performance, and most have performance gains of more

than 50%. The “Charting Revised Time Taken(%)” Chart (Figure 55) shows the performance gains

in total time taken for each reporting query as a percent of the original query time. In this chart,

7 TESTING 66

a bar at 0% means there was no change in the report’s performance, while a bar below 0% means

the report saw a performance gain.

The “Charting Revised Time Taken (sec)” Chart (Figure 56) shows the absolute difference in

seconds for all but one of the chart types. The missing type, Detailed Statistics (All), saw a 159

second decrease in actual time, which would have made the chart very skewed and difficult to

adequately show the other tests’ improvements.

Figure 55: Charting Revised Time Taken (%) The y-axis shows the charts tested. The x-axis shows
the percent difference in time taken from the original. Green bars to the left of 0% had improved
performance. Red bars to the right of 0% had reduced performance.

7 TESTING 67

Figure 56: Charting Revised Time Taken (sec) The y-axis shows the charts tested. The x-axis
shows the difference in time taken from the original. Green bars to the left of 0 sec had improved
performance. Red bars to the right of 0 sec had reduced performance.

The charting performance improvements are mainly due to the better charting library, JQuery

Visualize (see Section 6.2). This charting library allows the client to do processing of the charts,

instead of the server creating a .swf file. Letting the client handle the processing reduces the load

on the server and is much faster than generating a .swf file. This is especially evident in the case

of the charts relating to ICU5. Since there is no data for ICU5 because the physical system for ID

based reporting is not yet implemented, the ICU5 charts give a fairly good representation of the

overhead required to run the chart queries. The old system took 40 seconds on average to query

the database, determine that no data existed, build the .swf that shows an empty chart, and finally

send that file to the client. Our system eliminated almost 94% of the overhead, displaying an empty

chart in 2.5 seconds.

While the times we achieved were much better than the original system, we weren’t pleased with

the 25 to 40 seconds it took to load the Detailed Statistics page. So we implemented server side

caching on the charts that change infrequently and/or are commonly accessed: 24 Hours, 7 Days, 8

Weeks and 12 Months. This greatly improved our times as seen in Table 6. The testing procedure

differed slightly than the process used to compare chart performance between old and new systems.

For this test, we ran multiple trials using the detailed statistics for the past 24 hours. By moving

into the past on that chart, new data was generated that had not been cached, and these times

were recorded. To get cached times, the time movement was reversed, so the system retrieved the

data it had already generated and was still in the server’s cache.

7 TESTING 68

Table 6: Hand Hygiene Cached Charting Performance Comparison

Chart Type Date Generation Data Retrieval Time Percent
(Uncached) (Cached) Difference Change

ICU6 - Group Based 5.28 sec 0.82 sec –4.45 sec –84.40%
ICU5 - ID Based 1.00 sec 0.79 sec –0.213 sec –21.28%
ALL - Multi-ICU 9.20 sec 0.79 sec –8.41 sec –91.38%

The caching system implemented drastically cut down on chart load times. For the two ICU

types that had data, ICU6 and ICUALL, the caching system resulted in the load times being

reduced to an almost unnoticeable one second, compared to the original time of several seconds.

ICU5 showed less improvement because there was no data to retrieve from the database, but the

caching still cut down on the load time by eliminating the need to go to the database. The caching

system stores charts for a period of time depending on chart type and cache size. Chart expiration

is set as part of the server configuration, and can be different for each type of chart. For example,

the Last 24 Hours chart expires very quickly, usually after one minute, while the Last 12 Months

chart expires much less frequently, after approximately four days. Due to the nature of the limited

space for the cache, the charts may be expired more frequently, as in the event of a full cache the

least recently used charts will be removed to make more room.

Comparing the chart creation performance in Anomaly is a little more challenging, as we com-

bined tabs and added more functionality (see Section 4.2 and 4.2 and Section 5.3). Any comparison

we do is not a true comparison due to these differences in supported functionality. Additionally,

any test we would have performed would have contained so little data, it would have been difficult

to see any change in time.

7.2.2 Report Creation Performance

For the report creation performance testing, we used the three measurement methodologies pro-

cedure described in Section 7.2. The tests are all run on ICU 6, as it is a Group Based ICU and

the original system only supported reports in a Group Based ICU. We tested all four of the preset

buttons under “Download Detailed Statistics View Charts” and all combinations of the drop-downs

under “Customized Download of Tables” with the exception of custom date ranges. See our results

summarized in Table 7.

7 TESTING 69

Table 7: Hand Hygiene Reporting Performance Comparison

Report Type GWT Spring Time Percent
System System Difference Change

24 Hours Button 4.64 sec 4.19 sec –0.45 sec –9.76%
7 Days Button 6.33 sec 4.30 sec –2.03 sec –32.04%

8 Weeks Button 26.62 sec 4.78 sec –21.8 sec –82.03%
12 Months Button 8.79 sec 9.59 sec 0.80 sec 9.05%

Month, 6 Months, Yes N/A1 N/A N/A N/A
Month, 6 Months, No 5.43 sec 6.80 sec 1.37 sec 25.17%

Month, 12 Months, Yes N/A1 N/A N/A N/A
Month, 12 Months, No 8.43 sec 9.66 sec 1.23 sec 14.59%

Week, 4 Weeks, Yes N/A1 N/A N/A N/A
Week, 4 Weeks, No 17.51 sec 4.91 sec –12.59 sec –71.94%
Week, 8 Weeks, Yes N/A1 N/A N/A N/A
Week, 8 Weeks, No 32.96 sec 4.66 sec –28.30 sec –85.85%
Day, 4 Weeks, Yes 4.28 sec 4.36 sec 0.08 sec 1.83%
Day, 4 Weeks, No 4.36 sec 4.34 sec –0.01 sec –0.29%
Day, 8 Weeks, Yes 4.50 sec 5.31 sec 0.80 sec 17.82%
Day, 8 Weeks, No 4.67 sec 5.35 sec 0.68 sec 14.61%

Hour, 4 Weeks, Yes 109.85 sec 5.33 sec –104.53 sec –95.15%
Hour, 4 Weeks, No 4.83 sec 4.53 sec –0.30 sec –6.30%
Hour, 8 Weeks, Yes 103.04 sec 4.65 sec –98.38 sec –95.48%
Hour, 8 Weeks, No 4.64 sec 4.89 sec 0.25 sec 5.30%

8–Hour Shift, 4 Weeks, Yes 14.17 sec 8.99 sec –5.18 sec –36.58%
8–Hour Shift, 4 Weeks, No N/A2 9.15 sec N/A N/A
8–Hour Shift, 8 Weeks, Yes 18.46 sec 9.33 sec –9.13 sec –49.46%
8–Hour Shift, 8 Weeks, No N/A2 10.80 sec N/A N/A

12–Hour Shift, 4 Weeks, Yes 16.32 sec 11.05 sec –5.27 sec –32.29%
12–Hour Shift, 4 Weeks, No N/A2 10.84 sec N/A N/A
12–Hour Shift, 8 Weeks, Yes 16.21 sec 9.62 sec –6.59 sec –40.65%
12–Hour Shift, 8 Weeks, No N/A2 11.30 sec N/A N/A
1 These reports were removed from the new system due to changed design requirements.
2 These reports rarely completed on the original system, and when testing these the trial
was stopped after 5 minutes of waiting if no report was generated.

In our reengineered system, some of the simpler queries had increased time from the original

system. These increases are due to the Spring Framework, which adds additional layers for the

report request to go through before it is delivered to the user. However, the benefit of these layers

result in massive gains in the queries that were improved, such as the “Hour, 8 Weeks, Yes” report

saw a 95% decrease in the time taken, as the average time dropped from 103 to 4.6 seconds.

The major reason for the performance gains was the query optimization we performed. Some

of the reports generated a query for each unit of time. Other queries were doing data manipulation

7 TESTING 70

on the server rather than letting the database do the necessary joining, especially in the reports

that aggregated the data (see Section ?? for more information). As an example, in generating the

report, the original system sent several queries to the database. For example, a report on the past

8 weeks would result in 8 queries being sent to the database. Our system consolidated the queries

into one larger query, which eliminated the need for multiple trips to the database and thus greatly

improved performance.

The “Reporting Revised Time Taken (%)” Chart (Figure 57) shows the performance gains in

total time taken for each reporting query as a percent of the original query time. In this chart

the green bars to the left of 0% are improvements in speed, and the red bars to the right of 0%

are decreases in performance. The report types where there are no entries in the chart are those

reports that were either removed in our system due to design changes, or reports that did not

work on the original system. The removed reports in our new system were those reports that were

meaningless. For example, when looking at the last 12 months, with a time unit of month, the

aggregate option does not make sense, as there is no way that a report will extend far enough to

need the aggregation. In this example, the same data would be put in the report regardless of

whether aggregate was selected or not, so to make it easier for the user we removed the aggregate

option on that report and others like it.

7 TESTING 71

Figure 57: Reporting Revised Time Taken(%) The y-axis shows the reports tested. The x-axis
shows the percent difference in time taken from the original. Green bars to the left of 0% had
improved performance. Red bars to the right of 0% had reduced performance.

The “Reporting Revised Time Taken, Short (sec)” and “Reporting Revised Time Taken, Long

(sec)” charts (Figures and) show the absolute time difference between our system and the original.

They are split into two charts to better show the time gains for the reports that originally did not

take very long.

7 TESTING 72

Figure 58: Reporting Revised Time Taken, Short (sec) - times less than 10 sec different. The
y-axis shows the reports tested. The x-axis shows the difference in time taken from the original.
Green bars to the left of 0% had improved performance. Red bars to the right of 0% had reduced
performance.

7 TESTING 73

Figure 59: Reporting Revised Time Taken, Long (sec) - times more than 10 sec different. The
y-axis shows the reports tested. The x-axis shows the percent difference in time taken from the
original. Green bars to the left of 0% had improved performance. Red bars to the right of 0% had
reduced performance.

8 CONCLUSION 74

8 Conclusion

The problem of maintaining proper hygiene standards, especially in hospitals, will likely never be

completely solved. However, systems like Hyreminder have the potential to go a long way towards

reducing the spread of hospital-acquired infection, saving on hospital operational costs, but most

importantly: saving more lives.

This project built on and improved the original Hyreminder web application and the original

Anomaly web application. Through a framework change, we drastically improved performance,

both in database access and report generation, and improved code clarity. In the process of the

reengineering, we expanded on both internal and external documentation, making it easier not only

for future developers to maintain and expand the system, but also for users to learn how to use the

system.

In addition to the reengineering, the team added several features. The JQuery Visualize library

that we employed for charting was vastly expanded and can be released as a standalone library

for others to use. We added reporting functionality for the ID Based and Multi-ICU versions of

Hyreminder. The Anomaly detection web application was overhauled and now supports additional

functionality such as maintenance comments, a map showing where the physical sensors are, and

sensor maintenance.

The biggest feature we added, mobile bed tracking, enables system technicians to more easily

track down missing sensors, especially those attached to moving beds, as well as to make keeping

track of an individual bed’s location easier. Even though the ID-based system that this bed tracking

system relies upon has yet to be implemented by a hospital, plans are in place to install this

system, at which time refinements to our work can be added to enhance performance of our mostly

theoretical work.

Our reengineering of the system resulted in major performance gains in many areas. While

our correctness testing verified that our system performed as expected, the performance testing of

charting and report generation demonstrated that our system was faster and more efficient than

the original in most respects. Those areas where there was no improvement or a slightly slower

performance were judged to be acceptable tradeoffs for making the previously non-functioning

charts and reports work, as those areas that saw performance losses suffered less than two additional

seconds, whereas the vast majority of improved charts and reports saved much more than that on

average.

9 FUTURE WORKS 75

9 Future Works

While now a number of people have worked on the interface, we are all not normal users and since

we understand the system we are biased into thinking it is an easy to use and understand interface.

We got basic feedback from a few of our peers, who had good outside opinions on the usability,

however as highly technical people, they weren’t normal users either. A usability study with a

complete and thorough user study, especially including nurses and other hospital staff who will use

the system the most, is advised. Getting feedback from people that specialize in user interfaces, such

as Professors David Brown and Matt Ward at Worcester Polytechnic Institute, may also provide

fruitful.

There are some user interface updates that we already know would improve the user experience,

but unfortunately we did not get time to refine. In the Hyreminder web application, there are

many pages that make use of drop-down filters to refine the data displayed. Currently on the form

submission, these drop-downs return to their default value, but ideally they would remain on the

value the user selected. On the Reporting pages with the time unit of hour, it would be nice to

be able to pick an hour when choosing a custom time range. In the Anomaly web application, on

the Maintenance pages, it would be more user friendly to use JavaScript to enforce required fields

before the information is submitted to the server. Additionally, neither allows for deletion of a

sensor nor a sensor location. In both web applications where charts are used, it would be more user

friendly to have a loading sign instead of leaving the user wondering if it working.

There’s more work to be done with the commenting feature. More information should be

gathered on what type of preset comments will be most useful to the users. Incorporating these

presets will be simple, but we did not have the time to gather the information. Furthermore, adding

another layer to the sensor hits chart, at the times these comments are made would be an extremely

useful feature. Allowing the user to set a time for the comment would make the comment layover

more accurate.

As our system works right now, the are still raw database queries that will need to be executed

to add a new ICU to the system, before the admin user can see it on the Options page in the System

Maintenance application. Additionally, users and permissions must be set up with raw database

queries. To make this a completely functional application, these functions should be added to the

System Maintenance application.

Additional testing is never a bad thing. Our stress tests focus on several of the potential weak

spots of the system, but there are other areas that can be tested as well. For example, there are

many different iterations of report downloading that can be stress tested in addition to the ones we

have already done. The stress tests already in place could also be ran at a higher limit to observe

the system when handling even more data. One additional stress test was created but never ran

due to time constraints. The Sensor Details test should be run to see how the system scales with

9 FUTURE WORKS 76

the number of sensors.

We created a very basic and highly theoretical bed tracking system. Once the system is in use,

we are sure that the tracking algorithm will need to be improved. Additionally, the algorithm will

need to be expanded to track beds moving between ICUs.

WORKS CITED 77

Works Cited

Apache POI Project, The. (2012). http://poi.apache.org/

Apache POI Project, The. (2012). POI-HSSF and POI XSSF - Java API To Access Microsoft
Excel Format Files. http://poi.apache.org/spreadsheet/index.html

Atwood, Jeff. (2009, June). All Abstractions Are Failed Abstractions. http://www.codinghorro
r.com/blog/2009/06/all-abstractions-are-failed-abstractions.html

Baranovskiy, Dmitry. (2012). Raphaël. http://raphaeljs.com/

Belmonte, Nicolas Garcia. (2013). SenchaLabs. JFreeChart. http://philogb.github.com/jit/

Brazzell, Brena Edwards, et. al. (2011, June). Efficacy of an Electronic Hand Hygiene Surveillance
and Feedback Monitoring Device Against Healthcare Associated Infections. American Journal
of Infection Control. 39, 5, E172-E173. http://www.sciencedirect.com/science/article/p
ii/S0196655311006523

BSD 2 License. http://opensource.org/licenses/BSD-2-Clause

C, Nick. (2011, January). Why not to use Google Web Toolkit?. http://programmers.stackexch
ange.com/questions/38441/when-not-to-use-google-web-toolkit

CodePro Analytix. https://developers.google.com/java-dev-tools/codepro/doc/

Duke Medicine News and Communications. (2010, March). Technology-Based Hand Hygiene Mon-
itoring Improves Compliance at Duke Hospital. Duke Medicine. http://www.dukehealth.org
/health library/news/technology based hand hygiene monitoring improves compliance a

t duke hospital

Google Developers. (2012). Google Web Toolkit. https://developers.google.com/web-toolki
t/

Harvest. (2011). Chosen. http://harvesthq.github.com/chosen/

Highsoft Solutions JS. http://www.highcharts.com/

Hospital Hygiene Drive ‘Saved 10,000 Lives’. (2012, May). The Guardian. http://www.guardia
n.co.uk/society/2012/may/04/hospital-hygiene-drive

JDocs. Joda Time API. http://www.jdocs.com/jodatime/1.2.1/overview-summary.html

jQuery Foundation, The. (2013). jQuery UI Datepicker. http://jqueryui.com/datepicker/

http://poi.apache.org/
http://poi.apache.org/spreadsheet/index.html
http://www.codinghorror.com/blog/2009/06/all-abstractions-are-failed-abstractions.html
http://www.codinghorror.com/blog/2009/06/all-abstractions-are-failed-abstractions.html
http://raphaeljs.com/
http://philogb.github.com/jit/
http://www.sciencedirect.com/science/article/pii/S0196655311006523
http://www.sciencedirect.com/science/article/pii/S0196655311006523
http://opensource.org/licenses/BSD-2-Clause
http://programmers.stackexchange.com/questions/38441/when-not-to-use-google-web-toolkit
http://programmers.stackexchange.com/questions/38441/when-not-to-use-google-web-toolkit
https://developers.google.com/java-dev-tools/codepro/doc/
http://www.dukehealth.org/health_library/news/technology_based_hand_hygiene_monitoring_improves_compliance_at_duke_hospital
http://www.dukehealth.org/health_library/news/technology_based_hand_hygiene_monitoring_improves_compliance_at_duke_hospital
http://www.dukehealth.org/health_library/news/technology_based_hand_hygiene_monitoring_improves_compliance_at_duke_hospital
https://developers.google.com/web-toolkit/
https://developers.google.com/web-toolkit/
http://harvesthq.github.com/chosen/
http://www.highcharts.com/
http://www.guardian.co.uk/society/2012/may/04/hospital-hygiene-drive
http://www.guardian.co.uk/society/2012/may/04/hospital-hygiene-drive
http://www.jdocs.com/jodatime/1.2.1/overview-summary.html
http://jqueryui.com/datepicker/

WORKS CITED 78

jQuery Foundation, The. (2013). jQuery UI Dialog. http://jqueryui.com/dialog/

Jehl, Scott. (2013). JQuery Visualize. https://github.com/filamentgroup/jQuery-Visualize

JUnit. http://junit.sourceforge.net/

Lee, Christopher. (2006, November). Studies: Hospitals Could Do More to Avoid Infections.
The Washington Post. http://www.washingtonpost.com/wp-dyn/content/article/2006/
11/20/AR2006112001122.html

MedlinePlus. (2013, February). Infection Control. http://www.nlm.nih.gov/medlineplus/infec
tioncontrol.html

MIT License. http://opensource.org/licenses/MIT

msdn. Model View Controller. http://msdn.microsoft.com/en-us/library/ff649643.aspx

Mularien, Peter. (2010). Spring Security 3: Secure Your Web Applications against Malicious In-
truders with This Easy to Follow Practical Guide. Birmingham UK: Packt Publishing.

Nielsen, J. (2006). F-Shaped Pattern For Reading Web Content. http://www.nngroup.com/artic
les/f-shaped-pattern-reading-web-content/

Open Flash Chart for GWT. http://code.google.com/p/ofcgwt/

Oracle. (2013). Introduction to Security in the Java EE Platform. http://docs.oracle.com/jav
aee/6/tutorial/doc/bnbwj.html

Oracle. (2011). JAAS Reference Guide. http://docs.oracle.com/javase/6/docs/technotes/g
uides/security/jaas/JAASRefGuide.html

PMD. (2013). http://pmd.sourceforge.net/

Prüss, A., Giroult, E. & Rushbrook, P. (1999). Hospital Hygiene and Infection Control. In
Safe management of wastes from healthcare activities. World Health Organization. http:

//www.who.int/water sanitation health/medicalwaste/148to158.pdf

Selenium Browser Automation. http://docs.seleniumhq.org/

Spring Source Community. (2013). http://www.springsource.org/

SpringSource. Spring Security Documentation. http://static.springsource.org/spring-secu
rity/site/reference.html

String Function. (2010). SHA1 ONLINE HASH. http://www.stringfunction.com/sha1-hash.h
tml

http://jqueryui.com/dialog/
https://github.com/filamentgroup/jQuery-Visualize
http://junit.sourceforge.net/
http://www.washingtonpost.com/wp-dyn/content/article/2006/11/20/AR2006112001122.html
http://www.washingtonpost.com/wp-dyn/content/article/2006/11/20/AR2006112001122.html
http://www.nlm.nih.gov/medlineplus/infectioncontrol.html
http://www.nlm.nih.gov/medlineplus/infectioncontrol.html
http://opensource.org/licenses/MIT
http://msdn.microsoft.com/en-us/library/ff649643.aspx
http://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/
http://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/
http://code.google.com/p/ofcgwt/
http://docs.oracle.com/javaee/6/tutorial/doc/bnbwj.html
http://docs.oracle.com/javaee/6/tutorial/doc/bnbwj.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://pmd.sourceforge.net/
http://www.who.int/water_sanitation_health/medicalwaste/148to158.pdf
http://www.who.int/water_sanitation_health/medicalwaste/148to158.pdf
http://docs.seleniumhq.org/
http://www.springsource.org/
http://static.springsource.org/spring-security/site/reference.html
http://static.springsource.org/spring-security/site/reference.html
http://www.stringfunction.com/sha1-hash.html
http://www.stringfunction.com/sha1-hash.html

WORKS CITED 79

ThoughtWorks Technology Advisor Board. (2011, July). Technology Radar.

Viklund, Andreas. (2012). Object Refinery Limited. JFreeChart. http://www.jfree.org/jfree
chart/

Vogel, Lars. (2009, August). Dependency Injection with the Spring Framework - Tutorial. http:

//www.vogella.com/articles/SpringDependencyInjection/article.html

W3 Consortium. (2010, November). Display capabilities. http://www.w3.org/International/q
uestions/qa-display-capabilities.en.php

w3schools. MySQL DATE FORMAT() Function. http://www.w3schools.com/sql/func date f

ormat.asp

Worcester Polytechnic Institute Database System Research Group. (2011). Hyreminder IDE Setup
& User Manual.

http://www.jfree.org/jfreechart/
http://www.jfree.org/jfreechart/
http://www.vogella.com/articles/SpringDependencyInjection/article.html
http://www.vogella.com/articles/SpringDependencyInjection/article.html
http://www.w3.org/International/questions/qa-display-capabilities.en.php
http://www.w3.org/International/questions/qa-display-capabilities.en.php
http://www.w3schools.com/sql/func_date_format.asp
http://www.w3schools.com/sql/func_date_format.asp

A USER GUIDE OF ACTIVITIES ON WEB APPLICATION 80

A User Guide of Activities on Web Application

This user guide walks you through the Hyreminder Sensor Maintenance application.

Contents:

• Details for each of the screens and the tasks that are accomplished on each.

• Suggested approach for setting up a new ICU.

A.1 Current Errors

Figure A1: Current Errors Screen

The Current Errors tab is used to see which sensors have errors. As in the general Hyreminder

application, you can use the drop-down in the top right corner to switch ICUs. This will filter the

sensors to only those in the selected ICU. Additionally, you can filter which types of errors by using

the drop-down in the top left corner.

A USER GUIDE OF ACTIVITIES ON WEB APPLICATION 81

Each box contains the details on one sensor with an error. It contains:

• the physical sensor ID

• the type of sensor

• the location

• the type of error and when it was reported

The physical sensor ID is linked to the appropriate Sensor Details page, while the location is linked

to the appropriate Map page. This means that you can click on the link and you will go the the

stated page with the selected physical ID already selected.

A.2 Sensor Details

Figure A2: Sensor Detail Screen

The Sensor Details tab is used to view detailed statistics about a particular sensor. If you clicked on

a particular sensor link from the Current Errors tab, the details of that selected sensor will already

A USER GUIDE OF ACTIVITIES ON WEB APPLICATION 82

be loaded. To select a new sensor, use the drop-down at the top left of the screen to pick one. This

drop-down is searchable, you can start typing in the ID or part of the location to find a sensor.

Once loaded, on the left side of the screen you will see three sections: details, history and

comments. On the right side of the screen is a chart of the hits on the sensor.

Details - contains basic details on the sensor including:

• ID

• type

• location

• status

History - contains how many times the sensor has had the given type of error.

Comments - where you can view, add and remove comments on the sensor.

Figure A3: Sensor Comment Section

To add a comment, first choose a message from the drop-down and click the ”Add Comment”

button. If you choose “Other”, you may enter your own message in the text box that appears.

To remove a comment, simply click the ”Remove” button next to the appropriate comment.

A USER GUIDE OF ACTIVITIES ON WEB APPLICATION 83

A.3 Map

Figure A4: Map Screen

The Map tab is used to view where sensors are located on a map of the ICU. If you clicked on a

link from the Current Errors tab or the Sensor Details tab, the appropriate sensor will be the only

one on the map. You can change which sensors are displayed on the map, using the filters at the

top left of the screen.

• All sensors – displays all sensors in the ICU.

• Sensors with errors – displays only those sensors that were listed on the Current Errors tab,

in the selected ICU.

• Selected sensors – choose which sensors to display.

– Choosing this option will create a multi-select box. Choose all desired sensors.

Since mobile sensors have the potential to be in more than one place, you must choose how you

want this displayed.

A USER GUIDE OF ACTIVITIES ON WEB APPLICATION 84

• Top Location – shows only the location where it is most likely to be.

• All Locations – shows all possible locations, where the confidence is greater than or equal to

the confidence entered.

On the map you can hover over a sensor and see details in the upper left corner. Additionally, you

can click on the sensor to go to the Sensor Details page.

A USER GUIDE OF ACTIVITIES ON WEB APPLICATION 85

A.4 Maintenance

The Maintenance tab is used for system maintenance: which includes setting up sensor locations

on the map and updating sensor IDs.

A.4.1 Sensor Maintenance

Figure A5: Sensor Maintenance Screen

The Sensor Maintenance sub-tab is used for creating and editing sensors. This includes tasks such

as adding new physical sensors, activating and deactivating physical sensors, and updating a loca-

tion when applicable.

A USER GUIDE OF ACTIVITIES ON WEB APPLICATION 86

To Add a New Sensor:

Use this when you are setting up the ICU for the first time. After initial setup, adding a new sensor

should be a rare task.

1. Click the ”Add New” button.

2. Look at the physical sensor and enter the device’s ID in the “Add New” box on the right side

of the screen.

3. Choose “Mobility” type from drop-down.

(a) Stationary – indicates that this sensor will not move

(b) Mobile – indicates that this sensor may move about the ICU or hospital

4. If you choose “Stationary”, more fields will appear for entering the location

(a) Either choose an “Existing Location” or “Add New Location”.

(b) Add New Location will take you to the Map Maintenance Screen (explained later).

To Edit an Existing Sensor:

Follow these steps when you are performing maintenance on the system, for example when you are

replacing a physical sensor with a new one.

1. Select a sensor from the “Change Existing” drop-down. This drop-down is searchable.

2. The information about the sensor will be automatically filled in.

3. Edit the details as desired.

(a) If you are replacing a sensor, enter the new ID into the “Add New” box, and check the

radio button under “Active”. This will retire the previous sensor.

A USER GUIDE OF ACTIVITIES ON WEB APPLICATION 87

A.4.2 Map Maintenance

Figure A6: Map Maintenance Screen

The Map Maintenance sub-tab is used for creating new sensor locations and editing existing ones.

This page shares the same features with the map interface on the Sensor Maintenance sub-tab.

To Add a Location

1. At the top left, select a sensor Type from the drop-down.

2. Enter a meaningful Description for the location.

A USER GUIDE OF ACTIVITIES ON WEB APPLICATION 88

3. Map Location: X and Y: the x and y coordinates on the ICU Map. Tip: You can click on the

sensor on the map and drag it to a new location.

4. Lastly, enter which sensors are in close proximity.

(a) Click the “Add Another Proximity” button. A new drop-down and text field will appear.

(b) Select a sensor from the newly created drop-down. The sensor will be briefly circled on

the map.

(c) Enter the proximity in the newly created text field. A proximity should be entered in

seconds. You can edit the proximities later.

(d) Repeat steps until you’ve entered proximities for the nearest sensors.

A.5 Options

Figure A7: Options Screen

A USER GUIDE OF ACTIVITIES ON WEB APPLICATION 89

A.5.1 Change Password

As with the Hand Hygiene Performance application you can change your password. Simply enter

your Current Password and New Password in the appropriate fields and click the “Submit” button.

If you forget your password, please email the Hyreminder group: hyreminder@cs.wpi.edu

A.5.2 Edit Room Details

This section is used for editing the details of ICUs and uploading the floor plans for each.

1. Select the ICU from the drop-down. The ICU’s details will be populated.

2. Edit the room’s details.

(a) ICU Name: the display name used in both the Hand Hygiene Performance application

and the Hyreminder System Maintenance application.

(b) Database Code: a non-updateable field, what the ICU is known as in the database

(c) Type: Group Based or ID Based

3. Upload a new Map image.

(a) Be sure to upload an image file (for example .jpg or.png).

(b) Be sure your image includes only what you want - no extra whitespace.

(c) You want as little detail as possible: walls and doorways and labels for rooms.Too much

detail will create confusion.

A.6 Setting Up a New ICU

1. Coordinate with the Hyreminder team.

(a) Ask them to add a new ICU to the room table in the database.

(b) Inform them which user should have access to this new ICU.

2. On the Options screen

(a) Choose the new ICU from the drop-down under “Edit Room Details”

(b) Confirm ICU name and type are correct and edit as needed.

(c) Upload the floor plans. To change a floor plan, upload a new image and the old one will

be deleted.

3. On the Map Maintenance screen

A USER GUIDE OF ACTIVITIES ON WEB APPLICATION 90

(a) Enter the sensor locations. These can always be tweaked after installation of the system.

4. On the Sensor Maintenance screen

(a) As you physically install each sensor, enter it as a New sensor.

(b) If the sensor is stationary, choose one of the locations you just set up.

B USER ACCOUNTS AND SECURITY DEVELOPMENT DOCS 91

B User Accounts and Security Development Docs

These docs are meant to give a developer a better understanding of the underlying components

that control user accounts and security.

Contents:

• Database design for all tables involved with user accounts.

• How to add a new user and user roles

• Login credential verification.

• How to restrict access to parts of Hyreminder based on account permissions.

B.1 User Accounts Database Design

B.1.1 users table

Figure B1: Table Schema: users

Usernames and passwords for each account is stored in the ‘users’ table as VARCHAR with a max

size of 45 characters. Accounts can be enabled or disabled by setting the ENABLED attribute to

1 or 0 respectively.

B USER ACCOUNTS AND SECURITY DEVELOPMENT DOCS 92

B.1.2 user roles table

Figure B2: Table Schema: user roles

The ‘user roles’ table stores the roles, or permissions, associated with each account. The user roles.USER ID

attribute is a foreign key that references user.USER ID. Each account can have multiple roles. The

name of the roles are up to the developer but should follow the standard ‘ROLE <Title><ICU

Number>’ to remain consistent. Some examples of the roles that already exist are ‘ROLE ADMIN’,

‘ROLE NURSE5’, ‘ROLE NURSE6’, etc. These roles will be used to determine which accounts have

access to specific parts of the Hyreminder site.

B.2 Inserting New Data

B.2.1 Adding a New User

INSERT INTO users (USERNAME, PASSWORD, ENABLED) VALUES (‘corey’, ‘123456’, 1);

Passwords must be encoded used SHA-1 encryption before being placed in the database. If

you are doing this manually, there are online tools1 to perform the encryption. Once again, accounts

can be enabled or disabled by setting the ENABLED field to 1 or 0 respectively.

B.2.2 Adding User Roles

INSERT INTO user roles (USER ID, AUTHORITY) VALUES (1, ‘ROLE ADMIN’);

The roles should follow the standard ROLE <Title><ICU Number>as to not interfere with

other parts of the code. Remember the names must correspond to the expected role names in the

security xml file (discussed later). Each account can have multiple user roles.

1Example SHA-1 encryption tool: String Function. (2010). SHA1 ONLINE HASH. http://www.stringfunctio
n.com/sha1-hash.html

http://www.stringfunction.com/sha1-hash.html
http://www.stringfunction.com/sha1-hash.html

B USER ACCOUNTS AND SECURITY DEVELOPMENT DOCS 93

B.3 Security

B.3.1 Verifying Login Credentials

Much of the user verification is done automatically by Spring Security2. The two key pieces

of code that determine this is the Authentication Manager defined in the spring-security.xml

file located in src/main/resources directory and the HTML login form found in login.jsp in the

src/main/webapp/WEB-INF/views directory.

The authentication manager section of the spring-security.xml config file is located at line

37. Here we specify the data source (aka database connection), the password encoder type, and the

SQL queries to retrieve the credentials and user roles. Spring Security will automatically do the

decryption and comparisons to verify login.

Spring Security requires specific IDs in the HTML login form found in login.jsp. The action

of the login form is ‘j spring security check’ a built-in action that will request Spring Security

automatically do the password verification. The IDs of the username and password input boxes are

also built-in. Here is the login form HTML:

B.3.2 Securing URLs

Securing parts of the website is as simple as specifying the URL pattern and the roles allowed to

access it in the spring-security.xml file. An example that can be found at line 16 of the xml file is:

As you can see, any URL with the prefix /ICU5/ will require the account that is logged in to have

ROLE ADMIN or ROLE NURSE5. Exact URLs can be given or wildcards such as ‘*’ can be used

to incorporate many URLs. If the account fails this check, the user will be redirected to the access

denied page given at line 11. Once successfully logged in, the user will be redirected to the overall

2Spring Security Docs: http://static.springsource.org/spring-security/site/reference.html

http://static.springsource.org/spring-security/site/reference.html

B USER ACCOUNTS AND SECURITY DEVELOPMENT DOCS 94

compliance page of the lowest number ICU they have access to. It is important that all possible

URLs are captured by this series of URL patterns to ensure proper protection. An example of the

XML file can be found in Appendix C.

C EXCERPT FROM XML CONFIG FILE FOR SPRING SECURITY 95

C Excerpt from XML Config File for Spring Security

Figure C1: Spring Security XML Config File Except

D REPORTING MODULE DEVELOPER DOCUMENTATION 96

D Reporting Module Developer Documentation

These docs are meant to give a developer a better understanding of the reporting module.

Contents:

• Reporting module relation diagram

• Reporting module logic design

• POI framework and report template

• How time aggregation works

• Stored procedures used

D.1 Reporting Module Structure (Relation Diagram)

Figure D1: Reporting Module Structure. GB, IB and MICU refer to Group Based, ID Based and
Multi-ICU respectively

D REPORTING MODULE DEVELOPER DOCUMENTATION 97

D.2 POI 3.8 framework & XLS templates

The Apache POI1 is the Java API for generating Microsoft documents. In Hyreminder, the sub-

component “HSSF (Horrible Spreadsheet Format)”2 is used, a specific interface to read and write

Microsoft Excel (.xls) format files.

D.3 Reporting Module Logic

The general query and delivery process for a generated report can be defined as follows:

Figure D2: Reporting Module Logic

D.3.1 Controller Mapping

The ReportingController, as seen in Figure D1, defines different requests for Group Based, ID Based

and Multi-ICU URLs as follows:

1Apache POI Project, The. (2012). http://poi.apache.org/
2Apache POI Project, The. (2012). POI-HSSF and POI XSSF - Java API To Access Microsoft Excel Format

Files. http://poi.apache.org/spreadsheet/index.html

http://poi.apache.org/
http://poi.apache.org/spreadsheet/index.html

D REPORTING MODULE DEVELOPER DOCUMENTATION 98

In ReportingController.java, define URL mapping request:

Parse URL path as variable in order to locate the current unit:

In reporting-group.jsp file, the request is called as below:

So that “rows=24” is passed as a parameter to generate data from the past 24 hours. Because the

reports are presets, setting rows to 7,8, or 12 will generate data for the past 7 days, 8 weeks, or 12

months, respectively

D.3.2 XLS Template

There are multiple ways to generate downloadable excel files with POI. One way of doing this would

be the client generates the excel file and bar charts from scratch with its own POI framework.

However, in order to enhance performance, we used pre-defined templates inside of the following

template files:

Figure D3: XLS Template Files

In above template files, we created one spreadsheet to store queried data from the server.

Another spreadsheet is used for generating bar charts based on the data sheet. In order to pull the

D REPORTING MODULE DEVELOPER DOCUMENTATION 99

right data, bar chart configuration needs to be defined based on how many columns and rows of data

need to be included. Data*.xls are templates used for preset buttons in Group-based reporting page,

and the bar chart is contained in these templates. Export*.xls are templates used for generating

Group-based customizable data reports, which only contain data. IDData.xls, MICUData.xls are

the templates for ID-based and Multi-ICU modules. All template files are defined as input stream

in makeExcel function as follows:

D.3.3 Date & Time API

The API we used for querying specific date and time is Joda-Time (org.joda.time.DateTime).3

Joda-Time provides a quality replacement for the Java date and time classes. The design allows

for multiple calendar systems, while still providing a simple API. The “default” calendar is the

ISO8601 standard which is used by the XML.

For example, to set a time range from the last 12 month till now, the Java expression would

be to define the start date by getting the current date time and the subtracting 12 months from

the current date.

Figure D4: Date selector in the user interface

3JDocs. Joda Time API. http://www.jdocs.com/jodatime/1.2.1/overview-summary.html

http://www.jdocs.com/jodatime/1.2.1/overview-summary.html

D REPORTING MODULE DEVELOPER DOCUMENTATION 100

Figure D5: Date Feb. 15, 2013 selected

In customizable time selector, the library will generate a string time format which needs to be

converted to DateFormat before being able to do calculation via the dateConverter function:

D.3.4 Aggregation

The aggregation data can directly be generated by the stored procedures depends on the MySQL

DATE FORMAT()4 parameters passed in.

For example, to query data for the past 3 months and aggregate by week unit. The format

will be “%u” (Monday is the first day of week).

D.3.5 Parse dataset

All stored procedure return a sql data set and each column of data is stored in a separate queue:

set.next() is necessary to avoid Null Pointer Exception.

D.3.6 POI I/O

Before writing into a template file, POI needs to initialize the input stream by choosing which

template file to populate. wb.getSheetAt(1) means POI will start to overwrite from sheet 2 (this

4w3schools. MySQL DATE FORMAT() Function. http://www.w3schools.com/sql/func date format.asp

http://www.w3schools.com/sql/func_date_format.asp

D REPORTING MODULE DEVELOPER DOCUMENTATION 101

situation only occurs when Sheet 1 contains data charts).

The row number of the dataset needs to be known in order to loop through all queues without

errors occurring. Since all excel cells are considered as null (not initialized), whenever POI writes

to an uninitialized cell, a null pointer exception will occur. In this way, POI requires us to initialize

rows and cells before being able to write data to the file as follows.

Initialize rows:

Get cells:

D.4 Stored Procedures Used

Stored procedures5 are pre-installed queries in the database serve to improve a querys performance

between the client and the server.6 The following report-related procedures are currently supported:

Group-based

• GetGBHygiene

• GetGBHygieneBy8HourShift

• GetGBHygieneBy12HourShift

ID-based

• GetWorkersComparison

• GetShiftReport

5Used under edu.wpi.ics.component.database.DBOperations.java
6Performance is improved by reducing query data sent from client to server. All stored procedures are handled

and called through DBOperations class.

D REPORTING MODULE DEVELOPER DOCUMENTATION 102

• GetIndividualsComparisonNonAggregate

• GetIndividualsComparison

Multi-ICU

• GetUnitsReport

E SELENIUM TESTS AND STRESS TESTS DEVELOPER DOCS 103

E Selenium Tests and Stress Tests Developer Docs

These docs are meant to give a developer a better understanding of the underlying components of

the Selenium Webdriver tests and the stress tests.

Contents:

• What makes up the Selenium tests.

• How to run the Selenium tests.

• What makes up the stress tests.

• How to run the stress tests.

E.1 Selenium

The Selenium framework (org.openqa.selenium.*) uses a series of methods to locate part of a web-

page and perform actions that mimic that of a user. In order to create new Selenium tests, the

following components must be included.

Components

1. The WebDriver

Located in the /src/test/resources directory is a driver for Chrome and a driver for Internet Ex-

plorer. In order to use Firefox, you must install Firefox and point the webdriver path to the

firefox.exe.

2. Setting the System Properties

For each webdriver, use the following code to point the webdriver to the correct path.

E SELENIUM TESTS AND STRESS TESTS DEVELOPER DOCS 104

3. Navigation

Using the method driver.get(); will make the given browser navigate to the specified URL.

4. Locating Elements on the Page

Webdrivers can locate elements using the driver.findElement(); method. Three different op-

tions can be passed in as a parameter. By.id("id name"), By.className("class name"), or

By.xpath("xpath"). The findElement method will return a WebElement object that can be ma-

nipulated.

5. WebElement Manipulation

The two most common things to do to a WebElement is web.click() or web.sendKeys("keys").

The names are self explanatory.

Running the Test

The Selenium tests are created from a JUnit test file. Include the @Test annotation above

each function that represents a test, right click on the JUnit file and select “Run as Junit test”. An

example of one test is shown below.

E SELENIUM TESTS AND STRESS TESTS DEVELOPER DOCS 105

E.2 Stress Tests

The stress test framework implemented in the component project provides a means of easily produc-

ing tests designed to test the limits of a system. Specific tests will be run with various parameters,

timed, and produced in a formatted report. The following components are needed to produce a

stress test.

Components

1. Stress Test Unit

The stress test unit is the basic component of a stress test. A stress test unit is any class that im-

plements the edu.wpi.ics.component.testing.stress.StressTestUnit interface. This interface provides

three methods that must be implemented: setup, teardown and run. Optionally, a stress test unit

can implement any number of parameter methods, designed as regular java setter methods, e.g.

“setParameter.” Parameter methods must take an int as an argument.

A stress test is split up into a number of runs. For each run, the runner will first call the

setup method of the unit, followed by the run loop which will repeatedly set the parameters and

call run based on how the run is configured. Finally, once the run is complete the teardown method

will be called.

2. XML Configuration

The XML configuration is how you specify how the runner should run your test units. An example

XML configuration is provided below.

The root tag for a stress xml document is the <stress:tests> tag, and this tag can contain one

<stress:report> and any number of <stress:test> tags, both of which are equally important. The

<stress:report> tag allows you to specify a fully qualified class name to an implementation of the

edu.wpi.ics.component.stress.StressTestReportFormatter interface which will be used to create the

E SELENIUM TESTS AND STRESS TESTS DEVELOPER DOCS 106

reports for the entire test once it is complete. By default, edu.wpi.ics.component.stress.HTMLReportFormater

is provided to allow for basic report formatting into an html document.

The <stress:test> tag is significantly more complicated and it is where you set specifically

how the runner will run a StressTestUnit. Like with the <stress:report> tag, you must specify

which unit class you want the test to run with the class attribute. Within the <stress:test> tag is

exactly one <stress:runs> tag which can contain any number of ¡stress:run¿ tags.

Each <stress:run> tag specifies exactly one unit of setup, run, repeat, teardown that the

runner will execute. The <stress:run> tag has three attributes and can have any number of

<stress:parameter> tags inside of it. The attributes on the <stress:run> tag are count, repeat

and timeout. The count attribute specifies exactly how many times the test will be run, incrementing

the parameters each time. The repeat parameter specified how many times you want each step of

the test to be rerun. The results will be averaged for the report. And finally, the timeout parameter

allows you to specify a timeout in milliseconds, if a run method takes longer than this the test will

be interrupted and the entire run will be stopped prematurely. The timeout attribute is optionally,

and its absence means that no timeout will be used.

The <stress:parameter> tag allows you to specify how you want the runner to increment

the parameter for each step of the run. A <stress:parameter> tag has three attributes: name,

start and step. The name of the parameter refers to the specific parameter method within the stress

test unit. The first character will be capitalized and the string set will be prepended to determine

the method that the tag is referring to, e.g. parameter becomes setParameter. The start and step

attributes specify how the runner should change the parameter for each step. The first step, the

runner will set each parameter to the value in the start attribute for the parameter, and each

subsequent step after that the value in step will be added to each parameter. Step is an attribute,

and its absence means that the step value is 0.

Multiple runs can be used to vary each attribute in various ways, up to as many runs as

needed by your tests.

Running the Test

Running a stress test is simple assuming you have a completed stress test unit and xml config-

uration file. Simply make a new instance of edu.wpi.ics.component.testing.stress.StressTestRunner

and provide it the path to the xml configuration file in the constructor. Then call the runTests()

method on the runner and it will run all your tests as specified in the xml configuration and produce

the report.

