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Professor Gábor N. Sárközy
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Abstract

Since its introduction in 2006, Monte-Carlo Tree Search has been a major
breakthrough in computer Go. Performance of an MCTS engine is highly
dependent on the quality of its simulations, though despite this, simulations
remain one of the most poorly understand aspects of MCTS. In this paper, we
explore in-depth the simulations policy of Pachi, an open-source computer Go
agent. This research attempts to better understand how simulation policies
affect the overall performance of MCTS, building on prior work in the field
by doing so. Through this research we develop a deeper understanding of the
underlying components in Pachi’s simulation policy, which are common to
many modern MCTS Go engines, and evaluate the metrics used to measure
them.
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Chapter 1

Introduction

Monte-Carlo Tree Search is a search algorithm that combines deep search
with random simulations to determine an optimal action [6]. The algorithm
has been hugely successful in complex problems, especially those with large
branching factors [7]. The most noteworthy example is its success in the
realm of computer Go [6]. Go is a board game that is noteworthy in its
difficulty to computer players due to its large branching factor and tree depth.
Prior to the development of modern MCTS methods, the best computer
Go programs played at the level of a weak amateur. Modern MCTS based
programs now play at a master level on small boards (9x9) and at a strong
amateur level on standard sized boards (19x19) [4].

One of the critical components of MCTS is the random simulation (or
”playout”). Despite the success of MCTS, and the fact that high-quality
simulations are critical to the success of the algorithm, simulations remain
poorly understood [9]. In this paper we attempt to further the understanding
of MCTS simulations in the realm of Go, expanding upon and adding depth
to past research in the field. We focus our research on the playout policy
used by Pachi, a reasonably strong open-source MCTS Go engine developed
primarily by Petr Baudis[4]. In particular we expand upon the work of Müller
and Fernando in their 2013 paper analyzing playout subpolicies in Fuego,
another open-source Go engine [9], and the work of Silver and Tesuaro in
their 2009 paper on simulation balancing [2].

Initially, simulations would select moves completely randomly. It was
quickly shown that encoding expert knowledge into the simulation policies
in order to produce more realistic playouts produced a substantial improve-
ment in the strength of MCTS [10], and it seemed that further improving
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MCTS would be a simple matter of learning to encode more expert knowl-
edge into the simulation policies in a fast, efficient manner. However, this
task soon proved to be much more difficult than immediately thought, with
many attempts to add expert knowledge actually worsening results. Coun-
terintuitively it was shown by Gelly and Silver that increasing the strength of
a playout policy as a stand-alone player does not necessarily produce and in-
crease in the strength of MCTS[10]. In 2009, Silver and Tesuaro showed that
it is more important that a playout policy is balanced than strong. Huang,
Coulom, and Lin applied simulation balancing in a practical setting in 2010
[15]. Finally, in 2013, Müller and Fernando analyzed in detail the subpolicies
in Fuego, and explored new ways to measure simulation policies [9].

Despite the work that has gone into attempted to understand these sim-
ulation policies, designing a quality simulation policy remains what some in
the field have called a ”dark art” [13]. In this paper, we continue the study
on simulation polices. We expand Müller and Fernando’s work by analyzing
Pachi’s playout policies in detail, and evaluate various metrics for their ability
to measure the quality of playout polices. We then adapt machine learning
algorithms presented by Silver and Tesuaro in attempt to improve Pachi’s
playout policy. In doing so we contribute a deeper understanding of the
aspects comprising a strong playout polices, and work towards eliminating
their status as a ”dark art”.
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Chapter 2

Background

In this chapter, we give an overview of Monte-Carlo Tree Search, Go, simu-
lations in Go, Pachi, and Pachi’s simulation policy, Moggy.

2.1 Monte-Carlo Tree Search (MCTS)

The idea of using Monte-Carlo techniques for Go dates back to 1993[14],
but the idea did not find much success until 2006, starting with Coulom’s
proposal of the Monte-Carlo Tree Search (MCTS) algorithm[12]. Traditional
Monte-Carlo techniques involves repeatedly sampling a position using ran-
dom simulations. MCTS expands on this idea by progressively building a
search tree based on the results of these simulations.

2.1.1 Steps in MCTS

A Monte-Carlo Tree Search consists of four steps: selection, expansion, simu-
lation, and backpropagation. The details may vary depending on the specifics
of the algorithms being used, but in general each step works as described be-
low.

Selection refers to the initial descent of the tree. Each pass starts at
the root of the tree. A child node is then selected based on some criteria.
Usually child nodes are selected based on how promising they are (how likely
they are to result in a victory), and how few times they have been visited
(how unexplored they are). The algorithm then repeats this process for the
child node, selecting the next level-deeper child node using the same criteria.
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This continues until the algorithm reaches a leaf node. At this point, the
expansion step begins.

Expansion is the step taken once a leaf node is reached. It will create
zero, one, or more child nodes. If it created child nodes, it will select a child,
and then begin a simulation from there. If it did not create a child, it will
begin a simulation from the leaf node.

Simulation - At this point, a random playout is performed from the node
selected in the expansion phase. It will return either Win, Loss, or in some
cases Draw. For example, in a chess match, moves are played randomly until
a king is taken. In Go, moves are played until the board is filled and both
players pass.

Backpropagation - The result of the simulation is then propagated
backwards through each node that was passed during the descent. Each
node has a count for number of visits and number of wins. If the simulation
resulted in a win, both the visits and wins counts are incremented. If the
simulation resulted in a loss, only visits is incremented.

2.1.2 Upper Confidence Bound 1 Applied to Trees (UCT)

Upper Confidence Bound 1 Applied to Trees (UCT) is a node selection al-
gorithm introduced by Levente Kocsis and Csaba Szepesvri [1]. It resolves
what is known as the exploration/exploitation tradeoff. The selection policy
is affected by two conflicting ideas. On one hand, it should try to allocate
more resources towards exploring nodes that are more promising (simula-
tions passing through this node have resulted in victory more often). This
is known as exploitation. On the other hand, it also needs to examine un-
explored or poorly explored nodes in order to find moves that it may have
missed initially, and to avoid search traps (nodes that initially appear good,
but after a large number of simulations are realized to be). This is known
as exploration. So, there is a tradeoff between exploration and exploitation.
UCT resolves this tradeoff by applying an algorithm known as UCB1 to node
selection.

2.1.3 UCB1

UCB1 (Upper Confidence Bound 1) is an algorithm designed to solve the
multi-armed bandit problem. This problem is usually described by the ex-
ample of a gambler in front of a series of slot machines (each of which is
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referred to as an ”arm”). He does not know anything about the machines,
and they all may be different. The question is which machines to play, and
in which order. The problem is defined in [1]:

A bandit problem with K arms is defined by the sequence of
random payoffs, Xi,t, i = 1, ..., K, t ≥ 1, where each i is the index
of a gambling machine (the ”arm” of the bandit.). Successive
plays of machine i yield the payoffs Xi,1, Xi,2, ....

So the exploration/exploitation tradeoff is as follows: How often should
the gambler play the machine that has yielded the best results so far (ex-
ploitation), and how often should he try other machines (exploration)? UCB1
seeks to minimize the regret.

Definition 1. Regret is the loss experienced from not always playing the best
machine [1]. Exploration will often lead to regret because it is unlikely that
any given unexplored machines is the best. It is defined at time n by the
expected sum of the rewards from the best machine minus the expected sum
of the rewards of the machines chosen by the policy. This is given by the
equation below [1]:

Rn = max iE[
n∑
t=1

Xi,t]− E[
k∑
j=1

Tj(n))∑
t=1

Xj,t] (2.1)

A policy will solve the exploration-exploitation problem if the growth rate
of the regret is kept within a constant factor of the best possible growth rate.

UCB1 is applied to MCTS during the node selection phase. Namely,
UCB1 treats node selection as a multi-armed bandit problem for each indi-
vidual internal, explored node. Each arm corresponds to an action that can
be taken at the given node, and each payoff corresponds to the cumulated,
discounted reward for each of these paths. UCB1 will select the node that
maximizes the following equation[1]:

Qt(s, a, d) + cNs,d(t),Ns,a,d(t)

where Qt(s, a, d) represents the value estimated for action a in state s
at depth d and time t, Ns,d(t) represents how many times state s has been
visited up to time t and depth d, and Ns,a,d(t) is the number of time action
a was performed while in state s up to time t and depth d. By treating
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every node like this, UCT resolves the exploration-exploitation problem at
the time of node selection, while also guaranteeing convergence as the number
of simulations goes to infinity[1].

2.2 The Game of Go

The game of Go is relatively simple in terms of rules. It is fully observable by
both players, deterministic, static, discrete, and adversarial. It is played by
two players in alternating turns on a 19x19 board. Each turn, the turn player
places one stone on an intersection of lines (called a ”point”). The goal is to
surround a greater total area of the board than the opponent. Additionally,
when a group of one player’s stones has no adjacent empty/friendly points
(they are filled by the opponents stones or the edge of the board), these
stones are removed from the board and are worth one point each at the end
of the game. This is called a ”capture”. The game ends when both players
pass, at which point the scoring phase begins.

Players may play at any point on the board, with two exceptions. The
first is that under most rule sets, it is illegal to play a move that results
in the immediate capture of the stone being played, without the opponent
making move (called a ”suicide”). The other exception is called ”Ko”. The
Ko rule states that a player may not play in a way that reverts the game
to a previous state (so no loops may occur). For example, if black plays at
location a in Figure 2.1, he will take white’s piece:

Figure 2.1: An example of a Ko situation [3].

Due to the rule of Ko, white is not allowed to then play at b because it
would revert the game to a previous state (white would place a stone down
directly where their previous one was captured, and in so doing capture blacks
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stone that was just put down). White is, however, allowed to play elsewhere
and then play at b, because at that point the state would have changed.

While these rules seem simple, they lead to very elaborate and compli-
cated game play, and deep strategy. To see just how complicated the game
can become, we compare Go against Chess [1]:

Metric Chess Go
Average Possible Moves 37 200
Average Length of Game 57 moves 300 moves
Possible Positions 1047 10170

Possible Playouts 10123 10360

Figure 2.2: Complexity of Go compared to Chess

This demonstrates the sheer branching factor of the game, however the
intricacy of Go is difficult to see using just these numbers. As stated in
the introduction, a Go player must be able to do two things well in order
to be effective. They must be able to judge the current state of the game,
meaning not only understanding the positions of each stone but also the
general status of stones (such as how safe they are, what territory they affect,
etc.). They must also have strategy, meaning they can interpret multiple
future states and decide which course of action leads to the most desirable
outcome. For humans, the concept of judgement and strategy usually takes
on multiple meanings in a game of Go due to the size of the board. Human
players often interpret different structures on the board both separately and
together in order to develop strategies that can keep their stones alive while
also obtaining the maximum amount of territory. It would be difficult to
judge a single structure without knowing its context in the overall board,
and likewise it would be difficult to create an overall strategy without first
ensuring those smaller structures are actually alive. Humans are naturally
adept at being able to interpret a number of varying parts of the board both
separately and together, as well as figuring out what should and shouldn’t
be considered when thinking about strategy. Computers, on the other hand,
have a difficult time doing so because they are limited by their programming.
While it may be easy to code 3x3 structures into a Go algorithm, things
become exponentially more complicated when looking at larger and larger
portions of the board (as we can see from the chart above). Because of
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this, it is very difficult for any realistic Go algorithm to judge the state of
a game in its entirety, and therefore difficult for it to understand context.
Instead, modern Go algorithms judge the board based on specific criteria it
can look for (usually pertaining to single or very few groups at a time). It
then develops its strategy by predicting (simulating) a future state in which
it wins and playing the move that is most likely to get there.

Ranking

Ranking in Go is slightly different than in other games. In Go, the lower
level ranks are referred to as ”kyu” and the higher level ranks are called
”dan”. Beginners start somewhere between 30 an 20 kyu and work their
way downward towards 1 kyu. When players progress beyond this level, they
enter the expert ranking of dan. These ranks begin at 1 and progress up to
9. It is generally accepted that 1 through 7 dan are amateur expert rankings,
while 8 and 9 dan are professionals[3].

2.3 Pachi

Pachi is an open source program designed to play Go using a MCTS engine.
It currently holds a 7 dan rank on 9x9 boards (as measured by KGS) [4].
KGS is an online Go server that is used by players around the world (both
machine and human) to test their skills against one another. Pachi is run on
KGS to obtain its rank.

While Pachi can achieve the highest amateur dan ranking on 9x9 boards
(7 dan), its capabilities drop when playing on 19x19 (a problem for all MCTS-
based engines). For these 19x19 games, Pachi is ranked as 1 kyu when run on
reasonable hardware, 2 dan when using higher end machinery, and 4 dan if
run on large clusters [4]. Pachi’s playout phase during MCTS is determined
by its playout policy Moggy, which will be discussed in detail in later sections.

Pachi also provides a ”simple, modular framework” for developing Go
programs[4], which made it ideal for our purposes.

2.4 Playout Policies in Go

During the simulation phase of MCTS, a Go algorithm needs to be able to
depict the playout resulting from the simulated move with some amount of
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accuracy. If it cannot then the simulations results will be unreliable and
the updated node will be unpredictably biased. In order to produce reliable
simulations, a number of different heuristics are used with varying probabil-
ities of being picked. These heuristics attempt to imitate normal behavior
in a game of Go, such as capturing pieces, defending, expanding territory,
etc.. The more accurate a policy is at predicting the resulting playout from
a move, the more valuable each simulation will be.

2.4.1 Speed vs. Quality

The most basic tradeoff in a simulation policy is that of quality vs. speed.
In the optimal case, a simulation policy could simply return the minimax
value of a position, and the MCTS would converge almost immediately. Of
course, if this were possible, there would be no need for MCTS to begin
with. Nevertheless, the intuition follows that a policy that is accurate with
respect to the minimax score is better than an inaccurate policy [citation
needed]. However, in order to make a more accurate prediction, the policy
must devote more computational resources to the simulation. Therefore, if
a policy attempts to be too accurate, it may be too slow, and less nodes are
explored. As a result, it is also very important for a policy to be able to be
run quickly.

2.4.2 Balance vs. Strength

Early in the development of modern MCTS engines, it seemed obvious that
a simulation could be improved simply by increasing the strength of the
simulation policy as a stand-alone player. However, it was quickly discovered
that this was not the case, and that in some cases there was even a negative
correlation between the strength of the simulation policy and the strength
of the MCTS using that policy [10]. It was speculated that policies needed
a certain amount of randomness to be effective, and that policies that were
too deterministic would perform poorly [9].

In 2009, Silver and others explored the idea of simulation balancing [2].
The goal is to ensure that the errors committed by a simulation policy cancel
out. This is in contrast to optimizing the strength of a simulation policy,
which attempts to simply minimize errors. They showed that a balanced
policy performs better than a strong one [2].
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Strength and balance can be defined more formally. V ∗(st) defines the
minimax value of a given state, st at time-step t. Any non-optimal move
that is made results in an error, δt:

δt = V ∗(st+1)− V ∗(st) (2.2)

A ”strong” policy is one that has a low error, while a ”balanced” policy is
one that has a low expected error[2]. A strong policy will make few mistakes,
while a balanced policy can make many mistakes, as long as they balance
out in the minimax estimate is minimally affected.

Thus the strength J of policy p over positions ρ is given by[?]:

J(p) = Eρ[Ep(δ2t |st = s)] (2.3)

And the full imbalance B∞(p) is given by (where z is the outcome of a
simulation run by policy p):

B∞(p) = Eρ[(Ep(z|st = s)− V ∗(st))2] (2.4)

2.4.3 Accuracy vs. Stochasticity

Finally, it has been observed that there is a tradeoff between the accuracy of
a simulation and its stochasticity [2]. Playouts with a high level of accuracy
and low stochasticity will be biased towards observing certain moves multiple
times, while not exploring other less-common moves. This trade-off can cause
the playout policy to be incomplete, as it only observes a static, limited subset
of possible playouts which may disallow variance/coverage.

2.5 Moggy

Moggy is the default file for handling the playout policy of Pachi. It has two
main policies it uses to simulate playout, namely Seqchoose and Fullchoose
(Seqchoose being the default). It also has a number of heuristics (also referred
to as sub-policies) which are used by these two playout policies to obtain pre-
dictable moves. These two policies, along with their sub-policies/heuristics,
are described in detail below. These descriptions are derived from in-depth
analysis of the code used to implement them, meaning that the information
here may not be applicable to all Go-playing engines.
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2.5.1 Seqchoose

Seqchoose tries heuristics (each with a certain probability of being tried)
sequentially. The heuristics are tried in this order: ko, Nakade, local Atari
capture/defend, ladder, local groups with 2 liberties, local groups with 3 or
4 liberties, patterns, global Atari capture/defend, Joseki, or fill board (each
heuristic’s execution in Moggy is described in-depth below). If these all
fail then Seqchoose defaults to random (returns pass). If a heuristic is tried
and then successfully passes, Seqchoose will immediately return the resulting
coordinate to be used in the next step of the playout (if multiple coordinates
satisfy the given heuristic, one will be chosen randomly). The probability
each heuristic has of being chosen is set by default, however they can be re-
set by passing in certain parameters to Pachi. The default probability each
heuristic has of being tried is given in the chart (Figure 2.5.2) below.

2.5.2 Fullchoose

Fullchoose, unlike Seqchoose, attempts each heuristic and adds all successful
moves to a list. It then calls Taggedchoose to pick from this list. Tagged-
choose condenses the list by merging any entries that suggest the same coor-
dinate (merging their tags as well). Tags are characters that represent where
a move came from (from which heuristic(s)). Taggedchoose then constructs
a probability distribution for each move based on the gamma values for their
tag(s). Gamma values are what determine the probability of a certain move
being chosen (the higher a tag’s gamma value, the higher probability it lends
to a move). The gamma values of each tag is set by default in Moggy, how-
ever they can be changed based on input. Tagged choose continues by adding
up the total of all the probability distributions (plus Tenuki probability) and
picking a random number between zero and the total. It then checks each
move’s probability distribution against this random number and, if it has a
probability higher than the random number, that move will be chosen and
returned. As the move queue is being checked, this random number decreases
by the probability distribution of each move checked (in an attempt to con-
verge). If Tenuki is enabled (enabled by default) and no move is chosen after
the move queue is exhausted, a random move is played (returns pass). The
gamma values for each heuristic are as follows:
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Heuristic Rate of Seqchoose Gamma Val. for Fullchoose
Ko 20% 6
Nakade 20% 5.5
Local Atari -1U* 5
Ladder 0% 4
2 Lib Check -1U* 4
N Lib Check 20% 3.5
Pattern 100% 3
Global Atari 0% 2
Joseki -1U* 1
Fillboard 0% 0

*-1U is defined based on the size of the board. On large boards (19x19) it is
given the value of 80%, while on small boards (9x9) it is given a value of

90%.

Figure 2.3: Probabilities and gamma values of Moggy’s sub-policies

2.5.3 Ko

Ko is checked for by looking up several values being stored in the board
structure. First, the last coordinate on the board where a stone was taken
(and therefore the last coordinate where ko was initiated) is looked up (this is
called last ko.coord) as well as the current coordinate ko is active at (called
ko.coord). In order to proceed, last ko.coord must be a valid coordinate
and ko.coord must be empty. Moggy then checks how old last ko.coord is
and, if it’s greater than the defined koage (four moves by default), returns
unsuccessfully. If it is younger than the koage, the coordinate ko was found
at will be tested for sensibility (no suicides). If this passes, last ko.coord will
be returned.

2.5.4 Nakade

Nakade checks the last move played to see if it is part of a structure that
has a large space in the middle (see Figure 2.4). This is important because
if three or more spaces are enclosed, then the defending player can create
two ”eyes” in the provided space (making the structure invincible). Some
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of these structures can be played inside of (filling one or more of the empty
spaces) before the defending player creates these eyes, and by doing so the
attacker will have prevented the two eyes from being formed (see Figure 2.5).
This is called Nakade. To check for Nakade, Moggy looks up the last move
played and searches its neighbors to find an empty one. After one is found,
the remaining empty neighbors are checked in relation to the first one. If any
of these empty spots are not eight-adjacent to the first one, then this will
return unsuccessfully. Next the neighbors of the empty spots are checked to
ensure the attacker does not have any connected pieces and that there are at
most 6 empty spots. After this is done the algorithm checks the surrounding
pieces to determine the shape of the group. It then compares this shape and
number of empty spots with known Nakade shapes. If any return successfully,
this will return with the coordinate of where to play for Nakade.

Figure 2.4: An example of a Nakade situation. If white plays in the very
center, this structure will be invincible and black cannot capture it [3].
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Figure 2.5: An example of a resolved Nakade situation. Because black played
in the center (at 1), there is no way for white to make this structure invincible
anymore and it is considered dead [3].

2.5.5 Local Atari

This checks to see if the last play resulted in any neighboring groups being
put in Atari. Atari simply means that a group has been reduced to one liberty
and is in danger of being captured (see Figure 2.6). To do this, Moggy checks
each neighbor of the last play and counts the liberties of any group found.
For each group with only one liberty, it runs group atari check on it, which
decides if the group is savable (savable meaning the defending player can
play in such a way that the group lives). If the turn player is the attacker,
group atari check looks at neighbors of the threatened group to see if there
are any mutual Ataris. If there are, the group is captured (to immediately
protect the turn player’s pieces). If there are no mutual Ataris, the one liberty
of the threatened group is checked for quality. If playing the liberty for the
defending player does not result in additional liberties, the defending group
is considered to be dead and there is no need to attack it. If the defending
group can play on the liberty to gain additional liberties, then they will be
captured in order to prevent escape and the liberty coordinate is returned
by this heuristic. If the turn player is the defender, group atari check will
return any coordinate that either counter-captures a neighbor or successfully
increases the defending group’s liberties. It will not play on a coordinate
that results in a ladder (unless the ladder forces an Atari in the process), nor
will it save a Ko unless it is being used for an eye.
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Figure 2.6: An example of Atari. All of white’s pieces shown here are con-
sidered to be in Atari. Each of their one and only liberties is indicated by
the red circles [3].

2.5.6 Ladder

A ladder occurs when a group has one liberty left in certain situations (see
Figure 2.7). The situation has to be such that playing the liberty as the
defender results in the group having two liberties. The attacker then responds
to this by blocking the stone’s path, reducing its liberties back down to one.
If the structure is a true ladder, this cycle will repeat until a wall or another
group is hit (see Figure 2.8). True ladders are considered to be dead shapes,
and as such should not played out by the defender (as it only loses points).
Ladders can be broken if there is a group owned by the defender in the
ladder’s path. Another way to break a ladder is to Atari one of the attacking
stones through the process of laddering (often known as a false ladder). In
Moggy, ladders are checked by first looking at the chase stone. This is the
stone (or group) at the head of the group currently threatened, and will
inevitably be threatened by the opponent through the process of laddering.
If this stone is already threatened (has less than 3 liberties), the ladder is
false and will not be played. After this, Moggy goes through a series of moves
to play out the ladder. If at any point the attacker becomes Atari’d or the
defending group gains more than two liberties, the ladder is breakable and
will not be played. If it is played out successfully then this will return the
coordinate to play in order to initiate the ladder.
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Figure 2.7: An example of a ladder situation. White’s stone in Atari (desig-
nated with the circle) is considered to be dead [3].

Figure 2.8: An example of a ladder that has been played out. As one can
see, no matter how much white tried to gain more liberties, black was able
to stop them. The order of the moves is indicated by the stones’ numbers
[3].

2.5.7 2 Lib Check

When the last play resulted in a neighboring group (or the stone itself)
having only two liberties, this heuristic checks what to do about it. The first
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step is checking the initial condition, which is done by observing the last
play’s liberties as well as each of its neighbors’ liberties. Any groups with
two liberties then have the qualities of those two liberties checked. If the
group can use either of those liberties to run (gain 3+ liberties) or connect
to another group owned by the same player, the function returns immediately
because the group is considered to be safe. If the turn player is the attacker
(does not own the defending group), each of the two liberties is checked to
see if Atari is feasible. Atari is not feasible if playing it puts the attacker in
Atari and there is no nearby group (with two or more liberties) that can be
used to protect the Atari position first. If it is feasible then each position is
checked to see which causes less clutter for the attacker, and any position not
playable by the defender is taken out of consideration. The best resulting
Atari position(s) will have its coordinate(s) returned by this function. If the
turn player owns the defending group, they will check if a counter-Atari is
possible by playing in one of their two liberties and return the coordinate if
so.

2.5.8 N Lib Check

It is important to check the safety of local groups, even if they seem to have
a good number of liberties. If the last move resulted in a neighboring (eight-
adjacent) group having 3 or 4 liberties, the liberties of that group will be
checked for counter-Ataris. That is, if there is an enemy group nearby with
only two liberties that can be attacked by extending the defending group,
that coordinate(s) will be returned by this heuristic. Otherwise the defending
group is left alone. Note that the number of liberties the defending group
needs in order to be checked is variable. While the default value is 3-4, it
can be changed by the passed-in parameters (which is why this is called N
Lib Check). The tradeoff between high and low values for this is that high
values give a good chance of not missing threats while not taking one’s own
liberties, however results in spending more time on this heuristic and possibly
wasting moves on live groups.

2.5.9 Pattern

The playout policy Moggy has a predefined database of 3x3 patterns that
it uses for pattern recognition. When the pattern sub-policy is called, it
checks each spot in this 3x3 pattern with the area around where the last
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piece was played. If the area is identical to the pattern, the pattern sub-
policy returns the coordinate that is generally accepted as the proper move
in said pattern. Some positions in the pattern allow for variable pieces to
occupy them, meaning that there may be more than one scenario that a
certain pattern can be applied to.

2.5.10 Global Atari

The board structure in Pachi naturally holds a list of groups with only one lib-
erty. When this heuristic is called, if that list is empty, it returns immediately.
Otherwise global Atari checks all Ataris on the board using group atari check
(see Local Atari). If the boolean capcheckall is true, group Atari will con-
struct a list of all feasible Atari moves (whether capturing or defending) and
return them. If capcheckall is false (the default case), this will only return the
first feasible Atari move found. Capcheckall can be toggled with parameters
passed into Pachi.

2.5.11 Joseki

Joseki is a common term used for sequences of play that result in a fair
outcome for both players. These are generally used in the beginning of the
game when the board is relatively empty and there is little influence from
outside sources. Moggy has a Joseki library for 19x19 boards that it uses by
default, however users can pass in custom Joseki libraries or even choose to
use none. Pachi does not have a default Joseki library for 9x9 boards.

2.5.12 Fill Board

This heuristic attempts to fill empty areas on the board for the purpose of
gaining territory and creating structures that can be used by other heuristics.
It is not used by default due to poor performance. When it is used, the
heuristic retrieves the number of free spots on the board and divides by
eight. It then compares this number with fillboardtries (default 0), and if
it is higher than fillboardtries, fillboardtries is used instead. It then picks a
random free coordinate from the board and sees if all of its eight-adjacent
spots are free. If they are, the coordinate is returned immediately. If not,
it randomly chooses another free coordinate and tries again. The number of
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times it attempts to find a free spot is defined by the number determined at
the start of this algorithm.
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Chapter 3

Analysis of Playout Policies in
Go

Quality playout policies play a crucial role in the success of Monte-Carlo
Tree Search. While the search tree aspect of MCTS is well understood, the
same cannot be said of the playouts [9]. This paper first attempts to analyze
these simulations in the game of Go, specifically using the Pachi framework,
in order to establish a better understanding of the factors that influence the
effectiveness of a playout policy.

3.1 Methodology

All experiments were run using Pachi version 10.00 with modifications as
noted.

3.1.1 Notation

For playout policy p, we define MCTS(p) to be a Monte-Carlo Tree Search
using p to simulate games at leaf nodes. M refers to Moggy Seqchoose, which
is the default policy used in Pachi, with its default settings. R refers to a
random simulation policy.

In order to get a good spread of simulation policies, we took an approach
similar to Müller and Fernando’s treatment of Fuego playout subpolicies[9].
We divided the set of policies into two groups: subtractive policies and ad-
ditive policies. Subtractive policies use Moggy Seqchoose but disable one
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Subtractive Policies Additive Policies
Command Description Command Description
fullchoose=0 M Random R
fullchoose=1 Use Fullchoose patternrate=100 R + pattern
atarirate=0 M - Atari lcapturerate=100 R + lcapture
josekirate=0 M -Joseki nlibrate=100 R + nlib
korate=0 M -ko ladderrate=100 R + ladder
ladderrate=100 M + ladder korate=100 R + ko
lcapturerate=0 M - lcapture nakaderate=100 R + Nakade
nakaderate=0 M -Nakade josekirate=100 R + Joseki
nlibrate=0 M - nlib atarirate=100 R + Atari
patternrate=0 M - pattern fillboardtries=1000 R + fillboard
fillboardtries=1000 M + Fillboard(1000) capturerate=100 R + Global Atari
capturerate=100 M + Global Atari

Figure 3.1: Policies variations used in analysis. Commands for Additive
Policies abbreviated.

subpolicy. Additive policies use a random policy, but enable one Moggy sub-
policy. We also tested Moggy Fullchoose, and the enabling of Moggy’s ladder
subpolicy, both of which are included under subtractive policies, as they are
more similar to M than to R.

For more information about Moggy and its subpolicies, see Section 2.5.

3.1.2 Strength of MCTS(p)

Ultimately, the test of a playout policy is its actual performance when used in
MCTS, so the most basic and accurate test of a playout policy p is to measure
the playing strength of MCTS(p). For each policy we did this by continuously
playing MCTS(p) against MCTS(M). For each game, we ignored the clock
and ran 2000 simulations per turn. The sides alternated colors each game,
and a 6.5 Komi was used. Pondering was disabled as it was found to unfairly
advantage certain policies.

3.1.3 Playout Subpolicy Time Measurements

As discussed in Section 2.4.1, there is a tradeoff between the ”quality” of a
simulation policy and the speed at which it runs. The strength of a playout
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policy is correlated to the amount of time it takes to run a single playout.
This value is inversely proportional to the number of simulations that it is
possible to run. Increasing the number of simulations increases the depth of
the constructed search tree, enabling more accurate results.

We used Google’s gperftools to measure the time that was being spent in
each subpolicy. This utility routinely samples the stack in order to determine
which subroutines the code is currently executing. Therefore, probabilisti-
cally, functions which take more time will be sampled from more frequently.

3.1.4 Position Database

In order to gather a database of realistic positions to run tests on, we turned
to game records gathered from the KGS Go server. KGS is one of the most
popular online Go servers. We gathered the records from Ulrich Goertz’s
SGF Game Records [11], which is an archive of all high level games played
on KGS. These games all include one player who is at least 6 dan. We then
narrowed this down by removing games that had handicaps or were lost on
time.

Handicap games were removed because they would give bad information
on the strength of certain positions compared to results, because a worse
player with a big handicap may be in a strong position early on, but still
lose due to their poor skill. Thus, a program might misinterpret the strong
position as a losing position. Further, handicap games would also often
include weaker players, even in the kyu range, which would poison attempts
to build an expert policy based on moves by strong players.

Games lost on time were removed because the winner of these games
would be determined by time-out and not by board position. Hence, a player
could be far ahead and still lose. This would introduce misleading data.

3.1.5 Moggy as a Move Predictor

To evaluate the strength of playout policy p, we compared the action a se-
lected by policy p to the action selected by expert policy, µ(s, a∗), which
produces action a∗ in state s. µ(s, a∗) was defined by the actions selected by
players in our database of games.

Because µ(s, a∗) represents a strong player, the error δt (see Equation
2.2) of µ(s, a∗) is expected to be low. Moves selected by p that match the
move selected by the expert policy have the same low error. Therefore, the
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more closely policy p resembles µ(s, a∗), the lower the average error, and the
higher the strength.

While it therefore seems to be desirable to have a playout policy p that
closely resembles µ(s, a∗), there are a number of variables that can make
the results misleading. In any given situation there may be a number of
different ”strong” moves to play (moves with a low error δt). Because µ only
selects ones move for each state, p may select an equally strong move, but
still be ”penalized” for it by this metric. Another thing to consider is that
in order to maintain a diverse sample, playout policies tend to be inherently
stochastic. Therefore, a playout policy may fail to select a∗ simply due
to chance. While this makes most playout policies somewhat poor oracles,
stochasticity has been shown to improve the overall effectiveness as a playout
policy (see section 2.4.3).

We tested roughly 75 thousand games and about 15 million moves from
our database in order to collect a good representation of Moggy’s predic-
tive capabilities. The test was performed on 23 different policies, and the
predictions of each sub-policy as well as the overall policy were recorded.

3.1.6 Error of Playout vs Game Results

While comparing the moves selected by p is an estimate of the strength of
p, Though stochasticity and generating diverse samples is important, the
outcome of a good playout policy is expected to be somewhat accurate in
evaluating positions (see Section 2.4.3). Thus, a position that wins a majority
of playouts should hopefully result in a win for the actual player. While there
are no known samples of perfect play (with the possible exception of certain
endgames), strong players should present a reasonably strong and unbiased
estimate of the outcome of a position (or the minimax score). Therefore, we
define the Mean Squared Error of a playout policy vs. the game result as:

1

P

∑
ρ

1

N

N∑
n=0

(r(ρ)− sn(ρ))2, (3.1)

where P is the total number of positions, ρ is a given position, N is the total
number of simulations per position, sn(ρ) is the result of running a simulation
policy for the nth time on p, and r(p) is the actual game result of position
ρ, as determined by the high-level players in the position database.
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This is also a measure of the balance of a playout policy (see Section
2.4.2). A balanced policy is expected to preserve the minimax winner of a
position. Results from actual high level play are believed to be our closest
estimates of the minimax score in each position. Therefore, results from high
level player are used as our estimate of V ∗(s).

3.1.7 Error of Playout vs Pachi Score

Another estimate of the minimax score is given by the Pachi score of a
position, P(s) (Pachi’s estimated win percentage for the current player in
state s). The Pachi score is simply the UCT score of the root node for
the given state. This has a number of benefits over comparison to game
results–it allows playout policies to be analyzed in positions that have not
been encountered in real play, it will be subject to less noise, and a UCT-
based expert will converge to the minimax result given enough simulations
[1] (though in practice this number is too large to be achieved). The Mean
Squared Error compared to the Pachi score is defined similarly as above:

1

P

∑
ρ

[P(ρ)− 1

N

N∑
n=0

sn(ρ)]2, (3.2)

where P is the total number of positions, ρ is a given position, N is the total
number of simulations per position, sn(ρ) is the result of running a simulation
policy for the nth time on ρ, and P(ρ) is the Pachi score of position ρ.

This is essentially the same as the equation for the full imbalance (given
by Equation 2.4), with P(ρ) being used as an estimate for V ∗(s).

3.2 Results

3.2.1 Strength of MCTS(p)

The results of the strength test are shown in Figure 3.2.1. These results are
used in later analysis.

Disabling certain subpolicies, namely Local Capture and Pattern, had
a very negative effect on the overall strength of MCTS(p), suggesting that
they are very important to the success of M . Other subpolicies seemed to
have little to no effect on the outcome. Fullchoose performed surprisingly
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poorly. It uses the same subpolicies as Seqchoose, so better results would
were expected. We had believed that Fullchoose’s primary weakness was its
execution time compared to Seqchoose, but these results suggest that there
are further problems.

Enabling the Ladder subpolicy did increase the performance of Seqchoose
slightly when a set number of simulations was used, which more or less meets
expectations. However, as seen below in Figure 3.3, it is considerably time
consuming, explaining the fact that it is not enabled by default.

Policy p Wins Games Win Rate
Josekirate=0 114 218 52.29%
ladderrate=100 103 193 52.02%
nlibrate=0 111 219 50.68%
fillboardtries=1000 108 218 49.54%
korate=0 107 220 48.63%
nakaderate=0 90 219 41.09%
atarirate=0 86 220 39.09%
capturerate=100 81 218 37.15%
fullchoose=1 37 197 18.78%
patternrate=0 20 218 9.17%
lcapturerate=0 0 220 0.00%

Figure 3.2: Win Rates of MCTS(p) of modified policies against MCTS(M),
with 2000 simulations per turn.

3.2.2 Playout sub-policy Time Measurement

Figure 3.3 shows the time spent in Fullchoose subpolicies. Figure 3.4 shows
the time spent in Seqchoose subpolicies. Fullchoose runs each policy once for
each move, so it was the best option for comparing the time it takes for each
subpolicy to run once. The ladder check took by far the most time, taking
around 5 times as long as the next slowest policy. apply pattern was the
second slowest, but was still considerably faster than the ladder check. The
other policies took little time by comparison, with local atari check taking a
mere 1% of the time.
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Figure 3.3: Time distribution of subpolicies in Fullchoose

Figure 3.4: Time distribution of subpolicies in Seqchoose
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3.2.3 Moggy as a Move Predictor

The results show that Moggy’s default settings yield an approximate 20-21%
success rate at predicting the move selected by expert policy µ(s, a∗) at any
point in a game. When varying the input, it can be seen that the majority
of the predictions (and thus most moves selected by the playout policy)
come from Moggy’s 3x3 pattern recognition (Figure 3.7). Pattern appears
to have only about a 19% success rate, however, at predicting moves. While
this may seem low considering the subpolicy plays moves that are supposed
to represent well-known expert patterns, it is important to understand the
context-dependency of the patterns in real play. A 3x3 section only covers
about one fortieth of the overall board, meaning most of the board is not
being considered. Furthermore, multiple patterns may be present on different
parts of the board. While 19% is not very high, given the circumstances that
the algorithm is used under, it is also not surprising.

Figure 3.5: Predictive rates per policy. Sub means that Seqchoose was run
without the listed subpolicy. Add means that Seqchoose was run with the
listed subpolicy included (done for subpolicies not included by default). Solo
means that the policy solely consists of the listed subpolicy.
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The subpolicy with the second highest influence is local atari check (which
captures/defends Ataris), which has moderate influence (though small com-
pared to pattern) and a very high success rate (about 60%). This is unsur-
prising because Ataris are usually obvious plays in real games (so long as
capturing or defending the Atari is sensible). Furthermore, they are often
urgent, meaning that is important to play the move before the opponent can
prevent it. Because the subpolicy checks the quality of surrounding liberties
and potential liberties before defending a group, it will not try to save a dead
group and therefore has highly accurate prediction when defending (though
this is not the case in small-point scenarios when the number of points gained
by defending is outweighed by larger potential point sources on the board).
Similar to defending, the subpolicy will also not consider playing on dead
group when attacking (if there is a group on the board that can be captured
but has no chance of surviving, Moggy will wait to capture it). This is very
good at predicting because it avoids unnecessary moves while still capturing
when appropriate. Similar to defending, however, there are some cases where
it may be inappropriate to leave a group living, even if they seem to be dead
already. It is not uncommon for one group on the board to travel across a
space and come within range of another one that’s in danger. If this is the
case, it is important for Moggy to reassess the group it determined to be dead
earlier, because the quality of its potential liberties may have increased dra-
matically. As it stands, local capture/defending of Ataris does not take this
into account (because it only looks at groups around the last stone played),
however global Atari does (it will reassess all Atarid groups on the board).
This may give reason to include a rate higher than 0 as the default for global
Atari capture.
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Figure 3.6: Predictive rates per subpolicy. Note these are only the subpolicies
used by Seqchoose. These do not include fill board, global Atari, or ladder.

Ko also had a good success rate, around 40% (and 55% in Fullchoose),
though it was not used often due to the relative rarity of Kos. Nakade
had very poor success rate (near 0%), which is somewhat unclear due to
how strict Moggy is at checking Nakade. It is not influential however due
to the number of times performed. Making/preventing Ataris (2 Lib) was
moderately influential and about 20% successful. This was as expected as
making/preventing Atari is common, though situational for successful Atari.
Defending a 3 or 4 liberty structure (N Lib) had about 15% success rate and
wasn’t very influential Joseki proved to be one of the worst predictors, as
it had near 0% success rate and minor influence (about as much as Ko or
N lib). This seems to be a little strange, due to Joseki relying on pattern
recognition similar to the Pattern sub-policy. However, there are also often
a large number of patterns that match in a given move, that it does not
differentiate between. Ladder, Global Atari, and Fill Board were not used by
Moggy’s default policy, though we observed their results in our modifications.
Ladder plays were successful around 30% of the time, though were rarely used
and therefore not influential. Global Atari had about 5-10% success rate
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and were moderately influential (though this could be increased by raising
its priority in Seqchoose). Finally, the Fill Board sub-policy had moderate
influence, though was not successful (success rate near 0%).

Figure 3.7: Predictive rates per subpolicy. Note these are only the subpolicies
used by Fullchoose. These do not include fill board. Additionally local atari
and ladder are counted together due to Fullchoose’s method of storing these
tags.

3.2.4 Error of Playout vs Game Results

The error rate of the playouts was very high overall. This is somewhat
expected, since the database of positions included many games that were
close. When the minimax score V ∗(s) in terms of point differential is small,
the playouts are expected to have varying results.

Figure 3.10 shows the error versus the playing strength of MCTS(p). The
correlation is not very strong. Given that balance has been shown to be
an effective measure for improving the quality of a playout policy by Silver
and Tesuaro [2], a stronger correlation was expected. Increasing the number
of data points to encompass more varied error rates may reveal a stronger
correlation.
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Figure 3.8: Policy Prediction Rate vs. Winrate

Subtractive Policies Additive Policies
Command MSE (%2) Command MSE (%2)
capturerate=100 43.97 patternrate=100 45.25
fillboardtries=1000 44.10 lcapturerate=100 46.06
ladderrate=100 44.16 capturerate=100 46.08
nakaderate=0 44.17 atarirate=100 46.68
nlibrate=0 44.21 nlibrate=100 47.04
korate=0 44.24 ladderrate=100 47.18
fullchoose=0 44.25 fillboardtries=1000 47.23
fullchoose=1 44.36 josekirate=100 47.24
atarirate=0 44.39 korate=100 47.25
lcapturerate=0 45.50 nakaderate=100 47.31
patternrate=0 45.54

Figure 3.9: Mean squared error of Playouts vs Actual Results for each policy
variation.
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Figure ?? shows how each policy variation performed. Interestingly, many
of the subtractive policies actually outperformed the default policy. The top
three policies were the addition of Global Atari, Fill board, and Ladder to
the default Seqchoose policy. However, setting each of nakaderate, nlibrate,
and korate to 0 also improved results, which is somewhat surprising.

Similar to the prediction results, local captures and pattern moves proved
vital to performance on the metric. In fact, using Seqchoose with only pat-
terns outperformed using Seqchoose with everything except patterns, and
local capture was nearly as important. This is likely related to the fact that
they are both used very often, and applicable in a wide variety of situations,
while most of the other policies are used much more infrequently. This per-
haps shows that it is more important to have expert knowledge that can be
applied generally and frequently than detailed but infrequently used expert
knowledge.

Figure 3.10: (MSE vs Game Result) vs Winrate

3.2.5 Error of Playout vs. Pachi Score

The measured error versus the Pachi score correlated remarkably well with
the error vs. actual results (Figure 3.13). This suggests that the Pachi score
is a sufficient estimation of minimax value V ∗(s). This is a very useful result,
as it verifies the methodology used by Silver and Tesuaro[2] and others in
simulation balancing. It is impressive given the low number of simulations
used in this test (5000 simulations).
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Subtractive Policies Additive Policies
Command MSE (10−4%2) Command MSE (10−4%2)
nakaderate=0 31.08 patternrate=100 56.25
korate=0 31.72 lcapturerate=100 80.01
nlibrate=0 31.93 atarirate=100 97.10
ladderrate=100 32.23 capturerate=100 117.12
atarirate=0 33.41 nlibrate=100 121.47
fillboardtries=1000 34.65 ladderrate=100 126.67
capturerate=100 35.39 fillboardtries=1000 128.12
fullchoose=1 42.32 josekirate=100 128.19
lcapturerate=0 59.30 korate=100 129.41
patternrate=0 60.28 nakaderate=100 131.12

Figure 3.11: Mean squared of Playout vs Pachi Score for each policy variation.

Figure 3.12: MSE (Policy vs Pachi score) vs Winrate. Winrate shown on
logarithmic scale.
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Interestingly, the correlation with the win rate for this value seems stronger.
This may be due to a slightly better spread of data points. More data would
still be useful for establishing a tighter correlation. However, the correlation
seems strong enough to be a candidate for machine learning.

Figure 3.13: MSE of Playout Results vs. the Pachi score and vs. actual game
results

3.3 Conclusions

After testing various characteristics of multiples policies within Pachi, we
had gathered a large amount of information regarding Pachi’s playouts. It is
clear that the ”pattern” and ”local capture” subpolicies are the most valuable
Moggy subpolicies. Removing them hurt the win rate, expert prediction, and
the error vs. both actual game results and the Pachi score. Interestingly, the
strength of the local capture module contrasts strongly with Fuego, where it
was shown that disabling its corresponding capture module actually increases
the strength of Fuego slightly[9]. However, in Fuego, the capture atari and
defend atari modules are separate, whereas in Pachi they are combined in
local capture. Fuego was shown to be significantly weakened by removing
”defend atari,” which suggests that the strength of local capture is more in
defending than capturing. The pattern module was also shown to be very
important in Fuego.
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In contrast to the pattern and local capture modules, some of the sub-
policies had surprisingly little effect. For example, disabling the nlib (low
liberties) module resulted in a roughly 50 percent win rate against the de-
fault. Similarly, disabling the Ko and Joseki modules also had little effect.

As was expected, the ladder subpolicy took an exceptional amount of
time (70% of all playout policy time), proving its infeasibility. Upon fur-
ther inspection of ladder’s implementation in Pachi, this time consumption
appears to be unavoidable without losing a significant portion of the subpol-
icy’s safety measures. As stated in 2.5.6, ladders can be very risky shapes
if handled incorrectly. In order to ensure there is no chance for escape, the
subpolicy must run down every possible path the ladder can take, resulting
in high time cost, while only improving the policy slightly. The other sub-
policy with significant time consumption was the pattern module. Pachi uses
a somewhat brute force approach to matching each pattern. Despite this, it
still took considerably less time than the ladder subpolicy while contributing
much more to the success of MCTS in all metrics considered.

Both the prediction of expert moves and the measured error vs. Pachi
score showed reasonable correlation with the playing strength of MCTS(p),
while also being relatively inexpensive to compute. For this reason, they
both make good candidates for machine learning. Furthermore, the error
vs. the Pachi score showed to correlated very well with the error vs. actual
results. If the results of games played by high level players are assumed to
be reasonable estimates of the minimax score (0 or 1), then this suggests
that the Pachi score is an acceptable estimate of V ∗(s) for the purpose of
simulation balancing (see equation 2.4). The application of these metrics to
machine learning is explored and tested in Chapter 4.
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Chapter 4

Improvements to Moggy

In this chapter we use the metrics used in the previous chapter to perform
machine learning on the weights in Moggy Fullchoose. Silver and Tesuaro [2]
applied machine learning techniques Go in an artificial setting, using these
techniques to learn weights for 2x2 patterns on 5x5 and 6x6 boards. We apply
these techniques to learn weights for Moggy Fullchoose in a 19x19 setting.

4.1 Methodology

4.1.1 Policy Gradient

The Moggy Fullchoose playout policy is described by

πθ(s, a) =

∏
iw

φ(s,a)
i∑

b

∏
iw

φ(s,b)
i

(4.1)

where πθ(s, a) is the probability of selecting move a at state s. θ is a vector
containing weights wi corresponding to each Moggy subpolicy, and ψ(s, a) is
vector describing which subpolicies suggest move a in state s. We will later
need the gradient of the policy with respect to the subpolicy weights:

∇θ(πθ(s, a)) =
∇θ(

∏
iw

φ(s,a)
i )∑

b

∏
iw

φ(s,b)
i

−
∏

iw
φ(s,a)
i ∇θ(

∑
b

∏
iw

φ(s,b)
i )

[
∑

b

∏
iw

φ(s,b)
i ]2
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= ψ(s, a) =
1

wθ
πθ(s, a)[φ(s, a)−

∑
b

πθ(s, b)φ(s, b)] (4.2)

4.1.2 Apprenticeship Learning

Apprenticeship Learning seeks to maximize the playing strength of a policy
by learning strong moves from expert examples. In other words, the goal is
to create a policy that behaves as closely as possible to a given expert policy
µ(s, a∗)[2].

We ran Fullchoose on half of our database of 80,000 games, constructing
a move queue for each move (about 8,500,000). For each move, we then
extracted each of the following pieces of information: each move present in
Fullchoose’s move queue, all of the policies used to suggest any given move in
the queue, and the actual move chosen by the player in the given situation.

A simple algorithm for gradient ascent is provided by Silver and Tesuaro[2]
for maximizing the likelihood L(θ) of choosing action a∗ given by the expert
policy at state s. For each action/state pair, we updated the weights accord-
ing to:

∆θ = αψ(s, a∗) (4.3)

The derivation is as follows[2]:

L(θ) =
L∏
t=1

π(s, a∗)

logL(θ) =
L∑
t=1

log π(s, a∗)

∇θ logL(θ) =
L∑
t=1

∇θ log π(s, a∗)

=
L∑
t=1

ψ(s, a∗)
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4.1.3 Simulation Balancing

To minimize the full imbalance B∞ of Moggy Fullchoose, we use the gradient
descent algorithm presented by Silver and Tesuaro [2]. This algorithm learns
from v̂∗(s), which is an estimation of the minimax value function generated
by a deep Monte-Carlo Tree Search. In this case, we use Pachi with 5000
simulations to construct v̂∗(s), as the error vs. this value was shown to
correlate very well with the error vs. real game outcomes (see 3.2.5).

Silver and Tesuaro’s Policy Gradient Simulation Balancing [2]

For a given state s, the gradient used for gradient descent is the product of
two terms: the bias, b(s), and the policy gradient, g(s). The bias given by
b(s) is the direction that the mean outcome needs to be adjusted in order
to match the minimax estimate v̂∗(s). For example, is black winning too
often, or not often enough? The policy gradient g(s) tells us which policy
parameters to modify in order to adjust the mean outcome. Formally, where
z is the outcome of the simulation policy πθ:

b(s) = v̂∗(s)− Eπθ [z|s] (4.4)

g(s) = ∇θEπθ [z|s] (4.5)

Therefore it follows that the full imbalance B∞ and the gradient of the
full imbalance are as follows:

B∞(θ) = Eρ[b(s)2] (4.6)

∇θB∞(θ) = Eρ[b2] = −2E[b(s)g(s)] (4.7)

In practice, it is easy to get a good estimate b̂(s) for the bias as well as a
good estimate ĝ(s) for the policy gradient by sampling simulations. Because
b̂(s) and ĝ(s) are usually correlated, it is necessary to sample them separately.

To get b̂(s), we sample M simulations from state s:

b̂(s) = v̂∗(s)− 1/M
∑

ξ∈χM (s)

z(ξ) (4.8)

To get ĝ(s), we sample an additional N simulations (where T is the length
of simulation ξ, and ψ(s, a) is defined in Equation 4.2):
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ĝ(s) =
∑

ξ∈χN (s)

z(ξ)

NT

T∑
t=1

ψ(st, at) (4.9)

Finally, for each state s in the training set, we update our policy weights
according to:

∆θ = αb̂(s)ĝ(s) (4.10)

Where α is the learning rate.

4.2 Results

Subpolicy Hand-Tuned Apprenticeship Simulation Balancing
Ko 6.0 10.15 1.99
Nakade 5.5 1.34 0.04
Local Atari 5.0 23.96 5.45
l2lib 4.0 2.34 2.59
lnlib 3.5 1.94 1.23
pattern 3.0 3.21 6.22
Global Atari 2.0 0.81 5.36
Joseki 1.0 0.10 0.33

Figure 4.1: Learned Moggy Fullchoose weights from hand-tuning, appren-
ticeship learning, and simulation balancing.

4.2.1 Apprenticeship Learning

After training Fullchoose on 40,000 games to attain the proper weights, we
passed these values back into Pachi and tested it on the remaining 40,000
games. The predictive capabilities of Fullchoose increased by about 2.5% (as
shown in 4.2.1, which is significant relative to the previous predictive value
of Fullchoose. This brings it on-par with Seqchoose for predictability.
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Predictive Accuracy of Fullchoose
Hand-tuned Weights 17.00%
Learned Weights 19.62%

Figure 4.2: Predictive capability of Fullchoose hand-tuned default weights
and weights learned by apprenticeship learning.

4.2.2 Simulation Balancing

The subpolicy weights learned through simulations balancing (Figure 4.1)
seem to agree with the results of our earlier experiments (see section 3.2.5).
The most weight was given to the Pattern, Local Atari and Global Atari
subpolicies. Pattern and Local Atari both showed to be very important to
balance (error vs. Pachi score) in Section 3.2.5, and that is reflected here.
In the same section, setting the Nakade rate to zero had shown the highest
balance, which is reflected here by a very low Nakade rate.

Though the learned weights differ significantly from the original weights,
the overall improvement at the task was convincing but limited (Figure 4.4).
This may be due to a limited amount of ”expressiveness” by the weights in
Fullchoose. The learned weights may not be near the global optimum because
the balance is non-convex [2], however it is possible that the best achievable
results by modifying the weights are not significantly better regardless.

There was an increase in balance, but this improvement did not translate
to an improved win rate. While significant, the balance of the simulation
policies is not the only factor in the success of MCTS. The simulation bal-
ancing algorithm used attempts to minimize the expected error overall all
positions, giving them even weight, but it may be that balance is very im-
portant in some situations, and less important in others. Thus, the balance
should be maximized for those situations more than the position. It was
also raised as a possibility by Müller and Fernando that different phases of
the game might require different policies in order to achieve balance[9]. In
either case, maximizing the balance in the manner used may not produce the
optimal results.

While the error vs the Pachi score was shown to correlate very well with
the error vs. expert game results (Figure 3.13), learning based on the Pachi
score remains prone to certain biases. For example, MCTS engines are known
to frequently handle Nakade situations incorrectly [13]. The low weight given
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Mean Squared Error vs. Pachi Score (%2)
Hand-Tuned Weights 3.530× 10−3
Learned Weights 3.116× 10−3

Figure 4.3: Mean Squared Error vs Pachi Score of learned simulation bal-
ancing weights and default weights

Games Won Games Played Win rate
Apprenticeship Learning 79 133 59.40%
Simulation Balancing 103 197 52.28%

Figure 4.4: Win rate of learned policies against hand-tuned default policy

to Nakade may say more about the Pachi score than the simulation itself. It
is not clear otherwise biases in Pachi may have affected these weights.

4.2.3 Playing Strength of Learned Policies

The policy learned through apprenticeship learning showed a strong improve-
ment in strength over the hand-tuned weights, winning nearly 60% of the
games. Simulation balancing won a more modest 52% percent in strength,
still showing a slight improvement. This suggests that in practice both tech-
niques are viable and perhaps superior method of tuning the weights to hand-
tuning.

4.3 Conclusions

Overall the results suggest that using machine learning to learn weights sim-
ulation policies is a viable and perhaps superior alternative to setting weights
by hand, even in cases where the policy is not particularly expressive with
respect to the weights. The machine learned weights are competitive with
hand-tunes weights, even when they are very different. Surprisingly, and
in contrast to Silver and Tesuaro’s results[?], apprenticeship learning actu-
ally outperformed simulation balancing. Both learning techniques produced
policies that were more effective at their respective tasks than the default
hand-tuned weights, but the improvement was relatively small. Despite this,
there was still a measurable increase in playing strength.
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One issue preventing the improvement from being larger was the lack of
”expressiveness” achievable through modifying the Fullchoose weights. The
Pachi source code claims that the average move queue length in Fullchoose is
just 1.4 moves [16]. This means that for many moves in the simulation, the
relative weights of the subpolicies are not important. Therefore, modifying
the weights fails to have a strong impact on the total playing strength. Silver
and Tesuaro [2], and later Huang, Coulom and Lin [15] in their works on
simulation balancing used policies considerably more expressive with respect
to the weights, and therefore found much better more noteworthy results.
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Chapter 5

Summary

In this project, we contributed to a deeper understanding of the individual
subpolicies that comprise Pachi’s simulation policy, examining why they were
effective and in which ways they were ineffective, building on Müller and
Fernando’s work in Fuego[9]. We analyzed metrics used to measure these
simulation policies, using them as tools for improvement, while also develop-
ing an understanding of their weaknesses and limitations. We demonstrated
machine learning techniques in MCTS and showed that they were competi-
tive with hand-tuning, and that they increased the accuracy of the simulation
policy. This research will be valuable in future work on improving simulation
policies in both MCTS Go engines and MCTS in general.
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Chapter 6

Future Work

Our analysis of Pachi’s playout policy and its many components have led
us to find several areas for improvement. While we attempted to enhance
Moggy ourselves with this data, there is still much more work to be done.
Some of the possible areas to follow up on this research are:

Understanding Local Errors: In this paper we measured the global
error of a playout policy, and balanced Moggy Fullchoose based upon it.
However little attempt has been made to systematically measure local er-
rors. It is difficult to understand why a policy misevaluates the board as a
whole, and thus hard to make improvements or add subpolicies to correct
for this misevaluation. However, local errors are much easier to understand
and thus correct for. Furthermore, there has been little study into how im-
proving a playout policies performance in certain local situations can hurt
the simulation as a whole. If global error really is best understood as the
sum of local errors, it seems logical that improving performance in a local
situations that hurts the simulation as a whole must also hurt performance
in a number of other local situations.

Information Sharing Between Playouts and Search Tree: Some
minor attempts have been made to share additional information from play-
outs with the outer search by adding additional terms to RAVE. For example,
Pachi examines the probability of each point being controlled by each player
at the end of the game, and gives additionally bias towards points that are
less well decided[4]. However, we have not discovered any attempts to share
information in the opposite direction. For example, the deep search may
discover the answer to certain Semeai (”capturing race”) positions that are
too complicated for a simulation policy. Simulations in other parts of the
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tree may have the position being decided randomly, thus causing moves to
be misevaluated. It would be useful to have a way to pass such information
into the playout policies somehow.

More Expressive Weights for Fullchoose: Can Fullchoose be mod-
ified to allow for more expressive subpolicy weights? For example, could the
pattern module be expanded and parameterized with a Softmax policy or
something similar? Would this allow for the possibility of a more significant
increase in playing strength through machine learning?

Pachi as a move tutor for Moggy: Using an expert policy con-
structed from game records meant that the strength of Moggy was being
measured on a small number of moves, and in a binary fashion. A more
accurate estimate of the error may be to use Pachi to determine how worse
the move selected by Moggy is from the optimal move (according to itself).
Müller and Fernando created a data set containing positions annotated by
Fuego[9], that perhaps would be a strong candidate for performing machine
learning on.

Improvements to Fullchoose: While Seqchoose has been the clear
favorite of Pachi’s policies so far, it is still reasonable to expect Fullchoose
to be able to outperform it. Fullchoose is capable of considering multiple
purposes of a single move (due to a single move being able to have multiple
tags), whereas Seqchoose only chooses a move based on a single criteria at
a time. The game of Go often requires the player to consider these multi-
purpose aspects of a move so that they may be as efficient as possible. Our
research has shown that it is in possible to improve upon Fullchoose with
its current framework (we did so through changing the weights of each tag).
We would suggest future researchers look at undesirable characteristics for
moves (ie heuristics that would assign tags with negative values) as a place
to start.

Subpolicy optimization: The subpolicies ladder and pattern currently
take the most time to perform. Ladder takes so much time that it isn’t even
included in the default policy, due to ineffectiveness. Future work could look
at optimizing these subpolicies (prioritizing the optimization of ladder).

Additional domain knowledge: Currently Moggy has no understand-
ing of a Ko fight. It uses a very basic test when deciding whether to perform
Ko, however does not consider any currently active (ie unplayable) Ko spots.
The concept behind 2 lib check could be utilized to implement Ko fights. If
the board object kept track of which groups had only two liberties (similar
to how it keeps track of all atari’d groups), it could compare the territory of
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each of these groups against the one currently in Ko. At that point, deciding
which group to attack would be trivial (the one with the highest territory
would be chosen). This could also be expanded to looking at non-two liberty
groups as well, so long as they initiate a Ko fight (demand a response).

There is a lack of understanding in Pachi when it comes to complicated
fights. This can result in it failing to find a move necessary for capturing a
group if it is at the beginning of a specific chain of events. This is due to the
semi-randomness of Moggy. Even after a large number of simulations, it is
still unlikely that Moggy could foresee a chain of events unless each of them
corresponds to a high-ranking heuristic. One way this could be implemented
is through thermography. We conducted some preliminary research on im-
plementing thermography in Pachi based on how contested a given spot is
as well as how valuable it is). The thermograph was successful in finding
these hotspots with a some amount of accuracy, while also producing false
positives. By using a thermograph, it may be possible to isolate an area of
the board where an order-dependent fight is about to take place. With the
size of the problem drastically reduced, it may then be feasible to integrate
Tsumego solvers into MCTS.

Pachi naturally keeps dead shapes alive for the purpose of efficiency (cap-
turing a dead group is usually a wasted move). While this is desirable in
most cases, it should not be overlooked that many dead groups can in fact
be saved. This often happens when a live group is close enough to connect
to the dead group, thus giving it life. If Pachi doesn’t recognize that there is
a dead group in the live group’s path, it may allow the opponent to connect.
Likewise Pachi doesn’t consider helping a dead group if it has a live group
nearby, which could be helpful for either giving the group life or for attaining
the initiative. The heuristic global atari may be used for re-assessing dead
groups on the board in case one of their liberties become life-saving.
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