

OnePlusTwo Mobile App

Project Team

Dimitar Vouldjeff dmvouldjeff@wpi.edu

Frank Egan fegan@wpi.edu

Project Advisor

Prof. Wilson Wong wwong2@wpi.edu

This report represents the work of WPI undergraduate students submitted to the faculty as

evidence of completion of a degree requirement. WPI routinely publishes these reports on its

website without editorial or peer review. For more information about the projects program at

WPI, please see http://www.wpi.edu/academics/ugradstudies/project-learning.html

ii

Abstract
 Students’ engagement is an important part of campus life experience whether that is

attending weekly meetings with small clubs on campus or attending large social events and

mixers with larger fraternities off campus. Small clubs have difficulty reaching larger audiences

to grow their member base and retaining active members. Larger organizations struggle tracking

members for events which must be regulated. Our aim was to solve these issues by creating a

progressive web application that allows anyone to organize events and share invitations. These

invitations allow tracking attendance in real-time and building re-engagement campaigns. We

used ReactJS and Redux to build the client and Firebase’s real-time database, cloud storage, and

static website hosting to build the server.

iii

Table of Contents
Abstract ii

Table of Contents iii

1. Introduction 1

2. Research 3
2.1. Identifying Users and their Needs 3
2.2. Personas 4
2.3. Alternatives and Competitors 5

2.3.1. Alternatives 5
2.3.2. Competitors 5
2.3.3. OnePlusTwo Competitive Advantage 6

2.4. Customer Development 6
2.4.1. Interview Protocol 7

3. Methodology 9
3.1. Software Development Life Cycle 9
3.2. Requirements 9
3.3. Design 9
3.4. Implementation 9
3.5. Validation 10

4. Software Environment 11
4.1. NoSQL vs. SQL 11
4.2. Database Development 11
4.3. Front End Development 12
4.4. Version Control 12
4.5. Organizational Tools 12

4.5.1. Project Management 12
4.5.2. Team Communications 12
4.5.3. File Management 13

5. Requirements 14
5.1. Use Cases 14
5.2. Use Case Diagram 18
5.3. Functional Requirements 19

5.3.1. Event Creation 20
5.3.2. Event Sharing 20
5.3.3. Event Management 20
5.3.4. Guest Interactions 20

5.4. User Stories 20

iv

5.4.1. Event Creation 21
5.4.2. Event Sharing 21
5.4.3. Event Management 21
5.4.4. Guest Interactions 22

5.5. Non-Functional Requirements 22
5.5.1. Ease of Use 22
5.5.2. Performance 23
5.5.3. Scalability 23

6. Design 23
6.1. Wireframes 23
6.2. Sequence Diagrams 32
6.3. Database Schema 32
6.4. Architecture 33

6.4.1. Client-app Architecture 34
6.4.1.1. Components & Template 35
6.4.1.2. Container 35
6.4.1.3. Actions & Action Creators 35
6.4.1.4. Reducers 35
6.4.1.5. Firebase API 35

7. Implementation 36
7.1. Trello Board 36
7.2. Development 36

7.2.1. Early Development Process 37
7.2.2. Extending the Application 37

7.2.2.1. Cloud Functions 39
7.2.2.2. Other packages we integrated during this stage 39

7.2.3. Final Application & Testing Process 40

8. Evaluation 42

9. Future Work 46

10. Conclusion 47

11. Appendix 48
11.1. User Manual 48

11.1.1. Creating a new Event 48
11.1.2. Inviting a Guests 50
11.1.3. Accepting an Invite 51
11.1.4. Sending a Message to all Attendees (if you are an owner) 52
11.1.5. Checking-in people with invites 53
11.1.6. Viewing Event Statistics (if you are an owner) 56

11.2. Interview Response #1 (summary as it was a conversation) 58

v

11.3. Interview Response #2 59
11.4. Interview Response #3 60

12. References 61

vi

1

1. Introduction
Student involvement on campus is a key part of student’s success in school. WPI has

taken several steps to help clubs and organizations on campus share and manage their events.

Most recently, WPI renewed its contract with Campus Labs OrgSync club management software

license. This provides yet another platform for event sharing in addition to Facebook, Twitter,

Daily Campus Emails, and private group chats. In 2016 an MQP was formed to explore the

needs of an event management application on university campuses (Lyttle, Ross, Malofsky,

McCarthy, & Bennet, T). Taking this scattered market into consideration our team has

developed a new event management product OnePlusTwo. OnePlusTwo provides event

management tools to hosts, such as creating events that can be shared with a simple hyperlink,

real time guests arrival tracking, and a ticketing system that allows you to remind and re-engage

with your guests through targeted emails. For guests, OnePlustwo provides real time tracking of

how many people are attending an event, a centralized place to find event information, and does

not not require users to download any apps. OnePlusTwo was developed as a Progressive Web

App (Progressive web app checklist.), this means our application meets the following definition:

● Progressive - Work for every user, regardless of browser choice because they are built

with progressive enhancement as a core tenet.

● Responsive - Fit any form factor: desktop, mobile, tablet, or forms yet to emerge.

● Connectivity independent - Service workers are permitted to work offline, or on low

quality networks.

● App-like - Feel like an app to the user with app-style interactions and navigation.

● Fresh - Always up-to-date thanks to the service worker update process.

● Safe - Served via HTTPS to prevent snooping and ensure content has not been tampered

with.

● Discoverable - Are identifiable as “applications” thanks to W3C manifests and service

worker registration scope allowing search engines to find them.

● Re-engageable - Make re-engagement easy through features like push notifications.

● Installable - Allow users to “keep” apps they find most useful on their home screen

without the hassle of an app store.

● Linkable - Easily shared via a URL and do not require complex installation.

2

As the Progressive Web App (PWA) standard is still being adopted by browsers and

platform developers, not all users will have access to every features but they are offered as

progressive enhancements to users whose devices support them. Based on these

requirements,we decided to use Facebook’s ReactJS library to develop a rich responsive front

end, and Google’s Firebase Real Time Database for our backend.

 We employed an iterative development process that was guided by interviews with

potential users of our application. This allowed us to evaluate why people were using their

current solutions and provided us with insight into what the shortcomings of these current

solutions were.

3

2. Research

2.1. Identifying Users and their Needs

During our interview process we discovered two different users for our application. The

first are event planners of larger organization who are hosting events with over two dozen

members. An example of a large organization would be a Fraternity or Sorority. These users face

three distinct challenges when they plan events. Because their events are big, they need to be

able to coordinate help form their members volunteering to help with the event. They need to

track their member involvement within the organization to ensure they are fulfilling their

member responsibilities. Finally they need to track the number of guests attending their event.

 Smaller organizations on the other hand need to remind their members of events they

are holding that day. They also want to re-engage with the new members that attend their events

which requires being able to track their members involvement over time.

 There are additional features that both organizations require. Hosts want to be able to

share invites to their events with as little friction as possible. Guests should not be required to

log in. Additionally, hosts want to share a hyperlink because they can be opened and shared

without installing any extra applications. They also want their guests to have one centralized

place where they can go to get information about the event without it getting lost in a stream of

group messages.

 We took these problems into consideration when designing the use cases and software

requirements for our application. OnePlusTwo will address the need for hosts of large

organizations to track their members activity through an invite system that will allow these

hosts to see which members actually attended the required events. Because of OnePlusTwo’s

invite system, hosts will also be able to see which guests scanned into their events. These invites

will provide a means for smaller organizations to track their guests’ participation over time as

they will need to be scanned in at the event. In order to accommodate smaller clubs’ need for

engagement messaging we will provide reminder and re-engagement emails to their guests that

have signed into the app. Additionally as OnePlusTwo is a Progressive Web App, any

organization can invite its members to an event with a simple link that will open in the browser.

Guests can then check back to that link at any time to see the event’s page where all the

information can be centralized.

4

2.2. Personas

Designing the User Experience of our application was one of the first steps in the design

process. We were guided by our interviews with students and event organizers. We then used

these discussions to decide what features we would focus on and who our audience was. One

common technique in the user experience design process is to imagine “personas” for your

different users. These personas are meant to describe what the different users of our application

might “look like”. From a UX perspective we will differentiate among the three personas we’ve

defined below. However, for the purposes of software requirements we will not differentiate and

will treat them as a single role in unified modeling language (UML) diagrams. Writing these

personas entails writing a brief background about a user, describing their goals, and listing

typical behaviours. We designed our user cases and user interface around four main user

personas (Affairs, Assistant Secretary for Public, 2013).

1. A new small club president recently held a few events where they expected 20-30 people

to attend but instead fewer than 10 showed up. They had a good turnout for events early

in the term and they knew that students really enjoyed attending. They also kept their

credit cards and boarding passes in Apple Pay.

2. A junior or senior who has an executive position and is considered a leader in his/her

fraternity chapter or large-size organization. She is involved in Student Government and

wants to make sure her organization's events are well attended. She recently made a

push for accepting donations for the organization’s / fraternity’s philanthropy through

Venmo, and moved all communication to a Slack group. She also keeps her credit cards

and boarding passes in Apple Pay.

3. A member of a large organization who is only a sophomore. He/her are not too involved

on campus or in their fraternity but they are always happy to help out with an event

when their chapter holds one. They know that they have to attend a few events each

semester to still be in good standing, so they want to make sure their attendance is

counted. They recently downloaded Slack to join their chapter’s group and think it is

useful.

4. Lastly a guest who is just a freshman looking to get invited to cool parties and new clubs

so they can meet people. He/her are happy to use whatever app or system the club is

using. After creating these personas we were able to systematically consider how each

user would interact with the application. This influenced several design details, such as

providing the ability to create multiple invite links from the same screen, or adding push

notifications for event updates.

5

2.3. Alternatives and Competitors

2.3.1. Alternatives

Based on the interviews we conducted we have identified four methods that clubs and

organization use to keep track of their events. The most common method for organizations to

track members was to send out a link to a public Google Sheet in which members could write

their names. This has the advantage that guests and members can add their name to the

spreadsheet by simply clicking a link and typing their name. Users do not have to create an

account or download an app. OnePlusTwo works right in their browser equally well on mobile or

on the desktop. The disadvantage is that these links tend to get lost in old emails or buried in

group messages. Additionally, editing spreadsheets on your phone is a lot of overhead for

counting the number of guests signed up, and even if someone signs up you would have to create

an additional spreadsheet for internal use to actually check them off.

The second method was to send out a Slack message to their groups and people could respond

saying if they were available or not. This method is convenient because everyone in the group

that needs to know instantly gets notified of the event. The disadvantage is that once this

message gets posted it easily gets lost as more messages pour into that channel. This approach

also does not provide a count of how many people are coming to an event or what their

volunteer position might are events.

The third method was creating an event on Facebook and sharing it with all their friends.

This provides the benefit of reaching all their friends easily with option to have guests respond

“Going, “Not Going”, or “Maybe”. This provides at least a crude estimate of the number of guests

expected to attend. The disadvantage to managing events through Facebook is that you can not

share events without having guests login with a Facebook account. Additionally you can not

assign roles to members with Facebook events.

The fourth and final method was creating an Outlook invite and sharing that through

email. This was only used for small meetings where all the guests were WPI students. This

method was also somewhat polarizing as some organizers kept track of all their events through

Outlook while some guests had never opened their Outlook calendar.

2.3.2. Competitors

We chose to research Eventbrite as our main competitor. They are another event

management organization that offers a suite of applications to host events and share invitations

6

electronically which users can access from their smartphone. With Eventbrite, organizers create

a page with information about their event. From there they can share and promote their event

on social media or through Eventbrite’s local event listings. They also provide delete online

ticket sales for paid events and offer guest management tools such as ticket scanners and total

ticket sales. Eventbrite is free for all event sizes and makes money by taking a portion of the

ticket sale prices. Over $1 billion in tickets sales were processed by Eventbrite last year alone.

They offer applications for Android, iPhones, and iPads. You can use their website on desktop or

mobile to create and manage some event details but you cannot scan guests into an event

without using one of their native mobile apps. Guest can accept event invitations and get a ticket

from their website as well.

2.3.3. OnePlusTwo Competitive Advantage

Our team evaluated the pros and cons of each system discussed above to help us narrow

down the software requirements for OnePlusTwo. Our applications will encompass many of

these advantages such as ease of use and preserving a low barrier to entry. Specifically

OnePlusTwo has a richer set of event management tools than Facebook, Outlook, or Slack.

Additionally OnePlusTwo is more flexible and entirely web based application unlike Eventbrite

which require hosts and guests to install their native apps to use all of their features such as

ticket scanning.

2.4. Customer Development

Although there are many event management tools available, we failed to see even one of

them widely adopted on-campus. Orgsync was used for purely administrative purposes, while

most of the clubs resorted to Facebook events and Google Spreadsheets for attendance

management. We spoke with club presidents and event organizers to see what their biggest

challenge was whenever hosting an event. Everything we have covered so far in this chapter is

based on those interviews we conducted.

Customer Development is a formal methodology used by startups and businesses and it

assumes that early ventures have untested hypotheses about their business such as (who are the

customers, what features they want, how much are they willing to pay, etc.) (Steve Blank,).

Before developing a product, you must define what your hypothesis is, design an experiment

and derive insight to either validate the hypothesis, invalidate it, or modify it.

7

We defined what our core assumption and conducted interviews with our target users to

see if we were on the right track. Our core assumption was:

● Event organizers have trouble making sure people show up.

With the interview scenario that we designed, we were conscious not to hint in any way

the purpose of the conversation or the answers we were looking for. Asking “will you be willing

to use feature A”, or “have you ever had this problem” already bias people to what we want to

hear and thus get no valuable insight from the conversations. We opted for open-ended

questions such as “Tell us about the last event you organized”, “What was the biggest challenge

there”, “How did you solve this challenge” and asked many “Whys”.

2.4.1. Interview Protocol

The following is the interview protocol we used. It includes notes for the interviewer to

be reminded where to lead the conversation. The interviewee does not see any of those. We

provide overview of the conversations we have had in the Appendix section.

Tell us about the last event you’ve organized?
● asked to get a general idea on the type of event (used to determine if this is our target audience)
● asked to prevent priming on what we are trying to figure out

What is the biggest challenge whenever you’ve organized an event (before, during,

after)?
● ask many WHYs
● do not suggest anything
● clearly define it
● understand what makes it a challenge

How do you solve that challenge?
● understand what the typical behavior is (our solution has to fit in this and simplify)

What are the alternative solutions
● (e.g. for interlocutor only: alternative to getting a shake for morning commute is getting a donut)?

Why don’t you “hire” those alternatives?
● understand why person dislikes alternatives
● ask many WHYs
● shows what our application has to avoid doing

8

How do you organize the guest list for you events?
● What tools do they keep organized with
● how strict are they with guest lists/invites

How can you distinguish between your loyal attendees (fans) and flakers?
● How do you know who’s new and who’s a usual
● Do they do anything differently for the two groups?

How do you spread word about an event and make sure people will come?
● ask many WHYs
● understand their current process and struggle
● clarify seeming facts

9

3. Methodology

3.1. Software Development Life Cycle

We used an Iterative Waterfall software methodology. This included four distinct phases:

Requirements Process, Design Process, Implementation Process, and Validation Process . After

the sequential completion of each of these steps, we would start back at the beginning using

what we had learned in the last development iteration and use the new information to guide the

evolution of our application.

3.2. Requirements

Once we had decided on tackling an event management applications, we began pre-

development interviewing for potential users of both large and small organizations in order to

determine what requirements our application should have. Our interview scripts can be found in

the Appendix. These focus on why people are using the solutions they currently are, and why

they have not “hired an alternative.”

We then used the feedback from the interview process as a guide in defining simple use

cases and user stories required to that solve the problems that our interviewees were facing with

their current solutions. These requirements defined exactly what kind of user (guest or host)

would use this feature, how they would interact with the application and what the result would

be. Once we had written a list of a few dozen use cases and user stories, we sorted and

prioritized them.

3.3. Design

During the design process we decomposed the project into components. We then

compared various strategies for realizing these software components. Based on these

discussions we developed our solution technology stack outlined in the next chapter.

3.4. Implementation

Our implementation phase is detailed in chapter seven. In summary over the course of

three iterations we translated each of the components described in our design process into

10

Javascript. We closely followed all of our database entity relationship diagrams and client side

architecture diagrams in the creation of the back-end Firebase database.

3.5. Validation

During the testing or validation phase we evaluated each of our implementations on

sample data and wrote unit tests in Jest (Jest JavaScript testing). to ensure individual

components were behaving as intended. Once we developed tests for individual components we

wrote integrations tests that included multiple components communicating between server and

client. We recorded the status of these tests with a regression test spreadsheet. With this

spreadsheet we could validate which features were working on a specific date and revert to that

version if needed.

11

4. Software Environment
Early on in our project we wanted to select project development tools that focused on

two main criteria. The first and most important of which is having the flexibility to modify as we

went along in our project. The second metric we used to evaluate our tech stack was familiarity.

We wanted to choose tools that had as small a learning curve as possible. This allowed our team

to get up and running as quickly as possible as we did not have to spend time learning new

paradigms.

4.1. NoSQL vs. SQL

Design is a critical step in the software development process. In database design, there

are a plethora of architectures to choose from all with their own advantages and disadvantages.

The two we considered were NoSQL and MySQL database architectures. NoSQL maximizes

flexibility with a very loose structure and hierarchy that are not strongly enforced by the

database itself. This can cause errors with mismatched data types, and also complicates data

queries. On the other hand MySQL has a very structured and well defined hierarchy that we

must decide on early in the application development process. If we decided to change how we

stored or structured our data we would need to migrate our entire database which can be a

hassle. When it came to database design, we wanted an architecture that met our first design

criteria of flexibility. This is why we settled on using a NoSQL architecture.

4.2. Database Development

For our backend we chose Google’s Firebase (Firebase.). We decided that the Firebase

real time database would would provide the flexible platform we needed to prototype various

features such as live guest tracking, and permission controlled invites. We also considered using

a MySQL database for a Heroku project. A SQL database has the advantage of providing a strict

data validation check that ensure consistency throughout the entire collection. There are also

some performance and conveniences offered by using a SQL database when you have nested

data structures which our application uses throughout. However, these strict validation checks

come at the price of flexibility and they necessitate that we settle on a single architecture early

on as we will not be able to migrate to a new database architecture easily. Ultimately we decided

that these restrictions would not be worth it.

12

4.3. Front End Development

To create the front end for our application, we decided upon Facebook’s React JS (React

- A JavaScript library for building user interfaces.). This is a very popular, actively maintained

Javascript framework that utilizes composable modular “Components” to build rich web apps.

The other framework we evaluated was Angular which uses a similar modular component-like

approach but is written in a language called TypeScript, a variation of JavaScript that is strongly

typed. Angular also abstracts a lot of the underlying JavaScript to expressive HTML-like tags

called angular directives that update on the webpage automatically as data changes. The

deciding factor for choosing React over Angular was that React provides a much more flexible

framework for client side development whereas Angular has fairly strict guidelines about what

design patterns developers must utilize with their build tools.

4.4. Version Control
For Software Version Control, our team chose to use GitHub. Our team has prior

experience in version control using Git . We were also especially fond of GitHub’s integration

with Travis CI services (Continuous Integration) which ran a suite of tests any time a Pull

Request is opened and only allow merging based on their success (GitHub, 2016) . We found it

to be indispensable in our implementation process ensuring that we could roll out updates

certain that core application features continued to be functional.

4.5. Organizational Tools

4.5.1. Project Management
For project management we compared two products, Jira and Trello. Both systems

offered a wide range of plugins and customization that support a variety of development

strategies. However, the authors were more familiar with Trello. Additionally, the lowest

payment tier is $10/month while Trello’s lowest tier services are free. For these reasons we

chose to use Trello.

4.5.2. Team Communications
For communications, we needed a tool that would allow our international team to stay in

constant contact. The tool would also have to be cross device with support for iOS, Android, and

13

Desktop. We considered two options for text based communications, Slack and Facebook

Messenger. Slack and Facebook Messenger are nearly identical in terms of feature support.

Slack has several additional features such as “Communication Channels” which allow groups to

organize their discussion into separate threads to stay organized (Where work happens.), Slack).

For our small two person team, we felt that these extra communication hierarchies would be

overkill while Facebook Messenger’s simple single threaded interface would fit the bill

(Facebook messenger.). For video calling, we decided on Google Hangouts as it integrates nicely

with Google calendar invites, shareable links to video calls, and cross device support without

having to install additional apps or plugins (Lawrence Mello, 2015). No other tool has these

features making it a natural choice.

4.5.3. File Management
For file management, our team chose to use Google Drive. Google Drive’s 15GB file

storage limit, simple file version control, collaborative editing features, and cross platform

support have made it a natural choice for many teams working on collaborative projects. Our

team has had great success using it on a previous projects such as CS 3733 Software

Engineering, and our IQPs.

14

5. Requirements
 We utilized the Customer Development interviews (as mentioned in chapter 4.4) to

devise a set of functionality that will serve our target audience the best (defined via personas in

4.2). Additionally, we wanted to differentiate from our competitors which necessitated

additional considerations for our requirements (e.g. we wanted our QR code scanner to work

within the browser).

5.1. Use Cases

 The following are use cases we developed for the initial version of the application.

Title Steps Entry Criteria Exit Criteria Exceptions

Create an
Event

1. Event Organizer
(Organizer) navigates to
create event page.

2. Organizer enters event
title.

3. [Add More Info]
4. [Set Maximum

Attendees]
5. Organizer initiates

event creation.
6. App creates new event.
7. App navigates to event

page.

Event Organizer has an
account and has logged
in.

New Event is created.
Event page is shown.

Organizer auto-
invites attendees
from a previous
event via [Import
from Previous
Event].

Add More
Info

1. Event Organizer
(Organizer) enters
event description.

2. Organizer enters event
location.

3. Organizer picks a date
for the event.

4. Organizer picks a time
for the event.

5. Organizer uploads a
banner.

Event Organizer has
already navigated to
create event page or
chosen to edit an
existing event.

Event details are
updated.

Set 1. Event Organizer enters Event Organizer has The event attendee

15

Maximum
Attendees

the maximum number
of attendees allowed.

already navigated to
create event page or
chosen to edit an
existing event.

limitation is set.

Import
from
Previous
Event

1. Event Organizer
(Organizer) navigates to
import from previous
event.

2. Organizer selects an old
event he is an owner of.

3. Organizer initiates
import.

4. App creates an invite
for each of the
attendees of the
previous event.

5. App sends out an email
with link to the
invitation to each of the
imported attendees.

Event Organizer has
already navigated to
create event page.

All the attendees
from the previous
event have been sent
an email invitation.

Validate
Pass

1. App requests access to

Organizer phone’s
camera.

2. Organizer grants
camera access.

3. App loads QR code
scanner.

4. Organizer verbally asks
Attendee to show show
his QR code.

5. Organizer points
scanner at Attendee’s
QR.

6. App recognizes the Pass
from the QR.

7. App checks if Pass is
valid.

8. App updates QR
scanner screen to show
the Attendee’s name
and whether he can

Event Organizer has an
event and has already
navigated to the event
details page.
Attendee has accepted
an invitation and has
its QR code shown on
the screen.

Event Organizer is
told if the Attendee
can enter the event.
The Attendee’s pass is
invalidated.

16

enter the event.
9. App updates the

Attendees screen to
show that Pass has
already been used and
thus been invalidated.

Invite a
Friend

1. Event Organizer
(Organizer) navigates to
“invite friends” screen.

2. Organizer initiates a
new invite creation.

3. App generates a new
invite.

4. App shows the link the
the invitation.

5. Organizer shares link
with his friend (new
guest) via a third-party
text messaging app.

Event Organizer has an
event and has already
navigated to the event
details page.

An invitation was
created. New guest
has received a link to
invitation via text
messaging app.

Event Organizer
allows this new
guest to bring his
own friends.

Accept
Invite

1. Attendee click on
invitation link.

2. App shows the details of
the event Attendee was
invited to.

3. Attendee navigates to
accept invite.

4. App shows [Sign-in /
Create an Account] if
Attendee isn’t already
authenticated.

5. App creates a new Pass
for Attendee.

6. App asks Attendee for
notifications permission
(if device permits).

7. Attendee grants or
rejects notifications
permission.

8. App marks the invite as
used.

9. App navigates to event
details screen.

New Guest (Attendee)
has received a link to
an event invitation.

Attendee has a Pass
issued. Event details
screen is shown.

17

View Event
Info

1. User navigates to an
event she/he has been
invited to.

2. App shows event
details.

User is authenticated
and has already
accepted at least one
Invite. User has
navigated to list with
his events.

Event details screen
is shown.

Send
Message

1. Event Organizer
(Organizer) navigates to
new message page.

2. Organizer types in
message.

3. Organizer initiates
message delivery.

4. App adds message to
list of all
announcements.

5. App sends push
notification to Android
attendees who have
given notifications
permission.

6. App sends email to the
rest of the attendees.

Event Organizer has an
event and has already
navigated to the event
details page.

All attendees have
received a push
notification or email
(depending on
preference & device
type).

Get Event
Stats

1. Event Organizer
(Organizer) navigates to
event stats page.

2. App computes event
attendance by age
groups and gender.

3. App computes peak
arrival time
distribution.

4. App generates charts to
visually display stats.

5. App shows event stats
page with charts.

Event Organizer has an
event and has already
navigated to the event
details page.

Event statistics is
generated and
displayed.

Sign-out

1. User navigates to sign-
out page.

2. App destroys oath
authentication token
given by provider.

User has navigated to
OnePlusTwo and has
already signed into the
app.

User has been signed
out of the app.

18

3. App signs-out User.

Sign-in /
Create an
account

1. User navigates to sign-
in page.

2. User picks Facebook or
Google as an
authentication provider.

3. App redirects to
respective provider.

4. User grants
OnePlusTwo access via
provider.

5. Provider redirects back
to OnePlusTwo.

6. App creates an account
if User does not exist in
database.

7. App signs-in User.

User has navigated to
OnePlusTwo, but has
not signed into the app
yet.

User has been signed
into the app.

5.2. Use Case Diagram

 As we borrowed the user story technique from the agile methodology, we chose to

employ use cases diagrams as a quick way to design and implement the application

requirements. The following use case diagram represents the full functionality of the final

version of the application with the exception of the Add admin use case.

19

Use Case diagram

5.3. Functional Requirements

There are several functional for our application, OnePlusTwo. Functional requirements

are “what the system should do” (Eriksson, 2012).

20

5.3.1. Event Creation

Hosts will have accounts that allow them to create new events. They will be able to add

information such as the event’s name, address, and a general description of the event.

5.3.2. Event Sharing

The event host can then share this event’s sign up link however they like, for example

through a messaging app, Facebook, or email. Any guest who receives this invite link will receive

a QR code that will be scanned at the event. This allows hosts to keep track of who exactly shows

up to the event and who has been invited.

5.3.3. Event Management

In addition to general event information like date and time the host will be able to set

additional details about the event such as how many invites are available. They will also be able

to specify whether guests can sign up for roles when they accept the invitation. This targets the

users who are currently using google sheets to organize their events but can check back on

OnePlusTwo at any time for up to date information about the event without having to skim

through old emails.

5.3.4. Guest Interactions

Guests will be able to share invitations based on the hosts setting for the event. When

they arrive at the event they can present their invitation in the form of a QR code to enter the

event. They will also receive up to date email or push notifications as updates from the hosts are

published on OnePlusTwo.

5.4. User Stories

Even though we define three personas that will use OnePlusTwo, for software

development purposes we would refer to only attendees and event organizers. This is because

small club presidents and large event organizers will utilize virtually the same features. Private

events are ones which can only be attended with an invite, whereas open events allow people to

self-enroll.

21

5.4.1. Event Creation

● [ST-1] As a Website Visitor, I want to register and create a Private Event, so that I can

closely control the guestlist.

● [ST-2] As an Event Organizer, I want to create a new Private/Open Event and import

people who showed up from a previous event I organized, so that I start exciting my

audience from early on.

● [ST-3] As an Event Organizer, I want to create an Open Event where people need to

bring a friend to be eligible to attend, so that more people attend and are excited about

my Event because bringing a friend means they are more committed.

● [ST-4] As an Event Organizer, I want to set a maximum number of attendees for my

Open Event, so that there is space and seating for everyone.

5.4.2. Event Sharing

● [ST-5] As an Event Organizer, I want to invite many people to my Private Event using

Text & Facebook, so that I can easily expand the guestlist.

● [ST-6] As an Event Organizer, I want to allow some people to invite additional attendees

to my Private Event, so that new people can come.

● [ST-7] As an Event Organizer, I want to get a printable file with information about my

Open Event and instructions on how to self-enroll (e.g. QR with link), so that it is

effortless to use OnePlusTwo.

5.4.3. Event Management

● [ST-8] As an Event Organizer, I want to give “admin” rights to other people, so that it is

easier to manage a big event.

● [ST-9] As an Event Organizer, I want to add additional information to my Event (e.g.

location, time, description…), so that people know what they are signing-up for and

where they should be.

● [ST-10] As an Event Organizer, I want to validate attendee’s passes at the entrance, so

that I can keep track of actual attendance and let only eligible people in.

● [ST-11] As an Event Organizer, I want to know how many people did attend my event as

well as basic demographics, so that I know what my target audience is.

● [ST-12] As an Event Organizer, I want to send a short message to attendees before the

event (via email and push notifications), so that I can remind and excite them to come.

22

● [ST-13] As an Event Organizer, I want to send a short message to the people who came

(actual attendees), so that I can stay on their radar and make them anticipate my next

event.

● [ST-14] As an Event Organizer, I want to get a list with all invited attendees and people

who showed up, so that I can have a record to use for other non-related purposes.

5.4.4. Guest Interactions

● [ST-15] As a Person Receiving an Invite, I want to quickly accept the invite and add it to

my iOS/Android Wallet, so that I am reminded about the event and have the pass readily

available at the entrance.

● [ST-16] As a Person who sees an interesting Event Ad on-campus (or hears about it) and

wonders whether to go, I want to subscribe for interesting updates (and even quickly

sign up for the event), so that I do not lose the opportunity to go.

● [ST-17] As an Attendee to an Open Event, I want to invite a friend of mine, so that I

become eligible to attend closed events.

● [ST-18] As an Attendee, I want to occasionally get news and updates about the event, so

that I do not forget about it and do not rule it out as boring and useless.

● [ST-19] As an Attendee, I want to see which of my friends are also attending the event, so

that I am not anxious to go alone.

● [ST-20] As an Attendee, I want to refer back to the event details (location, date…), so

that I do not forget those.

● [ST-21] As an Attendee, I want to see live stats about the event (number of people

actually inside), so that I have more motivation to join.

5.5. Non-Functional Requirements

There are several non functional requirements for our application, OnePlusTwo.

Nonfunctional requirements “describe how the system works” (Eriksson, 2012).

5.5.1. Ease of Use

The most important nonfunctional requirement for our application is ensuring that users

can intuitively perform the most basic operations. We want to ensure users see a natural user

interface that feels familiar and responsive.

23

5.5.2. Performance

Another important consideration for our application is the performance. Performance is

important in every aspect of our application. Page load times are an important consideration.

According to Google’s metrics 53% of users will abandon a website after 3 seconds of loading

(Google, 2016). Taking this into consideration we will keep all page load times in the application

to under 3 seconds for a slow 3G connection.

5.5.3. Scalability

OnePlusTwo is designed to be used by many organizations hosting events with

potentially hundreds or thousands of guests all with their own tickets interacting on multiple

devices accessing different events simultaneously. Our applications must continue to provide

services and meet all the performance metrics measured above. The limiting factor is Firebase’s

service. OnePlusTwo is built on Firebase’s spark plan, which includes a quota for 100 concurrent

connections, and 1Gb of storage. However Firebase provides pricing plans that allow up to 100K

concurrent connections and 1Tb of database storage.

6. Design

6.1. Wireframes

 We used OmniGraffle with an additional UX stencil (plugin) to create the wireframes.

When designing each screen we opted for a less clutter and visually highlighting the most

important call-to-actions.

24

Home screen

25

First step of creating an Event

26

Second step of creating an Event

27

Event Overview screen for the organizer

28

Sending an invite to an Event

29

Sending a message to all Attendees

30

Scanning QR codes of Passes at entrance

31

Adding an Event’s Pass to your iOS Wallet

32

6.2. Sequence Diagrams

Sending a message to all attendees

6.3. Database Schema

 The main collection in our database holds Events. In addition to the basic fields (such as

title, description, etc), each entry has an isSelfEnrollable field which tells if an event is private or

public. Because Firebase does not support join operations, we denormalized our schema and

decided to hold messages as embedded json objects within each event. Messages only contain

body and the date when it was sent.

 Both Event Organizers and Attendees are held as user objects in the User collection.

Each user contains additional oath token information used to authenticate via Facebook or a

Google Account. The profileData field holds gender and age information pulled from the

authentication provider.

 Whenever an event organizer wants to invite somebody an Invite object is created and

stored in the Invite collection. Each invite has a unique code and is linked to its respective event.

The additionalInvitesLeft field tells whether this invite grants the Invitee the opportunity to

bring more friends (issue Invites). The isUsed field tells if the invite was already accepted by a

user.

33

 Finally, when an Invite is accepted a Pass object is created in the Pass collection. Each

pass is linked to the respective event and invitee (user) owner; passes have a code (shown as a

QR code during Check-in process). The isUsed field tells if the Attendee check-in at the event,

thus rendering the pass no longer valid for entry to an event.

Entity Relationship Diagram

6.4. Architecture

We wanted our application to be easily accessible to the greatest number of users,

therefore the application is built as a mobile-optimized web application instead of an iOS or

Android native app. This means that our application is is run entirely inside the browser.

Additionally as a single page web application, each page can be rendered with essentially no

latency as we do not need to make an additional round trip to the server. Instead, routing is

handled locally by caching all pages on the first server payload. This makes OnePlusTwo

accessible from all mobile devices regardless of operating system, but also allows Event

Organizers and Attendees to use OnePlusTwo without installing any additional apps.

34

Our application is split into two -- a rich single-page-app (SPA) client and an API that

handles all the data persistence as well as authentication. All static assets for the client are

served by Firebase’s content delivery network (CDN). Our API is implemented via Firebase

which gives out-of-the-box create, read, update, and delete (CRUD) for its cloud-hosted NoSQL

data storage.

Client-server architecture with Firebase

6.4.1. Client-app Architecture

The client is built using ReactJS (React), react-router and Redux. Comparing it to a

typical model view controller (MVC) architecture, React is the View part of the application.

Unlike MVC where the flow of processing is bidirectional, in a React + Redux architecture the

flow of processing is strictly unidirectional which reduces dependencies and complexity.

Single page application (SPA) with React & Redux (Pini, 2016)

35

6.4.1.1. Components & Template

The component is part of the view and typically represents a button, a list or event an

entire screen. Each components is rendered with a set of props (similarly to parameters) that get

passed down from the parent component. The template is simply a synonym for top-level

component for a certain page.

6.4.1.2. Container

 The container is the glue that holds redux (the state) and react (the view) together. It

filters only the necessary information to render the current page by applying selectors to the

store and then passed that information as props. This is done via map store to props function.

6.4.1.3. Actions & Action Creators

 Actions represent user triggered events or updates to the state of the application (e.g.

load my passes, passes successfully loaded, user not found etc). In fact, action creators is the

code called to create those actions, while the actions themselves are simply objects with event

description and parameters.

6.4.1.4. Reducers

 For every dispatched action all reducers are called with the action as a parameter, then

its up to the individual reducer to “process” the action or not. Finally, reducers update the store

in some way.

6.4.1.5. Firebase API

Some actions require communication with the Firebase API (e.g. load an event,

authenticate a user, check-in a pass). When an action creator is called, it can “pull” some

information from the Firebase API before passing along that result as a parameter inside the

action object.

36

7. Implementation

7.1. Trello Board

Team communication and task organization was the cornerstone to keeping our project

on track. Keeping track of our progress on the dozens of requirements outlined during the

design process can be very challenging. To overcome this our team decided to borrow a tool

from the Agile development methodology, Trello. Over the course of our second term we made

over 150 commits in our GitHub repository and archived more than 50 cards on Trello. Between

these Trello cards and Facebook Messenger we were able to keep our team constantly informed

into what the other one was doing. As each of us accomplished tasks on Trello we could assign

ourselves to the next task without overlapping the other’s work.

A screenshot of our Trello during the implementation phase.

7.2. Development

Throughout our development term we had three distinct waterfall iterations that we

detail below. The first iteration we worked to create a minimum viable product with a skeleton

of each screen we would need and just enough server side logic to serve our project securely. The

37

second iteration we discovered several architectural issues that required substantial refactoring,

and we completed most of the user stories. Finally in the last iteration, we cleaned up the user

interface, did some refactoring and added unit and integration tests for our project.

7.2.1. Early Development Process

During this iteration, we laid most of the groundwork for the future two iterations. By

the end of this iteration, we were able to create events, retrieve a list of events from Firebase,

and open an event detail screen. The functionality was basic as there were no permission

restrictions (so everybody could meddle with the database) and there was no visual styling. The

most important milestones are listed below.

We used Facebook’s create-react-app (Create React App) to initialize our project and set

up the boilerplate. We set up the app’s architecture as well as conencting React components,

actions, reducers and Redux middleware to one another. We created a FirebaseService on the

web client that linked it to Firebase. We set up the automated build process, test process and

deployment via Travis CI. The process included:

● Generating compressed assets and single javascript package

● Running a simple test to ensure app could start

● Deploying cloud functions to Firebase

● Deploying the entire client with its assets to Firebase CDN

● Deploying database permission rules

We added functionality for fully-fledged user authentication & session management via

Facebook or Google account. We also added support for creating events, listing a user’s events,

and adding event details. Finally, we added simplified invites creation and accepting

functionality.

7.2.2. Extending the Application

During the second iteration, we implemented permissions for Firebase and completed

the invitation system. Using our initial database schema, invitations contained no way to

identify which user claimed it. Additionally because of Firebase’s limited querying tools we were

not able to find our users’ passes within the pass table. After discovering these limitations we

had to make several changes to our database schema as well as change much of how our

backend logic worked. These changes centered around the fact that Firebase does not support

using permissions as filters. For example, in Firebase you can not give a user read permission

for a specific event and then allow any user to query the Event table and receive only permitted

38

events. Instead, the entire read will fail once you reach an event for which you do not have the

appropriate permissions. To overcome this shortcoming, we added an EventCache to the User

table. This includes a list of permissions for each event the user is involved in. Now all event

editing is controlled by server side functions that validate the user requesting the event has the

necessary permissions.

Fortunately because of our decoupled client side architecture components, all of the

client side changes were confined to a single file that interacts with Firebase. Everything else

such as our actions, reducer, and store remained the same. The only change was to the endpoint

we query within the FirebaseService module.

Updated Database schema -- major change was the introduction of EventCache due to

Firebase limiting the query engine with the introduced permissions

39

7.2.2.1. Cloud Functions

We ended up rewriting most of our permission-sensitive code as Firebase Cloud

Functions, Some of them are triggered by database updates, others were triggered by HTTP

POST requests. The following is a list of the application's Firebase Cloud Functions:

● AcceptInvite -- Accepting an invite involves changing the Invite itself, creating a Pass

and updating user demographics. It is both insecure and inefficient to let the client

application handle all of this. We opted for no-write permissions on the client and

extracted all the functionality as an HTTP endpoint.

● CheckInPass -- similarly to accepting an invite this is a complex operation, so we opted

for implementing it as an HTTP endpoint cloud function.

● GenerateNewInvite -- similar to the previous two Firebase Cloud Functions.

● GetEventStats -- computation intensive function which also needs access to sensitive

user data. We preferred to keep no-read-no-write to the data and have an HTTP cloud

function return the aggregate results.

● GetInviteInfo -- to properly render an invitation we need the event details. However,

events should be kept locked because otherwise private addresses could be visible.

Firebase does not support fine-grained permissions so we opted for moving all this into

an HTTP cloud function.

● ImportGuests -- this database trigger is run whenever a new event is created.

● SendEmail -- a database trigger which sends out emails to all people who have

accepted an invite and are not subscribed for push notifications.

● SendMessage -- a database trigger which sends out push notifications to all people

who have accepted an invite.

● UpdateEventOwners -- because Firebase cannot return “a list of all events I’m invited

to” due to permissions limiting the query engine, we had to create an EventCache array

which held all events a certain user can see with the respective invites and passes. This

was implemented as a database trigger.

7.2.2.2. Other packages we integrated during this stage

● ChartJS -- for the Event Statistics screens we needed a library that renders pie charts as

well as line graphs.

40

● Normal distribution generator -- we implemented our own function to analyze the

times at which attendees checked-in at an event. With the calculated mean and standard

deviation the function generated 100 data points for the line graph.

● Material-ui -- we felt the optimal way to ensure consistency in the UI is to use a library

basic UI components. Material UI, designed by Google, creates all the buttons, menus,

popups and loading bars.

7.2.3. Final Application & Testing Process

The testing phase of our application is made of three pieces. Automated unit tests for the

client side javascript, integration tests for the server side code, and manual tests based on our

regression test spreadsheet. The client side unit tests were painless to write due to the purely

functional nature of the Redux reducers.

 For the server side tests we mocked the database with an in-memory JavaScript object

that contained test data. Each cloud function was then mocked based on this test data. The most

heavily tested part of our application were the Firebase Cloud Functions.

 Finally for the manual regression test, we developed a spreadsheet with all of our use

cases, and validated each feature worked with a timestamp so we could revert to a previously

known working state at any point. Towards the end of the project we used this spreadsheet to

evaluate our application and logged our most recent fully functional version on February 13th

2018.

 Feb 7th 2018 Feb 13th 2018

Auth

Sign in from home screen ✅ ✅

Sign out from home screen ✅ ✅

Events

Select create event from home
screen ✅ ✅

You can import from previous
events you've hosted when you
create an event ✅ ✅

Enter mock data for each field
and submit event ✅ ✅

Redirected to new event detail
page? ✅ ✅

41

Data loads for new event page? ✅ ✅

Send Message and Invite guests
buttons are present for new
event? ✅ ✅

Invite guest link can be generated ✅ ✅

Sent messages appear in news
feed ✅ ✅

Guests receive push notification
and or email for each new
message ❌ ✅

Events list shows all events you
are involved in ✅ ✅

You can view event stats for
events you host ✅ ✅

Invites

Invite links you receive open to
the event detail page ✅ ✅

Clicking accept prompts you to
either sign in or receive a pass ❌ ✅

You can display your pass ✅ ✅

42

8. Evaluation
During the development phase of our project we implemented all four of the functional

requirements (event creation, sharing, management, and guest interaction) defined in our

project specification. Each use case we implemented is detailed below. Additionally we

evaluated each of the three non-functional requirements (ease of use, performance, scalability)

defined in our project specification.

During the first iteration of our application we realized that having both the concepts for

Open and Private events made OnePlusTwo confusing to our users. This is why we decided to

not implement the UI controls needed for an Open Event (even though the backend supports

Open Events). The following represent what we were able to implement in the time frame of the

project. The components that were not implemented also serve as suggestions for future work.

● [ST-1] As a Website Visitor, I want to register and create a Private Event, so that I can

closely control the guestlist.

○ ✓ Implemented.

● [ST-2] As an Event Organizer, I want to create a new Private/Open Event and import

people who showed up from a previous event I organized, so that I start exciting my

audience from early on.

○ ✓ Implemented.

○ ✖ No UI for Open Event.

● [ST-3] As an Event Organizer, I want to create an Open Event where people need to

bring a friend to be eligible to attend, so that more people attend and are excited about

my Event because bringing a friend means they are more committed.

○ ✖ No UI for Open Event nor functionality to “unlock” invites; just regular ones.

● [ST-4] As an Event Organizer, I want to set a maximum number of attendees for my

Open Event, so that there is space and seating for everyone.

○ ✓ Implemented. Working for Private events as well.

● [ST-5] As an Event Organizer, I want to invite many people to my Private Event using

Text & Facebook, so that I can easily expand the guestlist.

○ ✓ Implemented.

43

● [ST-6] As an Event Organizer, I want to allow some people to invite additional attendees

to my Private Event, so that new people can come.

○ ✓ Implemented.

○ ✖ No UI to fine tune (e.g. person X can bring 2 friends, person Y only 1)

● [ST-7] As an Event Organizer, I want to get a printable file with information about my

Open Event and instructions on how to self-enroll (e.g. QR with link), so that it is

effortless to use OnePlusTwo.

○ ✖ Not implemented.

● [ST-8] As an Event Organizer, I want to give “admin” rights to other people, so that it is

easier to manage a big event.

○ ✓ Backend supports it.

○ ✖ No UI.

● [ST-9] As an Event Organizer, I want to add additional information to my Event (e.g.

location, time, description…), so that people know what they are signing-up for and

where they should be.

○ ✓ Implemented.

● [ST-10] As an Event Organizer, I want to validate attendee’s passes at the entrance, so

that I can keep track of actual attendance and let only eligible people in.

○ ✓ Implemented.

● [ST-11] As an Event Organizer, I want to know how many people did attend my event as

well as basic demographics, so that I know what my target audience is.

○ ✓ Implemented.

● [ST-12] As an Event Organizer, I want to send a short message to attendees before the

event (via email and push notifications), so that I can remind and excite them to come.

○ ✓ Implemented.

● [ST-13] As an Event Organizer, I want to send a short message to the people who came

(actual attendees), so that I can stay on their radar and make them anticipate my next

event.

○ ✓ Implemented.

● [ST-14] As an Event Organizer, I want to get a list with all invited attendees and people

who showed up, so that I can have a record to use for other non-related purposes.

○ ✓ Implemented. Can import attendees when creating a new event.

44

○ ✖ Cannot export attendees to .csv file.

● [ST-15] As a Person Receiving an Invite, I want to quickly accept the invite and add it to

my iOS/Android Wallet, so that I am reminded about the event and have the pass readily

available at the entrance.

○ ✓ Implemented.

○ ✖ No iOS Wallet support.

● [ST-16] As a Person who sees an interesting Event Ad on-campus (or hears about it) and

wonders whether to go, I want to subscribe for interesting updates (and even quickly

sign up for the event), so that I do not lose the opportunity to go.

○ ✖ Not implemented.

● [ST-17] As an Attendee to an Open Event, I want to invite a friend of mine, so that I am

eligible to attend the event.

○ ✓ Some attendees can invite friends.

○ ✖ No “unlocking” of an invite.

● [ST-18] As an Attendee, I want to occasionally get news and updates about the event, so

that I do not forget about it and do not rule it out as boring and useless.

○ ✓ Implemented.

● [ST-19] As an Attendee, I want to see which of my friends are also attending the event, so

that I am not anxious to go alone.

○ ✖ Not implemented.

● [ST-20] As an Attendee, I want to refer back to the event details (location, date…), so

that I don’t forget those.

○ ✓ Implemented.

● [ST-21] As an Attendee, I want to see live stats about the event (number of people

actually inside), so that I have more motivation to join.

○ ✖ Visible only for Event Owners.

We were able to implement the core features that allow guests and hosts to easily create,

share, and join in events without installing any additional applications. Even though not every

use case in our project specification was implemented, the two remaining use cases were

supplemental goals which although desirable are not critical to the application.

45

 We fulfilled our non-functional requirements by ensuring that the load time for each

page was kept below three seconds. Additionally because we developed our application using

Firebase, our application is able to scale to thousands of concurrent users.

46

9. Future Work
What we would like to see further developed is the ability to update the invitation page’s

metadata (title, description, og:image etc), so that whenever an invitation is shared it is

rendered nicely instead of a as a simple link (see screenshot of current rendering below).

Additionally, hosts should be able to designate more people as owners of an event. This was

supported on the backend. However, we had no time to implement the accompanying user

interface. This would allow more than one person to scan QRs at the entrance. Also, our backend

supports allowing invitees to bring more friends, however, we had no time to implement the

user interface to manage and fine tune those parameters, e.g. if X can bring 2 or 3 people. Users

should also be able to invite friends from their Facebook friends list or the contacts from the

Google account. This would make the invitation process more effortless for users. Additionally,

we would have liked to have more comprehensive end-to-end tests that simulate user clicking on

buttons and navigating the application to ensure all components are properly linked together.

Users should be able to add their passes to iOS Wallet. To implement this we would have had to

register under Apple’s developer program which would have been outside the scope of this

project. Finally, we believe generating tracking sheets of all attendees after an event would be

useful for some of the on-campus organizations as mentioned in the research.

Poorly rendered invitation due to lack of page metadata.

47

10. Conclusion
Even though not every use case in our project specification was implemented, the two

remaining use cases were reach goals which although desirable are not critical to the

application. However, we did meet all functional, and non-functional requirements in the

development phase. Our application follows a high standard for data security, permissions and

efficiency. It can easily scale to thousands of concurrent users due to its architecture. The most

important modules were extensively tested at our Continuous Integration after every commit

and then automatically deployed to Firebase.

Our team employed an iterative waterfall SDLC and gained experience with customer

development, requirements gathering, software design, application development, and software

validation with regression tests.

Ultimately we produced an application built on modern web technologies that meets all

the requirements of a progressive web application. As a result of developing with Firebase,

OnePlusTwo is capable of scaling to thousands of concurrent users.

48

11. Appendix

11.1. User Manual

11.1.1. Creating a new Event

1. Open https://one-plus-two.com .

2. Click “Login” and use either your Facebook or Google account.

3. Click “Host an Event”.

4. Name your event, pick date & location, upload a picture and click the green button.

Home Screen without being logged in (on the left). New Event Screen (on the right).

49

Date Picker & Time Picker

50

List with all event I’ve created or was invited to (on the left).

Newly created event as viewed by an event owner (on the right).

11.1.2. Inviting Guests

1. Open an event you are an owner of and click “Invite Guests”. This will also work on some

events where the owner has allowed you to bring friends.

2. Click “Generate New Invite” in the popup.

3. Copy the link and send it to your friend via text or your preferred communication.

4. ** Your friend has to accept the invite (process described below). Depending on the event

settings he/she might be allowed to invite additional friends.

51

Invitation popup opened (on the left) and generated link (on the right).

11.1.3. Accepting an Invite

1. Open the link your friend sent you. You will see info on what all of this is about.

2. Click “Accept Invite”.

3. If you have not used OnePlusTwo before you will be asked to create an account via your

Facebook or Google account. After creating the account, click “Accept Invite” again.

4. You will be redirected to the event details page where you will also see any messages on

the News Feed (as previously shown above).

52

Invite information screen

11.1.4. Sending a Message to all Attendees (if you are an owner)

1. Open an event you are an owner of and click “Send Message”.

2. Type it in and click “Send”.

3. ** All Android users will get a push notification. iOS and other users will get an email.

53

An invitee received a notification.

11.1.5. Checking-in people with invites

1. Invitee should open the event details and click “Show Pass”.

2. Event Owner should click on scan button (green button at the bottom).

3. Event Owner gives access to camera.

4. Event Owner points camera at Invitee’s QR code.

a. If the pass is valid the Owner’s scanner will flash in green.

b. If the pass is invalid or already used the scanner with flash in red.

c. The Invitee screen should say if the pass was already used up.

54

Invitee QR code screen -- valid on the left; already used up on the right.

55

Event Owner’s scanner screen.

56

Valid pass (on the left) and invalid pass (on the right).

11.1.6. Viewing Event Statistics (if you are an owner)

1. Open the event details and click “Show Stats”.

2. The data you see represent:

a. Number of people invited vs. number of accepted invites vs number of actual

attendees.

b. Split by gender of all attendees.

c. Average age for all attendees.

d. Time distribution showing peak time of check-ins.

57

Graph showing attendees vs. accepted invites vs. invites sent.

Graph showing attendees by gender.

58

Graph showing peak time of check-ins. Average age is shown under the graph.

11.2. Interview Response #1 (summary as it was a conversation)

Tell us about the last event you’ve organized?
● Recently Planned BΘΠ’s Homecoming Events
● Recently organized for a guest speaker to present for the Society of Environmental Engineers

What is the biggest challenge whenever you’ve organized an event (before, during,
after)?
● Sending out email reminders the day of to get people to show up
● making sure the rooms were booked

How do you solve that challenge?
● Emailing WPI aliases
● Scheduling on Outlook

59

What are the alternative solutions (e.g. for interlocutor only: alternative to getting
a shake for morning commute is getting a donut)?
● Messaging Slack channels with reminders

Why don’t you “hire” those alternatives?
● Too much setup to make a slack for a small group that does not meet more than a few times a

month
● Not very organized

How do you organize the guest list for you events?
● Voluntary sign up on Google Form
● Just send out a link, anyone can add their name
● MOST people show up but some flake

How can you distinguish between your loyal attendees (fans) and flakers?
● It was open only to brothers

How do you spread word about an event and make sure people will come?
● Word of mouth in small classes
● Emails day of to remind people

How can you distinguish between your frequent comers (fans) and flakers?
● Currently they have no method for differentiating

Notes
● Smaller events are interested in pre-engagement to make sure they get an turnout
● They have not considered re-engagement (are there any clubs doing this really?)
● They like google sheets because link sharing is so easy it can be done on mobile or desktop very

quickly
● Brothers need to attend a certain number of events and one chair is in charge of keeping track of

how many events each brother attends

11.3. Interview Response #2
Tell us about the last event you’ve organized?
● LCA
● WPI Sailing Team

What is the biggest challenge whenever you’ve organized an event (before, during,
after)?
● Coordination of all 100+ brothers for various steps (tabling, day of, clean up)

How do you solve that challenge?
● Google sheets sign up links

What are the alternative solutions
● Slack channels for coordination

60

Why don’t you “hire” those alternatives?
● We do for more day of pick up and small jobs but they get lost in the channels message stream too

easily

How do you organize the guest list for you events?
● Google sheets/Slack

How can you distinguish between your loyal attendees (fans) and flakers?
● We do not keep record of attendance for anyone

11.4. Interview Response #3

Tell us about the last event you’ve organized?
● SiStory -- successful entrepreneurs from Bulgaria share their stories & troubles onstage
● Erasmus Exchange party in a nightclub

What is the biggest challenge whenever you’ve organized an event (before, during,
after)?
● “PR”-ing the event; making sure enough people do hear about the event, but most importantly

hype them up! If they do not know who the speaker is SiS has to educate people to make them
come

● Following up with the attendees and making them become part of our group in Facebook, so that
our next events SiStory are for bigger crowds

● Sometimes Facebook attending say we would have 1000 people, but only 700 end up coming
● How do you make sure the proper target of people comes -- in the case with Erasmus Exchange

students do we end up with 100 exchanges and 300 randoms, or 300 exchanges and 100 of their
friends

How do you solve that challenge?
● Properly target when PR-ing the event

How do you organize the guest list for you events?
● Those events are with registration, but the reg is open to the public; We use automated online

solutions (eventim, ticketmaster, eventbrite)

How can you distinguish between your loyal attendees (fans) and flakers?
● The ones that are second comers are loyal. Also who were brought by a friend.

61

12. References

Affairs, Assistant Secretary for Public. (2013). Personas. Retrieved from /how-to-and-

tools/methods/personas.html

Cohn, M.Iterative waterfall model. Retrieved from

https://www.mountaingoatsoftware.com/blog/an-iterative-waterfall-isnt-agile

Facebook messenger. Retrieved from https://www.messenger.com/features

Firebase. Retrieved from https://firebase.google.com/

Google, I. (2016). How mobile latency impacts publisher revenue. ().

Jest JavaScript testing. Retrieved from https://facebook.github.io/jest/index.html

Lawrence Mello. (2015). Google hangouts

Lyttle, Z., Ross, J., Malofsky, B., McCarthy, M., & Bennet, T. Tailored campus event finder.

Pini, C. (2016). React + redux: Architecture overview. Retrieved from

https://articles.coltpini.com/react-redux-architecture-overview-7b3e52004b6e

Progressive web app checklist. Retrieved from https://developers.google.com/web/progressive-

62

web-apps/checklist

React - A JavaScript library for building user interfaces. Retrieved from

https://reactjs.org/index.html

Steve Blank.What is customer development? Retrieved from

http://www.startuplessonslearned.com/2008/11/what-is-customer-development.html

Website continuous integration with travis CI, jekyll, gulp, and GitHub. (2016). Retrieved from

http://scholar.aci.info/view/14f3b8e116900100004/1531c842ff100014c0b

Where work happens. Retrieved from https://slack.com/

