
Formation-centric software interface

by

Rohan Walia

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Masters of Science

in

Robotics Engineering

by

July 2022

APPROVED:

Prof. Carlo Pinciroli, Advisor

Prof. William Michalson

Prof. Markus Nemitz

Abstract

Multi-robot systems are often deployed as formations to accomplish tasks where a

single robot has limited potential, such as collective transport, search and rescue

missions and choreographed robot motions such as drone light shows. Due to the

nature of these applications, retaining the formation shape plays an integral role in

the success of the task. Extensive research has been conducted on how to effectively

control and navigate robot formations to complete these tasks while retaining the

underlying shape. However, in most cases, robots are manually assigned to create a

formation shape and require specific control laws to maintain that shape throughout

the task. Programming each robot manually becomes cumbersome when number of

robots increases or when the formation shape changes frequently.

To tackle these challenges, we develop an intuitive and concise software interface

for creating and managing robot formations. As part of this interface, we introduce

data types that enable users to easily define robot formations. We also introduce

functions that 1) quickly assign robots to a desired formation shape, 2) change

shapes of existing formations and 3) navigate a rigid formation in a mapped envi-

ronment. We demonstrate the use of this interface through sample programming

scripts accompanied by simulated and real robot experiments. We also describe the

underlying software architecture and navigation techniques that support this work.

Acknowledgements

I want to express my gratitude towards my thesis advisor - Professor Carlo Pin-

ciroli. He gave me invaluable inputs with immense interest and patience despite his

numerous responsibilities inside and outside the classroom. He fostered a wonderful

culture of respect and curiosity at the NEST lab. His efforts to facilitate state of

the art software and hardware enables quality research.

I would like to thank Professor William Michalson and Professor Markus Nemitz

for serving on my thesis committee and providing their feedback on how to improve

my work.

I greatly appreciate my peers at the Nest Lab. This work was made possible

because of Stephen Powers’ contributions to develop the underlying software archi-

tecture. He supported me during the design and debugging phases of this work. I

also thoroughly enjoyed my interactions with Ashay Aswale, Khai Yi Chin, Davis

Catherman, Arsalan Akhter and Josh Bloom.

I received unbelievable support through WPI in different forms. The Robotics

Engineering Faculty and Staff helped me learn robotics - a field I took a chance on

two years ago. WPI International House made it extremely easy to be a student

during a global pandemic. My manager, Kristin Marengo, helped keep my work

schedule flexible while I took graduate coursework. Lori Kendall-Taylor, my student

success manager, ensured I had the support to keep going. Lastly, my friends made

it possible to not make this journey alone.

Most importantly, I would like to thank to my family. Their interest in sup-

porting everything I do is the reason I am here. How they do it is beyond my

understanding, but I am glad they do.

i

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 3

1.3 Contribution . 4

2 Related Work 5

2.1 Swarm Robotics Software . 6

2.2 Formation Management . 8

2.3 Minimalistic Robot Motion Design 9

3 Methodology 11

3.1 Problem Formulation . 11

3.1.1 Formation Creation . 12

3.1.2 Formation Manipulation . 14

3.1.3 Formation Assignment . 15

3.2 Motion Primitives . 16

3.3 Goal Assignment Formulation . 21

3.3.1 1-1 Mapping . 21

3.3.2 Mapping and Cost matrices 23

3.3.3 Encoding Goal Assignment In MATLAB 23

ii

3.4 Programming Interface . 30

3.4.1 Data Types . 30

3.4.2 Functions . 38

3.5 Software Platforms . 42

3.5.1 Buzz Features . 44

3.5.2 MATLAB-Buzz integration 45

3.6 Navigation and control . 46

3.6.1 Potential Field Navigation . 47

3.6.2 Buzz goto Function . 56

4 Experimental Evaluation 59

4.1 Demonstrations . 59

4.1.1 Setup . 60

4.1.2 Formation Assignment . 63

4.1.3 Motion Primitives . 67

4.1.4 Navigation . 75

4.2 Goal Assignment Performance . 82

4.2.1 Setup . 82

4.2.2 Result . 83

5 Conclusion 86

5.1 Future work . 87

5.2 Lessons learned . 89

A Data Type API 94

B Follow function: Source Code 98

C Net Force Calculation: Source Code 100

iii

List of Figures

1.1 Five different flight formations used by Alkouz and Bouguettaya. A:

Column, B: Front, C: Echelon, D: Vee, E: Diamond 2

2.1 Specifying formation shape parameters in ChoirBot. Matrices W and

P need to be changed every time a new formation shape is required,

and the program is rerun to create a new shape. 7

2.2 Comparison of python-ROS and Improv code to execute a turn ma-

neuver on a Turtlebot. 10

3.1 Example of a 2D rectangular cloud. Agents are allowed to be placed

at (3, 2), (3, 7), (9, 7) and (9, 2). 13

3.2 Translation process for four agents in a square formation. Green for-

mation is the initial formation, orange formation is the final formation. 17

3.3 Rotation process for four agents in a square formation. Green forma-

tion is the initial formation, orange formation is the final formation.

Notice that the center of mass of the initial and final formations co-

incide, since each agent is rotated about the center of mass of the

initial formation. 18

iv

3.4 Scaling process for four agents in a square formation. Green forma-

tion is the initial formation, orange formation is the final formation.

Notice that the center of mass of the initial and final formations co-

incide, since position of each agent is scaled about the center of mass

of the initial formation. 20

3.5 Horizontal shearing process for four agents in a square formation.

Green formation is the initial formation, orange formation is the final

formation. Notice that the center of mass of the initial and final

formations do not coincide in this case. 21

3.6 Initial (i) and final (j) robot distributions 22

3.7 Example of a 2D formation of 4 agents. 32

3.8 A path of 3 formations for a group of 5 robots 34

3.9 Selecting agent positions for a cloud. The blue ’x’s are current po-

sitions of the robots (if known), and the green ’o’s are the newly

selected agent positions for the cloud. Dark portions of the binary

occupancy grid represent obstacles (walls). 36

3.10 Selecting goal for a formation. The green ’o’s show the current posi-

tion of agents in the formation. 37

3.11 A square formation and line formation for the same group of robots. . 38

3.12 Output of planPath function. The blue nodes and edges show sam-

ple space created by exploring the given binaryOccupancyMap. The

optimal path is shown in red. 40

3.13 Overview of how follow function executes robot motion 41

3.14 Overview of the software platforms used in this work 43

3.15 Communication topology of the MATLAB-Buzz interface 45

3.16 Overview of navigation and control 47

v

3.17 Comparison of two candidate functions for representing repulsive force 48

3.18 Robot2 applying a repulsive force on Robot1 49

3.19 Comparison of two models for representing attractive force 52

3.20 Robot1 experiencing attractive force exerted by its goal 53

3.21 Converting a 2D navigation goal from global coordinates to the robot’s

local coordinates . 54

3.22 Net force acting on Robot1 . 55

3.23 Proportional control on a differential drive robot for a 2D navigation

goal . 58

4.1 High-level communication loop between the robots, Vicon motion

capture system and ARGoS . 60

4.2 Empty 5m x 5m arena in ARGoS with 0.2m x 0.2m walls as borders . 61

4.3 KheperaIV mobile robot . 62

4.4 GUI for selecting new formation based on where the current formation

lies. The blue ‘x’s represent the current formation, whereas the green

circles represent the new formation being selected. 65

4.5 Formation assignment in simulation 66

4.6 Formation assignment with real robots 67

4.7 Simulated demonstration for Translate primitive 70

4.8 Real-robot demonstration for Translate primitive 70

4.9 Simulated demonstration for Rotate primitive 71

4.10 Real-robot demonstration for Rotate primitive 72

4.11 Simulated demonstration for Scale primitive 73

4.12 Real-robot demonstration for Scale primitive 73

4.13 Simulated demonstration for Shear primitive 74

4.14 Real-robot demonstration for Shear primitive 75

vi

4.15 Collision avoidance demonstration in simulation 76

4.16 Collision avoidance demonstration on real robots 77

4.17 Planning process for collective transport application 80

4.18 Simulated demonstration of collective transport 81

4.19 Real-robot demonstration of collective transport 82

4.20 Performance of MILP-based goal assignment as the number of agents

in the experiment increases. 84

vii

List of Tables

3.1 Overview of functions . 42

3.2 MATLAB-Buzz interface functions used to access BVM data 46

A.1 Overview of data types . 94

A.2 Overview of Position class . 95

A.3 Overview of Orientation class . 95

A.4 Overview of Pose class . 95

A.5 Overview of Cloud class . 96

A.6 Overview of Formation class . 96

A.7 Overview of Path class . 97

A.8 Description of graphicalPoseInput class 97

viii

Chapter 1

Introduction

1.1 Background

Robot swarms have demonstrated greater performance and reliability in certain

tasks as compared to their single-robot counterparts. For example, Sauter et al. [29]

have observed that coordinated unmanned aerial and ground vehicles can be used

to improve human operated target acquisition military systems. By adding semi-

autonomous swarms, the operations can be scaled by eliminating the need for assign-

ing one human controller per vehicle. Additionally, these semi-autonomous swarms

are designed to compensate for individual robots failing during the operation.

In many swarm robotics applications, the main strength of a swarm is decen-

tralized coordination, which leads to scalability and robustness for the overall sys-

tem [11] [18]. However, the shape of a swarm is also crucial for a variety of tasks.

When robot swarms are arranged in a desired shape, a robot formation is created. In

a recent study on aerial package delivery, Alkouz and Bouguettaya [10] observed how

energy consumption changes for a drone formation based on the formation shape and

wind conditions. They experimented with two formation types: fixed and adaptive.

1

Fixed formations were not allowed to change their shape while adaptive formations

were allowed to change between five flight formation shapes: Column Formation,

Front, Echelon, Vee and Diamond (shown in Figure 1.1). After subjecting fixed

and adaptive formations to different wind conditions, they concluded that adaptive

formations performed better in terms of energy consumption over different trip dis-

tances and wind speeds. Therefore, the ability of the drones to acquire different

formations played a key role in this scenario.

Figure 1.1: Five different flight formations used by Alkouz and Bouguettaya. A:
Column, B: Front, C: Echelon, D: Vee, E: Diamond

Besides package delivery, drones have also been used in light shows in the enter-

tainment industry [19]. Such applications where robots need to swiftly transition

from one formation to another and execute coordinated motion patterns fall under

the umbrella of robot choreography. The ability to express robot motion through

different formation shapes lies at the heart of robot choreography.

Collective transport is another application where shape of the formation plays a

central role. In collective transport, a swarm of mobile robots is used to transport

a rigid object in a given environment. Needless to say, the formation shape needs

to match the contour of the object to be transported. Collective transport has

applications in warehouse management, where ARMs (autonomous mobile robots)

can be used to transport oversized or heavy objects. Research efforts for collective

2

transport scenarios have primarily been concentrated towards control and navigation

of formations [27] [15] [16].

Despite the benefits of arranging robots into specific formation shapes, there

is no software which abstracts low-level details of arranging robots into formations

and easily changing existing formation shapes. Having access to such software would

allow more expressive and faster software development when it comes to program-

ming robot formations. Successful robotics software applications such as ROS were

not designed for robot swarms, let alone formations shapes [25]. Although some

swarm-robotics software packages for ROS touch on this subject, they were primar-

ily designed to provide a library for commonly observed swarm behavior [17] and

decentralized coordination [31]. Moreover, even software specifically designed for

swarm robotics is not intended for providing out-of-box solutions for programming

robot formations [25].

1.2 Problem Statement

The first objective of this thesis is to introduce a software interface for program-

ming robots from the perspective of formation shapes. To accomplish this objective,

we intend to provide user-friendly methods for creating formations and performing

formation assignment and manipulation. Formation assignment should enable a

programmer to rearrange a given distribution of robots into a desired shape. For-

mation manipulation should allow a programmer to apply a set of simple motion

operations to a formation. These operations, or primitives, should be applied by

treating the formation as either a rigid or a deformable body. Motion primitives

that respect the rigidity of a formation include translation and rotation. Examples

of motion primitives that treat the formation as a deformable body include scal-

3

ing (increasing or decreasing the formation size) or shearing (skewing the formation

shape horizontally or vertically).

The second objective of this thesis is to empirically demonstrate the efficacy

of this software interface through simulated and real robot experiments. This re-

quires adopting a navigation technique that enables robots to reach their goals while

avoiding collisions with each other.

1.3 Contribution

For the first objective of this thesis, we introduce data types and functions that

describe the structure and functionality of our software interface. We demon-

strate the use of these data types and functions by sharing sample programming

scripts. We discuss our problem formulation for formation assignment through MILP

(Mixed-Integer Linear Programming) and its implementation through MATLAB’s

intlinprog interface. Additionally, we share our implementation for a set of four

motion primitives that constitute formation manipulation.

For the second objective of this thesis, we describe a potential field based ap-

proach for navigation and demonstrate its use through pairs of simulated and real-

robot experiments. We also demonstrate a path planning application by performing

collective transport in simulation and with real robots. Finally, we analyze the per-

formance of our MILP-based algorithm for formation assignment and discuss the

future direction for this work.

4

Chapter 2

Related Work

Software development for swarm robotics mainly focuses on enabling programming

for scalable centralized and decentralized systems. Usually the intended use of such

software is to deploy algorithms that result in emergent behavior. Due to this

reason, only a handful of software deals with robot formations and their shapes.

Swarm robotics research, as compared to swarm robotics software, has paid more

attention to robot formations. Nevertheless, majority of the research efforts have

been invested towards developing robust navigation and control strategies for robot

formations.

Therefore, the purpose of this section is to highlight what gaps these software

development and research efforts leave when it comes to programming robot for-

mations, and how we fill those gaps. To do that, we look at software applications

which cater to robot formations in any capacity. We also look at research efforts

that touch on the idea of formation management, which includes arranging robots

into a desired formation and defining simple motion operations for existing forma-

tions. Finally, we discuss how a minimalistic robot motion design language can lead

towards programming for robot formations.

5

2.1 Swarm Robotics Software

Standalone swarm-robotics software such as the Buzz programming language [25]

provides out-of-box solutions for swarm management. This includes support for

generating motion patterns commonly found in the field of swarm robotics such

as aggregation, dispersion and flocking. Out of these motion patterns, flocking is

considered coordinated motion of a swarm. However, this coordinated motion is not

guaranteed to retain a desired shape.

Several swarm robotics software packages also exist for the widely adopted mid-

dleware ROS (Robot Operating System). These packages make swarm robotics pro-

gramming accessible to a larger audience. Because of this reason, they are designed

to fulfil mainstream swarm robotics requirements such as virtual stigmergy and

neighborhood management. For example, micros swarm framework for ROS1 [12]

follows in Buzz’s footsteps to provide data structures that enable swarm manage-

ment and communication mechanisms. Although it lists applications in “motion and

spatial coordination” of a swarm and “splitting [a swarm] into multiple swarms”,

there is no mention of what level of control a user has over the shape of the swarm.

More recent packages (geared towards ROS2) branch off from generic coordinated

motion such as flocking and focus on formations. The ChoirBot package [31] allows

users to create rigid formations by specifying inter-agent distances and coordinates

of the formation shape as matrices. Even though a user can specify these matrices

explicitly, they have to be recreated and the entire program needs to rerun every time

the shape is changed. In other words, there is no provision for programmatically

reassigning shape to a formation once it has been created. Figure 2.1 shows a code

snippet that portrays the setup process for creating a formation shape:

6

Figure 2.1: Specifying formation shape parameters in ChoirBot. Matrices W and P
need to be changed every time a new formation shape is required, and the program
is rerun to create a new shape.

7

Swarm robotics software at large also fails to provide an interface for manipulat-

ing existing formations. ’Manipulation’ here refers to the ability to perform basic

motion operations on a formation. These include rigid body operations such as

translation and rotation, or changing the shape of the formation such as scaling the

formation size up or down. ROS2Swarm [17] is a package for ROS2 that introduces

the concept of motion patterns. Regardless, each motion pattern emulates emergent

behavior and only the ‘drive’ motion pattern is designed to manipulate a formation.

2.2 Formation Management

In order to change the shape of a formation, it is crucial to decide how robots will

be arranged to form the desired shape. This is the essentially a goal assignment

problem. Goal assignment maps a set of robots to a formation shape in the most

optimal manner. To solve goal assignment, one needs to define a cost function (with

constraints) and a method for solving the cost function (a solver). Turpin et al.’s

cost function is the collective distance travelled by robots to form a given shape

[33]. They calculate this distance using an optimal path planner in a discretized

environment represented as a roadmap. Then, they use the Hungarian algorithm

as their solver to find the most optimal assignment (corresponding to the least

collective distance travelled). However, this method requires knowing the robot

dynamics beforehand. This is because this method also calculates trajectories for

each robot based on the goal assignment. In our work, we take a similar approach

to solve goal assignment by minimizing the total distance travelled by the swarm.

Yet, our method does not require knowing robot dynamics beforehand because we

separate the processes of goal assignment and navigation.

The second challenge in formation management is changing a formation’s posi-

8

tion/orientation or size/structure. This can be achieved by defining a set of motion

primitives for the entire formation. The intention here is for all the robots to execute

a motion primitive in unison. Du et al. [13] define a set of motion primitives (in-

cluding rigid body rotation), but each motion primitive is designed to be periodic.

This requires the motion to be executed repeatedly. In our work, we define a set of

motion primitives that are executed one at a time, without the need for repeated

execution.

2.3 Minimalistic Robot Motion Design

As discussed earlier, ChoirBot [31] already lists an interface for creating a robot

formation. Similarly, [33] provides a goal assignment algorithm for creating robot

formations and [13] introduces periodic motion primitives that can be used with

existing formations. However, these features are not accessible to programmers in a

user-friendly manner. Abstracting the low-level implementation details of creating

and manipulating a formation would allow users to program from a formation’s point

of view, instead of individual robots’ point of view. The benefit of this approach has

already been demonstrated for single robots by Nilles et al. in [21]. In this work,

Nilles et al. introduce Improv, a language which deals with “a high-level description

for robot motion.” Figure 2.2 shows a comparison between two code samples from

ROS and Improv that achieve the same purpose: executing a turn maneuver.

9

Figure 2.2: Comparison of python-ROS and Improv code to execute a turn maneuver
on a Turtlebot.

It can be clearly seen that Improv’s code does not require the setup procedure,

which includes creating a publisher, initializing a ROS node, defining a rate for the

communication loop, and specifying the motion termination condition explicitly.

This difference in code complexity will be even more profound between Improv

and a lower-level language such as C++. Niles et al. argue that the low level of

abstraction required by ROS does not allow users to easily “translate their mental

model of movement” for planning and visualizing motion. One of the motivations

behind developing Improv is to reduce the difference between a user’s “mental model

of movement” and the code. We take inspiration from Improv to develop a software

interface which is minimalistic and robot agnostic to draw the focus away from

individual robots and bring it towards the shape of an entire formation.

10

Chapter 3

Methodology

3.1 Problem Formulation

The objective of this thesis is to develop a software interface which allows users

to interact with robot formations programmatically. This interface must enable

programming from the perspective of a formation while abstracting the low level

implementation details. We identify the following three requirements to achieve

this objective:

1. Formation creation: The user should be able to create a formation in an

intuitive and concise manner. This requires establishing what constitutes a

formation, and how the user provides that information.

2. Formation manipulation: Formation manipulation is the ability to describe

a formation’s movement or changes to its shape. It enables a user to navigate

or adapt a formation to its environment. Formation manipulation should not

require a user to explicitly coordinate motion for each individual robot.

3. Formation assignment: Throughout the course of a task, a swarm of robots

11

needs to achieve different formations. To change the shape of a formation, the

user should only be required to describe the new shape. They should not be

asked to manually rearrange robots.

Our formulations for each of these requirements are explained in the following

subsections:

3.1.1 Formation Creation

To represent a geometric shape using robots, one needs to come up with the spatial

distribution that shows how robots form this shape. This can be achieved by pro-

viding a set of points in space that constitute the geometric shape. We call this set

of points a cloud.

A Cloud is an unordered distribution of agents in space, akin to the concept of a

point cloud [20]. ‘Unordered’ here means that any agent could occupy any position

within the shape, as long as it belongs to the given set of positions. For example,

the Figure 3.1 shows a rectangular cloud of four agents in a 2D environment, where

each agent can be placed on any one corner of the rectangle:

12

Figure 3.1: Example of a 2D rectangular cloud. Agents are allowed to be placed at
(3, 2), (3, 7), (9, 7) and (9, 2).

A cloud is sufficient to describe the geometry of a shape. However, it does not

describe how robots are allocated to a shape. For example, in order to fill a cloud

of 4 robots in an environment of 10 robots, the user needs to specify which 4 robots

would be used to fill the cloud.

To solve this problem, we establish the concept of a Formation. A Formation

is an ordered group of agents, where each agent is assigned an ID to keep track

of its position within the a shape. A formation can be described by the following

attributes:

1. Cloud: A cloud describes the shape of the formation as a set of robot poses

in space.

2. Agent Order: Agent order is an ordered list (array) of robot IDs that corre-

spond to each robot pose in the cloud attribute.

13

3. Orientation: Since a formation represents a geometric shape, a user cannot

infer where the formation points through visual cues. Therefore, an orientation

is established when the formation is created to keep track of the ‘head’ of a

formation with respect to the world coordinates of its environment. This is

particularly important for aligning the formation in a specific direction.

4. Agent Diameter: To avoid collisions, each agent’s geometry needs to be

known. An agent’s diameter describes its circular or spherical footprint. This

information is required to ensure that given list of robots do not collide with

each other to create the formation.

Section 3.4 describes how we incorporate these concepts into a programming

interface.

3.1.2 Formation Manipulation

As mentioned earlier, formation manipulation affects the position or shape of a

formation. This requires coordinating motion of all robots in the entire formation.

To abstract the implementation details of such coordinated motion, we define a set of

primitive operations that only require a single parameter to describe the operation’s

affect on the entire formation.

These primitive operations, or motion primitives, ultimately describe how po-

sition of each robot changes in the formation. Therefore, they can be defined as

linear operations on the coordinates for each robot in a formation. We provide a set

of four motion primitives: translate, rotate, scale and shear. Translate and rotate

treat a formation as a rigid body and change its ‘pose’. Scale and shear change the

shape of the formation by treating the formation as a deformable body. Section 3.2

contains a detailed description and formulation of these primitives.

14

3.1.3 Formation Assignment

Formation Assignment is the problem of calculating how to rearrange robots in a

formation to create a new shape. Formations represent geometric shapes using a set

of robot positions. Therefore, this rearrangement problem boils down to determining

what robot in the starting formation occupies which position in the given shape.

We call this a ‘mapping’ of robots between the two shapes.

One way to select the best mapping is to reduce the time taken by the swarm

to transition between these shapes. The total time taken by a swarm to transi-

tion between the shapes is the sum of time taken by all individual agents to move

from their respective start position to goal positions. Mathematically, this can be

expressed as:

T =
n∑
1

(speed · dr) (3.1)

where n is the swarm size, dr is agent r’s displacement, and ‘speed’ is the mag-

nitude of velocity shared by all agents in the swarm. If velocity magnitude of all

agents is the same, then the time taken by each individual agent to move from its

start location to its goal location is proportional to the displacement dr (time =

|displacement|
|velocity|). Here, a dr value is calculated for every mapping of start position in

the formation to a goal position in the given shape. Therefore, an optimization algo-

rithm would reach at the best possible goal assignment by choosing the appropriate

dr value for each agent.

We formulate a rudimentary solution to this problem by assuming that the swarm

is homogeneous, i.e., all agents have identical geometry, as well as kinematic and

dynamic characteristics. Essentially, this requirement indicates that all agents have

the same geometric footprint and acceleration profiles. Additionally, we assume 1-1

15

mapping to ensure that every agent is assigned a unique position in the given shape.

A detailed formulation of goal assignment is covered in Section 3.3.

3.2 Motion Primitives

To understand how the default primitives affect a formation, assume matrices Fx

and Fy represent the x and y positions of agents in a 2D formation of four agents

arranged in a square shape. The formulation for each motion primitive can then be

described as follows:

1. Translate: The translate primitive displaces a rigid formation in space using a

translation vector. The translation vector determines the length and direction

of the displacement. For a point (x, y) in 2D formation, the translate operation

changes the point as follows:

xnew

ynew

 =

tx
ty

+

x
y

 (3.2)

where [tx ty]
′ is the translation vector, and [xnew ynew]

′ is the new position

vector for the point.

For example, if:

Fx =

0 1

0 1

 and Fy =

1 1

0 0

then a translation vector [1 1]’ changes Fx and Fy as follows:

Fx =

1 2

1 2

 and Fy =

2 2

1 1

16

This process is shown in Figure 3.2 below. x and y positions of each agent in

Fx and Fy correspond to their actual position in the formation shown in the

figure (starting clock-wise from top left in Fx and Fy, agent 1 corresponds to

Fx11 and Fy11).

Figure 3.2: Translation process for four agents in a square formation. Green forma-
tion is the initial formation, orange formation is the final formation.

2. Rotate (rotation angle): This primitive rotates a rigid formation about its

center of mass. This is done by applying the same rotation (with respect to

the center of mass of the formation) to x and y positions of each agent in the

formation.

For a point (x, y) in a 2D formation, the rotate operation changes the point

as follows: xnew

ynew

 =

cos θ − sin θ

sin θ cos θ

 ·

x− comx

y − comy

+

comx

comy

 (3.3)

where θ is the counter-clockwise angle of rotation measured with respect to

17

the local frame of the formation. comx and comy are the x and y components

of the center of mass of the formation. [xnew ynew]
′ is the new (rotated) point.

The local frame of the formation always has y axis pointing up, and the x axis

pointing to the right in a 2D plane.

For example, if:

Fx =

0 1

0 1

 and Fy =

1 1

0 0

then θ = π

4
changes Fx and Fy as follows:

Fx =

−0.2071 0.5000

0.5000 1.2071

 and Fy =

0.5000 1.2701

0.5000 −0.2071

This process is shown in Figure 3.3.

Figure 3.3: Rotation process for four agents in a square formation. Green formation
is the initial formation, orange formation is the final formation. Notice that the
center of mass of the initial and final formations coincide, since each agent is rotated
about the center of mass of the initial formation.

3. Scale: The scaling primitive scales the radial distance of each agent in the

formation from the center of mass of the formation, effectively scaling the

formation diameter. Formation diameter is calculated based on Euclidean

18

distance between the centers of the two most diametrically opposite agents in

the formation. The scaling primitive preserves the inter-agent angle, but it

does not preserve the inter-agent distance. Note that the center of mass of the

formation remains the same.

For a point (x, y) in a 2D formation, the scale operation changes the point as

follows: xnew

ynew

 = s ·

x
y

 (3.4)

x′
adjusted

y′adjusted

 =

xnew

ynew

−

comdiffx

comdiffy

where s is the scale factor and [xnew ynew]

′ is the vector obtained through

the scaling operation. [x′
adjusted y′adjusted]

′ is the final point calculated after

adjusting for the change in the center of mass due to scaling.

For example, if:

Fx =

0 1

0 1

 and Fy =

1 1

0 0

then a scale factor of 2 changes Fx and Fy as follows:

Fx =

−0.5 1.5

−0.5 1.5

 and Fy =

 1.5 1.5

−0.5 −0.5

This process is shown in Figure 3.4 below:

19

Figure 3.4: Scaling process for four agents in a square formation. Green formation is
the initial formation, orange formation is the final formation. Notice that the center
of mass of the initial and final formations coincide, since position of each agent is
scaled about the center of mass of the initial formation.

4. Horizontal shear: Horizontal shear preserves the vertical height of the for-

mation, but skews the formation horizontally. Each agent is displaced in

proportion to how far it is from the bottom-most point of the formation.

For a point (x, y) in a 2D formation, the shearing operation changes the point

as follows: xnew

ynew

 =

1 s

0 1

 ·

x
y

 (3.5)

where s is the shear factor, and [xnew ynew]
′ is the new vector obtained through

shearing.

For example, if:

Fx =

0 1

0 1

 and Fy =

1 1

0 0

20

then a shear factor of 2 changes Fx and Fy as follows:

Fx =

2 3

0 1

 and Fy =

1 1

0 0

As shown in Fx and Fy above and in Figure 3.5 below, only the top two agents

are shifted to the right. The bottom two agents are co-linear with the bottom-

most point of the formation, and therefore are not affected by the shearing

operation.

Figure 3.5: Horizontal shearing process for four agents in a square formation. Green
formation is the initial formation, orange formation is the final formation. Notice
that the center of mass of the initial and final formations do not coincide in this
case.

3.3 Goal Assignment Formulation

3.3.1 1-1 Mapping

While transitioning from a formation to a new shape, each agent in the formation has

to be ‘mapped’ to a position in the shape. 1-1 mapping ensures that undesirable

or impossible goal assignments do not occur, such as two agents in the starting

formation having the same goal in the goal shape, or one agent in the goal shape

having two starting positions in the starting formation. It is assumed that the

21

number of agents in the starting formations and number of positions in the goal

shape should match, otherwise the assignment would not be possible. Figure 3.6

shows visualization of a mapping for a swarm of 5 agents.

Figure 3.6: Initial (i) and final (j) robot distributions

To design a solution to the goal assignment problem, we model agents as point

masses. Let the configuration space of all agents be discretized into a grid of size

MxN , represented as C ∈ R2. Let Cfree be the obstacle-free subset of C. Let Cs ∈

Cfree and Cg ∈ Cfree be the given set of start and goal states of the agents. The goal

assignment problem with the 1-1 mapping constraints can now be mathematically

expressed as:

∀i
∑
j

mij = 1 (3.6)

such that:

mij =

1 if (i, j) are connected

0 otherwise

where mij represents the mapping from start location Ci to goal location Cj.

22

3.3.2 Mapping and Cost matrices

To optimize goal assignment, each mapping pair mij needs to have a cost associated

with it. This cost can be calculated based on the problem description. In this work,

we calculate the cost of a mapping pair mij as the straight line Euclidean distance

form Ci to Cj.

The mapping information is stored in a ‘mapping matrix’ M , while the cost of

each individual mapping pair is stored in a ‘cost matrix’ H. Mathematically, the

mapping and cost matrices for s start locations and g goal locations can be written

as:

M =

m1,1 · · · m1,g

· · · . . . · · ·

ms,1 · · · ms,g

 (3.7)

H =

h1,1 · · · h1,g

· · · . . . · · ·

hs,1 · · · hs,g

 (3.8)

Each element hi,j corresponds to the cost associated with mapping mi,j.

3.3.3 Encoding Goal Assignment In MATLAB

This section illustrates how MATLAB’s intlinprog interface is used to select the

best mappings mi,j based on cost matrix values hi,j. intlinprog interface uses

Multi-Integer Linear Programming (MILP) to solve for problems of the form:

23

min
x

fTx subject to

x(intcon) are integers

A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

(3.9)

Here fT · x is the cost function, f is the vector of of linear coefficients in the

cost function, and x is the solution vector. MATLAB minimizes the cost function

by default. Matrix Aeq and vector beq store linear equality constraints for the prob-

lem, whereas matrix A and vector b store the linear inequality constraints for the

problem. Note that A and b can be empty if there are no inequality constraints

in the problem. Vector intcon specifies which elements of solution vector x are

integer-valued. Finally, vectors lb and ub specify the lower and upper bounds for

the elements of the solution vector. The challenges now are:

1. Express the optimization function (3.9) using matrices M (mapping matrix)

and H (cost matrix)

2. Encode Equation 3.6 into matrix Aeq and vector Beq to enforce the linear

equality problem constraints

Note that our problem does not have any linear inequality constraints, therefore

A and b are empty for our case.

Linear Equality Constraints

To understand how we solve the challenges highlighted in the previous section, let

us start with an example of a swarm of 2 agents.

24

The mapping matrix for this swarm would look like:

M =

m11 m12

m21 m22

such that ∀i, j mi,j ∈ {0, 1}. This means that mi,j should only hold binary values. If

mij = 1, then the agent at ith starting location would end up at the jth goal location.

MATLAB’s intlinprog would determine these values, therefore the elements of the

mapping matrix M would serve as the elements for the solution vector x in Equation

3.9.

The cost matrix for this swarm would look like:

H =

h11 h12

h21 h22

hi,j values will be calculated based on the problem description. In our case, each

hij value is the Euclidean distance between points associated with cells Ci and Cj.

To solve the first challenge, the cost expression shown in Equation 3.9 can be

written as:

fTx = ∀i
∑
j

mij · hij = m11 · h11 +m12 · h12 +m21 · h21 +m22 · h22 (3.10)

MATLAB’s MILP optimizer would try to minimize the result of Equation 3.10.

From this equation, we can explicitly write fT and x as:

25

f =

h11

h21

h12

h22

(3.11)

x =

m11

m21

m12

m22

(3.12)

For a swarm with ’s’ start locations and ’g’ goal locations, the generic relation

between fT and H, and x and M can be written as:

f =

h11

...

h1g

h21

...

h2g

...

...

...

hs1

...

hsg

(3.13)

26

x =

m11

...

m1g

m21

...

m2g

...

...

...

ms1

...

msg

(3.14)

Equation 3.13 shows that f is constructed by concatenating the transpose of

all rows of matrix H. Similarly, equation 3.14 shows that x is constructed by

concatenating the transpose of all rows of matrix M .

To tackle the second challenge, 1-1 mapping should be maintained by ensuring

that there should only be a single “1” in each row and column of matrix M. For

example, if m11 = 1, then m12 = 0 and m21 = 0. Similarly, if m12 = 1, then m11 = 0

and m22 = 0 and so on. Essentially, all rows and columns of M should be linearly

independent. This criteria can be ensured through the following linear equation:

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

·

m11

m12

m21

m22

=

1

1

1

1

(3.15)

27

Equation 3.15 shows that for any two pairs of mappings in a row or a column

of M , only one of them can hold a value of 1. Note that Equation 3.15 can be

rewritten as:

Aeq · x = beq

where:

Aeq =

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

and beq =

1

1

1

1

(3.16)

Similarly, Aeq matrix and beq vector for a swarm of size 3 (three starting and

goal locations each) would be:

Aeq =

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

and beq =

1

1

1

1

1

1

1

1

1

(3.17)

Comparing 3.16 and 3.17 reveals a pattern for automatically creating Aeq and

beq based on the swarm size. beq is just a column vector of ones with length of n2,

28

where n is the swarm size. Aeq is a matrix of size 2n×n2. The upper half portion of

Aeq can be constructed using row vectors of ones of length n, where the row vector

in row i starts at column j = i. The lower half portion of Aeq is constructed from n

horizontally concatenated identity matrices of order n (size n× n). In general, the

following algorithm can be used to create Aeq for a swarm of size n:

function Aeq = generateAeq(n)

Aeq = zeros(n*2, n^2);

for i = 1:n

cols = 1 + n*(i-1) : n*i;

Aeq(i, cols) = ones(1, n);

bottomRows = n+1 : *2; % for bottom half

Aeq(bottomRows , cols) = eye(n); % identity matrix

of order ‘n’

end

end

Adding Value Constraints

Since our problem is integer-valued, intcon will be a vector of ones of length n,

where n is the swarm size. Moreover, solution vector x can only take on binary

values 0 and 1 for our problem. Therefore, lb will be a vector of zeros of length n,

and ub will be a vector of ones of length n. Using MATLAB’s syntax, these value

constraints can be summarized up as follows:

intcon = 1:n

ub = zeros(1, n)

lb = ones(1, n)

29

3.4 Programming Interface

In this section, we introduce a programming interface that models the problem for-

mulation for formation creation, formation manipulation and formation assignment.

We introduce data types that define how to construct a formation and functions that

enable creating motion for an entire formation.

3.4.1 Data Types

Position, Orientation and Pose

In order to construct a cloud and a formation, a user should be able to locate each

robot in space. The Pose data type helps define where the robot is located in world

coordinates. Pose can be further decomposed into Position and Orientation data

types. The Position data type has 3 components: x, y and z. It helps determine the

position of an agent in R3. Each component is a value of type double [5]. Similarly,

an Orientation data type has three components of type double - roll, pitch and

yaw which determine the orientation of an agent in R3. Tables A.4, A.2 and A.3

provide an overview of the Pose, Position and Orientation classes respectively.

Cloud, Formation and Path

A Cloud data type is defined as an array of Poses, where each Pose locates an agent

in the shape. A Cloud can be created using any number of techniques as long as

the Pose of the agents can be determined. For example, the following script shows

how the square cloud in Figure 3.1 is created:

%% create a square shaped cloud

pose1 = Pose(Position(3, 2, 0), Orientation (0, 0, 0));

pose2 = Pose(Position(3, 7, 0), Orientation (0, 0, 0));

30

pose3 = Pose(Position(9, 7, 0), Orientation (0, 0, 0));

pose4 = Pose(Position(9, 2, 0), Orientation (0, 0, 0));

square_cloud = Cloud([pose1 pose2 pose3 pose4]);

Alternatively, a cloud can be created graphically by using the graphicalPositionInput

data type (discussed below). In addition to these two methods, users can use one of

many MATLAB toolboxes to determine agent poses, including the computer vision

toolbox to determine agent locations within a shape, or the robotics toolbox to de-

termine ground truth values of poses in a real experiment. Table A.5 provides an

overview of the Cloud class.

A Formation data type helps create a formation by storing all attributes de-

scribed in Section 3.1. Following are all the attributes of a formation, of which only

the first four are user provided:

1. Cloud: A Cloud determines the shape of a formation.

2. Agent IDs: Agent IDs help in identifying agents in a cloud, and correspond

to each Pose in the Cloud.

3. Agent diameter: Agent diameter specifies the circular or spherical footprint

of all agents in a formation (assuming a homogeneous formation).

4. Orientation: This attribute determines the orientation of the formation

shape in global coordinates. It helps in defining where a formation ‘points’,

and is useful to align the formation in a particular direction.

5. Diameter: A formation diameter is the Euclidean distance between the cen-

ters of two agents in the formation which are farthest away from each other.

It is calculated from the Cloud attribute. A formation diameter describes the

31

‘size’ of a formation, which is helpful in describing the circular footprint of the

entire formation for path planning (see Subsection 3.4.2).

6. Centroid: The formation centroid is the center of mass of a formation and

is calculated using the Cloud attribute. The centroid is essential to describe

how motion primitives are applied to a formation (see Equations 3.2, 3.3 and

3.4), as well as for determining the goal pose for a formation in path planning

(see Section 3.4.2 and Figure 4.17).

An overview of the Formation class is given in Table A.6. Figure 3.7 shows a

formation of four agents. The orientation of the formation is shown in red with

respect to the world coordinates.

Figure 3.7: Example of a 2D formation of 4 agents.

The following scripts shows how a formation can be created for a square-shaped

cloud:

%% create a formation from a cloud

32

orientation = Orientation (0, 0, 0);

agent_diameter = 0.14;

id_order = [2 5 1 6];

square_formation = Formation(square_cloud , orientation ,

agent_diameter , id_order);

The four default motion primitives are implemented as functions of the Formation

class. Continuing the square formation example above, the following script shows

how the default motion primitives can be applied to the square formation:

%% use motion primitives with a formation

map = buildMap(false); % custom function to create empty 5x5 map

% translate

translation_vector = [1, 1, 0];

translated_formation = square_formation.translate(

translation_vector , map);

% rotation

angle = pi/4;

rotated_formation = square_formation.rotate(angle , map);

% scaling

scale_factor = 1.1;

scaled_formation = square_formation.scale(scale_factor , map);

% shearing

shear_factor = 1.1;

sheared_formation = square_formation.shear(shear_factor , map);

The results of this script are represented in Figures 3.2, 3.3, 3.4, and 3.5. Note

that map is a variable of type binaryOccupancyMap [6]. binaryOccupancyMap is

33

part of the MATLAB’s navigation toolbox [7]. This map allows a Formation to

ensure that applying a motion primitive would not render any agent in an occupied

portion of the environment. As shown in the code sample above, we use a custom

function to create a map that models the environment we used for experimental

evaluation. A user can specify their own binaryOccupancyMap that represents oc-

cupancy information of their environment. Table A.6 summarizes the Formation

API.

While a user can create new formations by applying motion primitives, they

need to express how a robot moves from one formation to another. The Path data

type describes motion of robots through different Formations. It is defined as an

array of Formations where each Formation is constructed using the same group of

robots. Figure 3.8 shows an example of a path for a group of 5 robots starting in a

pentagon formation, transitioning to a square formation with a center, and finally

ending up in a ‘vee’ formation:

Figure 3.8: A path of 3 formations for a group of 5 robots

The following code sample shows how a path can be created for the scenario

shown in Figure 3.8:

path = Path([pentagon_formation , square_formation , vee_formation]);

A path can also be created using the planPath function which is discussed in

the next section. Table A.7 gives an overview of the Path data type.

34

Graphically selecting positions: graphicalPositionInput

As an alternative to creating clouds programmatically, the graphicalPositionInput

data type can be used to select points on a given binaryOccupancyMap. In addition

to creating clouds, it allows a user to choose a goal Pose for a formation to move

to (see 4.1.4). The graphicalPositionInput constructor requires a map of the

environment, the number of agents in the new cloud to be created, and (optionally)

a cloud representing where the agents currently are in the map. The following code

snippet shows how a graphicalPositionInput is used to first obtain a cloud:

% Define where robots currently are

pose1 = Pose(Position(2, 1, 0), Orientation (0, 0, 0));

pose2 = Pose(Position(1, 2, 0), Orientation (0, 0, 0));

pose3 = Pose(Position(1, 1, 0), Orientation (0, 0, 0));

pose4 = Pose(Position(2, 2, 0), Orientation (0, 0, 0));

current_cloud = Cloud ([pose1 pose2 pose3 pose4]);

% create gpi to select 4 points

gpi = graphicalPositionInput(map , 4, square_cloud);

% call start method to create a cloud of 4 agents graphically

new_cloud = gpi.start ();

Figure 3.9 shows the the graphical interface brought up using start method.

The user is selecting a new cloud based on where the robots are currently are in the

map.

35

Figure 3.9: Selecting agent positions for a cloud. The blue ’x’s are current positions
of the robots (if known), and the green ’o’s are the newly selected agent positions for
the cloud. Dark portions of the binary occupancy grid represent obstacles (walls).

The newly obtained cloud can now be used to create a formation and then select

a goal pose for it to move to. The objective here is for the centroid of the formation

to align with the goal. The following code sample shows this process:

% use new_cloud to create a new formation

agent_diameter = 0.14;

id_order = [1 2 3 4];

new_formation = Formation(new_cloud , Orientation (0, 0, 0),

agent_diameter , id_order);

% call goal method to get a goal pose for the newly created

formation

36

goal_pose = gpi.goal(new_formation);

Figure 3.10 shows a user selecting a goal pose for a formation using the goal

method. Notice that the map has been ‘inflated’: the occupancy of the walls is

exaggerated to help the user select a ‘safe’ goal for the formation. This is done

by increasing the dimensions of each wall by the radius of the formation (shown in

green circles in Figure 3.10).

Figure 3.10: Selecting goal for a formation. The green ’o’s show the current position
of agents in the formation.

After obtaining a goal, the planPath function can be used to create a collision-

free path for the formation. Table A.8 lists the API for the graphicalPositionInput

class.

37

3.4.2 Functions

assign

The assign function enables a user to change the shape of a formation. The user

provides a starting formation which represents how the robots are currently ar-

ranged, and a goal cloud which represents the new shape for the robots to form.

The assign function uses the goal assignment problem formulation described in Sec-

tion 3.3. The script below describes how a user would change a square formation to

a ‘line’ formation, as shown in Figure 3.11.

line_cloud = Cloud ([pose1 pose2 pose3 pose4]);

line_formation = assign(map , square_formation , line_cloud);

Figure 3.11: A square formation and line formation for the same group of robots.

planPath

The planPath function calculates a collision-free path for a given formation and goal

pose in a binaryOccupancyMap. It assumes that the formation is rigid. A user can

provide a function handle to the planner of their choice. This planner should accept

a start Pose, goal Pose, and a binaryOccupancyMap. This planner should return

38

a nx2 double matrix, where n is the swarm size and the first and second columns

represent x and y components of the waypoints along the path respectively. A high

level description of the planning process is described below:

1. Map inflation: The formation is assumed to be rigid, and can therefore be

treated as a large mobile robot. This large robot would share the same circu-

lar footprint as the formation, which can be determined using the formation

diameter. The given binaryOccupancyMap can then be inflated by the for-

mation radius, which allows a path planner to calculate a collision-free path

using only the centroid of the formation.

2. Call planning algorithm: The user-provided planning algorithm uses the

start pose, the goal pose and the inflated map to calculate the waypoints.

The start pose is the centroid of the given formation. Following the scenario

depicted in Figure 3.9 and 3.10, Figure 3.12 shows an inflated map with frontier

nodes and edges (blue) and the most optimal path (red) from start to goal.

In this particular case, we use MATLAB’s PRM planner [8] which is part of

the Navigation Toolbox.

3. Generate translated formations: The waypoints returned by the planning

algorithm represent the path that the formation’s centroid should follow. To

determine the formation at each successive waypoint, planPath simply calls

the translate primitive to get a new formation at the next waypoint. Here,

the translation vector is generated by subtracting the position vector of the

current waypoint from that of the next waypoint in global coordinates. The

translation operation is shown in Equation 3.2.

4. Return Path: The formations calculated in the previous step are stored in

an array. This array is used to create a Path.

39

Figure 3.12: Output of planPath function. The blue nodes and edges show sample
space created by exploring the given binaryOccupancyMap. The optimal path is
shown in red.

follow

The follow function enables robots to execute motion specified through a path

object. Figure 3.13 shows how the follow function executes robot motion for a path.

40

Figure 3.13: Overview of how follow function executes robot motion

Starting with the first formation in the path, follow extracts what position each

robot should navigate to in order to form the next formation. These positions are

are stored in the ‘positions’ matrix. The moveRobots function uses the navigation

strategy described in Section 3.6 to move each robot to the next formation. This

process is repeated until the robots reach the last formation in path. Source code

for follow and moveRobots is provided in Appendix B.

Table 3.1 gives an overview of the three functions.

41

function Description

assign(Formation, Cloud,

binaryOccupancyMap):Formation

Assigns positions to agents in starting forma-

tion to positions in cloud based on a given

binary occupancy map. Returns the assign-

ment in the form of a new formation.

planPath(Formation, Pose,

binaryOccupancyMap, handle):Path

Returns path from a starting Formation to a

goal Pose for a given binaryOccupancyMap.

It uses user-provided function handle.

follow(path):int

Executes robot motion to follow given path.

Returns 1 if all robots reached their goal. Re-

turns 0 otherwise.

Table 3.1: Overview of functions

3.5 Software Platforms

The programming interface introduced in Section 3.4 is implemented on top of two

existing software platforms: MATLAB and Buzz. Additionally, we use the ARGoS

multi-physics simulator for experimental evaluation, which is further explained in

section 4.1.1. Figure 3.14 shows an overview of the software platforms used in this

work.

42

Figure 3.14: Overview of the software platforms used in this work

MATLAB’s ability to manage data through matrices allows a user to intuitively

represent many physical quantities often used in robotics, such as position (x, y,

z), orientation (roll, pitch, yaw), pose (position, orientation) and rotation/transfor-

mation matrices. We take advantage of this ability to express and modify robot

swarm properties. MATLAB also provides a broad range of engineering toolboxes

which offer solutions for multidisciplinary engineering problems [7] [9]. We harness

MATLAB’s Navigation toolbox to enable occupancy checking and path planning.

Buzz is a dynamically typed domain-specific programming language for heteroge-

neous swarms [25]. It abstracts low-level setup and implementation details required

for modelling robot swarms. We rely on Buzz to handle neighbor data management.

Additionally, Buzz is well integrated with ARGoS which offers excellent support for

simulated and real-robot experiments. The following sections cover features of Buzz

relevant to our work. We also briefly touch on integration of MATLAB and Buzz

that allows us to access Buzz features through a MATLAB programming environ-

43

ment.

3.5.1 Buzz Features

Robots in Buzz are modelled as BVMs (Buzz Virtual Machines). A BVM processes

sensor readings and actuator values for robots in a simulation or real-robot exper-

iment. BVMs also store neighbor data that includes information such as pose of

each neighbor with respect to a robot. The two main features of Buzz that make it

useful for our software architecture are:

1. Situated communication and neighborhood operations: Situated com-

munication [30] allows each robot to talk to other robots in its vicinity us-

ing line-of-sight communication. BuzzVMs store neighborhood data received

through situated communication in the form of a dictionary. This data in-

cludes distance, azimuth, and elevation. Each data value is identified by

the id of the corresponding neighbor. Here distance is the line-of-site dis-

tance, azimuth is the azimuth angle and elevation is z-direction distance

between a robot and its neighbor. As of this writing, our work only requires

distance and azimuth to determine relative pose of each neighbor from a

robot’s coordinate frame.

2. Extendibility: BuzzVM is implemented in C and can be controlled through

Buzz functions (native closures) or external C functions (C closures) [25]. This

allows developers to integrate it with external environments, such as MATLAB

C++ MEX interface [4] or ROS.

44

3.5.2 MATLAB-Buzz integration

Integration of MATLAB with Buzz allows our programming interface to exploit

the neighborhood operations provided through Buzz. This is accomplished through

MATLAB’s C++ MEX functions. MEX stands for MATLAB executable, and is

essentially a MATLAB function that can be called from a MATLAB script. MEX

functions are compatible with C++ 11.

In the MATLAB-Buzz interface, BuzzVMs run in parallel and communicate with

MATLAB through MEX functions. This communication topology is represented

Figure 3.15. The extensible nature of Buzz allows registering external functions to a

BuzzVM through C closures (Section III-A in [25]). Using MATLAB MEX functions

as C closures, the custom command ‘buzz_do’ (created as part of the MATLAB-

Buzz interface) allows a user to handle BuzzVMs from a MATLAB script.

Figure 3.15: Communication topology of the MATLAB-Buzz interface

Having access to BuzzVMs allows users to determine the robot’s current state,

as well as access its neighborhood data. The MATLAB-BUZZ interface functions

that allow our interface to access this data are listed in Table 3.2 below:

45

Function Description

set(key, val)
set the value of the given key in the BuzzVM table to

val

get(key) return the value of key from the BuzzVM table

set leds(r, g, b)
set the color of the LEDs on the Khepera robot to (r, g,

b)

set wheels(left, right)
set the wheel speeds on the Khepera robot to given

speeds left and right

goto(x, y)
generate low-level propulsion/steering commands to

navigate to (x, y)

Table 3.2: MATLAB-Buzz interface functions used to access BVM data

3.6 Navigation and control

Until now, we have described how a user can programmatically define motion for

formations. In order to successfully execute this motion, each robot in a formation

needs to drive to it’s assigned goal while avoiding collisions with other robots. A

successful navigation function takes this into account to produce a heading for the

robot. This heading should feed into a control strategy to provide low-level inputs

to steer and drive the robot.

In the following section, we describe implementation of a potential field naviga-

tion strategy that generates a control input for a unicycle model of a robot. This

input is used by the goto function in buzz to generate low-level control commands

for a differential drive robot. This process is shown in Figure 3.16.

46

Figure 3.16: Overview of navigation and control

3.6.1 Potential Field Navigation

The potential field navigation approach models attractive and repulsive forces to

drive each robot to its respective goal while avoiding other robots. In this approach,

entities with opposite polarities attract each other while those with same polarities

repulse each other. Robot-goal pairs are modelled as entities with opposite polarities,

while robot-robot pairs are modelled with same polarity.

We model attractive and repulsive forces as functions of distances between robot-

goal and robot-robot pairs respectively, where each robot’s pose is determined using

a global positioning method. The combined effect of attraction and repulsion can

be used to produce a heading for each robot. The following sections explain how

net attractive and repulsive forces are calculated for each robot.

47

Net Repulsive Force

Repulsive force is a function of the distance between a robot and an entity. In

order to repel an entity, repulsive force should increase inversely with respect to this

distance. We compared two candidate functions for modelling this behavior: 1
x2 and

1
x
, where x is the distance between the robots. Figure 3.17 compares what the force

looks like for each function over an identical range of agent-entity distance:

Figure 3.17: Comparison of two candidate functions for representing repulsive force

As seen in 3.17, the response of 1
dist2r

model is more localized than that of 1
distr

.

We chose 1
dist2r

to ensure that robots only react to entities that are in their immediate

vicinity. Equation 3.18 mathematically describes a repulsive force using this function

candidate:

48

Fr(dist) = −min(Fmax, Fmax ·
1

cappedDistance(distr, rrobot, distsafe)2
) (3.18)

Here Fr is the net repulsive force acting on a robot, Fmax is the maximum allow-

able force magnitude to be applied to any robot, rrobot is the radius of each robot,

distr is the distance between the robot and repelling entity, and distsafe is the ‘safe

distance’ for the robots. Safe distance is the minimum inter-agent distance that the

robots are allowed to achieve at any point of time. Safe distance is measured as

the line-of-sight distance between centers of each pair of robots. Figure 3.18 shows

Robot2 applying a repulsive force on Robot1. Note that distsafe is marked with a

blue boundary around Robot1. The center of Robot2 is not allowed to enter this

boundary at any time during the experiment.

Figure 3.18: Robot2 applying a repulsive force on Robot1

49

Function cappedDistance in Equation 3.18 accounts for rrobot and distsafe while

ensuring that the resulting distance is always positive. cappedDistance is imple-

mented programmatically as follows:

function final_dist = cappedDistance(dist_r , r_robot , dist_safe)

final_dist = dist_r - 2* r_robot - dist_safe;

if final_dist < min_dist

final_dist = min_dist;

end

final_dist = single(final_dist);

end

Note that the variable min dist is a parameter which ensures that the final dist

value remains positive, otherwise it would lead to a division-by-zero error in Equa-

tion 3.18. For this purpose, min dist > 0.

Equation 3.18 calculates the repulsive force for a single entity. To calculate the

net repulsive force for each robot, repulsive forces associated with each entity in

the robot’s vicinity are calculated and converted to Cartesian coordinates. Note

that the neighborhood management feature in Buzz [25] tracks neighbor locations

in a robot’s local coordinates. Therefore, neighbor distance values obtained through

Buzz need not be explicitly converted to the robot’s local coordinates. The vector

sum of these forces in the Cartesian coordinate form is then averaged to obtain the

net repulsive force. This process is summarized through the following code block:

%% Repulsive force

% account for robot diameter while calculating distances wrt

other

% robots

r_robot = 7; % radius of kheperaIV robots (cm)

50

% account for ’safe distance ’ between two robots to avoid

collision

dist_safe = 10; % tunable parameter (cm)

% Function handle for repuslive force - force should decrease

with increase in distance

F_r = @(dist_r) -min(max_force , max_force *(1/ cappedDistance(

dist_r , r_robot , dist_safe)^2));

% get information about neighbors of this robot

bvm_state = robots(ridMap(rid)).bvm_state;

% Calculate repulsive forces based on neighbor distance

if ~ isempty(bvm_state.neighbors)

% get orientation of all neighbors with respect to this

robot

thetas = vertcat(bvm_state.neighbors.azimuth);

% get line -of-sight distances of this robot from its

neighbors

neighborDistances = vertcat(bvm_state.neighbors.distance);

% calculate position vectors from this robot to neighbors

in polar form

rhos = arrayfun(F_r , neighborDistances);

% convert position vectors to neighbors to Cartesian form

[r_x , r_y] = pol2cart(thetas , rhos);

d_x = sum(r_x);

d_y = sum(r_y);

end

51

Net Attractive Force

Attractive force exerted on a robot should be directly proportional to the distance

between the robot and its goal. We compared two candidate functions to model this

force: x and x2, where x is the distance between the robot’s center and its goal. As

shown in Figure 3.19, the force value increases more aggressively for x2. To avoid

this issue, We chose to model attractive force with the candidate function x.

Figure 3.19: Comparison of two models for representing attractive force

Equation 3.19 models the attractive force exerted on a robot by its goal:

Fa = min(Fmax, Fmax · dista) (3.19)

Here, Fa is the force of attraction between the robot and its goal and dista is

the distance between the agent and the goal. Figure 3.20 shows this scenario.

52

Figure 3.20: Robot1 experiencing attractive force exerted by its goal

Note that the goal pose is known to the system in global coordinates. dista is

obtained by converting the goal from world frame to local frame as shown in Figure

3.21 below:

53

Figure 3.21: Converting a 2D navigation goal from global coordinates to the robot’s
local coordinates

Assume that the goal location is stored in the goal variable with respect to

world coordinates. Then, the attractive force can be programmatically determined

as follows:

% convert goal to robot frame

goal = world2RobotFrame(goal (1), goal (2)).’;

% find goal angle with respect to robot x frame

goalAngle = findAngle ([1, 0], goal);

% obtain line -of-sight distance between robot and goal

goalDist = pdist ([0 0; goal], ’euclidean ’);

% calculate force of attraction based on line -of-sight distance

between robot and goal

F_a = min(max_force , max_force*dist_a);

54

% convert force vector to Cartesian form

[g_x , g_y] = pol2cart(goalAngle , F_a);

The next section illustrates how the repulsive and attractive forces are combined

to obtain the net force acting on a robot.

Net Force

The net force on acting on the robot determines the combined effect of repulsion

and attraction induced on it by obstacles and the goal, as shown in Figure 3.22.

Figure 3.22: Net force acting on Robot1

The net force is simply the vector sum of Fr and Fa. Based on the code samples

presented in the previous two sections, the net force is calculated as follows:

% Vector addition of attractive and repulsive forces

f_x = d_x + g_x;

55

f_y = d_y + g_y;

total_force = [f_x f_y];

The total_force variable is then returned from the parent function and passed

along to the low-level controller (goto function) in order to steer and propel the

robot accordingly. A complete force navigation function which calculates repulsive,

attractive and net force is listed in appendix C.

3.6.2 Buzz goto Function

By default, Buzz does not provide an implementation for a low-level control function

which converts navigation goals to propulsion commands for the robot. This is done

to ensure that Buzz does not conform to a specific robot type. In Buzz, users are

expected to call the goto function which takes in a 2D heading in the form of x

and y values. The function then converts this heading to propulsion commands

tailored to the robot in question (Section V-A of [25]). Users can implement their

own version of goto that confirms to this pattern of input/output. Alternatively, if

Buzz is being used in conjuction with ARGoS, a user can exploit one of the ARGoS

extensions that have goto implemented for robots such as Kilobot, Footbot and

KheperaIV [1].

For our work, we used the Khepera extension for ARGoS [2]. One integral part of

the goto() function defined in this implementation is the SetWheelsSpeedsFromVector

function [3]. This function essentially models a proportional controller for differen-

tial drive robots [28].

The goto function accepts a 2D navigation goal in the robot’s local coordinate

frame. This goal is expressed as a heading vector from the origin of the robot’s local

frame to the goal (see Figure 3.21). The SetWheelSpeedsFromVector function then

56

calculates a counter-clockwise heading angle starting from the robot’s orientation

(x-axis) and leading to the heading vector. Then, a wheel speed magnitude V is

calculated based on the length of ⃗Grobot or a maximum wheel speed value Vmax,

whichever is lower. V is proportionally split between the left and the right wheel

speeds (VL and VR respectively) based on the heading angle. Figure 3.23 depicts

this scenario, where ⃗Grobot is the heading vector. There are three cases for how VL

and VR are split:

1. Soft turn: A soft turn condition is executed when both wheel speeds are

positive but one wheel speed has a higher magnitude in order to make the

turn. Figure 3.23 depicts this case. The wheel speeds are set in proportion to

the angle, where VL < VR as the robot needs to turn left to align itself with

⃗Grobot.

2. Hard turn: A hard turn condition is executed when one wheel speed is

positive while the other one is negative. Both wheel speeds are set to V (one

negative, one positive) in this case for the turn to complete as quickly as

possible.

3. No turn: A no turn condition arises when the goal is approximately straight

ahead of the robot. In this condition, both wheel speeds are set to positive V .

57

Figure 3.23: Proportional control on a differential drive robot for a 2D navigation
goal

58

Chapter 4

Experimental Evaluation

The purpose of this chapter is to analyze the effectiveness of the interface introduced

in Chapter 3. We include demonstrations to show similarity of code execution in

simulation and on real robots for key features of this interface. Additionally, we

show how our MILP-basd problem formulation for formation assignment performs

as the swarm size increases.

4.1 Demonstrations

In this section, we include demonstrations for formation assignment, motion prim-

itives (translate, rotate, scale, shear) and navigation (collision avoidance, collective

transport) in simulation and on real robots. For each pair of simulated and real robot

demonstration, we first share a programming script that describes the underlying

experiment. Then, we share screenshots of simulated and real robot demonstrations

that show execution of the script.

We use the ARGoS multi-physics robot simulator to perform demonstrations in

simulation. For real robot demonstrations, we use ARGoS in combination with a

Vicon motion capture system to track the pose of all robots. ARGoS allows us to

59

instantly switch between simulated and real-robot experiments due to its seamless

integration with Buzz and the Vicon motion capture system.

Figure 4.1 shows a high-level diagram of the communication loop between the

robots, Vicon motion capture system, ARGoS, and the server that hosts ARGoS.

This setup is used for real-robot experiments. ARGoS, Vicon and the KheperaIV

robot are further described in Subsection 4.1.1.

Figure 4.1: High-level communication loop between the robots, Vicon motion cap-
ture system and ARGoS

4.1.1 Setup

ARGoS

ARGoS is responsible for reporting pose and sensor data from robots to the MATLAB-

Buzz interface, and forwarding control commands from the MATLAB-Buzz interface

back to the robots. In simulation, each experiment is conducted in an arena of 5m

x 5m in size bordered by walls 0.2m x 0.2m in size (each), as shown in Figure 4.2.

60

ARGoS configurations for simulated and real robot experiments are almost identical

with the only major difference being the physics engine. A physics engine in ARGoS

is responsible for updating the pose of all robots in an experiment (see embodied

entities in [26]). For simulations, we use the dyn2d physics engine. For real robot

experiments, we switch to the Vicon physics engine which uses the Vicon motion

capture system to provide real time information about robot poses in an experiment

arena.

Figure 4.2: Empty 5m x 5m arena in ARGoS with 0.2m x 0.2m walls as borders

Vicon Motion Capture System

The Vicon Motion Capture System allows real-time tracking of selected objects in

an experiment arena. Real robot experiments are conducted in a 160 cm x 119

61

cm (roughly 5.25 ft x 3.90 ft) arena. As part of previous work done at Nest Lab,

the Vicon SDK (Software Development Kit) was exploited to be integrated as a

plugin for ARGoS. This plugin includes a physics engine which updates spatial

information of robots. This information is visualized in real-time through ARGoS’

graphical user interface. Our experimental setup includes 10 vicon motion capture

cameras monitoring the experimental arena.

KheperaIV Robot

KheperaIV is a differential drive mobile robot with a circular footprint of diameter

14 cm. It includes a variety of sensors for obstacle detection, including proximity

(infrared) sensors, ultrasonic sensors, an optional LIDAR module as well as an

RGB camera. The robots run on Yocto linux distribution meant for embedded

applications. Each robot also has a Wi-Fi module on board, which is used to

communicate with ARGoS. The Khepera plugin for ARGoS [2] models the ultrasonic

and proximity sensors and includes a controller for steering and propulsion of the

robot.

Figure 4.3: KheperaIV mobile robot 1

1 Source: https://www.k-team.com/khepera-iv

62

4.1.2 Formation Assignment

The purpose of formation assignment is to rearrange a given distribution of robots

into a desired shape. To demonstrate formation assignment, we start with a given

formation of robots and assign them to a new formation. The original formation is

created before the experiment begins. For simulation, robot positions for this forma-

tion are specified through the ARGoS configuration file. For real robot experiments,

the robots are manually placed in the arena.

The script below lists the experiment procedure:

% 1. declare IDs for robots used in the experiment

robotIDs = [1 2 4 5];

% 2. build map with walls only at corners

map = buildMap(false);

% 3. initialize robots through MATLAB -Buzz interface

initializeRobots(robotIDs);

% 4. create formation from current distribution of robots

current_cloud = getCurrentPositions(robotIDs);

current_formation = Formation(current_cloud , Orientation (0, 0, 0),

0.14, robotIDs);

% 5. obtain new shape (cloud) graphically from user

gpi = graphicalPositionInput(map , length(robotIDs), current_cloud);

new_cloud = gpi.start ();

% 6. assign new formation to current formation of robots

new_formation = assign(map , current_formation , new_cloud);

63

% 7. create path to move robots new formation

path = Path([current_formation new_formation]);

% 8. execute robot motion

follow(path);

This procedure is explained as follows:

1. The user first declares robot IDs being used for this experiment. These IDs are

defined in the ARGoS configuration file for simulation or determined through

the IP addresses for real robots.

2. The user provides a map to be used for checking occupancy during formation

assignment. The buildMap() function returns a binaryOccupancyMap of the

environment shown in Figures 4.5 and 4.6 below.

3. initialzeRobots establishes the communication between MATLAB-Buzz and

ARGoS for each robot ID.

4. The getCurrentPositions() function queries the Buzz-MATLAB interface

to receive robot positions and returns a Cloud representing the shape that the

robots form. This cloud is used to create an initial formation of the robots.

5. The graphicalPositionInput class is used to graphically select a new cloud

for the target formation, as shown in Figure 4.4.

6. The assign function is used to return a new Formation based on the given

starting formation and target cloud.

7. A Path is created using current_formation and new_formation.

8. The follow function is used to execute robot motion along the Path created

in the previous step.

64

Figure 4.4: GUI for selecting new formation based on where the current formation
lies. The blue ‘x’s represent the current formation, whereas the green circles repre-
sent the new formation being selected.

65

Figures 4.5 and 4.6 show the execution of this script in simulated and real exper-

iments respectively. In Figure 4.6, the dashed blue lines in Frame 1 depict the initial

formation of the robots, which are arranged in a ‘<’ shape. Each robot is marked

with an ID in Figure 4.6 to track its movement through the frames. Frames 2 and

3 show how each robot travels to form the target shape. Frame 4 shows the target

formation, which represents four robots arranged at the corners of a quadrilateral

and one robot in the center of the quadrilateral.

Figure 4.5: Formation assignment in simulation

66

Figure 4.6: Formation assignment with real robots

Notice that each robot moves to the point in the final formation which is closest

to its position in the starting formation. This is because formation assignment is

optimized for least total distance travelled by the swarm. Although this behavior

is expected for majority of the cases, it is not guaranteed as the actual assignment

depends on the initial and final shapes. Regardless, the total distance travelled by

the swarm will always be minimized.

4.1.3 Motion Primitives

Each motion primitive is designed to change the formation in a defined manner. The

translate and rotate primitives respect the rigidity of a formation, whereas scale

and shear are designed to change the formation shape. For each motion primitive

demonstration, a set of robots is arranged in a starting formation in the arena. A

new formation is obtained by applying one of the motion primitives to this starting

formation. A detailed experimental procedure is described below:

67

1. Obtain initial formation of robots: This step is similar to steps 1-4 from

the experimental procedure for Formation Assignment. We obtain the initial

formation of robots as follows: create a map of the environment, initialize the

robots, obtain a cloud representation of the robots from simulated or real-robot

environment, and finally create a formation from the cloud representation.

% build map with walls only at corners

map = buildMap(false);

% initialize robots through MATLAB -Buzz interface

initializeRobots(robotIDs);

% create formation from current distribution of robots

current_cloud = getCurrentPositions(robotIDs);

current_formation = Formation(current_cloud , Orientation (0,

0, 0), 0.14, robotIDs);

2. Apply a motion primitive to create a new formation: Once the ini-

tial formation is obtained, a user can simply apply any of the four motion

primitives as follows:

new_formation = current_formation.translate(

translation_vector , map) % meters

new_formation = current_formation.rotate(rotation_angle ,

map) % radians

new_formation = current_formation.scale(scale_factor , map)

new_formation = current_formation.shear(shear_factor , map)

Each motion primitive returns a new formation. In addition to an input for

each primitive, a map is required to ensure that all robots lie in free space

after the motion primitive is executed.

68

3. Execute motion: Once a new formation is obtained, a Path is created using

the starting and final formations. The follow function uses this path to

execute the robot motion.

path = Path([current_formation new_formation]);

follow(path);

The following subsections show results for each motion primitive:

Translate

For translate primitive, robots are arranged in a square formation in the free space

and translated 1 meter to the right in simulation (translation vector: [1 0]) and

0.5 m to the right for real-robot experiments (translation vector: [0.5 0]). The first

frame in Figure 4.7 shows the direction of the vector being applied at the centroid

of the formation.

69

Figure 4.7: Simulated demonstration for Translate primitive

Figure 4.8: Real-robot demonstration for Translate primitive

70

Rotation

For the rotate primitive, a square formation of robots is rotated counterclockwise

by an angle of π
4
. This square formation is centered in the middle of the arena at

the start of the experiment. The first frame in Figure 4.9 shows the direction of

rotation. This rotation is applied at the center of the formation. A negative angle

of rotation would reverse the direction of rotation.

Figure 4.9: Simulated demonstration for Rotate primitive

71

Figure 4.10: Real-robot demonstration for Rotate primitive

Scale

A formation of 7 robots was used for the scale primitive, with one robot placed at

the center of the arena. As shown in Figures 4.11 and 4.12, the robot at the center

remains in place as the formation is scaled about its centroid. The formation shown

here is scaled by a factor of 1.2. A negative scale factor would reduce the size of the

formation.

72

Figure 4.11: Simulated demonstration for Scale primitive

Figure 4.12: Real-robot demonstration for Scale primitive

73

Shear

Similar to the scale primitive, a formation of 7 robots was placed at the center

of the arena. Since the shear primitive is applied around formation centroid, the

robot at the center does not move while the top row moves to the right and the

bottom row moves to the left. A negative shear factor would reverse the direction

of movements of the robots (top row in this formation would move to the left while

the bottom row would move to the right).

Figure 4.13: Simulated demonstration for Shear primitive

74

Figure 4.14: Real-robot demonstration for Shear primitive

4.1.4 Navigation

Collision Avoidance

A potential field navigation approach allows robots to reach their goals by following

the line-of-sight path between their start and goal positions. Real-time collision

avoidance becomes crucial for robots to successfully create formations if no path-

deconfliction algorithm is used to resolve expected collisions.

In this section, we demonstrate collision avoidance using a square formation of 4

robots. Each robot starts at one corner of the square and moves to it’s diametrically

opposite corner in the square. These diametrically opposite pairings of start-goal

positions force the robots to steer in each other’s vicinity at the center of the square.

As shown in frames 2 and 3 of Figure 4.16, the robots avoid collision by maintaining

a ’safe distance’ (set to 10 cm in this experiment). The repulsive force dominates

the attractive force in this scenario, and allows the robots to stop and steer away

75

from one-another.

Figure 4.15: Collision avoidance demonstration in simulation

76

Figure 4.16: Collision avoidance demonstration on real robots

However, the potential-field based approach does not always guarantee collision

avoidance. Additionally, as the density of the robots increases, they are prone to

falling into a deadlock state. A deadlock state occurs when robots are perpetually

stuck in one position. This could happen due to a local minima being created by

the potential field approach because the force of attraction equals force of repulsion:

this leads to a 0 net force acting on the robot, thus preventing it from moving. We

discuss a solution to mitigate this issue in Chapter 5.

77

Collective Transport

Formation-based collective transport has applications in warehouse settings [32]

where AMRs (autonomous mobile robots) can be used to transport large/oversized

objects safely. It is also a topic of interest in swarm robotics research, especially in

the context of formation control and navigation [14] [27]. While robust navigation

and control techniques are required to guarantee success, it is also vital to im-

prove user-interaction for effectively programming robot formations. In their work

on human-swarm interaction [23] [22], Patel et al. designed an augmented reality

based interface to use a swarm of robots to perform collective transport. Patel et

al. use an environment-oriented modality interface to automatically assign a robot

swarm to the object to be transported, and a robot-oriented modality interface to

assign individual robots to mitigate any failures.

We take inspiration from this work to show how our interface can be used to

perform collective transport. We adopt a robot-oriented modality assignment to

allow users to create robot-formations for transporting objects. In the following

experiment, we transport a box using a formation of four robots while while avoiding

a static object (a middle wall). The following script describes this experiment:

% declare robotIDs used in this experiment

robotIDs = [1 2 3 4];

% load map of environment

map = buildMap(true);

% initialize robots

initializeRobots(robot_IDs);

% get current positions of agents as a cloud

78

initial_distribution_cloud = getCurrentPositions(robot_IDs);

% get start cloud graphically

gpi = graphicalPositionInput(map , length(robot_IDs), ...

initial_distribution_cloud);

start_cloud = gpi.start ();

% assign robots to start formation

current_formation = Formation(initial_distribution_cloud , ...

Orientation (0, 0, 0), 0.0, robot_IDs);

start_formation = assign(map , current_formation , start_cloud);

% construct and follow path to move robots to target formation

path = Path([current_formation start_formation]);

follow(path);

% select goal graphically

goal_pose = gpi.goal(start_formation);

% calculate path to goal

path = planPath(start_formation , goal_pose , map , @prmPlanner);

% follow generated path

follow(path);

In this script, the user first creates a formation from the robot distribution at

the start of the experiment. The user then selects a new formation to be placed

around the object (box) to be transported and moves the robots to that formation.

The user then chooses a ‘goal’ position for the object (where the object needs to

be transported). The planPath function returns a valid path for the formation

to transport the box to this goal. Finally, this path is executed using the follow

function.

79

Frame 1 in Figure 4.17 shows a user selecting a formation to be placed around

the object to be transported. Frame 2 shows an inflated map generated based on

this formation’s diameter. This map is used to select a ‘safe’ goal for the formation.

A safe goal is any point in the white portion of the inflated map, and determines

where the formation’s centroid needs to go. Frame 3 shows the planner returning

a safe path for the formation (in red), and frame 4 shows the formation of robots

following that path in simulation.

Figure 4.17: Planning process for collective transport application

Figures 4.18 and 4.19 show the collective transport experiment in simulation and

on real robots respectively.

80

Figure 4.18: Simulated demonstration of collective transport

81

Figure 4.19: Real-robot demonstration of collective transport

4.2 Goal Assignment Performance

4.2.1 Setup

It is implicit that the goal assignment process will take longer as the swarm size

increases. Therefore, we measure the performance of our problem formulation to

judge its utility for applications of varying swarm sizes. In order to characterize

our solution’s performance, we observed the time taken by MATLAB’s intlinprog

function to find a feasible solution for randomly spawned agents in a 500x500 size

grid. We start with a swarm size of 1 agent and increment the swarm size by 1

82

at each iteration till the size grows to 500 agents. We measured the time-elapsed

for intlinprog function call to calculate goal assignment at each iteration. The

experiment was repeated 25 times. This experiment was conducted on an Ubuntu

20.04 machine with i5-6300U dual core CPU and 20 GB 2133 MHz RAM. The code

snippet below shows this process. The milp function in this code calls intlinprog

and returns the time taken by intlinprog to find a solution.

start_size = 1;

end_size = 500;

map_order = 500; % max x and y points each in the map

runs = 25;

current_time_vector = zeros(end_size , 1);

data_matrix = [start_size:end_size]’;

for j = 1:runs

for i = start_size:end_size

% randomly generate start and end coordinates for

agents in this map

start_coordinates = [randi(map_order , i, 2)];

end_coordinates = [randi(map_order , i, 2)];

current_time_vector(i) = milp(start_coordinates ,

end_coordinates);

end

data_matrix = cat(2, data_matrix , current_time_vector);

end

4.2.2 Result

Figure 4.20 shows a plot of the time costs of goal assignment associated with all

swarm sizes averaged over 25 runs. It can be seen that the goal assignment process

starts becoming noticeable beyond a swarm size of 100 agents.

83

Figure 4.20: Performance of MILP-based goal assignment as the number of agents
in the experiment increases.

It should be noted that the time taken by the goal assignment process might not

be relevant if the assignment is done in the planning phase of an experiment. For

example, in the Formation Assignment experiment 4.1.2, the formation assignment

calculation is completed before the robots start to move. However, the execution

time for formation assignment might become a bottleneck if an experiment involves

sequential formation assignment calculations and motion operations (as shown in

the collective transport experiment 4.1.4). This would especially impact applications

84

where the swarm size is large. One example is drone shows where the formation is

required to frequently change shapes in a smooth motion. Drone shows often involve

large formations, some having occasionally crossed 1000 drones [19].

85

Chapter 5

Conclusion

Efforts in software development and research for swarm robotics have focused on

enabling emergent behavior through decentralized communication among robots.

Some tasks that are dependent on robot swarms require the swarm to achieve a

specific shape, called a formation. Examples of such tasks include drone navigation

in varying wind conditions [10], collective transport [27], and drone light shows [19].

Additionally, drone light shows and drone navigation require the swarm to frequently

switch between a set of predetermined formations. While software packages and re-

search efforts have introduced methods for programmatically creating robot forma-

tions, these methods do not facilitate reusability or ease of use from the perspective

of programming formations [17] [31]. This creates a need for a software interface

that enables users to program robot swarms in a formation-centric manner.

In this thesis, we addressed this need by introducing a set of types and functions

that constitute a formation-centric software interface. The types were developed to

let a user define a robot formation in a minimalistic manner, whereas functions were

created to describe how a user could interact with a formation to enable elemen-

tary motion. We introduced formation assignment and manipulation as two main

86

features of this software interface and provided our formulation for each feature.

For formation assignment, we introduced a MILP (Mixed-Integer Linear Program-

ming) based algorithm which minimizes the total distance travelled by the swarm

while changing formations. For formation manipulation, we introduced a set of

four motion primitives as well as a path planning function which returns a viable

path for a rigid formation using a user-provided planner. Additionally, we described

a potential-field based navigation technique used to execute the motion generated

through the functions in this interface.

To show the effectiveness of this interface, we demonstrated similarity in code

execution using simulated and real-robot experiments for formation assignment,

motion primitives, collision avoidance and collective transport. Lastly we shared

the performance of our MILP-based formation assignment algorithm and discussed

its limitations.

5.1 Future work

There are multiple avenues of improvement for this work which can be categorized

as follows:

1. Guaranteed decentralized collision avoidance: The current potential-

field based navigation approach in this work relies on a motion capture system

to enable collision avoidance between robots. This prevents robots from avoid-

ing objects that are not tracked. A decentralized collision avoidance technique

can be developed by calculating the repulsive force in Equation 3.18 using sen-

sor data from ultrasound or proximity sensors on robots. However, this would

still not guarantee collision avoidance. This problem has been addressed by

Wang et al. who have demonstrated collision-free navigation for multirobot

87

systems [34]. Wang et al. use barrier control certificates to satisfy safety con-

straints using a potential field navigation approach in a decentralized manner.

Their work also addresses deadlock avoidance which is an important feature in

guaranteeing that the robots reach their goal. We can modify our navigation

approach by incorporating their solution.

2. Implementation on other software platforms: The MATLAB-Buzz soft-

ware architecture offers extended functionality through MATLAB toolboxes

and Buzz features. However, for wider adoption, we would like to replicate

the implementation of this interface on different platforms. Introducing this

interface as a ROS package will make it accessible to the general robotics

community.

3. Optimal navigation: In this work, each robot follows a line-of-sight path to

its assigned navigation goal while avoiding obstacles using an artificial poten-

tial field approach. This approach is computationally inexpensive due to the

use of a euclidean distance based heuristic to calculate the path cost. However,

the reactive nature of this navigation strategy might lead to less optimal results

as the robots take longer to avoid static obstacles. Graph-based navigation

techniques such as A* and RRT calculate more informed paths by accounting

for static obstacles, but they require a higher cost of computation. Therefore,

it might be worthwhile to study the trade-off between artificial potential fields

and graph-based navigation strategies to determine which approach leads to

more optimal navigation. Although such comparison has been conducted for

single robot systems and robot swarms [24], it is important to study the dif-

ference in performance of these navigation strategies especially in the context

of formation assignment, where the computational cost of a planner becomes

88

significant for larger swarm sizes.

5.2 Lessons learned

While working with real robot hardware, I learned that it is helpful to look at prob-

lems from a different perspective to troubleshoot an issue. When I was replicating

simulated experiments with real-robots, I assumed the max force values (see Equa-

tions 3.18 and 3.19) to be the same for simulated and real robots. I observed that

using the same max force values for real robots led to an ‘oscillation’ behavior: the

robots would turn in-place, alternating direction for every turn. After trying differ-

ent configuration settings on the real robots, I decided to lower the max force values

in my programming interface. By doing so I realized that a higher max-force value

was causing the robots to overshoot their turn while trying to align with the given

heading. This was preventing them from navigating to their goal.

I also learned that it is faster to get a different perspective from another team

member. I invested quite some time to learn how to use the Vicon motion capture

system. While trying to configure all nodes in the communication loop for the real-

robot setup (see Figure 4.1), I branched off from the default configuration settings

for the Vicon server. This prevented ARGoS from communicating with the Vicon

system. My team member retried configuring Vicon with default settings for the

server, which solved the issue. This issue would have been resolved sooner if I

reached out for help at an earlier stage.

This project was my first attempt at conducting research, and I picked up a few

lessons along the way. The most important lesson I learned was how to present

research work in a proper format. I realized that establishing context for a work

using current literature helps the reader understand the true contribution of the

89

work. I also realized that using the appropriate level of abstraction helps the reader

to keep track of most important ideas presented in the work.

90

Bibliography

[1] Argos extensions. https://www.argos-sim.info/extensions.php.

[2] Argos khepera extension. https://www.argos-sim.info/extensions.php.

[3] Argos khepera extension: Setwheelspeedsfromvector.
https://github.com/ilpincy/argos3-kheperaiv/blob/

7807c3b71e13256c915dcc909707fee50a179273/src/plugins/robots/

kheperaiv/control_interface/buzz_controller_kheperaiv.cpp#L362.

[4] C++ mex functions. https://www.mathworks.com/help/matlab/matlab_

external/c-mex-functions.html.

[5] Matlab - double-precision arrays. https://www.mathworks.com/help/

matlab/ref/double.html.

[6] Matlab binaryoccupancymap. https://www.mathworks.com/help/nav/ref/

binaryoccupancymap.html.

[7] Matlab navigation toolbox. https://www.mathworks.com/products/

navigation.html.

[8] Matlab prm example. https://www.mathworks.com/help/robotics/ug/

probabilistic-roadmaps-prm.html.

[9] Matlab robotics toolbox. https://www.mathworks.com/products/robotics.
html.

[10] Alkouz, B., and Bouguettaya, A. Formation-based selection of drone
swarm services. In MobiQuitous 2020-17th EAI International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services (2020),
pp. 386–394.

[11] Beltrame, G., Merlo, E., Panerati, J., and Pinciroli, C. Engineering
safety in swarm robotics. In Proceedings of the 1st International Workshop on
Robotics Software Engineering (2018), pp. 36–39.

[12] Chang, X., Cai, Z., Wang, Y., and Yi, X. micros swarm framework.
https://wiki.ros.org/micros_swarm_framework.

91

https://www.argos-sim.info/extensions.php
https://www.argos-sim.info/extensions.php
https://github.com/ilpincy/argos3-kheperaiv/blob/7807c3b71e13256c915dcc909707fee50a179273/src/plugins/robots/kheperaiv/control_interface/buzz_controller_kheperaiv.cpp#L362
https://github.com/ilpincy/argos3-kheperaiv/blob/7807c3b71e13256c915dcc909707fee50a179273/src/plugins/robots/kheperaiv/control_interface/buzz_controller_kheperaiv.cpp#L362
https://github.com/ilpincy/argos3-kheperaiv/blob/7807c3b71e13256c915dcc909707fee50a179273/src/plugins/robots/kheperaiv/control_interface/buzz_controller_kheperaiv.cpp#L362
https://www.mathworks.com/help/matlab/matlab_external/c-mex-functions.html
https://www.mathworks.com/help/matlab/matlab_external/c-mex-functions.html
https://www.mathworks.com/help/matlab/ref/double.html
https://www.mathworks.com/help/matlab/ref/double.html
https://www.mathworks.com/help/nav/ref/binaryoccupancymap.html
https://www.mathworks.com/help/nav/ref/binaryoccupancymap.html
https://www.mathworks.com/products/navigation.html
https://www.mathworks.com/products/navigation.html
https://www.mathworks.com/help/robotics/ug/probabilistic-roadmaps-prm.html
https://www.mathworks.com/help/robotics/ug/probabilistic-roadmaps-prm.html
https://www.mathworks.com/products/robotics.html
https://www.mathworks.com/products/robotics.html
https://wiki.ros.org/micros_swarm_framework

[13] Du, X., Luis, C. E., Vukosavljev, M., and Schoellig, A. P. Fast
and in sync: Periodic swarm patterns for quadrotors. In 2019 International
Conference on Robotics and Automation (ICRA) (2019), IEEE, pp. 9143–9149.

[14] Farivarnejad, H., and Berman, S. Multirobot control strategies for collec-
tive transport. Annual Review of Control, Robotics, and Autonomous Systems
5 (2022), 205–219.

[15] Farivarnejad, H., Wilson, S., and Berman, S. Decentralized slid-
ing mode control for autonomous collective transport by multi-robot systems.
In 2016 IEEE 55th conference on decision and control (CDC) (2016), IEEE,
pp. 1826–1833.

[16] Habibi, G., Xie, W., Jellins, M., and McLurkin, J. Distributed path
planning for collective transport using homogeneous multi-robot systems. In
Distributed Autonomous Robotic Systems (Tokyo, 2016), N.-Y. Chong and Y.-J.
Cho, Eds., Springer Japan, pp. 151–164.

[17] Kaiser, T. K., Begemann, M. J., Plattenteich, T., Schilling, L.,
Schildbach, G., and Hamann, H. Ros2swarm-a ros 2 package for swarm
robot behaviors.

[18] Khaldi, B., and Cherif, F. An overview of swarm robotics: Swarm intel-
ligence applied to multi-robotics. International Journal of Computer Applica-
tions 126, 2 (2015).

[19] Kung, C.-m., Yang, W.-S., Wei, T.-Y., and Chao, S.-T. The fast flight
trajectory verification algorithm for drone dance system. In 2020 IEEE Interna-
tional Conference on Industry 4.0, Artificial Intelligence, and Communications
Technology (IAICT) (2020), pp. 97–101.

[20] Levoy, M., and Whitted, T. The use of points as a display primitive.

[21] Nilles, A. Q., Beckman, M., Gladish, C., and LaViers, A. Improv:
Live coding for robot motion design. In Proceedings of the 5th International
Conference on Movement and Computing (2018), pp. 1–6.

[22] Patel, J., and Pinciroli, C. Improving human performance using mixed
granularity of control in multi-human multi-robot interaction, 2019.

[23] Patel, J., Xu, Y., and Pinciroli, C. Mixed-granularity human-swarm
interaction. In 2019 International Conference on Robotics and Automation
(ICRA) (2019), pp. 1059–1065.

[24] Patle, B., Babu L, G., Pandey, A., Parhi, D., and Jagadeesh, A. A
review: On path planning strategies for navigation of mobile robot. Defence
Technology 15, 4 (2019), 582–606.

92

[25] Pinciroli, C., and Beltrame, G. Buzz: An extensible programming lan-
guage for heterogeneous swarm robotics. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2016), pp. 3794–3800.

[26] Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy,
A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G.,
Ducatelle, F., Stirling, T., Gutiérrez, A., Gambardella, L. M.,
and Dorigo, M. Argos: A modular, multi-engine simulator for heteroge-
neous swarm robotics. In 2011 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (2011), pp. 5027–5034.

[27] Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J.,
and Nagpal, R. Collective transport of complex objects by simple robots:
theory and experiments. In Proceedings of the 2013 international conference
on Autonomous agents and multi-agent systems (2013), pp. 47–54.

[28] Saidonr, M. S., Desa, H., and Rudzuan, M. N. A differential steering
control with proportional controller for an autonomous mobile robot. In 2011
IEEE 7th International Colloquium on Signal Processing and its Applications
(2011), pp. 90–94.

[29] Sauter, J. A., Mathews, R. S., Yinger, A., Robinson, J. S., Moody,
J., and Riddle, S. Distributed pheromone-based swarming control of un-
manned air and ground vehicles for rsta. In Unmanned Systems Technology X
(2008), vol. 6962, SPIE, pp. 109–120.

[30] Stoy, K. Using situated communication in distributed autonomous mobile
robotics. pp. 44–52.

[31] Testa, A., Camisa, A., and Notarstefano, G. Choirbot: A ros 2 toolbox
for cooperative robotics. IEEE Robotics and Automation Letters 6, 2 (2021),
2714–2720.

[32] Tse, S. K., Ben Wong, Y., Tang, J., Duan, P., Leung, S. W. W., and
Shi, L. Relative state formation-based warehouse multi-robot collaborative
parcel moving. In 2021 4th IEEE International Conference on Industrial Cyber-
Physical Systems (ICPS) (2021), pp. 375–380.

[33] Turpin, M., Mohta, K., Michael, N., and Kumar, V. R. Goal as-
signment and trajectory planning for large teams of aerial robots. In Robotics:
Science and Systems (2013).

[34] Wang, L., Ames, A. D., and Egerstedt, M. Safety barrier certificates
for collisions-free multirobot systems. IEEE Transactions on Robotics 33, 3
(2017), 661–674.

93

Appendix A

Data Type API

Data member / function Description

Position
x, y and z components to determine agent
position

Orientation
roll, pitch and yaw components to determine
agent orientation

Pose
Position and Orientation components to de-
termine agent pose

Cloud
Array of Pose: represents an unordered dis-
tribution of agents

Formation
Array of Pose: represents an ordered distri-
bution of agents

Path

Array of Formation: represents the path
a swarm will take by transitioning through
these formation

graphicalPositionInput

Data type used to graphically create a for-
mation from a cloud, or choose goal pose for
the created formation

Table A.1: Overview of data types

94

Data member / function Description

x:double x component
y:double y component
z:double z component

Position(double, double, double):Position
Constructor: creates Position from given x,
y, and z values

plus(Position, Position):Position operator overloading for addition
minus(Position, Position):Position operator overloading for subtraction
mtimes(Position, double):Position operator overloading for multiplication

xyz():3x1 double
method for returning x, y and z components
as 3x1 column vector

Table A.2: Overview of Position class

Data member / function Description

roll:double roll rotation component
pitch:double pitch rotation component
yaw:double yaw rotation component

Orientation:Orientation(double,

double, double)

Constructor: creates Orientation from given
roll, pitch and yaw values

plus(Orientation,

Orientation):Orientation
operator overloading for addition

minus(Orientation,

Orientation):Orientation
operator overloading for subtraction

mtimes(Orientation,

double):Orientation
operator overloading for multiplication

rpy():3x1 double
method for returning roll, pitch and yaw
components as 3x1 column vector

Table A.3: Overview of Orientation class

Data member / function Description

position:Position Position (x, y, z) information about the agent

orientation:Orientation
Orientation (roll, pitch, yaw) information
about the agent

Pose(Position, Orientation)
Constructor: creates Pose from given Posi-
tion and Orientation

plus(Pose, Pose) operator overloading for addition
minus(Pose, Pose) operator overloading fro subtraction

Table A.4: Overview of Pose class

95

Data member / function Description

poses:Pose Pose array holding Pose for each agent

Cloud(Pose[])
Constructor for creating Cloud from given
Poses

cloud2mat():3xn double

method for getting matrix of positions of
agents in the cloud. Rows 1, 2 and 3 cor-
respond to x, y z for each agent. There are
n columns, where n=swarm size.

Table A.5: Overview of Cloud class

Data member / function Description

agent ids:double[]
array of agents ids for agents in this forma-
tion

diameter:double diameter of this formation

heading:Orientation
heading of the formation. Always points in
the local x-direction by default

centroid:double center of mass of the formation
cloud:Cloud underlying cloud for this formation

agent diameter:double
diameter of each agent of the formation (ho-
mogeneous formation)

Formation(Cloud, Orientation,

double, double[]):Formation

Constructor for creating a Formation from
the given cloud. The second argument sets
the orientation of the formation, the third
argument is used to set agent diameter, and
the fourth argument is used to set the agent
ids.

translate(Position,

binaryOccupancyMap):Formation

translation primitive: requires valid transla-
tion vector of type Position.

rotate(double,

binaryOccupancyMap):Formation

rotation primitive: requires valid rotation
angle of type double.

scale(double,

binaryOccupancyMap):Formation

scaling primitive: requires valid scale factor
of type double.

shear(double,

binaryOccupancyMap):Formation

rotation primitive: requires valid shear factor
of type double.

Table A.6: Overview of Formation class

96

Data member / function Description

formations:Formation array of Formation

Path(Formation[])
Constructor for creating Path object from
given array of Formations

Table A.7: Overview of Path class

Data member / function Description

map:binaryOccupancyMap map of the environment

number of points:int
Number of points to select graphically for the
start cloud

current cloud cloud of agents at the start

graphicalPositionInput(

binaryOccupancyMap, int, Cloud)

constructor for setting map, num-
ber of points and current cloud

start():Cloud method for graphically selecting a cloud

goal(Formation):Pose
method for graphically selecting a goal pose
for a formation

Table A.8: Description of graphicalPoseInput class

97

Appendix B

Follow function: Source Code

The code snippet below shows the source code for the follow function.

function result = follow(path)

result = 1;

global rid positions;

robotIDs = cell2mat(path.formations (1).agent_ids);

% move agents to next formation

for i = 1: length(path.formations)

formation = path.formations(i);

cloud_matrix = formation.cloud.cloud2mat ();

positions = (cloud_matrix (1:2, :)) ’;

robotIDs = cell2mat(formation.agent_ids);

moveRobots(robotIDs);

end

% check all agents are within allowable distance of their

resepective

% goal positions

for i = length(robotIDs)

rid = robotIDs(i);

result = result & reachedGoal(rid);

end

end

The first for loop is intended for navigation. The next target position for each
robot in the current formation is stored in the global variable positions. On each
iteration of the first for loop, the position and robot id information is extracted for
the next Formation in Path. A Formation object ensures these positions and agent
id order match. The moveRobots function is responsible for moving each robot to
its position in the next formation.

The second for loop is intended for ensuring that the robots reached their goal.
The reachedGoal function implements this logic by simply checking that each robot
is within a certain allowable proximity of its goal.

moveRobots and reachedGoal are implemented as follows:

98

function moveRobots(robotIDs)

global robots ridMap rid;

% logical array keeping track of whether robots have reached

their goal

robotStatus = ones(1, length(robotIDs));

% Set all robot LEDs to red before start of navigation

for i = 1: length(robotIDs)

rid=robotIDs(i);

set_leds (255, 0, 0);

end

% Use goal proximity to determine end -of-experiment

while(sum(robotStatus) > 0)

ping();

for i=1: length(robotIDs)

rid = robotIDs(i);

% robot didn ’t reach goal when last checked

if robotStatus(i) == 1

% check if robot has reached goal

if reachedGoal(rid)

robotStatus(i) = 0;

% set robot LED to green

set_leds(0, 0, 255);

stop();

else

step(); % keep moving robot if it hasn ’t

reached goal

end

end

end

end

end

function status = reachedGoal(rid)

global robots positions ridMap;

current_pose = pose();

goal = positions(ridMap(rid), :);

if pdist([current_pose (1, 1:2); goal], ’euclidean ’) < 0.1 %

arbitrary

status = 1; % true

else

status = 0; % false

end

end

The step function in moveRobots is responsible for calculating the net force
acting on a robot, and consequently calling the goto function for sending the control
commands to the robots based on this net force. This process is described in detail
in the Navigation and control strategies section.

99

Appendix C

Net Force Calculation: Source
Code

function total_force = centrallizedForceVector(max_force)

% declare global variables

% positions: holds list of goals for each robot

% ridMap: an ordered map containing which robot holds what id (

robots are ordered from 1-n)

% rid: indicates the rid of the robot being navigated currently

global positions ridMap robots rid;

%% Repulsive force

% account for robot diameter while calculating distances wrt

other

% robots

r_robot = 7; % radius of kheperaIV robots (cm)

% account for ’safe distance ’ between two robots to avoid

collision

dist_safe = 10; % tunable parameter (cm)

% Function handle for repuslive force: force should decrease

with increase in distance

F_r = @(dist_r):min(max_force , max_force *(1/ cappedDistance(

dist_r , r_robot , dist_safe)^2));

% get information about neighbors of this robot

bvm_state = robots(ridMap(rid)).bvm_state;

% Calculate repulsive forces based on neighbor distance

if ~ isempty(bvm_state.neighbors)

% get angles of all neighbors with respect to this robot

thetas = vertcat(bvm_state.neighbors.azimuth);

% get line -of-sight distances of this robot from its

neighbors

100

neighborDistances = vertcat(bvm_state.neighbors.distance);

% calculate position vectors from this robot to neighbors

in polar form

rhos = arrayfun(F_r , neighborDistances);

% convert position vectors to neighbors to Cartesian form

[r_x , r_y] = pol2cart(thetas , rhos);

d_x = sum(r_x);

d_y = sum(r_y);

end

%% Attractive force

goal = positions(ridMap(rid), :);

% convert goal to robot frame

goal = world2RobotFrame(goal (1), goal (2)).’;

% find goal angle with respect to robot x frame

goalAngle = findAngle ([1, 0], goal);

% obtain line -of-sight distance between robot and goal

goalDist = pdist ([0 0; goal], ’euclidean ’);

% calculate force of attraction based on line -of-sight distance

between

% robot and goal

F_a = min(max_force , max_force*dist_a);

% convert force vector to Cartesian form

[g_x , g_y] = pol2cart(goalAngle , F_a);

% Vector addition of attractive and repulsive forces

f_x = d_x + g_x;

f_y = d_y + g_y;

total_force = [f_x f_y];

end

function final_dist = cappedDistance(dist_r , r_robot , dist_safe)

final_dist = dist_r - 2* r_robot - dist_safe;

if final_dist < min_dist

final_dist = min_dist;

end

final_dist = single(final_dist);

end

101

	Introduction
	Background
	Problem Statement
	Contribution

	Related Work
	Swarm Robotics Software
	Formation Management
	Minimalistic Robot Motion Design

	Methodology
	Problem Formulation
	Formation Creation
	Formation Manipulation
	Formation Assignment

	Motion Primitives
	Goal Assignment Formulation
	1-1 Mapping
	Mapping and Cost matrices
	Encoding Goal Assignment In MATLAB

	Programming Interface
	Data Types
	Functions

	Software Platforms
	Buzz Features
	MATLAB-Buzz integration

	Navigation and control
	Potential Field Navigation
	Buzz goto Function

	Experimental Evaluation
	Demonstrations
	Setup
	Formation Assignment
	Motion Primitives
	Navigation

	Goal Assignment Performance
	Setup
	Result

	Conclusion
	Future work
	Lessons learned

	Data Type API
	Follow function: Source Code
	Net Force Calculation: Source Code

