
Date: May 2, 2003

L.RN: 03D0681

Project Number: IQP-CK-IB02 -5/

AN INTRODUCTORY CS COURSE FOR
NON-MAJORS

An Interactive Qualifying Project Report

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

7 	
Cee-L-c

B n J. Corcoran

and

Approved:

Professor Carolann Koleci, Major Advisor

1. education

2. teaching

3. computers
M.

Profess Glynis Hamel, Co-Advisor

Abstract

Our project evaluates the current state of computer science and programming edu-

cation for non-computer science majors. Interviews and surveys were conducted to

find out what concepts and techniques WPI students and professors are looking for

in a computer science course for non-computer science majors. We propose a new

computer science course for non-majors. Significant components of the proposal

include using projects based on students' majors and teaching using the Python

programming language.

Acknowledgments

We would like to express our gratitude to our advisors, Professor Carolann Koleci

and Professor Glynis Hamel, who helped us throughout the whole project. We

would also like to thank the students and professors who filled out our surveys.

In particular, we would like to thank the following WPI professors for allowing

us to interview them: P.K. Aravind, Terri Camesano, John Goulet, Judith Miller,

Creighton Peet, and Mike Ciaraldi.

We would like to express additional thanks to John Goulet, whose Linear Algebra

course served as an inspiration for this project.

We would also like to thank Mr. Jeffrey Elkner, co-author of the book How

To Think Like A Computer Scientist, for allowing us to interview him about his

experiences teaching Python.

Finally, we would like to thank Professor Joe Wong and his CS 1001 class for

testing our major-based projects.

Contents

1 Introduction 	 1

2 The Problem 	 3

2.1 Introduction 	 3

2.2 vIany WPI Non-Majors Do Not Take CS 	 3

2.2.1 Current WPI introductory CS courses 	 4

2.2.2 Problems with CS 1005 and CS 1006 	 5

2.2.3 Problems with CS 1001 	 7

2.3 Conclusion 	 10

3 Other Efforts 	 11

3.1 Introduction 	 11

3.2 WPI Proposed Curriculum 	 12

3.2.1 Description 	 12

3.2.2 Problems with WPI-proposed curriculum 	 13

3.3 Other Schools' Efforts. 	 17

3.3.1 Breadth-first approach to CS-I at Centre College 	 17

3.3.2 Princeton liberal-arts computers course 	 19

3.3.3 Yorktown High School 	 19

3.4 Scheme-based Programs 	 20

ii

3.4.1 Scheme introduction 	 20

3.4.2 Strengths of Scheme-based approaches 	 20

3.4.3 Problems with Scheme-based approaches 	 21

3.5 Summary of Other Efforts 	 23

4 Recommendations 	 24

4.1 Introduction 	 24

4.2 Major-based Projects 	 24

4.2.1 John Goulet's Linear Algebra course 	 25

4.2.2 Proposed format 	 26

4.2.3 Designing projects 	 29

4.2.4 Possible pitfalls 	 30

4.2.5 Expected benefits 	 32

4.2.6 Evaluating the major-based project idea 	 32

4.3 Variations on Projects 	 34

4.3.1 Group projects 	 34

4.3.2 Cumulative projects 	 34

4.3.3 Interdisciplinary projects 	 34

4.4 Python 	 35

4.4.1 Why a specific language? 	 35

4.4.2 Introduction to Python 	 38

4.4.3 Visual Python 	 40

4.5 Daily Assignments 	 41

4.6 Satisfying Distribution Requirements 	 42

4.7 Summary 	 43

5 Proposed Course 	 44

5.1 Course Description 	 44

5.2 Course Syllabus 	 45

6 Conclusion 	 46

6.1 WPI Course Possibility 	 46

6.2 Incorporation into Other WPI Courses 	 46

6.3 Future Research 	 47

6.4 Personal Reflections 	 48

A Survey Results 	 50

A.1 Student Survey 	 50

A.1.1 Student survey questions 	 54

A.1.2 Student survey results 	 60

A.2 Faculty Interviews and Surveys 	 85

A.2.1 Interview analysis 	 85

A.2.2 Survey analysis 	 86

A.2.3 Faculty survey questions 	 87

A.2.4 Faculty survey results 	 94

B Transcript of Interview with Elkner 	 98

C Project Examples 	 108

C.1 Biology 	 108

C.2 Physics and Mechanical Engineering 	 113

C.3 Mathematics 	 117

Glossary 	 121

iv

List of Figures

2.1 Non-majors who have taken introductory CS 	 4

A.1 Students by major 	 51

A.2 Expected results 	 52

A.3 Unexpected results 	 53

C.1 Wire connecting hot and cold ends 	 114

C.2 Example of right-hand and left-hand approximations 	 118

C.3 Example of trapezoid 	 118

v

List of Tables

4.1 Comparison of Programming Languages 	 38

5.1 Course Syllabus 	 45

vi

Chapter 1

Introduction

"Why another computer-science course?" WPI already has many computer-science

(CS) courses, and its CS program is well respected. However, only one course is

targeted for non-computer-science majors, CS 1001. Deficiencies in CS 1001 have

resulted in a proposal by the CS department to remove it from the curriculum. The

goal of our IQP is to create a computer-science course focused on the needs of those

WPI students who are not majoring in computer-science (non-majors 1).

We chose this topic for a multitude of reasons. We believe that computer science

introduces many fundamental concepts which are important in all areas of study;

concepts such as abstraction, debugging, algorithms, and logical thinking. Further-

more, the ability to write programs is becoming increasingly important in all science

and engineering disciplines. In particular, the ability to use programming as a tool

fits perfectly into WPI's goal of creating well-rounded graduates who are familiar

with science, humanities, and technology.

In choosing our IQP, we hoped to address an issue where we could make a

real impact. We believe that this report addresses many of the problems with the

'For the purposes of this report, we do not consider electrical and computer engineering majors
or students minoring in computer science as "non-majors"

1

current situation, and we feel that our proposal would greatly improve the quality

of non-major CS education if it were adopted.

As CS majors, we feel programming is an excellent tool for many different disci-

plines. In many cases, programming can be as useful as general mathematics is to

the scientist or engineer. However, we feel that many non-majors do not realize the

benefits of programming. Our hypothesis in proposing this IQP is that students do

not take programming courses because they do riot feel the courses are applicable

to their major field of study.

We surveyed undergraduate students at WPI in an attempt to determine why

they take or avoid CS courses. With the the survey results, we then designed a

programming course aimed at increasing non-major student interest. In addition to

the student survey, we interviewed and surveyed WPI faculty and professionals in

the science and engineering communities to determine what they feel is necessary

for a non-major to learn in an introductory computer-science course.

Our final proposal consists of a programming course which we believe non-majors

will find interesting and will help them excel in their field of study.

2

Chapter 2

The Problem

I was kinda interested at first, but after all the horror stories I've heard?

—WPI non-major, regarding introductory CS courses at WPI

2.1 Introduction

We believe that WPI's current CS courses do not meet the needs of non-majors.

To show this, we first examine the current CS courses which are taken by non-

majors. We then take a closer look at those courses, and identify deficiencies based

on student surveys, faculty interviews, and our own knowledge. We define the key

problems which face any course for non-majors. Finally, we establish criteria for

evaluating solutions to these problems.

2.2 Many WPI Non-Majors Do Not Take CS

Enrollment among non-majors in the introductory programming courses at WPI is

low. While 70% of the non-majors we surveyed indicated that they believe non-

3

Non-CS Students Taking Intro CS Course

Figure 2.1: Non-majors who have taken introductory CS

majors should learn programming, only 36% of non-majors had taken a program-

ming course (see Fig. 2.1). To determine why enrollment is so low, we examine the

different introductory CS options for non-majors.

2.2.1 Current WPI introductory CS courses

WPI offers three 1000-level, or freshman-level, CS courses. These are:

CS 1001 Introduction to Computers

CS 1005 Introduction to Programming

CS 1006 Object-Oriented Introduction to Programming

The recommendation for CS majors is that they begin with either CS 1005,

taught in C++, or CS 1006, taught in Java. Neither course counts toward the

six units 1 of CS required for a computer science degree. The recommendation for

non-majors is to take at least one of CS 1005, CS 1006, or CS 1001. CS 1001 is

taught in FORTRAN. The course descriptions for all three courses state that no

prior programming experience is required.

l At WPI 1/3 unit is equivalent to 3 credit-hours at most other schools.

4

2.2.2 Problems with CS 1005 and CS 1006

I've heard that the intro CS courses (i.e. CS 1005) are much too hard if you come to WPI

to learn programming and haven't learned it before.

—WPI non-major

Out of the three courses which non-majors tend to take to learn programming,

CS 1005 and CS 1006 are more intensive and are geared toward the student who

is majoring, minoring, or pursuing a concentration in computer science. However,

most non-majors end up taking CS 1005 or CS 1006 and have a difficult time with

the courses. In a survey of students we conducted, 38% of non-majors said that

the introductory CS courses at WPI were difficult or very difficult. 2 CS 1005 and

CS 1006 were originally meant for students who do not have prior programming

knowledge. [18] Over the years, however, CS 1005 and CS 1006 have developed into

courses which do require prior programming knowledge. [17] As a result, students

who take CS 1005 and CS 1006 to learn programming with no prior knowledge do

poorly in the courses and end up receiving NRs (WPI equivalent of failing). Our

survey results show that this difficulty has earned the courses a negative reputation

among students. Some comments we received from non-majors are:

I was kinda interested at first, but after all the horror stories I've heard?

I have not taken a CS class myself, but I have heard from other students

that they are difficult if you have never taken programming before.

I know nothing about CS courses except they are considered hard.

I haven't taken any CS courses myself, but I've heard from non-CS ma-

jors who've taken introductory CS classes that they are very difficult if

2 See Appendix A.1.2 for survey results.

5

you have no prior programming knowledge.

I am not sure because I haven't taken it but my roommate says the classes

are very hard and she is non-CS.

We believe this negative reputation is causing a low turnout of non-majors for

CS courses.

Since CS 1005 and CS 1006 are meant to prepare CS majors for a career in

programming, the focus and the concepts being taught in the courses are computer-

science centric. The focus on computer science concepts and theory and the increas-

ing difficulty of the courses tend to discourage non-majors. Of the non-majors we

surveyed, 22% indicated that the current introductory CS courses covered too much

theory. Additionally, 49% of non-majors reported that they did not learn how to

program in their introductory CS course.

Our survey results indicate that non-majors want a more practical programming

experience to apply to their major field of study. Forty-seven percent of non-majors

reported that they did not plan on using the knowledge from their introductory CS

course in their career. The following quotes from the student survey illustrate a

desire to see more practical programming experience:

Some practical applications of basic programs.

Practical application for future courses (non-CS).

I believe that all the different departments should develop their own CS

classes that are designed to teach the necessary programming required for

their major.

If the resources exist, it would be nice to have separate sections for the

different majors so that students can apply their CS knowledge to their

area of study.

6

Although the definition of practical experience may vary from student to student

(mostly depending on major), we believe programming examples which relate to

non-majors' interests will increase their enthusiasm and will likely lead to better

performance in the course.

Ultimately, non-majors should not have to take CS 1005 or CS 1006, as the

objective of those courses is teaching computer science to students who have prior

background in programming, rather than teaching programming to students with

no prior programming experience.

2.2.3 Problems with CS 1001

The students who have taken it feel it's pretty useless.

—a WPI professor, regarding CS 1001

As previously mentioned, there exists a programming course designed specifically

for non-majors called Introduction to Computers (CS 1001). The objective of CS

1001 is to "introduce computer systems to students who may need to write or use

computer programs in their undergraduate engineering, science, or management

courses." [18] From the course description, this course appears to be designed for

the needs of non-majors.

However, we believe this course fails to meet the needs of most non-majors.

According to the 2000-2002 WPI course evaluations, 203 non-majors took CS 1005

and CS 1006, versus only 13 who took CS 1001. We believe this is because the course

is offered infrequently, is not well publicized, uses a language students perceive as

unpractical, and leaves no option for further CS study.

A significant reason we believe non-majors do not take CS 1001 is because it is

offered much less frequently than other introductory CS courses. CS 1005 and CS

7

1006 are each offered once per semester, while CS 1001 is only offered once every two

years. This makes it difficult for non-majors to schedule the course. Additionally,

many students do not even know the course exists, as seen from quotes received

from our student survey:

I haven't found any classes meant for non-CS majors. One or two

courses teaching practical programming techniques with minimal theory

would be very useful.

There really aren't any because if you take a CS course you are mixed

with CS majors.

I didn't know they [CS courses for non-majors] existed specifically.

I do not know of the non-CS course, only of CS 1005.

Obviously, students who haven't heard of the course will not take it. Another

reason students may not know about the class is that advisors hesitate to recommend

it. A WPI biology professor we interviewed said that the examples in CS 1001 are

more aimed toward engineers, and that "the examples don't really speak to biology

majors." The professor concluded that the course as a whole makes "no sense for

biology majors."

One reason students feel the course is not useful is because it uses the FORTRAN

programming language. FORTRAN used to be one of the primary languages used

in the scientific and engineering communities, but in recent years its use has begun

to decline. Although FORTRAN still is used, many students feel the language is

out-of-date, as seen in these comments from our student surveys and from CS 1001

surveys:

From our student survey:

8

FORTRAN is basically a dead language.

From a CS 1001 post-survey:

I feel a more widely used language might have been better such as C.

FORTRAN is a useless language; it currently has little practical appli-

cations.

FORTRAN will not help me in my field, it is obscure.

Whether or not FORTRAN is a useful language for students to learn, the per-

ception that it is not useful is discouraging students from taking CS 1001.

Finally, students who take CS 1001 and wish to continue studying programming

are encouraged to take CS 1005 or CS 1006 next:

Students who develop interest in computer science after taking CS 1001

are urged to consider taking CS 1005 or CS 1006, followed by CS

2005. [18]

A student who takes this path will already be one course behind, as the CS

minor and CS concentration do not allow more than one 1000-level course to be

counted. This will discourage students who are at all interested in a CS minor or

concentration from taking this course. The current situation is a dead-end into a

course described as requiring no prior programming background. Although there are

difficulties in creating a valid course path from CS 1001 to more advanced courses,

the lack of such a path discourages non-majors from taking the course.

9

2.3 Conclusion

We believe the following quote from our student survey summarizes the current

situation for non-majors:

I think that there is no option for WPI non CS majors. FORTRAN

is basically a dead language, and the C++ class is a CS class that CS

majors have to take. So the non CS majors might need the class to go

slower or less in depth and the basic concepts enforced more, while the

CS majors may get bored.

In order to create a solution to these problems, we have created a list of the five

primary criteria we believe must be satisfied for a CS course to meet the needs of

non-majors. These criteria are:

1. The courses should pertain to students' majors

2. The courses should not be intimidating or overly difficult

3. The courses should fit into schedule or distribution requirements

4. The courses should be enjoyable

5. The courses should focus on applied programming

We believe that these criteria must be met before an introductory CS course can

successfully meet the needs of non-majors.

10

Chapter 3

Other Efforts

3.1 Introduction

Before attempting to define our own solutions to the problems we identified, we

wanted to evaluate other introductory CS courses. We begin by examining WPI's

newly-proposed introductory CS curriculum. This proposal is aimed at completely

revising the introductory CS curriculum for both majors and non-majors. We feel

that this new curriculum, as currently proposed, will not meet the needs of many

non-majors.

We also examine introductory CS programs at other schools, at both the high

school and college levels. In particular, we look at the Yorktown High School intro-

ductory CS course, the Centre College CS-I course, and the Princeton "Computers

in Our World" course.

Finally, since many schools use courses based on the Scheme programming lan-

guage, including WPI's newly proposed introductory course, we evaluate Scheme-

based courses in detail.

11

3.2 WPI Proposed Curriculum

3.2.1 Description

Less theory, more problem solving exercises.

—a WPI non-major

As previously discussed, the WPI computer science faculty has noticed problems

with the introductory CS courses. They followed up their observations with a pro-

posal for a new curriculum. The new curriculum is meant to address the problems

for both majors and non-majors. The curriculum's goals include emphasizing pro-

gram design, making courses approachable for students with no prior programming

experience, and postponing teaching difficult concepts until later courses. [17]

The proposed introductory sequence consists of three courses:

CS 1101: Introduction to Program Design (Scheme)

CS 2102: Object-Oriented Design Concepts (Java)

CS 2303: Systems Programming Concepts (C and C++)

The sequence is designed for both majors and non-majors. We are specifically

interested in the impact on non-majors. The proposal describes the expected impact

on non-majors:

Students who want a 1-term introduction to computing and programming

should take [Introduction to Program Design). This course will teach

them enough data structures and program design skills for a variety of

core computing tasks (in particular, students will be able to write more

sophisticated programs than they can write coming out of our current

12

1005 as a terminal course). Ideally, a strong intro to CS requires two

courses. We recommend one of two 2-course sequences: CS 1101/2 and

CS 2102 (to end in Java), or CS 1001/2 and CS 2301 (to end in C). /17j

The "Introduction to Program Design" , or CS 1101, course description is as

follows:

This course introduces principles of computation and programming with

an emphasis on program design. Topics include design and implementa-

tion of programs that use a variety of data structures (such as records,

lists, and trees), functions, conditionals, and recursion. Students will

be expected to design, implement, and debug programs in a functional

programming language.

Intended audience: students desiring an introduction to programming

and program design.

Recommended background: none. Either CS 1101 or CS 1102 provide

sufficient background for further courses in the CS department. [17]

3.2.2 Problems with WPI-proposed curriculum

The computer science department created this introductory sequence with both

majors and non-majors in mind. We believe this sequence will work very well for

CS majors and minors, but not for non-majors.

The proposed introductory sequence is intended to meet the needs of both CS

majors and non-majors, but it does not accommodate the needs of non-majors.

The needs of CS majors and non-majors differ. The goals of teaching a future

computer scientist are for the student to understand the concepts and theory behind

13

programming and program design. These ideas provide a foundation for continuing

study in the computer science field.

Non-majors take a computer science course to learn basic programming skills

so they can apply programming techniques to automate, simulate, and calculate.

These skills will give students an advantage in their field of study. The goals of a

computer science major and a non-major are different. We believe that both cannot

be successfully addressed by one course, and that treating non-majors the same as

majors will result in unsatisfactory experiences for both.

We believe that separate courses for majors and non-majors would provide a

positive environment and atmosphere for each. Having an integrated course can lead

to an imbalance in the performance of the students (as was already demonstrated in

CS 1005 and CS 1006) [17]. The WPI CS proposal believes this problem is addressed

because the initial course is in Scheme. They believe that, since few students coming

from high school have experience with Scheme, all students, major or non-major, will

enter with equal background in Scheme, therefore there will not be an imbalance.

We believe there will still be imbalance in an integrated course. From our student

survey, a number of students want to see a very basic introductory CS course for

non-majors, as illustrated in this quote:

Very, very basic introduction designed for people like me whose computer

knowledge extends to typing up papers.

—WPI non-major

To accommodate the wishes of non-majors, an introductory course would have

to start at a slow pace. If majors are subjected to such a slow start then they will

likely become bored and quickly lose interest in the course, which is particularly

harmful with WPI's seven-week terms. The converse is also true. Non-majors

14

taking the course who are not familiar with computers or even familiar with a

programming language will become lost in a faster paced course and give up, similar

to what we see with CS 1005 and CS 1006 today. Furthermore, some non-majors

we interviewed indicated that they were intimidated by being in the same class as

CS-majors. Faculty members who participated in our faculty survey also mentioned

that intimidation is a factor, reinforcing the students' comments:

I've also spoken with non-CS majors who would like to take a program-

ming course, but not with CS majors. They feel that if they took a course

with intense CS majors, they would be left behind and they wouldn't end

up learning much. It seems to me that their needs may be very different.

—WPI Professor

We believe that having separate courses is the best option for those students

who want an introduction to CS, as well as those students who wish to pursue a

career in computer science.

Certain concepts are particularly useful for students who wish to use program-

ming in the fields of science and engineering. Examples of such concepts include:

• Numerical methods

• Computer simulations and modeling

• Scientific functions and libraries

• Computer precision

• Reading and writing data sets

• Displaying data visually

15

It is doubtful that a combined intro CS course has the resources to address topics

which apply more to non-majors than to majors.

WPI CS proposal research

The CS department's proposed CS curriculum includes the removal of CS 1001

and the creation of a combined introductory course for majors and non-majors.

We believe that the CS department did not adequately research the problems which

affect non-majors taking introductory CS courses. The CS department only directly

contacted departments "whose curricula depend on CS courses." [17] We believe

the CS proposal focuses on these departments to the exclusion of others. Although

they "solicited feedback ... from departments heads," as far as we know, the CS

department did little direct research as to what other departments are looking for

in an introductory programming course.

The CS department proposal does not mention any attempt at student feedback.

As computer science students, we were surprised to discover a new proposal to

restructure the introductory computer science courses. As far as we know, there

was no attempt to contact the student body to get feedback on the proposed plan.

We feel that student input is an important aspect of research when deciding to

significantly restructure courses.

We feel the lack of local research done by the CS department results in flaws

in their proposal and neglects the needs of non-majors. We have done a signifi-

cant amount of research to get the feedback of both students, faculty, and industry

professionals. Because our recommendations are based directly on feedback from

non-major students and faculty, we believe our proposal is a better solution for the

needs of non-majors.

16

Scheme

Another disadvantage we see with the proposed curriculum is that it is taught in

Scheme, a language which we do not feel is appropriate for WPI's non-majors. This

problem is discussed in detail later on in this chapter (see section 3.4).

3.3 Other Schools' Efforts.

3.3.1 Breadth-first approach to CS-I at Centre College

One of the programs we examined was the introductory course in computer science

(CS-I) at Centre College, in Kentucky. 1 The Centre College course takes a breadth-

first approach, covering a wide range of topics from all areas of computer science.

The course was designed to meet the following objectives:

1. Students will learn an object-oriented language, including the use of classes

and a graphics package.

2. They will better understand how computers work (including finite state ma-

chines, logic gates, nature of algorithms, and limits of computation).

3. They will demonstrate an understanding of the operation of the Internet and

the World Wide Web.

4. They will be able to use HTML to construct a web page containing a form

and write a CGI script to process the information that is submitted with that

form.

5. Students will think critically about ethical questions and societal concerns that

arise in the context of information technology.

http://www.centre.edu/

17

6. They will explore the area of artificial intelligence and robotics

7. They will write simple database queries using SQL and learn the basic vocab-

ulary of relational databases. [14]

Additionally, the class is a combination of majors and non-majors (due to lack

of resources), and the course uses the Python programming language.

We feel that the wide range of topics covered in the CS-I course simply could not

fit into one of WPI's seven-week terms. Furthermore, we feel that the stress placed

on topics such as the societal impact of computers and the study of databases is

of less interest to students studying science and engineering, and that those topics

would detract from learning more applicable concepts.

However, the Centre College approach meets several aspects of our criteria. They

reported success with teaching a programming-intensive course where "at least half

of each such course consisted of students whose primary interests ranged from mathe-

matics and the sciences to drama and other fine arts." [14] The primary reason listed

for this success was the switching of programming languages from C++ to Python:

A course that emphasized object-oriented design and programming in the

language C++ did not seem like the most appropriate experience for

a large portion of our audience. Many simply could not manage the

difficulty of programming in such a complex language.

Another reason why the course was successful was because of the variety of topics

covered:

Students liked the variety of topics — especially the graphics and material

related to the Internet.

18

Although a course at WPI would not be able to cover the breadth of the Centre

College course, we believe that both graphics and Internet programming would

appeal to the non-majors at WPI. Additionally, Centre College noted some success

with programming robots, which we feel may be appropriate considering the number

of engineers at WPI.

3.3.2 Princeton liberal-arts computers course

The "Computers in Our World" course at Princeton aims to "demystify computing

for a classroom full of liberal arts undergraduates." This course gives students

experience in creating web pages and writing a few simple programs, but focuses on

technology's impact and practical computer knowledge.

While the course's goal, "to make it possible for [students] to think intelligently

about this technology for themselves", is certainly one of the goals of our course,

we do not believe that such an overview of computer science is appropriate for WPI

students. WPI has a tradition of being a practical, hands-on institution. 2 Fur-

thermore, the professors we interviewed stressed the fact that they wanted practical

programming ability and not a "CS for poets" course.

3.3.3 Yorktown High School

Another school we studied in detail is Yorktown High School in Arlington, VA.

The Yorktown High School introductory programming course, taught by Jeffrey

Elkner 3 , uses the Python programming language to teach programming to high

school students. This program is discussed in more detail in section 4.4.2.

2 See http://www.wpi.edu/Academics/Library/Archives/Tower/ for details.

3http://www.elkner.net

19

3.4 Scheme-based Programs

There are over fifty colleges and universities in the U.S. that teach introductory

courses using the Scheme programming language. [13] As previously mentioned,

WPI's newly proposed introductory course will be offered in Scheme.

3.4.1 Scheme introduction

Scheme is a programming language based on an earlier language called Lisp. It

was designed to have clear and simple semantics and few different ways forming ex-

pressions. It is often used in computer science curricula and programming language

research.

3.4.2 Strengths of Scheme-based approaches

The TeachScheme! project is a Scheme-based introductory curriculum which is grow-

ing in popularity. TeachScheme! uses a novel approach to problem solving called

design recipes:

We created the design recipes by identifying categories of problems. The

identification of a problem category is based on the classes of data that are

used to represent the relevant information. Starting from the structure

of this class description students derive the programs with a checklist.

1. the description of the class of problem data;

2. the informal specification of a program's behavior;

3. the illustration of the behavior with examples;

4. the development of a program template or layout;

20

5. the transformation of the template into a complete definition; and

6. the discovery of errors through testing. [7]

We believe this is an excellent approach to problem solving, and hope to incor-

porate it into our proposed course.

3.4.3 Problems with Scheme-based approaches

Although we believe Scheme has many good qualities, we do not believe any lan-

guage is appropriate in all cases. In particular, we do not believe that Scheme will

adequately meet the needs of non-majors at WPI. This is due to its unfamiliar syn-

tax, lack of use in industry, focus as an educational and research language, and lack

of traditional looping constructs.

Scheme is infamous for its syntax; unlike more common languages (such as Java,

C++, BASIC, and IVIATLAB), Scheme uses prefix notation with surrounding paren-

theses. For example, the calculation

5 * 2 + 1

would become

(+ (* 5 2) 1)

We believe that this syntax is generally more difficult to understand for a begin-

ning programmer, which could lead to an initial intimidation regarding the language.

For example, asked to compare programs to calculate the quadratic equation in both

Scheme and a language with C-like syntax (Python), 67% of non-majors preferred

Python, versus 5% who preferred Scheme. 4 Although most students will be able

4From student survey results (Appendix A.1.2)

21

to learn the syntax of Scheme, we believe that the syntax will intimidate many

students.

Furthermore, if a non-major successfully learns the Scheme syntax, he will need

to learn another syntax if he begins to program tasks in his major. In a survey

given to WPI faculty, many professors indicated that "using a language with syntax

similar to C/Maple/MATLAB" is important or very important for their students.

One of the features advertised as an advantage of Scheme over Lisp is that it

"[relies] entirely on procedure calls to express iteration ..." [12] In simpler terms,

this means that Scheme can iterate only by using recursion; it does not have loops

such as for or while.

Although recursion is a useful technique, the vast majority of languages pri-

marily use looping constructs for iteration. Additionally, professors we interviewed

and surveyed indicated that understanding common looping syntax was important

material they would assume from an introductory programming course. For this

reason, we believe Scheme is a poor choice to teach non-majors.

Scheme is not a language that non-majors are likely to see outside of their in-

troductory course. Although Scheme is used occasionally (usually as an extension

language), "there are few known uses of Scheme in 'real-world' systems." [12] Even

if they do encounter the language, it is likely to be a different version, as there are

over fifty different implementations. [12]

Finally, Scheme's primary use is for "computer science curricula and program-

ming language research." [12] This is because Scheme is a very abstract language,

and well-suited to CS theory. Since the language's focus is on theory, rather than

practical programming, curricula based on Scheme tend to focus on theory as well.

Many introductory Scheme programs use the freely available How to Design Pro-

grams text. To quote from this book,

22

Still, the book iisj not about programming in Scheme. We only use a

small number of Scheme constructs in this book. Specifically, we use

six constructs (function definition and application, conditional expres-

sions, structure definition, local definitions, and assignments) plus a

dozen or so basic functions. This tiny subset of the language is all that

is needed to teach the principles of computing and programming. Some-

one who wishes to use Scheme as a tool will need to read additional

material. [emphasis ours] [7]

This quote illustrates that many Scheme-based programs focus on computer

science principles and concepts, rather than applied programming. For example,

How to Design Programs avoids covering file input and output, a programming

concept essential for non-majors who will write application programs in their field.

For these reasons, we believe that Scheme is an inappropriate language for an

introductory CS course for non-majors. It does not fulfill the level of applied pro-

gramming which most WPI non-majors would require.

3.5 Summary of Other Efforts

None of the programs we examined fulfill our requirements for a CS course for

non-majors. However, certain aspects of these programs are very applicable to our

goals, and we have incorporated them into our course proposal. These include using

a subset of a breadth-first approach taken by Centre College, using design recipes,

and using the Python programming language.

23

Chapter 4

Recommendations

4.1 Introduction

In order to fulfill the criteria we have established, we have created a set of recom-

mendations for the creation of a successful CS course for non-majors. Our ideas are

based on results from our student and faculty surveys and interviews, and from our

personal experiences.

Primary recommendations include major-based projects, use of the Python pro-

gramming language, daily assignments, and different course listings to ease schedul-

ing conflicts for non-majors. We believe these solutions help meet the programming

needs of non-majors.

4.2 Major-based Projects

If the resources exist, it would be nice to have separate sections for the different majors so

that students can apply their CS knowledge to their area of study.

—WPI non-major

24

One of our main ideas for a new CS curriculum for non-majors is the concept

of major-based projects. Instead of assigning all students the same programming

project, as is traditionally done in CS courses, projects would be assigned to students

based on their major field of study. That is, a physics student might be assigned

a projectile-motion programming project at the same time as a biology major is

assigned a population-growth problem. We borrowed the idea for this approach

from Professor John Goulet's Linear Algebra course at WPI.

4.2.1 John Goulet's Linear Algebra course

Professor Goulet has been using major-based projects successfully in his Linear

Algebra course for the past four years. He has structured his course into two com-

ponents, "a core component covering traditional mathematics... , and a project com-

ponent organized according to major." [9] Students are divided into groups and are

assigned projects based upon their major.

Goulet's goal was to "do as much as possible to relate linear algebra to each

student's chosen major." [9] He says that the new course receives "a lot of effort and

a lot of enthusiasm out of people." Students also like the project; comments from

course evaluations include:

The projects were major-oriented, so it made it a little more realistic for

everyone

Projects relate this class to ECE well.

The material is very applicable to other classes.

The projects were good tools to show how /linear algebra] can be used in

other subjects.

25

Bridges learning of linear algebra with electrical engineering by use of

Fourier Series.

Furthermore, Goulet has seen increased exam scores since he has implemented

the major-based project system [9], showing that students are learning more linear

algebra as well. Another benefit of Goulet's project system is that "the project work

[is] done entirely outside of class." [9] Goulet states that this gets students to spend

more time on linear algebra during the week, while keeping them interested—a result

he feels would be impossible with homework alone.

We believe that implementing a similar major-based-project structure for an

introductory CS course for non-majors will see similar success. There are many

similarities between CS courses for non-majors and linear algebra courses; both are

taken primarily by freshman, both cover useful tools which apply to most scientific

and engineering disciplines, and both are taken by a variety of different majors. Most

computer science courses are project-based already, so the changes to the structure

of the course are less than that of linear algebra.

4.2.2 Proposed format

In creating these projects, we have attempted to create a standard format to present

the problem to the students. Our method for constructing these problems was

influenced by the TeachScheme! design recipes concept. Each project will consist of

the following sections:

1. A list of the concepts and techniques used

2. A problem statement

3. A defined programming project

26

4. (Optional) Required background

5. A set of open-ended questions

6. Sources of additional information

For full project examples, see Appendix C.

List of concepts and techniques

The first section of each project will be a list of the primary CS, programming, and

scientific techniques required to solve the project. An example for a mathematics-

based project might include

• Integrals

• Numerical Methods

• Functions/Subroutines

• Flow control

• Random numbers

Problem statement

The second section is a statement of a problem a student might encounter in his

major. The problem statement should not mention the actual programming assign-

ment; it should only describe a problem the student might encounter in his major.

However, the problem would ideally either require, or be greatly simplified by, the

use of programming.

27

Defined programming project

The next section of each project would help in the transition from the problem

statement to an actual programming project specification. For the first project,

a student would be given specific details on how to convert the problem into a

computer program. However, the eventual goal is for the student himself to be able

to create a program outline directly from the problem description. This section

would still have hints, and list some final goals, but subsequent projects would not

be as explicitly defined as the first project.

(Optional) Required background

Since the students working on these projects will come from different class years

and will have had varying exposure to their actual major material, projects will

mostly be chosen from high-school or freshman-level material. However, other ma-

terial may be used, as long as the topic is simple enough and makes an appropriate

programming assignment. In such a case, the required background will be given in

the fourth section. Additionally, any programming techniques which are required

but not covered in class will be explained (for example, additional modules).

Set of open-ended questions

In addition to the programming project, the student will be given a set of questions

to answer. These questions will cover concepts regarding both the original science or

engineering problem, and the programming project. The purpose of these questions

is for the student to think about the interaction between the problem statement and

the programming project and the limits of programming. Some examples include

asking how a simulation might be improved, or asking for an example of a problem

that might be difficult to solve using numerical analysis.

28

Sources of additional information

The last section of each project deals with providing additional information. This

would include additional help resources (such as web pages), or pointers for more

information about the major and computer science topics covered in the project.

4.2.3 Designing projects

The major-based projects we propose will require a number of project ideas per

major. Initially designing these projects would therefore take a substantial amount

of effort on the part of the professor teaching the course. We hope to reduce the

amount of work required by approaching the various departments on campus, and

asking for their support in providing problems we might develop into major-based

projects. Feedback from faculty surveys indicates that most departments will be

willing to provide such support.

There are also currently many programming books published which are for "sci-

entists and engineers." 1 These books contain programming projects which can be

converted in language and depth to fit the proposed project format, with a minimum

of difficulty. Once a project list is compiled, it should not require a great deal of

effort to keep it up-to-date.

One idea for helping with organizing the different problems is to create a web-

based problem repository. This web site would allow professors from various depart-

ments to share project ideas online. Such a project repository could in theory be

used by many different departments, for both intra-departmental projects, and col-

laboration between departments. Although the design of such a project repository

is outside the scope of this IQP, it is an interesting idea for future research.

'Such as FORTRAN 90 for Engineers and Scientists; see the bibliography for more examples.

29

4.2.4 Possible pitfalls

In addition to the difficulty of creating project ideas, considered above, there are

other possible pitfalls we must consider. In order for the projects to be fair, the

projects assigned to different majors must all be at about the same level, and must

utilize most of the same programming concepts. Projects for a specific major must

deal with concepts that are familiar to all members of that major. We must also

deal with the problem of students who have majors for which there is no project

defined, or who are undeclared.

There may be some difficulty in creating projects which are at the same level

for each major. We hope to alleviate this problem by focusing on a main set of

programming concepts which will be covered in every major for each project. For

example, the second project for every major might cover arrays, random numbers,

and functions. Although this approach could add some programming requirements

which are outside the scope of the original problem, we believe that effect will be

minimized.

Another possible problem, which has already been mentioned, is ensuring that

the level of major-specific material is appropriate for all students of that major.

The problem, therefore, should not assume knowledge beyond the high school or

freshman level. We hope to design the projects so that they provide any material

that the student may not have learned already; at least enough for the student to be

able to fully complete the project, and have a reasonable idea of what the project

is about.

One feature which we believe will be very important is the extensive use of extra

credit in the projects. It is our goal to create a course which accommodates students

at different skill levels, both in terms of major-ability and programming ability. In

such a course, the base level must accommodate students who are intimidated by

30

programming. However, it is important for students who find that they enjoy pro-

gramming to have an opportunity to do work at a more advanced level. Otherwise,

students might become bored with the course, and subsequently the course would

suffer.

WPI currently offers more than thirty different majors, so the task of creating

a separate assignment for every one is probably not feasible. In these cases, there

will usually be a project in a topic which is related to the major in question; for

example, some engineering disciplines may be combined at first. As more students

from a particular major begin taking the course, creating a separate set of projects

for that major should become a priority.

Many WPI students have dual majors or are undeclared. In the former case,

they could pick a project from one of their two majors. In the latter case, they

could choose a project in a major that they are considering. Another solution is

to allow students to choose any project they wish, independent of their major. In

addition to allowing for the cases above, allowing the students to choose would be

a check on the fairness of the projects. If several students are avoiding a specific

project, or are choosing a specific project, then that project may be too difficult or

too easy.

Allowing students to choose their own project, however, conflicts with funda-

mental ideas of major-based projects. Additionally, there could be many problems

if students continually switch their project-major. For example, if the projects are

group-based or if the projects build upon one another, then it would be difficult

to switch majors midway. Also, since there will always be some variation between

the projects, a student might attempt to always take the easiest project. For these

reasons, we recommend that students should be allowed to select their project, yet

should be discouraged from choosing one outside their major.

31

4.2.5 Expected benefits

We believe that implementing a major-based project system would greatly increase

student interest in programming and computer science; that it would accelerate

the learning process; and that it would allow students to become comfortable and

confident in their programming ability. We fully expect results similar to those

Professor Goulet saw with using major-based projects in his Linear Algebra course.

4.2.6 Evaluating the major-based project idea

One of our goals in this IQP was to test out the idea of major-based projects in

the CS area. Although Goulet's Linear Algebra course has shown that the idea has

merit, we hoped to test the idea in a computer-science setting. In order to accomplish

this goal, we needed an introductory computer-science situation in which we could

replace regular projects with major-based ones.

Professor Joe Wong of WPI was willing to implement some of these changes in

his CS 1001 (Introduction to Programming in FORTRAN) course. The CS 1001

course usually has an assignment every week, which consists of three programming

problems. Wong first changed this format slightly, giving two required problems, and

allowing students to choose a third problem from a set of major-based problems. We

then worked with Professor Wong to design a set of two-part major-based projects

which represent the most of majors in his class.

Actual results

We evaluated the major-based project idea with the help of Professor Wong. Each

project we gave to Professor Wong contained a set of questions to get feedback from

the students. The questions we asked the students were:

32

• Why did you choose this project?

• How did this project compare to other assignments you have had so far in CS

1001?

• Has this project stimulated your interest in programming?

We only received five responses from the students. Two were positive, two were

neutral and one was negative. All students chose a project because it related to

their major. All but one student noted that the project was more difficult then

previous projects. The project difficulty caused a few students to react negatively

to the project. As one student stated:

It was much more interesting [than) other assignments, but a lot more

time consuming. Honestly, due to the hours of debugging it caused me

to [endure), it demotivated my interest in computer programming.

Another student describes the project

This two-part project was larger and generally more challenging than the

other projects I have completed for this class . . . Working hard and com-

pleting this program gave me a sense of satisfaction since I was interested

in the topic I was dealing with.

Arriving at a definitive conclusion with such a small data set is difficult. The

negative and neutral responses were mainly due to the difficulty of the project. The

positive results were encouraging. The students were interested in how computer

science relates to their major. As one student states:

This project has shown me just how useful programming can be, even to

a biology major.

33

4.3 Variations on Projects

There are many possibilities which could be used to enhance major-based projects.

Professor Goulet's Linear Algebra projects are both group-based and cumulative;

Goulet feels these are major points of his program. Additionally, we wish to discuss

the idea of creating interdisciplinary projects.

4.3.1 Group projects

Although we have not specified whether major-based projects will be done in groups,

we feel there are many benefits of group work. Since WPI requires many projects,

usually done in groups, prior group experience is directly beneficial. Group projects

encourage team work and cooperation, which are useful job skills. Finally, when

students work in a group, they don't have the feeling that they are going through a

course alone.

4.3.2 Cumulative projects

Cumulative projects are projects which build upon one another. This allows the

student to create progressively more complex programs, and allows the student

to better apply one assignment to the next. The final project would represent

a substantial accomplishment, which we believe would be more satisfying to the

student than small, independent projects.

4.3.3 Interdisciplinary projects

Our final idea is for interdisciplinary projects. The idea would be to create a complex

problem which involves several different majors. The students would then need to

34

work together on their respective parts to create a complete solution. We believe

this idea, if implemented, would provide an excellent teamwork experience.

4.4 Python

4.4.1 Why a specific language?

Before explaining why we recommend Python, it is reasonable to ask why we recom-

mend a specific language at all. Professors implementing our proposal may prefer

to use another language, and there are certainly other languages which could be

appropriate for our course. In defining some aspects of this course, we have at-

tempted to keep the course as language-neutral as possible. However, we decided to

recommend a specific language in order to establish a reference for the course and

to take advantage of some features specific to the language. Additionally, we believe

that many commonly used languages are not optimal for teaching non-majors.

In many ways Python serves as a reference language for this project. We believe

that our final course recommendations could be adapted to another language, with

the degree of difficulty being dependent on the language chosen. Choosing a specific

language allows us to give concrete examples of code. This makes the examples

more useful, and provides background for an actual implementation of the course.

Furthermore, we chose a language with a very simple syntax, so that translation

into another language would require minimal effort. Using a specific language also

gives a model to refer to when giving a sample course outline; the order of topics

covered is related to the language chosen.

Choosing a specific language allows us to take advantage of the features of the

language. Languages each have their strengths and weaknesses; in our report, choos-

ing a specific language allows us to capitalize on its strengths. For example, we plan

35

to incorporate specific visualization and mathematics libraries, and to take advan-

tage of certain built-in data structures.

Although we believe our ideas for this course can be adapted for other languages,

we believe that the choice of language is extremely important for a course for non-

majors. We have identified the following points as being crucial for a language to

be useful for non-majors:

• The language should be accessible

— Free for students

— Cross-platform

• The language should be easy to use

— Simple syntax

— Easy to run

— Integrated development environment

• The language should have good library support

— Graphical libraries

— Advanced mathematical libraries

• The language should have syntax similar to languages used in industry

— Similar to C, Java, or MATLAB

We believe that a language should be free and cross-platform to allow the stu-

dents to work from their own computers, and to allow students to continue using

the language after taking the class. This is the primary reason we avoided languages

like Maple and MATLAB. However, if these languages were provided free-of-charge

36

to the students (for example, if the school possesses a site license), these languages

could be considered.

The language chosen should also be easy to use. We define ease-of-use to include

a simple syntax, a simple running procedure (i.e. no extra compilation steps), and

possibly an integrated development environment (IDE). Simple syntax is important

for any beginning programmer; the student should not be burdened with unnecessary

overhead in order to write simple programs. Likewise, a student should be able to

run his program with minimal effort. For this reason, we believe a language which

does not require separate compilation steps is the best choice for an introductory

course. Finally, we believe that the use of an IDE can greatly reduce the frustration

of learning programming. An IDE is an application that helps the programmer

develop his programs; it helps with tasks such as indentation, and allows the program

to be run and tested without starting another program. Without an IDE, students

must either use a text editor which is not suited for writing code, or use a complex

general-purpose editor such as emacs. The IDE, like the language, should be free

for the students.

The last item we feel is important for a language to be appropriate for an in-

troductory course for non-majors is a rich set of standard libraries. Libraries are

prepackaged tools, which allow the student to extend a program without writing all

the code himself. Examples include advanced mathematics, visualization, and data

structure packages.

We believe that choosing a particular language enhances and completes our rec-

ommendations. Although our recommendations could be applied using a different

language which meets the criteria we have given, we believe the language we have

chosen is the best match to the goals of this course. A comparison of how different

languages meet our criteria is given in Table 4.1.

37

Language C++ MatLab Python Scheme
Free Yes No Yes Yes
Simple syntax No No Yes Yes
No separate
compilation steps No Yes Yes Yes
IDE Yes Yes Yes Yes
General purpose language Yes No Yes Yes
Visualization libraries Yes No Yes No
C-style syntax Yes Yes Yes No
Used in industry Yes Yes Yes No
For, while loops Yes Yes Yes No

Table 4.1: Comparison of Programming Languages

4.4.2 Introduction to Python

Python greatly simplifies programming examples and makes important programming ideas

easier to teach.

—Jeffrey Elkner, Yorktown High School teacher

Instructors noticed that the level of enthusiasm was up and the level of frustration was

down.

—Christine Shannon, Centre College

As previously mentioned, Python has proved to a very effective teaching tool.

Many schools have instantiated introductory programming courses using Python. 2

The most documented case study is the introductory programming course at York-

town High School in Arlington, VA. Jeffrey Elkner, the creator of the programming

courses in Python at Yorktown, has written several reports about his experiences.

According to Mr. Elkner, he chose Python for his course because, "Python greatly

simplifies programming examples and makes important programming ideas easier

to teach." [4]

2 For a list, see http://www.ibiblio.org/obp/pyBiblio/schools.php

38

Since the introduction of Python in Elkner's classroom, he has noticed increased

enthusiasm among his students and a subsequent increase in enrollment. The inter-

est in learning programming has increased so much that the maximum size of the

class was increased, and students are still being turned away. [6] Elkner explains

the impact on his class by saying, "Increased enrollment naturally follows increased

student interest, which in turn results at least in part from greater student success

as made possible by the use of Python." [6]. Students who take Elkner's course

don't stop programming when the semester is over. Many students continue their

projects outside of the classroom. Some examples of projects that Elkner's students

have worked on are:

pyKarel a robot simulator. 3

Zuite a database system for handing in homeworks and keeping up with class, being

used by four courses at Yorktown High School.

SpellQuest a computer-based learning program for studying spelling words. 5

pyJotto a Python implementation of the word game Jotto. 6

In an interview 7 with Elkner, we asked him how the students' projects have

changed since he began teaching Python.

With Python programming is faster to learn and easier to be produc-

tive. Students are now capable of doing things they could not have done

before. Three students this year are working on pyJotto, and program

3http://pykarel.sourceforge.net/
4http://openclassroom.sourceforge.net/
5http://spellquest.sourceforge.net/
6http://pyjotto.sourceforge.net/
7for full transcript of the interview see Appendix B

39

called SpellQuest. In each of these projects, I have been able to hook up

interested students with professional programmers, who mentor them.

As previously mentioned, Centre College in Danville, Kentucky recently changed

its introductory CS course language from C++ to Python. Both students and

faculty at Centre College have reacted positively to using Python. The faculty have

attributed their success with Python to its simple syntax and ease of learning:

[Python] rates high on the expressiveness index. Even beginning program-

mers can complete interesting and significant projects very quickly. The

syntax is very simple and the structure is uncomplicated. This makes

code both easy to read and write. Students pick it up very easily. [14]

One of our criteria for evaluating a successful CS course for non-majors is for

the students to feel comfortable with programming, rather than intimidated by it.

After switching to a Python-based course, Centre College noted improvements in

this area:

Student evaluations from the first three times the course was offered were

very positive. . . . Instructors noticed that the level of enthusiasm was up

and the level of frustration was down. [14]

We believe the Yorktown High School and Centre College programs have proven

that Python can be used successfully in an introductory programming course. Ad-

ditionally, as both programs contain a high percentage of non-majors, Python has

proven to be an effective language for non-majors specifically.

4.4.3 Visual Python

[Visualizations] would be really good for MQPs—a lot of people could use that.

—a WPI chemical engineering professor

40

Visual Python, or VPython, is a visualization tool for Python. [16] It eases the

process of programming graphics. Graphics can be used for modeling environments

or plotting data. VPython has been used in an introductory physics course to do

modeling [16]. Visualizations provide a medium for students to interact with a

model and immediately observe the results on a computer screen.

4.5 Daily Assignments

In an introductory course, constant exposure to the subject matter is critical. This

is especially true of WPI's seven-week terms. If students are well versed in the basics

of a subject they will be able to better understand advanced topics, and they will be

able to continue to learn on their own. If they are not well-versed in the basics, their

confidence can suffer, resulting in frustration and poor performance. We believe this

problem affects many non-majors in the current CS introductory courses.

We want to address this problem by assigning regular homework assignments.

The assignments will be given daily, or on alternating days, at the beginning of the

course, then be reduced in frequency to one or two per week, depending on how the

professor wants to conduct the class. The assignments are meant to be 'easy,' since

we want to get the students familiar with the programming environment and build

their confidence. Therefore each assignment should take no more than an hour of

the students' time.

One of the main problems of introductory CS courses at WPI is that most assign-

ments are projects. This means that the student only has a few, large assignments.

This format allows the student to procrastinate until the last minute, when he must

quickly finish a project intended as a week's worth of work. We believe that this

41

approach does not give the student a good exposure to the language.

Daily or frequent assignments, on the other hand, allow the student to incre-

mentally learn and practice programming. We believe that this will allow students

to become familiar with the programming environment. Additionally, the constant

exposure will familiarize them with the language as well as with common errors.

As CS majors, we have also noticed that project-only courses tend to create a

large time lag in terms of getting feedback regarding a project. For a beginning

student, this is unacceptable; if a student is doing something wrong, or misunder-

stands a concept, it is essential that he receives feedback on his mistake as early as

possible. Frequent assignments address this problem by giving the student constant

feedback, with a faster response time.

4.6 Satisfying Distribution Requirements

One reason non-majors do not take CS is because a CS course does not fit well

into their distribution requirements. Most majors do not have a CS requirement,

and some do not have an appropriate space for a CS course. This is most evident

in the chemical engineering (CM) major. Out of the twelve chemical engineers we

surveyed, nine listed "no room in schedule" or "not required" as the primary reason

for their not taking a CS course, rather than "no interest." In fact, some of the

students indicated that they would like to take a CS course if they could fit it

into their schedules. A chemical engineering professor at WPI pointed out in an

interview that the chemical engineering major has little room for CS electives, but

does have an engineering sciences requirement. She said that offering the course as

an engineering science (ES) credit would be more appealing to chemical engineering

majors.

42

Cross-listing an introductory programming course for non-majors as both CS

and ES would allow more students to count it toward their degree requirements,

and would therefore increase enrollment in the course. Additionally, we believe that

such a course would be appropriate as an ES course, since programming is a useful

engineering tool, and because many ES courses require programming background.

It may even be possible to allow ES credit only if a student completes engineering-

based projects.

Another possibility for increasing enrollment is to encourage various departments

to consider requiring a computer science course. Professor Camesano stated that

"many other schools require programming in chemical engineering." Some majors

already require a CS course, such as mathematics, MIS, and ECE. Since computers

are such an integral part of modern life, it may be reasonable to consider requiring

students to have some programming experience. Although such an effort is outside

the scope of this project, having an appropriate programming course for non-majors

may be a prerequisite of such a plan.

4.7 Summary

It is our belief that these recommendations each solve several of the problems we

have noted in the current and proposed WPI CS course curricula, with respect to

non-majors. Taken together, these recommendations fulfill our established criteria

for a successful CS course for non-majors.

43

Chapter 5

Proposed Course

5.1 Course Description

CS 100X.

INTRO TO PROGRAMMING FOR SCIENTISTS AND ENGINEERS.

Cat. I

This course establishes a practical programming background for students who want

to learn to write computer programs for their undergraduate engineering, science,

or management courses. Topics include logical problem-solving and algorithm de-

velopment, program design, debugging, language syntax, and error interpretation.

Specific topics include control structures, functions, arrays, and simple I/O. Stu-

dents will be expected to implement a variety of programs, both on their own and

in groups, using the Python programming language. Group projects will be based

on students' majors.

Intended audience: non-computer science majors desiring a practical introduc-

tion to programming. This course is not sufficient background for most advanced

computer science or computer engineering courses. Such background may be ob-

44

tained by taking CS 1005 or CS 1006 followed by CS 2005.

Recommended background: none.

5.2 Course Syllabus

Required Text: How to Think Like a Computer Scientist, by Downey, Elkner, and

Meyers.

Class Topics Reading

1 Introduction, demos, Why is programming important to you 1
2 Variables, syntax 2
3 Variable types, assignment, simple math 2
4 Simple functions, more math 3
5-6 Booleans, conditionals 4
7-8 Fruitful functions, design recipes 5
9 Complex numbers, random numbers handout
10 Loops (while) 6
11-13 Lists (arrays), loops (for) 8
14 Strings 7
15 Dictionaries 10
16-17 Graphing handout
18 File I/O 11
19 Pattern matching 13, Appendix D
20-28 Advanced topics

Table 5.1: Course Syllabus

45

Chapter 6

Conclusion

6.1 WPI Course Possibility

Our project was started with the intention of creating a course for non-majors to be

offered by WPI's computer science department. Our research covers the feedback

from the undergraduate community as well as feedback from the WPI faculty and

feedback from professionals. Our recommendations reflect our research and, as a

whole, encompass our course proposal.

We believe our recommendations will work extremely well for non-majors who

wish to learn how to program and should be adopted by the WPI computer science

department. We plan to present proposal to the computer science undergraduate

committee in the fall of 2003.

6.2 Incorporation into Other WPI Courses

We believe that the recommendations we present would create an excellent intro-

ductory course for non-majors. However, many of our recommendations could be

incorporated into the existing and newly proposed CS courses at WPI. We believe

46

that, if successfully adapted, these recommendations would result in an improved ex-

perience for non-majors taking these classes. This would in turn lead to an increase

the number of non-majors taking the courses.

6.3 Future Research

There are many areas of interest related to this project which we were not able

to investigate in detail. The first of these is the creation of a web-based project

database. This database would allow professors from various departments to sub-

mit assignments and projects. These projects could be designed for courses in the

professors' department, or for interdisciplinary courses such as our proposed course.

We believe that such a database would be very useful for both our proposed course

and existing courses.

Additional research could also be performed regarding how non-majors respond

to different languages. One possibility would be to have groups of students learn

the same problems in different languages. Evaluations could be made to determine

how each language impacts the students.

There are several opportunities for potential research topics in the area of major-

based projects. In particular, the major-based project concept could be expanded to

include group, cumulative, and interdisciplinary projects. In addition, the possibility

of group-based projects in fields other than linear algebra and computer science could

be examined.

Another area of interest, which we were not able to pursue in detail, is the con-

cept of creating a support framework for non-CS professors who want to include

programming assignments in their own courses. The framework would provide as-

sistance in designing problems, helping students, and grading the projects. Support

47

could be offered by teaching assistants or senior assistants, although interdepart-

mental funding issues would need to be considered.

6.4 Personal Reflections

We are particularly happy that we were able to design our own IQP. Although we

were helped tremendously by our advisors, we chose our project idea, defined the

project objectives, and were the main directors of the project. We would like to

express thanks to our advisors for giving us the freedom to design a project.

Our primary goals in designing this project were to create a project that would

be challenging, that we would find academically interesting, and that would actually

be used. We believe that this project achieves our first two goals. We sincerely hope

that this project will also be useful, ideally as the basis for a CS course for non-

majors. We would also be pleased if some of our recommendations made their way

into other CS courses, or if our IQP work were continued by other students.

Our initial project goal was to design a course for non-majors to replace CS 1001.

However, after beginning this project, we discovered that there was a separate pro-

posal put forth by the CS department which dealt with creating a new introductory

curriculum for both CS majors and non-majors. As CS majors, this news surprised

us, since the proposed curriculum was not widely publicized during its design phase.

The most frustrating part of this project for us was not knowing whether or not

our course proposal would ever be considered by the WPI CS department. This

caused our project definition to keep changing, and is one of the primary reasons

our final project report consists of recommendations rather than a specific course

proposal. Another problem we encountered was difficulty in communicating with

faculty. Although all the faculty we dealt with were extremely pleasant to work

48

with, it was difficult to get in touch with many of them. This caused problems

earlier in the project's time line, as we tended to wait for professors to respond to

email instead of going to talk to them directly. However, as the year progressed, we

became better at tracking down faculty.

Although we did not create a complete course for non-majors, we investigated

many ideas regarding how computer science can be better integrated with the specific

needs of WPI non-majors. We believe our final set of recommendations contains

innovative ideas, and that a course based on such ideas would achieve our original

goal of a successful course for non-majors.

In the end, we feel our project turned out very well, and we are happy with the

result.

49

Appendix A

Survey Results

A.1 Student Survey

There are problems with the current curriculum. That has been established from our

results as well as the CS department's own observations throughout the years [17].

It was important for our IQP to get feedback directly from the students to evaluate

the problem with the current situation.

We issued a survey to students to evaluate the current situation for the computer

science introductory sequence. Specifically we were looking for data on the courses

that non-majors take, which include CS 1001, CS 1005 and CS 1006. We created

a web-based survey, which was given to students in several classes. We received

199 survey responses in total, including 105 students from Professor John Goulet's

Linear Algebra class, and 35 students from Professor Carolann Koleci's Physics

class. The survey group was self-selected; all students in the courses were asked to

participate, but participation was not required. Some professors, including Goulet

and Koleci, offered extra-credit of some sort in return for survey participation.

A variety of majors were represented (see Fig. A.1). For the purposes of this

50

37

28

td

—

TT-

8 9

3 	 3 4

—

—

ri r1 1-1 .n.n.n n n 	 1-11—

40
37.5

35
32.5

30
27.5

25
22.5

20
17.5

15
12.5

10
7.5

5
2.5

0

project, we did not consider the results of Computer Science majors or Electrical

and Computer Engineering majors because their needs differ from the needs of non-

majors regarding an introduction to computer science.

Students by Major

C E M M MMINTCIEM N BBEMBBP CCEEMC E
H D A EA G S A 	 FEDC 	 A 	 HEM 	 ESC

C
	

E 	 E
mai or

Figure A.1: Students by major

We created a number of hypotheses to test. We hypothesized that students who

take CS 1005 or CS 1006 find the course too difficult and require prior programming

knowledge. We also hypothesized that non-majors are taught too much CS theory.

We were also seeking students' reactions to the simplicity of Python versus Scheme.

The results of our survey can be seen in its entirety below. Our hypotheses were

mostly affirmed. About half of the non-majors indicated that the course they took

was too hard (see Fig. A.2). About half the non-majors also indicated that they felt

they had learned how to program (see Fig. A.2). Our results also showed that 67%

of students preferred Python over Scheme (see Fig. A.2).

We did get some results which we didn't expect. We were surprised with the

results regarding course difficulty. When the responses regarding course difficulty

are plotted, the results follow the typical bell curve (see Fig. A.3). This is especially

51

scheme 4.96%

Required Prior Programming Knowledge
	 I feel I learned how to program

27.5

25

22.5

20

17.5

15

12.5

10

7.5

5

2.5

0

r•] Non-CS

CS

j Non-CS

n CS

A lot
	

A little 	 None 	 Yes
	 no

Programming Language Preference

Figure A.2: Expected results

surprising because many students (about fifteen) indicated in qualitative results

that the courses were difficult. We were also surprised about the results regarding

the question on theory versus practical programming (see Fig. A.3). Those results

also seem to contradict the qualitative data we received. About eighteen students

indicated they want to see more practical applications of programming and how it

relates to their major. Another unexpected result was the number of students who

planned on using programming in their careers. A number of CS majors indicated

they wouldn't use programming. As computer science majors, this is particularly

52

35

I feel the course covered too much theory vs. practical usage
4 45 	 45

Figure A.3: Unexpected results

Yes no

Course Difficulty
25 25

22.5

20

15

10

6

12

17.5

15

12.5

10

7.5

MiNon-CS
CS

40

35

30
12

.1 25

 I. 20

15

10

5

0

Non-CS
111 CS

surprising because we know first hand a career in computer science usually requires

extensive programming.

Overall our survey confirmed our hypotheses. The qualitative results gave us

detailed information about exactly what non-majors wanted to see in a programming

course. To see all the survey results, see Appendix A.1.2. The survey questions can

be found in Appendix A.1.1

53

A.1.1 Student survey questions

IQP Survey

Intro CS classes for non-Computer-Science majors

General Information

1) Student Information:

Major: ____

Year:

2) If you are filling out this survey for a class, please fill out the

following:

Name:

Email:

Professor: 	

Questions on WPI CS courses

3) Have you taken any CS courses at WPI? (If not, skip to the next section)

[_] 	 CS 1001: Introduction to Computers (FORTRAN)

[_] 	 CS 1005: Introduction to Programming (C++)

54

CS 1006: Object-Oriented Introduction to Programming (Java)

Other:

4) Course Difficulty: (Choose one)

[_] Very Difficult

[_] Difficult

[_] Average

[_] Easy

[_] Very Easy

5) Required prior programming knowledge: (Choose one)

[_] A lot

[_] A little

[_] None

6) Have you used the knowledge obtained from this course in any of the

following?

[_] Other WPI course

[_] Project

[_] Real-world experience

If yes, please elaborate:

55

7) Do you plan on using the knowledge obtained in your future career?

(_) Yes / (_) No

8) Did you enjoy the course?

(_) Yes / (_) No

9) Do you feel you learned how to program?

(_) Yes / (_) No

10) Do you feel that taking the course was worthwhile?

(_) Yes / (_) No

11) Do you feel the course covered too much CS theory vs. practical

usage?

(_) Yes / (_) No

General Questions

12) Have you done any programming other than WPI CS courses?

LA High School

[_] Non-CS WPI course

[_] Outside of WPI/HS

13) If you have programmed in WPI courses outside of the computer

science department, please list the class and language used?

56

14) If you have not taken programming course at WPI, why not?

[_] No interest

LA Too difficult

[_] Not required

LA No use for it

[_] Already know how to

LA Plan to

Other:

15) Do you feel WPI students in non-CS majors should learn some

programming?

(_) Yes / (_) No

16) What is your opinion of WPI's programming courses for non-CS

majors:

17) What would you like to see in an introductory programming course

57

for non-CS majors?

18) General Comments:

58

Last Question:

19) Below are two languages we are considering for an introductory

computer science course. If you prefer one over the other, please mark

below:

(_) language A / (_) language B / (_) No preference

Language A 	 Language B

factorial

;; factorial 	 def fact(x):

(define (fact x) 	 if (x <= 1):

(if (<= x 1) 1 	 return 1

(+ x (fact (- x 1))))) 	 else:

return fact(x-1) * x

;; quadratic equation

(define (quadeq a b c)

(let [(disc

(sqrt (- (expt b 2) (* 4 a c))))]

(cons (/ (+ (- b) disc) (* 2 a))

(cons (/ (- (- b) disc) (* 2 a))'()))))

quadratic equation

from cmath import sqrt

def quadeq(a, b, c):

disc = sqrt(b**2 - 4*a*c)

ansi = (-b + disc)/2*a

ans2 = (-b - disc)/2*a

return (ansi, ans2)

59

Students by Major

39
37 	 —

28

22

14

11
9

—

5

1 	 1 	 1 	 1 	 1 	 1
r, 	 r, 	 r–t 	 r–t 	 f-I 	 r-1 	 r–t 	 l l 	 Fl 	 11 	 Fl 	 H 	 n

45

40

35
a

I 30

a
in 25

0
6 20
o
a
E 15
a
Z

10

5

0
CH ED MAC MEA MGE MIS NA IC IE MFE ND BC BE MA BB PH CE CM EE ME CS ECE

Major

2004
15%

2006
19%

2002 Other
1% 4%

2003
16%

A.1.2 Student survey results

I. General Information

Students by Class

2005
45%

60

II. Questions on WPI CS Courses

3) Have you taken any CS courses at WPI?

11% 9%

▪ CS1001

n CS1005

q CS 1006

q CS2005

Non-CS Students Taking Intro CS Course

Courses Taken (by non-CS majors)

61

14

12

in

..
e,

 	10

w

13

.

N
u

m
b

e
r

o
f

S
tu

d
e

n
ts

1-

n

N
.)
A

 CT
,
C

O
 0

 N
.,
A

Students by Major and Course (out of 123)

1
 	 0 cs1006

•1005 Il 	 cs

0 cs1001

,

1 	 1 1 	 1 	 pi.
 L, 	 , 	 ,

BB 	 BC 	 BE 	 CE 	 CH 	 CM 	 ED 	 EE 	 IE 	 MA 	 MAC 	 ME 	 MEA MFE MGE MIS 	 NA 	 ND 	 PH 	 TC

Major

4) Course Difficulty

Course Difficulty

16

14

12

15

11

10

8 7 CZ Non-CS

6 6
6

4

2

0

Very Difficult 	 Difficult 	 Average 	 Easy 	 Very Easy

62

24

19

2

I 	

Required Prior Programming Knowledge

0 Non-CS

A lot A little None

111.11'1".
 11

17

26

Have you used the knowledge obtained in this course in any
of the following?

Real-world

Project:

Other WPI Course:

• CS

0 Non-CS

0
	

5
	

10 	 15 	 20 	 25 	 30

5) Required prior programming knowledge

30

25

20

15

10

5

0

6) Have you used the knowledge obtained from this course in any of the following?

Other use:

13 BE GS 	 Learning programming fundamentals helped with many other languages (IDL, Matlab,
etc.).

15 BE 2003 MQP work
63 ME 2004 There was a need for some slight programing in EE3601 in the labs.

63

76 ME 2003 Another course in my ME/Manufacturing schedule (Robotics)requires us to learn a
programing language it is similar to C++ an my prior knowledge helps.

79 ME 2004 Compuware Corp. Engineering intern
90 ND 2006 see MA 2071 below, / use programming often for problem solving and automating

common tasks
100 TC 2004 I've used the concepts in 1005 to help me in other CS classes, and discrete math.
101 TC 2003 Class was about ethics of computing. Will use ethical lessons in real life.
102 EE MS 	 I've found the concept of a semaphore is extremely useful in visualizing real world

processes. The course material has also been useful to me in understanding what is
happening when the unexpected occurs ... even just in everyday computer application
usage. 	 / / Looking back though, I've often thought that if I had only one course
to take, CS 4533 [compilers] would have been more practical and perhaps even
advance my understanding of human linguistics [I actually ended up using lex and
yacc in my Music MQP to compile synthesis descriptions for instruments in a
language called 'Csound'] / / Btw: I feel I've learned how to program on my
own...not in an educational setting (see answer #9)

105 EE 2004 I was planning a CS minor which I have recently decided against, but I had a summer
internship as a java programmer after freshman year.

106 EE 2004 This introduction to programming helped me to understand the basics of programming
when I programmed in assembly in various EE classes.

109 EE 2005 internship
112 EE 2003 CS2005
117 EE 2004 In EE2801, Foundations of Embedded Systems, I was able to more easily visualize

certain operations in C++ than in 8086 assembly, so it was of use a a sort of
modeling code.

119 EE 2003 No, not yet.
121 EE 2003 Programming is cool.

64

no yes

I plan on using the knowledge from this course in
my career

24
21

10

0 Non-CS

• CS

45

40

N
u

m
b

e
r

o
f

S
tu

d
e

n
ts

35

30

25

20

15

10

5

0

0 Non-CS
M CS

45

40

35
Yb

5 30
-a

• 25

• 20 a)

E is
a

10

5

0

24

41

21

7) Do you plan on using the knowledge obtained in your future career?

8) Did you enjoy the course?

I enjoyed the course

yes no

(i5

23.2

23

22.8

N
u

m
b

e
r

o
f

S
tu

d
e
n

ts

22.6

22.4

22.2

22

21.8

21.6

21.4

no yes

I feel I learned how to program

23

22

0 Non-CS

29

16

10

47

9) Do you feel you learned how to program?

10) Do you feel that taking the course was worthwhile?

r-------- I feel the course was worthwhile

0 Non-CS

n CS

N
u

m
b

e
r

o
f

S
tu

d
e

n
ts

50

45

40

35

30

25

20

15

10

5

0

yes no

66

45

35

10

50

45

40
401

C 35

30

15 25

jaw 20
E

15

10

5

0

Non-CS 1

• CS

11) Do you feel the course covered too much CS theory vs. practical usage?

I feel the course covered too much theory vs.
practical usage

yes no

67

Used Programming Outside of WPI

60

50

Yl

40

=
cif
"- 30

= 20

10

0

0 Non-CS

n CS

54
52 	

22

16

High School 	 Non-CS WPI 	 Other

III. General Questions

12) Have you done any programming other than WPI CS courses?

13) If you have programmed in WPI courses outside of the computer science department, please list the class and
language used.
5 BBT 	 2003 Calculus-Maple
8 	 BBT/TC 2004 gwbasic, visual basic
12 BC 2003 Maple
13 BE GS 	 BE4201 - IDL / Many courses - Matlab
16 BE 2003 BE4201-IDL / EE3815-VHDL / EE2801-Assembly
17 CE 2005 i havent programmed at all
20 CE 2003 C+ / Visual Basic
21 CE 2004 Introduction to computing, C++
27 CE 2003 no
32 CM 2003 BASICA - individual study
38 CM 2004 Chemical Engineering Thermodynamics, used MathCAD, which contains the same

systematic approach and troubleshooting ability of computer programming.
44 IE 2003 MG 2720, Visual Basic
46 IE/ME 	 2004 MG2720 - Visual Basic
50 MA 2006 C++
51 MA/ME 	 2004 Numerical Methods for ODE's. Matlab / Control Engineering. Matlab
58 ME 2006 G-CODE IN ME
61 ME 2005 C++ Computer Programming
65 ME 2006 Intro to C / C++
74 ME 2005 HTML...
76 ME 2003 Robotics- VAL-II
77 ME 2004 VBA Basic
78 ME 2005 Intro to computer programming: Microsoft Visual Basic
79 ME 2004 ME2300, C
90 ND 2006 MA 2071: Linear Algebra; used C++
92 PH 2006 Introduction to computer science course. Just for one year. C++ was used.
100 TC 2004 In HS, AP Computer Science: / Karel the robot / C++
102 EE MS 	 EE503 - Digital Signal Processing / EE539A - Real Time Digital Signal Processing /

Music MQP / EE514 - Fund. of Radio Freq and Microwave Engineering / Probably many
others.

103 EE 2006 Sophomore year of high school I took an intermediate VB course at the local
community college. The intro course was too easy, but the intermediate was a

68

little above my head. 	 / In high school, a VERY introductory course to programming
using qbasic. 	 I didn't learn much, as I had picked up a little C by then.

105 EE 2004 Assembly language programming for EE2801,EE2799,EE3803
106 EE 2004 EE2801 - assembly / EE3803 - assembly
111 EE 2005 EE 2801, assembly language programming
112 EE 2003 EE 2801 Intel/PIC Assembly / EE 3803 Intel/PIC Assembly / EE 4801 Intel/PIC

Assemply
116 EE 2003 EE2801 Assembly
117 EE 2004 EE2801 - x8086 Assembly
118 EE 2006 AP Computer Science in high school - C++
119 EE 2003 EE2311 	 (Signals) Matlab / MA2071 	 (Linear Algebra) 	 Matlab / PH1140 (Waves and Osc.)

Matlab for graphing lab data
120 EE 2004 Pascal, ASM, C/C++, 	 VB
121 EE 2003 EEx8xx courses

69

1

28

If you have not taken a programming course at
WPI, why not?

Plan to

Already know how to

No use for it

Not required

Too difficult

No interest

0 	 5 	 10 	 15 	 20 	 25 	 30 	 35

Number of Students

14) If you have not taken programming course at WPI, why not?

Other:
12 BC 2003 didn't fit into my schedule
21 CE 2004 I just transferred here in A-term.
24 CE 2006 I would like to learn programming but I don't think I have room for it with all the

other classes I am taking.
32 CM 2003 not required/scheduling conflict
35 CM 2003 have not really had the time /
38 CM 2004 I am graduating early, so my course schedule is as compressed as it can be, so I do

not have time for extra electives. It would have had to take the place of
something else.

53 ME 2006 I have not had time in my schedual yet.
60 ME 2005 No time
77 ME 2004 Scheduling, availability
90 ND 2006 Programming can be learned without taking a whole course about it.
92 PH 2006 I plan to study by my own. I just want to know the basic stuff, so I do not think

I have to take it as a class.
102 EE MS 	 I avoided the CS1000 and 2000 series because I'd prefer to learn theory than yet-

another-programming-language.
103 EE 2006 I want to work with embedded systems and circuit design as an EE, but programming

isn't an interest of mine. I've learned some C and VB on my own, and I'm going to
take 3-4 total CS courses while at WPI.

119 EE 2003 I'm a transfer student close to graduation, and I only had time in my schedule for
one CS course. Also, a 2000 level course is the only degree requirement.
Otherwise I might have taken C++ (CS1005 -> CS2005)

123 EE 2004 I have taken programming courses at another university.
124 ECE 	 2006 Have not been able to fit into my schedule yet.
132 ECE 	 2005 I plan to take the ECE assembler course, but probably no courses in CS.
135 ECE 	 2005 In addtion to my one course I'd like to take more but can't find enough time.
167 CS 2006 And I'm taking one now

70

15) Do you feel WPI students in non-CS majors should learn some programming?

a
41)

0
07,

I feel that non-CS majors should learn
programming

90 85 1

80

70

60
60

50
q Non-CS I

40 37 CS

30

20 15-

10

0

yes 	 no

16) What is your opinion of WPI's programming courses for non-CS majors?
1 	 BB 2005 I don't know, I haven't taken any yet
3 BBI 	 2003 They are hard
5 BBT 	 2003 They are either too easy or too hard.
7 BBT 	 2004 I have never taken one.
8 	 BBT/TC 2004 There really are no 'CS for non majors' classes
9 BC 2005 I have not taken a CS class myself, but I have heard from other students that they

are difficult if you have never taken programming before.
11 BC 2003 They are non-existent
15 BE 2003 Haven't taken any, but seem like a good idea.
16 BE 2003 The lower level courses are broad enough to have useful applications for all

majors.
17 CE 2005 I have no opinion because i have not taken any of these courses
18 CE 2005 I believe that for some courses, they make sense, but the vast majority are

unnecessary. For example, I don't think it's necessary for calculus 1-4 required
to use Maple.

19 CE 2005 I don't know enough about the pogramming courses for non-CS majors
20 CE 2003 I think that there should be a Computer Science Course offered for all other majors

similar to The EE3601, which is an Electrical Engineering course for non
Electrical Engineering majors.

21 CE 2004 Unless other majors are going to implement it in some way I do not feel it
necessary to take it.

22 CE 2005 Have never taken any.
23 CE 2005 I don't know anything about the programming courses for non-CS majors.
24 CE 2006 I don't know anything about them, so I couldn't say.
25 CE 2005 I have no knowledge on this question.
26 CE 2005 I didn't know there were programming courses for non- CS majors.
27 CE 2003 i don't think is a good idea
28 CH 2003 I have heard that the introductory courses assume a basic knowledge of programming.

Since I have never taking any type of CS course, i have shied away from the ones at
this school

29 CM 2006 Quite helpful.
30 CM 2003 I haven't taken any, so I don't really know.
31 CM 2004 I do not know of the non-CS course, only of CS 1005
33 CM 2003 too difficult
35 CM 2003 don't really have one /
38 CM 2004 I think it would help to be able to set up basic computer programs that would allow

me to set up iterative loops to solve complicated problems.
42 CM 2003 I know nothing about cs courses except they are considered hard
43 ED 2006 I have no opinion as of now because I have not taken any non-CS programming courses

and have not heard much about them.
44 IE 2003 Too intensive, should be taught slower.
45 IE 2003 the basic courses seem to cover enough
47 MA 2006 Haven't seen them
48 MA 2006 They could have some more basic options.
52 MAC 	 2006 I feel that they everyone should take CS courses due to our highly

technological society. I don't know of the courses in general, but I feel that
they are very necessary.

54 ME 2006 I haven't looked into it, but i will be taking intro to CAD, not that that counts
or anything

56 ME 2006 Let it be known that I didn't know that there were non-CS major programming
classes, nor do I know anyone who has taken any such classes.

58 ME 2006 EASY ENOUGH FOR NON-MAJORS TO CONSIDER TAKING, AND INFORMITIVE ENOUGH FOR THEM TO
FIND THEM WORTH TAKING.

62 ME 2004 WPI allows students to specialize in their specific topics of interest. I don't
feel that early programming classes fit into most non-CS fields.

63 ME 2004 Very few offered, and mainly geared towards CS majors or people with CS experience.
64 ME 2005 I don't know much about them, I've never taken one. I'm not sure that I will unless

I have to or can see that it will have a direct/major impact on my career goals.
65 ME 2006 Not taken any yet
66 ME 2006 Courses in CS should be required, so long as they are applicable to other majors.
67 ME 2005 Few and far between
68 ME 2004 The CS classes help you understand the process behind programs but I don't think

you should have to take CS classes if you are not a CS major.

72

69 ME 2005 haven't taken any
70 ME 2006 Don't know much about it.
71 ME 2005 I have no experience with them
72 ME 2005 It would be good however for all students to have some knowledge of programming.
73 ME 2005 It would be good however for all students to have some knowledge of programming.
74 ME 2005 I dont really know much about it
75 ME 2005 Never taken one
76 ME 2003 They should at least learn the basics since the increased need for programing

today.
77 ME 2004 no idea what they are like
78 ME 2005 Have not taken a programming course yet, but I assume very good.
79 ME 2004 No real world applications, therefore irrelevant. /
80 ME 2003 I thought for a beginner class that it was very difficult to grasp the concept of

programming.
81 MEA 	 2005 I haven't taken any CS courses myself, but I've heard from non-CS majors

who've taken introductory CS classes that they are very difficult if you have no
prior programming knowledge.

82 MFE 	 2006 No idea really, I will tell you after I take 1005 in C Term.
83 MFE

	

	 If you don't have any basic knowledge of programming, it'll be pretty hard
for you to start 1005

84 MFE 	 2005 I feel they are unnecessary
85 MGE 	 2003 I think that there is no option for wpi non CS majors. Fortran is basically

a dead language, and the C++ class is a CS class that CS majors have to take. So
the non CS majors might need the class to go slower or less in depth and the basic
concepts enforced more, while the CS majors may get bored. there should be two C++
classes-one for majors and one for non majors

86 MIS 	 2004 They should be available but not required.
87 NA NA 	 I don't know that much about them.
88 ND 2006 They seem to be difficult for some people with bad teachers, that make it more

beneficial to learn from the book than go to class.
89 ND 2006 I am not sure because I hasven't taken it but mt roommate says the classes are very

hard and she is nonCS.
90 ND 2006 useless, unless student is too lazy to learn programming on his/her own
91 PH 2005 When I took 1005 (A02) the course was mostly theory. I enjoyed learning about it,

but the class grades were on programming. Since I did not know how to program or
organize an idea to start programming I had alot of difficulty in the class. Those
CS majors who already knew the language had an easy time because they only needed
to know the language and what was taught in class was almost irrevelant.

92 PH 2006 I want them to offer courses useful to my interest of study.
93 PH 2006 They should not be programming language specific. One may be focused on, but it

should not be all htat is taught.
94 PH 2005 no opinion
95 PH 2005 Don't know. Haven't taken any.
97 PH 2006 No opinion, I haven't experienced them yet.
99 PH 2005 Don't really have any experience on the subject
100 TC 2004 They are apt, in that an introductory programming course in any language will

generally teach the basic concepts of programming on its own.
101 TC 2003 have not taken any
102 EE MS 	 Everyone should learn how to write some code. It changes the way you think... just

like engineering courses.
104 EE 2005 I am sure they will be the same caliber as that the CS majors take.
105 EE 2004 NA
106 EE 2004 I have not taken one yet, so I'm not sure.
107 EE 2005 That they are relatively easy and you get what you put into them, just like any

other class.
108 EE 2003 i haven't found any classes meant for non-CS majors. one or two courses teaching

practical programming techniques with minimal theory would be very useful.
109 EE 2005 i dont know, I havent taken them
110 EE 2005 CS 2005 seems pretty difficult for non-cs majors, and easier course would be better
111 EE 2005 No too bad, needed for EE.
113 EE 2005 There really aren't any because if you take a cs course you are mixed with cs

majors
116 EE 2003 I think they should have a seperate course for people not majoring in CS.
117 EE 2004 I think that they are okay, so far. I think that cs1006 has a much sharper

learning curve that 1005 though.

73

119 EE 2003 N/A
120 EE 2004 They are good.
121 EE 2003 good. should have a visual C course. No cs (like EEs) need C but need GUI's for

projects and class
123 EE 2004 Programming courses are useful for the future of designing software. It is always

good to know where it comes from.
125 ECE 	 2005 I have not taken programming here as of yet, but I feel from reading the

course overviews that the 1001 and 1005 level courses should be enough to give even
a History Major a good ideo of how to design simple programs. Plus the students
leave the course with a better idea of what computers are and how they do what we
want them to.

126 ECE 	 2004 Non CS majors shouldn't be required to take CS courses. If they want to, they
can. /

127 ECE 	 2004 It's not very useful due to it using only C++ but it is useful if you realize
that sometime in the future you will need to use C or C++ and it does teach you how
to program.

128 ECE 	 2004 Horrible /
129 ECE 	 2006 i dont really know
130 ECE 	 2006 I would not know,I plan on taking a programming course nexy year.
131 ECE 	 2006 It can be useful, but if you're not going to be using it ever I don't see any

reason in taking a course.
132 ECE 	 2005 I do not really know much about them, though I have heard that the ECE

assembler course (2801?) is important to take.
133 ECE 	 2005 I didn't know they existed specifically.
134 ECE 	 2005 Never taken them
135 ECE 	 2005 I think they are helping and informative.
136 ECE 	 2005 I think the courses have a good layout, but i have yet to take a course in CS

yet
137 ECE 	 TR 	 Useful knoledge
138 ECE 	 2005 it can be useful if taught well
139 ECE 	 2005 It is very helpful for many of the other majors because it helps you

understand how to sometimes use other software. One example is when I started
using matlab, my background in programming made it much easier to learn how to use
that software.

140 ECE 	 2005 Good
141 ECE 	 2005 CS 2005 is much too difficult for non-CS majors. It is also not very usefull

outside of the CS major.
142 ECE 	 2005 if you need it for your major then take it
143 ECE 	 2005 Adequate.
145 ECE 	 2005 All I know from experience is about CS1005. I feel it was a worth while

course and everyone should take it. At some point, all engineers need to do some
type of programming, usually Matlab.

146 ECE 	 2006 For some majors it is needed but it really depends on the major
147 ECE 	 2005 Not sure havent taken any yet
149 ECE 	 2005 Introductary courses such as cs1005 provide good general knowledge and

background.
150 ECE 	 2005 They expect too much, from the homeworks especially. And CS1005 is supposed

to prepare you for other programming courses: But so far, in CS2005, I haven't seen
anything that I would be unable to do without the knowledge I have from CS1005.

152 ECE

	

	 2005 I feel that all students should become familiar with at least miniumal
programming.

153 ECE 	 2002 Havent taken them yet
154 ECE 	 2005 Programming is a way of thinking, it can help anyone in any major.
155 ECE 	 2005 I have not taken them.
156 ECE 	 2005 they have some use especially in some of my ECE cources
157 ECE 	 2005 run! RUUUUUNNN!!! i mean.. 1005 and 1006 are pretty easy for anyone, but

after that, it's all downhill...
158 ECE 	 2005 I don't think it is necessary.
159 ECE 	 2005 Good
160 ECE 	 2005 Need classes in Matlab
162 ECE/HU 2005 Good
163 CS 2006 Being a CS major who hasn't taken an introductory CS course here, I don't really

have an opinion on that.
164 CS 2006 The CS 1005 course didn't really have much theory, more just how to use the

commands. It wouldn't help if they wanted to use other languages than C++. If

74

they take it, they'll just get credit for the course and not much else will happen
since it doesn't detail how to apply it in everyday life, really.

165 CS 2005 Assumed a little bit too much prior programming experience, but still a good intro.
166 CS 2005 Provide a good background in programming which could come in useful in other

profesions.
167 CS 2006 Not sure what is required now
168 CS 2004 There should be a couse in CS similar to Volts-for-Dolts in the EE dept.
169 CS 200? The current state is optimal
170 CS 2006 There aren't many because they start right in with programming they need to take a

more basic appraoch.
171 CS 2005 good
172 CS 2005 If people have never programmed before or have no experience with computers, I

think it would be very hard for those people to learn a language a 7-week term.
174 CS 2006 They should be optional.
175 CS 2005 too easy.
176 CS 2003 From what I know, they are taught as if the students are CS majors
177 CS 2005 I think if i had not had any background of programming the introductory courses

would have been pretty hard.
178 CS 2005 They are easy and a good background
179 CS 2005 may be a little too in depth for what they want/need
182 CS 	 I think it is useful knowledge that people should know a little about no matter

what field they intend to go into
183 CS 2006 From secondhand experience, they seem to be well designed.
184 CS 2005 It's good enough, if students are interested enough they should look into minoring
185 CS 2005 easy enough
186 CS 2005 It at least teaches you a language. That bare minimum is all you need to amaze

friends and family alike with how much of a computer whiz you are.
187 CS 2005 generally a good idea
189 CS 2005 Some of them are a bit difficult for those who have had no prior programming

experience and have no innate skill at it.
190 CS 2005 Upper level courses are more interesting
191 CS 2005 No opinion.
192 CS 2005 Too hard
193 CS 2005 They can be hard and uninteresting. They teach problem solving, and logic, and can

be useful for non-CS majors.
194 CS 2005 They're pretty basic and good for beginners.
195 CS 2004 Many find it very difficult
198 CS/EE 	 2005 I think it would be good for students to know all the basics in programming

within their field, or how programs can be used to get solutions easily for certain
problems.

199 CS/EE 	 2004 I really learned how to program in EE2801 with Professor Michaelson. I have
applied the top-down approach to program design in assembly to EVERYTHING that I
have done since. It was probably the SINGLE class that taught me how to program
well.

75

17) What would you like to see in an introductory programming course for non-CS majors?
1 BB 2005 Some practical applications of basic programs
3 BBI 	 2003 An easy introduction into coding
5 	 BBT 	 2003 Yes
6 BBT 	 2005 smaller classes and no ACTUAL required knowledge
7 BBT 	 2004 Yes, definitely. I feel that a very basic course teaching a beginning level

of programming for non-CS majors would be helpful for students in almost any field.
8 BBT/TC 2004 I think for those without prior exposure to any programming and without much

further use for it should be giving the chance to at least get a basic knowledge
9 BC 2005 Very, very basic introduction designed for people like me whose computer knowledge

extends to typing up papers.
11 BC 2003 practical application for future courses (non-CS)
12 BC 2003 yes, it would be helpful, even a basic course in how to use UNIX, Linux, of

something else. At least in the field of x-ray crystalography, the software is run
on UNIX base, which is foreign to myself and most others.

13 BE GS 	 i thought that's what cs1001 is
15 BE 2003 how to create algorithms, programming basics not particular to a specific language.
16 BE 2003 Um, CS 1005 and CS 2005 are good enough. We don't need a 'special' non-CS

programming class. Get real.
17 CE 2005 i dont know anything about programming
18 CE 2005 I believe that all the different departments should develop their own CS classes

that are designed to teach the necessary programming required for their major.
19 CE 2005 Introduction to some sort of basic language, or application of Access for basic

programs
20 CE 2003 A course that uses material from other majors related to computer science.
21 CE 2004 Fortran.
22 CE 2005 Dont jump right into it, it would be hard for some people to understand the

concepts at first, so dont turn them off right away.
23 CE 2005 I don't think they are necessary for non-CS majors unless you really want to learn.

I am not interested so I don't care what is in the course.
24 CE 2006 I don't know. I would like to see the same stuff that is in an introductory course

for CS majors. I wouldn't want a watered down course although I way enjoy a course
that extends the applications of programming into, perhaps, the field I am
studying. Maybe Introductory Programming in the Civil Engineering Field. hehe

25 CE 2005 I would like to see students get a good understanding of the basics functions
involved in the most popular languages.

26 CE 2005 The basics, how to do something and why.
27 CE 2003 some essy things.
28 CH 2003 The 'assumed' Knowledge should be taught
29 CM 2006 I would like to get a good foundation for everything... being able to,

theoretically, program anything i might need to.
30 CM 2003 THe basics-I know nothing about programming.
31 CM 2004 A very basic introduction to programing, how it can be applied to other engineering

majors. I would like to see more of computer use instead of programing. Very
applicaple to my major

32 CM 2003 Sure.
33 CM 2003 the basics, i have no background what so ever, and i have never looked into what

the introductory courses are offering now
34 CM 2005 IT'd be nice.
36 CM 2004 web page making stuff. what is called? html?
38 CM 2004 Yes, I would like to see that (although it is too late for me).
41 CM 2005 applications in non cs courses with the programming language that those majors

might use in the future.
42 CM 2003 a real introduction, right from the begining... don't assume people know anything
43 ED 2006 General programming languages that can be used outside of a CS environment. No

complex languages that would not be used in general situations, but something that
is relatively simple yet easy to apply in real life.

44 IE 2003 Start very basic and very slow. Assume the syudent knows nothing about programming.
45 IE 2003 same things as are covered in CS1005 and CS2005
47 MA 2006 Very general course, designed more to introduce the concepts rather than just one

language, so people whe take it can easily learn any other language that their
major might require.

48 MA 2006 slower pace, more basic topics

76

52 MAC 	 2006 NA
53 ME 2006 A diverse set of languages used.
54 ME 2006 no
56 ME 2006 Coverage of basic programming techniques and the logic required to be a succesful

programmer. Overall stress on practicality, that is a course that covers
necesities for basic programming.

58 ME 2006 BASIC CS CONCEPTS TO ALLOW NON-CS MAJORS TO COMMUNICATE WITH CS-MAJORS AND MAKE THE
CONNECTIONS BETWEEN HARDWARE AND SOFTWARE PEOPLE BETTER. ALSO, BEING ABLE TO WRITE
SIMPLE PROGRAMS IS A BENEFICIAL SKILL TO HAVE.

59 ME 2005 a
60 ME 2005 yes
61 ME 2005 You shouldn't have to know programming unless you are going to use it in your job,

pro-E is useful for ME's programming the lathe's etc, which should be taught but
programming launguages such as C++ should not be necessary.

62 ME 2004 I think CS1005 is pretty standard for getting the CS idea across.
64 ME 2005 That might be nice, particularly for people like me who really don't know anything.
65 ME 2006 an intro to C++ that covers a general basis of the program
66 ME 2006 If the resources exist, it would be nice to have seperate sections for the

different majors so that students can apply their CS knowledge to their area of
study.

67 ME 2005 How to create things that can help in the computer related business field
68 ME 2004 A better explaination when it comes to the labs. I took cs1005 and had a lot of

trouble because the teacher and the book did not explain how to program. Seeing
that I am a ME major programing is hard for me to pick up on.

71 ME 2005 i dont know anything about programming
72 ME 2005 I don't really know anything about college level programming. Therefore, I'm not in

a position to make any suggestions.
73 ME 2005 I don't really know anything about college level programming. Therefore, I'm not in

a position to make any suggestions.
74 ME 2005 general programming
75 ME 2005 Don't know
76 ME 2003 More theory since the skill to learn different programing languages will probably

be more important than one particular.
77 ME 2004 Code for Excel and Pro/E. Those are what my major needs in everyday courses.
78 ME 2005 Basic skills
79 ME 2004 Real world situations, problems, etc.
80 ME 2003 yes
82 MFE 	 2006 Yes, definitely. I wasn't quite sure which CS course to take as an

introduction. Luckily, my roommate is CS and explained everything to me.
83 MFE

	

	 Professors should spend more time on teaching how to code, not only the
concepts.

84 MFE 	 2005 Nothing really
85 MGE 	 2003 The programming part to be gone through better...Its the only class I NRed at

WPI and I had to retake it...and I have a high GPA. The class goes too fast for
those who know nothing about programming and makes those who dont know anything
about it feel like idiots

86 MIS 	 2004 The basics: what programming is, how to use it, etc., so students can decide
if they have any interest in the subject before taking another class.

87 NA NA 	 From what I've heard, the introductory courses are already easy enough.
88 ND 2006 Basics covered well, A nice easy pace
89 ND 2006 Yes
90 ND 2006 general programming concepts instead of details of a perticular language, although

a perticular language may serve as an example of those concepts
91 PH 2005 I would like to see an introductory theory course and a separate introductory

programming course.
92 PH 2006 Basic, but not too easy.
93 PH 2006 Examples of programming used in jobs from other majors.
95 PH 2005 The basic fundamentals like functions and variables and whatnot. Also, maybe the C

syntax.
97 PH 2006 Mostly concepts that often come back, so as to make a student more familiar with

what programming often entails, fundamentally.
99 PH 2005 a basic overview of a couple languages
100 TC 2004 The programming courses should provide an understanding of how programs generally

work. It should relate directly to problems abstracted from real life, such as a
way to store addresses.

77

101 TC 2003 yes
102 EE MS 	 Perhaps connections to thier major?
103 EE 2006 A lot of people have very different backgrounds in programming, so it is hard to

know where the intro course should start. I would like to see the first few weeks
broken up into small sections, so that everyone can learn at a different speed. I
know that I can't take CS 2005, but I expect to not learn anything in the first 2-3
weeks of CS 1005/6.

104 EE 2005 I would like to see every kind of programming language touched on and taught. just
in case we run into something, we can have a slight idea what the CS majors do.

105 EE 2004 I think it would be beneficial to almost all non-majors
106 EE 2004 That could be helpful for those students who do wish to learn a little programming,

which might help them out later on during their WPI career.
107 EE 2005 Nothing, from my experience, it was what I completely expected.
108 EE 2003 definitely
109 EE 2005 yes, if it will count for a cs credit for EE
110 EE 2005 at least some c++, and maybe a little java as well
111 EE 2005 Possibly, if it wasnt too difficult
113 EE 2005 yes
115 EE 2005 YES
116 EE 2003 yes
117 EE 2004 Less theory, more problem solving exercises.
119 EE 2003 I'm not sure that I can comment on this directly, because I came to WPI having some

prior programming experience. I went straight into EE3815 (VHDL), which as a
'prereq' recommended some general programming experience. So I think the
intermediate level is good for a non-CS major. I think Verilog would be very
useful to an EE.

120 EE 2004 No...no need
121 EE 2003 GUIes
124 ECE 	 2006 Show practical usage of programming in areas beyond CS.
125 ECE 	 2005 A small section that (couple of days of course work) that explores the inards

of a computer. Most graduates these days, if not all, will have to work with
computers. If they only plan on taking one course, then they should be presented
with all the basics. I would fuse together 1001 with a little 1005 and toss in
some hardware work (ie. what a motherboard is, what the CPU does, the different
buses, and the add in cards. Plus a basic explanation of the various ports, like
IEEE1284, 1394, RS232, USB, and so forth. They will encounter these devices most
everyday, and should not falter when one of these devices is presented to them.

126 ECE

	

	 2004 Good theory coverage. Problems relevant to the major. Good and understanding
instructors.

127 ECE 	 2004 Graphics.
129 ECE 	 2006 isnt cs1005 an introductory course?
130 ECE 	 2006 Yes, I would like to have some knowledge of programming.
131 ECE 	 2006 Basics on the languages and basic ideas and concepts behind what things do.
132 ECE 	 2005 I do not know that much about what is currently offered, but an intro to

object oriented programming, while touching on assembler seems reasonable. The
ability to write programs to perform mathematical functions or simple text
manipulation is very valuable in an intro course. I think an intro course, one
should do programming in a text editor, such as Emacs, NOT in an independent
development environment such as codewarrior. These programs shelter the user from
understanding how to really put a program in place without the IDE.

133 ECE 	 2005 As much theory as possible.
134 ECE 	 2005 Use Basic... Best way to teach basic concepts without worying about more

complex issues. VB is also a likely laguage to be used in the field.
135 ECE 	 2005 Purhaps
136 ECE 	 2005 I think a CS course should be created for non-CS majors, which include

software programming with some hardware introduction.
137 ECE 	 TR 	 all the basics of programming
138 ECE 	 2005 more help
139 ECE 	 2005 Yes.
140 ECE 	 2005 HTML
141 ECE 	 2005 Something that focuses or is applicable to the particular non-CS major.
142 ECE 	 2005 teach how to program
143 ECE 	 2005 Adequate Coverage of Algorithms before any actual programming .
144 ECE 	 2005 Go slowley, helps the non-cs majors.

78

145 ECE 	 2005 It would be useful to all non-CS majors as well as CS majors for the topic of
Matlab and how programming is related to it be touched on. Possibly some
exercises... not too extensive though. Just enought to be familier with the syntax.

147 ECE 	 2005 the basics i guess like the format off programming what it is and basic loops
149 ECE 	 2005 Major related programming
150 ECE 	 2005 The same general material, but easier (take less time to complete) homeworks,

and spend a little more time on each topic for those of us who have never heard of
a lot of the stuff being taught to us.

152 ECE 	 2005 C++/Java
153 ECE 	 2002 Would like the proffesor to start on the assumtion that the topic has never

been introduced before to the student
154 ECE 	 2005 More of the thinking process of programming. Like algorithms, and thinking of

ways how you approach problems.
155 ECE 	 2005 C++ and HTML
156 ECE 	 2005 i think that it was taught very well
157 ECE 	 2005 programming microprocessors such as the PIC, assembly, in my opinion was the

easyest programming language to learn
158 ECE 	 2005 Something easy
159 ECE 	 2005 i wouldnt change a thing
160 ECE 	 2005 Matlab, C++ and less conceptual
161 ECE 	 2002 C programming, covered pratically, not just theoetically
162 ECE/HU 2005 more examples
163 CS 2006 Lot's of hands-on programing with minimum theory and maximum practical applications
164 CS 2006 I'd like to see a little more generalized programming. When I was in my second

year of 'CS' (more ECE than CS, really) in high school we spent a little time
programming. We went through and learned how to program similar simple programs in
a few of the easier languages. (Assembly, BASIC, C)

165 CS 2005 Perhaps a little bit more of the basics before jumping right in, i.e. covering data
types, what a funciton is, etc.

166 CS 2005 I think the introductory course for CS majors is suitable for non-CS majors.
167 CS 2006 Basic programming skills up to object oriented programing.
169 CS 200? Definitly, I think this is a great idea.
170 CS 2006 A little more basics
171 CS 2005 1005, 2005
172 CS 2005 More real world examples of how it applies to their major, and how it can be useful

to them.
174 CS 2006 Basic skills, less theory. Popular language, general topics.
175 CS 2005 start with basic c++, then move on to show the robustness oft the language.
176 CS 2003 Slower pace. Use more practical languages like C/C++ and Java as opposed to

Fortran
177 CS 2005 Projects that show a relation to their majors, not just programming random stuff.
178 CS 2005 Yes, it would give everyone a decent background in the subject area
179 CS 2005 dont know didn't take the class
180 CS 2003 No
183 CS 2006 Practical grounding in one of the general-purpose languages.
184 CS 2005 More concepts, less programming. After all, they are not going to need to program,

but know the concepts are important if and when they work with programmers
185 CS 2005 easy java/ or scheme(because of built in lists and not using
186 CS 2005 Split them up into groups by major and expose them to ways that programming could

possibly affect their major, or ways they could use that skill to help themselves
in their major.

187 CS 2005 everything in cs1005
188 CS 2005 i think an introductory course would be a good idea, many people will need to know

how to read code when they get jobs. and if they don't need it in their job, it
may be helpful elsewhere

189 CS 2005 A slower toned down approach to not only learning how to program in a certain
language but how to program in general.

190 CS 2005 More emphasis on programming theory than practical usage
191 CS 2005 Basic concepts and programming skills like data types and basic techniques
192 CS 2005 More what programming is and not dive right into the language.
194 CS 2005 A lot of syntax being covered.
195 CS 2004 If there was a course I think that it should introduce students to general

programming techniques, etc. Some students find it very difficult to learn
programming in C, C++ if they have no interest in it. I think the courses should be
alittle easier for non-CS majors.

79

198 CS/EE 	 2005 universal syntax generalities, what compilers are, how to find info on
programming specifics, basics of computer architecture, software, and hardware.

199 CS/EE 	 2004 yes

80

18) General Comments:
12 BC 2003 Taking an Intro to C course without knowing what to expect, it would be nice to

have a survey or somesort of make sure you understand the prereqs for the course
before its too late.

16 BE 2003 Non-CS majors do not have a lower ability to program at a basic level. They don't
need a special course to teach them.

21 CE 2004 If you do not have an interest in programming it can be difficult, boring, and time
consuming.

26 CE 2005 It would help to have a CS course that anyone can take and understand.
52 MAC 	 2006 Having not taken any courses here yet, I cannot give much input. I have

heard good comments from my friends who have taken the courses, but I don't know
any specific criticisms.

60 ME 2005 most WPI students have enough general computer knowlage to handle basic programing
situations without a required course

74 ME 2005 I dont really know that much about programming.. Learning about it would be
interesting

75 ME 2005 I've never taken any courses. I was kinda interested at first, but after all the
horror stories I've heard? I might still take one then again I might not.

76 ME 2003 Computer programing is a useful skill it also helps promote anylitical thinking.
78 ME 2005 none
79 ME 2004 WPI Intro to CS needs concrete examples, not contrived abstracts.
82 MFE 	 2006 Regarding the language below... / I barely understand any of it, which is why

I am taking CS 1005 in the first place. However, language B seems to be a bit more
simplistic, but I may be completely mistaken.

83 MFE 	 CS at WPI is a pretty hard
84 MFE 	 2005 I'm not interested in CS at all, only taking this survey for a professor, so

I'm sorry to give you nothing useful.
85 MGE 	 2003 The CS program for non majors really needs to get started or get better or

something-although CS is one of the three biggest majors at wpi, there are atkeast
50 percent of the wpi community who isnt a CS major and NO non cs major courses
offered...thats really not appropriate.

86 MIS 	 2004 I only took CS 2005 because it was required for my major at the time. It
wasn't horrible but I probably wouldn't have taken it if I'd known it was going to
be dropped as a requirement for MIS majors. I'll never use the stuff again.

89 ND 2006 A course that would teach the basics would be very helpful.
101 TC 2003 I've heard that the intro CS classes (ie CS 1005) are much too hard if you come to

WPI to learn programming and haven't learned it before.
102 EE MS 	 If by the last question, you are implying that a generic language might be created

for WPI CS... MIT has already done this with a language called CLU (pronounced
'CLUE'. / My brother and sister in law went to MIT and learned in CLU and she is
now working for Microsoft, and he is in the computer gaming industry.) /
http://www.pmg.lcs.mit.edu/CLU.html / On the other hand, I'd teach them what is
commonly in use. Sliderules are cool, but... / / Also, I'd teach an infix
notational language because it is more like math and therefore the thought
processes learned are probably more generally applicable (only, I'd pick a standard
one.)

103 EE 2006 Good luck with your IQP.
108 EE 2003 the theory behind the programming languages should perhaps be left to CS majors to

worry about. although a basic understanding of how and why a structure is being
used is necessary, i don't see the point of too much depth being chosen over
sufficient breadth in the introductory courses.

109 EE 2005 CS intro classes should be smaller and not taught out of the book, more examples
and less theory.

119 EE 2003 Aesthetically, I prefer 'high-level' languages like Matlab, Basic, VHDL to 'low-
level' languages like assembly. Sure, low-level languages may be a more efficient
use of hardware in some cases, but writing code is more labor intensive, and
therefore a less efficient use of human resources. 	 / / I especially like
Hardware Description Languages (HDL) because they are 'high-level' (behavioral),
efficient, very-fast, powerful, and embeddable, and they utilize familiar EE
knowledge (we already think in terms of hardware). From the point of view of an EE
student, I consider program counters, and pointers to be abstract concepts.

81

Software always runs on hardware anyway, so EEs can and should use their knowledge
to their advantage when programming.

125 ECE 	 2005 I like the idea of a programming course for non CS folks, and I believe the
current 1000 level courses offer what is needed. However since most will only take
one course, I think it is important to design a special class JUST for non CS/ECE
majors. I outlined an idea above.

126 ECE 	 2004 Most of the times if a non-CS major is taking for example CS 2005, they are
at a huge disadvantage. They need different level of learning and the instructor
spends most of the time discussing advanced theories with the students who already
know the material. / I personally think knowing how to program is important, but
requiring a generic course of everyone is not a good approach.

132 ECE 	 2005 My understanding is that Java isn't particularly taught at WPI. My intro
course (at Harvard Extension School) was in Java, and I wonder that it wouldn't be
valuable to teach. I have also heard that 2005 is fairly easy, which is too bad
since Data Structures is an interesting and challengin subject.

135 ECE 	 2005 I knew a little bit about programing before I came here and it helped but the
course was really good.

138 ECE 	 2005 I just don't believe that the teachers take into account that not everyone
has been programming since they were 10 years old.

141 ECE 	 2005 I am currently taking CS2005. Many ECE majors that I have talked to have
failed the course at least once, most only achieving a C the second time around. I
feel this is too excessive for non-CS majors, since it takes their concentration
off of courses related to their major.

142 ECE 	 2005 programming is something that some people can do naturally and other are bio
majors

143 ECE 	 2005 I took CS 2005, as I had taken AP computer Science in high school, and got
credit for cs 1005 for it. I was very surprised by cs 2005, as it was completely
different in regards to expectations and how things were graded, although this is
not to say that the course was bad. It was simply different. /

145 ECE 	 2005 When I interned last summer at Bose Corp., the engineers there almost assumed
knowledge of Matlab. All the engineers there used it... from EE to ME etc...

150 ECE 	 2005 CS1005, for an INTRODUCTORY course, at least the one I took (A term, 2002,
Professor Joe Wong's class) is far too hard. I'm having an easier time in CS2005
than I did in 1005. But I heard I would need that class for 2005, which is the
easiest way to fulfill the CS requirement for ECE majors. / 	 An introductory
course that focuses on basics rather than dabbling a short time in lots of topics
would be far better. / 	 Question 19: Both these languages stink: C++ is easy to
learn, stick with that.

155 ECE 	 2005 WPI offers many very good classes on programming. I wish they were more a
part of the ECE program.

157 ECE 	 2005 cs is too hard in most of the classes / / ABOVE ALL ELSE: / SCHEME SUCKS
158 ECE 	 2005 I don't think programming should be required unless you are a CS major.
164 CS 2006 The C++ course wasn't really worthwile to me because I'd just gotten out of a year

of C programming and the only difference between C and C++ are the commands and the
object oriented stuff, but we didn't even get into the 00 stuff until the last
week. It wasn't included on anything but one lab, and the way the grading system
was set up if you'd gone to enough of the other Wednesday labs/Tuesday classes you
didn't need to show up for it.

165 CS 2005 The above questions were answered with regards to CS 1006 and do not reflect my
opinions on the other courses listed.

169 CS 200? I really hope that the a course can be designed for all majors to teach practical
programing. / / Definitly Language B!!

186 CS 2005 As I'm a CS major filling this out for 2 homework assignment bonuses, you should
probably disregard this survey. But I did try to fill it out honestly and fully,
so take it as you will. / Also, making non-CS majors make a choice between prefix
programming and infix programming is a real bitch move, because the prefix looks
ugly, and they won't have used it, so of course they'll pick infix. That's a
really biased question, and I don't think the results of it are indicative of
anything except that people who don't know much about CS like easy-looking
languages.

189 CS 2005 I feel that only a lower introductory programming class should be required of non-
CS majors as some of the classes (i.e. CS2005) are too much for someone with that
little programming experience to be expected to pass.

199 CS/EE 	 2004 this survey is poorly desinged. Since I am able to select MULTIPLE choices
for both CS courses and many other options, it is not clear that you are interested

82

in a particular CS class. AS you can see from my response up top, I have taken MANY
cs classes and they were all on a different level. You are not asking me to
evaluate an introductory class specifically, but rather evaluate _ALL_ my CS
classes at one time, which is IMPOSSIBLE.

IV. Language Preference
19) Below are two languages we are considering for an introductory computer science course. If you prefer one over

the other, please mark below:

language A (Scheme) language B (Python)

;; factorial # factorial
(define (fact x) def fact(x):

(if (<= x 1) 1 if (x <= 1):
(+ x (fact (- x 1))))) return 1

else:
return fact(x-1) * x

;; quadratic equation # quadratic equation
(define (quadeq a b c) from cmath import sqrt

(let [(disc def quadeq(a, b, c):
(sqrt (- (expt b 2) (* 4 a c))))] disc = sqrt(b**2 - 4*a*c)

(cons (/ (+ (- b) disc) (* 2 a)) ans 1 = (-b + disc)/2*a
(cons (/ (- (- b) disc) (* 2 a)) ans2 = (-b - disc)/2*a

'0))))
return (ans 1, ans2)

Programming Language Preference

84

A.2 Faculty Interviews and Surveys

A.2.1 Interview analysis

After we issued a survey to students, we sought feedback from faculty of different

departments. We started by conducting individual interviews. P.K. Aravind, Terri

Camesano, John Goulet, Judith Miller and Creighton Peet were gracious enough to

let us interview them. We asked about the current introductory CS sequence as well

as what they would like to see their students learn in an introductory CS course.

We received a range of opinions about the current introductory CS courses.

One professor thought the current introductory CS courses did the job. Students

who did projects with this professor use programming extensively in MQPs and are

fluent in C/C++/Java. Another professor expressed the opposite view about the

current introductory course: "The students who have taken [CS 1001] feel it's pretty

useless" .

When we asked about what faculty would want to see in an introductory course

the responses were similar. Most mentioned knowledge of algorithms, looping, and

logic. A few professors noted that knowledge of MatLab or Maple would be very

useful since students use those packages in other classes.

During our interviews with the faculty, a few exceptional ideas were hit upon.

Professor Goulet suggested that the last week of an introductory programming

course be dedicated to a particular software package which students will use in

later courses. For math majors the last week would be dedicated to learning Maple,

for chemical engineering the last week would be dedicated to learning MathCAD,

etc. We feel this would be an excellent idea, but would not fit very well in the WPI's

condensed seven-week term. This idea would be better suited at a semester based

school. Professor Camesano also brought an important point to our attention. The

85

schedule of a chemical engineering student doesn't allow time for a CS course, but it

does allow time for engineering electives. This is the reason we came to the conclu-

sion that our course would be more accessible if it were cross-listed as a computer

science and engineering science course.

A.2.2 Survey analysis

Following our interviews with the faculty we got a clear picture about what the

faculty wanted in an introductory CS course. We used the data from the faculty

interviews to create a survey. We asked the faculty to rank particular skills and

concepts in order of importance as well as some open ended questions. The purpose

of ranking the skills and concepts gave us input for creating a course syllabus. The

open ended questions were to confirm our own ideas and to address problems with

the new CS proposal.

We received a total of seven responses from six different departments. The

ranking section of our survey was not as effective as we had hoped. Some respondents

didn't feel comfortable answering many of those questions because they felt they

didn't have sufficient knowledge about the idea or concept. We anticipated this

so we created a glossary where a respondent would click on the word to read a

description about the idea or concept. The feedback we received on that section of

the survey indicated our glossary was not informative enough.

For the open-ended section of the survey we wanted to reinforce some of our ideas

about our recommendations as well as the WPI course proposal. We hypothesized

that listing the course as Engineering Science would make the course more accessible

to students. Also we hypothesized that separate courses for majors and non-majors

would be beneficial, as opposed to the WPI proposal where they suggest one course

for all majors. Finally we hypothesized that non-majors will only be expected to

86

take one course instead of the two courses which the WPI proposal suggests.

The feedback regarding the possibility of having the course be Engineering Sci-

ence was positive, overall. Two responses indicated an ES course would be better

for the students and the rest of the responses didn't know if that would help.

The response regarding separate courses for majors and non-majors reinforced

our hypotheses. Most of the responses indicated that intimidation would be a factor

for students. Responses also indicated that the two groups, majors and non-majors,

have different needs and goals for taking a CS course.

I've also spoken with non-CS majors who would like to take a program-

ming course, but not with CS majors. They feel that if they took a course

with intense CS majors, they would be left behind and they wouldn't end

up learning much. It seems to me that their needs may be very different.

Our last hypotheses concerned the number of CS courses a non-major should

expect to take. The majority of the responses we received said that non-majors

would be expected to take only one course in CS.

A.2.3 Faculty survey questions

Background on the project

This survey is part of an IQP to create a course to teach non-CS

majors about programming in a practical environment. More information

can be found on our [1]project page.

Our goal is to find out what you feel is important for your students

to learn in an introductory CS class. We are attempting to compile a

87

list of skills that your students will likely use in other courses at

WPI and their future careers, so our course can be as beneficial to

your students as possible.

Part 0: Your information

Please fill out the information below; this information will be kept

confidential.

Name

Email

Department ___

May we contact you for more information regarding this survey?

Yes (_) / No (_)

Part 1: Rank Skills

Please rate each of the following concepts as it applies to your

students on a scale of 1-5, where

1 Very unimportant

2 Unimportant

3 Neutral

4 Important

5 Very Important

NA Not Applicable

88

NA 	 1 	 2 	 3 	 4 	 5

- Programming -

- Arrays and lists 	 () () () () () ()

- Knowledge of a specific

programming language 	 () () () () () ()

- Using a language with syntax

similar to C/Maple/MatLab 	 () () () () () ()

- Object Oriented Programming 	 () () () () () ()

- Recursion 	 () () () () 	 () ()

- File input/output 	 () () () () () ()

- Looping 	 () 	 () 	 () 	 () 	 () 	 ()

- Implementing data structures 	 () () () () () ()

- String manipulation 	 () () () () () ()

- Modular code and functions 	 () () () () () ()

- Algorithms 	 () () () () () ()

- Understanding syntax and errors 	 () () () () () ()

- Major-specific projects 	 () () () () () ()

- Design -

- General problem-solving skills 	 () () () () () ()

- Knowing where to look for 	 () () () () () ()

resources and help

- Breaking up a problem 	 () () () () () ()

- Program design and design recipes 	 () () () () () ()

- Logical thinking skills 	 () () () () () ()

- Debugging 	 () () () () () ()

- Flow charts 	 () () () () () ()

89

- Mathematics -

- Computer precision and rounding

error () () () () () ()

- Using math functions () () () () () ()

- Random numbers () () () () () ()

- Complex numbers () () () () () ()

- Matrices () () () () () ()

- Ability to translate math/science

equations/concepts to code () () () () () ()

- Boolean algebra () () () () () ()

- Applications and Advanced topics () () () () () ()

- Graphing and plotting data () () () () () ()

- Web programming and CGI () () () () () ()

- Graphics programming () () () () () ()

- GUI programming 	 () () () () () ()

- Pattern matching and regular

expressions 	 () () 	 () () 	 () 	 ()

Comments and/or additions to choices above:

Part 2: Open ended questions

Please answer each of the following questions.

90

2) Do you feel that a CS class with a 1000-level designation would be

better received

than one with a 2000-level designation (by non-majors)? Why?

3) Are you familiar with the CS departments' new introductory CS

curriculum, including a combined introductory sequence for all

students? ([19]Available in PDF form here)

If so, do you believe this proposal will meet your students' computer

science/programming needs? Why or why not?

4) Would an introductory programming course fit better into your

students' schedules as a CS or ES (Engineering Science) course? Why?

5) Do you feel that creating separate introductory CS classes for

majors and non-majors would create a better experience for non-CS

91

majors? Why or why not?

6) How many CS classes is a reasonable expectation for a major in your

field to take? Please elaborate if necessary.

(_) NA (_) 0 (_) 1 (_) 2 (_) 3 or more

7) Do you have any ideas for sample programming projects which would

involve your area of study, but are simple enough for a first-year

student to understand?

Also, would you be willing to be contacted to give more information

about such an assignment?

8) Other comments:

99

A.2.4 Faculty survey results

0 NA

1 Very unimportant

2 Unimportant

3 Neutral

4 Important

5 Very Important

Programming
Arrays and lists

Knowledge of a
specific

3
programming
language

Using a language
with syntax similar 	 5
to C/Maple/MatLab

Object Oriented 	 2
 Programming

Recursion 	 3

File input/output 	 4

Looping 	 3

Implementing data 	 3
structures

String manipulation 3

Modular code and
3

functions

Algorithms 	 4

Understanding 	 4
syntax and errors

Major-specific
5

projects

Design
General
problem-solving 	 5
skills

Knowing where to
look for resources 	 5
and help

Breaking up a 	
5

problem

Program design
3

and design recipes

Logical thinking
5

skills

Debugging 	 5

Flow charts 	 5

Mathematics

Computer precision 4
and rounding error

Using math
5

functions

Random numbers 	 1

Complex numbers 	 2

Matrices 	 4

Ability to translate
math/science

5
equations/concepts
to code

Boolean algebra

Applications and
Advanced topics
Graphing and

5
plotting data

Web programming
4

and CGI

Graphics
3

programming

GUI programming 	 3

Pattern matching

5

5

5

5

5

1

1

1

1

1

1

1

1

1

3

3

3

5

5

3

2

5

3

2

4

4

2

1

1

4

3

5

4

3

2

2

1

1

1

1

1

2

2

1

2

2

2

5

5

5

3

5

3

4

2

4

4

1

2

2

5

5

1

1

1

4

3

5

5

5

4

5

4

4

5

5

4

5

5

4

5

5

3

4

3

3

3

4

4

4

4

4

3

5

3

0

0

0

0

0

0

0

0

0

0

0

0

5

4

5

4

5

4

4

0

0

0

0

0

0

0

0

0

3

4

4

4

5

4

3

3

4

4

3

3

3

3

3

3

4

5

3

4

5

5

4

2

2

2

94

and regular
	

1 	 1 	 2 	 4 	 0 	 1
expressions

RComments

2)Level 	 maybe

My strange
pattern of
responses
has to do
with the
importance
of using
Excel in
graphing
data in my
class. They
have to be
able to
handle
functions but
not code
them on their
own.

yes, less 	
Sure -- it

intimidating
would seem
less involved.

yes, I would
recommend
that they
take the
first course Not that
only. It
	

familiar - I'm
doesn't
	

sure it will
matter to
	

meet their 	 don't
me what
	

minimal 	 know
language programming
they learn, needs in my
it's the class.
thinking
skills that
are
importnat.

The reason I answered
"NA" to all but the
Design section is
because honestly I
don't feel sufficiently
informed about the
issues to be able to
judge the importance
of those specific skills
to students these days.
The skills/abilities in
the Design section
seemed sufficiently
broad that they would
contribute well to the
education of any WPI
student-- that's my
instinct. Even if there is
"overlap" with design
skills taught in my
discipline, I think it
would be good for
students to see it
applied to computer
program design. I
almost feel as if recent
non-CS alumni would
know better how to
weigh the importance
of some of the other
areas.

Yes. I think it would be
less intimidating, 	 Yes. It
especially for students implies that
who have no prior CS

	
previous CS

or programming
	

knowledge is
experience from high

	
not required.

school.

For some students,
perhaps, but I've also
spoken with non-CS
majors who would like
to take a programming
course, but not with CS
majors (no offense).
They feel that if they
took a course with
intense CS majors, they
would be left behind
and they wouldn't end
up learning much. It
seems to me that their
needs may be very
different.

3)New initiatve

CS courses don't
satisfy any
specific CM
requirement, so
my guess is that
relatively few
students take CS
courses. Only
students with a
specific interest or
who plan to go to
grad school is
some other field
end up taking CS.

4)CS vs ES

Students in my
department would
be better off
taking a course
listed as "ES" since
they could count
this as an
engineering
elective. They
must take 3
engineering
electives. It is not
that they wouldn't
benefit from the
course or that
they are not
interested, but
having the course
crosslisted as ES
or EE would help
students meet
certain

doesn't
matter

I don't know.
don't
know

I don't think it matters
for ME majors, but to
be honest I'm not really
sure. I think that either
way, the course would
be "counted" toward
our overall
"engineering science
and design"
requirement, but I'm
not 100% sure! The
person to ask in ME
about whether CS
courses "count" in our
general engineering
science and design
category is Prof. Zhikun
Hou, who is the one
who currently checks
audits.

ES: a non-CS
is interested
in
programming
skills to
address
engineering
situations
with a
numerical
solution.

95

Perhaps --
the
expectation
of prior
training
would be
lower for a
non-majors
class.

Yes, I think there would
be less variation in
prior programming
experience, which

possibly would make the
non-majors feel "less
stupid" and in a
lower-pressure
environment.

1

5)Separate majors
from non majors

6a)# of classes

6b)# of classes
comment
	 0 or 1

I think it
might
create a
better
experience
for CS
majors,
because it
would be a
better
balanced
and more
diverse
group of
students.

1 1 	 2

As people get
more training
in
psychology,
it is helpful
to program
displays and
data
collection for
experimental
studies on
computers.
Our students
don't
currently
require that
level of
advanced
knowledge.

Yes: CS
majors have
numerous
other
interests
associated
with the
science of
CS. non-CS
majors are
interested in
the
engineering
(not science)
aspects.

2

requirements.

probably. Non-CS
majors might feel
intimidated if CS
majors already
have a lot of
background
programming
knowledge and
the non-majors
have no prior
background.

7)sample projects

maybe something
in reaction
engineering, but
this is not my area
of expertise.

Personally,
no.

Sure -- they
could
program a
sequence of
displays for
people to
respond to
and record
responses
and reaction
times.

Hmm, not really. An
alternative to trying to
tie it to particular areas
of study would be to try
to select projects that
almost any student
would relate to from
their everyday lives/
activities. In other
words, try to engage
their interest from the
co-curricular realm
rather than in their
major discipline?
Unfortunately I can't
think of any specific
ideas, but it's a
possible alternative
strategy that wouldn't
require you to think of
"n" different
programming projects
for "n" different majors.

Yes to both.

My research students
sometimes need to write their
own programs for instrument
control and data
manipulation. We have used
Excel, Sigma Plot, MatLab,
Maple, and HPVEE. Once one
becomes familiar with one
kind of programming, it's
easy to transfer that thinking
to other programs, so even if
students don't get instruction
in the specific programs that I
mention, just learning about
how computers work is
valuable.
The graduates of a tech
school should all know how

96

8)Other Comments
- surf the Internet, download
information from a site, use a
spreadsheet, take a quiz on
the computer, use a word
processor and presentation
software, and write a web
page. I agree that it would be
good to have a CS course for
non-CS majors that teaches
students to be competent
computer users. For the
computer-skittish, the
gentlest and most fun way to
introduce them to actual
programming is web-page
design, I think. I believe this
is a requirement for
undergraduates at
Dartmouth.

contact.

97

Appendix B

Transcript of Interview with

Elkner

Wed Mar 19 15:00:02 2003

Brad Noyes: Welcome everyone. Thanks for making it. We are interviewing Jeff who is in VA.

Brad and Brian are in a lab at WPI, and Prof Carolann Koleci is in her office, at WPI. So

let's begin.

Jeff Elkner: hi everyone

Carolann Koleci: Hi all!

Brian Corcoran: Just to remind Jeff, our project is on creating a Programmining Course for

non-CS-majors, using Python.

Jeff Elkner: sounds good

Jeff Elkner: my only direct experience is with high school students

Carolann Koleci: Question regarding area of concentration, is there a CS teach exam in VA

high schools?

Jeff Elkner: no

Carolann Koleci: What is the size of the class and the size of the school (student population

wise)?

98

Jeff Elkner: school: 1500

Jeff Elkner: class: 2 sections of 25 each

Brian Corcoran: Are there other CS classes offered besides the one you teach?

Jeff Elkner: i was only describing CS I and II, our 1st year class

Jeff Elkner: we also have AP CSC, Network Operations (CISCO), and CIS Advanced Topics

Brad Noyes: so in total there are 5 CS classes there?

Jeff Elkner: yes

Brad Noyes: Are these classes each half year?

Jeff Elkner: no, they are all full year, execpt CS I and II, which are two half years taught back

to back

Jeff Elkner: making them effectively a full year

Carolann Koleci: Do you use any other standard way of measuring your student's abilities? In

physics we national assessment tools that we use to measure conceptual gain of understand-

ing, anything similar for CS?

Jeff Elkner: unfortunately, i don't have any effective formal measurement tools at present

Jeff Elkner: CS classes are electives, and VA has not put any standard tests in place

Brad Noyes: What else have you taught at the HS level?

Jeff Elkner: i've been teaching for 12 years, math and cs

Carolann Koleci: Common problems the you see in the student's learning, is there a particular

area where student's have trouble?

Jeff Elkner: there are several

Carolann Koleci: what are some of the most prominent ones?

Jeff Elkner: the biggest one is getting them to think algorithmically

Carolann Koleci: We see that in physics too.

Brian Corcoran: what exactly do you mean by that?

99

Jeff Elkner: to understand what a computer is capable of doing and being able to express what

they want it to do in terms the machine can understand

Jeff Elkner: it is also what i like most about teaching this subject

Brian Corcoran: Our other co-advisor, who could not make it, saw a general problem with

abstraction,

Jeff Elkner: i tell my students throughout the year, "Computers are dumb as rocks! It is up to

you to make them do clever things"

Jeff Elkner: yes, abstraction is difficult

Brian Corcoran: in particular, functions. Have you experienced this?

Jeff Elkner: yes, and the nice thing about doing this in a CS class is i get to reinforce what they

are learning in math

Jeff Elkner: in a way that is more fun for many students

Jeff Elkner: writing functions is what we do all year

Brian Corcoran: That idea is a basic part of the class we hope to create; using programming

and science/math to reinforce one another.

Jeff Elkner: it is a wonderful idea

Jeff Elkner: and it will work very well, because they naturally reinforce each other

Brian Corcoran: Do you find that separating funcitions and "fruitful functions" help students

understand the concept better?

Jeff Elkner: i tend to focus on a functional style of programming

Carolann Koleci: How many students, or what percentage, are able to make the transition to

think algorithmically, and what do you feel is most responsible for this?

Jeff Elkner: i see a definite progress throughout the year with most students achieving at least a

basic concept of what an algorithm is and how to write one.

Brian Corcoran: You mentioned that you focus on a functional style of programming... Did you

consider Lisp or Scheme for your class? If so, why did you chose Python over them?

Jeff Elkner: i did look at the teach scheme project

100

Jeff Elkner: but i think Python's syntax is so much easier to handle.

Brian Corcoran: That's our view as well.

Carolann Koleci: What kind of applications do you use/provide?

Jeff Elkner: besides, Python provides the flexibility to look at multiple approaches to programming

Jeff Elkner: not just functional

Jeff Elkner: not just 00

Brian Corcoran: Do you cover 00 programing in your class?

Brian Corcoran: and how much?

Jeff Elkner: yes

Jeff Elkner: we will he starting that the last quarter

Jeff Elkner: we will develop a Card and Deck classes and look at some simple card games

Brian Corcoran: do you do any graphical programming?

Jeff Elkner: yes and no

Jeff Elkner: students do independent projects at the end of the year

Jeff Elkner: many of them choose to look at Tklnter, wxPython, anygui

Carolann Koleci: so your students have the option to do graph. programming'?

Jeff Elkner: this year two of my students are looking at VPython

Jeff Elkner: yes

Brad Noyes: We've looked at VPython as well, what are your students doing with it?

Jeff Elkner: in fact, pyKarel was developed by two of my students (see ilffittp://pykarel.slnet)

Brad Noyes: oh okay.

Brian Corcoran: What other packages or programs to you use in your class?

Brian Corcoran: For example, IDLE

Jeff Elkner: i have also used the livewires python course materials

Jeff Elkner: we are using nedit as our editor and running programs from the command prompt

101

Brian Corcoran: have you considering using an IDE?

Jeff Elkner: i tried using IDLE earlier in the year, but the key bindings conflicted with our GUI

Jeff Elkner: we have too many problems

Jeff Elkner: besides, Python provides everything you need write in the shell

Carolann Koleci: Do you know of Other colleges/HS that use python?

Jeff Elkner: yes

Carolann Koleci: Which colleges?

Jeff Elkner: hold on, let me get you a url

Carolann Koleci: thanks!

Jeff Elkner: [2]http://www.ibiblio.org/obp/pyBiblio/schools.php

Jeff Elkner: I'm hoping to add your school to this list ;-)

Carolann Koleci: :-)

Brian Corcoran: We hope to as well

Brad Noyes: Can you list some of the pros and cons of switching to python?

Jeff Elkner: the biggest pro has been that the simplicity and clarity of Python syntax has enabled

me to do so much more in so much less time

Jeff Elkner: the biggest con was all the work it entailed for me, since there wasn't any teaching

materials available

Jeff Elkner: that is changing now

Brad Noyes: Ahh, are there any cons for the students?

Jeff Elkner: if the goal is to teach students abstract thinking skills and give them a taste of what

computer programming is, then i would say no

Jeff Elkner: Python is *so* much better than C++ for those goals

Brian Corcoran: How do students find the transition from your class to the AP CS course?

Jeff Elkner: only a small percentage of the students go on to AP, and their reactions vary.

102

Jeff Elkner: most are ready by then for a language that requires more thinking at a level closer

to the machine hardware, so they have fun with C++

Jeff Elkner: next year it will be Java

Brian Corcoran: How large is the AP CS class?

Jeff Elkner: This year I only have 4 students

Jeff Elkner: next year it will probably be more like 15

Carolann Koleci: Have you noticed gender bariers in your classes? Do fewer female students

continue on to the other CS class?

Jeff Elkner: well my numbers are so small it is hard to reach meaningful conclusions

Jeff Elkner: 1 of the 4 AP students is female

Jeff Elkner: which is a higher percentage then the intro classes

Jeff Elkner: but if she wasn't there it would be 0

Brian Corcoran: What percentage of your intro class is female?

Jeff Elkner: give me a minute

Jeff Elkner: 5 of 25 in 1st period

Jeff Elkner: 6 of 24 in 2nd period

Brian Corcoran: In general, how do female students rank in the class? Do you find that they

respond to particular methods/projects different than the male students?

Jeff Elkner: the female students tend to be above average.

Carolann Koleci: Any idea if this correlates with math ability?

Jeff Elkner: i always figure that they had the independence of spirit to buck the trend by signing

up for the class in the first place

Jeff Elkner: i've seen a lot of discussion about whether different approaches to teaching pro-

gramming would be more effective with female students, but i can't say i've found anything

conclusive

103

Brad Noyes: Since you have switched to python, has the enrollment been larger in your class

then in the past?

Jeff Elkner: yes it has, but i don't necessarily think that has to do with python

Jeff Elkner: our school has been shifting demographically

Jeff Elkner: I'm finding that female students from other countires are more likely to take CS

classes

Carolann Koleci: interesting

Brad Noyes: What about enrollment in general for your class?

Jeff Elkner: it is about twice what is was before we started using python

Jeff Elkner: but again, that has a lot to do with what i want to do with the class

Brian Corcoran: what do you mean?

Jeff Elkner: i want it to be more of a liberal arts class than a stepping stone only for future

engineers and CS majors

Carolann Koleci: Has the level of enthusiasm in students changed since you started to teach

python?

Jeff Elkner: yes, but the best way to really measure that is at the top end

Carolann Koleci: top end?

Jeff Elkner: i would say that most of my students still leave the class thinking that programming

was interesting, but not something they would want to do in their spare time

Jeff Elkner: for the kids who want to program, Python really stands out

Brian Corcoran: Do any students use python or programming in other classes, or outside of the

classroom?

Jeff Elkner: because they can reach their goal of writing real, powerful applications in much

shorter time.

Jeff Elkner: outside the classroom, certainly

Brian Corcoran: Have you done any collaboration with other departments?

104

Jeff Elkner: there is always a small group of students who spend more time than they should

programming

Jeff Elkner: yes, i have a student now working on a program with a biology teacher

Brian Corcoran: Can you elaborate on that?

Jeff Elkner: he is working on a program that graphs data that students are gathering in the

biology class

Jeff Elkner: last year 2 students did a science fair project similating reproduction of fruit flies

Brian Corcoran: Can we get more information about these projects, after the interview?

Jeff Elkner: should brad be the email i use to contact you?

Brian Corcoran: That's fine.

Brad Noyes: We have noticed that students now start to develop their own projects (pyKarel,

Zuite). Did students do this before you started to teach python?

Jeff Elkner: not to anywhere near the degree they do now.

Jeff Elkner: this is what i meant by "the top end"

Jeff Elkner: with Python programming is faster to learn and easier to be productive

Jeff Elkner: students are now capable of doing things they could not have done before

Jeff Elkner: three students this year are working on pyJotto, and program called SpellQuest

Jeff Elkner: in each of these projects i have been able to hook up interested students with pro-

fessional programmers who mentor them

Carolann Koleci: that sounds wonderful

Brian Corcoran: Do these professionals usually know python?

Jeff Elkner: yes

Jeff Elkner: i find them in the Python community ;-)

Jeff Elkner: i look for a professional programmer who already has a cool project they are working

on in their spare time.

105

Jeff Elkner: i offer them the following win-win deal: you mentor my kids, and they will help you

with your program.

Carolann Koleci: Do these projects turn into summer internships?

Jeff Elkner: we now have a relationship with a local software company that has hired our top

student for the past two years.

Jeff Elkner: i mean one student last year, and one this year.

Brad Noyes: In your email you mentioned having some students participate with us. Since our

idea is to integrate science and programming we would like ask if your students would be

able to do some projects that we come up with about science.

Brad Noyes: Our goal would be to have your students do the projects and see what they learn

about the area of science they project was based on.

Jeff Elkner: that would be great!

Brad Noyes: excellent!

Jeff Elkner: what science areas do you have in mind?

Brad Noyes: physics, Bio ...perhaps Chem and math.

Jeff Elkner: i have two students who have expressed an interest in doing something with chem-

istry

Carolann Koleci: inorganic, organic, preferences?

Jeff Elkner: keep in mind that we are a high school, i don't know how much organic they do.

Carolann Koleci: Ah, very true.

Jeff Elkner: that is the biggest potential problem, we are at different levels of academia

Brian Corcoran: not by too much; this would be a freshman-level class, so we don't assume

much science background.

Jeff Elkner: but i have students taking AP science courses, so they would be more or less on par

with 1st year students at your end

Jeff Elkner: when could we start?

106

Brian Corcoran: We're still in the process of designing the projects

Jeff Elkner: so you are looking at next school year?

Brian Corcoran: we were hoping this year; we don't anticipate the design taking too long.

Jeff Elkner: that would be good, because projects work best for me at the end of the year.

Carolann Koleci: what's your prediction for the future of python, where's it heading?

Jeff Elkner: python seems to be entering its heyday now

Jeff Elkner: it is becoming more and more integrated with the Linux OS, which is also increasing

in popularity

Jeff Elkner: it is being used for applications such as Blender, Sketch, Zope

Jeff Elkner: and it is finding it's way into more and more classrooms

Brad Noyes: Okay, one last question ... Do you have any questions for us?

Jeff Elkner: how did you come to use Python in your class design?

Brian Corcoran: Basically, we wanted a language with a simpler syntax than what was currently

being used. Also, we wanted a free, cross-platform language.

Brian Corcoran: We also wanted a language which look similar to C, MatLab, etc.

Jeff Elkner: oops, my son just told me he has soccer practice and i need to take him.

Brad Noyes: okay ... i think we're done.

Carolann Koleci: Thanks so much for your thoughtful replies and help!

Brad Noyes: Thanks for your time!

Jeff Elkner: i look forward to collaborating with you in the future!

Jeff Elkner: eya

107

Appendix C

Project Examples

C.1 Biology

Biology

Computer Simulation of Disease Propagation

References, Programming techniques

• Adapted from Fortran 90 for Scientists and Engineers [10], p. 609 problem 20

• Biology

• Random numbers

• Functions/subroutines

• Flow control

• Arrays

Background

One of the major uses of computer programming in biology is to simulate environ-

ments or situations which are too complex to be modeled by hand.

108

Problem

Suppose you need to model the spread of a epidemic (such as the recent Sars infection

in Asia) on a population of N people. The spread of the disease is modeled using

various parameters. Your job is to simulate the spread of the disease for a certain

number of days.

Problem 1: You are given two parameters which affect the spread:

1. a "recovery" parameter: the probability that the infected individual will recover

from the disease.

2. a "contact" parameter: the number of people who each infected person comes

into contact with each day.

You will need to be able to run the simulation for a variable number of days,

and show the results after each day.

Program

First, define the parameters you will need:

population size: an integer

number of days: an integer

recovery %: a real between 0-1

contact: an integer

Store the population as an array and use characters to denote the state of each

person:

s = susceptible

i = infected

109

For example, if you start with one person infected, the initial array would be:

9

Next, define the algorithm:

If a person is infected, a random number can be compared with his or her recov-

ery parameter to determine whether he or she will recover from the disease before

contacting other persons.

Each infected person infects 'contact' number of people each day; select these

people randomly from the population (including already infected people).

In order to print out the status each day, just print out each item in the array

(you may want to limit the length of your array to the width of your screen).

Use subprograms for printing the status and the updating of the array.

Hints

First, write the array initialization routine as mentioned above. Next, write a sub-

routine to print out each element of the array.

Once this works, you need to write a function which tests if a person has recovered

from the disease. This function should compare the recovery % to a random number

between 0 and 1, and return true if the random number is less, and return false if

the random number is greater.

The next step is to write a function to see who has been infected. Write a function

to return a random number between 0 and the maximum value of the population

array. The number returned will be used as an index into your population array.

You don't have to worry about reinfecting people who have already been infected.

110

Putting it all together: Now, focus on the actual algorithm. For each day, you

must print out the current population, and check if each person is infected. If they

are infected, you must check to see if they recover. If they do not recover, choose

another person at random to infect.

Problem 2: Problem 2 expands on problem one by adding the following param-

eters:

1. the "resistance" parameter: the probability that a person will not be infected

by the disease upon transmission of a carrier.

2. a "recovery" parameter: the probability that the infected individual will recover

from the disease before transmitting it, becoming immune to the disease for

a duration of time.

3. a "re-susceptible" parameter: the probability that a recovered individual will

become re-susceptible to infection.

4. a variable "contact" parameter: the number of people who each infected person

comes into contact with each day.

Problem follow-ups:

1. Run the model several times with the same parameters. How do the simulations

differ?

2. Try changing the parameters; how to they affect the model? Are there any

simulations that react differently than you would expect?

3. Can you run a simulation so that there is a mix of healthy, recovered, and

infected people after a year?

4. What is wrong with this model? What could be done to improve it?

111

5. What other types of situations could you model using similar techniques?

112

C.2 Physics and Mechanical Engineering

Physics/Engineering

Finite Difference

References, Programming techniques

• adapted from: http://www.funet.fi/ magi/opinnot/mpi/

• Physics/ME

• Functions/subroutines

• Flow control

• Arrays

Background

Numerical Methods is a branch of computer science which deals with problems

such as these. Many problems which would be very difficult or impossible to do

by hand can be solved by a computer. Numerical methods exist to solve linear

systems of equations, partial differential equations, finite differences, and integration

problems. As computers' power grows, scientists and engineers have been able to

apply numerical methods to simulate the physical world.

Numerical Methods work by breaking up a problem into several sub-pieces which

approximate the original. These simple subproblems can be accurately measured

on a computer, and when pieced together, give an approximation to the solution of

the original problem.

In general, numerical methods cannot find an exact answer to a problem; how-

ever, the great the number of subproblems which are solved, the greater the accuracy

of the solution.

113

One particular area of numerical methods is finite differences. Often these prob-

lems are solved using partial differential equations; however, it is also possible to

use numerical methods to solve them.

Problem 1: One-dimensional finite difference.

A heat-conducting metal wire has the left end connected to a bucket of ice water

with a temperature of 0 °C and the right end connected to a kettle of boiling water

of 100 °C. The ends of the wire stay at a constant temperature. The rest of the

metal are room temperature 20 °C.

Figure C.1: Wire connecting hot and cold ends

Use the formula
Xt (i — 1) + Xt (i +1)

Xt+i (i) 	 2

Program/Hints

• Write a function with parameters Xt (i — 1) and Xt (i + 1), to evaluate the

formula. The function should return the result of the formula.

• You will need to create two arrays to hold temperatures for each slice of the

metal wire for time Xt and time Xt+i, call the arrays current_temp and

next_temp. current_temp will represent Xt and next_temp will represent Xt+i .

Since we are dividing up the metal wire into 200 slices, make both these arrays

of size 200. Initialize the values for both arrays to correspond to the initial

114

temperatures of the metal. So the first element should be 0, the value of the

last element should be 100 and all other values should be 20.

Sample current_temp and next_temp arrays:

0 20 20 20 20 20 20 • - 	 • 20 100

0 20 20 20 20 20 20 - 	 • 	 • 20 100

Each element in the array represents a slice of the metal and its current tem-

perature. For each calculation i is represented by the current index of the array

and example calculation of i = 1 would be

Xt (i — 1) + Xt (i + 1)
Xt+i(i) 	 2

The equation with the actual numbers would be 10 = o+22o. Insert the calcu-

lated value, 10, into next_temp[1].

• Iterate through the array current_temp, applying the formula for every el-

ement in the array, except the first element and the last element, since the

temperatures at both ends of the wire will stay constant in this problem.

• In order to determine if the temperature has stabilized you need to compare

the values for Xt _1 and Xt . So after you make one set of calculations, compare

the values in current_temp and next_temp. If all the values are the same, then

the temperature has stabilized.

Part 2: Two-dimensional finite difference ...

Problem follow-ups

1. Determine the amount of time it takes for the temperature of the wire to

stabilize, meaning there is not a temperature change from t to t+1.

115

2. Once the temperature has stabilized, what is the temperature of each element?

3. What are some problems with this model?

116

C.3 Mathematics

Mathematics

Numerical Methods for Integration

References, Programming techniques

• http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/integral/numint.html

• Mathematics

• Numerical Methods

• Functions/subroutines

• Flow control

• Random Numbers

Background

Numerical Methods: The Fundamental Theorem of Calculus gives us an exact

formula for computing the integral of f (x), from a to b, provided we can find an anti-

derivative for f. This method of evaluating integrals is called the analytic method.

However, there are times when it is difficult or impossible to find the anti-derivative

of f . In these cases, it is usually good enough to find an approximate, or numerical

solution.

Numerical Methods is a branch of computer science which deals with problems

such as these. Many problems which would be very difficult or impossible to do

by hand can be solved by a computer. Numerical methods exist to solve linear

systems of equations, partial differential equations, finite differences, and integration

problems. As computers' power grows, scientists and engineers have been able to

apply numerical methods to simulate the physical world.

117

10 x l 1 2 1 3

Numerical Methods work by breaking up a problem into several sub-pieces which

approximate the original. These simple subproblems can be accurately measured

on a computer, and when pieced together, give an approximation to the solution of

the original problem.

In general, numerical methods cannot find an exact answer to a problem; how-

ever, the great the number of subproblems which are solved, the greater the accuracy

of the solution.

Riemann Sums: A Riemann sum is a method of approximating the area under

a curve. The area under the curve is divided up into intervals, which are either

rectangular, or trapezoidal. The Riemann sum is calculated by the sum over all the

intervals.

Le ftApprox. 	 RightApprox.

.4, .1 14.1x, 	 =.1 tel

Figure C.2: Example of right-hand and left-hand approximations

Figure C.3: Example of trapezoid

For more (perhaps better) information about Riemann sums see

http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/integral/numint.html

118

Monte Carlo Integration: Text below adapted from Problem 7.24, F9OFSE

Another method of approximating integrals is known as Monte Carlo integration.

Consider a rectangle that has base [a, b] and height m, where 	 > f (x) for all x in

[a, I)].

Imagine throwing q darts at the rectangle and counting the total number p that

hit underneath the curve f (x) . For a large number of throws, we would expect

p area of shaded region

q 	 area of rectangle

To simulate throwing the darts, generate two random numbers, X from [a, b]

and Y from [0, m], and consider the point (X, Y) as being where the dart hits.

Problem 1: You need to calculate the integral of the function y = x2 from 0 to

2. Suppose that you do not know the anti-derivative of this function, so you must

find a numeric solution.

Calculate the Riemann sums for y = x 2 , from 0 to 2. Use the left-hand sums,

right-hand sums, trapezoidal sums to approximate the integral. How many iterations

are needed for all three results to be within one-tenth of a unit?

Also calculate the integral for y = x2 using the Monte Carlo integration.

Problem 2:

• Implement Simpson's Rule.

• Implement over 3D space.

• Read set of data point from a file and integrate over the data points.

Program/Hints:

• The trapezoidal Riemann sum is in your book.

119

• Write a function that evaluates y = f (x) for a given point.

• Write functions that calculate the areas of a rectangle and trapezoid, given the

hight, width, and, in the case of a trapezoid, the second height.

• Write a program to handle a trivial case; for example, make the number of

intervals 4.

Problem follow-ups:

1. What is the numerical integral of y = x2 from 0 to 2?

2. How many iterations does it take for each Riemann sum method (left hand,

right hand, and trapezoidal) to converge to one-thousandth (.001) of a unit for

y = x2 ?

3. What is the numerical integral of e(-x2) from 1 to 5?

4. Of the different approximation methods, which seems to be best? why?

More Information

WPI Courses that deal with Numerical Methods:

MA 3257/CS 4032 Numerical Methods for Linear and Nonlinear Systems.

MA 3457/CS 4033 Numerical Methods for Calculus and Differential Equations.

MA 4411 Numerical Analysis of Differential equations.

120

Glossary

abstraction 	 The technique of generalizing a concept or problem.

algorithms 	 A logical procedure to arrive at an end goal.

C++ 	 An object-orient programming language based on C.

CM 	 Chemical Engineering.

CS 	 Computer Science. The science of solving problems with the
aid of a computer.

debugging 	 A technique to systematically find and fix problems in pro-
grams.

design recipes 	 A problem solving technique.

emacs 	 A text editor often used for programming.

ES 	 Engineering Science.

FORTRAN 	 The first programming language for numerical and scientific
applications.

fruitful functions Functions which return a value.

HTML 	 Hyper Text Markup Language. A language used to format
web pages.

IDE 	 Integrated Development Environment. An editor to ease de-
velopment of programs.

Java 	 An object-oriented programming language developed by Sun
Microsystems.

libraries 	 A collection of functions which perform a specific task (such
as 3D animation).

major-based 	 Projects specificly designed for a student's particular major
projects

Maple 	 A mathematical programming language.

MATLAB 	 A mathematical programming application and language.

non-major 	 A student who is not majoring, minoring, or concentrating in
computer science.

121

NR 	 Not Recorded. WPI's equivalent of failing.

Python 	 An object-oriented programming language.

recursion 	 A function which calls itself; used as a form of iteration.

Scheme 	 A functional programming language based on Lisp.

122

Bibliography

[1] CHAPMAN, S. J. MATLAB Programming for Engineers. Brooks/Cole, 2002.

[2] DEITEL, H., DEITEL, P., LIPERI, J., AND WIEDERMANN, B. Python: How
to Program. Prentice Hall, 2002.

[3] DOWNEY, A. B., ELKNER, J., AND MEYERS, C. How To Think Like a
Computer Scientist: Learning with Python. Green Tea Press, 2002.

[4] ELKNER, J. Using Python in a high school computer science program: Year
1. http://www.elkner.net/jeff/pyYHS/year01/pyYHS.html, 2001.

[5] ELKNER, J. Jeffrey Elkner's home page. http : //www elkner .net/, 2003.

[6] ELKNER, 	 J., 	 BEREZHNY, 	 L., 	 AND STRAW, 	 J. 	 Using

	

Python in a high school computer science program: 	 Year 2.
http://www.elkner.net/jeff/pyYHS/year02/pyYHS2.html, 2002.

[7] FELLEISEN, M., FINDLER, R. B., FLATT, M., AND KRISHNAMURTHI, S.

How to Design Programs: An Introduction to Computing and Programming.
MIT Press, 2001.

[8] GAULD, A. Learn to Program Using Python. Addison-Wesley, 2001.

[9] GOULET, 	 J. 	 Reconstructing 	 a 	 linear 	 algebra
course 	 to 	 serve 	 engineering 	 and 	 science 	 students.
http://users.wpi.edu/r—goulet/ma2071_b02/1inalg_course.htm, 2002.

[10] NYHOFF, L. R., AND LEESTMA, S. C. Fortran 90 for Engineers and Scien-
tists. Prentice Hall, 1997.

[11] Python project homepage. http://www.python.org/, 2003.

[12] RADESTOCK, 	 M. 	 Scheme 	 frequently 	 asked 	 questions.
http://www.schemers.org/Documents/FAQ/, 2003.

[13] Schools using Scheme. http://www.schemers.com/schools.html, 2002.

[14] SHANNON, C. Another breadth-first approach to CSI using Python. In SIGCSE
Bulletin 35.1 (2003), pp. 248-251.

[15] VAN Rossum, G. 	 Computer programming for everybody (revised
proposal): A scounting expedition for the programmers of tomorrow.
http://www.python.org/doc/essays/cp4e.html, 1999.

123

[16] VPython home page. http: //vpython. org/, 2003.

[17] WPI proposal to revise the early undergraduate CS curriculum, 2003.

[18] WPI undergraduate catalog: 2003-2004, 2003.

124

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132

