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Abstract

In my Master’s thesis, I propose advancing Prototypical Networks that employs augmented

latent features (LF) by an autoencoder and multitasking generation (MG) by STUNT

in the few-shot learning (FSL) mechanism. Specifically, the achieved contributions to

this work are sixfold. First, I propose the FSL-LFMG framework for few-shot multiclass

classification on tabular data. This framework incorporates sample-level data augmentation

using autoencoders, task-level data augmentation via an enhanced STUNT framework,

and Prototypical Networks to capture generalized knowledge. Second, I design the latent

features learning and augmentation process that employs autoencoders to extract significant

features, which are then used to enhance the quality and diversity of the training data.

Third, I employ the enhanced STUNT Multitasking Generation framework that uses K -

medoids instead of K -means to generate more accurate tasks. Fourth, I implement an

advanced Prototypical Networks with Manhattan distance as a classifier effectively address

the multiclass classification problem. Fifth, I conduct an extensive experimental study on four

diverse domain datasets—Net Promoter Score segmentation, Dry Bean type, Wine type, and

Forest Cover type—to prove that my FSL-LFMG approach on the multiclass classification

outperforms the Tree Ensemble models and the One-vs-the-rest classifiers by 7.8% in 1-shot

and 2.5% in 5-shot learning. Finally, I demonstrate the adaptation of the new concept task

in the model obtained from the FSL-LFMG framework — from the NPS segmentation (the

existing concept) and obtain a level of customer’s loyalty (the new concept) — to assess the

power of generalization of this framework by significant results of the mean test accuracy in

both 1-shot setting (83.95%) and 5-shot setting (103.52%).

Keywords— Few-shot Learning, Machine Learning, Deep Learning, Multiclass Classification,

New Concept Learning, Autoencoders, Random Forest, CatBoost, One Vs Rest Classifier, STUNT,

Prototypical Networks, Tabular Data
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Chapter 1

Introduction

1.1 Motivation and Background

The increasing volume of data across various sectors, such as telecommunications, agriculture,

and finance, has led to a pressing demand for effective multiclass classification [1]. For

instance, the telecom industry has used many machine learning (ML) models, such as random

forests, decision trees, and discriminant feature analysis, to forecast customer attrition and

enhance investment optimization. These techniques seek to predict customer behavior and

improve investment choices [2]–[6]. In the field of agriculture, ML and deep learning (DL)

improve crop monitoring, yield estimation, and productivity, showcasing their essential impact

on improving farm management and productivity [7]–[11]. In the finance industry, ML and

DL address tasks like risk assessment, pricing, and the development of optimal insurance

packages through various methodologies such as artificial neural networks and clustering

algorithms. These approaches underscore the crucial role of data and the necessity to adapt

to changing financial patterns for improved decision making and efficiency [12]–[14].

The widespread use of data in multiple industries typically involves the utilization of

tabular data that has been demonstrated by a 2023 Kaggle survey of 14,000 data scientists.

The poll indicated that a substantial proportion of professionals within those industries,
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ranging from 50% to 90%, relied on tabular data in their work environments [15], [16]. The

inclination towards tabular data presents distinct challenges such as high dimensionality,

heterogeneity, and critical interdependencies among features, which are not found in images

or other data modalities [17]. Despite these challenges, the adoption of innovative multiclass

classification methods is still growing that demonstrates the importance of these methods in

enhancing decision-making and operational efficiency across industries.

1.2 Research Challenges

Presently, the existing approaches for multiclass classification on tabular data can be broadly

divided into two categories: DL Models and Tree Ensemble (TE) Models [18]. Recent

advances in DL models, such as TabNet, Neural Oblivious Decision Ensembles (NODE), and

Disjunctive Normal Formulas (DNF-Net), have demonstrated exceptional outcomes across

diverse domain datasets [19]–[21]. These models possess the ability to delve into intricate

connections among features, resulting in heightened efficiency and performance for tasks

involving high-dimensional, structured data. Each model utilizes distinct mechanisms for

processing feature selection, which further improves their overall effectiveness. However, these

models present challenges in terms of complexity and computation, as well as interpretability.

On the other hand, the TE models, including Random Forest and Gradient Boosting, offer

enhanced interpretability and reduced computational complexity. In particular, Gradient

Boosting, such as XGBoost, exhibits significantly better performance in tabular data compared

to DL models [17], [18]. However, the remarkable performance of these models is highly reliant

on the utilization of copious amounts of training data, which are inadequate in some domains

and require substantial storage space [22], [23]. Additionally, if the amount of training data

is insufficient, it results in an overfitted model that lacks generalizability.

Few-shot learning (FSL) is an ML technique that trains on a small number of labeled

samples, typically one to five samples per class, providing a potential solution to the afore-
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mentioned issues [24], [25]. This technique enables efficient learning of multiclass classification

tasks with only a limited amount of data [26]. Although FSL has achieved noteworthy success

in the domain of image classification, research on these techniques on tabular data has been

widely underexplored [27]. Furthermore, the application of FSL in conjunction with TE

models on tabular data is very challenging because of the models’ limitations in generalizing

on a few data samples per class.

An effort to address the limitations of TE models led to the implementation of the

One-vs-the-rest (OvR) multiclass technique [28]. This method is specifically designed for

multiclass classification and involves dividing the tasks into a series of binary tasks. The OvR

classifier strategy can be integrated into various existing ML conventional models, including

TE models, as the base estimators. This technique is expected to enhance the classification

capabilities of tree-based models by splitting tasks into binary tasks. However, there is an

opportunity that this technique provides suboptimal results due to the potential loss of

significant data characteristics, such as complex interclass correlation and interaction, which

could result in unsatisfactory performance in classification tasks.

To improve and generalize the ability of models is to augment the data, thereby increasing

data variability. Data augmentation can be conducted either at the sample or task level [29].

At the sample level, typical methods for image data involve modifying pixel properties through

actions, such as rotation, scaling, cropping, and other similar approaches. These actions are

performed to increase the variety of data. On the contrary, when it comes to tabular data,

there is currently no recognized approach that can complete this data augmentation task. In

order to tackle this issue, we investigate the use of autoencoders to extract significant latent

features. Two methods have been experimented in this context: one is to directly apply

the extracted latent features to a classifier, and the other is to concatenate these encoded

latent features with the original data in order to enhance the number of features. The main

contributions in this work are to utilize the knowledge found in large datasets to improve

the accuracy of multiclass classification that leads to higher levels of accuracy. Despite
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its potential merits, this methodology is not reliable for comprehending new tasks, as it

primarily concentrates on a single task, i.e., the process of learning to predict a single outcome,

including binary, multiclass, or continuous values, respectively, from a labeled dataset. Hence,

in addition to latent features, it is essential to employ task-level data augmentation methods

that can improve the precision of classification, while also facilitating the model to efficiently

learn new tasks. The task-level augmentation entails generating new tasks to offer the model

a boarder range of learning experiences.

The incorporation of Self-generated Tasks from UNlabeled Tables (STUNT) is recognized

as a prominent task-level data augmentation strategy [27]. Through the treatment of data

as unlabeled, this technique has the potential to generate various tasks for a single dataset.

This outcome is attained by applying the K -means clustering method to create new labels.

It is anticipated that the generation of self-tasks leads to effective generalization, as the

model acquires knowledge from multiple tasks, i.e., the process of jointly learning to predict

multiple outcomes on inputs of the same dataset, simultaneously. In order to capture the

generalized knowledge, a meta-learning scheme called Prototypical Networks (ProtoNet) is

utilized as a classifier [30]. In contrast to ProtoNet, tree-based models lack capabilities to

perform generalization on small datasets because their complicated structures tend to overfit

specific training samples instead of capturing broader patterns. A lack of data also makes

methods, such as bagging, less useful, resulting in trees that are not varied and less-than-ideal

decisions at splits [31]. ProtoNet has proven to be highly accurate and effective across various

types of data [27], [30], [32]. This approach successfully generates representative prototypes

or mean embeddings for each class by utilizing Euclidean distance to determine the proximity

of a target task to its prototype.

To incorporate the advantages of the above methods into my approach, I propose advancing

ProtoNet that employs augmented latent features (LF) by an autoencoder and multitasking

generation (MG) by STUNT in the few-shot learning mechanism. Specifically, the achieved

contributions achieved to this work are fourfold. First, I propose an FSL-LFMG framework
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to develop an end-to-end few-shot multiclass classification workflow on tabular data. This

framework is composed of three main stages that include (i) data augmentation at the

sample level utilizing autoencoders to generate augmented LF, (ii) data augmentation at

the task level involving self-generating multitasks using the STUNT approach, and (iii) the

learning process taking place on ProtoNet, followed by various model evaluations in my

FSL mechanism. Second, due to the outlier and noise sensitivity of K -means clustering [33]

and the curse of dimensionality of the Euclidean distance [32], I enhance and customize

the STUNT approach by using K -medoids clustering that is less sensitive to noisy outliers

and Manhattan distance that is the most preferable for high-dimensional data. Third, I

conduct an extensive experimental study on four diverse domain datasets—Net Promoter

Score (NPS) segmentation, Dry Bean type, Wine type, and Forest Cover type—to prove that

my FSL-LFMG approach on the multiclass classification outperforms the TE models and the

OvR classifiers by 7.8% in 1-shot and 2.5% in 5-shot learning. Finally, I demonstrate the

adaptation of new concept task on the model obtained from the FSL-LFMG framework —

from the NPS segmentation (the existing concept) and obtain a level of customer’s loyalty (the

new concept) — to assess the power of generalization of this framework by significant results

of the mean test accuracy in both 1-shot setting (83.95%) and 5-shot setting (103.52%).

1.3 Problem Statement

After identifying the key challenges in this research, I can define the problem statement that

this study aims to address as follows:

1. How to create a framework that can integrate few-shot learning for multiclass classifica-

tion problems on tabular data and overcome the challenges of current methods?

2. How to extract the most significant features to support data augmentation on few-shot

examples?
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3. How to generate diverse tasks to offer a model a broader range of learning experience

on few-shot examples?

4. How to capture the generalized knowledge learned from above to support the develop-

ment of a multiclass classifier?

5. How to design and conduct experimental studies to verify and evaluate the superiority

of my proposed approach over traditional tree ensemble models and OvR classifiers in

few-shot learning scenarios?

6. How to adapt my developed framework to the new concepts in few-shot learning

settings?

1.4 Thesis Statement and Summary of Research Con-

tributions

According to the problem statement provided, the thesis statement can be defined as follows:

It is possible to create a framework that integrates few-shot learning for multiclass

classification on tabular data by enhancing data augmentation, generating diverse

learning tasks, and capturing generalized knowledge for robust classifier develop-

ment. This framework is experimentally validated to demonstrate its superiority

over traditional tree ensemble models and OvR classifiers in few-shot learning

scenarios and adapts to new concepts in these settings.

In this thesis, I focus on a framework, models, algorithms, and experimental case studies to

bridge the gaps to solve the above problems. Specifically, I propose an advanced Prototypical

Networks-based framework incorporating augmented latent features through autoencoders

and multitask generation using the STUNT approach to address the limitations of current

methods. The key technical contributions of this thesis are as follows:
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1. Develop the FSL-LFMG framework for few-shot multiclass classification on tabular

data, involving sample-level data augmentation using autoencoders, task-level data

augmentation using the enhanced STUNT, and Prototypical Networks to capture

generalized knowledge.

2. Utilize autoencoders to extract significant features in the Latent Features Learning and

Augmentation process, enhancing the quality and diversity of the training data through

sample-level data augmentation.

3. Employ an enhanced STUNT Multitasking Generation process, replacing K -means with

K -medoids to generate tasks more accurately, leveraging the benefits of K -medoids

over K -means.

4. Implement an advanced Prototypical Networks, a common neural network in few-shot

learning, with Manhattan distance as a classifier to capture generalized knowledge and

address the multiclass classification problem effectively.

5. Conduct the extensive experiments on four diverse datasets to demonstrate that my

FSL-LFMG approach outperforms both TE models and OvR classifiers by significant

margins in both 1-shot and 5-shot learning scenarios.

6. Demonstrate the adaptation of new concept tasks on the models obtained from the

FSL-LFMG framework and provide its experimental results.

The remainder of this thesis is organized as follows. Chapter 2 discusses related works

on FSL. Chapter 3 introduces my proposed FSL-LFMG framework. Chapter 4 describes

the process that learns the LF using autoencoders. Chapter 5 explains the MG approach

using STUNT. Chapter 6 explains the meta learning process using Prototypical Networks.

Chapter 7 details the experimental results, analyses, and discussion. Chapter 8 demonstrates

the adaptation of new concept task on the model obtained from the FSL-LFMG framework.

7



Finally, in Chapter 9, I provide a conclusion and outline my future work for this Master’s

thesis.
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Chapter 2

Related Work

2.1 Traditional Multiclass Classification Algorithms

Two widely recognized algorithms that have attracted significant attention in the field of

multiclass classification are Random Forest and CatBoost.

2.1.1 Random Forest

Random Forest, introduced by Breiman [34], is an ensemble learning method that combines

multiple decision trees to improve the overall accuracy and robustness of the classification

task. The algorithm constructs a collection of decision trees, each trained on a random subset

of the features and a random subset of the training data. The final prediction is made by

aggregating the predictions of the individual trees through majority voting.

2.1.2 CatBoost

On the other hand, CatBoost, developed by Yandex in 2017, is a gradient boosting framework

particularly adept at handling categorical variables, a common occurrence in tabular data.

One of CatBoost’s key advantages is its ability to automatically handle categorical variables

without the need for explicit feature engineering, a process that can be time-consuming and

9



often requires domain expertise [35].

2.2 Challenges with Limited Data

Both Random Forest and CatBoost have demonstrated impressive performance in multiclass

classification problems in tabular data, especially when ample training data is available.

For example, studies by [36], [37] and [38] show that Random Forest performs well in big

data environments with abundant training data. Similarly, studies by [39], [40] indicate that

CatBoost performs competitively in fields such as human resource analytics, finance, and

marketing. However, the implementation of these algorithms in limited sample settings or

few-shot scenarios is still underexplored. Some studies such as those by [41] and [42] address

the problem of multiclass classification but focus on imbalanced data where limited data is

available only for minority classes. These studies do not tackle scenarios where all classes

have a limited number of examples.

In a few-shot setting, CatBoost is used as a baseline by [27] which results in suboptimal

performance, but the gap is not significant compared to the approach they propose. Given the

strong performance of Random Forest and CatBoost in large-data scenarios, it is important

to include these two models as the baselines in my FSL study. I also design an OvR model

using both Random Forest and CatBoost as baseline models to examine the effect of data

augmentation at the task level in FSL.

2.3 Few-shot Learning

2.3.1 Common Approach

The idea of FSL comes from the ability of human to learn from a limited example. Some FSL

methods [43]–[47] have shown success in various domains, especially in image classification. In

general, there are three approaches for image classification using FSL, including metric-based
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learning, transfer learning, and meta-learning models. A metric-based learning model is

trained to learn a similarity metric or space in which samples from the same class are closer

together and samples from different classes are farther apart, often used in the classification

of hyperspectral images [48]. A transfer learning model is a pre-trained model that possesses

knowledge (i.e., features and weights) leveraged for an FSL task, especially useful when

the few-shot task has limited data but is related to the larger dataset, like decomposing

images into objects for object-level representation learning [49]. A meta-learning model is

trained on various learning tasks to quickly adapt to new tasks using few training examples,

such as combining meta-learning with transfer learning and metric learning for medical

image classification [44]. However, the application of FSL in other domains, especially in

tabular data, has not received much attention and its research is still not widely explored by

researchers even though its application can be a solution to the high demand on the need for

a large amount of training data.

2.3.2 Few-shot Learning on Tabular Data

Some researchers have tried to propose some specialized FSL frameworks on tabular data:

(1) TabLLM that is a method to use large language models for zero-shot and few-shot

classification of tabular data by serializing tabular data into natural-language strings and

fine-tuning with labeled examples, competing with traditional models like gradient-boosted

trees in very-few-shot settings [50]; (2) FLAT that is an approach for few-shot learning

on tabular datasets to handle heterogeneous feature spaces by learning low-dimensional

embeddings of datasets and columns using a Dataset2Vec encoder, and then applying a graph

attention network to manage the heterogeneity [51], [52]; (3) STUNT that is a framework for

few-shot semi-supervised tabular learning to generate diverse tasks from unlabeled data, using

a meta-learning scheme to acquire generalizable knowledge and an unsupervised validation

scheme for hyperparameter optimization [27]. It utilizes randomly chosen columns as target

labels for these tasks, employing a meta-learning scheme to acquire generalizable knowledge.

11



2.3.3 New Concept Learning

Few-shot learning trains models to recognize new classes or new concepts with few labeled

samples, essential for situations where large datasets are impractical or expensive [53].

Prototypical Networks and Relation Networks are frameworks designed to improve a few-shot

learning by efficiently capturing the data structure and enabling the generalization of models

from a few examples in image classification problems [30], [54]. In this context, a new concept

is defined as an unseen class or category that has not been available during training, and

with the power of generalization of the FSL framework, learning a new concept is possible

using meta-learning [55]–[57].

Learning a new concept can also be related to open-world classification that starts with a

known set of classes and incrementally learns about unknown items or hidden classes from

a dynamic data stream [58]. In this approach, inputs are classified into known classes or

recognize them as unknown, handle unknown or hidden instances efficiently, and continuously

learn new classes while retaining previously acquired knowledge [58], [59]. The open-world

framework usually addresses the challenges of dynamic environments and continuous learning.
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Chapter 3

FSL-LFMG Framework

3.1 Introduction to FSL-LFMG Framework

In this section, I describe and explain my proposed FSL-LFMG framework that is an end-to-

end pipeline consisting of four main modules shown in Figure 3.1. The modules include Data

Preprocessing (DP), Latent Features Augmentation (LFA), Multitasking Generation (MG),

and Prototypical Network (PN).

3.2 Data Preprocessing (DP)

First, raw tabular data is passed into the DP module that processes and cleans the data

in three separate steps in sequence. In STEP 1, the data is divided into three parts, i.e.,

training set, validation set, and test set. The ratio among them is 64:16:20. For instance, in

the NPS telecom dataset, which comprises 100,000 samples, the dataset is divided into 64,000

samples for the training set, 16,000 samples for the validation set, and 20,000 samples for the

test set. In STEP 2, to deal with numerical features in the dataset, I apply the Min-Max

scaler to ensure that all those features are on the same scale, for instance, between 0 and 1.

The Min-Max scaling is defined by the following equation:
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Figure 3.1: FSL-LFMG Framework.

xscaled =
x− xmin

xmax − xmin

(3.1)

where xscaled is the new scaled value, xmin is the minimum value of the feature, xmax is the

maximum value of the feature, and x is the original value. This approach helps minimize

the influence of varying scales and measurements among different numerical features. For

example, the ’data usage’ feature of my NPS dataset has a range of 100 to 90,000, while the

’upload’ feature has a range of 1 to 1,250. By using the Min-Max scaler, I transform these

features into the same range of 0 to 1. In STEP 3, to manage categorical features, I employ

the one-hot encoding technique to encode categorical data into numerical ones that enables

ML models to understand. For instance, the ’tariff’ feature has three unique categorical

values, i.e., Level 1, Level 2, and Level 3. By performing the one-hot encoding technique on

this feature, I convert the values in the categorical variable into a numeric form (i.e., 1, 2,

and 3, respectively) that can be read by the model while maintaining its ordinal nature.
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3.3 Latent Features Augmentation (LFA)

After the data is cleaned, they are passed into the LFA module that augments the existing

features with the latent features learned from the autoencoder. This module aims to

increase the data variation at the sample level by increasing the number of input features.

Specifically, the core of the LFA module involves training the autoencoder and then utilizing

the trained encoder to extract the most important and compact latent features, which are

then concatenated with the existing features to obtain a larger number of features. This

process is further detailed in Chapter 4.

3.4 Multitasking Generation (MG)

After the features are augmented, they are fed into the MG module, where the STUNT

methodology [27] is implemented to facilitate the multitasking generation process. This

approach is designed to address the challenges of FSL and aims to enhance the diversity of

data at the task level by generating a range of diverse tasks. In each task, a random selection

process is conducted with a specified number of samples according to the designated support

and query sets. The support set consists of examples that is used for training, while the query

set contains examples that is used for testing. For instance, in Task i-th, where i = 1, ...,m,

in the 1-shot setting with three classes, one sample is randomly selected from each class, so

the number of support set is three. Then the number of queries is set at fifteen samples per

class to evaluate the performance of the model in Task i-th. This process is replicated in

the predetermined number of tasks. In my work, I employ K -medoids rather than K -means

for the task generation process, as K -medoids is a more robust method for overcoming the

influence of noisy outliers in the dataset. In contrast to the original method, which utilizes

K -means for segmentation and produces pseudo labels that resemble existing labels, my work

employs K -medoids to improve the accuracy and reliability of the results. This process is

thoroughly explained in Chapter 5.
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3.5 Prototypical Networks (PN)

Finally, the tasks corresponding to the selected data and features are passed into my meta-

learning paradigm of the PN module, which effectively generalize from minimal examples

by shaping a metric space conducive to distance-based classification which is explained in

detail in Chapter 6. This holistic framework not only addresses the complexities inherent

in FSL but also sets a new benchmark for processing tabular datasets more efficiently and

accurately.
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Chapter 4

Latent Features Learning and

Augmentation

4.1 Introduction to Autoencoders

Autoencoders are employed in high-dimensional data for feature extraction to generate

compact representations that accurately reflect the original data [60]. This technique is

particularly advantageous for image and video data, as it minimizes storage requirements.

For tabular data, autoencoders extract critical features that aim to replicate the original

dataset’s characteristics fully. The training of autoencoders shown in Figure 4.1 utilizes a

substantial portion of data to capture prevalent attributes, yielding the encoder, depicted by

green layers that consist of three hidden layers (i.e., h1, h2, and h3) to map the input features

x to a latent representation z that extracts the significant features. The decoder, shown in

the blue layers that consist of three symmetrical hidden layers with the encoder’s hidden

layers (i.e., h
′
1, h

′
2, and h

′
3), reconstructs the input features x̂ from z, aiming to minimize the

difference between x and x̂. The trained encoder can then transform the new input data

into the latent representations z that is useful for the downstream tasks, including data

augmentation and classification, respectively.
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Figure 4.1: A high-level architecture of autoencoders adapted from [60].

4.2 Autoencoders Architecture

4.2.1 Encoder and Decoder

Mathematically, the encoder E and decoder D can be formulated in the following transfor-

mations:

Encoder :



h1 = σ(W
(E)
1 x+ b

(E)
1 )

h2 = σ(W
(E)
2 h1 + b

(E)
2 )

h3 = σ(W
(E)
3 h2 + b

(E)
3 )

z = σ(W
(E)
4 h3 + b

(E)
4 )

(4.1)

Decoder :



h
′
3 = σ(W

(D)
4 z + b

(D)
4 )

h
′
2 = σ(W

(D)
3 h

′
3 + b

(D)
3 )

h
′
1 = σ(W

(D)
2 h

′
2 + b

(D)
2 )

x̂ = σ(W
(D)
1 h

′
1 + b

(D)
1 )

, (4.2)
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where x is a set of input features, z is a set of latent features, x̂ is a set of reconstructed

input features, Wi is a weight matrix, bi is a bias, hj is a hidden layer, and σ is the ReLU

activation function shown in Equation (4.3), for i = 1, 2, 3, 4 and j = 1, 2, 3.

σ = ReLU(x) = max(0, x) (4.3)

4.2.2 Optimization

In this work, I develop a three-layer symmetric autoencoder architecture with the ReLU

activation functions to regularize the process. During the learning process, I utilize the mean

squared error (MSE) loss criterion to optimize the architecture by using the Adam optimizer

with a learning rate set at 10−3. To prevent overfitting, the early stopping is implemented

with a patience parameter of 5 that not only ensures the optimal model performance but also

reduces the likelihood of training divergence. The optimization of autoencoder quantified

using MSE between the original inputs x and the reconstructed outputs x̂ can be defined as

follows:

MSE = L(x, x̂) = 1

N

N∑
i=1

∥xi − x̂i∥2 (4.4)

This loss function MSE guides the training process that encourages the model to find the most

representative latent features, where N is the total number of data instances in the training

set. The Adam optimizer, which adaptively adjusts the learning rate for each parameter

based on the estimations of first and second moments of the gradients and the learning rate

η = 10−3, can be defined as follows:

W(E),b(E),W(D),b(D) ← Adam(∇L, η) (4.5)
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Figure 4.2: Process of augmentation latent features.

4.3 Feature Extraction and Augmentation

Once the encoder is trained, it transforms the original data x to the latent features z shown in

Figure 4.2. After that, I perform the min-max normalization using Equation 3.1 to ensure the

encoded features has the same scale with the original features. These scaled features are then

integrated with the original dataset to generate the augmented data, i.e., xaugmented, shown

in Equation (4.6), which enhances the overall feature set and increases the data variability.

This augmentation is expected to improve the model’s generalization capabilities.

xaugmented = [x : z] (4.6)

4.4 Example of Augmentation Process

To illustrate this process, for example, I consider a dataset that has three different instances

and 11 features shown as follows:

x =


0.50 0.20 . . . 0.20

0.40 0.10 . . . 0.10

0.30 0.60 . . . 0.30

 ∈ R3×11

Training the autoencoder on this dataset x reduces the number of features from 11 to two.
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These two encoded features are then used in my augmentation process, which results in

generating a total number of 13 features used in the MG process. The detailed procedure is

described in the following steps:

Step 1: Encoding. The encoder network is defined in Equation (4.1), where

W
(E)
1 ∈ R7×11, b

(E)
1 ∈ R7

W
(E)
2 ∈ R5×7, b

(E)
2 ∈ R5

W
(E)
3 ∈ R3×5, b

(E)
3 ∈ R3

W
(E)
4 ∈ R2×3, b

(E)
4 ∈ R2

Using the learned weights and biases obtained from Equation (4.4) after 100 epochs, the

computations proceed as follows:

h1 = σ(W
(E)
1 x+ b

(E)
1 )

h2 = σ(W
(E)
2 h1 + b

(E)
2 )

h3 = σ(W
(E)
3 h2 + b

(E)
3 )

z = σ(W
(E)
4 h3 + b

(E)
4 )
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For example, if the learned weights and biases are obtained as follows:

W
(E)
1 =


0.1 0.2 . . . 0.1

...
...

. . .
...

0.1 0.2 . . . 0.1

 , b
(E)
1 =


0.1

...

0.1



W
(E)
2 =


0.2 0.1 . . . 0.1

...
...

. . .
...

0.2 0.1 . . . 0.1

 , b
(E)
2 =


0.1

...

0.1


...

W
(E)
4 =

0.1 0.2 . . . 0.1

0.1 0.2 . . . 0.1

 , b
(E)
4 =

0.1
0.1


, I calculate:

h1 = σ(W
(E)
1 x+ b

(E)
1 )

h2 = σ(W
(E)
2 h1 + b

(E)
2 )

h3 = σ(W
(E)
3 h2 + b

(E)
3 )

z = σ(W
(E)
4 h3 + b

(E)
4 )

The encoded feature matrix is obtained as:

z = σ



0.78 1.00

1.08 1.42

1.23 1.58




The ReLU activation function from Equation (4.3) keeps all values the same, so

z =


0.78 1.00

1.08 1.42

1.23 1.58



22



Step 2: Min-Max Scaling of Latent Features. To ensure the latent features that are

on the same scale as the original ones, I apply a Min-Max scaler from Equation (3.1) to the

latent representation z before the concatenation and then compute the scaled vector zscaled

as follows:

zscaled =


0.00 0.00

0.67 0.72

1.00 1.00



Step 3: Concatenation with Original Input Features. After scaling by Equation 4.6,

the augmented dataset xaugmented is formed by concatenating the original input x with the

scaled latent features zscaled:

xaugmented
3×13

=


0.50 0.20 . . . 0.20 0.00 0.00

0.40 0.10 . . . 0.10 0.67 0.72

0.30 0.60 . . . 0.30 1.00 1.00

 (4.7)

Then xaugmented here is used in the MG process in the next module.
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Chapter 5

STUNT Multitasking Generation

5.1 Introduction to Task-Level Data Augmentation

Data augmentation at the task level is to build the common knowledge by performing multiple

tasks from a dataset. STUNT is a specific framework that can generate those multiple diverse

tasks using the K -means clustering as a pseudo-label generator [27]. The idea behind this

approach is that each feature can serve as a label for the other features. For instance, Figure

5.1 is a original dataset with three input features (x) (i.e., complaints, data usage, and age)

and a target binary variable (y) (i.e., cancellation (yes/no)). In this example, I assume that

there is a positive correlation between complaints and cancellation, from which I can use

complaints as a new target variable and use the other variables as the input features. By

generalizing this concept, I can first consider the data that is unlabeled; and this STUNT

method randomly selects some features and then utilizes the K -means algorithm to perform

the clustering. In each cluster, the pseudo-label can be obtained by computing the center of

the cluster aka the centroids. By iteratively the above task generation process using different

combinations of features, I can generate the corresponding new datasets with their own labels

from the original dataset.
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Figure 5.1: Example data from telecom dataset, adapted from [27].

5.2 STUNT Framework

More specifically, following [27], given a dataset X of unlabeled tabular data, I summarize

their approach and formalize the process as follows:

Step 1: Masking Ratio Sampling. Sample a masking ratio p from a uniform distribu-

tion over a range of hyperparameter [r1, r2], where 0 < r1 < r2 < 1.

Step 2: Binary Mask Creation. Generate a random binary mask m ∈ {0, 1}d, where

d is the number of features and the sum of elements in m is ⌊dp⌋ where ⌊·⌋ is floor function

applied to dp.

Step 3: Column Selection. Use the mask m to select columns from the unlabeled

data X. The selected data is denoted by sq(x ◦m), where ◦ indicates element-wise multipli-

cation, and sq(·) represents a squeezing operation that removes elements corresponding to
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zeros in m.

Step 4: K -means Clustering. Apply K -means clustering on the selected columns to

generate pseudo-labels ỹ. The objective function for the K -means is given by:

min
C∈R⌊dp⌋×k

1

N

N∑
i=1

min
ỹi∈{0,1}k

∥sq(xi ◦m)− Cỹi∥22 (5.1)

such that ỹT
i 1k = 1

, where C is the centroid matrix, k is the number of centroids, 1k is a vector of ones and xi

represents the i-th sample in the dataset. ∥ · ∥22 indicates squared Euclidean distance, used

here to measure the distance between the transformed data points and the cluster centroids.

Step 5: Data Perturbation. To prevent trivial learning by the classifier, perturb the

selected column features by:

x̃ := m ◦ x̂+ (1−m) ◦ x (5.2)

, where x̂ is sampled from the empirical marginal distribution of each column feature.

Step 6: Task Definition. The generated task TSTUNT from the process is defined as:

TSTUNT := {(x̃i, ỹi)}Ni=1 (5.3)

5.3 Enhancements with K -Medoids

In this work, I enhance and customize the STUNT approach by using the K -medoids as

an alternative clustering method to the K -means shown in Figure 5.2 that is a high-level

overview of the modified STUNT approach. I propose this approach because the K -medoids

clustering is more robust to outliers, as it uses the actual data points as the centers aka
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Figure 5.2: Multitasking generation using K-medoids, adapted from [27].

medoids, thereby avoiding the influence of extreme values, unlike K -means. Thus, in Equation

(5.1) above, I change to use the K -medoids clustering instead of the K -means clustering.

More precisely, I apply the K -medoids clustering on the selected features to generate the

pseudo-label ỹ. The objective function for the K -medoids clustering using the Manhattan

distance is given by:

min
C∈R⌊dp⌋×k

1

N

N∑
i=1

min
ỹi∈{0,1}k

∥sq(xi ◦m)− Cỹi∥1 (5.4)

such that ỹT
i 1k = 1,

, where C is the centroid matrix which is the medoids matrix, k is the number of medoids,

and xi represents the i-th sample in the dataset. ∥ · ∥1 represents the Manhattan distance

to measure the distance between the transformed data points and the cluster medoids. The

medoids are selected from the dataset X, and each data point xi is assigned to the nearest

medoid based on the Manhattan distance.
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5.4 Example of Task Generation

To provide a clear implementation of this module, I take the matrix obtained by Equation

(4.7), as an example, to generate a task TSTUNT1 . Given a matrix xaugmented:

Step 1: Masking Ratio Sampling. For instance, if r1 = 0.2 and r2 = 0.5, then p = 0.3

Step 2: Binary Mask Creation. Given

d = 13, ⌊dp⌋ = ⌊13× 0.3⌋ = 3

, the example mask is

m =

[
1 1 0 0 0 0 0 0 0 0 0 0 1

]

Step 3: Column Selection.

sq(x ◦m) =


0.50 0.20 0.00

0.40 0.10 0.72

0.30 0.60 1.00



Step 4: K -medoids clustering. The objective function for K -medoids clustering using

Manhattan distance is given by Equation (5.4). Assume k = 2, I obtain:

pseudo-label =


0

1

1

 ; medoids =

0.50 0.20 0.00

0.40 0.10 0.72


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Step 5: Data Perturbation. Perturb the selected column features by Equation (5.2). The

red color means the result of perturbation.

x̃ =


0.40 0.60 . . . 0.20 0.00 0.72

0.50 0.20 . . . 0.10 0.67 1.00

0.30 0.10 . . . 0.30 1.00 0.00



Step 6: Task Definition. The generated task TSTUNT from the process is defined as in

Equation (5.3):

TSTUNT1 =



x̃i,


0

1

1





3

i=1

(5.5)

Then the diverse tasks generation from this module is defined as follows:

{TSTUNTj
}mj=1 (5.6)

, where m is a hyperparameter which is the number of tasks. After the completion of diverse

tasks generation, the learning process is undertaken by ProtoNet, which aims to develop a

model capable of generalizing based on diverse inputs from various tasks.
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Chapter 6

Prototypical Networks

6.1 Introduction to Prototypical Networks

Prototypical Networks (ProtoNet) is a neural network that employs meta-learning to learn

variety of tasks. Specifically, after the MG module generates the diverse tasks by Equation

5.6, data samples are taken from a collection of those tasks. For each task, the support

(S) set and the query (Q) set are then selected. As shown in Figure 6.1, i.e., a high-level

framework of few-shot learning concept using ProtoNet, the model is trained on the support

set and evaluated on the query set, with the meta-learner being updated based on the query

set’s performance. Following this, the meta-learner is utilized for adaptation and prediction

on a new test set using a fresh batch of labeled data, with a small portion serving as the

support test set.

6.2 Advantages of Prototypical Networks

Several advantages have been identified by [27] regarding the use of ProtoNet as an embedding

function or learner in few-shot settings, including flexible centroids, agnostic application, and

optimal performance. Flexible centroids refer to the adaptability of ProtoNet to various

cases by adjusting the number of k or centroids. Agnostic application allows for the direct
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Figure 6.1: Few-shot learning concept using ProtoNet adapted from [30].

application of this architecture to tabular data without significant difficulty. Additionally,

ProtoNet has demonstrated strong performance in various modalities, as reported in some

studies [27], [30], [32]. This study also highlights the flexibility of ProtoNet as a benefit. The

original ProtoNet employs the Euclidean distance for metric learning, but the research work

conducted by [32] on image classification suggests that the Manhattan distance is a strong

substitute for this metric, potentially improving performance. It would therefore be intriguing

to apply this substitution to tabular data, as the Manhattan distance has advantages over the

Euclidean one, especially in a high-dimensional data. The differences between the Euclidean

and the Manhattan distance are visually shown in Figure 6.2. The Euclidean distance (i.e.,

the red line) measures the shortest straight-line distance between the two points that is

calculated by using the Pythagorean theorem. The Manhattan distance (i.e., the blue path)

measures the distance between the two points by summing the absolute differences of their

coordinates.
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Figure 6.2: Comparison between Euclidean distance and Manhattan distance.

6.3 ProtoNet Configuration

In this work, the architecture of ProtoNet follows a multilayer perceptron (MLP) design

that consists of a 2-layer fully connected neural network with a hidden dimension of 1,024,

as recommended by [27]. Given a task selected by Equation 5.5, I construct the classifier

using the episodic training way. Training episodes are created by selecting random subsets

of classes and examples, with some examples acting as (S) and (Q) from each task. The

Prototypical networks create a prototype or an average representation for each class using

an embedding function Fθ with a learnable parameter θ. Each prototype is the mean of the

embedded points in its class calculated as follow:

ck =
1

|Sk|
∑

(x̃i,ỹi)∈Sk

Fθ(x̃i) (6.1)
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, where Sk is the support set associated with the prototype k. Using a distance function d,

which is the Manhattan distance, the network calculates the probability of a class for a query

point x̃i by taking a softmax over distances to the prototypes:

pθ(y = k | x̃i;S) =
exp(−d(Fθ(x̃i), ck))∑
k′ exp(−d(Fθ(x̃i), ck′))

(6.2)

, where the Manhattan distance is

d(Fθ(x̃i), ck) =

NSk∑
i=1

∥Fθ(x̃i)− ck)∥1 (6.3)

Next, I compute the cross-entropy loss on the classifier pθ as follows:

LCE(pθ, ỹi) = −
∑
j=1

(ỹi)j log pθ (6.4)

The ultimate objective is to minimize the meta-learning loss over diverse tasks generated by

Equation (5.6) as follow:

Lmeta(θ,Q) :=
∑

(xi,yi)∈Q

LCE(pθ, ỹi) (6.5)

6.4 Example of Prototypical Network Process

To provide a better understanding, I illustrate the whole process using the below example.

Given the diverse sets of tasks generated by Equation (5.6), for each task, I sample two

independent sets of (S) and (Q). For the support set (S), I set nshot = 1 per class for 1-shot

and set nshot = 5 per class for 5-shot. For the query set (Q), I set nquery = 15 per class.

For instance in 1-shot setting, for simplicity, given nshot = 1, nquery = 2, the number of

classes k = 3, and nfeatures = 4, the dimension is shown as follow:
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TSTUNT1 =


S1 ∈ R3×4

Q1 ∈ R6×4

, where Support Set (S1):

Class 1: x̃11 →
[
1.0 2.0 1.5 2.5

]
Class 2: x̃21 →

[
2.0 1.5 2.5 1.0

]
Class 3: x̃31 →

[
1.5 1.0 2.0 2.0

]

and Query Set (Q1):

Class 1: x̃12 →
[
1.2 2.1 1.4 2.6

]
Class 1: x̃13 →

[
1.1 2.0 1.6 2.4

]
Class 2: x̃22 →

[
2.1 1.4 2.6 1.1

]
Class 2: x̃23 →

[
2.2 1.6 2.4 1.2

]
Class 3: x̃32 →

[
1.6 1.1 2.1 1.9

]
Class 3: x̃33 →

[
1.4 1.2 1.9 2.1

]

Then, I use Equation (6.1) to calculate each prototype ck for k = 1, 2, 3:

c1 = Fθ(x̃11) = [1.0, 2.0, 1.5, 2.5]

c2 = Fθ(x̃21) = [2.0, 1.5, 2.5, 1.0]

c3 = Fθ(x̃31) = [1.5, 1.0, 2.0, 2.0]

Since nshot = 1, the prototype for each class is the support example itself. Next, I compute

the distance of query examples to the prototypes using Equation (6.3):
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For query example x̃12 = [1.2, 2.1, 1.4, 2.6]:

d(Fθ(x̃12), c1) = |1.2− 1.0|+ |2.1− 2.0|+

|1.4− 1.5|+ |2.6− 2.5|

= 0.2 + 0.1 + 0.1 + 0.1

= 0.5

d(Fθ(x̃12), c2) = |1.2− 2.0|+ |2.1− 1.5|+

|1.4− 2.5|+ |2.6− 1.0|

= 0.8 + 0.6 + 1.1 + 1.6

= 4.1

d(Fθ(x̃12), c3) = |1.2− 1.5|+ |2.1− 1.0|+

|1.4− 2.0|+ |2.6− 2.0|

= 0.3 + 1.1 + 0.6 + 0.6

= 2.6

The following process uses Equation (6.2) to calculate the softmax probability. For x̃12:

pθ(y = 1 | x̃12;S1) =
e−0.5

e−0.5 + e−4.1 + e−2.6

pθ(y = 2 | x̃12;S1) =
e−4.1

e−0.5 + e−4.1 + e−2.6

pθ(y = 3 | x̃12;S1) =
e−2.6

e−0.5 + e−4.1 + e−2.6

by normalizing these:
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pθ(y = 1 | x̃12;S1) =
0.6065

0.6065 + 0.0166 + 0.0743
≈ 0.86

pθ(y = 2 | x̃12;S1) =
0.0166

0.6065 + 0.0166 + 0.0743
≈ 0.02

pθ(y = 3 | x̃12;S1) =
0.0743

0.6065 + 0.0166 + 0.0743
≈ 0.12

Next, I compute the cross-entropy loss by using Equation (6.4). Assume the true label for

x̃12 is class 1.

LCE(pθ, ỹ12) = − log(pθ(y = 1 | x̃12;S))

≈ − log(0.86)

≈ 0.15

After that, I repeat the same steps for all query examples in Q1 and sum their cross-entropy

losses to get Lmeta using Equation (6.5).

After I finish the model training, I use the model obtained to adapt with the few-shot

sample (xi, yi), where yi is the existing label from 100 different seed. Finally, using an

independent test set, I compute the mean test accuracy of this few-shot learning process.
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Chapter 7

Experimental Results, Analyses, and

Discussion

7.1 Datasets

In this experimental studies, I utilize four different domain datasets. Three of them are

publicly available from the UCI Machine Learning Repository, including Wine [61], Dry

Bean [62], and Forest Cover Type [63]. One of them is a proprietary dataset provided

by a telecommunications corporation, specifically related to the NPS segmentation. The

Wine dataset contains 178 instances and 13 attributes that are used for the classification of

wine variants. The Dry Bean dataset includes 13,611 instances and 16 attributes that are

aimed at classifying different types of beans. The Forest Cover Type dataset is composed

of 581,012 instances and 54 attributes that are used for predicting forest cover types based

on cartographic variables. The proprietary NPS segmentation dataset consists of customer

demographic profile and feedback data, segmented into promoters, passives, and detractors

based on their likelihood to recommend the company’s services. Table 7.1 provides the

detailed descriptions of these four datasets, including the number of instances and attributes,

as well as the primary classification objective for each dataset.
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Table 7.1: Summary of Datasets

No Name # N # features Description Source

1 Net Promoter Score
(NPS) segmentation

100,000 11 Predict a customer segmentation into three
groups: promoters, passives, detractors,
based on demographics and customer experi-
ences.

Private

2 Drybean types 13,611 16 Predict seven various sorts of dry beans ac-
cording to market conditions, including form,
shape, type, and structure.

Public

3 Wine types 178 13 Predict three different types of wines using
the findings of a chemical analysis of wines
grown in the same region of Italy.

Public

4 Forest cover types 581,102 54 Predict seven forest cover classes based on
variables such as elevation, aspect, slope, hill
shade, soil type, and others.

Public

7.2 Baselines

During this experimental evaluations, I examine various TE models as the benchmark,

including Random Forest, CatBoost, and One-vs-Rest (OvR) Classifier. I also combine these

three baseline models with augmentation techniques utilizing autoencoders to enhance the

feature representation and improve classification performance. Random Forest, known for its

robustness and ease of implementation, provides a strong baseline through its ensemble of

decision trees. CatBoost, a gradient boosting algorithm, is particularly effective in handling

categorical features and improving accuracy. The OvR Classifier, a strategy for multiclass

classification, breaks down the problem into multiple binary classification tasks. In addition

to these models, I employ the standard STUNT framework as a comparison benchmark for

my proposed method. The STUNT framework, known for its comprehensive approach to

generate multiple tasks on tabular data setting, served as a rigorous benchmark to evaluate

the efficacy of my proposed enhancements. Table 7.2 shows a more detailed and extensive

explanation of these baseline methods.
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Table 7.2: Baselines Details

No Methods Description

1 Random Forests (RF) An ensemble of tree predictors, where each tree’s predic-
tions are based on the values of a random vector that is
separately sampled and has the same distribution for all
trees in the forest.

2 CatBoost (CB) A gradient boosting method that utilizes binary decision
trees as its base predictors.

3 Autoencoders (AE) + Classifier Using only encoded features to be trained into classifier
(RF or CB)

4 Concatenation Autoencoders
(ConcatAE) + Classifier

Using original and encoded features (concatenation) to
be trained into classifier (RF or CB)

5 One-vs-the-rest (OvR) multiclass
strategy

The one-vs-the-rest (OvR) multiclass strategy, often re-
ferred to as one-vs-all, involves training a separate clas-
sifier for each class.

6 Self-generated Tasks from unla-
beled Tables (STUNT)

A few-shot tabular learning system that utilizes meta-
learning to train on self-generated problems derived from
unlabeled tables.

7.3 1-shot Learning Result

In the 1-shot learning, I observe varying levels of performance among the baseline models in

terms of mean test accuracy. The results in Table 7.3 illustrate several noteworthy trends in

the performance of different classification methods across the datasets examined. First, RF

classifier generally outperforms CB classifier in all cases by 0.74% in average. Second, OvR

strategy specifically on CB, consistently outperforms the baseline models (RF and CB) on

most datasets by 0.99% in average. Additionally, ConcatAE approach surpasses both the OvR

strategy by 2.7% in average and the base models by 2.8% in average. These findings suggest

that employing advanced techniques such as OvR and ConcatAE can significantly enhance

classification accuracy in 1-shot learning scenarios. Compared to standard STUNT, my

method, which employs ConcatAE in conjunction with K -medoids clustering and Manhattan

ProtoNet, achieved the highest mean test accuracy across all datasets and tasks by 4.03% in

average, showcasing the superiority of this approach in 1-shot learning classification.
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Table 7.3: Mean test accuracy on 1-shot setting.

Methods NPS Dry Bean Wine Cover Type Average

RF 32.74 68.41 81.39 24.19 51.68

CB 34.01 64.48 84.17 22.54 51.30

AE + RF 34.41 63.14 85.56 22.41 51.38

AE + CB 33.99 61.77 86.53 22.57 51.22

ConcatAE + RF 32.54 68.47 87.64 23.76 53.10

ConcatAE + CB 33.14 66.15 87.92 23.81 52.76

OvR RF 32.31 69.24 81.25 22.46 51.32

OvR CB 33.42 69.54 81.81 22.47 51.81

AE + OvR RF 33.99 60.49 86.94 21.38 50.70

AE + OvR CB 32.91 63.03 86.81 22.02 51.19

ConcatAE + OvR RF 31.77 68.28 87.36 22.39 52.45

ConcatAE + OvR CB 32.40 70.63 87.36 23.43 53.46

STUNT (k-Means + Euclidean ProtoNet) 35.69 67.44 85.75 24.66 53.39

ConcatAE + STUNT 34.47 70.43 87.64 23.76 54.07

ConcatAE + k-Medoid + Manhattan ProtoNet 36.06 71.17 88.86 26.07 55.54

7.4 5-shot Learning Result

In the 5-shot learning, the performance patterns observed in Table 7.4 are similar to those seen

in 1-shot settings for various datasets in base models and when combined with augmentation

techniques. For instances, RF classifier generally still outperforms CB classifier in all cases

by 2.04% in average. Then, OvR strategy specifically on CB, consistently outperforms the

baseline models (RF and CB) on most datasets by 2.13% in average. In addition, ConcatAE

approach surpasses both the OvR strategy by 0.99% and the base models by 1.09%. These

findings suggest that employing advanced techniques such as OvR and ConcatAE can

significantly enhance classification accuracy in 5-shot learning scenarios. Compared to

standard STUNT, my method, which employs ConcatAE in conjunction with K -medoids

clustering and Manhattan ProtoNet, achieved the highest mean test accuracy in 3 out of 4

datasets — NPS, Dry Bean, and Wine — by 1.47%, showcasing the optimal performance of

this approach in 5-shot learning classification.

I also observe some significant result on comparison between scenarios with augmentation
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Table 7.4: Mean test accuracy on 5-shot setting.

Methods NPS Dry Bean Wine Cover Type Average

RF 39.56 84.37 92.50 35.73 63.04

CB 38.51 82.68 88.47 37.44 61.78

AE + RF 39.47 80.62 89.58 31.49 60.29

AE + CB 39.96 79.84 90.97 31.78 60.64

ConcatAE + RF 40.52 84.68 92.92 34.91 63.26

ConcatAE + CB 40.06 83.71 89.86 38.07 62.93

OvR RF 39.55 84.54 92.92 33.54 62.64

OvR CB 39.88 85.25 91.81 35.44 63.10

AE + OvR RF 38.69 79.85 90.28 30.52 59.84

AE + OvR CB 39.47 81.69 92.64 31.69 61.37

ConcatAE + OvR RF 40.18 84.66 94.03 33.43 63.08

ConcatAE + OvR CB 40.53 85.53 93.15 35.82 63.91

STUNT (k-Means + Euclidean ProtoNet) 40.76 83.48 94.03 34.72 63.25

ConcatAE + STUNT 40.93 84.15 95.00 31.76 62.96

ConcatAE + k-Medoid + Manhattan ProtoNet 41.25 85.62 95.28 34.58 64.18

— ConcatAE + k-Medoid + Manhattan ProtoNet (my approach)— and no augmentation —

RF, CB, OvR RF, and OvR CB. Figure 7.1 clearly shows that the method with augmentation

give improvement both on 1-shot and 5-shot settings. Specifically, my approach outperforms

the traditional ensemble (TE) models and the OvR classifiers by 7.8% in the 1-shot setting and

2.5% in the 5-shot setting. This enhancement underscores the effectiveness of my approach

in multiclass classification, demonstrating optimal generalization capabilities compared to

models without augmentation.
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Figure 7.1: The effect of data augmentation techniques compared to base models.
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Chapter 8

New Concept Adaptation

8.1 What is a New Concept?

We can think of a new concept as a new task or a new label in the machine learning term.

For example, in the ’adult’ income dataset, we have binary task to predict whether a person

has income more than 50K or less based on his/her demographic and social-economic profile.

In this case, the label is ’income level’:

income =


1, if ≥ 50K

0, else

and we can say this is the concept that we want to focus on to learn. The concept of income

can be learned using the available features, and it is possible to learn another label/new

concept from these features. We can take the example from Figure 5.1, which the dataset

consists of three features and one target. We can remove the target ’cancellation’, then replace

it with a new target or new concept that we want to learn. For example, the loyalty level of

the customer, where this concept can be generated by manual annotation or from a survey to

the existing customer. However, since we do not have this label yet, we generate the label by

using K -medoids procedure, by using all features available, and then proceed with the simple
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Decision Tree (DT) classifier to name the label based on how trees divide the features. To

support this naming concept result, we obtain justification from a subject matter expert to

ensure that the concept we obtain is correct. Then, after we obtain the new concept, we can

continue the learning process by adapting a few-shot setting multiclass classification where

we fed the new concept dataset into a model we obtained from the FSL-FMLG framework.

8.2 New Concept Generation

Since I do not have a new concept data set that usually comes from a heavily manual

annotation or a new survey of existing customers, I use the new concept using K -medoids

that can generate a new label by clustering on available features. In this demonstration,

I want to focus on the telecom dataset which consist of 11 features and one target. The

snapshot of this dataset can be seen in Table 8.1 below:

customerID tariff zip hotline calls complaints data usage age group upload contract age demographics inhabitants network coverage cancellation NPS

0 1 190 2 2 96081 20 563.33 26 71938 93 FALSE passive

1 3 212 0 5 87044 35 419.27 15 29317 62 FALSE passive

2 3 116 0 2 19847 35 209.95 34 107546 98 FALSE passive

3 2 264 3 2 1349 30 15.58 8 24604 51 FALSE promoter

4 2 261 3 8 8418 25 104.48 16 23685 59 TRUE detractor

Table 8.1: Telecommunication’s Customer Data

As we can see, this dataset has an existing concept called NPS that had already been

learned by using the FSL-LFMG framework before. In the case of a new concept, I will remove

the NPS column and replace it with the new concept that I obtain from the K -medoids

procedure. The result of this procedure can be illustrated in Table 8.2 below:

customerID tariff zip hotline calls complaints data usage age group upload contract age demographics inhabitants network coverage cancellation new concept

0 1 190 2 2 96081 20 563.33 26 71938 93 FALSE 0

1 3 212 0 5 87044 35 419.27 15 29317 62 FALSE 1

2 3 116 0 2 19847 35 209.95 34 107546 98 FALSE 2

3 2 264 3 2 1349 30 15.58 8 24604 51 FALSE 3

4 2 261 3 8 8418 25 104.48 16 23685 59 TRUE 4

Table 8.2: Telecommunication’s Customer Data with a New Concept
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To obtain the number of K in K -medoids, I perform four evaluation plots using the elbow

method, the silhouette index, the Calinski-Harabasz index (CHI) and the Davies-Bouldin

index (DBI). The elbow method plot is plotting the within cluster sum of squares (WCSS)

againts the number of clusters (K). Using the elbow method in Figure 8.1a, I obtain the

elbow point when K=5, where the WCSS starts to decrease at a slower rate. This point

indicates that five is the optimal number of clusters.

(a) Elbow Methods. (b) Shilloute Index.

(c) Calinski-Harabasz Index (CHI). (d) Davies-Bouldin Index (DBI)

Figure 8.1: The Evaluation Plot for K -medoids Procedures.

Using the Shilloute index, I plot the shilloute scores for the different number of clusters.The

silhouette score ranges from -1 to 1. Scores close to 1 indicate well-defined clusters, while

scores close to -1 indicate poorly defined clusters. From Figure 8.1b, I obtain the highest

average silhouette score at K=5 which means that five is the optimal number of clusters

based on Shilloute index.

Using CHI, I plot the CHI scores for different numbers of clusters. Higher CHI scores
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indicate better-defined clusters. Based on Figure 8.1c, I select the number of clusters K=5

which is with the highest CHI score. Then, using DBI, I plot the DBI scores for different

numbers of clusters. Lower DBI scores indicate better clustering. Based on Figure 8.1d, I

choose the number of clusters K=5, which has the lowest DBI score.

After I obtained the best number of cluster K=5, I proceed to name this new concept.

Using Decision Tree approach, I want to breakdown the features by tree to get better

understanding how the cluster are formed. Here is the tree generated by Decision Tree

Classifier in Figure 8.2. Then, I use this tree as a consideration how I name the new concept

beside the justification from a subject matter expert on this dataset.

Table 8.3: Mean of Features from Each Class

Class Mean of upload Mean of data usage Mean of complaints
Class 0 0.05 0.11 0.4
Class 1 0.17 0.42 0.43
Class 2 0.66 0.71 0.32
Class 3 0.07 0.15 0.43
Class 4 0.04 0.09 0.3

In addition, I use three significant features to get a better understanding of the distinction

between class. I utilize aggregation metric (mean) as shown in Table from three features —

upload, data usage, and complaints — that come up as the important features based on the

tree split. Using this information, I get into details the main characteristics of each class as

follows:

• Class 0: This class has very low mean uploads and data usage, and high mean complaints,

indicating the lowest loyalty.

• Class 1: This class has moderate mean data usage and high mean complaints, but low

mean uploads, suggesting moderate to high loyalty.

• Class 2: This class has the highest mean uploads and data usage, and relatively low

mean complaints, indicating high engagement and loyalty.
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Figure 8.2: Tree from Decision Tree
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• Class 3: This class has low mean uploads and data usage, and high mean complaints,

indicating lower loyalty.

• Class 4: This class has very low mean uploads and data usage, but the lowest mean

complaints, indicating lower engagement but fewer issues. (moderate)

In the end, I obtain ”the level of customer’s loyalty” as the new concept, then I use these

new data to learn or adapt into my few-shot learning model.

8.3 New Concept Adaptation: Experimental Results

and Discussion

The process of adapting the new concept into my framework is basically similar to adapting

the existing concept. The existing concept of this dataset is NPS segmentation, while the

new concept is ”loyalty”. Since the features for both concepts remain unchanged, no further

procedure is applied. From the loyalty concept, I perform one-shot and five-shot setups and

then compare the performance of the mean test accuracy with the existing concept.

Table 8.4: The Comparison of Mean Test Accuracy between The Existing Concept and The
New Concept.

Methods 1-shot 5-shot

Existing Concept 36.06 41.25

New Concept 63.83 83.95

In 1-shot scenarios, Table 8.4 shows that the average test accuracy for the new concept

is 63.83%, which represents a 77.01% improvement compared to the mean test accuracy

for the existing concept. In 5-shot scenarios, the mean test accuracy of the new concept is

83.95%, which is a notable increase of 103. 52% compared to the mean test accuracy of the

existing concept. The results demonstrate that my suggested model, implemented with the
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FSL-LFMG framework, achieves optimal generalization. Furthermore, it has the ability to

acquire new concepts that may be present in other datasets.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

In my Master’s thesis, I propose advancing Prototypical Networks that employs augmented

latent features (LF) by an autoencoder and multitasking generation (MG) by STUNT in the

few-shot learning (FSL) mechanism. In conclusion, this study presents several key findings

and contributions, as follows:

1. The achieved contributions to this work are sixfold:

• I propose the FSL-LFMG framework for few-shot multiclass classification on

tabular data. This framework incorporates sample-level data augmentation using

autoencoders, task-level data augmentation via an enhanced STUNT framework,

and Prototypical Networks to capture generalized knowledge.

• I design the latent features learning and augmentation process that employs

autoencoders to extract significant features, which are then used to enhance the

quality and diversity of the training data.

• I employ an enhanced STUNT Multitasking Generation framework that uses

K -medoids instead of K -means to generate more accurate tasks.
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• I implement an advanced Prototypical Networks with Manhattan distance as a

classifier effectively address the multiclass classification problem.

• I conduct an extensive experimental study on four diverse domain datasets—Net

Promoter Score segmentation, Dry Bean type, Wine type, and Forest Cover

type—to prove that my FSL-LFMG approach on the multiclass classification

outperforms the Tree Ensemble models and the One-vs-the-rest classifiers by 7.8%

in 1-shot and 2.5% in 5-shot learning.

• I demonstrate the adaptation of new concept task on the model obtained from the

FSL-LFMG framework — from the NPS segmentation (the existing concept) and

obtain a level of customer’s loyalty (the new concept) — to assess the power of

generalization of this framework by significant results of the mean test accuracy

in both 1-shot setting (83.95%) and 5-shot setting (103.52%).

2. Data augmentations (using autoencoders and the enhanced STUNT) play crucial role

in improving classification performance.

3. Utilization of K-medoids over K-means gives improvement on classification performance.

4. Utilization of Manhattan distance over Euclidean distance also enhances classification

accuracy.

5. The main work of this thesis has been accepted by The 16th International Conference

on Neural Computation Theory and Applications (NCTA 2024) in Porto, Portugal.

9.2 Future Work

Moving forward, I plan to investigate more data augmentation techniques for tabular data

including variational autoencoder and generative adversarial network. I also aim to explore

more state-of-the-art few-shot learning techniques, such as meta-learning algorithms and
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advanced metric learning approaches, which have shown promising results on tabular data in

other real-world domains and areas.
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[10] A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,”
Computers and electronics in agriculture, vol. 147, pp. 70–90, 2018.

[11] K. G. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis, “Machine learning in
agriculture: A review,” Sensors, vol. 18, no. 8, p. 2674, 2018.

53



[12] I. Matloob, S. A. Khan, F. Hussain, W. H. Butt, R. Rukaiya, and F. Khalique, “Need-
based and optimized health insurance package using clustering algorithm,” Applied
Sciences, vol. 11, no. 18, p. 8478, 2021.

[13] C. Blier-Wong, H. Cossette, L. Lamontagne, and E. Marceau, “Machine learning in
p&c insurance: A review for pricing and reserving,” Risks, vol. 9, no. 1, p. 4, 2020.

[14] H. Paruchuri, “The impact of machine learning on the future of insurance industry,”
American Journal of Trade and Policy, vol. 7, no. 3, pp. 85–90, 2020.

[15] B. Tunguz, Dieter, H. or Tails, et al., 2023 kaggle ai report, 2023. [Online]. Available:
https://kaggle.com/competitions/2023-kaggle-ai-report.

[16] B. Sun, L. Yang, W. Zhang, et al., “Supertml: Two-dimensional word embedding for the
precognition on structured tabular data,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, Jun. 2019.

[17] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and G. Kasneci, “Deep
neural networks and tabular data: A survey,” IEEE Transactions on Neural Networks
and Learning Systems, 2022.

[18] R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all you need,”
Information Fusion, vol. 81, pp. 84–90, 2022.

[19] S. O. Arik and T. Pfister, “TabNet: Attentive Interpretable Tabular Learning,” Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 8, pp. 6679–
6687, May 2021. doi: 10 . 1609 / aaai . v35i8 . 16826. [Online]. Available: https :
//ojs.aaai.org/index.php/AAAI/article/view/16826.

[20] L. Katzir, G. Elidan, and R. El-Yaniv, “Net-dnf: Effective deep modeling of tabular
data,” in International conference on learning representations, 2020.

[21] S. Popov, S. Morozov, and A. Babenko, “Neural oblivious decision ensembles for deep
learning on tabular data,” arXiv preprint arXiv:1909.06312, 2019.

[22] R. Wang, M. Pontil, and C. Ciliberto, “The role of global labels in few-shot classification
and how to infer them,” Advances in Neural Information Processing Systems, vol. 34,
pp. 27 160–27 170, 2021.

[23] Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola, “Rethinking few-shot
image classification: A good embedding is all you need?” In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XIV 16, Springer, 2020, pp. 266–282.

[24] W. Li, Z. Wang, X. Yang, et al., “Libfewshot: A comprehensive library for few-shot
learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

[25] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few examples: A
survey on few-shot learning,” ACM computing surveys (csur), vol. 53, no. 3, pp. 1–34,
2020.

[26] A. Parnami and M. Lee, “Learning from few examples: A summary of approaches to
few-shot learning,” arXiv preprint arXiv:2203.04291, 2022.

54

https://kaggle.com/competitions/2023-kaggle-ai-report
https://doi.org/10.1609/aaai.v35i8.16826
https://ojs.aaai.org/index.php/AAAI/article/view/16826
https://ojs.aaai.org/index.php/AAAI/article/view/16826


[27] J. Nam, J. Tack, K. Lee, H. Lee, and J. Shin, “Stunt: Few-shot tabular learning with
self-generated tasks from unlabeled tables,” arXiv preprint arXiv:2303.00918, 2023.

[28] sklearn, Sklearn Documentation, en, Documentation, Apr. 2024. [Online]. Available:
https : / / scikit - learn / stable / modules / generated / sklearn . multiclass .

OneVsRestClassifier.html (visited on 04/04/2024).

[29] R. Zhang and Q. Liu, “Learning with few samples in deep learning for image classifica-
tion, a mini-review,” Frontiers in Computational Neuroscience, vol. 16, p. 1 075 294,
2023.

[30] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,”
Advances in neural information processing systems, vol. 30, 2017.

[31] G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 25, pp. 197–227,
2016.

[32] Z. Yu, K. Wang, S. Xie, Y. Zhong, and Z. Lv, “Prototypical network based on manhattan
distance,” Cmes-Comput. Model. Eng. Sci, vol. 131, pp. 655–675, 2022.

[33] P. Arora, S. Varshney, et al., “Analysis of k-means and k-medoids algorithm for big
data,” Procedia Computer Science, vol. 78, pp. 507–512, 2016.

[34] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32, 2001.

[35] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “Catboost:
Unbiased boosting with categorical features,” Advances in neural information processing
systems, vol. 31, 2018.

[36] S. Lakshmanaprabu, K. Shankar, M. Ilayaraja, A. W. Nasir, V. Vijayakumar, and
N. Chilamkurti, “Random forest for big data classification in the internet of things
using optimal features,” International journal of machine learning and cybernetics,
vol. 10, no. 10, pp. 2609–2618, 2019.

[37] R. Genuer, J.-M. Poggi, C. Tuleau-Malot, and N. Villa-Vialaneix, “Random forests for
big data,” Big Data Research, vol. 9, pp. 28–46, 2017.

[38] Y. Liu, “Random forest algorithm in big data environment,” Computer modelling &
new technologies, vol. 18, no. 12A, pp. 147–151, 2014.

[39] J. T. Hancock and T. M. Khoshgoftaar, “Catboost for big data: An interdisciplinary
review,” Journal of big data, vol. 7, no. 1, p. 94, 2020.

[40] A. A. Ibrahim, R. L. Ridwan, M. M. Muhammed, R. O. Abdulaziz, and G. A. Saheed,
“Comparison of the catboost classifier with other machine learning methods,” Interna-
tional Journal of Advanced Computer Science and Applications, vol. 11, no. 11, 2020.
doi: 10.14569/IJACSA.2020.0111190. [Online]. Available: http://dx.doi.org/10.
14569/IJACSA.2020.0111190.

[41] W. Jitpakdeebodin and K. Sinapiromsaran, “Random forest algorithm using quartile-
pattern bootstrapping for a class imbalanced problem,” in Proceedings of the 2023 5th
International Conference on Image, Video and Signal Processing, 2023, pp. 191–196.

55

https://scikit-learn/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html
https://scikit-learn/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html
https://doi.org/10.14569/IJACSA.2020.0111190
http://dx.doi.org/10.14569/IJACSA.2020.0111190
http://dx.doi.org/10.14569/IJACSA.2020.0111190


[42] Q. Gu, J. Tian, X. Li, and S. Jiang, “A novel random forest integrated model for
imbalanced data classification problem,” Knowledge-Based Systems, vol. 250, p. 109 050,
2022.

[43] Y. Liu, H. Zhang, W. Zhang, G. Lu, Q. Tian, and N. Ling, “Few-shot image classification:
Current status and research trends,” Electronics, vol. 11, no. 11, p. 1752, 2022.

[44] H. Jiang, M. Gao, H. Li, R. Jin, H. Miao, and J. Liu, “Multi-learner based deep
meta-learning for few-shot medical image classification,” IEEE Journal of Biomedical
and Health Informatics, vol. 27, no. 1, pp. 17–28, 2022.

[45] D. Chen, Y. Chen, Y. Li, F. Mao, Y. He, and H. Xue, “Self-supervised learning for
few-shot image classification,” in ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2021, pp. 1745–1749.

[46] G. S. Dhillon, P. Chaudhari, A. Ravichandran, and S. Soatto, “A baseline for few-shot
image classification,” 2020.

[47] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B. Huang, “A closer look at
few-shot classification,” arXiv preprint arXiv:1904.04232, 2019.

[48] B. Liu, X. Yu, A. Yu, P. Zhang, G. Wan, and R. Wang, “Deep few-shot learning for
hyperspectral image classification,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 57, no. 4, pp. 2290–2304, 2018.

[49] L. Long, W. Wang, J. Wen, M. Zhang, Q. Lin, and B. C. Ooi, “Object-level repre-
sentation learning for few-shot image classification,” arXiv preprint arXiv:1805.10777,
2018.

[50] S. Hegselmann, A. Buendia, H. Lang, M. Agrawal, X. Jiang, and D. Sontag, “Tabllm:
Few-shot classification of tabular data with large language models,” in International
Conference on Artificial Intelligence and Statistics, PMLR, 2023, pp. 5549–5581.

[51] M. Zhu, K. Kobalczyk, A. Petrovic, et al., “Tabular few-shot generalization across
heterogeneous feature spaces,” arXiv preprint arXiv: 2311.10051, 2023.

[52] H. S. Jomaa, L. Schmidt-Thieme, and J. Grabocka, “Dataset2vec: Learning dataset
meta-features,” Data Mining and Knowledge Discovery, vol. 35, no. 3, pp. 964–985,
2021.

[53] X. Wang, H. Wang, and D. Zhou, “Feature transformation network for few-shot learning,”
IEEE Access, vol. 9, pp. 41 913–41 924, 2021. doi: 10.1109/ACCESS.2021.3065904.

[54] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales, “Learning to
compare: Relation network for few-shot learning,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018, pp. 1199–1208. doi: 10.1109/CVPR.
2018.00131.

[55] Y. Chen, Z. Liu, H. Xu, T. Darrell, and X. Wang, “Meta-baseline: Exploring simple
meta-learning for few-shot learning,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), Oct. 2021, pp. 9062–9071.

[56] Y. Li and J. Yang, “Meta-learning baselines and database for few-shot classification in
agriculture,” Computers and Electronics in Agriculture, vol. 182, p. 106 055, 2021.

56

https://doi.org/10.1109/ACCESS.2021.3065904
https://doi.org/10.1109/CVPR.2018.00131
https://doi.org/10.1109/CVPR.2018.00131


[57] M. Russwurm, S. Wang, M. Korner, and D. Lobell, “Meta-learning for few-shot land
cover classification,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, Jun. 2020.

[58] M. Jafarzadeh, A. R. Dhamija, S. Cruz, C. Li, T. Ahmad, and T. E. Boult, “A review
of open-world learning and steps toward open-world learning without labels,” arXiv
preprint arXiv:2011.12906, 2020.

[59] L. Shu, H. Xu, and B. Liu, “Unseen class discovery in open-world classification,” arXiv
preprint arXiv:1801.05609, 2018.

[60] A. Ye and Z. Wang, Modern deep learning for tabular data: novel approaches to common
modeling problems. Springer, 2023.

[61] S. Aeberhard and M. Forina, Wine, UCI Machine Learning Repository, DOI:
https://doi.org/10.24432/C5PC7J, 1991.

[62] Dry Bean, UCI Machine Learning Repository, DOI: https://doi.org/ 10.24432/C50S4B,
2020.

[63] J. Blackard, Covertype, UCI Machine Learning Repository, DOI: https://doi.org/
10.24432/C50K5N, 1998.

57


	Introduction
	Motivation and Background
	Research Challenges
	Problem Statement
	Thesis Statement and Summary of Research Contributions

	Related Work
	Traditional Multiclass Classification Algorithms
	Random Forest
	CatBoost

	Challenges with Limited Data
	Few-shot Learning
	Common Approach
	Few-shot Learning on Tabular Data
	New Concept Learning


	FSL-LFMG Framework
	Introduction to FSL-LFMG Framework
	Data Preprocessing (DP)
	Latent Features Augmentation (LFA)
	Multitasking Generation (MG)
	Prototypical Networks (PN)

	Latent Features Learning and Augmentation
	Introduction to Autoencoders
	Autoencoders Architecture
	Encoder and Decoder
	Optimization

	Feature Extraction and Augmentation
	Example of Augmentation Process

	STUNT Multitasking Generation
	Introduction to Task-Level Data Augmentation
	STUNT Framework
	Enhancements with K-Medoids
	Example of Task Generation

	Prototypical Networks
	Introduction to Prototypical Networks
	Advantages of Prototypical Networks
	ProtoNet Configuration
	Example of Prototypical Network Process

	Experimental Results, Analyses, and Discussion
	Datasets
	Baselines
	1-shot Learning Result
	5-shot Learning Result

	New Concept Adaptation
	What is a New Concept?
	New Concept Generation
	New Concept Adaptation: Experimental Results and Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

