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ABSTRACT  

The behavior of the stock market is quite unpredictable. When making financial 
decisions, companies and individuals want to be prepared to face the numerous economic 
futures that could arise. An Economic Scenario Generator (ESG) uses probabilistic and other 
mathematical models in order to produce simulations which demonstrate the potential future 
behavior of stock returns. We built our ESG using Visual Basic for Applications in Microsoft 
Excel, with the goal of being able to generate simulations of the annual log returns of seven 
stock indices. The simulations are generated by extrapolating the historical data of these 
indices, which was analysed with the use of Maximum Likelihood Estimation (MLE). The 
resulting returns generated by our ESG may help investors to view several potential future 
economic scenarios before making important financial decisions.  
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EXECUTIVE SUMMARY 

One of the primary characteristics of decision making is the desire to minimize risk (of 
losses) while maximizing expected gains. While our limitations as human beings make it 
impossible to see the future, technology provides us with the capability to simulate the near 
infinite possibilities that the future may hold. An economic scenario generator (ESG) is a 
mathematical model that generates simulated stock returns for a group of correlated stock 
indices. 

The goal of our project was to make an ESG that can be used to help companies and 
individuals envision possible future economies by extrapolating historical data. The project 
objectives were to: 
 

1. Have three regimes which represent good, bad, and catastrophic economic years. 
2. Program our ESG to generate as many scenarios as the user chooses, each of a user-

specified length. 
3. Ensure our ESG extrapolates historical data of seven indices, which are obtained through 

Maximum Likelihood Estimation (MLE). 
4. Generate normally distributed stock returns. 
5. Establish correlating between the returns of each index which accurately reflects the 

correlating of the historical data collected. 

Background 

There are two main types of economic scenario generators. We built a real-world 
economic scenario generator that utilized real-world data and focused on the future behavior 
of economic variables. In order to mimic the unpredictability of the stock market, a process 
known as regime-switching is applied to our ESG by using transition matrices. Regime-switching 
allows the ESG to switch between good, bad, and catastrophic economic periods, each of which 
are characterized by their own unique mean and standard deviation. We can also solve for a 
steady state matrix, which can represent the ratio of each regime we should expect in the 
future. Correlating our returns through Cholesky decomposition was essential to make sure 
that our returns reflected the regime we were in, and we needed to understand maximum 
likelihood estimation for fitting our ESG to accurate data. 

Methodology 

To achieve the goals for this project, we approached making a user-friendly ESG that 
anyone could use and understand after reading this paper. Additionally, we wanted to allow 
readers to follow our methods to create their own ESG to be adjustable to their own needs and 
situation. We needed to create a system for generating random numbers and use these 
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numbers to determine how our ESG will switch regimes. We also wanted to project three 
states: good, bad, and catastrophic. Therefore, we coded the fundamental lines in VBA to 
create a regime-switching lognormal model with three regimes. To make sure our ESG was as 
realistic to historical data as possible, we created a formula for maximum likelihood estimation 
to analyze historical data and create realistic parameters to reflect the seven stock indices. 
When using random numbers as our returns, we also need to make sure that we reflect the 
correlation that occurs between the returns of the indices. Therefore, we utilize Cholesky 
decomposition in creating correlation between the results of our returns for each index. Lastly, 
we wanted our data to be understandable for any reader to analyze, as well as compress the 
file size as much as possible. Therefore, we output our final returns as a CSV file so that the 
large data would not create a huge file and could easily be turned into an Excel sheet. 

Results 

Our ESG took one minute and 42 seconds to run 10,000 scenarios, each 50 years long. 
We used our maximum likelihood estimator to find the parameters for our ESG. The transition 
probabilities p12 and p21 determined for the S&P 500 index were the same for all seven 
indices. We also analyzed the parameters for each index that resulted from our maximum 
likelihood estimator.  

 

Figure 1: Summary of Economic Trends Exhibited by Selected Indices 

After conducting our maximum likelihood estimation, we determined the probabilities 
for switching between two regimes, “good” and “bad”. There was a 3.49% chance that the 
economy would switch from being in a “good” situation to being in a “bad” situation. Similarly, 
the chance that the economy would switch from being in a “bad” state to a “good” state was 
3.60% (Figure 1).  

The resulting steady state ratios that came from our ESG results were not accurate to 
the steady state ratios given from multiplying the PDF transition matrix by itself multiple times. 
This was due to our probability transition values being highly unlikely to switch regimes. 
Additionally, we were limited by the number of scenarios and years we could run for our ESG, 
meaning we did not have enough data for convergence. 
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We also computed statistical model tests to check our results from the ESG. To compare 
the means, we implemented the two-sample t-test. We also performed the F-test in order to 
compare standard deviations. Our statistical analysis did not show any significant differences in 
parameter values between the historical data and the data produced by our simulation. Hence, 
we were able to conclude that our ESG could successfully extrapolate historical data, 
generating stock returns that accurately reflect past trends.  

Lastly, we checked our covariance matrix obtained through the (historical data) 
correlation matrix and parameters obtained from the MLE. We compared this covariance 
matrix to the covariance matrix that directly resulted from the historical data. The accuracy 
between the covariance matrices indicated that our maximum likelihood estimates of the 
regime standard deviation accurately represented the historical data we utilized.  

Final Recommendations  

While we chose to use VBA to write the code, the ESG can be generated through any 
coding language as long as it can handle large amounts of data, and we encourage readers of 
this report to use a different coding language if it provides a higher scenario and year count 
compared to VBA. This will result in your returns more likely converging to the steady state. In 
addition to the coding platform, the data is extremely important in building a successful ESG. 
We recommend Bloomberg as a source of data collection because Yahoo Finance was not 
accurate. 

Error may also come about when trying to adjust the values within the covariance 
matrix. Changing values may cause the matrix to not Cholesky decompose. We recommend 
always keeping track of the positive-definite property of the matrix to make this process easier 
for you. 

Lastly, every scenario generated should be independently analyzed and compared to the 
results of the maximum likelihood estimator. Based on the comparison of the results, each 
scenario can be put in one of the following three categories: 

1. Improved Economy - characterized by higher means and lower standard deviations 
2. Stable Economy - characterized by parameters equivalent to the MLE values 
3. Worsened Economy - characterized by decreased means and increased standard 

deviations 
The user can then base their decisions on the relative frequencies of the three categories. In 

other words, the user can make their decisions according to which economic future is the most 
likely to occur.  
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CHAPTER 1: INTRODUCTION  

 For a company to make executive decisions that will better ensure its long-term 
financial success and stability, they will most likely want to have a solid understanding of 
current economic trends. As there is no way of seeing into the future, the best that companies 
can do is make decisions based on how they believe the future will turn out. An Economic 
Scenario Generator (ESG) serves the purpose of producing simulations which demonstrate 
possible future economies that companies may face.  
 The goal of our project was to make an ESG that can be used to help companies and 
individuals envision possible future economies by extrapolating historical data. The project 
objectives were to: 
 

1. Have three regimes which represent good, bad, and catastrophic economic years. 
2. Program our ESG to generate as many scenarios as the user chooses, each of a user-

specified length. 
3. Ensure our ESG extrapolates historical data of seven indices, which are obtained through 

Maximum Likelihood Estimation (MLE). 
4. Generate normally distributed stock returns. 
5. Establish correlation between the returns of each index which accurately reflects the 

correlation of the historical data collected. 
 

We created our ESG in Visual Basic for Applications (VBA) in Microsoft Excel. This ESG can 
switch between good, bad, and catastrophic economic years using a method known as “regime-
switching”. In order to ensure that our ESG generates simulations of future economies that 
accurately represent the current economy, an analysis of historical data utilizing maximum 
likelihood estimation was performed.  

The stocks and indices can be changed based on the maximum likelihood estimation 
spreadsheet we created. With these factors, our ESG can output normally distributed returns 
for seven different indices. The user can choose both the number of scenarios and the length of 
each scenario (in years). 

In this report, we explain the background knowledge needed in order to understand the 
mathematical concepts involved, the steps taken, and the results of our ESG. We conclude by 
making recommendations on how anyone who wants to improve upon our work can proceed.  
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CHAPTER 2: BACKROUND 

2.1 Economic Scenario Generator 

An Economic Scenario Generator (ESG) refers to a computer-based mathematical model 
that produces simulations which demonstrate the future joint behavior of economic or financial 
markets. ESG allows the user to assess the risk associated with different economic elements 
and determine which factors play an important role in financial variability. ESGs can be used for 
various purposes across many industries and for specific activities. A basic application of ESGs is 
the simulation of interest rates in order to determine how changes in interest rates affects 
investment portfolios. A more complex application of ESGs involves using a risk management 
approach in order to identify internal and external risks that could possibly influence the 
financial success and stability of an enterprise (Pedersen et al., 2016, p.6-7).  

Our ESG is meant to act as a real-world program rather than a risk-neutral program. 
Risk-neutral ESGs are less concerned about the future behavior of economic variables and are 
focused more on the mathematical relationship between them. On the contrary, real-world 
ESGs utilize real-world data, concentrating on the future behavior of economic variables. 
People can use the data obtained from real-world ESGs for a variety of different tasks. They will 
generate scenarios in which the economic risk factors and asset returns follow realistic 
probability distributions. This data can then be used for either short-term or long-term analysis. 

2.2 Markov Chains (Regime-Switching) 

A Markov chain is a mathematical system in which you transition from one state to 
another, and this transition is only dependent on the probabilities of transitioning and the 
starting state. As such, a Markov chain is memoryless, and when looking to solve for a new 
state, we only need to know the current state and probabilities of transitioning from one state 
to another. We can consider a simple example in which we have two states for the weather: 
sunny and rainy. Figure 2 shows a diagram of an example we will use to explain the concept of a 
Markov chain: 

 

Figure 2: A visual of the weather example where there are two possible regimes: sunny or 
rainy. 
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Figure 2 shows arrows either pointing to the opposite regime, or loops around to its 
own regime. Arrows pointing back to the same circle represent the probability of the next day 
having the same state, whereas arrows pointing to the opposite circle represent the probability 
of transitioning to the opposing state. In this example, if we start in a sunny state, then there is 
a 90% chance of the weather being sunny the next day and a 10% chance of the weather being 
rainy the next day. If we start in a rainy state, then there is a 50% chance of the weather being 
sunny the next day and a 50% chance of the weather being rainy the next day. 

Assume today is Monday and today is sunny. Then Tuesday has a 90% chance of being 
sunny, and a 10% chance of being rainy. Either outcome is possible, so let us say that Tuesday 
happens to be rainy. We can determine the probability of the weather for Wednesday by once 
again looking at Figure 2. Because a Markov chain is “memoryless”, information regarding the 
weather of any previous day will not affect the weather probability of tomorrow. Thus, in this 
example, we do not need to consider the weather on Monday being sunny to find out the 
probabilities for Wednesday’s weather; we only need to consider Tuesday’s state to determine 
the probabilities of Wednesday’s weather. Therefore, because Tuesday is rainy, there is a 50% 
chance of Wednesday being sunny and a 50% chance of Wednesday being rainy. 

2.3 Transition Matrices 

A transition matrix is a representation of a “Markov chain”. Let tij represent the 
probability that starting in state i, you move to state j after a given time period has elapsed. 
Using our above example of weather on a given day, a transition matrix is illustrated in Table 1. 
For this example, state 1 is sunny and state 2 is rainy. 

Table 1: Transition Matrix for our Weather Example 

 
new state = sunny new state = rainy 

starting state = sunny t11 = 0.9 t12 = 0.1 

starting state = rainy  t21 = 0.5 t22 = 0.5 

 

Notice that when we are transitioning from a starting state to a new state, there are 
only two possible new states: sunny or rainy. Each row of the transition matrix will add up to 1 
because there are only two possibilities; in our example, tomorrow will either be sunny or 
rainy. If we are considering starting on a sunny Monday and are trying to determine the 
weather for Tuesday, we would look at the row where the starting state is sunny and look at 
the values in each column. The columns tell us that t11 = 0.9 and t12 = 0.1. This aligns with the 
above statement that each row must add up to 1, or: 

1 - t11 = t12 
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In this example:  

1 - 0.9 = 0.1 

Now if we were to continue with our previous example and consider that Tuesday ends 
up being rainy, we would look at the row where the starting state is rainy. This process can be 
done recursively to consider, for example, the weather within a given week. Thus, we would 
look at the transition matrix seven times, with each new day using what was the new state as 
now the starting state. 

2.4 Steady State of Transition Matrices 

When using a transition matrix, we have a starting state and transition into a new state. 
This represents a one-time-step probability transition matrix. For example, the weather 
transition matrix we used above represents a one-time-step probability transition matrix. To 
get the two-time-step probability transition matrix, we take the one-time-step probability 
transition matrix and multiply it by itself.  In this case, if M is the one-time-step probability 
transition matrix given in Table 1, then to solve for the two-time-step probability transition 
matrix: 

M * M = two-time-step probability transition matrix 

An example of a two-time-step probability transition matrix using our previous weather 
matrix from Table 1 is shown in Table 2: 

Table 2: Two-time-step Probability Transition Matrix for our Weather Example 

 
new state = sunny new state = rainy 

starting state = 
sunny 

t11 = 0.86 t12 = 0.14 

starting state = 
rainy 

t21 = 0.7 t22 = 0.3 

 

The ith, jth entry indicates the probability that the weather two days from now will be in 
state j given that the weather is currently in state i. For example, if today is a sunny day, then 
two days from now, there is an 86% chance that it will be sunny two days from now, and a 14% 
chance it will be rainy two days from now. To get the kth-time-step probability transition 
matrix, we would take the one-time-step probability matrix and raise it to the kth power. 
Eventually, as we get to a higher number for k, the values within the matrix will begin to 
converge, and at high enough k, the transition matrix will reach equilibrium. This is known as 
the “steady-state” transition matrix of the Markov chain. The steady-state transition matrix 
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implies that if we have a matrix M that represents the one-time-step probability transition 
matrix, and X is the steady-state matrix, then: 

X * M = X 

The mathematics with the matrices given in our weather example can be followed in 
Figure 3: 

 

Figure 3: Step-by-step process of finding the system of equations necessary for solving the 
steady state. 

Figure 3 creates this system of equations: 

0.9x + 0.5y = x 

0.1x + 0.5y = y 

However, once simplified, we notice that they are the same equation. Because these 
two equations are the same, we cannot solve for x and y without a third equation. Therefore, 
we must recall that: 

x + y = 1 

This is because in the steady state, we know that each starting state will have the same 
probabilities due to reaching equilibrium. Thus, we can now solve for x and y: 

0.1x - 0.5y = 0 

x + y = 1  

→ x = 1 - y 

Using Substitution: 0.1*(1 - y) - 0.5y = 0   

→ 0.1 - 0.1y - 0.5y = 0 

→ 0.1 = 0.6y 

→ y = ⅙ 

Plugging y back into x + y = 1:  x + ⅙ = 1 

→ x = ⅚  

Therefore, our steady state is shown in Table 3:  
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Table 3: Steady State Matrix Solved for Mathematically from Example 

0.83333 0.16667 

 

The steady state reflects the long-run daily probability of rain or sun.  That is, if you look 
at the system on some random day, it there is an 83.3% that it is sunny and a 16.7% chance that 
it is rainy. While this is a straightforward method with two states, it can become more complex 
with a higher number of regimes. Therefore, another way to solve for the steady state is to take 
our one-time-step probability transition matrix and raise it to a very high power until we see 
each column the same value. When doing this with our example one-time-step transition 
matrix above, we get the matrix in Table 4: 

Table 4: Steady State Matrix Solve for with MATLAB from Example 

0.83333 0.16667 

0.83333 0.16667 

 

The results reflect the same probability values as Table 3. Either method works to solve 
for the steady state, but it is easier to find the steady state for many regimes using the method 
reflected in Table 4. This is because more regimes will create more variables, and the math 
involved will become more complex than what is shown in Figure 3. 

2.5 Random Number Generator 

A random number generator is designed to generate a random set of numbers through 
a deterministic computation program (RNG, 2017). Despite its given name, it is not random; 
these numbers are pseudo-random numbers. Since a real random number cannot be calculated 
by mathematical equations and computational algorithms, Microsoft Excel has a ‘=RAND’ 
function that generates pseudo-random numbers to be used in place of random numbers. The 
pseudo-random numbers generated by this function will repeat after ten-trillion random 
numbers. However, these pseudo-random numbers are enough to fulfill most of the tasks in 
practice. Specifically, the function ‘=RAND’ generates a number between 0 and 1, which is 
useful in the use of probability and random outcomes. Random number generators can be used 
in the application of statistical sampling and computer simulation. 
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2.6 Regime-Switching Lognormal Models 

To accurately represent the unpredictability of stock market behavior, we used a 
regime-switching lognormal model to generate the simulated stock returns for each of the 
seven indices. The model can switch between regimes at random. Each regime follows a normal 
distribution and is characterized by its own unique mean and standard deviation. The 
characterization of our model as lognormal is because log returns are normally distributed. 
Markov chains are used in order to determine which regime the model is in at any given time. 
Stock returns are generated by applying the parameters corresponding to the current regime 
and generating normally distributed returns. The regime-switching process mimics the behavior 
of the actual stock market, switching between good (high returns, low volatility) and bad (low 
returns, high volatility) periods. 

2.7 The Normal Distribution 

The normal distribution, also known as the Gaussian distribution, is the most important 
and commonly used probability distribution is statistical analysis. Numerous response variables 
(dependent variables) are normally distributed including but not limited to height, blood 
pressure and IQ scores. The normal distribution has two parameters μ and σ. As with all other 
probability distributions, we can use the acronym CUSS (Center, Unusual Features, Shape, 
Spread) in order to describe the characteristics of the normal distribution. Variables that follow 
a Gaussian distribution are centered about the mean μ. Unusual features include outliers, gaps, 
or clusters in the data. The normal distribution is a symmetric distribution and is graphically 
represented by what is known as the bell curve (Figure 4). The spread of the normal distribution 
is described by its standard deviation σ.  

 

Figure 4: A normal distribution with mean 0 and standard deviation 1. 
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2.8 Indices Included in our ESG 

We wanted our ESG to extrapolate historical data of seven specific stock indices: S&P 
500, NASDAQ, Russell 2000, MSCI EAFE, MSCI EM, Russell 1000 Growth, and Russell 1000 Value. 
Table 5 provides a brief description of each of the seven stock indices used in our ESG and lists a 
few of the constituent companies. 

Table 5: The stock indices involved in our project, involving a brief description and a few 
example companies included within each stock. 

Name Description Companies 

S&P 500  The S&P 500 index is a collection of the 500 largest stocks in the United 
States. This index combines about 80% of the U.S. market’s capitalization. 
It is the best indicator of how large stocks are performing, and therefore 
it is one of the most followed indices by investors. 

Apple 
Microsoft 
Amazon 
AT&T 

NASDAQ The NASDAQ is one of the most-followed indices in the U.S. stock market. 
The NASDAQ composite index contains over 3,300 stocks listed on 
NASDAQ stock exchange. It is a broad-based market index mainly 
weighted toward technology companies. 

Apple 
Microsoft 
Netflix 
Starbucks 

Russell 
2000 

A small-cap stock market index that measures 2000 of the bottom 
companies in another index, Russell 3000, which includes the 3000 largest 
U.S. stocks. It is used as a way for investors to see a wide measurement of 
the overall performance of small-cap stocks.  

Cheese Factory INC  
Children’s Place Retail  
Coca Cola Bottling 

MSCI EAFE MSCI EAFE index stands for Morgan Stanley Capital International and 
represents the performances of 21 developed markets, excluding the U.S. 
and Canada. This index is widely used as a benchmark and the basis of 
index-linked financial goods. 

Nestle 
Toyota Motor CORP 
HSBC Holdings (GB) 

MSCI EM MSCI EM index also stands for Morgan Stanley Capital International and 
measures the performance of stocks in the global emerging market. It 
includes mid-cap and large-cap stocks of 12 emerging market countries. 
This index represents over 13% of the global market capitalization. 

China Mobile 
Samsung Electronics Co 
Alibaba Group Hldg Adr 

Russell 
1000 
Growth 

The Russell 1000 is a leader index of large cap investing which includes 
1000 largest companies in the U.S. stock market. The Russell 1000 Growth 
index represents those companies included in the Russell 1000 index and 
exhibits a probability of growth. 

Target Corp  
Microsoft Corp   
Visa Inc 

Russell 
1000 
Value 

The Russell 1000 is a leader index of large cap investing which includes 
1000 largest companies in the U.S. stock market. The Russell 1000 Value 
index represents those companies included in the Russell 1000 index and 
exhibits a value probability.  

Johnson & Johnson 
Bank Of America Corp 
Disney Walt Co 
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2.9 Calculating Monthly & Annual Log Returns 

Monthly log returns can be calculated from given stock prices by applying the following 
formula: 

log return = ln(current price / previous price) 

For example, if the price of a stock in April 1998 is $30 and $37 in May 1998, then the log return 
for May 1998 is ln(37/30) ≈ 0.209720531. In order to obtain the annual log returns, multiply the 
values calculated for monthly log returns by 12. The corresponding annual log return for our 
example would be 12 * ln(37/30) ≈ 2.516646372.  

2.10 Maximum Likelihood Estimation & Mary Hardy’s Paper 

In order to define the maximum likelihood estimator, we first must define our data 
sample. Suppose that {A1, …, An} is our sample of size n, where Aj is the value of the jth 
observation. Also assume that Aj is the observed value of the random variable Xj. The random 
variables {X1, …, Xn} are not required to be identically distributed. However, their distributions 
should all depend on the same parameter vector θ. The final assumption is that the random 
variables are independent.  

The goal of maximum likelihood estimation is to determine the parameter value that 
maximizes the probability of obtaining the observed sample. Since it is assumed that the 
observations are independent, the likelihood function is: 

𝐿(𝜃) = 𝑃𝑟(𝑋1 ∈ 𝐴1, . . . , 𝑋𝑛 ∈ 𝐴𝑛|𝜃) = ∏ 𝑃𝑟 (𝑋𝑗 ∈ 𝐴𝑗|𝜃)

𝑛

𝑗=1

 

The natural logarithm of the likelihood function is: 

𝑙𝑛[𝐿(𝜃)] = 𝑙𝑛(𝜃) ∑ 𝑥𝑖

𝑛

𝑖=1

+ [𝑛 − ∑ 𝑥𝑖

𝑛

𝑖=1

]𝑙𝑛(1 − 𝜃) 

Since it is easier to maximize the natural logarithm of the likelihood function, the log-
likelihood function is used instead of the likelihood function in order to find the maximum 
likelihood estimator of θ (Klugman et al., 2012, p.260-261).  

For example, suppose that we have a sample of Bernoulli distributed random variables 
all dependent on the parameter θ. The likelihood function is: 

𝐿(𝜃) = ∏ 𝜃𝑥𝑖(1 − 𝜃)1−𝑥𝑖

𝑛

𝑖=1

= 𝜃∑ 𝑥𝑖
𝑛
𝑖=1 (1 − 𝜃)𝑛−∑ 𝑥𝑖

𝑛
𝑖=1  

 
The corresponding log-likelihood function is: 
 

𝑙𝑛[𝐿(𝜃)] = 𝑙𝑛(𝜃) ∑ 𝑥𝑖

𝑛

𝑖=1

+ [𝑛 − ∑ 𝑥𝑖

𝑛

𝑖=1

]𝑙𝑛(1 − 𝜃) 
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We then perform the following steps in order to obtain the maximum likelihood estimator of 
the parameter θ.  
 

𝑆𝑒𝑡 
𝑑

𝑑𝜃
𝑙𝑛[𝐿(𝜃)] =

1

𝜃
∑ 𝑥𝑖

𝑛

𝑖=1

−
1

1 − 𝜃
[𝑛 − ∑ 𝑥𝑖

𝑛

𝑖=1

] = 0 

1

𝜃
∑ 𝑥𝑖

𝑛

𝑖=1

=
1

1 − 𝜃
[𝑛 − ∑ 𝑥𝑖

𝑛

𝑖=1

] ⇒
𝑛𝑥

𝜃
=

𝑛 − 𝑛𝑥

1 − 𝜃
⇒

𝑛𝑥

𝜃
=

𝑛(1 − 𝑥)

1 − 𝜃
 

⇒
𝑥

𝜃
=

1 − 𝑥

1 − 𝜃
⇒ 𝑥 − 𝜃𝑥 

𝜃 = 𝑥 

  

Therefore, we can see that the maximum likelihood estimator of the parameter 𝜃 is the mean 
of our sample.  

“A Regime-Switching Model of Long-Term Stock Returns” by Mary Hardy provided a 
detailed explanation of how to obtain the likelihood function needed to utilize maximum 
likelihood estimation in order to find the parameters of our model. 

2.11 Covariance & Correlation 

When we generate random numbers and use them to generate our log-normally 
distributed returns for each index, we may have uncorrelated results. However, this is not 
accurate to the real world because many stocks are correlated, and we would expect that in 
each economic state, the stock returns would move in a similar way. For example, the S&P 500 
and the NASDAQ share similar stocks (Apple, Microsoft), so if the S&P 500 returns move in a 
direction, we would expect the NASDAQ returns to move in the same direction. Therefore, we 
account for the correlation between two indices by considering their correlation and 
covariance. For each index in relation to another, we have a correlation value. With these 
values, we can create a correlation matrix. A simple example of a correlation matrix between 
two indices is shown in Table 6: 

Table 6: Example Correlation Matrix between S&P 500 and NASDAQ 

 S&P 500 NASDAQ 

S&P 500 1 0.95 

NASDAQ 0.95 1 
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The correlation between indices is always between -1 and 1. A positive correlation 
implies that if an index moves in a direction, then the other positively correlated index will 
move in the same direction. Contrarily, a negative correlation implies that if an index moves in a 
direction, then the other negatively correlated index will move in the opposite direction. A 
correlation of 0 implies that two indices are uncorrelated, and the movement of one index will 
not affect the other. The correlation between an index with itself will always be 1, and thus the 
diagonal of the correlation matrix will always be 1.  A correlation matrix also has the property of 
being symmetric along the diagonal, meaning that the correlation could also be presented as an 
upper or lower triangular matrix. Therefore, the entries above and below the diagonal are the 
same in any given correlation matrix.  

With the correlation matrix, we can find the covariance matrix. This can be done if we 
have the correlations between two indices and their standard deviations. The relationship 
between covariance and correlation is shown in Figure 5: 
 

 

Figure 5: Relationship between covariance and correlation. 

With this formula, a correlation matrix can become a covariance matrix. Covariance 
measures how two variances move together. If they move in the same direction, the covariance 
is positive; if they move in the negative direction, the covariance is negative. Due to the direct 
relation with correlation coefficients, covariances can be used to correlate random variables 
when applied to the Cholesky Decomposition. 

2.12 Cholesky Decomposition 

With the covariance matrix, we can take the Cholesky decomposition and use the result 
to correlate random variables. Cholesky decomposition is the process of taking a positive-
definite, symmetric matrix and turning it into the product of a lower triangular matrix and its 
transpose. The transpose of a matrix means that the ith row of a matrix and the jth column of a 
matrix changes such that the transpose of the matrix has that value instead in the jth row of the 
transpose and the ith column of a matrix. With a covariance matrix C, when we Cholesky 
decompose it: 

C = L*Lt 
This lower triangle L is useful in correlating random variables because when multiplied 

by random variables (with conditions), the resulting random variables will have the variances 
that came from developing the covariance matrix used to create L. There are two conditions to 
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these random variables before multiplying by lower triangle L: the random variables must have 
a variance of 1, and they must be uncorrelated. The rand Therefore, we can create random 
variables with the variances necessary to have the correlated values we wanted them to have in 
relation to each other. This allows us to create random returns between stocks that includes 
the necessary variance needed to return data accurate to historical data.  

To reflect this method, suppose we have an example covariance matrix reflecting to 
covariance between the S&P500 and the NASDAQ. For reference, the values in this table were 
generated from using Table 6 as the correlation matrix, then setting 𝜎 = 0.05 for the S&P500 
and 𝜎 = 0.06 for the NASDAQ. Using the formula shown in Figure 5, we generated the values 
for the covariance matrix. An example of the usage of this method is shown below to find the 
covariance between the S&P500 and the NASDAQ: 

 
𝐶𝑜𝑣(𝑆&𝑃500, 𝑁𝐴𝑆𝐷𝐴𝑄) = 𝐶𝑜𝑟𝑟(𝑆&𝑃500, 𝑁𝐴𝑆𝐷𝐴𝑄) ∗ 𝜎𝑆&𝑃500 ∗  𝜎𝑁𝐴𝑆𝐷𝑄𝐴𝑄 

0.95 ∗ 0.05 ∗ 0.06 = 0.00285 =  𝐶𝑜𝑣(𝑆&𝑃500, 𝑁𝐴𝑆𝐷𝐴𝑄) 
 
The final table representing the covariance matrix is shown in Table 7: 

Table 7: Example Covariance Matrix between S&P 500 and NASDAQ 

 S&P 500 NASDAQ 

S&P 500 0.0025 0.00285 

NASDAQ 0.00285 0.0036 

 

 Because this matrix is symmetric and positive definite, we can take the Cholesky 
decomposition of this matrix (Table 8). Note that the covariance between a random variable 
with itself is equivalent to the random variable’s variance. 

Table 8: Example Lower Triangle Matrix between S&P 500 and NASDAQ Generated from 
Cholesky Decomposition 

0.05 0 

0.057 0.0187 

 

 Notice this matrix is a lower triangle matrix. We will refer to this matrix as L. If we took 
the transpose of L and multiplied it by L, we would return the values given in Table 7 (C = L*Lt). 
Now suppose we want to use this lower triangle matrix to correlate random variables. In our 
project, we are returning normal returns. Suppose we are trying to correlate these random 
arbitrary values that follow the normal distribution: 
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Table 9: Example Uncorrelated Normal Returns with Variance = 1 

S&P 500 Normal 
Inverse Return 

1.213 

NASDAQ Normal 
Inverse Return 

0.453 

 

 The normal inverse returns for the S&P500 and the NASDAQ given in Table 9 follow 
Normal(0, 1) with no correlation between the two. However, we want the reflect correlation 
between the returns because we know that the S&P500 and the NASDAQ have a correlation of 
0.95. To correlate these returns, we simply must multiply the lower triangle L with the 
uncorrelated random return from Table 9. After this multiplication, the following returns are:  

Table 10: Resulting Correlated Normal Returns 

S&P 500 
Correlated 

Normal Return 

 
0.0607 

NASDAQ 
Correlated 

Normal Return 

 
0.0776 

 

 Notice that the values for the returns in Table 10 have been adjusted to be a lot closer in 
value. In addition to this, the variances of these returns are not 1 anymore. Instead, they now 
reflect the standard deviations that contributed in making the covariance matrix and the 
Cholesky decomposition matrix. 
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CHAPTER 3: METHODOLOGY 

To achieve the goal of our project, we needed to build an ESG that considered any number 
of years and scenarios as input, consider the correlation between our chosen stock indices, 
reflect historical data from our stock indices through MLE, and output a simulation of a possible 
future outcome. We followed these steps in creating an ESG that would accomplish these goals: 

1. Make the program user-friendly by creating a one-page input excel sheet to manage the 
program easily. 

2. Create a system for generating random numbers and use these numbers to determine 
how our ESG will switch regimes. 

3. Code the fundamental lines in VBA to create a regime-switching lognormal model with 
three regimes. 

4. Create a formula for maximum likelihood estimation to analyze historical data and 
create realistic parameters to reflect the seven stock indices. 

5. Utilize Cholesky decomposition in creating correlation between the results of our 
returns for each index. 

6. Output our final returns as a CSV file so that the large data will not create a huge file and 
can easily be turned into an Excel sheet.  

3.1 One-Page Input 

When developing our code, we created a “One Page Input” Excel sheet. This is meant to 
act as an organized way to display our numbers. We labeled each cell with a “name” that is 
referred to in our code, and thus our code is not bound to specific cells. Therefore, for anyone 
that wishes to use our ESG, they will be able to easily change the starting state, number of 
scenarios, number of years per scenario, values of means or standard deviations, transition 
probability values, and correlation matrices. As a result, the code reads the values of the named 
cells, and will run the code with these new numbers. A visual of this one-page input can be 
found in Appendix A.  

3.2 Method for Creating and Using Random Numbers 

To prevent the code from carrying out too many operations, we avoided using “RAND()” 
directly in our code, as this would need to generate a random number each time we needed it. 
Considering we needed thousands of random numbers for the Markov chain, as well as to 
create our returns, our team instead created a second sheet within the Excel file specifically 
made for random numbers. We generated a list of random numbers depending on how many 
random numbers we needed. This list is broken into multiple columns: the first column is for 
the Markov chain process, and the remaining columns are for each index. The Markov chain 
random numbers are necessary to determine how to switch between each regime, and the 
index random numbers are necessary to simulate a future return. The number of random 
numbers needed for each column can be found through the multiplication of the input values 
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for the number of years and the number of scenarios, as each column needs only one random 
number for every year generated. Once we generated a list of random values using RAND() on 
this sheet, we copied and pasted the values of these random numbers so that Excel would not 
continuously refresh the values. With this process completed, we could now refer to the values 
in the list within our code to have the random numbers we needed. A visual of this random 
number spreadsheet can be found in Appendix B. 

 An example of how we used a random number in the Markov chain is as follows. 
Suppose we are considering the weather example with probabilities given in Figure 2. In this 
demonstration, suppose we are starting in the “sunny” state. This means that there is a 90% 
chance of tomorrow being sunny and a 10% chance of tomorrow being rainy. We determined 
the state of tomorrow by generating a random number and using that number as the 
determinant of the regime switch. For the sunny state, we looked at the value in the first 
column of the matrix (0.9) and chose the range of 0 to 0.9 to be the sunny state range. Then, 
we looked at the second column. The value in the second column of the matrix (0.1) was added 
to the upper bound of the previous range (0.9) to determine the upper bound of the second 
range. The lower bound of the second range would start at where the previous range ended 
(0.9). Therefore, the second range was chosen to be 0.9 to 1. We repeated this process for the 
case where we are starting in the rainy case. These ranges were made a cumulative distribution 
function (CDF), as shown in Table 11: 

Table 11: Cumulative Distribution Function Matrix that Results from our Weather Example 

  new state = sunny new state = rainy 

starting state = sunny t11 = 0.9 t11+ t12 = 1 

starting state = rainy t21 = 0.5 t21+ t22 = 1 

 

With the CDF, we can use the random numbers generated from RAND() to decide what 
the next state will be. Suppose we are starting in a sunny state and we generated a random 
value of 0.93212. In this case, the program will first check to see if 0.93212 is less than or equal 
to 0.9. If it is, then we determine that the new state is sunny. If the equation is not true, we 
move onto the next column to check. The program determines that the new state is not sunny, 
so we look at the next CDF value. The program now checks to see if 0.93212 is less than or 
equal to one. Because this statement is true, the program determines that the new state is 
rainy.  

3.3 Adding Markov Chains to our ESG in VBA Through Code 

For each scenario, we wanted the ESG to transition between three regimes at random, 
generating returns based on the parameters and inputs provided. We denoted “1” as being in a 
good state, “2” as being in a bad state, and “3” as being in a catastrophic state. We created a 
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for-loop that starts at year 1 and ends at the number of years inputted within the one page 
input sheet. We set the “current state” equal to the “new state” at the beginning of the for-
loop. This means that for each year we use the Markov chain, we are considering the previous 
year’s state.  

Within the for-loop, we coded the Markov chain process as an if-statement so that each 
year has a transition. For the Markov chain if-statement, our code will consider the “current 
state” of the year and use a random number from our frozen list of random numbers to 
determine the “new state.” Specifically, for the first year of each scenario, our code takes the 
inputted starting state from the one page input sheet and makes it the first state of the 
scenario and the “new state” for the first year of the Markov chain. A visual of the code format 
for our Markov chain is shown in Figure 6. 

 

Figure 6: Brief code diagram of how we set up our Markov chain in VBA. 
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We will demonstrate this code with an example. Suppose we are starting in state 1. The 
code will start in year one and determine that starting state = new state (placed right before 
the for-loop). Now, new state is equal to 1. However, as mentioned previously, we have a 
current state = new state at the beginning of the for loop. Now, current state = 1. We receive a 
random number from the frozen random number spreadsheet. Because current state = 1, we 
must look at the if-statement that says current state = 1. Going in order, we will check to see if 
the random number is less than the CDF t11 value (method explained in previous section, 3.2 
Method for Creating and Using Random Numbers). If it is, we determine that the new state = 
1. Otherwise, we move onto the ElseIf statement to check the condition. If the random number 
is less than t11+ t12, new state = 2. Otherwise, we know that the new state must be 3 (Else 
statement). 

Next, when we are in year 2 and trying to determine the state of year 3, the current 
state = new state at the beginning of the for-loop will turn the resulting new state from year 1 
into the current state of year 2. This process will repeat for each year until all years are 
complete and the states are determined. Then, the for-loop will move onto the next scenario, 
where we once again start with the starting state as 1, and we will generate as many scenarios 
as inputted by the one-page input sheet.  

3.4 Gathering of Historical Data 

With the assistance of Emily Chen, a graduate student in WPI’s Financial Mathematics 
program, the monthly returns for the seven indices were obtained by using the Bloomberg 
Terminal. The monthly returns are given as prices in U.S. dollars and data is available from as far 
back as 1987, possibly even earlier. 

3.5 Calculating Annual Returns 

The monthly log returns were calculated from the given returns by applying the 
following formula: 

log return = ln(current price / previous price) 

For example, if the price of a stock in April 1998 is $30 and $37 in May 1998, then the 
log return for May 1998 is ln(37/30) ≈ 0.209720531. We then multiplied the values calculated 
for monthly log returns by 12 in order to obtain the annual log returns. The corresponding 
annual log return for our example would be 12 * ln(37/30) ≈ 2.516646372. With these values, 
we were able to find realistic parameter values for our seven indices (mean and standard 
deviation) and for the regime-switching component of our model (transition probabilities) using 
maximum likelihood estimation.  
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3.6 Obtaining Realistic Model Parameters 

To figure out how we would obtain realistic values for our model parameters, we 
referred to “A Regime-Switching Model of Long-Term Stock Returns,” a paper written by Mary 
Hardy. In her essay, Mary Hardy states that we can solve for the model parameters we desire 
by applying maximum likelihood estimation. The Likelihood Function is able to express the 
validity of different parameter values for a given sample of data, such as the historical monthly 
stock prices of the S&P 500 and the Toronto Stock Exchange (TSE 300) from 1956 to 1999. Once 
we complete the maximum likelihood estimation process, we have found the model 
parameters that best fit our data. 

In her paper, Mary Hardy used historical data of the S&P 500 and TSE 300 indices to 
illustrate the results of applying maximum likelihood estimation to monthly log returns. For our 
ESG, we wanted our parameters to be based on annual log returns. While Mary Hardy’s model 
only involves two indices, our ESG involves seven: S&P 500, NASDAQ, Russell 2000, Russell 1000 
Growth, Russell 1000 Value, MSCI EAFE and MSCI EM. We decided that regime 1 would be the 
“good” economic state characterized by high returns and low volatility and regime 2 would be 
the “bad” economic state characterized by low returns and high volatility. 

3.7 Obtaining Model Parameters for S&P 500 by Maximum Likelihood Estimation 

In order to perform maximum likelihood estimation, we first had to calculate the 
probability density function (PDF) for each observation. Then by taking the natural logarithm of 
the PDFs and summing them up, we were able to determine the Log-Likelihood function. 
Finally, the optimization of the Log-Likelihood function was accomplished with the help of 
Microsoft Excel’s solver add-in.  

We started off the process of maximum likelihood estimation by first defining the 
random variable yt to be the log return at time t. Also used was the random variable ρt, defined 
by Mary Hardy to be the regime the model is in at time t. Considering the historical log returns 
as our data sample, we then set out to determine the probability density functions for each of 
our data points.  

Since each log return came from either regime 1 or regime 2, we determined that the 
probability density function for yt, the observed log return at time t, can be expressed as the 
following: 

 
𝑓(𝑦𝑡) = 𝑃𝑟(𝜌𝑡 = 1)𝑓(𝑦𝑡|𝜌𝑡 = 1) + 𝑃𝑟(𝜌𝑡 = 2)𝑓(𝑦𝑡|𝜌𝑡 = 2) 

 
𝑃𝑟(𝜌𝑡 = 1) is the probability that the model is in regime 1 at time t. Likewise, 𝑃𝑟(𝜌𝑡 = 2) is the 
probability that the model is in regime 2 at time t. 𝑓(𝑦𝑡|𝜌𝑡 = 1) is the probability density 
function of the observed log return at time t, given that the model is in regime 1 at time t. 
Similarly, 𝑓(𝑦𝑡|𝜌𝑡 = 2) is the probability density function of the observed log return at time t, 
given that the model is in regime 2 at time t.  
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Because log returns are normally distributed and each regime is characterized by its 
own unique set of parameters, the conditional probability density functions of our observations 
can be described as follows: 

𝑓(𝑦𝑡|𝜌𝑡 = 1)~ Normal(𝜇1, 𝜎1
2) 

𝑓(𝑦𝑡|𝜌𝑡 = 2)~ Normal(𝜇2, 𝜎2
2). 

As Markov chains play a critical role in determining which regime the model is in at any 
time, our next step was to derive recursive formulas for 𝑃𝑟(𝜌𝑡 = 1) and 𝑃𝑟(𝜌𝑡 = 2).  

𝑃𝑟(𝜌𝑡 = 1) = 𝑃𝑟(𝜌𝑡−1 = 1|𝑦𝑡−1)𝑝11 + 𝑃𝑟(𝜌𝑡−1 = 2|𝑦𝑡−1)𝑝21 

𝑃𝑟(𝜌𝑡 = 2) = 𝑃𝑟(𝜌𝑡−1 = 1|𝑦𝑡−1)𝑝12 + 𝑃𝑟(𝜌𝑡−1 = 2|𝑦𝑡−1)𝑝22 

𝑃𝑟(𝜌𝑡−1 = 1|𝑦𝑡−1) is the probability that the model was in regime 1 at time t – 1, given that yt–1 
was observed. Comparably, 𝑃𝑟(𝜌𝑡−1 = 2|𝑦𝑡−1) is the probability that the model was in regime 
2 at time t – 1, given that yt–1 was observed. The formulas for these probabilities can be 
obtained by applying Bayes’ theorem, yielding the following: 

𝑃𝑟(𝜌𝑡−1 = 1|𝑦𝑡−1) =
𝑓(𝑦𝑡−1|𝜌𝑡−1 = 1)𝑃𝑟(𝜌𝑡−1 = 1)

𝑓(𝑦𝑡−1)
 

𝑃𝑟(𝜌𝑡−1 = 2|𝑦𝑡−1) =
𝑓(𝑦𝑡−1|𝜌𝑡−1=2)𝑃𝑟(𝜌𝑡−1=2)

𝑓(𝑦𝑡−1)
. 

If you want the probabilities at time t, replace the t – 1 subscripts with t.  

p11 and p22 are the probabilities that the model stays in its current regime. p12 is the 
probability the model switches from regime 1 to regime 2 and p21 is the probability that the 
model switches from regime 2 to regime 1. Since the model either stays in its current regime or 
switches to the other regime, we know that p11 + p12 = 1 and p21 + p22 = 1. As we were also 
aiming to find the maximum likelihood estimators of p12 and p21, p11 = 1 – p12 and p22 = 1 – p21 
were used when necessary.  

As our data starts at time t = 1, the recursive formulas cannot be used. For this special 
case, we consulted with Mary Hardy’s paper in which she suggests we use the following 
formulas: 

𝑃𝑟(𝜌𝑡 = 1) = 𝜋1 =
𝑝21

𝑝12 + 𝑝21
 

𝑃𝑟(𝜌𝑡 = 2) = 𝜋2 =
𝑝12

𝑝12 + 𝑝21
 

Here, 𝜋1and 𝜋2represent the steady state probabilities of being in either of the two regimes. 
Therefore, we can rewrite the probability density function for the observed log return at time t 
= 1 as, 

𝑓(𝑦1) = 𝜋1𝑓(𝑦1|𝜌1 = 1) + 𝜋2𝑓(𝑦1|𝜌1 = 2) 
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 After determining the probability density function for each of observations, we take 
their natural logarithms and sum them together to yield the Log-Likelihood Function, which is 
given by the following expression: 

∑ 𝑙𝑛[𝑓(𝑦𝑡)]

𝑛

𝑡=1

 

 To wrap up this procedure, we created an Excel spreadsheet model using these 
formulas and used the Solver add-in in order to determine the maximum likelihood estimators 
of our model parameters.  

3.8 Maximum Likelihood Estimation for the Other 6 Indices 

As the most important of the seven indices used, we decided to use the S&P 500 index 
as a benchmark for the regime-switching aspect of our model. While computing the maximum 
likelihood estimators for the S&P 500, we added a column to the Excel spreadsheet that would 
keep track of what regime the model is in at time t.  

We decided that if 𝑃𝑟(𝜌𝑡 = 1|𝑦𝑡) > 𝑃𝑟(𝜌𝑡 = 2|𝑦𝑡), then the model is in regime 1 and 
otherwise it is in regime 2. After obtaining our maximum likelihood estimators for the S&P 500 
index, we were able to see its historical regime-switching pattern. The reason why this was 
important is that we wanted to ensure that at any time t, all seven indices are in the same 
regime. As a result, the maximum likelihood estimators for the transition probabilities only had 
to be calculated once. This also allows us to simplify the formulas needed in order to find the 
maximum likelihood estimators of the parameters for the other six indices.  

Since we now know what regime the model is in ∀t, the probability density function for 
yt can be described as follows: 

𝐼𝑓 𝜌𝑡 = 1, 𝑓(𝑦𝑡) = 𝑓(𝑦𝑡|𝜌𝑡 = 1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑓(𝑦𝑡) = 𝑓(𝑦𝑡|𝜌𝑡 = 2). 

The rest of the maximum likelihood estimation process was carried out in an identical manner 
as that for the S&P 500 index. 

3.9 Choosing Regime 3 Parameters 

The goal for regime 3 was to make an economic state that is worse than what our 

economy has previously faced. We made a specific assumption about this regime; because we 

expect that when it is a very bad economic state, that every index will face a similar amount of 

devastation within their returns, we made our returns all have a correlation of 1. Transitively, 

this means that all our indices had the same means and standard deviations for this regime. 

 We obtained our data to create these parameters from Yahoo Finance. We looked at 

the S&P 500 and downloaded the CSV file for the daily closing returns from January 1st, 2007 to 

January 1st, 2009. With these values, we took the 250-day ratio to represent the length of a 
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trading year, and then we looked at the mean, standard deviation, maximum, and minimum. 

This ratio was meant to roughly represent a realistic time where the economy was facing a very 

bad state. We then took the mean and standard deviation and adjusted these numbers to 

represent an even worse situation. Our chosen values were arbitrarily adjusted to reflect a 

catastrophic scenario, and thus regime 3 transition probabilities are given as 0 to exclude it 

from our results. Additionally, users will most likely wish to change these values to their own 

findings, and thus inputting different values for the transition probabilities and the parameters 

for the S&P 500 will automatically adjust the ESG for these input changes. 

3.10 Correlating Our Returns 

We obtained the data of correlation between indices by taking historical data, splitting 

the data into either regime 1 or regime 2 depending on the return, and using the “CORREL(...)” 

Excel function to find the correlation between the indices. Using these correlation matrices, we 

converted them into covariance matrices using the parameters we estimated from our 

maximum likelihood estimator. We then used the covariance matrices and Cholesky 

decomposed them using MATLAB to find a lower triangle for regime 1 and regime 2. With these 

lower triangles, we were able to consider the different correlations depending on the economic 

state the year was in. To change the random returns from our random numbers spreadsheet 

into returns that correlate between indices, we needed to convert the variance and standard 

deviation of the random numbers 1. RAND() generates random numbers from the distribution 

Uniform(0, 1). The formula for variance for Uniform(a, b) is: 

 (b-a)2/12 

Thus, we used this formula to solve for the variance of Uniform(0,1), and evaluate if we 

needed to change the random variables to have unit variance. Plugging in the values, we find 

that the variance of a Uniform(0,1) distribution is equal to 1/12. Therefore, to adjust the 

variance and standard deviation, we used the “NORM.INV(...)” function in Excel, which uses 

inverse normal transformation. Specifically, we applied a mean of 0 and a standard deviation of 

1 so that the random numbers would have the characteristics necessary to be correlated. With 

this, when we multiply our lower triangle L from the Cholesky decomposition with our random 

variables of mean 0 and standard deviation 1, we now have correlated random numbers. These 

correlated random numbers follow Normal(0, σ2). To adjust the random numbers to have the 

means we are looking for, we add the mean of that regime to the value of the random 

numbers, turning our random numbers into Normal(μ, σ2). Therefore, with this method, we 

have generated our normal returns for our ESG. 
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3.11 Adding Correlation to our ESG in VBA Through Code 

Once we determined a method of correlating our returns, we implemented our findings 

into code to produce correlated normal returns. Within the for-loop that goes through each 

year, we added code structured similarly to Figure 7. 

 

Figure 7: Brief code diagram of how we set up correlating returns in VBA. 

 As mentioned in the 3.10 Correlating Our Returns section of our paper, we needed to 

account for the random numbers starting in Uniform(0, 1) not having unit variance. We 

therefore took the random numbers and used the “=NORMINV(...)” function to return these 

random numbers as normal returns with mean 0 and standard deviation 1. We include random 

number = random number + 1 after creating these normal returns because it will move onto 

the next numbers in the random number spreadsheet in the for-loop. Next, we take all the 

normal returns and add them into an array. Once we have this set up, we will check which 

regime we are in. Depending on the regime, we will correlate the array by multiplying the array 

with the Cholesky lower triangle for the respective state we are in. One we have our new 

correlated array, we can add the means for that state to each index return, and these results 



   
 

 32 

will be outputted as our final returns. After the state switches and we move onto the next year, 

this process is repeated. 

3.12 Outputting our Results as a CSV File 

Once we had our returns processed within our code, we wanted a method to output the 

results in an organized manner so that a reader could look at the data and understand the 

output. We listed the output results in this order: scenario number, year number, the state 

number, the S&P 500 return, the NASDAQ return, the Russell 2000 return, the MSCI EAFE 

return, the MSCI EM return, the Russell 1000 Growth return, and the Russell 1000 Value return 

(Figure 8). Every line of data outputted will be in this order, and thus we can tell the specific 

scenario and year each return belongs to. The output file format we chose was a “comma-

separated value” (CSV) file. This file can be uploaded into a text program and will separate each 

consecutive number in a line with a comma. If the user instead wanted to open this file into 

Excel, the file can be opened and instead of being separated by commas, each number per row 

will be separated into individual cells. Thus, scenario number would be column one, year 

number would be column two, etc. 

 

Figure 8: The order in which we listed our data in the CSV file. 
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CHAPTER 4: RESULTS AND ANALYSIS 

4.1 ESG Run Time 

Our ESG took one minute and 42 seconds to run 10,000 scenarios, each 50 years long. 
Overall, this is very efficient as we intended to design our code to have as few operations as 
possible. This should give the user flexibility in running many scenarios in a relatively short 
period of time. 

4.2 Maximum Likelihood Estimation Results for Model Parameters 

After building our Excel spreadsheet models and utilizing the Solver add-in, we were 
able to determine the maximum likelihood estimates for our model parameters. Figure 9 shows 
our results. Note that the regime-switching process was based on the S&P 500 index. 
Therefore, the transition probabilities p12 and p21 determined for the S&P 500 index are 
essentially the same for all seven indices.  

 

Figure 9: Results of Maximum Likelihood Estimation for Model Parameters 

4.3 Analysis of Maximum Likelihood Estimation Results 

By looking at the results of our maximum likelihood estimation, we can summarize the 
economic trends exhibited by the seven indices. Our seven indices were chosen by our project 
advisors in such a way that they do a fairly good job at representing the economy.  

Figure 1 shows a summary of the economic trends exhibited by selected indices. There 
was a 3.49% chance that the economy would switch from being in a “good” situation to being in 
a “bad” situation. Similarly, the chance that the economy would switch from being in a “bad” 
state to a “good” state was 3.60%. While calculating the MLEs for the S&P 500 index, we were 
keeping track of which regime the model was in at time t. The historical data we collected 
consisted of 385 observations for each index, starting from December 1987 and ending at 
January 2020. From this, we concluded that historically, our economy spent 198 months (≈ 
51.43% of the time) in “good” financial conditions and spent 187 months (≈ 48.57% of the time) 
in “bad” financial conditions. These were relatively close to our steady state probabilities of 
being in either of the two states: 50.8% (regime 1) and 49.2% (regime 2). 
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4.4 Steady State Ratios of Results 

 

 We created a state counter to compare the ratios of each regime to the steady state 
probabilities. Using a base case of 10,000 scenarios, each 50 years long, we tested our ESG 
using the maximum likelihood estimates of transition probabilities, as well as with arbitrary 
values for transition probabilities (Figure 10). 
 

 

Figure 10: Comparison of arbitrary values to the maximum likelihood estimates. 

 We noticed that when we utilized our maximum likelihood estimates, the ratios of each 
regime did not match the steady state for its transition matrix, but when we used arbitrary 
values, the resulting ratios were much closer to its corresponding steady state. Based on these 
results, we concluded that the code worked because the arbitrary transition probability values 
were able to reach the steady state. We also ran our ESG utilizing the maximum likelihood 
estimates of transition probability values for 20,000 scenarios instead of 10,000 scenarios to 
see if the regime 1 and regime 2 ratios would move towards their steady state values. The 
ratios of regime 1 and regime 2 were closer to 0.508 and 0.492, respectively, meaning we 
needed more scenarios for the ratios to converge to the steady state probabilities.  
 



   
 

 35 

4.5 Analysis of our ESG Results 

We analyzed the simulation to determine how the ESG performed regarding generating 
simulated stock returns that accurately reflect historical economic trends (Figure 11).  

 

 

Figure 11: Comparison of MLE Parameters (top) with Results of ESG Simulation (bottom). 

 
In order to compare the results of our ESG simulation to the historical trends exhibited 

by our seven indices, we conducted a series of two-sample hypothesis tests at the 5% 
significance level (α = 0.05). To compare the means, we implemented the two-sample t-test. 
We also performed the F-test in order to compare standard deviations. For each comparison, 
the null hypothesis was that the historical parameter value (obtained by MLE) was equal to the 
parameter value generated by our ESG simulation. Figure 12 shows the resulting p-values from 
the hypothesis tests.  

 

Figure 12: P-Values of Two-Sample Hypothesis Tests used for comparison of MLE & ESG 
results. 

The p-values of all the hypothesis tests are far greater than our chosen α. This means 
that we did not have enough statistical evidence to reject any of our null hypotheses. In other 
words, our statistical analysis did not show any significant differences in parameter values 
between the historical data and the data produced by our simulation. Hence, we were able to 
conclude that our ESG can successfully extrapolate historical data, generating stock returns that 
accurately reflect past trends.  
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4.6 Covariance and Correlation Matrix 

We were able to analyze how accurate our maximum likelihood estimates of regime 1 
and regime 2 standard deviations were based on the correlation and covariance matrices 
formed from the Bloomberg historical data. Starting with the correlation matrix, we were able 
to use the standard deviations of each index to form a covariance matrix. With the covariance 
matrix we formed, we could compare the values to the covariance matrix that was formed 
directly using the Covariance function from Excel’s Analysis ToolPak on the Bloomberg data.  
 

 

Figure 13: Comparison of Regime 1 covariance matrices (top Bloomberg, bottom MLE). 

 

Figure 14: Comparison of Regime 2 covariance matrices (top Bloomberg, bottom MLE).  

The highlighted columns of Figure 13 and Figure 14 represent the values that differ from 
the covariance values from the Bloomberg data. We noticed that these differences were 
contained only within the S&P 500. This could be due to error within the formulas used to 
obtain our MLEs, but it provided us with accurate values for every other index, and the matrix 
was able to decompose. Overall, the accuracy between the covariance matrices indicated that 
our maximum likelihood estimates of the regime standard deviation accurately represented the 
historical data we utilized.  
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 

5.1 Code Writing 

Based on our project, VBA in Microsoft Excel was able to run our 10,000 scenarios, each 
50 years long. This was effective for our goal, but we are limited to 1,048,576 random numbers, 
meaning our ESG is limited in how many scenarios it may run.  While we chose to use VBA to 
write the code, the ESG can be generated through any coding language as long as it can handle 
large amounts of data, and we encourage readers of this report to use a different coding 
language if it provides a higher scenario and year count compared to VBA. 

5.2 Data Collection 

Based on the data collection process described in our methodology section, we 
recommend using the Bloomberg Terminal to gather financial data. It provided us with the 
monthly total returns data we needed for maximum likelihood estimation and allowed us to 
save time as we did not have to check the data against other sources in order to verify its 
reliability. Yahoo Finance was not as reliable because the data retrieved from the website 
sometimes presented incremental data incorrectly. In our case, when we were getting the 
monthly returns, each return was given one month later than the actual corresponding return 
month. This created many issues with our data, so we recommend Bloomberg as a more 
reputable and accurate data source. 

5.3 Steady State Ratios of Results 

Based on the observation that utilizing our MLE probabilities caused the ESG to not 
match the steady state values, we needed to figure out why this difference was occurring 
despite arbitrary values working. We were able to deduce that the MLE transition probabilities 
resulted in regime 1 and regime 2 not converging to the steady state ratios for two reasons: 

1. The likelihood of changing states given the MLE transition probabilities are very low, 
meaning convergence would occur if we ran many more scenarios; convergence is 
extremely slow. 

2. An Excel file can only hold so many random numbers; we could generate at most 
1,048,576 random numbers, meaning we can only run 20,971 scenarios (each 50 years 
long). 
We recommend trying to generate as many scenarios as possible to get as close to the 

steady state probabilities. As mentioned about the programming language, if you can use a 
different language to support generating many more scenarios than VBA, it might be best to 
use that language so you can achieve results that more closely resemble the steady state. 
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5.4 Correlation and Covariance Matrices 

When generating a covariance matrix to Cholesky decompose separately using MATLAB, 
a user may find that their covariance matrix will not decompose. We recommend that the user 
be wary of the two requirements for Cholesky decomposition for a matrix: symmetrical and 
positive definite. Specifically, little incremental changes in values of the covariance matrix may 
pose issues due to the covariance matrix values being so small. Therefore, we recommend 
users of the program to take notice of what changes they are making to the standard deviation 
values, as well as the correlation values, as this may make the resulting covariance matrix 
unable to decompose. 

5.5 Analysis of Data 

For practical utilization of our ESG, we believe that every scenario generated should be 
independently analyzed and compared to the results of the maximum likelihood estimator. 
Based on the comparison of the results, each scenario can be put in one of the following three 
categories: 

4. Improved Economy - characterized by higher means and lower standard deviations 
5. Stable Economy - characterized by parameters equivalent to the MLE values 
6. Worsened Economy - characterized by decreased means and increased standard 

deviations 
The user can then base their decisions on the relative frequencies of the three categories. In 

other words, the user can make their decisions according to which economic future is the most 
likely to occur.  
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APPENDIX A: ONE-PAGE INPUT (ORANGE IS CHANGEABLE 
VALUES; BLUE IS STEADY STATE RATIO) 
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APPENDIX B: RANDOM NUMBER FROZEN SPREADSHEET 

 


