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Abstract 
Computational simulations of chemical systems play an ever-increasing role in many areas of 

biochemical research from rational drug design to probing fundamental physiological processes. 

Depending on the method, a vast array of properties are able to be predicted. Here we report the design 

and implementation of two methods for investigating diverse problems in protein biochemistry.  

In order to better understand protein–metal interactions—most importantly for the difficult to 

model transition metal ions—empirical force field parameters were developed for Pt(II), cisplatin, and 

other Pt(II) coordination compounds. Two force field frameworks were used: a modified version of the 

fixed-charge OPLS-AA and the polarizable POSSIM force field. A seven-site model was used for the 

Pt(II) ion. The produced parameters are compatible with the OPLS-AA and POSSIM force fields and can 

be used in protein–metal binding simulations in which—contrary to the common treatment of metal ions 

in such simulations—the position or even coordination of the ion does not have to be constrained using 

preexisting knowledge. It has been demonstrated that the produced models are capable of reproducing key 

properties of relevant Pt(II) complexes but that the POSSIM formalism yields more accurate values for 

energies of formation than the OPLS-AA model.  

This Pt(II) model was employed—along with previously developed Cu(I) parameters—to 

investigate the binding of platinum to the protein Atox1, a human copper chaperone implicated in the 

resistance mechanism of cisplatin and other platinum antitumor compounds. In collaboration with the 

Dmitriev and Bernholc groups, we used our models to inform and refine spectroscopic experiments as 

well as to serve as starting points for high-performance quantum calculations. It was shown that under 

physiological redox conditions, copper(I) and cisplatin can form large polymers with glutathione. These 

polymers were capable of transferring copper(I) to apo-Atox1 or to platinum(II) to copper-loaded Atox1. 

Analysis of the simultaneous binding of copper(I) and platinum(II) to Atox1 was found to occur through 

the formation of copper–sulfur–platinum bridges, where copper is coordinated by three sulfur atoms and 

platinum by four sulfur atoms. 

With the goal of using a simple model to be able to quickly estimate the acid disassociation 

constants of proteins, PKA17 has been developed and tested. PKA17 is a coarse-grain grid-based method 

and software tool for accurately and rapidly calculating protein pKa values given an input PDB structure 

file. During development, parameter fitting was carried out using a compilation of 442 Asp, Glu, His, and 

Lys residues that had both high-resolution PDB structures and published experimental pKa values 

available. Applying our PKA17 model, the calculated average unsigned error and RMSD for the residue 

set were found to be 0.628 and 0.831 pH units, respectively. As a benchmark for comparison, the same 

residue set was evaluated with the PROPKA software package which resulted in an average unsigned 

error of 0.761 pH units and an RMSD of 1.063 pH units. Finally, a web interface for the PKA17 software 

was developed and deployed (http://users.wpi.edu/~jpcvitkovic/pka_calc.html) to make PKA17 available 

to the wider scientific community. 
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Chapter 1: Introduction and Background 
 Computer simulations of chemical systems play an increasing role in many areas of biochemical 

research from rational drug design to the understanding of fundamental biochemical processes. Depending 

on the method, computer simulations are able to predict a vast array of properties from reaction kinetics 

to free energies of binding. In particular, computer simulations are key in exploring properties not easily 

accessed by experiment for example, the dynamics and microstructure of solvated systems. The key factor 

in choosing a general method is the size of the system of interest. For example, quantum mechanical 

methods are able to very accurately reproduce many disparate properties but for systems containing more 

than a few hundred atoms, the calculation become prohibitively expensive even on large parallelized 

computing clusters. For large systems containing up to many thousands of atoms, such as those containing 

proteins or other biological macromolecules, empirical force fields offer a computationally affordable 

alternative. 

 However, the use of chemical force fields is not without drawbacks. Many force fields neglect 

explicit electrostatic polarization because such calculations can be computationally demanding and 

because this simplifies the parametrization process. Even without explicit polarization, force fields have 

been rather successful in modeling a variety of systems including those containing protein-small molecule 

interactions. However, some systems, such as those containing small molecule–ion (1,2) and protein–ion 

(3) interactions are not adequately reproduced without including explicit polarization. Taking this into 

consideration, we present two models, a polarizable and a non-polarizable model, of cisplatin for use in 

protein simulations. 

 

Cisplatin and Cellular Resistance to Platinum-Based Therapeutics 
 Cisplatin, or cis-dichlordiammineplatinum(II), is the prototypical member of a group of platinum-

based anticancer compounds collectively known as platins which have important clinical roles in the 

treatment of a variety of cancers (4). The structure of cisplatin, its hydrolysis products, and the pKa values 

for the key deprotonation steps are shown in Figure 1-1. 
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Figure 1-1. Cisplatin, its hydrolysis products, and key associated acid–base equilibria; pKa values were taken from (5). 

 

It is generally agreed that cisplatin’s mechanism of anticancer action involves the binding of one 

of its hydrolysis products to DNA, eventually triggering apoptosis (4). Figure 1-2 shows the first hydration 

product, the thermodynamically favored coordination site (N7 of guanidine), and the resulting possible 

DNA adducts. These crosslinked DNA adducts trigger various signaling pathways including various DNA 

damage recognition mechanisms. While the final cellular outcome is usually apoptosis, the exact pathway 

from platinum binding to cell death has not been completely elucidated (4) 

 
Figure 1-2. General mechanism of cisplatin’s anticancer action. First cisplatin is “activated” by the replacement of one 
or more chloride ligands with water (Figure 1-1). This activated product then coordinates to a DNA fragment with a 
nitrogen atom on a nucleobase displacing the first water ligand. The N7 of guanidine is most favored but other binding 
modes are possible. If applicable, the remaining chloride ligand is then replaced by a water molecule from solution. The 
second water ligand is then replaced by another nitrogen atom on a nucleobase. This forms one of two types of crosslink 
products: intrastrand and interstrand crosslinks (4). 
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a small randomized trial in 50 patients with hormone-
refractory prostate cancer; median overall survival 
was 14.9 months in patients receiving satraplatin plus 
prednisone, versus 11.9 months for prednisone alone 
(hazard ratio (HR) of 0.84)55–57. Subsequently, a phase III 
trial involving a similar comparison in 900 patients who 
had failed previous chemotherapy was completed. Final 
progression-free-survival data, released by the sponsor-
ing company (GPC Biotech), showed that satraplatin 
significantly reduced the risk of disease progression, 
irrespective of the type of previous chemotherapy (HR of 
0.6, p=0.0000003)56. These data have recently prompted 
the submission of a new drug application to the FDA for 
this indication. Combination trials are also ongoing with 
paclitaxel, erlotinib (Tarceva, Genentech), capecitabine 
(Xeloda, Roche) or radiotherapy.

Picoplatin (cis-amminedichloro, 2-methylpyridine, 
platinum (II); JM473) (FIG. 4), the third and final drug to 
emerge from the ICR/JM collaboration, was rationally 

designed to provide steric bulk around the platinum 
centre58. This was suggested, and subsequently shown, 
to lead to a relative reduction in inactivation by thiol-
containing species such as glutathione59 and metal-
lothionein23, in comparison to cisplatin. Picoplatin retains 
activity against a wide range of cisplatin-resistant58 and 
oxaliplatin-resistant60 cells in vitro, which was independ-
ent of whether resistance was due to reduced transport, 
increased cytoplasmic detoxification or increased DNA 
repair. It also possesses antitumour activity in vivo by both 
the intravenous and oral routes61; in addition, synergy has 
been demonstrated for picoplatin when used in combi-
nation with paclitaxel62. Picoplatin has shown evidence 
of antitumour activity in phase II trials of ‘platinum-
sensitive’ ovarian cancer63 and cisplatin-resistant small 
cell lung cancer (response rate of 15.4% in one trial64 
and a median overall survival of 26.7 weeks in a recently 
completed second trial). Based on these data, the spon-
soring company, Poniard, is planning a phase III trial of 

Figure 2 | Tumour resistance to cisplatin and carboplatin mediated after DNA binding. Once the activated aqua 
platinum species (see FIG. 1 and note that this is the same for cisplatin and carboplatin) has entered the nucleus, 
preferential covalent binding to the nitrogen on position 7 of guanine occurs. The major covalent bis-adduct that is 
formed involves adjacent guanines on the same strand of DNA (the intrastrand crosslink); a minor adduct involves 
binding to guanines on opposite DNA strands (the interstrand crosslink). The main removal pathway for these DNA 
adducts is that of nucleotide-excision repair (NER); increased NER, especially through increased activity of the 
endonuclease protein ERCC1 (excision repair cross-complementing-1) can occur in tumours, and can lead to platinum 
drug resistance (as adducts are removed before apoptotic signalling pathways are triggered). In addition, resistance can 
occur through increased tolerance to platinum–DNA adducts — even though the DNA adducts are formed — either 
through loss of DNA mismatch repair, bypassing of adducts by polymerase β and η, or through downregulation of 
apoptotic pathways. BAX, BCL2-associated X protein; BID, BH3 interacting domain death agonist; HR23B, human 
Rad23B; MLH1, MutL homologue 1; MSH2/3/6, MutS homologue 2/3/6; PCNA, proliferating cell nuclear antigen; 
PMS2, postmeiotic segregation increased-2; RPA, replication protein A; TFB5, tenth subunit of TFIIH; TFIIH, general 
transcription factor IIH; XPA/B/C/D/F/G, xeroderma pigmentosum (XP), complementation group A/B/C/D/F/G.
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While the initial clinical response to cisplatin is high, most patients will eventually develop 

reduced response, or resistance, to the drug (4). There is a strong body of evidence indicating that the 

mechanism of cisplatin resistance is due to protein binding and/or protein-mediated transport (6) (7) Of 

particular interest is the binding of cisplatin to ATP7A, ATP7B, and/or Atox1 which are two human 

copper transporters and an associated copper chaperone. Binding to these proteins are of interest because 

they well-studied (both in their endogenous role and their cisplatin-binding ability) but most importantly 

because two crystal structures of Atox1 with bound platinum complexes are known (8). With this in mind, 

we are developing two models of cisplatin, a non-polarizable model within the OPLS (9) framework and 

a polarizable model within the POSSIM (10) framework, for use in protein simulations. 

 

Fast Predictions of Acid Dissociation Constants in Proteins 
Assessing the values of protein acid dissociation constants is important for predicting the structure 

stability, reactivity, and potential protein–protein interactions. To this end, we have recently developed a 

simple scheme—PKA17—for accurately and rapidly calculating protein pKa values given only an input 

PDB structure file. We have carried out parameter fitting using a total of 442 Asp, Glu, His, and Lys 

residues for which high quality experimental pKa values are available. We then compared the performance 

of PKA17 to several commonly used pKa prediction methodologies. Three sets of experimental pKa values 

were used in this benchmarking: an initial fitting set, a separate test set, and the combined fitting and 

testing sets. The accuracy of our grid-based methodology compared favorably to the other evaluated pKa 

prediction methods. Most importantly, this accuracy did not come at the cost of speed as our grid-based 

methodology is computationally efficient and almost 10-fold faster than the next fastest surveyed method. 

Over the course of our work, we’ve developed an internet-based version of our software 

(http://users.wpi.edu/~jpcvitkovic/pka_calc.html) in which any user can upload a PDB file for analysis. 

Our method is more accurate than the widely used PROPKA calculator and fast enough that—even for 

the largest proteins—the results are displayed in the user’s browser in only a few seconds. 
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Chapter 2: Force Fields and Water Models  
Force Field Background 

The OPLS-AA force field and the polarizable POSSIM force field were used for the non-

polarizable and polarizable models of cisplatin, respectively. All calculations were carried out with the 

POSSIM 2.0 software package (11). The Optimized Potentials for Liquid Simulations All Atom (OPLS-

AA) force field is a fixed-charge force field that explicitly considers every atom and their pairwise 

interactions. The OPLS force field was developed and validated by Prof. Jorgensen’s group at Yale 

University (9). For a given configuration of a molecular ensemble, the total energy, Etot, is calculated as 

the sum of the following energy components: 

 

 !"#" = !%"&'"() + !+',- + !"#&%.#, + !/-0 + !'1'("&#%"2".( (1) 

 

The Estretch and Ebend are the harmonic bond stretching and angle bending terms and are given by 

the following equations: 

 

 !%"&'"() = 3 4&56 − 6'89
:

+#,-%

 (2) 

 

 !+',- = 3 4;5< − <'89
:

2,=1'%

 (3) 

 

where Kr and Kθ are the equilibrium constants for a given bond and angle, r is the bond length, θ is the 

bond angle, and the eq subscripts denote equilibrium values. The summations are performed over each 

bond and angle in the ensemble. The torsional component of the energy, Etorsion, is given by the following 

Fourier series: 

 

 

!"#&%.#, =3>
?.,A
2
(1 + cosH.) +

?.,:
2
(1 − cos 2H.)

.

+
?.,J
2
(1 + cos 3H.) +

?.,L
2
(1 − cos 4H.)N 

(4) 
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where Vi,n are the Fourier coefficients, ϕi is a dihedral angle and the summation is performed over all of 

the dihedral angles, i. The van der Waals energy, EvdW, is given by the standard Lennard-Jones potential 

(eq 5) using geometric combining rules (eq 6): 

 

 !/-0 =34O.P QR
S.P
T.P
U
A:

− R
S.P
T.P
U
V

W X.P
.YP

 (5) 

 

 O.P = ZO.OP; 						S.P = ZS.SP (6) 

 

For a pair of atoms i and j, Rij is the distance between the pair, εij and σij are the Lennard-Jones constants 

for the pairwise interaction (calculated via eq 6 from the per-atom type constants, εi, εj, σi, and σj), and fij 

is a scaling factor. The summation is over all i–j atom pairs where i ≠ j. For pairs of atoms in different 

molecules, the scaling factor, fij, is always equal to 1. For pairs of atoms in the same molecule: fij = 0 when 

the pair is connected by a bond (1–2 pairs) or a bond angle (1–3 pairs), fij = 0.5 when the pair is separated 

by three bonds (1–4 pairs), and fij = 1 for all other pairs. Finally, the electrostatic part of the total energy, 

Eelectrostatic, is given by the Coulomb potential: 

 

 !'1'("&#%"2".( = !]#^1#_+ =3`'
a.aP
T.P

X.P
.YP

 (7) 

 

where ke is the Coulomb constant, qi and qj are charges of a pair of atoms i and j, and Rij is the distance 

between the pair. The summation is over all i–j atom pairs where i ≠ j. The scaling factor, fij, is determined 

in the manner as for the van der Waals energy. 

The POlarizable Simulations with Second-order Interaction Model (POSSIM) force field is being 

developed by Prof. Kaminski’s group (11). POSSIM shares the same functional form as OPLS except for 

an additional term in the electrostatic component of the total energy to take into account electrostatic 

polarization: 

 

 !'1'("&#%"2".( = !]#^1#_+ + !b#1; 												!b#1 = −
1
2
3c.d.,e
.

 (8) 
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Here, ECoulomb is the Coulomb potential in Equation 7, μi is the induced dipole on the ith polarizable 

site, and Ei,0 is the electric field produced by the permanent charges in the absence of the induced dipoles. 

An induced dipole, μi, on site i, is dependent on that site’s isotropic polarizability, αi, and total electrostatic 

field Ei,tot: 

 

 c. = f.d.,"#" (9) 

 

 d.,"#" = d.,e +3g.PcP
PY.

; 													g.Ph
1

T.P
J R

3i.Pi.P
T.P
: − jU (10) 

 

where Rij is the distance between atomic sites i and j, and I the unit tensor. Combining Equations 9 and 10 

affords the following expression for the induced dipole: 

 

 c. = f.d.,e + f.3g.PcP
PY.

 (11) 

 

This expression is usually solved iteratively until the change is the induced dipoles are sufficiently 

small. The first three iterations, giving “first-order,” “second-order,” and “third-order” approximations for 

the induced dipoles are as follows: 

 

 c.
k = f.d.,e + f.3g.PcP

e

PY.

= f.d.,e (12) 

 

 c.
kk = f.d.,e + f.3g.PcP

k

PY.

= f.d.,e + f.3g.PfPdP,e
PY.

 (13) 

 

 

c.
kkk = f.d.,e + f.3g.PcP

kk

PY.

= f.d.,e + f.3g.PfPdP,e
PY.

+ f.3g.PfP
PY.

3gPlfldl,e
lYP

 
(14) 
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The first-order approximation has the physical meaning of having inducible dipoles that do not 

interact with each other, only with the permanent charges. While this approximation is computationally 

efficient, the improvement over a non-polarizable fixed-charge model is minimal (11). The POSSIM force 

field uses the second-order approximation which does not have a simple physical meaning. The second-

order approximation can be thought of as having inducible dipoles with magnitudes determined by their 

interaction with permanent charges and “first-order” dipoles (i.e. dipoles which are only influenced by 

permanent charges). This second-order approximation is about an order of magnitude faster than explicitly 

solving Equation 11 as a system of linear equations and results in a negligible loss of accuracy (11). 

 

General Fitting Protocols 
The procedure for determining values of the potential energy parameters (i.e. the constants in 

Equations 1–9 specific to each atom type or pair of atom types) is an iterative process. First the isotropic 

polarizabilities are fit using three-body energies (12). Next, the permanent charges and Lennard-Jones 

parameters are fit using gas-phase dimerization energies. Finally, the parameters are fine-tuned by 

reproducing liquid-phase properties. This is an iterative process because during these steps, small changes 

in the parameters require reevaluating previous steps to ensure no loss of accuracy. Had stretch, bend, or 

torsional parameters been needed, they would have been fit to gas-phase energies and geometries and 

refined using liquid simulations. However, in the systems under study, there are no additional bond stretch, 

angle bend, or explicitly defined torsions that requiring parametrization. 

 

Atomic Charges and Lennard-Jones Parameters 
For small molecules and ions, permanent atomic charges and Lennard-Jones parameters are chosen 

to best reproduce the quantum mechanical gas-phase dimerization energies and distances. Dimers of the 

small molecule or ion and water (both with water donating and accepting hydrogen bonds as applicable) 

as well as homodimers for small molecules are used. Quantum mechanical gas-phase energy 

minimizations were carried out using the Jaguar electronic structure package (13) and the previously 

developed (14) pseudospectral local second-order Møller−Plesset (LMP2) extrapolation method. Briefly, 

dimer geometries were obtained by LMP2 optimizations using the cc-pVTZ(-f) basis set. Then, fixing the 

geometry, binding energies were calculated using the cc-pVTZ(-f) basis set and the larger cc-pVQZ(-g) 

basis set. These energies were then corrected for basis set superposition error (BBSE) using the 
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counterpoise method. The binding energy of the dimer is then calculated as a linear combination of the 

BBSE corrected energies (14), as shown in Equation 15: 

 

 !+.,- = −0.685125!((rbstu(rv)
wxxy 9 + 1.685125!((rbszu(r=)

wxxy 9 (15) 

 

The target dimer distances are taken directly from the LMP2/cc-pVTZ(-f) energy minimizations as the 

distance between heavy atoms (e.g. the N–O distance of RH2N∙∙∙HOH, an amine–water dimer). 

 

Electrostatic Polarizability 
Dipolar probes consisting of two point-charges of opposite sign, magnitude 0.78 e, and separation 

of 0.58 Å were used to apply electrostatic perturbations to a target molecule. The dipole moment of one 

of these probes is 2.17 D—similar to non-polarizable models of water (12). The probes were placed at 

potential hydrogen bonding sites of the target molecule. The three-body energies were calculated as 

followed: 

 

 
!J+#-{ = !(1 + 2 + 3) − !(1 + 2) − !(1 + 3) − !(2 + 3)

+ !(1) + !(2) + !(3) 
(16) 

 

Figure 2-1 shows the energy components of eq 16 for an example molecule. Note, if there are more than 

two hydrogen bond sites, there will be a three-body energy for each combination of probes and sites. The 

isotropic polarizabilities, αi, were chosen to minimize the root mean squared deviation (RMSD) of the 

quantum mechanical three-body energies and the POSSIM-calculated three-body energies. The quantum 

mechanical three-body energies were calculated using density functional theory (DFT), the B3LYP 

functional , and the cc-pVTZ(-f) basis set (12). The calculations were performed using the Jaguar 

electronic structure package (13). In general, this basis set and level of theory gives accurate charge 

distributions but underestimates the gas-phase polarizability compared to experimental results. Better 

agreement with experimental gas-phase polarizabilities could be achieved by including diffuse functions 

to the chosen basis set. However, previous computational studies strongly suggest that fitting to DFT 

three-body energies including diffuse functions results in an overestimate of the liquid-phase polarizability 

(12). This is likely because in the liquid-phase, Pauli repulsion from nearby molecules increases the energy 

of the diffuse interactions thereby reducing their contribution to the polarization. Finally, it should be 



 9 

noted that the three-body energy in a non-polarizable fixed-charge force field is always zero as there are 

no explicit many-body interactions. 

 

 
Figure 2-1. Configurations to calculate three-body energies of a small molecule (one three-body energy of acetamide 
as an example) using dipolar probes. E(2), E(3), and E(2+3) are not shown but are simply the two isolated probes and 

the two probes in E(1+2+3) without the small molecule (11). 

 

Assessing the Second-Order Polarization Model 
To illustrate the differences in polarizability approximations, Figure 2-2 shows the polarization 

energies calculated as a function of distance between two particles—one particle had a charge of +0.5 e, 

the other a charge of −0.5 e, and both with polarizabilities of 2.0 Å3. The calculations were performed for 

the full-scale (eq 11), the second-order (POSSIM, eq 13), and the first-order (eq 12) polarizability 

approaches. In the figure, it can be seen that significant deviations from the full-scale model occur only at 

small separations. 

For example, at a distance of 2.6 Å—a “typical” heavy atom∙∙∙heavy atom intermolecular bond 

length—the difference between the full polarization and the second-order model is approximately 5%. 

Any deviation at shorter (but still physically relevant) distances can be corrected by proper second-order 

parametrization. In fact, the rapid growth in the magnitude of the full-scale polarization energy is likely 

to take place in the region where the point dipole approximation is already less valid. For example, at a 

separation of 1.6 Å, the full polarization energy is −1076 kcal/mol, already too large to be physical. 

compromising the accuracy of the simulations.[7,8] Further-

more, the second-order formalism given by eq. (4b) turns the

expression for the inducible dipoles into an analytical one, and

the possibility of the polarization catastrophe is completely

eliminated. This feature is also useful in extending this meth-

odology to building continuum solvation models, because it

permits to avoid the convergence issue which can be a prob-

lem in creation and parameterization of such techniques.

The rest of the force field. The POSSIM force field uses the
same standard Lennard–Jones formalism for the van-der-Waals
energy as OPLS-AA:

EvdW ¼
X

i 6¼j

4eij
! rij
Rij

"12
"
! rij
Rij

"6
# $

fij (7)

Geometric combining rules are applied as: (eij ¼ (ei # ej)1/2, rij
¼ (ri # rj)

1/2). Harmonic bond stretches and angle bending

were used, and the torsional term is obtained as a Fourier se-

ries:

Etorsion ¼
X

i

Vi
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2

h
1 þ cosð/iÞ

i
þ Vi

2

2

h
1" cosð2/iÞ

i
þ Vi

3

2

h
1

þ cosð3/iÞ
i

(8)

All the POSSIM stretch and bend parameters were adopted

from the OPLS-AA force field without any change, whereas the

torsional parameters were either fitted previously[8,11] or pro-

duced in the course of the work reported in this article.

Parameterization of the POSSIM Force Field

Parameters for small molecules are valuable both as such and
as a basis for simulating other systems containing similar func-
tional groups (such as protein side-chains). The first step in fit-
ting parameters for small molecules is producing atomic polar-
izabilities. We used the three-body energies as targets,
similarly to what we did in previous work.[8,11] Briefly, we con-
sidered the molecule in hand with two electrostatic dipolar
probes composed of bare fixed charges. The positions of the
probes were chosen to correspond to possible hydrogen
bonds with the molecule. One such pair of probes for the
CH3CONH2 system (used as an example) is shown on Figure 1.
Each dipolar probe contains two opposite charges of magni-
tude 0.78 e, separated by 0.58 Å (so that the dipole moment
is equal to 2.17D which is similar to that of nonpolarizable
SPC/E water model[14]). The three body energies were calcu-
lated as follows:

E3body ¼ Eð1 þ 2 þ 3Þ " Eð1 þ 2Þ " Eð1 þ 3Þ " Eð2 þ 3Þ þ Eð1Þ
þ Eð2Þ þ Eð3Þ

(9)

In the essence, this is the part of the total energy which can-

not be reduced to a sum of the molecule-probe and probe-

probe dimerization energies. The target QM values of the

energies were evaluated by density-functional theory (DFT)

with the B3LYP method[15] and cc-pVTZ(-f ) basis set. Jaguar

software suite[16] was used. The resulting three-body energies

were then employed to fit isotropic atomic polarizablities ai,
which were chosen to minimize the difference between the

POSSIM and DFT three-body energies.
After this first step, atomic charges and Lennard–Jones pa-

rameters were optimized to reproduce gas-phase QM dimeri-
zation energies. Normally, for electrostatically neutral mole-
cules, homodimer energy and energies of binding to a single
water molecule at hydrogen bonding positions were calcu-
lated. Distances between the heavy atoms in these bonds
were used as a fitting target as well. For charged molecules,
which were used as prototypes for ionized side-chains of cor-
responding protein residues, only heterodimers with water
were simulated. The QM calculations were carried out follow-
ing the general extrapolation protocol involving LMP2 data
with the cc-pVTZ(-f ) and cc-pVQZ basis sets which has been
described elsewhere.[17] This protocol was found to yield very
accurate results and we have been using it in developing pa-
rameters in a number of cases.[7,8,12,18]

Torsional parameters were fitted to reproduce QM torsional
profiles calculated with the LMP2/c-pVTZ(-f ) level of theory.

Finally, the nonbonded parts of the potential energy func-
tions for the electrostatically neutral molecules were fine-
tuned by reproducing liquid-state heats of vaporizations and
molecular volumes (and thus the densities). The target accu-
racy in this fitting was about 2–3%. Once a new improved set
of parameters was obtained, the dimerization energies were
recomputed (and further adjustments to the parameters were
made if needed), new torsional parameters were produced,
and the liquid-state simulations were rerun. The whole cycle
was repeated if necessary.

The empirical force field calculations, including liquid-state
simulations, were carried out with the POSSIM software suite.
The NPT ensemble (constant temperature, pressure, and the
number of molecules) was employed, and a cubic cell with
216 molecules subject to periodic boundary conditions was
used for each compound. The simulations were run at 1 atm.
The heats of vaporization were calculated as follows:

Figure 1. Calculating two-and three-body energies of a small molecule
with dipolar probes.
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Note that our second-order POSSIM model does not parametrize the force field for full-scale 

polarization and then use those parameters in the approximate second-order implementation. All 

parametrization is done for the second-order polarization approximation, which means that we compensate 

for any systematic differences between the full-scale and second-order approximations. Even if full-scale 

polarization were desired, using the second-order POSSIM parameters would likely produce large errors 

rendering them unusable without significant reparametrization. 

 
Figure 2-2. Polarization energy between two particles with charges ±0.5 e and polarizability of 2.0 Å3 as a function of 

distance between their centers.  

 

In order to further evaluate the second-order polarization model, we have conducted the following 

experiment (15). We equilibrated a simulation of 216 POSSIM water molecules at 1 atm and 25 °C while 

employing periodic boundary conditions. We then took a single configuration of the system and performed 

three single point calculations in which only the polarization order was varied. 

The first-order polarization energy was found to be −742.12 kcal/mol for this system while the 

second-order POSSIM formalism yielded a polarization energy of −1109.35 kcal/mol. The full-scale 
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converged polarization energy was −1729.75 kcal/mol. Thus, the polarization energy calculated per one 

water molecule was −3.44, −5.14, and −8.01 kcal/mol using the first-order polarization model, POSSIM, 

and the complete polarization formalism, respectively. Given that our parametrization of the second-order 

POSSIM model is carried out in such a way as to eliminate possible effects in quantitative differences of 

magnitudes of polarization energy with the full polarization model, the above numbers do not indicate any 

fundamental problem with the POSSIM formalism. Rather, the calculations demonstrate the amount of 

difference with the full-scale polarization methodology that can be encountered when using the second-

order approximation.  

In addition to examining the energy results for a pure liquid water snapshot, we also ran full-scale 

Monte Carlo simulations with the three polarization models (15). We took a starting configuration from a 

previously equilibrated periodic box of 216 POSSIM water molecules and simply changed the order of 

the polarization calculations from second-order to full-scale. Restarting the simulation resulted in a failure 

of the simulation after a few thousand Monte Carlo configurations due to significant growth of the 

magnitude of polarization energy. Similarly, changing the order of the polarization calculations from 

second-order to first-order and allowing the system to reach equilibrium led to the average volume and 

the magnitude of the average energy being underestimated by about 13% and 30%, respectively. 

Fortunately, the average energy and volume for simulations employing both models can be brought to 

near agreement with the second-order calculations with minor reparametrization.  

 

Table 2-1. Average Total Energy, Polarization Energy (both in kcal/mol), and Volume (in Å3) for POSSIM (Second- 

Order Polarization), Full-Scale, and First-Order Polarizable Water Modelsa 

polarization model total energy polarization energy volume 

full-scale −2001 ± 35 −1411 ± 52 6335 ± 67 

2nd order (POSSIM) −1987 ± 12 −1128 ± 14 6563 ± 71 

1st order −2002 ± 19 −1100 ± 18 6665 ± 80 

aThe full-scale and first-order models use POSSIM water with refitted polarizabilities. See text for details. 

Uncertainties given as standard deviations of 2×105 configuration averages.  
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The full-scale and first-order results were calculated by taking our POSSIM water model and 

adjusting the oxygen polarizability until the average energy and volume were in best agreement with the 

second-order averages. While adjusting the oxygen polarizability, we maintained the ratio of oxygen 

polarizability to hydrogen polarizability. Decreasing the second-order polarizabilities by about 21% (from 

αO/αH = 0.77/0.30 for second-order to αO/αH = 0.61/0.24 for full-scale) brought the full-scale polarizability 

calculations within 1% and 3% of the average energy and volume respectively of the POSSIM 

calculations. Increasing the second-order polarizabilities by about 60% (to αO/αH = 1.23/0.49) brought the 

first-order polarizability calculations within 1% of the average energy and 2% of the average volume of 

the POSSIM calculations.  

Interestingly, while the average polarization energy for POSSIM and the first-order calculations is 

nearly the same (−1128 ± 14 kcal/mol or −5.22 ± 0.06 kcal/mol per molecule for POSSIM and −1100 ± 

18 or −5.09 ± 0.08 kcal/mol per molecule for first-order), the average polarization energy is noticeably 

larger for full-scale polarization (−1411 ± 52 kcal/mol or −6.53 ± 0.24 kcal/mol per molecule). This 

“extra” polarization energy is balanced by an increase in the stretching and bending energies as well as 

the slight overestimation of the volume.  

One should keep in mind that there is no guarantee of transferability of these refit water models to 

other systems. These water models are to demonstrate that a simple reparametrization (only one degree of 

freedom in parameter space) was able to mostly eliminate the discrepancies between polarization orders 

of the liquid-phase properties. If a robust first-order or full-scale polarization model of water were desired, 

we would likely proceed via our standard parametrization methodology (i.e., start by fitting polarizabilites 

with three-body energies, then fit the partial charges and Lennard-Jones constants using gas-phase dimers, 

then fine-tune the parameters with liquid simulations). While the above examples cannot account for all 

the possible situations, they do serve as an illustration for the statement that the second-order polarization 

formalism employed in POSSIM is adequate in reproducing many-body effects, provided that a proper 

parametrization procedure is followed.  
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Chapter 3: Platinum Parametrization Project 
Background 

Cisplatin is well known to have an anticancer therapeutic effect via interactions with DNA in the 

cell nucleus (16,17) and thus it differs from many other anticancer drugs which work by interacting with 

various proteins There is a body of evidence that cisplatin binding to protein and protein-mediated 

transport are responsible for cellular resistance to this drug, (7,18) even though the exact mechanism of 

this process is still not clear. Moreover, the specific proteins implicated in cisplatin resistance are involved 

in copper binding and transport (19).Therefore, studying cisplatin binding to both DNA and copper 

transporter proteins is an important area in anticancer research. Additionally, there are other platinum(II) 

compounds that are similarly used as anticancer drugs (4). 

 After the cisplatin (or another Pt(II) drug) is administered, the metal ion is aquated, i.e. the Cl– 

ligands are replaced by water molecules, promoted by the low cytosolic concentration of chloride. 

Coordination with DNA is possible by the displacement of these water molecules, and the same is likely 

the mechanism for binding of cisplatin to the proteins responsible for the cellular resistance to this drug. 

Additionally, crystal structures of protein-coordinated cisplatin in which the NH3 ligands are absent are 

also known, but it is difficult to deduce the physiological relevance of these structures collected under 

conditions far from physiological (8). 

 Thus, Pt(II), cisplatin, and their interactions with proteins are topics of clear biological importance. 

Efforts have been made in the direction of development of computational tools that would allow 

simulations of these systems (20,21). But there are still aspects that need to be addressed and for which 

methods need to be developed and/or improved. The ability of the central Pt(II) ion of cisplatin and other 

platinum-containing drugs to readily change its coordination makes it clear that it’s desirable to be able to 

simulate not only cisplatin as a whole, but also the central Pt(II) ion with some or all of its initial ligands 

replaced by water or other relevant metal-coordinating groups.  

Furthermore, in the best-case scenario, seamless transitions between different coordination cases 

would have to occur over the course of simulations without the transitions being introduced “by hand” or 

by some semi-automated procedure based on preexisting structural knowledge and not on the physical 

flow of the simulations themselves. Quantum mechanical simulations can provide accurate results in this 

sense, but system size and length of such simulations (if true thermodynamic averaging in the form of 

molecular dynamics or Monte Carlo simulations is to be utilized) are limited. This is why empirical force 

fields remain the tool of choice in many biological simulations. However, existing empirical force field 
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models for metal ions – especially transition metal ions – are only well suited for applications in which 

the transition metal atoms remain fully bonded and do not change their coordination environment as they 

lose, acquire, or exchange ligands. In the simplest models, simulations represent metal ions by mere point 

charges (22) Obviously, such models can only be used to describe systems in which the geometry of 

molecular fragments surrounding the ion is fixed.  

 In other types of simulations, sophisticated and accurate ways of describing non-bonded 

interactions of metal ions with the environment are employed but positioning of the ions in respect to their 

ligands or coordinated protein fragments still rely on explicit harmonic or rigid constrains for the distances 

and angles involving the ion. Such an ion model essentially employs “pseudo-valence” bonds and angles 

for positioning of the metal ion. As a result, any significant changes of geometry, ion transfer or other 

processes involving changes in the ligand environment are not possible. Examples involving such 

constrains include AMBER (23) and LFMM/MOE (24,25). SIBFA and VALBOND are using a similar 

approach to directionality and positioning of ligands (24,26). Moreover, LFMM, SIBFA, VALBOND and 

other similar techniques utilize electronic structure information heavily (24). While they are empirical 

force fields, they compute certain non-bonded interactions with electronic structure methods. These 

quantum mechanical methods scale poorly with system size and makes it impossible for these techniques 

to reach the speed of force fields like AMBER and CHARMM (27). 

 Overall, the existing empirical or partially empirical techniques for simulating molecular 

interactions with cisplatin, Pt(II), and other transition metal ions are heavily dependent on preexisting 

knowledge of the complex’s geometry and do not permit fully unconstrained simulations of the complexes 

or of metal–ion transfers. This is very different from the situation of purely organic complexes that can be 

simulated in unconstrained runs with most force fields. We are reporting multi-site models for Pt(II) and 

cisplatin created for simulating cisplatin and other coordinated Pt(II) systems with modified OPLS-AA 

and second-order polarizable POSSIM force fields. While these models do not require quantum 

mechanical runs during calculations and retain the fairly simple empirical formalism of the OPLS-AA and 

POSSIM frameworks, we have been able to reproduce a number of structural and energy results, including 

the energies of cisplatin and hydrated platinum(II) formation. This model can be called reactive, although 

only in the sense of Pt(II) coordination interactions. We hope that further applications of the model will 

permit the elucidation of the molecular-level mechanism of cisplatin’s therapeutic action and cellular 

resistance to this drug and will potentially contribute to the creation of other platinum-containing 

anticancer compounds. 
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Pt(II) Ion Model 
 

 
Figure 3-1. The seven-site model for the Pt(II) ion. The same model geometry was used for both the modified OPLS-
AA and the POSSIM force fields. The central particle labeled “Pt” has only a Lennard-Jones potential while the virtual 
sites—fixed with respect to the central particle—are labeled “X” and have only Coulomb potentials. The axial virtual 
sites (Xax) have one charge while the equatorial virtual sites (Xeq) have another and must satisfy 2qax + 4qeq = 2. The 

distance between the central atom and the virtual sites are the same in both cases. The Pt–X bonds are for visualization 
purposes only. The virtual sites are fixed with respect to the central atom. 

 

With the purpose of reproducing the coordination directionality of the platinum ion interactions, 

the particle in Figure 3-1 was modeled by the central “atom” (Pt) with no electrostatic charge but with 

Lennard-Jones parameters and by six virtual sites (Xax and Xeq) that had only electrostatic charges and no 

van der Waals interactions assigned to them. The bonds between the virtual sites and the central particle 

and all the angles were kept completely fixed. The virtual sites belonged to two different atom types (for 

each of the force fields). Two of the virtual sites are considered “axial” (Xax) and their bonds to the central 

atom are separated by 180°. The other four sites are the “equatorial” (Xeq) type. The equatorial virtual 

sites are located in the plane that is perpendicular to the line between the axial virtual sites and each 

neighboring two sites that are separated by 90°. The spatial arrangement of the virtual sites makes the 

whole structure octahedral. The Pt∙∙∙X distances were set to be 1.3 Å with the modified OPLS-AA and 

0.87 Å with the polarizable POSSIM force field. The charges on all the equatorial sites were the same 

(within the same force field), but they could differ from those on the axial ones. No polarizability was 

assigned to this system in the POSSIM framework. 

 Fitting of the potential energy parameters for the platinum ion was done in the following 

calculations. First, the Pt(II) parameters were fit to reproduce geometries (distances) and energies of 

formation of the following complexes: [Pt(H2O)4]2+ (Figure 3-2), [Pt(H2O)6]2+, cisplatin, cis-
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[PtCl(NH3)2(H2O)]+, cis-[PtCl2(NH2CH3)2], cis-[Pt(CH3S)2(H2O)2], trans-[Pt(CH3S)2(H2O)2], and cis-

[Pt(NH3)2(CH3S)(H2O)]+. Then, further parameter fitting was carried out to reproduce the Pt(II) free 

energy of hydration in bulk water and radial distribution functions for the Pt∙∙∙O(water) pair.  

 

 

Figure 3-2. Geometry of teraaquaplatinum(II). 

 

 These, and all other quantum mechanical calculations involving platinum, were performed using 

the Gaussian 09 (28) software package at the B3PW91/mDZP/6-31+G(d) level of theory. Specifically, the 

calculations employed density functional theory (DFT) using the B3PW91 functional with the all-electron 

mDZP basis set (29) for platinum and the 6-31+G(d) basis set for all other atoms. We chose the level of 

theory and basis set using the work of Paschoal et al. (29) in which they produced an extensive survey of 

functional/basis set combinations (26 DFT functionals, 25 basis sets for Pt, and 36 basis sets for the 

ligands). The chosen functional/basis set combination was among the top three most accurate 

functional/basis set combinations investigated by Paschoal et al and has extensive literature validation in 

other transition metal systems. (29) Here, accuracy refers to accuracy in reproducing the experimental 

rates of hydrolysis and geometry of cisplatin. All the geometry optimizations were run with the POSSIM 

software suite (11,15,30,31). 

 

Additional Parametrization 
The cisplatin model required us to fit parameters for the Cl–, NH3, and CH3S– ligands in addition 

to the central Pt(II) ion. The parameters for the ligands were fit with the POSSIM and modified OPLS-

AA formalisms. The values of the parameters were determined by carrying out gas-phase and liquid-state 
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simulations. Three-body energies were used to fit the polarizabilities in the standard fashion for the 

POSSIM parametrization We fit the Lennard-Jones parameters by using extrapolated (14) quantum 

mechanical dimerization energies (see Chapter 2 for more details). Shown in Figures 3-3 and 3-4 are the 

dimers used in the fitting procedure. Finally, Monte Carlo liquid-state simulations yielded heats of 

vaporization, densities, and hydration energy values that we compared with experimental data.  

 

 

Figure 3-3. Dimers used in fitting NH3 parameters: ammonia homodimer (a); ammonia – water dimer with N as the 
acceptor (b); ammonia – water dimer with O as the acceptor (c). The given distances are the minimum energy quantum 

mechanical values.  



 18 

 

Figure 3-4. Dimers used for fitting chloride and methanethiolate parameters: chloride–water dimer (a) and 
methanethiolate–water dimer (b). The distances shown are from quantum mechanical energy minimization. 

 

Pure Liquid Simulations 
 Simulations of neat liquid ammonia were carried out with the POSSIM 2.0 software package. 

These were used to fine-tune the force field parameters by reproducing experimental values of enthalpy 

of vaporization and density. Simulations consisted of an NPT ensemble (constant number of molecules, 

pressure, and temperature) of 267 molecules in a cubic box with periodic boundary conditions at 1 atm 

and -33.33 °C (the boiling point of ammonia). Simulations employed the Monte Carlo method with 

Metropolis sampling criteria. Non-bonded interactions greater than defined cutoff values were set to zero. 

For dipole-dipole interactions the cutoff value was 7.0 Å, the cutoff value for all other non-bonded 

interactions was 9.0 Å. The charge-charge interactions were quadratically feathered to zero over the last 

0.5 Å before the cutoff distance. This technique reduces unnecessary noise associated with charges moving 

into and out of the cutoff radius. The following correction to the Lennar-Jones energy is applied to correct 

for ignoring interactions beyond the cutoff distance: 

 

 !|}	(#& =
~
2
� ?|}(6)
Ä

ÅÇÉÑ

4Ö6:Ü6 (17) 

 

where ρ is the molar density, VLJ(r) is the Lennar-Jones potential, and Rcut is the cutoff value. 

(a) 

3.16 Å 

(b) 

3.21 Å 
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Each simulation comprised at least 2×106 configurations of equilibration followed by at least 4×106 

configurations of averaging. Each simulation was broken up into batches of 2×105 steps and the variance 

calculated by the batch means method: 

 S: =3
(á. − áà):

â(â − 1)

_

.

 (18) 

 

where m is the number of batches, Xi is the average of some property of the ith batch. Uncertainties are 

reported as the standard deviation (± σ). The enthalpy of vaporization is calculated as follows: 

 

 Δã/2b = !(åçé) − !(èêa) + Të (19) 

 

Where E(gas) and E(liq) are the average energy of the gas-phase and liquid respectively, R the gas 

constant, T the temperature. The RT term is included to account for the ∆(PV) part of the enthalpy under 

the assumption that dilute ammonia behaves as an ideal gas and the molecular volume of the liquid is 

negligible compared to that of the gas. The density is calculated directly from the average molar volume 

and the molecular mass of ammonia. 

 

Calculating Free Energies of Hydration 
 Free energies of hydration were calculated as a test of the fitted parameters and were not used in 

the fitting procedure. In contrast to the simulations employing periodic boundary conditions for pure 

ammonia, simulations to calculate the free energies of hydrations were carried out in water droplets. These 

droplets consisted of a solute, fixed at the center of the simulation box, surrounded by 216 water 

molecules. In order to prevent water molecules on the surface of the cluster from “evaporating,” a half-

harmonic restoring force of 1 kcal/mol/Å2
, originating at the center of the box, was applied. All simulations 

were carried out at 25°C with the POSSIM 2.0 software package.  
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Figure 3-5. Thermodynamic cycle used to calculate free energies of hydration. 

 

The thermodynamic cycle used to calculate the relative free energies of hydration between species A and 

B is given in Figure 3-5. From this cycle, the relative free energy of hydration between A and B is: 

 

 
ΔΔí){- = Δí){-(ì) − Δí){-(î)

= Δí(î → ì, èêa) − Δí(î → ì, åçé) 
(20) 

 

However, if species B is a dummy atom (an atom with no intramolecular interactions), ΔGhyd(B) equals 

zero and Equation 20 affords the absolute free energy of hydration of A. In this case, the two ΔG(A→B) 

terms can be thought of as the free energy of “annihilating” species A. These free energies were calculated 

using statistical perturbation theory:  

 

 Δí(ê → ñ) = −Të ln〈ör5yõryú9/Åt〉. (21) 

 

where the brackets, ⟨ ⟩i , indicate averaging the value inside the brackets over the configurational space 

of the system at point i while Ei and Ej are the energy at points i and j respectively. However, since the 

change between a species A and a dummy atom is too large to accurately sample, the process is broken 

up into stages. First the polarizability is removed (i.e. A is changed to a species that is the same as A 

except it lacks polarizability), then the charges are removed, and finally, the Lennard-Jones parameters 

are removed. Each of these stages is further broken down into a series of steps with the parameter 

decreasing stepwise from its value in A to zero. 

 

 
 

!

molecular liquids involved. Each simulation was run with
the POSSIM software and included 216 molecules in a cubic
cell with periodic boundary conditions. The NPT ensemble
(constant temperature, pressure, and the number of mol-
ecules) was employed. Methanol and water were simulated
at 25 °C. The NMA liquid had a temperature of 100 °C.
The hydrocarbons were modeled at their boiling tempera-
tures: -161.49 °C for methane, -88.63 °C for ethane, -42.1
°C for propane, and -0.5 °C for butane. The calculations
were carried out with the Monte Carlo technique, and the
heats of vaporization were calculated according to eq 19:

The difference between the energy for one molecule in
the gas-phase and in the condensed state was augmented by
the RT term to account for the ∆(PV) part of the enthalpy,
in the assumption that the vapor obeys the ideal gas law,
and the molecular volume of the liquid can be neglected
compared to that of the gas. In all of the calculations, at
least 1 × 106 Monte Carlo configurations of averaging were
followed by no less than 5 × 106 configurations of averaging
for the thermodynamic properties. Elements of the dipole-
dipole interaction tensor in eq 5 were set to zero for distances
beyond 7.0 Å. The other intermolecular interactions were
cut off at 8.0 Å for water; 10.0 Å for methane and methanol;
and 11.0 Å for ethane, propane, butane, and NMA. The
charge-charge interactions were switched off smoothly over
the last 0.5 Å. The standard correction for the neglected
Lennard-Jones energies beyond the cutoff distances was
applied.

C. Calculating Relative and Absolute Free Energies
of Hydration. Calculating the free energies of hydration was
not in any way a part of the parameter fitting procedure, but
rather a test of the parameters produced as discussed above.
Therefore, we believe that the high quality of the results
reflects the genuinely adequate underlying physical model.

The thermodynamic cycle used to calculate relative
hydration energies between species A and B is shown in
Figure 2.

From this cycle, the relative free energy of hydration is

The statistical perturbation theory was used to calculate
the differences of free energies between solvated and gas-
phase species A and B (∆G(AfB, liq) and ∆G(AfB, gas),
respectively). When B was set to nothing, the absolute free
energy of hydration of species A was obtained. This was

done to methane to anchor the other hydration free energies
and to obtain their absolute values.

To calculate the ∆G(AfB, liq) and ∆G(AfB, gas), the
standard statistical perturbation theory procedure was used.
Differences between atoms of molecules A and B were
switched on according to a parameter, 0 < λ < 1, with λ )
0 corresponding to A, and λ ) 1 to B. Then the interval
from 0 to 1 was divided into a number of subintervals, and
for each point between two intervals, a corresponding mixture
of molecules A and B was created. The difference in free
energies between systems corresponding to such points i and
j was calculated according to eq 21:17

Here, the brackets, 〈...〉i, signify averaging of the value
inside the brackets over the configurational space of the
mixed system at point i, and Ei and Ej are energies of the
mixed systems i and j. In other words, the free energy
difference between the molecular systems A and B is the
thermodynamic average of their energy differences, and the
whole change from A to B is broken into a number of steps
in order to speed up the convergence.

The averaging was performed with Monte Carlo calcula-
tions for a single solute molecule in a water box, thus,
corresponding to infinitely dilute solutions. The simulations
proceeded as described in the previous subsection, except
that a number of water molecules equal to the number of
non-hydrogen atoms in the solute were removed (for
example, for the methanol to ethane perturbation, the number
of water molecules was equal to 214 instead of the pure water
box of 216).

III. Results and Discussion

A. Fitting Electrostatic Part of the Force Field. As
described above, fitting polarizabilities to the three-body
energies and charges to the interaction energies with dipolar
probes were the first two steps of the POSSIM force field
production. While the further fine-tuning did lead to some
adjustments, we still view reproducing the quantum me-
chanical three- and two-body energies as an important part
of the force field validation. Listed in Tables 1 and 2 are
three-body and two-body energies resulting from the final

Figure 2. Thermodynamic cycle used to assess relative
hydration energies.

∆Hvap ) E(gas) - E(liq) + RT (19)

∆∆Ghyd ) ∆Ghyd(B) - ∆Ghyd(A) ) ∆G(A f B,liq) -
∆G(A f B,gas) (20)

Table 1. Three-Body Energy Deviations from Quantum
Mechanical Data, kcal/mol

molecule
deviation, kcal/mol

maximum energyrms maximum

H2O 0.2682 0.3688 -0.5620
CH3OH 0.2080 0.3588 -0.3700
NMA 0.3651 0.5902 -0.6293

Table 2. Two-Body Energy Deviations from Quantum
Mechanical Data, kcal/mol

molecule
deviation, kcal/mol

maximum energyrms maximum

H2O 1.1482 1.4819 -12.4741
CH3OH 1.1627 1.3804 -12.1679
NMA 1.7319 2.6399 -14.9697

∆G(i f j) ) -RTln(〈exp[(-Ej - Ei)/RT]〉i) (21)

POSSIMsFast Polarizable Software and Parameters J. Chem. Theory Comput., Vol. 5, No. 11, 2009 2939

!Ghyd(A)!
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Results and Discussion 
Ammonia 

For the non-polarizable model, the parameters for ammonia were taken from the published OPLS 

parameter set for amines (32) and the results reproduced using the POSSIM software package. For the 

polarizable model, the average deviation of the three-body energies was 0.002 kcal/mol.  

Table 3-1 compares the energy-minimized dimer structures and energies calculated with the 

polarizable model (POSSIM) to the calculated quantum mechanical reference values and the published 

OPLS results. The geometry reproduced by the POSSIM polarizable force field is slightly better than the 

geometry reproduced by OPLS. The average deviation of the distance from the quantum mechanical value 

reproduced by the POSSIM polarizable field is 0.21 Å, while the OPLS deviation is 0.24 Å. While the 

energy error is smaller with the OPLS formalism, fixed-charges force fields are known to overestimate 

gas-phase binding energy, and the quantum mechanical result of –6.55 kcal/mol for the second dimer may 

be overestimated, especially in the view of similar trends we observed with parametrizing nitrogen 

containing compounds in the past (11).  

 

Table 3-1. Quantum mechanical, POSSIM, and OPLS equilibrium heavy atom∙∙∙heavy atom distances and dimerization 
energies for: ammonia as H-bond donor (to water), ammonia as H-bond acceptor (from water), and the ammonia 
homodimer. 

System N∙∙∙O/N distance, Å  Dimerization E, kcal/mol 

 QM POSSIM OPLS  QM POSSIM OPLS 

O as H-bond acceptor 3.24 3.13 3.03  –2.58 –2.32 –3.10 

N as H-bond acceptor 3.01 2.87 2.85  –6.55 –5.09a –6.50 

NH3∙∙∙NH3 dimer 3.46 3.14 3.15  –2.96 –2.39 –3.11 

RMS deviation from QM  0.21 0.24   0.44 0.31 

aNot included in RMS deviation 
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Liquid state results are given in Table 3-2. Both POSSIM and OPLS-AA produce accurate values 

of heats of vaporization and densities within 0.5-3% of the experimental data, though the second-order 

polarizable POSSIM formalism performs slightly better.  

 

Table 3-2. Comparison of experimental and calculated enthalpies of vaporization and densities for liquid ammonia at its 
boiling point (–33.33 °C) at standard pressure. 

Method ΔHvap, kcal/mol 
deviation from 

experiment 
density, g/cm3 

deviation from 

experiment 

experimental 5.58a  0.682a  

POSSIM 5.56 ± 0.01 -0.4% 0.688 ± 0.003 0.9% 

OPLS 5.42 ± 0.01b -2.9% 0.697 ± 0.001b 2.2% 

aData from (33)   bData from (34) 

 

Chloride 
In order to parametrize the OPLS model, we surveyed three published chloride parameter sets and 

selected the best set for refinement. Significant improvements to these parameters could not be found, so 

the parameters (35) were used without modification and the published values reproduced in the POSSIM 

software package. However, parametrizing the POSSIM model of the Cl– ion using the B3LYP/cc-pVTZ(-

f) level of theory resulted in three-body energies and polarizabilities that were qualitatively much too 

small for a halide. Therefore, we used a published value for an estimate of the polarizability of chloride 

in bulk water (36), which proposed ⍺ = 5.0 Å3 which is significantly larger than previous estimates (37) 

(~4 Å3) and only slightly reduced from the gas-phase value (38) (5.48 Å3). Table 3-3 contains the results 

of fitting POSSIM parameters for this ion, as well as results employing the published OPLS parameters. 

The results demonstrate that both POSSIM and OPLS perform adequately in the gas-phase dimerization 

calculations, with POSSIM being somewhat more accurate than OPLS in structure. 

Calculating the free energy of hydration with the statistical perturbation energy leads to the fixed-

charges OPLS simulations yielding an error of 2.4% while the POSSIM simulations were significantly 

more accurate with an error of only 0.3%. The TIP3P water model (39) was used in the OPLS-type 

simulations and our POSSIM water model was used for the polarizable calculations  
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Table 3-3. Gas-phase Cl–∙∙∙water dimer and Cl– hydration free energy in bulk water. 

Method Dimerization E, kcal/mol Cl∙∙∙O distance, Å DGhyd, kcal/mol 

Experimental –14.5 ± 0.5a  –72.7 ± 2b 

QM –13.65 3.16  

POSSIM –15.08 3.16 –72.5 ± 1.1 

OPLS-TIP3P –13.61 3.19 –74.4 ± 1.7 

aData from (40)   bData from (41) 

 

Methanethiolate 
Parameters for methanethiol (the side chain analog for protonated cystine), were developed 

previously (15). However, further fitting was need for CH3S– (the side chain analog for deprotonated 

cysteine) because of the central role of the deprotonated cysteine residue in coordinating transition metal 

ions including the platinum(II) ion of cisplatin. 

In order to reflect the longer H-bond distances of sulfur compounds, we needed to modify our 

standard procedure for calculating three-body energies (as described in ref (12) and Chapter 2) for 

methanethiolate. For sulfur-containing species, we increase the distance from the S atom to the dipolar 

probes to 2.1 Å from the usual 1.8 Å. The average unsigned error in the three-body energy of 

methanethiolate was 0.031 kcal/mol. These results are consistent with the usual level of accuracy we 

achieve in reproducing three-body energies (15). The results of fitting POSSIM and OPLS parameters for 

methanethiolate are shown in Table 3-4. Both methods were capable of reproducing the gas-phase 

dimerization energy (to within the bound of the QM and experimental references), the S∙∙∙O dimer distance 

(to within 0.05 Å), as well as the bulk free energy of hydration (to within the experimental uncertainty). 
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Table 3-4. Gas-phase CH3S–∙∙∙water dimer and CH3S– hydration free energy in bulk water. 

Method Dimerization E, kcal/mol S∙∙∙O distance, Å DGhyd, kcal/mol 

Experimental –15.0 ± 0.2a  –73.8 ± 2b 

QM –13.28 3.21  

POSSIM –14.70 3.24 –73.9 ± 1.7 

OPLS-TIP3P –14.14 3.16 –75.6 ± 1.9 

aData from (42)   bData from (43) 

 

Overall, both POSSIM and OPLS-AA parameters for ammonia, the chloride ion, and the 

methanethiolate ion appear to robust enough for our purposes and were used in simulations of cisplatin 

and platinum-containing complexes without additional refitting.  

 

Platinum(II) and Complexes of Platinum(II)  
Consider the simplest platinum complex we investigated—[Pt(H2O)4]2+, depicted with the seven-

site platinum model in Figure 3-2. As a fitting target, we used the QM-calculated geometry and energy of 

formation of this system. Here, the energy of formation is the zero-point corrected enthalpy of reaction (at 

0 K) of the molecular fragments (the Pt2+ ion and four water molecules) to form the [Pt(H2O)4]2+ complex. 

This treatment was applied to all of the complexes investigated. Tables 3-5 and 3-6 present our results (for 

both POSSIM and OPLS) for fitting platinum force field parameters with [Pt(H2O)4]2+ and the other 

platinum complexes used as fitting targets in comparison with the QM-calculated values. Table 3-5 

contains the energies of formation of the fitting targets while Table 3-6 contains key bond lengths.  

 



 25 

Table 3-5. Total energy of formation (kcal/mol) for cisplatin, cisplatin hydrolysis products, and thiolate complexes. 

 
Method 

QM POSSIM OPLS  

[Pt(H2O)4]2+ –297.8 –294.0 –361.2  

[Pt(H2O)6]2+ a –327.8 –331.6 –400.5  

cisplatin –680.3 –638.0 –613.0  

cis-[PtCl(NH3)2(H2O)]+ –568.0 –544.5 –540.2  

cis-[PtCl2(NH2CH3)2] –683.5 –646.9 –604.3  

cis-[Pt(CH3S)2)(H2O)2] –703.6 –604.6 –622.2  

trans-[Pt(CH3S)2(H2O)2] –695.5 –612.8 –634.5  

cis-[Pt(NH3)2(CH3S)(H2O)]+ –595.5 –530.1 –522.5  

RMS deviation from QM  55.4 67.6  

aNot included in RMS deviation 

 

The results demonstrate that the fixed-charges modified OPLS and the polarizable POSSIM force 

fields produce geometries in a good agreement with quantum mechanical data (deviations in distances are 

within ca. 0.1Å). At the same time, the POSSIM formalism permits the energy of formation to be much 

closer than its quantum mechanical counterpart (–294.0 vs. –297.8 kcal/mol). Note that these calculations 

of the geometry and energy of formation of the coordination complex have been carried out with empirical 

force field that contains no additional special energy terms.  
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Table 3-6. Structural details of cisplatin and hydrolysis products and thiolate complexes 

 Distance, Å 

 QM POSSIM OPLS 

 Pt∙∙∙Cl/S Pt∙∙∙N Pt∙∙∙O Pt∙∙∙Cl/S Pt∙∙∙N Pt∙∙∙O Pt∙∙∙Cl/S Pt∙∙∙N Pt∙∙∙O 

[Pt(H2O)4]2+   2.06   2.11   2.02 

[Pt(H2O)6]2+ a   2.06/2.98   2.14/2.50   2.03/2.63 

cisplatin 2.34 2.11  2.39 2.25  2.45 2.15  

cis-[PtCl(NH3)2(H2O)]+ 2.31 2.09 2.31 2.27 2.14 2.34 2.42 2.14 2.03 

cis-[PtCl2(NH2CH3)] 2.35 2.11  2.39 2.19  2.45 2.11  

cis-[Pt(SCH3)2)(H2O)2] 2.32  2.21 2.42  2.21 2.42  2.03 

trans-[Pt(SCH3)2(H2O)2] 2.38  2.10 2.40  2.24 2.41  2.03 

cis-[Pt(NH3)2(SCH3)(H2O)]+ 2.33  2.12 2.35 2.09 2.22 2.40 2.14 2.03 

RMS deviation from QM     0.09   0.08  

anot included in RMS deviation 

 

(a) (b) 

Figure 3-6. Calculated geometry of cisplatin obtained with quantum mechanical (a) and POSSIM (b) simulations 
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Figure 3-7. Pt∙∙∙O radial distribution function. For POSSIM, the first and second maxima are at 2.07 Å and 2.62 Å. For 
OPLS with TIP3P water, the first and second maxima are at 2.02 Å and 2.65 Å. The experimental results are 2.02 Å 

and 2.74 Å. 

 

All of the results show that the agreement in interatomic distances between the empirical and 

quantum results is consistently good with an RMS deviation of 0.08Å for modified OPLS and 0.09Å for 

POSSIM. The formation energies are simulated somewhat more accurately with the polarized POSSIM 

force field with an RMS deviation from QM of 55 kcal/mol compared to 67 kcal/mol for modified OPLS. 

In addition to validation against the above quantum mechanical gas-phase complex formation results, we 

carried out simulations aimed at comparison of our simulation performance with experimental data on the 

Pt(II) ion solvation. The results are summarized in Table 3-7 and the associated radial distribution 

functions (RDF) shown in Figure 3-7. The locations of the first and second RDF maxima are within ca. 

0.1Å of the experimental data, with the modified OPLS giving a slight advantage. The free energy of 

hydration is simulated more accurately with POSSIM, as the difference with the experimental data is only 

0.9%, essentially within the error bar, while the modified OPLS deviation is about 5%. Therefore, once 

again, the both models work adequately enough, but the energy-related properties are calculated more 

accurately when the polarizable POSSIM methodology is employed.  
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Table 3-7. Free energy of hydration of Pt(II) and locations of first two maxima of the Pt2+∙∙∙OH2 radial distribution 
function. 

 DGhyd, kcal/mol Pt∙∙∙O distance, Å 

Experimental –483.8 ± 4 a 2.02 b 2.74 b 

POSSIM –488.3 ± 1.8 2.07 2.62 

OPLS-TIP3P –509.2 ± 2.0 2.02 2.65 

aCalculated in the manner of (41) with data from (44)   bData from (45) 

 

Overall, we have achieved a robust level of accuracy in obtaining the energy and structure of Pt(II) 

coordination compounds and Pt(II) hydration by using empirical force fields. Our model demonstrates 

transferability from the model compounds used in fitting to more complicated systems of biological 

interest. Furthermore, since bond, bond angle, and dihedral angle terms are not used to describe the metal–

ligand interactions, specific Pt–ligand parameters are not needed and thus preexisting knowledge of 

complex geometries is not required. The polarizable POSSIM force field gives an advantage when energy 

properties are to be calculated. Importantly, our implementation of the multisite model for the platinum 

ion permitted us to reproduce the experimentally and quantum mechanically observed nearly-squared 

planar coordination geometry, as can be seen from the structures presented in Figure 3-6. 

Given the results of our project, we expect that both sets of parameters (modified OPLS-AA and 

POSSIM) should work reasonably well in reproducing geometries of other Pt(II) coordination complexes 

(such as complexes of this ion with proteins and DNA). However, the polarizable POSSIM version 

outperforms the fixed-charges modified OPLS-AA in reproducing and predicting energies of complex 

formation. The values for all force field parameters derived and used in this work can be found in Table 

A-1  

 

Conclusions 
We have created and tested polarizable (POSSIM) and fixed-charges (modified OPLS-AA) models 

for Pt(II) and Pt(II) coordination compounds. The investigated coordination compounds include cisplatin 

and its key hydrated variants as well as platinum—thiolate complexes. We parametrized these models by 

fitting to high-level quantum mechanical energies of formation—calculations which cannot be performed 
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accurately with traditional force field approaches. Standard force field models of transition metals use 

pseudo-bonds (and often harmonic stretching and periodic torsional terms as well) connecting the ion with 

the coordinated ligands. This makes the relative positions of the ions and ligands predetermined. 

Furthermore, the coordination of the metal ion cannot change during the course of a simulation unless 

parameters are deliberately changed based on information external to the force field (e.g. investigator 

chemical intuition or some employed heuristic. 

In contrast, the main distinguishing feature of our models is that structure and energy is simulated 

without knowledge of the specific system study or geometric constraints. Rather, the metal—interactions 

in our models are based on the nonbonded interactions of a simple empirical force field. Finally, the 

coordination of the Pt(II) ion can change during the course of a simulation without any additional actions 

beyond the normal application of the force field. 
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Chapter 4: Binding of Copper and Cisplatin to Atox1  
Introduction  

Copper is an essential micronutrient required for many key biological processes, including 

oxidative phosphorylation (46), hormone and melanin production (47), neurotransmission (48), protection 

against reactive oxygen species (49), and many others (50). Deregulation of copper distribution and 

metabolism plays a role in the development of many debilitating and progressive diseases, such as Wilson 

disease (50), Menkes disease (50,51), Alzheimer’s (51,52), Parkinson’s (52), and cancer (53). Due to its 

ability to cause oxidative damage through production of reactive oxygen species, copper is not found 

inside the cell in the free state, but it is always bound to the proteins and low molecular weight compounds 

such as glutathione (54). 

Copper enters the cell through a passive transporter hCtr1 located in the plasma membrane. Atox1, 

a small ferredoxin-like chaperone protein, accepts copper from hCtr1 and delivers it to ATP-driven 

transmembrane copper transporters ATP7B and ATP7A for incorporation into the proteins or removal of 

excess copper from the cell. All of these copper transport proteins have been shown to be involved in cell 

resistance to cisplatin (7,55), a platinum-based chemotherapy agent, effective against many solid tumors 

including ovarian, testicular, cervical cancer, melanoma and others (56). Cisplatin binds to the highly 

conserved copper binding CxxC motif in ATP7A/B (19,57),  and Atox1 (8), as well as to the methionine-

rich motifs presumed to be involved in copper transport in hCtr1 (58,59). Furthermore, in vitro 

experiments have shown that the copper chaperone Atox1 can transfer cisplatin to the metal-binding 

domain of ATP7B (19) and ATP7A (60). Intriguingly, experiments performed using a model vesicle 

system suggest that ATP7B may facilitate the transport of cisplatin across cellular membranes (61). 

Finally, the deletion of Atox1 in both Drosophila melanogaster (62) and mouse fibroblasts (63) leads to 

reduced sensitivity to cisplatin. These observations suggest that cisplatin can be transported through the 

cell along the copper transfer pathways.  

DNA is considered to be the main pharmacological target of cisplatin: the drug binds to guanine, 

causing intra- and inter-strand cross-links that impair DNA transcription and replication, causing apoptosis 

(16,17). Interestingly, Atox1 has been shown to deliver copper into the nucleus (64) and act as a 

transcription factor (65). This suggests that Atox1 could also deliver cisplatin to the nucleus, which could 

have important implications in research and development of platinum-based chemotherapeutics (19). 

If platinum and copper bind to the same site in Atox1, one might expect a competitive relationship 

between the two metals. However, Atox1 can bind both copper and cisplatin simultaneously (60,66,67) 
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Moreover, in the presence of glutathione cisplatin was shown to react with Atox1–Cu faster than with 

apo-Atox1 (60). Binding of copper and cisplatin to Atox1 in the experiments published so far was carried 

out either in anaerobic conditions without the presence of any reducing agents, or in the presence of low 

concentrations of dithiothreitol (DTT). The goal our collaboration was to analyze binding of copper and 

cisplatin to Atox1 under physiological redox conditions, and to determine the chemical structure of the 

Atox1–Cu–Pt complex.  

Our experimental collaborators simulated the in-cell redox environment by using partially oxidized 

glutathione with the redox potential of the reduced/oxidized glutathione pair (GSH/GSSG) within the 

range found in the cytosol of mammalian cells (68). Under these conditions, they found that Atox1–Cu 

reacts with cisplatin, forming complexes in which copper and platinum are bound to the protein through 

metal–sulfur clusters, which include glutathione. Detailed experimental methods can be found in 

Reference (69); key experimental evidence is discussed below, in the “Results and Discussion” section. 

 

Computational Methods 
Structure Preparation 

In order to expedite molecular mechanics calculations, we modeled Atox1 as residues 9 to 19 of 

the Cu(I)-loaded crystal structure (PBD ID: 1FEE) (70) with the addition of C- and N-terminal capping 

groups. Use of this truncated model is justified as it includes all the residues showing significant change 

in NMR chemical shift upon binding of Cu(I) and cisplatin to apo-Atox1 in solution, with the exception 

of K60. In addition, the solution structure (PDB ID: 1TL4) (71) and crystal structure (PBD ID: 1FEE) of 

Cu(I)-loaded Atox1 show no major structural differences with an RMSD of ca. 0.9 Å—comparable to the 

RMSD of 0.95 Å for the solution-phase NMR ensembles (71). 

Hydrogen atoms were added, and the protonation states of ionizable residues were set to their most 

stable forms at pH 7 as applicable using the pepz utility of the MCPRO software package (72). 

Subsequently, the cysteine residues involved in copper binding were set to their deprotonated thiolate 

forms. The pepz utility was also used to build the naïve starting geometry of glutathione as a linear peptide 

with idealized bond lengths and angles. 

 

Monte Carlo Molecular Mechanics Calculations 
We performed all nonpolarizable calculations with the MCPRO software package within the OPLS 

force field framework (72). The standard OPLS parameter set (9,72) was used for all atoms except for the 
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thiolate sidechain of cysteine, Cu(I), and Pt(II) which we have previously parametrized (31,73,74). The 

TIP3P water model (39) was used in all aqueous-phase simulations. 

We built protein complexes and screened for stability using a defined methodology. First, we 

assembled the desired complex from the truncated Atox1 model, glutathione, and metals ions. Then we 

performed a gas-phase optimization with only the intermolecular and cysteine sidechain degrees of 

freedom free. Next, we solvated the complex in an appropriately sized water droplet with a 1 kcal/mol/Å2 

half harmonic restoring potential with equilibrium distance equal to the radius of the droplet. With all 

solute degrees of freedom fixed, we allowed the water droplet to equilibrate for ca. 1×106 MC steps. Next, 

we applied large (>150 kcal/mol/Å2) harmonic potentials between metal and coordinated sulfur atoms 

with equilibrium distances equal to the optimized gas-phase distances, and the system was allowed to 

equilibrate for at least an additional 1×106 steps. During this “relaxation” step, all intermolecular, internal 

glutathione, and Atox1 cysteine sidechain degrees of freedom were allowed to vary. Finally, we removed 

the metal ligand harmonic potentials and performed at least an additional 2×106 MC steps while 

monitoring key metal–sulfur distances. We deemed complexes in which one or more of these distances 

diverged, indicating complex dissociation or fragmentation, unstable and discarded. We subjected stable 

complexes to an additional 2×106 steps of equilibration followed by 8×106 configurations of averaging. 

Each averaging run was broken up into batches of 2×105 steps and the variance calculated by the batch 

means method. 

We performed polarizable calculations with our POSSIM software suite utilizing the second order 

polarizable POSSIM force field (30,15) We used the standard POSSIM parameters (15) and our 

polarizable POSSIM water model (11), except for the thiolate sidechain of cysteine and Pt(II) which we 

have recently parametrized (74). We obtained parameters for the Cu(I) ion in the same manner as for our 

previous generation polarizable force field (31). Due to the combined size of these protein complexes and 

solvent (>1500 atoms), we only performed polarizable calculations on structures that had passed the 

nonpolarizable screening process. We used the equilibrated nonpolarizable complexes and water droplet 

as starting geometries after truncating the glutathione molecules to methyl-capped cysteine residues and 

removing extraneous water molecules. 

 

Density functional Theory Simulations 
Our theoretical collaborators performed DFT-level calculations by using a hybrid orbital-

free/Kohn-Sham DFT method (75) which enables the use of explicit solvent in DFT simulations. In this 
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approach, the chemically active parts of the system, including the first solvation shells, are treated at a 

Kohn-Sham (KS) DFT level, while an approximate orbital-free (OF) DFT is used for the remaining solvent 

molecules. The implementation of the hybrid OF/KS DFT approach is based on the RMG code, in which 

Kohn-Sham equations are solved in real-space and the multigrid technique is used to accelerate 

convergence of the ground state wavefunctions (76,77). For their grid-based calculations, our 

collaborators used a grid with spacing of 0.32 Bohr and a corresponding kinetic energy cutoff of 50 Ry. 

Additionally, they employed ultrasoft pseudopotentials and a generalized gradient approximation in the 

PBE form (78). 

Our collaborators used our pre-equilibrated MC/MM structures as the starting point for their DFT 

calculations Additionally, they applied a similar truncation to both Atox1 and glutathione for increased 

computational efficiency. Specifically, Atox1 peptides were represented by Cys-Gly-Gly-Cys fragments 

with backbone extended on each side until the next α-carbon which were capped with CH3 groups. Our 

collaborators applied the same truncation to glutathione (the tripeptide γ-Glu-Cys-Gly) but at the α-

carbons of Glu and Gly. These fragments were fully solvated and structurally optimized within the OF/KS 

DFT method.  

 

Results and Discussion 
Chemical structure of Atox1–Cu–Pt complex 

As our goal was to investigate the binding of copper and cisplatin to Atox1 under physiological 

redox conditions, reactions of Atox1 with equimolar concentrations of copper and cisplatin were carried 

out in the presence of 9.5 mM reduced glutathione (GSH) and 0.5 mM of oxidized glutathione (GSSG) at 

pH 7.4. The potential of the GSH/GSSG redox pair under these conditions is approximately –230 mV 

which is within the range reported for proliferating mammalian cells (79). 

From our collaborators’ experimental data, we conclude: (i) In the presence of glutathione and 

Cu(I), Atox1 exists as a dimer. (ii) After the addition of cisplatin, an Atox1–Cu–Pt complex is formed, in 

which copper is bound to three S atoms and platinum is bound to four S atoms. (iii) Within the 

metal0binding region of Atox1, Cu and Pt bind in close proximity, but do not form a metal–metal bond.  

We have considered possible chemical structures that satisfy these conditions, and we tested 

several models by molecular mechanics and DFT calculations. The copper EXAFS Fourier transform 

peaks at around 2.7 Å are characteristic of the Cu∙∙∙Cu interactions in Cu4S6 clusters found in copper 

loaded metallothioneins (80,81) (Figure 4-1 F). We based our initial models on metal arrangements in the 
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Cu4S6 clusters because the Cu–glutathione complexes and Atox1–Cu–Pt show very similar 2.7 Å peaks 

in their spectra. 

 

Figure 4-1. Characterization of Atox1 and glutathione complexes with copper and cisplatin. A: Size exclusion 
chromatography (SEC) profiles of Atox1 with GSH/GSSH with and without copper (Cu) and/or cisplatin (Pt). B: SEC 
chromatography profiles of GSH/GSSH with and without copper and/or cisplatin. C: Copper K-edge spectra of 
copper(I)–glutathione polymers (black) and Atox1–Cu in the presence of glutathione (red), shown together with model 
Cu(I) compounds for trigonal (blue, Cu(SR)3) and diagonal (purple, Cu(SR)2) geometries. D, E: Copper EXAFS 
spectrum (k3-weighted) (D) and the corresponding Fourier transform (E) of copper(I)–glutathione polymers. 
Experimental data is shown as solid line, fitted data as dashed line. F: A model of Cu4S6 cluster with copper and sulfur 
atoms displayed in orange and yellow, respectively. 

 

To create a benchmark, we used Monte Carlo molecular mechanics using both the fixed-charge 

OPLS and polarizable POSSIM force fields to generate hydrated structures of an 11-residue fragment of 

Atox1 monomer containing the CGGC metal-binding motif and flanking residues, with a bound Cu(I) 

atom. Both models reproduced the copper bound geometry with similar levels of accuracy. The average 

Cu–S distances were 2.21(5) Å and 2.28(7) Å for the OPLS and POSSIM models respectively. Both 

models exhibited nearly linear (ca. 150°) S–Cu–S coordination. This compares favorably to previous 

NMR and EXAFS studies of the Atox1–Cu monomer that indicated diagonal copper coordination 

geometry with a Cu–S distance of 2.17 Å and S–Cu–S angle of about 160° (82,71). However, neither 
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model was able to reproduce our colleagues' experimental data that consistently showed the formation of 

tricoordinated copper (Cu–S distances of ~2.25 Å) in systems containing Atox1, copper(I), and 

glutathione. Interestingly, neither the non-polarizable nor the polarizable model resulted in a stable 

coordination structure as the S– of glutathione consistently migrated to the second solvation shell (~3.6 Å) 

of the copper atom. Attempts to produce dimeric structures of copper-loaded Atox1 with a bridging 

glutathione ligand were also unsuccessful as these structures consistently disassociated into copper-loaded 

monomers. 

This strong preference for dicoordinated structures in disagreement with experimental data, which 

indicates CuS3 coordination mode, is best explained by the limitations of the truncated Atox1 model used 

in our simulations. Specifically, the model does not include Lys60, which is proximal to the metal binding 

domain (Figure 4-2 D), and has been shown to be necessary for optimal copper transfer to ATP7B (83). 

Presumably, the positively charged lysine sidechain stabilizes the net negative charge of the copper–

thiolate complex. Atox1 dimerization may also provide additional stabilization for tricoordinate copper 

coordination by sulfur observed experimentally.  

We then screened a number of potential Atox1–Cu–Pt–glutathione structures for stability. In order 

to reduce the number of possible structures tested, two key factors were considered. First was agreement 

with the number and type of metal-coordinated ligands as shown by our colleagues’ spectroscopic data. 

Second, as indicated by the NMR data shown in Figure 4-2, only structures in which copper is bound to 

one or more of the cysteine residues in Atox1 dimer were considered. Due to the sub-femtomolar binding 

affinity of Atox1 for Cu(I) (84), Pt(II) would not be expected to completely displace copper from the 

binding site. 
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Figure 4-2. Binding of cisplatin to Atox1–Cu in the presence of glutathione. A-C: Overlays of 1H and 15N-HSQC 
spectra comparing Atox1–Cu–Pt (red) to (A) apo-Atox1 (black), (B) Atox1–Cu (black), and (C) Atox1–Pt (black). 
Peaks showing the largest chemical shift differences are labeled in black and C41 labeled in blue; D-F: Combined 
chemical shift change, relative to apo-Atox1 as a function of residue number, caused by (D) copper, (E) cisplatin, and 
(F) copper followed by cisplatin treatment. The insets show structures of the Atox1 monomer with the Cys residues of 
the conserved CxxC motif as spheres and chemical shift changes (Dδ > 0.05 ppm) highlighted for Atox1–Cu (D, 
orange), Atox1–Pt (E, blue) and Atox1–Cu–Pt (F, magenta).  

 

Monte Carlo molecular mechanics results were further refined in density functional theory (DFT) 

simulations. This yielded two types of stable Cu–S-Pt clusters. The first type contains two copper and one 

platinum atom (Cu2PtS6, Figure 4-3 A) while the second has two copper and two platinum atoms 

(Cu2Pt2S8, Figure 4-3 D). The Cu2PtS6 model was qualitatively more stable in the simulations than 

Cu2Pt2S8 and could better resist small perturbations of coordination geometry.  
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Figure 4-3. Model structures of Atox1–GSH-Cu–Pt complexes and corresponding EXAFS spectra. A-C: Cu2PtS6 model 
D-F: Cu2Pt2S8 model; G-I: Cu2Pt2S10 model; A, D, G: Ball-and-stick structure models with copper shown in orange, 
platinum in navy, sulfur in yellow, and the other atoms in CPK colors. B, E, H: Experimental Fourier transformed Cu 
K-edge EXAFS (solid lines) and corresponding simulated spectra (dashed lines); C, F, I: Experimental Fourier 
transformed Pt LIII EXAFS (solid lines) and corresponding simulated spectra (dashed lines).  

 

To further assess the two model structures, simulated EXAFS Fourier transforms were produced 

(dashed lines in Figure 4-3 B, C, E, F) from the atomic coordinates of the models. Simulated EXAFS did 

not reproduce the experimental peak corresponding to Cu∙∙∙Cu interaction at the distance of ~2.7 Å in 

either case, because both models place copper atoms farther away from each other, at approximately 3.3 

Å. The average Cu–S and Pt–S distances in both models were also longer than reported by EXAFS.  

To account for the short Cu∙∙∙Cu distance observed experimentally, we designed a Cu2Pt2S10 

model, which puts copper atoms at 2.7 Å from each other, with two platinum atoms bound through sulfur 
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bonds to each copper (Figure 4-3 G) Although this model has not been tested using molecular mechanics, 

it was refined by DFT. Simulated EXAFS for both copper K-edge and platinum LIII-edge for Cu2Pt2S10 

model are in good agreement with the experimental data: Fourier transform of copper EXAFS contains 

~2.25 Å peak corresponding to Cu∙∙∙S bond and ~2.7 Å peak corresponding to Cu∙∙∙Cu interaction (Figure 

4-3 H), while Fourier transform of Pt EXAFS accurately reproduces the experimental Pt∙∙∙S peak.  

According to the Cu2Pt2S10 model, distances between copper and platinum are in the range of 3.7 

3.9 Å. At such close distances, the Debye-Waller factor is usually quite high, decreasing the peak 

amplitude. Moreover, platinum is connected to copper through a single sulfur atom, which allows certain 

degree of flexibility in the relative positions of copper and platinum, further increasing Debye-Waller 

factor, and decreasing amplitude of the peak corresponding to Cu∙∙∙Pt interaction to the noise level (Figure 

4-3 H, I). Thus, the Cu2Pt2S10 model provides the best description of the metal atom arrangement in Atox1 

dimer at approximately equimolar ratios of Atox1, copper and platinum.  

Under the conditions of chemotherapy, a variety of Atox1 complexes with glutathione, copper and 

platinum may form in the cell, depending on cisplatin concentration and copper status.  A rough estimate 

based on Atox1 abundance in the cell (85), and cisplatin concentration dynamics in blood plasma under 

the standard chemotherapy regimen (86) suggests that the numbers of Atox1 and cisplatin molecules in 

the cell can be of the same order of magnitude, and therefore structures similar to Cu2PtS6 model, which 

was shown to be stable in simulations, can occur along with Cu2Pt2S10 and single-metal Atox1 complexes.   

 

Conclusion 
Analysis of copper and cisplatin binding to copper chaperone Atox1 under physiological redox 

conditions revealed the formation of large copper– and platinum–glutathione complexes that are able to 

transfer both metals to the protein. Binding of copper and cisplatin to Atox1 was found to occur through 

the formation of copper–sulfur–platinum bridges, where copper is coordinated by three S atoms and 

platinum by four S atoms. These data offer a new perspective on copper and cisplatin metabolism in the 

cells where glutathione and Atox1 both participate in platinum transport across the cell, and the metal 

balance is likely to affect the effectiveness of anticancer chemotherapy with platinum-based drugs. 
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Chapter 5: Developing and Testing PKA17 
Introduction 

Assessing protein acidity constant values is important for predicting the structure, stability, and 

function of proteins. It is therefore beneficial to be able to predict the values of these acidity constants 

computationally when robust experimental data are not available. Protein pKa values have to be calculated 

in aqueous solutions to be biochemically relevant. These acidity constants are proportional to the total free 

energies of deprotonation. Such a deprotonation-free energy is a sum of the bond breaking energy and the 

free energy of hydration for the resulting ions. The two components have opposite signs and large 

magnitudes, often up to hundreds of kcal/mol. The accuracy of calculating the final pKa value thus depends 

on reproducing or predicting a very fine balance of energies, since computational predictions need to be 

accurate within ca. 0.8-1.0 pH units or slightly over 1 kcal/mol in order to be relevant (87). This is why 

robust calculations of protein and other acidity constants remain a very difficult task even in the presence 

of the computational resources available today. Thus, a number of research groups have applied significant 

efforts to achieve reliable and accurate results in the computational assessment of protein pKa values.  

Protein pKa values are proportional to the free energies of deprotonation in an aqueous solution. 

However, due the difficulty in accurately computing absolute free energies of hydration, it is convenient 

to calculate pKa shifts instead of the absolute pKa values. A pKa shift is then a measure of the difference 

in acid dissociation constants between an ionizable group in aqueous solution and the same group in the 

protein environment. For example, we can use propanoic acid as the reference compound for the aspartic 

acid residue. Given a reference compound, we want to assess the difference in the deprotonation energy 

due to the interactions of the residue with the other parts of the protein as opposed to its interactions with 

bulk solvent.  

Historically, the efforts towards creating computational predictions of protein pKa shifts have been 

made in several directions. As a starting point, it is natural to apply the Poisson-Boltzmann equation to 

the calculation of acidity constants (88,89). Several groups have suggested a number of variations and 

approximations of this general methodology for pKa calculations (90,91,92,93,94).  

Other techniques have been applied to the problem as well such as implementing the Poisson-

Boltzmann (PB) approach in volume- or surface-based formalisms (87). There have been a variety of 

proposed approaches for optimizing the electrostatic charges used in PB simulations in order to address 

the need to take into the account the presence of multiple ionizable residues (91,94). Some research groups 

have suggested assigning a large dielectric constant (up to 20) to the interior of proteins (95). While this 
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approach led to an overall improvement of the results, it still calculated a number of pKa values that 

deviated significantly from experimental values (87,96). Furthermore, the very physical meaning of such 

high values of the dielectric constant for the protein interior is not clear.  

In order to improve the accuracy of protein acidity constant predictions, some researchers have 

acknowledged that that conformational changes in the protein in response to the protonation or 

deprotonation of ionizable residues must be taken into account. The Multi-Conformation Continuum 

Electrostatic (MCCE) method is particularly interesting: it combines the motion of side-chains with 

continuum dielectric treatment of solvent and bulk protein (97,98,99). The MCCE method has been used 

in many applications, including successfully predicting pKa values for an extensive testing set of several 

hundred protein residues with AMBER, CHARMM, and PARSE force fields. The prediction results were 

compared with the experimentally measured acidity constants (21). 

Some have suggested a number of microscopic techniques with an explicit treatment of solvent 

(100,101). Some of these proposed techniques use quantum mechanical representation of the systems  

While quantum methodology is generally more accurate and rather potent, it unfortunately requires greater 

amounts of computational resources than non-quantum empirical techniques, and thus its use is currently 

somewhat limited when protein pKa calculations are to be carried out (87). 

Combined quantum mechanical/molecular mechanical (QM/MM) methods can offer a better 

alternative to pure quantum simulations (102,103,104). Some QM/MM techniques employ complete or 

partial continuum representation of solvent. One successful example is the applications of constant pH 

molecular dynamics (CPHMD) simulations (105,106) In many cases, constant pH simulations approach 

or match first-principles level of accuracy (87). Additionally, CPHMD techniques offer a tool for studying 

pH-dependent conformational phenomena. 

Finally, the scientific community has directed a lot of attention towards the development and 

application of empirical techniques for evaluating protein pKa shifts; PROPKA is one of the most 

successful and widely used examples (107). In these techniques, some physical considerations are 

combined with statistical fitting of descriptors and parameters that predict amino acid pKa values 

depending on the environment of the particular ionizable residue. Statistical fitting methods can yield a 

reasonably high level of accuracy, and such methods implicitly replace any conformational and rotamer 

sampling that may be needed to account for thermal motion. Such methods are sufficiently accurate in 

most cases, and they are also very fast and robust when applied to diverse sets of protein residues.  
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We have created PKA17, a predictor of protein pKa shifts that has been parametrized on a subset 

of experimentally known acidity constants of protein residues. One of the distinguishing features of 

PKA17 is that it employs an extremely coarse-grain model of the protein with each residue represented as 

only a single particle. This makes the model very simple while also reducing the noise levels since fine 

variations in atomic positions have no effect on the calculated values of the acidity constants. Another 

distinguishing feature is the use of a cubic grid model for positioning of the protein residues. Finally, the 

physical formalism of PKA17 is much simpler than that of PROPKA; the fitting is almost entirely 

statistical, and we took care to only introduce a minimum number of fittable parameters. At the same time, 

we believe that this statistical method is defined by the underlying physical principles.  

We used 442 protein residues for fitting and benchmarking our model. In spite of its simplicity, we found 

that PKA17 performed on par with—or slightly better than—PROPKA. We further tested an approach in 

which we combined the PROPKA and PKA17 results in order to predict protein pKa shifts. We found that 

this combined approach is capable of giving better results than either of the techniques alone. 

 

Methods 
Mapping of the Protein Geometry to the Grid 

Each protein residue is represented by a single particle, the location of which is determined solely 

by the position of the alpha carbon of the residue. The Cartesian coordinates of the alpha carbons are taken 

from the input PDB file and then mapped onto nodes of a cubic grid. The side of each grid cell is set to be 

5.4 Å. This makes each cubic cell to have a volume that is approximately equal to the average volume of 

a protein residue.  

The process of the geometry mapping by PKA17 is illustrated in Figure 5-1 using chain I from the 

1ppf PDB structure. We start with the full PDB structure (a) and then parse it to leave only the alpha 

carbon locations, each of which represents the whole residue (b). Finally, each of such particles is placed 

at the nearest node of the cubic lattice with 5.4 Å spacing in each dimension (c). The types of the residues 

and the connections to the adjacent residues are recorded and retained at this stage. The grid-mapped 

structure along with the residue type and connectivity information is retained and only this information is 

used in next stage of the pKa calculation. 



 42 

 

Figure 5-1. Schematic depiction of the process of mapping protein residue coordinates onto the cubic grid. The map-
ping proceeds from the full atomistic PDB structure (a) to the locations of the alpha carbons (b) and finally to the cubic 

grid nodes (c). 

 

Selecting Residues and Calculating pKa Shifts 
The current version of PKA17 predicts acidity constants for four types of protein residues: Asp, 

Glu, His, and Lys. Each of these types has an initial reference pKa constant î.
e where the subscript i 

denotes the amino acid type. It should be noted that this constant is not intended to correspond to the pKa 

value for the residue in any particular protein or peptide, as it is always modified by influence from other 

residues. The final value of the acidity constant is determined by the following sum: 

 

 †42 = î.
e +3ì.P +3°.P +3¢.P +3!.P (22) 

 

Figure 5-2 shows graphically how the five coefficients in eq 22 are defined. In detail: Coefficient 

Bij signifies the shift in the pKa value of residue A of type i resulting from being directly connected to a 

residue of type j in the backbone. Coefficient Cij stands for the effect of on the acidity constant of residue 

A of type i induced by a non-connected residue of type j located just one lattice period l away. Coefficient 

Dij represents the effect of a diagonally placed residue of type j, and Eij shows the influence of a residue 
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of type j placed at a distance of √3 ∙ è. Residues that are located farther away do not affect the pKa value 

of residue A. 

 

 

Figure 5-2. Neighboring residues affecting pKa value of residue A. 

 

The values of the coefficients that determine the calculated pKa value of residue A of type i depend 

on the type, j, of the influencing residue. Non-connected residues that have been mapped to the same node 

of the cubic grid as residue A are assigned the same pKa shift coefficients, Bij, as those residues directly 

connected to A.  

The above mapping and coefficients are all that determine the values of protein pKa shifts in the 

PKA17 framework. Values of all the parameters are found by fitting to experimentally measured values, 

with further tests on proteins and amino acids that were not included in the fitting set. It should be noted 

that we are not utilizing any explicit procedure for establishing whether a residue is exposed to the solvent 

or buried within a protein. However, the shift of the acidity constant does depend on the number of 

neighboring residues, and thus the effect of exposure to or separation from the solvent is automatically 

included in an implicit way. Additionally, while the desolvation contribution to the pKa shift cannot be 

separated from the other factors contributing to the pKa shift, it is accounted for as a part of the B, C, D, 

and E coefficients in eq 22. 
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Results and Discussion 
In the present version of the PKA17 software, ì.P = °.P = ¢.P = !.P for any i and j. In other words, 

any residue of type j shifts the pKa value of residue of type i by the same amount if the residues are no 

farther than √3 ∙ è apart. It also does not matter whether the residues are covalently bonded, only the 

geometric distance between the grid-mapped alpha carbons is used to determine if the residue pairs are 

neighbors. This was done to avoid overparametrization and related issues with stability and transferability 

of the results. Naturally, the coefficients are different for different pairs of residue types i and j. Moreover, 

it should be emphasized that, in general ì.P ≠ ìP. and the same is true for coefficients C, D, and E.  

We used an extensive fitting and testing set of protein residue pKa values from 

(108,109,110,111,112). A complete list of the proteins and residues can be found in the Appendix.  

The general fitting procedure was as follows. For each of the ionizable residue types that we considered 

(Asp, Glu, His, and Lys), we divided the set of experimental pKa values from the literature into two 

subsets. The first part was the fitting set. We fitted the parameters î.
e and ì.P = °.P = ¢.P = !.P for this 

residue type to minimize the deviation of the acidity constants calculated with the PKA17 software from 

the experimental results. The resulting average deviation constituted the first benchmarking result for our 

fitting. 

Then we obtained the leave-one-out (LOO) average unsigned errors. In this procedure, one residue 

was excluded from the fitting, and the resulting fitted parameters were used to calculate the pKa value for 

the excluded residue. The procedure was repeated for all the residues in the set. This allows us to test the 

sensitivity of our method to small changes in the data set used in parametrization. he next step of our 

fitting procedure was in applying the parameters derived for the full fitting set to calculate pKa values of 

the test set. This was done without any refitting.  

Finally, we used the full set (fitting and testing sets together) to fit the final set of the PKA17 

parameters and to calculate the LOO average unsigned error. While the LOO result was used as an initial 

benchmarking measure, the final parameter set that is currently used in the PKA17 software is the one 

obtained by fitting to the full set of residues. All the calculated errors were compared with those produced 

with the PROPKA website as PROPKA is one of the most successful and widely used web-based protein 

pKa predictors.  
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Table 5-1. Results of pKa fitting for Asp, Glu, His, and Lys residues. 

 average unsigned error (in pH units) by residue type 

Method Asp Glu His Lys 

Fitting set, PROPKA 0.606 0.726 1.038 0.583 

Fitting set, PKA17 0.654 0.518 0.722 0.510 

Fitting set, PKA17, LOO 0.809 0.632 1.016 0.793 

Test set, PROPKA 0.876 0.498 0.872 1.351 

Test set, PKA17 0.694 0.479 1.053 1.286 

Combined set, PROPKA 0.671 0.669 0.985 0.817 

Combined set, PKA17 0.632 0.484 0.730 0.746 

Combined set, PKA17, LOO 0.740 0.565 0.914 0.964 

 
 
 

Fitting for Asp, Glu, and His Residues 
For aspartic acid, we used a fitting set of 105 residues and a testing set of 33 residues. For glutamic 

acid, we used fitting and testing sets of 101 and 32 residues, respectively. For histidine, a fitting set of 61 

residues and a testing set of 28 residues were employed. The results are summarized in Table 5-1 and a 

complete list of the proteins, residues, and the results can be found in the Appendix. 

Fitting PKA17 parameters for Aspartic acid to the fitting set values resulted in an averaged 

unsigned error of 0.654 pH units, which is a bit higher that the PROPKA 0.606 pH units. The leave-one-

out (LOO) average error was 0.809 pH units. While this number is somewhat higher than the PROPKA 

errors, it should be noted that the PROPKA training set does include some of the residues that were 

employed in our tests. The performance of this intermediate set of PKA17 parameters for the test subset 

of the Asp residues was better than that of the PROPKA software, with the average errors being 0.876 and 

0.694 pH units for PROPKA and PKA17, respectively. Finally, the fitting to the complete combined set 
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of Asp residues lead to an average unsigned error of 0.632 pH units as calculated with PKA17. The LOO 

average error was 0.740 pH units. The PROPKA result is 0.669 pH units. Once again, we need to keep in 

mind that some of the residues were used in parameter fitting for PROPKA.  

For the sets of glutamic acid residues, PKA17 yield lower average unsigned errors of 0.518 pH 

units for the fitting set and 0.632 pH units for the LOO calculation compared to the average PROPKA 

error of 0.726 pH units. Evaluating the non-fitted test set produced similar resulting error: 0.479 pH units 

error for PKA17 and 0.498 units for PROPKA. Using the complete set that includes both the fitting and 

the testing subsets for the fitting leads to an average PKA17 error of 0.484 pH units and the LOO average 

unsigned error of 0.565 pH units; both methods resulted in lower average error compared to the 

corresponding PROPKA average error of 0.671 pH units. 

It should be noted explicitly that one of the major reasons for including the leave-one-out errors is 

the need to test the stability of the resulting PKA17 framework with respect to the fitting data set and its 

ability to predict acidity constants for residues that are not a part of the fitting set at all. However, it makes 

sense to minimize the actual final error and going forward, to then use the entire set of residues to produce 

the finalized version of the PKA17 parameters.  

For histidine residues, PKA17 performs better than PROPKA. For the fitting set, applying PKA17 

affords an average unsigned error of 0.722 pH units, while the corresponding PROPKA error is 1.038 pH 

units (~43% higher than PKA11). Even with the leave-one-out (LOO) approach, the PKA17 error is only 

1.016 pH units. Interestingly, applying PKA17 to the test set results in a slightly larger error (1.053 pH 

units) compared PROPKA (1.053 pH units). However, using the complete combined set we PKA17, we 

obtained average unsigned errors of 0.730 and 0.914 pH units for the fitting and LOO runs, respectively. 

For comparison, applying PROPKA yields an average unsigned error of 0.985 pH units.  

 

Fitting for Lys Residues 
The composition of the fitting and testing sets we compiled for lysine was somewhat different than 

the sets used for aspartic acid, glutamic acid, and histidine. Most Lys residues for which we could find 

high-quality experimental data have pKa values within a relatively narrow range. Our main fitting set is 

composed of these residues. The testing set (also used as part of the combined set as with Asp, Glu, and 

His fitting) include engineered mutants that exhibit a much larger range of pKa values (113).This way we 

covered the broadest range of potential lysine pKa values that could be encountered. These results are also 

summarized in Table 5-1. 
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The initial fitting set contained 57 lysine residues. The average unsigned error in the pKa values 

obtained with PROPKA was 0.583 pH units, very similar to the PKA17 average error with this set of 

0.510 pH units. The LOO PKA17 result was 0.793 pH units. It should be emphasized again that it is hard 

to make a direct comparison between PROPKA and PKA17 given that PROPKA parameters were 

developed with some training/fitting on this particular data set as well.  

Calculating lysine pKa values for the test set of 25 residues yielded average PROPKA and PKA17 

errors of 1.351 and 1.286 pH units, respectively. These results are similar, but PKA17 seems to perform 

slightly better for these structures not employed in the initial fitting. When we use the combined set 

containing all 82 residues, the average error with PROPKA is 0.817 pH units; the fitting and LOO average 

with PKA17 are 0.746 and 0.964 pH units, respectively.  

 

PROPKA Fitting Sets for Asp and Glu 
The fitting sets which were used to train PROPKA for aspartic and glutamic acid residues are 

available from the literature (107). We have employed these sets in order to produce a more direct 

comparison of PKA17 and PROPKA. A summary of these can be found in in Table 5-2. 

The aspartic acid PROPKA fitting set contains 43 residues (see Appendix for full list). The average 

unsigned error for the pKa values for the set computed with PROPKA is 0.503 pH units. When we use the 

same set for fitting PKA17 parameters, the average error is only 0.299 pH units. The leave-one-out (LOO) 

procedure resulted in an average error of 0.460 pH—roughly 9% lower than the average PROPKA 

deviation.  

 

Table 5-2. Results of aspartic and glutamic acid pKa calculations after fitting to the PROPKA training set (107). 

Method 

Average unsigned error (in pH units) by residue type 

Asp Glu 

Fitting set, PROPKA 0.503 0.469 

Fitting set, PKA17 0.299 0.331 

Fitting set, PKA17, LOO 0.460 0.471 

Combined set, PROPKA 0.671 0.669 

Combined set, PKA17 0.768 0.603 
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We then applied the resulting PKA17 parameters to calculating pKa values of all the 138 aspartic 

acid residues in our complete combined aspartic acid set. The average PROPKA error (also reported in 

the above) was 0.671 pH units, while the PKA17 one was slightly higher at 0.768 pH units. Compare this 

to the average errors produced by PKA17 after fitting to the complete Asp residue set (Table 5-1). The 

average error for complete fitting was 0.632 pH units, while the LOO procedure lead to an error of 0.740 

pH units, close to the 0.768 pH units of unsigned error obtained from fitting to the PROPKA training set.  

For glutamic acid, the PROPKA fitting set contained 42 residues. The average unsigned error for 

these residues that we obtained with PROPKA was 0.469 pH units. Fitting to this set of resides for PKA17 

results in an average error of 0.331 pH units, while the LOO protocol gives an error of 0.471 pH units. 

The resulting parameters were then applied to the full combined set of Glu residues (133 residues in total). 

For this combined set, the average unsigned PROPKA error in pKa values is 0.671 pH units. In 

comparison, the error obtained with PKA17 is 0.603 pH units—about 10% lower.  

We believe that these results using the PROPKA fitting set demonstrate the robustness of the 

PKA17 framework with respect to the fitting protocol and choice of set of fitting set. We’ve demonstrated 

that—when both programs are trained and tested on the same data set—the resulting PKA17 parameters 

allow us to obtain results that are at least as good as those obtained with PROPKA.  

 

Comparative Timing of PROPKA and PKA17  
While neither of the programs takes prohibitively long to produce results, we still ran a brief 

comparison of the required computational time for five representative proteins. The results are shown in 

Table 5-3. Both programs are rather fast; note that PKA17 is an order of magnitude faster than PROPKA.  

 
Table 5-3. CPU time required for pKa calculation 

PDB ID: 1ubq 2dhc 2gga 3twy 4pyp 

Number of residues 76 310 455 137 504 

Number of pKa values 26 93 108 52 79 

Time (s), PROPKA 0.219 1.121 2.947 0.369 1.489 

Time (s), PKA17 0.038 0.046 0.062 0.027 0.066 
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Using PROPKA and PKA17 In Tandem 
We have also calculated pKa values for the complete combined sets, for all four residue types 

evaluated, by taking the linear combination of the PROPKA and PKA17 results for each residue in equal 

proportion (0.5 of PROPKA pKa + 0.5 of PKA17 pKa). The resulting average unsigned errors are shown 

in Table 5-4 and Figure 5-3. 

 

 

Table 5-4. Average unsigned errors in pKa values calculated with PROPKA, PKA17, and as 0.5:0.5 linear combination 
of the individual PROPKA and PKA17 values. 

 average unsigned error (in pH units) by residue type 

 Asp Glu His Lys 

PROPKA 0.671 0.671 0.985 0.817 

PKA17 0.632 0.484 0.730 0.746 

Combined 0.541 0.506 0.776 0.687 

 

There is a clear advantage to using the combined application of PROPKA and PKA17 software. 

All of the combined PROPKA/PKA17 average errors are lower than those resulting from applying 

Figure 5-3. Average unsigned errors in pKa values calculated with PROPKA, PKA17, and as 
0.5:0.5 linear combination of the individual PROPKA and PKA17 values (COMBINED). 
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PROPKA alone. The errors for Asp and Lys residues are also lower than those for applying PKA17 alone. 

This effect deserves further study as it appears PROPKA and PKA17 tend to err in opposite directions, 

and their combination provides a more accurate alternative for predicting protein pKa values.  

 

Benchmarking PKA17 Using an Extensive MCCE Test Set 
The Multi-Conformation Continuum Electrostatic (MCCE) method using a Poisson-Boltzmann 

approach with AMBER, CHARMM, and PARSE force fields has been developed and successfully applied 

by Alexov and coworkers in order to calculate pKa values of an extensive set of protein residues (98). We 

have used the same dataset to provide additional validation of our technique by calculating pKa values 

with the PKA17 and PROPKA software.  

 

Table 5-5. Average errors of pKa calculations using the extensive fitting set presented in (98) 

 average unsigned error (in pH units) by residue type overall average 
unsigned error 
(in pH units)  Asp Glu His Lys 

MCCE, AMBER a 0.473 0.562 0.677 0.479 0.538 

MCCE, CHARMM a 0.464 0.512 0.705 0.504 0.530 

MCCE, PARCE a 0.492 0.519 0.596 0.476 0.515 

PROPKA 0.600 0.700 0.844 0.542 0.661 

PKA17 0.572 0.635 0.557 0.507 0.575 
aData from (98)  

 

Table 5-5 show the comparison of accuracy in calculating the acid dissociation constants of 

residues in the MCCE data set. The data is Table 5-5 are broken down by residue type and the overall 

accuracy presented in the final column. Note that these results were obtained with no additional fitting of 

the PKA17 parameters. In almost all cases, the PKA17 formalism performs somewhat worse than the 

much more sophisticated MCCE technique, but it performs slightly better than the PROPKA suite. The 

clear exception is histidine calculations in which the PKA17 results are better than those produced by the 

other techniques. ` 
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Conclusions 
We have developed and validated a predictor of protein pKa values named PKA17. It is based on 

a coarse-grain grid model of proteins. The pKa shifts are defined by the residues that are spatially close to 

the ionizable residue in question. Fitting and validation of our model involved an extensive set of 442 

protein residues. Additional benchmarking on a previously proposed extensive set of ionizable protein 

residues (98) confirms the strength of the presented technique. The resulting tool has been deployed with 

a web-based interface at http://users.wpi.edu/~jpcvitkovic/pka_calc.html. 

The results demonstrate that PKA17 performs on par or even somewhat better than the widely 

used and successful protein pKa predictor PROPKA. It also requires less computational resources; the 

computational time needed for PKA17 runs is an order of magnitude lower than the computational time 

required by PROPKA. Moreover, we have achieved the current level of accuracy with PKA17 while 

significantly limiting the number of fittable variables in order to avoid any danger of possible 

overparametrization.  
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Chapter 6: Conclusions 
Parameters for use with the platinum(II) ion, cisplatin, and other Pt(II) coordination compounds 

and within two force field frameworks—a modified version of fixed-charge OPLS-AA and our polarizable 

POSSIM force field—were developed and evaluated. The produced seven-site model of Pt(II) and other 

parameters are intended to be used in protein-metal binding simulations in which—contrary to the 

common treatment of metal ions in such simulations—the position or even coordination of the ion does 

not have to be constrained using heuristic routines or operator intervention.  

The models have been tested against quantum mechanical and available experimental data for gas-

phase complexes, pure liquids, ions solvated in bulk water. The performance has been found adequate, 

and the second-order polarizable POSSIM technique demonstrated a better ability to reproduce energies 

of complexes with strong many-body effects present than the fixed-charges modified OPLS-AA. We hope 

that these new coordination models will permit simulations aimed at obtaining better understanding and 

prediction of properties of metal ion complexes with proteins and DNA at the all-atom level, even when 

exact detailed structural information has not been obtained from experimental studies.  

 We employed our Pt(II) models along with previously developed Cu(I) parameters to investigate, 

under physiological redox conditions, the binding of platinum to the protein Atox1—a human copper 

chaperone implicated the resistance mechanism of cisplatin and other platinum antitumor compounds. 

With our collaborators, we have shown that: (i) Atox1 exists in a dimeric form and binds copper and 

platinum in the same site formed by the proximal CxxC motifs of the two Atox1 monomers; (ii) copper is 

coordinated by three and platinum by four sulfur atoms; (iii) glutathione molecules participate in metal 

binding to Atox1; and (iv) in Atox1–Cu–Pt, copper and platinum do not show a well-defined metal–metal 

interaction, but are connected through the shared sulfur ligands. 

We have developed and benchmarked PKA17, a software package for accurately and quickly 

calculating protein pKa values from a supplied protein structure in PDB format. PKA17 employs a highly 

a coarse-grained lattice model in which each amino acid residue of the input protein structure is 

represented by only a single particle on a lattice with grid spacing approximately equal to the radius of an 

“average” amino acid.  

To develop PKA17, we carried out parameter fitting using a compilation of 442 aspartic acid, 

glutamic acid histidine, and lysine residues that had both high-resolution PDB structures and published 

experimental pKa values available. The results demonstrate that PKA17 performs on par or even somewhat 

better than the widely used and successful protein pKa predictor PROPKA. PKA17 also requires 
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approximately an order of magnitude less computational resources, as measured by CPU time, than 

PROPKA Additionally, we have achieved the current level of accuracy with PKA17 while significantly 

limiting the number of fitting variables in order to avoid any danger of possible overparametrization. We 

have also shown that the accuracy of PKA17 is reasonably robust with respect to the choice of the fitting 

set for parametrization, even though some more sophisticated techniques (such and MCCE and quantum 

mechanics) can yield a higher degree of accuracy of evaluating pKa shifts of protein residues. Finally, a 

web interface has been developed for PKA17 and resulting tool has been deployed and is freely accessible 

(http://users.wpi.edu/~jpcvitkovic/pka_calc.html) and hopefully will prove useful to a wider audience. 
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Appendices 
 

Table A-1. Platinum (II) and cisplatin parameter values used in this work. 

Atom charge, e– 

Lennard-

Jones ε, 
kcal/mol 

Lennard-Jones 
σ, Å 

Inverse polarizability 

α–1, Å–3 
Pt–X 

distance, Å 

Modified OPLS      

Pt in 7 site Pt2+ 0.00 3.14 0.015   

Xax in 7 site Pt2+ 0.00 0.00 0.000  1.3 

Xeq in 7 site Pt2+ 0.50 0.00 0.000  1.3 

S in CH3S– –0.900 4.50 0.066   

C in CH3S– –0.280 4.20 0.300   

H in CH3S– 0.060 2.50 0.030   

Cl– –1.00 4.417 0.118   

N in NH3 –1.02 3.42 0.170   

H in NH3 0.34 0.00 0.000   

      

POSSIM      

Pt in 7 site Pt2+ 0.00 2.99 0.015 –  

Xax in 7 site Pt2+ 0.09 0.00 0.000 – 0.87 

Xeq in 7 site Pt2+ 0.455 0.00 0.000 – 0.87 

Cl– –1.00 4.81 0.080 0.20  

N in NH3 –0.87 3.465 0.120 0.622  

H in NH3 0.29 0.00 0.000 –  

S in CH3S– –0.925 4.51 0.200 0.39  

C in CH3S– –0.255 3.50 0.066 0.5069  

H in CH3S– 0.060 2.50 0.030 –  

 


