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Abstract

This dissertation considers three related problems in distributed transmission and re-

ception networks. Generally speaking, these types of networks have a transmit cluster

with one or more transmit nodes and a receive cluster with one or more receive nodes.

Nodes within a given cluster can communicate with each other using a wired or wire-

less local area network (LAN/WLAN). The overarching goal in this setting is typically

to increase the efficiency of communication between the transmit and receive clusters

through techniques such as distributed transmit beamforming, distributed reception,

or other distributed versions of multi-input multi-output (MIMO) communication.

More recently, the problem of wireless power transfer has also been considered in this

setting.

The first problem considered by this dissertation relates to distributed reception

in a setting with a single transmit node and multiple receive nodes. Since exchang-

ing lightly quantized versions of in-phase and quadrature samples results in high

throughput requirements on the receive LAN/WLAN, previous work has considered

an approach where nodes exchange hard decisions, along with channel magnitudes,

to facilitate combining similar to an ideal receive beamformer. It has been shown

that this approach leads to a small loss in SNR performance, with large reductions

in required LAN/WLAN throughput. A shortcoming of this work, however, is that

all of the prior work has assumed that each receive node has a perfect estimation of

its channel to the transmitter.

To address this shortcoming, the first part of this dissertation investigates the

effect of channel estimation error on the SNR performance of distributed reception.

Analytical expressions for these effects are obtained for two different modulation

schemes, M -PSK and M2-QAM. The analysis shows the somewhat surprising result

that channel estimation error causes the same amount of performance degradation in

ideal beamforming and pseudo-beamforming systems despite the fact that the channel

estimation errors manifests themselves quite differently in both systems.
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The second problem considered in this dissertation is related to oscillator sta-

bility and phase noise modeling. In distributed transmission systems with multiple

transmitters in the transmit cluster, synchronization requirements are typically very

strict, e.g., on the order of one picosecond, to maintain radio frequency phase align-

ment across transmitters. Therefore, being able to accurately model the behavior

of the oscillators and their phase noise responses is of high importance. Previous

approaches have typically relied on a two-state model, but this model is often not

sufficiently rich to model low-cost oscillators. This dissertation develops a new three-

state oscillator model and a method for estimating the parameters of this model from

experimental data. Experimental results show that the proposed model provides up

to 3 dB improvement in mean squared error (MSE) performance with respect to a

two-state model.

The last part of this work is dedicated to the problem of wireless power transfer

in a setting with multiple nodes in the transmit cluster and multiple nodes in the

receive cluster. The problem is to align the phases of the transmitters to achieve a

certain power distribution across the nodes in the receive cluster. To find optimum

transmit phases, we consider a iterative approach, similar to the prior work on one-

bit feedback for distributed beamforming, in which each receive node sends a one-bit

feedback to the transmit cluster indicating if the received power in that time slot

for that node is increased. The transmitters then update their phases based on

the feedback. What makes this problem particularly interesting is that, unlike the

prior work on one-bit feedback for distributed beamforming, this is a multi-objective

optimization problem where not every receive node can receive maximum power from

the transmit array. Three different phase update decision rules, each based on the

one-bit feedback signals, are analyzed. The effect of array sparsity is also investigated

in this setting.
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Chapter 1

Introduction

In this chapter an introduction and a general definition of distributed reception is

given and the problems that are addressed in this dissertation are discussed.

1.1 Motivation

In recent years the need for having advanced networks with distributed trans-

mission or reception has increased rapidly [1]. These types of networks have wide

variety of applications especially in wireless networks and signal processing applica-

tions. As an example of these applications we can refer to wireless sensor networks

(WSNs), cellular communication systems, detection of a target position in radar sys-

tems with multiple antennas and communication systems in military. In cellular

networks like the ones utilizing 3GPP standard [2], the use of coordinated multi

point (CoMP) [3, 4] makes cooperation of multiple base stations possible in order to

help the users that are on the border between those stations. Techniques that are

usually used in those base stations which facilitates the cooperation between them

are joint transmission (JT) [5, 6] or coordinated scheduling/coordinated beamform-

ing (CS/CB) [7, 8]. Another distributed transmission/reception technique that is

developed to increase the performance of cellular communications is the distributed
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antenna systems (DAS) [9–11] in which for each base station there are multiple an-

tenna ports and each port is connected to multiple micro-diversity antennas. Another

example of distributed reception is the radar systems in which there are multiple re-

ceiving antennas that are geographically separated from each other and they receive

the reflected signal from the target. Then the obtained information from these signals

are combined to make a better decision about the target properties like position or

velocity [12–14]. Due to special requirement of sensors in a wireless sensor network,

like low power consumption and low processing speed which limits them to perform

simple tasks, a more effective and efficient transmission and reception technique is

necessary [15–18]. In battlefields and military applications, the squad units that are in

charge of radio and communication can be considered as distributed array which both

transmit and receive signals and they can form a distributed transmission/reception

system with multiple antennas [19,20].

As technology advances and new smart devices emerge each year, the use of In-

ternet enabled machines and gadgets like TVs, smart appliances, cars, phones and

tablets, sensors, etc. grows rapidly. Introduction of these smart devices has opened

a new concept in communication systems named as Internet of Things (IoT) [21].

Since usually most of the IoT devices, especially at home or buildings, communi-

cate with a single server or router on the same network, they could be considered

as nodes in a distributed transmit or receive scenario. These configuration, makes

the implementation of massive distributed multi-input multi-output (MIMO) possi-

ble. As an example, at homes with multiple IoT devices like the sensors used in

appliances such as TVs, light bulbs, refrigerator, locks, etc. for control and monitor

purposes, they can be used to enhance and improve data transmission and reception

by other devices like smartphones and computers [22]. Using distributed reception in

wireless communication networks increases the performance of the networks by pro-

viding a reliable communication between transmitter and fusion center in a receive

cluster with geographically separated receive nodes [23]. In these types of network,
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the wireless channel between the transmitter and the receive nodes are assumed to be

independent which results in increased diversity gain at receive cluster. The fusion

center then processes the received information from receivers and tries to estimate

the transmitted data [22]. Distributed reception for wireless sensor networks (WSNs)

uses almost the same techniques as the one for wireless communication systems. The

difference between them is their application. In WSNs the aim is to do environment

classification and monitoring while in wireless communication networks the goal is

data transfer and communication. There has been many studies and research around

WSNs such as these references [16–18,24–31].

Distributed reception is referred to a network with multiple receivers where those

receivers are fully connected to each other and are known as receive cluster. The

received messages by these receive nodes are exchanged among all other nodes in the

receive cluster to increase diversity and power gain and, consequently, improve the

probability of successful decoding noisy transmission [32]. The receivers inside the

cluster are assumed to be connected together via a reliable wired or wireless LAN

with no or very small noise effect that can be ignored.

Distributed reception has been in use for a long time and in different types of

applications, e.g., it has been used in aperture synthesis for radio astronomy where

there are multiple radio telescopes that receive signals from outer space and then

these signals from the telescopes are mixed to generate images with the same spatial

resolution just like if we used a large telescope with the size of all the ones inside this

cluster. Another application of distributed reception is in sensor fusion where the

received data from a number of sensors in a network is fused or combined together

to obtain the information that was not able to achieve by only using just one sensor,

like calculating the position or orientation of an object in a three-dimensional space.

One of the latest applications of distributed reception is in wireless networks that

have limited backhaul capabilities. As a simple example of distributed reception in

these types of network we can refer to the soft handoff which has been developed
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and used in cellular systems since 1990s [32]. The soft handoff technique is employed

where a mobile user is moving from one base station coverage area or cell to another

base station coverage area and during this transition it transmits and receives from

both base stations at the same time. In a cellular systems with spread spectrum

CDMA which uses universal frequency reuse and with receivers that have a Rake

receiver inside, these two signals can be separated and their time and phase can be

synchronized to support each other on the forward link [33]. In recent studies using

information theory [26, 34–36] it has been shown that more advanced distributed

reception techniques have the abilities to increase diversity, enhance capacity and

improve interference rejection even with limited backhaul constraints. There has been

several techniques that have been introduced which could reach to these mentioned

goals [37–45], but there are two major issues with these techniques, the first one is that

all of them use iterative transmission and decoding which means that the requirements

for backhaul are not fixed and can change and if the number of iterations is large it

could cause delay in decoding. The other problem with these techniques is that they

are mostly focused on improving diversity gains rather than SNR gains while the later

one is making more sense in distributed receiver beamforming.

One of the main problem in distributed reception is limited backhaul/LAN avail-

able throughput. If all the receivers in the cluster have to exchange their unquantized

observations it may easily passes the throughput limitation and causes large latency

in the network. The solution to this problem is to use quantized observations in

exchange of information between nodes in the receive cluster. This method gives us

a less complicated but efficient approach for fully distributed reception with no iter-

ative transmission over a backhaul with limited capacity. There are two techniques

using this method, ideal receive beamforming and pseudo-beamforming. In the first

one a high order quantization level is used while in the second one instead of fine

quantization, hard decisions are used. These two techniques are discussed in more

details in section 2.4.
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1.2 Problem Statement

There are a couple of issues and areas in distributed reception that need to be

addressed and improved. In this dissertation we are focusing on three problems.

• The first problem that is going to be addressed is the problem of having channel

estimation error at the receivers inside receive cluster. We have to find out what

would be the performance degradation with and without channel estimation

error and what would be the effect of modulation scheme on the performance

of the network in presence of channel estimation error.

• The second problem that is going to be discussed is the problem of oscillator

modeling and phase noise characteristic prediction for oscillators that are used in

both transmitters and receivers. In here, we try to come up with new methods

to better model the behavior and performance of oscillators to predict their

phase noise characteristics.

• The third problem is about wireless power transfer to receive cluster using one-

bit feedback signals and how we can achieve the fastest convergence to maximum

transferable power in the networks while deploying one-bit feedback.

The answers and results for the above mentioned problems are stated in the rest of

the chapters in this dissertation.

1.3 Dissertation Organization

The rest of this dissertation would be as follow. In Chapter 2 the problem of

having channel estimation error using two different combining methods for two dif-

ferent modulation schemes (M -PSK and M2-QAM) is investigated. In Chapter 3, we

introduce a new modeling method for oscillators and we compare the new proposed

model to the previously used one in terms of phase noise error prediction. In Chapter
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4, we propose three different methods of decision making on one-bit feedback received

signal for transmitter phase update and maximum power transfer. And at the end in

Chapter 5 the overall conclusion is given and the possible future works are discussed.
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Chapter 2

Channel Estimation Error Effect

In real world applications there is no such thing as ideal estimators and there are

always some errors in estimation process. So, in this chapter the same distributed

reception network with hard decision exchanges as described in the previous chapter

is assumed. The only difference here is that, channel estimations at the receivers are

assumed to be not perfect and there are some channel estimation errors present in the

decoding process. These effects of channel estimation error are then characterized for

both ideal receive beamforming and pseudo-beamforming techniques for two different

modulation schemes.

2.1 Background

As described in [32], in the distributed reception networks with large number of

receivers and under the condition that the received SNR at receivers are low, it is hard

for each individual receivers to completely decode the received messages sent from

a far away transmitter. Therefore, during the reception of a block, every receiver

inside the cluster demodulates the transmitted signal locally and for each one of the

coded bits in the resent block produces log likelihood ratios (LLRs). The generated

LLRs are not used instantly for decoding, instead, all or a subset of the nodes, which
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have a higher SNR compared to others, in the receive cluster, quantize the output

signal of their soft demodulators and send all of these quantized values together with

quantized estimate of the SNR over the backhaul LAN network to all other nodes in

the receive cluster. Then, these received information at each receiver are mixed with

local unquantized LLRs and the results are fed to each node’s local decoder for doing

the decoding processes. If the original transmitted message is successfully decoded

at any of the receivers, that node transmits the decoded signal to all other nodes in

the receive cluster over the backhaul LAN. Here, the backhaul LAN is supposed to

have a mechanism for contention resolution, in case if more than one receiver is able

to decode the massage and all of them intend to transmit the signal over the LAN.

As mentioned in the previous section, the main limitation in the backhaul LAN

is the limited available throughput. If the LAN did not have this limitation, the

nodes inside the receive cluster could have send their unquantized observations over

the LAN to other nodes instead of transmitting a quantized version of that. In this

case each node could easily add up all the LLRs and make a perfect ideal receive

beamformer.

To visually show this process for a LAN with limited capacity, we can use the

given figure for the distributed reception timeline in [32]. This timeline is shown in

Figure 2.1.

After each node receives and locally demodulates a block, the receive cluster per-

forms the following steps over the backhaul LAN:

• In the first step, all the N nodes inside the cluster share their estimates of

channel magnitudes or the SNRs they have received.

• In the second step, those nodes that have higher channel magnitudes or have the

strongest SNRs will participate in the message exchange over the LAN by trans-

mitting their quantized observations to all other nodes in the cluster. When

these messages are received by each node in the cluster, having the knowledge

8



Figure 2.1: Timeline of distributed reception protocol

of previously transmitted channel magnitudes, they scale the received quantized

information and combine it with their own locally unquantized LLRs.

• After the scaling and combination is done in each node, if any one of them

is successful in decoding the message correctly it would transmit the decoded

signal to the rest of the node in the receive cluster.

In the second step the number of participating nodes M is chosen so that it

satisfies the backhaul throughput limitation. The number of participating nodes M

can be obtained using the equation given in [32]. Here we assume that the number of

quantization bits for each coded bit is a constant number and is denoted by b. The

ratio of LAN bits per forward link information bits gives the normalized throughput

for the LAN and can be expressed as

ηLAN =
No1 +Mbn+ k + o2

k
≈ Mb

r
+ 1 ≤ CLAN (2.1)

where No1 is the overhead for determining the participating node and exchanging

the SNRs. o2 is contention overhead in disseminating the successfully decoded block.

Since the messages are assumed to be (n,k) block coded at the transmitter, n and
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k are block length and message length, both in bits, respectively and it is assumed

they are sufficiently large so the overhead can be ignored. r is the block code rate

and CLAN is the maximum normalized LAN throughput. Equation 2.1 results that

M ≤ min{N, r(CLAN − 1)/b} if r, b and CLAN are given.

2.2 Unquantized channel outputs

In an ideal situation when there is no LAN throughput limitation the nodes inside

receive cluster can exchange their unquantized received signals to achieve an ideal

beamforming. In this case if no quantization is done at the receivers, the exchanged

signal for the ith node would

Zi = Yi =
√
ρiX +Wi (2.2)

Where the ρi = 2|hi|2Es/N0 is defined as the SNR of the received signal, hi is the

forward link complex channel, Es is the energy per coded forward link bit and N0/2

is the noise power spectral density.

2.3 Quantized channel outputs

Most of the time, receivers, due to limited LAN capacity, quantize their received

signals so the message exchange over LAN requires less throughput. This quantization

process which is done on the soft demodulator outputs makes the channel look like

a discrete memory-less channel from the distant transmitter to that receiver. In

this case each node’s continuous observation is mapped to a codebook index. The

continuous observations and the codebook index are defined as follow,

Yi =
√
ρiX +Wi → Zi ∈ {0, · · · , Ki − 1} (2.3)

where Ki is the number of partitions based on the precision of quantization.
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2.4 Combining Techniques

The are two main techniques that are used for combining the transmitted observa-

tions inside the receive cluster as described in [46]. The first technique is ideal receive

beamforming or optimal combining. In this method a mixture of both continuous

and discrete vector of observation is used to calculate for the posterior likelihoods

of each symbol. The other technique is called pseudo-beamforming which computes

the posterior likelihoods of each symbol using Gaussian approximation by linearly

combining the hard decisions and generating a scalar statistic. The common thing

between these two techniques is that both of them use exchanged channel magnitudes

at beginning of the distributed reception protocol. Pseudo-beamforming compared to

ideal receive beamforming results in less computations but the main cause for using

this technique is that, asymptotic analysis of its loss of performance in comparison

with ideal receive beamforming is easily manageable in the regime with low per-node

SNR and a large number of receivers in the receive cluster. Due to limited perfor-

mance of pseudo-beamforming compared to ideal receive beamforming, this analysis

can be used to determine the maximum penalty that has been caused by using hard

decisions instead of unquantized observations in this asymptotic analysis.

2.4.1 Optimal Beamforming

In optimal combining a mixture of continuous and discrete vector of observation

is used to calculate the posterior probabilities for each of the symbols. This vector

contains all the information received by the receivers. These posterior probabilities

are then used to generate the log-likelihood ratios which is used by the soft-input

decoder.

To compute posterior probabilities, we assume receive node j is the node of interest

for doing all the combining processes and we consider optimal combining of hard

decisions Vi ∈ X for i ∈ P \ j with the local unquantized observation Vj = Uj.
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Now we can calculate for the probability of symbol X = xm ∈ X given the vector

observation V as

Prob(X = xm|V = v) =
pV |X(v|X = xm)Prob(X = xm)

pV (v)

=
pVj |X(vj|X = xm)

∏
i∈P\j pVi|X(vi|X = xm)∑M

`=1 pVj |X(vj|X = x`)
∏

i∈P\j pVi|X(vi|X = x`)
(2.4)

the above result is based on the assumption that symbols are equiprobable and the el-

ements in V are all conditionally independent. In order to obtain posterior probabili-

ties, at each receive node using the local unquantized observation the pVj |X(vj|X = x`)

and using the hard decisions received from other nodes the pVi|X(vi|X = x`) is cal-

culated where ` = 1, · · · ,M . Since the channel magnitudes |hk|k=1,··· ,N are known to

each node in the cluster, above computations are possible. At receive node j the local

observation is unquantized so vj = uj and the posterior probability for the complex

alphabet would be

pVj |X(vj|X = x`) =
1

πN0

exp

(
−|vj − |hj|x`|

2

N0

)
(2.5)

and for real alphabet would be

pVj |X(vj|X = x`) =
1√
πN0

exp

(
−(vj − |hj|x`)2

N0/2

)
(2.6)

Hard decisions at node i create a discrete memory-less channel (DMC) with chan-

nel transition probabilities of pVi|X(vi|X = x`) for i ∈ P \ j.

Generating hard decisions at each node in the receive cluster will create a DMC

with M inputs and M outputs where transition probabilities for most of the common

modulation techniques like BPSK, QPSK, M -PAM and M2-QAM can be determined

exactly using standard analysis techniques. For M -PSK modulation with M > 4

and with the use of hard decisions, the transition probabilities cannot be calculated

exactly and need approximations or numerical methods.

In the process of decoding, the transition probabilities Prob(X = xm|V = v)

are used and since the local unquantized observations are combined with the hard
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decisions at each node, these probabilities are not the same, which will result in some

nodes not be able to decode the message correctly while the others can. If any of the

nodes can successfully decode the message it will transmit the message to all other

nodes in the receive cluster but if none of the nodes are able to decode the message,

the transmitted block is considered unsuccessfully received.

2.4.2 Ideal Receive Beamforming

For creating an ideal receive beamformer, the continuous phase-corrected channel

outputs Uj are scaled by their corresponding channel magnitudes and then summed

together which can be stated as

Ybf ≡ Yi =
∑
j∈P

√
ρiUj = α

∑
j∈P

|hj|Uj (2.7)

where ρi = |hi|2Es
N0

and α =
√
Es
N0

.

2.4.3 Pseudo-Beamforming

For obtaining the pseudo-beamformer output, instead of using unquantized con-

tinuous phase-corrected channel outputs Uj, the quantized version of the received

signal, Vj, is used.

Ybf ≡ Yi =
∑
j∈P

√
ρiVj = α

∑
j∈P

|hj|Vj (2.8)

The quantized signals are obtained from performing the demodulation on the

continuous received signal and it is based on the modulation scheme selected at the

transmitter side.

2.5 Process of Combining Quantized Signals

In a distributed reception network with quantized observation, each node receives

quantized signals from all other nodes. Then, as mentioned before, these quantized
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signals are scaled and combined with each other and also with the local unquantized

LLRs and generate an overall LLR which is then used by the local block decoder.

In the process of generating an overall LLR the only information that is needed to

be known by the corresponding node is the SNRs of participating nodes which have

shared their unquantized observations with other nodes, and the related partitions for

the current quantization level of interest. These generated overall LLRs in each node

inside the receive cluster are different from each other, since the quantized signals

received at each receiver would not be the same for all. If the node of interest is not

among the participating nodes it would have an extra quantized observation to process

in the sum compared to the case where itself is a part of participating nodes, since

in this case it should not include its own quantized observation. So, in a distributed

reception system which uses quantized version of observations during exchanges, the

decision statistics are different at each node compared to ideal receive beamforming

where all the decision statistics are the same. Due to this difference, some nodes are

able to decode the transmitted messages while others cannot.

2.6 M-PSK Modulated Transmission

In this section we investigate the effect of channel estimation error on hard decision

exchanges in distributed reception when the modulation scheme used in forward link

is M -PSK. These computations are done for a low-per node SNR regime and for

large number of receive nodes in receive cluster. We first describe the system model

that is going to be used for transmitting node and the receive cluster along with

the channel notations and possible M -PSK transmission symbols. Then, channel

estimation process along with channel estimation error statistics are introduced. After

computing the channel estimation the asymptotic SNR analysis of the received signals

in four different scenarios, ideal receive beamforming and pseudo-beamforming each

with and without channel estimation error, are calculated.
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2.6.1 System Model

We assume a block transmission scenario with blocks of length n as in [46] and

let N denote the number of receive nodes in the cluster. The complex forward link

channel to receive node i in block m is denoted as hi[m] for i = 1, . . . , N and the

vector channel for block m is denoted as h[m] = [h1[m], . . . , hN [m]]>. Over each

block, the forward link channels are assumed to be constant but may change block

to block.

For clarity of exposition and to explore the effects of channel phase and mag-

nitude errors on distributed reception, we assume M -PSK modulation in the for-

ward link. The `th symbol in block m is denoted as X[m, `] for ` = 1, . . . , n and

is assumed to be drawn equiprobably from the PSK alphabet X = {x1, · · · , xM} ={
a, aej2π/M , aej4π/M , · · · , aej(M−1)2π/M

}
. The average energy per transmitted symbol

is denoted as

Es = E[|X[m, `]|2] =
1

M

M∑
m=1

|xi|2 = a2 (2.9)

Given an additive white Gaussian noise channel (AWGN) with power spectral density

N0/2 in the real and imaginary dimensions, the complex baseband signal received at

the ith receive node for the `th symbol of block m can be written as

Ui[m, `] = hi[m]X[m, `] +Wi[m, `] (2.10)

for i = 1, . . . , N and ` = 1, . . . , n where Wi[m, `] ∼ CN (0, N0) is spatially and tempo-

rally independent and identically distributed (i.i.d.) proper complex Gaussian base-

band noise. We assume the noise variance is identical at each receive node. The

quantity ρi[m] = |hi[m]|2Es
N0

corresponds to the signal-to-noise ratio (SNR) at receive

node i for symbols received in block m where |hi[m]|2Es corresponds to the average

received energy per transmitted forward link symbol at receive node i.

To facilitate distributed reception, it is assumed that the receive cluster has an

established LAN backhaul, either ad-hoc or through infrastructure such as an access

15



point, and that LAN transmissions are reliable. The LAN is also assumed to support

broadcast transmission in which any single node can send a message to all other

nodes simultaneously. To prevent any interruption in transmission over forward link,

it is assumed that LAN and forward link operating frequencies differ from each other

which enables the receive cluster to send and receive over the LAN, and also receive

signals from transmitter at the same time. The LAN is also assumed to support a

sufficient throughput for the exchange of hard decisions among all nodes in the receive

cluster.

2.6.2 Channel Estimation

Unlike the prior work in [32, 46, 47], we do not assume hi[m] is known perfectly

here. To facilitate estimation of hi[m] at receiver i, we assume some of the symbols in

each transmitted block are known. Suppose X[m, 1], . . . , X[m,P ] are known, where

P ≤ n. Then node i can estimate hi[m] by computing a least squares solution to
Ui[m, 1]

...

Ui[m,P ]

 =


X[m, 1]

...

X[m,P ]

hi[m] (2.11)

Ui[m] = X[m]hi[m] (2.12)

such that

ĥi[m] =
XH [m]Ui[m]

XH [m]X[m]
(2.13)

Substituting Ui[m] = hi[m]X[m, `] +Wi[m], we can write

ĥi[m] =
hi[m]XH [m]X[m] +XH [m]Wi[m]

XH [m]X[m]

= hi[m] +
XH [m]Wi[m]

XH [m]X[m]

= hi[m] + h̃i[m] (2.14)
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where h̃i[m] ∼ CN (0, 2δ) is a proper complex Gaussian random variable with variance

δ in the real and imaginary dimensions. Since the training sequence X[m] is known,

we can determine 2δ by computing

var[h̃i[m]] = E[h̃i[m]]2 − E[h̃i[m]2] (2.15)

but we know that E[h̃i[m]] = 0. So we get

var[h̃i[m]] = E

[(
XH [m]Wi[m, `]

XH [m]X[m]

)2
∣∣∣∣∣X[m]

]

= E

[
XH [m]Wi[m, `]W

H
i [m, `]X[m]

XH [m]X[m]XH [m]X[m]

∣∣∣∣X[m]

]
=

XH [m]

XH [m]X[m]
E
[
Wi[m, `]W

H
i [m, `]

∣∣X[m]
] X[m]

XH [m]X[m]

=
XH [m]

XH [m]X[m]
(IN0)

X[m]

XH [m]X[m]

=
N0

XH [m]X[m]

=
N0

PEs
(2.16)

where the last result follows from our M -PSK assumption and the fact that the length

of X[m] is P .

2.6.3 Asymptotic SNR Analysis

In this section, we consider the case where N → ∞ and the per-node SNR goes

to zero at a rate of 1
N

so that the SNR of an ideal receive beamformer combiner is

finite and bounded away from zero. We can suppress the block/symbol indices and

consider the scalar observation at receive node i as

Ui = hiX +Wi (2.17)

where X is drawn from an M -PSK constellation with |X|2 = Es. For our asymptotic

analysis, we will assume signal energy Es = E (1)
s /N , i.e., the transmit power scales as
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1/N , where E (1)
s is the per-symbol transmit energy with one receiver. We also assume

P = NP (1), i.e., the training signal length scales with N , where P (1) is the training

signal length with one receiver. Under this assumption, note that PEs is a constant.

Since N0 is also fixed, the variance of the channel estimation errors is constant.

The following subsections analyze the performance of ideal distributed receive

beamforming and a suboptimal combining technique called “pseudo-beamforming”

with and without channel estimation error.

2.6.3.1 Ideal Receive Beamforming: Perfect Channel Estimation

The output of ideal receive beamformer at node i is realized by using unquantized

observations Uj and is defined as

Ybf ≡ Yi =
∑
j∈P

√
ρiUj = α

∑
j∈P

|hj|Uj (2.18)

Where ρi = |hi|2Es
N0

and α =
√
Es
N0

. Also, P denotes the set of nodes that are partici-

pating in hard decision exchanges in receive cluster, since not all the receiving nodes

participate in exchange due to poor received signal. For the ideal receive beamformer,

we have the vector observation

U = hX +W . (2.19)

Assuming no channel estimation error, the ideal receive beamformer output is given

as

Ybf = hHU = hHhX + hHW . (2.20)
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The SNR of ideal receive beamforming (conditioned on the channel realizations) can

be computed as

SNRbf =
(E [Ybf |X])2

var [Ybf |X]

=

(
E
[
hHhX + hHW |X

])2

var [hHhX + hHW |X]

=

(
E
[
hHhX |X

])2
+ 2E

[
hHhX |X

]
E
[
hHW |X

]
+
(
E
[
hHW |X

])2

var [hHhX + hHW |X]

(2.21)

since the channel h and noise W are independent of each other and the mean of the

noise is assumed zero, therefore E
[
hHW |X

]
= 0 and we would have

SNRbf =

(
E
[
hHhX |X

])2

var [hHhX + hHW |X]
(2.22)

using the fact that X is given and in the current block the channel h is constant we

would have

E
[
hHhX |X

]
= hHhX = ‖h‖2X (2.23)

Therefore

E [Ybf |X] = ‖h‖2X (2.24)

Also, since transmitted symbol X, channel h and noise W are independent of each

other we can write

var
[
hHhX + hHW |X

]
= var

[
hHhX |X

]
+ var

[
hHW |X

]
= var

[
hHW |X

]
(2.25)
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The first term in variance is zero due to given X and constant channel. The above

obtained variance can be calculated as

var
[
hHW |X

]
= E

[
hHW |X

]2 − E
[
(hHW )2 |X

]
= E

[
(hHW )2 |X

]
= E

[
hHWWHh |X

]
= hHE

[
WWH |X

]
h

= ‖h‖2N0 (2.26)

So therefore we would have

var [Ybf |X] = ‖h‖2N0 (2.27)

where we used the fact that E[WWH |X] = var[W ] = N0. Also, by knowing that

|X|2 = Es and putting the results from (2.24) and (2.27) back into the SNR equation

(2.22), we get

SNRbf =
‖h‖4Es
‖h‖2N0

=
‖h‖2Es
N0

. (2.28)

If we further assume an i.i.d. Rayleigh fading channel such that hi ∼ CN (0, 2λ), then

asymptotically we have limN→∞
‖h‖2
N

= 2λ, since E[hHh] = 2λ. The asymptotic SNR

is then

SNRbf →
2NλEs
N0

=
2λE (1)

s

N0

. (2.29)

2.6.3.2 Ideal Receive Beamforming: Noisy Channel Estimation

Now we consider ideal receive beamforming with channel estimates of the form

ĥ = h+ h̃ (2.30)
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Where h̃ ∼ CN (0, 2δI). The ideal receive beamformer output with channel estima-

tion error is given as

Ybfe = ĥHU = ĥH(hX +W )

=
(
h+ h̃

)H
(hX +W )

= hH(hX +W ) + h̃H(hX +W )

= Ybf + Ỹbf (2.31)

Then, the SNR of ideal receive beamforming with channel estimation error (condi-

tioned on the channel realizations) can be computed as

SNRbfe = =
(E [Ybfe |X])2

var [Ybfe |X]
=

(
E
[
Ybf + h̃H(hX +W ) |X

])2

var
[
Ybf + h̃H(hX +W ) |X

] (2.32)

Note that h̃ is independent of h and X and is also independent of W . That is

because, the channel estimates were generated from different observations than the

ones used in the SNR calculations. Hence,

E
[
Ybf + h̃H(hX +W ) |X

]
= E [Ybf |X]

= ‖h‖2
√
Es (2.33)

Therefore we get

E [Ybfe |X] = ‖h‖2
√
Es (2.34)

As can be seen from the result above, the numerator of SNRbfe is not changed from

the case with no channel estimation error. As for the denominator, since Ybf and Ỹbf

are independent, by using the result from (2.27), we would have

var
[
Ybf + Ỹbf |X

]
= var [Ybf |X] + var

[
h̃H(hX +W ) |X

]
= ‖h‖2N0 + var

[
h̃H(hX +W ) |X

]
(2.35)
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We can compute the second term as

var
[
h̃H(hX +W ) |X

]
= E

[(
h̃H(hX +W )

)2

|X
]
−
(

E
[
h̃H(hX +W ) |X

])2

= E
[
h̃H(hX +W )× (hX +W )Hh̃ |X

]
(2.36)

Where the second equality follows from the fact that h̃ is zero mean and independent

of the other terms in the expectation. We can further compute

var
[
h̃H(hX +W ) |X

]
= E

[
h̃H(hXXHhH +WWH + hXWH +WXHhH)h̃ |X

]
= E

[
(h̃HhXXHhHh̃+ h̃HWWHh̃) |X

]
= EsE

[
h̃HhhHh̃ |X

]
+ E

[
h̃HWWHh̃ |X

]
= EshHE

[
h̃h̃H |X

]
h+ E

[
h̃HWWHh̃ |X

]
= Es‖h‖22ρ+ E

[
h̃HWWHh̃ |X

]
=
‖h‖2N0

P
+ E

[
h̃HWWHh̃ |X

]
(2.37)

The final expectation can be solved with iterated expectations since h̃ and W are

independent. We can write

E
[
h̃HWWHh̃ |X

]
= E

[
h̃HE

[
WWH |X, h̃

]
h̃ |X

]
= E

[
h̃H(N0I)h̃ |X

]
= N0E

[
h̃Hh̃ |X

]
= N0N2ρ

=
N2

0N

PEs
. (2.38)

Putting it all together, we have

var [Ybfe |X] = var
[
Ybf + h̃H(hX +W ) |X

]
= ‖h‖2N0 +

‖h‖2N0

P
+
N2

0N

PEs
(2.39)
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Therefore, we can calculate the SNRbfe as

SNRbfe =

(
‖h‖2

√
Es
)2

‖h‖2N0 + ‖h‖2N0

P
+

N2
0N

PEs

=
‖h‖2Es

N0 + N0

P
+

N2
0N

‖h‖2PEs

(2.40)

Asymptotically, since P grows proportionally with N and PEs is fixed, the middle

term in the denominator vanishes. So for large N with vanishing per-node SNR we

can write

SNRbfe →
‖h‖2Es

N0 +
N2

0N

‖h‖2PEs

. (2.41)

Moreover, since limN→∞
‖h‖2
N

= 2λ, Es = E(1)s

N
, and P = NP (1), it can be easily

obtained that

SNRbfe →
2λE (1)

s

N0

(
1 + N0

2λP (1)E(1)s

) . (2.42)

The results in (2.29) and (2.42) allow us to compute the penalty of channel estimation

error in an ideal receive beamformer as N →∞ as

Pbf =
SNRbf
SNRbfe

→ 1 +
N0

2λP (1)E (1)
s

. (2.43)

2.6.3.3 Pseudo-Beamforming: Perfect Channel Estimation

Pseudo-beamforming is a simple but sub-optimal combining technique where (2.18)

is performed on the hard decisions from each node. Specifically, the pseudo-beamformer

combiner output is

Ypbf ≡ Yi =
∑
j∈P

√
ρiVj = α

∑
j∈P

|hj|Vj (2.44)

Where Vj ∈ X for all j and are conditionally independent given the transmitted

symbol. In order to find the SNR of pseudo-beamforming, like the previous steps, we
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first have to calculate the mean and variance of the pseudo-beamformer output which

itself requires calculation of the mean and variance of hard decisions Vj. Therefore,

to obtain these statistics, we use the asymptotic SNR of pseudo-beamforming for M -

PSK modulation that was already computed in [46]. The main results are summarized

here. First, the conditional mean of M -PSK hard decisions has been calculated as

E[Vj|X = x`] =

(
Mρjsin

(
π
M

)
2
√
π

)
x` (2.45)

Second, the conditional variance of with M -PSK hard decisions in the low per-node

SNR regime were calculated as

var[Vj|X = x`] ≈ a2 (2.46)

These results allow us to compute the conditional mean and variance of the pseudo-

beamformer output with M -PSK hard decisions. Therefore, the conditional mean

has been computed as

E[Ypbf |X = x`] = α
aM sin

(
π
M

)
2
√
N0π

‖h‖2x` (2.47)

Similarly, the conditional variance of the pseudo-beamformer output with M -PSK

hard decisions in the low per-node SNR regime were computed as

var[Ypbf |X = x`] = α2a2‖h‖2 (2.48)

Where we used the facts that ρj =
|hj |a√
N0

and
∑

j |hj|2 = ‖h‖2. Using the results from

(2.47) and (2.48) we can compute the SNR of pseudo-beamforming as

SNRpbf =
(E[Ypbf |X = x`])

2

var[Ypbf |X = x`]

=
M2 sin2

(
π
M

)
‖h‖2Es

4N0π
(2.49)

=
M2 sin2

(
π
M

)
4π

SNRbf . (2.50)
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With QPSK, we have M = 4 and
M2 sin2( π

M )
4π

= 2
π
. This then implies

SNRQPSK
pbf ≈ 2

π
SNRbf . (2.51)

For large M , we can use small angle approximation which means we can say sin
(
π
M

)
=

π
M

and it results in
M2 sin2( π

M )
4π

→ π
4
. Hence

lim
M→∞

SNRM−PSK
pbf ≈ π

4
SNRbf . (2.52)

2.6.3.4 Pseudo-Beamforming: Noisy Channel Estimation

The effect of channel estimation error on pseudo-beamforming has two effects: (i)

channel phase errors cause increased likelihood of hard decision errors and (ii) channel

magnitude errors cause combining errors. To model the effect of channel estimation

error on the decision variable at an individual receiver, we first define the perfect and

noisy channel estimate, respectively, as

hj = |hj|ejθ (2.53)

ĥj = |ĥj|ejθ̂ (2.54)

Lemma 1 provides expressions for the conditional mean and variance of hard decisions

at an individual receiver with low per-node SNR in presence of channel estimation

error.

Lemma 1. For a forward link with M − PSK modulation with M ≥ 4 and even, at

low per-node SNR we have

E[Vj|X = xl] =

(
Mρj|h| sin

(
π
M

)
2
√
πE[|ĥ|]

)
xl (2.55)

and the variance is

var[Vj|X = xl] ≈ a2. (2.56)

The proof for this lemma is given below.
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Proof. To be able to find the mean and variance of hard decisions, the distribution

of decision variable phase at the receiver should be calculated. The decision variable

with no estimation error would be

U j = e−jθhjX + e−jθWj (2.57)

and with estimation error would be

U je = e−jθ̂hjX + e−jθ̂Wj (2.58)

if we define θe = θ − θ̂ and replace the hj with its polar format defined in (2.53)

we get

U je = (|hj|X + e−jθWj)e
jθe = Uj × ejθe (2.59)

If we replace the decision variables with their polar formats we get

θUje = θUj + θe (2.60)

Since we already have the distribution of θUj from (11) in [48], we can derive the

distribution of θUje by convolving the distributions of θUj and θe. So,

f(θUje |X = x1) = f(θUj |X = x1) ∗ f(θe)

=

∫ ∞
−∞

(
1

2π
e−ρ

2
j +

ρj√
π

cos(θUje − θe)e
−ρ2j sin2(θUje

−θe)

(
1−Q(

√
2ρ2

j cos2(θUje − θe))
))
× f(θe)dθe (2.61)

where f(θe) is the distribution of θe and could have any distribution.

Using θUje distribution, transition probability or the probability of deciding Vj =

xm given X = x1, can be expressed as

pm,1 =

∫ (2m−1)π
M

(2m−3)π
M

f(θUje |X = x1)dθUje (2.62)
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In a low per-node SNR regime, we can calculate a first-order Taylor series expan-

sion of pm,1 at ρj = 0 by computing

pm,1|ρj=0 =

∫ (2m−1)π
M

(2m−3)π
M

f(θUje |X = x1)
∣∣∣
ρj=0

dθUje

=

∫ (2m−1)π
M

(2m−3)π
M

1

2π

[∫ ∞
−∞

f(θe)dθe

]
dθUje

=
1

M
(2.63)

The expression in the brackets is equal to 1 since it is the integral of a distribution.

For the second term we have

∂

∂ρj
pm,1|ρj=0 =

∫ (2m−1)π
M

(2m−3)π
M

∂

∂ρj
f(θUje |X = x1)

∣∣∣
ρj=0

dθUje

=

∫ (2m−1)π
M

(2m−3)π
M

∫ ∞
−∞

cos(θUje − θe)
2
√
π

f(θe)dθedθUje

=

∫ (2m−1)π
M

(2m−3)π
M

[
1

2
√
π

(
cos(θUje )E[cos(θe)]

+ sin(θUje )E[sin(θe)]
)]
dθUje (2.64)

Channel estimation ĥ in polar format can be written as |ĥ|ejθ̂ = |h|ejθ + |h̃|ejθ̃. Also,

h is given and h̃ ∼ CN (0, 2ρ). Then, from expectation of real and imaginary part of

ĥ, respectively, we have

E[cos(θ̂)] =
|h| cos(θ)

E[|ĥ|]
(2.65)

E[sin(θ̂)] =
|h| sin(θ)

E[|ĥ|]
(2.66)

Using θe = θ − θ̂ and getting the expectation of cos(θe), we would have

E[cos(θe)] =
|h|

E[|ĥ|]
(2.67)

E[sin(θe)] = 0 (2.68)
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Now if we substitute these result into equation (2.64) we would have

∂

∂ρj
pm,1|ρj=0 =

∫ (2m−1)π/M

(2m−3)π/M

[
1

2
√
π

cos(θUje )
|h|

E[|ĥ|]

]
dθUje

=
|h| sin

(
π
M

)
√
πE[|ĥ|]

[
cos

(
2π(m− 1)

M

)]
(2.69)

So, in a low pre-node SNR regime with ρj small, we have

pm,1 ≈
1

M
+
|h| sin

(
π
M

)
√
πE[|ĥ|]

[
cos

(
2π(m− 1)

M

)]
ρj (2.70)

Under the assumption that M ≥ 4 is even, we can compute the conditional expecta-

tion as follow

E[Vj|X = x1] =
M∑
m=1

xmpm,1

≈
M∑
m=1

aej2π(m−1)/M

{
1

M
+
|h| sin

(
π
M

)
√
πE[|ĥ|]

×
[
cos

(
2π(m− 1)

M

)]
ρj

}
=

2aρj|h| sin
(
π
M

)
√
πE[|ĥ|]

×

M/2∑
m=1

cos2

(
2π(m− 1)

M

)
=

(
Mρj|h| sin

(
π
M

)
2
√
πE[|ĥ|]

)
x1 (2.71)

The conditional variance can be computed similarly as

var[Vj|X = x1] = E[|Vj|2|X = x1]− |E[Vj|X = x1]|2

≈ a2 −

(
Mρj|h| sin

(
π
M

)
2
√
πE[|ĥ|]

)2

a2 (2.72)

Since ρj is small under low per-node SNR assumption, we can discard the term with

ρ2
j , so we get

var[Vj|X = x1] ≈ a2 (2.73)
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As it can be seen from the proof, the calculation of mean and variance of hard

decisions do not depend on any specific phase error distribution, since in the proof

process, we have assumed the distribution function in its general term which is not

specific to any distribution, and we only calculate the integral over this probability

distribution function to obtain the basic statistics. Also, this phase error distribution

could be deterministic which will result in all the expectation values of the other

variables that are dependent on it to be deterministic as well.

In a low per-node SNR regime and for a large N , since ρj becomes very small, it

is expected that the mean goes to zero. Also, the variance given in (2.56) serves as

an upper bound for the variance of hard decisions as N gets large.

The next step is to find the mean and variance of the pseudo-beamformer output

in order to be able to calculate its SNR performance. The pseudo-beamformer output

with imperfect channel estimates is given as

Ypbfe = α
∑
j∈N

|ĥj|Vj. (2.74)

Corollary 1 uses the results obtained from lemma 1 to provide expressions for the

conditional mean and variance of the pseudo-beamformer output.

Corollary 1. Given the channel information hj and input symbol X = xl, the mean

and variance of pseudo-beamformer output can be computed as

E[Ypbfe|X = xl] = α
aM sin

(
π
M

)
2
√
πN0

‖h‖2xl (2.75)

and the variance is

var[Ypbfe|X = xl] = α2a2

(
‖h‖2 +

N0N

PEs

)
(2.76)

The proof for this corollary is
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Proof. By having the mean and variance of hard decision we can now calculate the

mean and variance of pseudo-beamformer output. The pseudo-beamformer uses the

estimated channel magnitudes to compute the combiner output

Ypbfe = α
∑
j∈N

|ĥj|Vj (2.77)

Therefore the mean of the pseudo-beamformer output is

E[Ypbfe|X = xl] = α
∑
j∈N

E[|ĥj‖X = xl]E[Vj|X = xl]

= α
M sin

(
π
M

)
2
√
π

∑
j∈N

(ρj|hj|) xl (2.78)

by replacing ρj :=
|hj |a√
N0

and setting
∑

j∈N |hj|2 = ‖h‖2 we would have

E[Ypbfe|X = xl] = α
aM sin

(
π
M

)
2
√
πN0

‖h‖2xl (2.79)

Also, the variance of the pseudo-beamformer output can calculate as follow

var[Ypbfe|X = xl] = α2
∑
j∈N

var[|ĥj|Vj|X = xl]

= α2
∑
j∈N

(
E[|ĥj|2]E[V 2

j |X = xl]− E[|ĥj|]2E[Vj|X = xl]
2
)

(2.80)

the second term can be set equal to zero since in a low per-node SNR regime E[Vj|X =

xl]
2 ≈ 0. Then we would have

var[Ypbfe|X = xl] = α2a2
∑
j∈N

E[|ĥj|2] (2.81)

To obtain E[|ĥj|2] we have to use the fact that

|ĥj|2 =
(
|hj| cos(θj) + |h̃j| cos(θ̃j)

)2

(2.82)

+
(
|hj|sin(θj) + |h̃j| sin(θ̃j)

)2

(2.83)
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After simplifying the above equation and getting the expectation of both side, we

have

E[|ĥj|2] = |hj|2 + E[|h̃j|2] = |hj|2 +
N0

PEs
(2.84)

by replacing it back in the equation (2.81) the variance of pseudo-beamformer output

is obtained.

var[Ypbfe|X = xl] = α2a2

(
‖h‖2 +

N0N

PEs

)
(2.85)

With the results of Corollary 1, we now can compute the SNR of pseudo-beamforming

with channel estimation error as

SNRpbfe =
|E[Ypbfe|X = xl]|2

var[Ypbfe|X = xl]

=
α2 a

2M2 sin2( π
M )

4πN0
‖h‖4x2

l

α2a2
(
‖h‖2 + N0N

PEs

)
=
M2 sin2

(
π
M

)
4π

‖h‖2Es
N0 +

N2
0N

‖h‖2PEs

(2.86)

→
M2 sin2

(
π
M

)
4π

2λE (1)
s

N0

(
1 + N0

2λP (1)E(1)s

) (2.87)

where the final result assumes N →∞ with correspondingly vanishing per-node SNR.

In light of (2.42), we can write

SNRpbfe =
M2 sin2

(
π
M

)
4π

SNRbfe. (2.88)

Hence, the SNR gaps between pseudo-beamforming with channel estimation error

and ideal receive beamforming with channel estimation error are identical to the

cases without channel estimation error.

Using (2.49) and (2.87), the SNR penalty of channel estimation error with pseudo-

beamforming can be expressed as

Ppbf =
SNRpbf
SNRpbfe

= 1 +
N0

2λP (1)E (1)
s

(2.89)
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which is identical to (2.43). This shows the somewhat surprising result that the SNR

ratio between ideal receive beamforming and pseudo-beamforming does not depend on

the amount of channel estimation error. In other words, the SNR ratio with channel

estimation error is identical to the SNR ratio without channel estimation error, as

derived in [46].

2.6.4 Numerical Results

In this section the results from the simulation are presented. In this simula-

tion a QPSK modulation is chosen for the forward link between single transmit-

ter and the receive cluster. The number of receive nodes inside the cluster are

N = [10 20 40 80 160 320 640 1280 2560 5120 7680]. The number of iterations

for each channel/noise realization is chosen to be 1000 and the per-symbol trans-

mit energy with one receiver E (1)
s = 10 and training signal length with one receiver

P (1) = 1. The magnitude of each symbol is a =
√

2 and the number of payload

symbols per block is Q = 100. The total noise power N0 = 15 and channel variance

in real and imaginary dimension is λ = 2.

Figure 2.2 shows the comparison of the SNRs between ideal receive beamforming

and pseudo-beamforming each with and without channel estimation error.

The results from Figure 2.2 confirms our proofs that the ratio of the SNRs between

ideal receive beamforming and pseudo-beamforming in both case of perfect and noisy

channel estimation are equal to 2
π

and the SNR in each case converges to the calculated

limit for large N.

Figure 2.3 shows the comparison of the penalties between the ideal and pseudo

beamformer. It can be seen that, the penalty term in both cases converges to the

same number since the SNR ratios in each case, as shown in equation (2.43) for an

ideal beamformer and (2.89) for a pseudo beamformer are the same.

Figure 2.4 shows the mean and variance of the hard decisions when there is channel

estimation error. The results from the figure show that, the calculated mean of the
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Figure 2.2: Comparison of the SNRs between ideal receive beamforming and pseudo-
beamforming with and without channel estimation error in QPSK modulation. The
dotted lines are the calculated SNRs for large N in each scenario.

hard decisions closely follows the numerical results. Also, the variance of the hard

decisions approaches to the upper bound obtained from the theoretical results.

2.6.5 Conclusion

In this section we used theoretical calculations, asymptotic analysis and numerical

results from simulation, to obtain and characterize the effect of imperfect channel es-

timation in a distributed reception system with M -PSK modulation. As mentioned in

this section, channel estimation error had two effects, channel phase error and channel

magnitude error, which our analysis had accounted for both of these effects in the

channel estimation process at the receiver. In our analysis, phase error did not have a
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Figure 2.3: Comparison of the penalties between the ideal and pseudo beamformer
in QPSK modulation.

specific distribution and our results are valid for any phase error distribution. Using

theoretical computations, we derived closed-form expressions for the SNR of both

ideal receive beamforming and pseudo-beamforming. As it was expected, the results

of our analysis show that in QPSK modulation, channel estimation error degrades the

performance of distributed reception with both ideal and pseudo-bemforming tech-

niques by almost 1.38 dB. The interesting outcome of our analysis was that, the SNR

ratio between ideal receive beamforming and pseudo-beamforming does not depend

on the amount of channel estimation error and are identical to the SNR ratios with

no channel estimation error. So, our analysis shows, channel estimation error causes

the same amounts of performance degradation in ideal beamforming and pseudo-

beamforming systems despite the fact that the channel estimation errors manifests
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Figure 2.4: Mean and variance of the hard decisions when there is channel estimation
error in QPSK modulation.

themselves quite differently in both systems. Also, simulation results confirmed our

calculations for the mean and variance of hard decisions with channel estimation er-

ror and also, our results for the penalty term in both ideal and pseudo-beamforming

systems.

2.7 M 2-QAM Modulated Transmission

Previously the effect of channel estimation error on distributed reception with hard

decision exchange using M -QPSK modulation has been investigated [49]. In this work

we investigate the case where M2-QAM is used as the modulation technique.
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2.7.1 System Model

We assume a block transmission scenario with blocks of length n as in [49]. Here

we assume M2-QAM modulation in forward link. The `th symbol in block m for each

of the in-phase or quadrature component is denoted as XI/Q[m, `] for ` = 1, . . . , n and

is assumed to be drawn equiprobably from the QAM alphabet XI/Q = {x1, · · · , xM} =

{−(M − 1)a, · · · ,−a, a, · · · , (M − 1)a}. The average energy per transmitted symbol

for each of the in-phase or quadrature component is denoted as Es = E[|XI/Q[m, `]|2].

Given an additive white Gaussian noise channel (AWGN) with power spectral density

N0/2 in the real and imaginary dimensions, the complex baseband signal received at

the ith receive node for the `th symbol of block m can be written as

Ui[m, `] = hi[m]X[m, `] +Wi[m, `] (2.90)

for i = 1, . . . , N and ` = 1, . . . , n where X[m, `] = XI [m, `]+jXQ[m, `] and Wi[m, `] ∼

CN (0, N0) is spatially and temporally independent and identically distributed (i.i.d.)

proper complex Gaussian baseband noise. We assume the noise variance is identical

at each receive node. The quantity ρi[m] = |hi[m]|2Es
N0

corresponds to the signal-to-noise

ratio (SNR) at receive node i for symbols received in block m.

2.7.2 Channel Estimation

Channel estimation is just like [49], so we have

ĥi[m] = hi[m] + h̃i[m] (2.91)

where h̃i[m] ∼ CN (0, 2δ) is a proper complex Gaussian random variable with variance

δ in the real and imaginary dimensions. Since the training sequence X[m] is known

and has the length P , we can determine 2δ by computing the var(h̃i[m]) as

var(h̃i[m]) =
N0∑P
i=1 |xi|2

=
N0

PE[|X|2]
=

N0

PE[|XI + jXQ|2]

=
N0

2PEs
(2.92)
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2.7.3 Asymptotic SNR Analysis

We can suppress the block/symbol indices and consider the scalar observation at

receive node i as

Ui = hiX +Wi (2.93)

where X = XI + jXQ is drawn from an M2-QAM constellation with E[|XI/Q|2] = Es.

Just like before, for our asymptotic analysis, we will assume signal energy Es =

E (1)
s /N , i.e., the transmit power scales as 1/N , where E (1)

s is the per-symbol transmit

energy with one receiver. We also assume P = NP (1), i.e., the training signal length

scales with N , where P (1) is the training signal length with one receiver. Under this

assumption, note that PEs is a constant. Since N0 is also fixed, the variance of channel

estimation errors is constant.

2.7.3.1 Ideal Receive Beamforming: Perfect Channel Estimation

The output of ideal receive beamformer at node i is realized by using unquantized

observations Uj and is defined as

Ybf ≡ Yi =
∑
j∈P

√
ρiUj = α

∑
j∈P

|hj|Uj (2.94)

where ρi = |hi|22Es
N0

and α =
√

2Es
N0

and P is the set of nodes that are participating in

hard decision exchanges since not all the receiving nodes participate in exchange due

to poor received signal.

For the ideal receive beamformer, we have the vector observation

U = hX +W . (2.95)

Assuming no channel estimation error, the ideal receive beamformer output is given

as

Ybf = hHU = hHhX + hHW . (2.96)
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The SNR of ideal receive beamforming (conditioned on the channel realizations) can

be computed as

SNRbf =

(
E
{
hHhX + hHW |X

})2

var {hHhX + hHW |X}

=
‖h‖42Es

hHE{WWH}h

=
‖h‖22Es
N0

. (2.97)

If we further assume an i.i.d. Rayleigh fading channel such that hi ∼ CN (0, 2λ), then

asymptotically we have limN→∞
‖h‖2
N

= 2λ. The asymptotic SNR is then

SNRbf →
4NλEs
N0

=
4λE (1)

s

N0

. (2.98)

2.7.3.2 Ideal Receive Beamforming: Noisy Channel Estimation

Now we consider ideal receive beamforming with channel estimates of the form

ĥ = h+ h̃ (2.99)

where h̃ ∼ CN (0, 2δI). The ideal receive beamformer output with channel estimation

error is given as

Ybfe = ĥHU = ĥH(hX +W )

=
(
h+ h̃

)H
(hX +W )

= hH(hX +W ) + h̃H(hX +W )

= Ybf + Ỹbf . (2.100)

Then, the SNR of ideal receive beamforming with channel estimation error (condi-

tioned on the channel realizations) can be computed as

SNRbfe =

(
E
{
Ybf + h̃H(hX +W ) |X

})2

var
{
Ybf + h̃H(hX +W ) |X

} . (2.101)
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Note that h̃ is independent of h and X. Since the channel estimates were generated

from different observations than the ones used in the SNR calculations, h̃ is also

independent of W . Hence,

E
{
Ybf + h̃H(hX +W ) |X

}
= E {Ybf |X}

= ‖h‖2
√

2Es (2.102)

and the numerator of this expression is unchanged from the case with no channel

estimation error. As for the denominator, since Ybf and Ỹbf are independent, we have

var
{
Ybf + Ỹbf |X

}
= var {Ybf |X}

+ var
{
h̃H(hX +W ) |X

}
= ‖h‖2N0 + var

{
h̃H(hX +W ) |X

}
(2.103)

We can compute the second term as

var
{
h̃H(hX +W ) |X

}
= E

{
h̃H(hX +W )

× (hX +W )Hh̃ |X
}
−
∣∣∣E{h̃H(hX +W ) |X

}∣∣∣2
= E

{
h̃H(hX +W )× (hX +W )Hh̃ |X

}
(2.104)

where the second equality follows from the fact that h̃ is zero mean and independent

of the other terms in the expectation. We can further compute

var
{
h̃H(hX +W ) |X

}
= 2EsE

{
h̃HhhHh̃ |X

}
+ E

{
h̃HWWHh̃ |X

}
= 2EshHE

{
h̃h̃H |X

}
h+ E

{
h̃HWWHh̃ |X

}
= 2Es‖h‖22δ + E

{
h̃HWWHh̃ |X

}
=
‖h‖2N0

P
+ E

{
h̃HWWHh̃ |X

}
(2.105)
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The final expectation can be solved with iterated expectations since h̃ and W are

independent. We can write

E
{
h̃HWWHh̃ |X

}
= E

{
h̃HE

{
WWH |X, h̃

}
h̃ |X

}
= E

{
h̃H(N0I)h̃ |X

}
= N0E

{
h̃Hh̃ |X

}
= N0N2δ

=
N2

0N

2PEs
. (2.106)

Putting it all together, we have

var
{
Ybf + h̃H(hX +W ) |X

}
=

‖h‖2N0 +
‖h‖2N0

P
+
N2

0N

2PEs
. (2.107)

and hence

SNRbfe =
‖h‖22Es

N0 + N0

P
+

N2
0N

2‖h‖2PEs

. (2.108)

Asymptotically, since P grows proportionally with N and PEs is fixed, the middle

term in the denominator vanishes. So for large N with vanishing per-node SNR we

can write

SNRbfe →
‖h‖22Es

N0 +
N2

0N

2‖h‖2PEs

. (2.109)

Moreover, since limN→∞
‖h‖2
N

= 2λ, Es = E(1)s

N
, and P = NP (1), it can be easily

obtained that

SNRbfe →
4λE (1)

s

N0

(
1 + N0

4λP (1)E(1)s

) . (2.110)

The results in (2.97) and (2.109) allow us to compute the penalty of channel estimation

error in an ideal receive beamformer as N →∞ as

Pbf =
SNRbf
SNRbfe

→ 1 +
N0

4λP (1)E (1)
s

. (2.111)
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2.7.3.3 Pseudo-Beamforming: Perfect Channel Estimation

Pseudo-beamforming is a simple but sub-optimal combining technique where (2.94)

is performed on the hard decisions from each node. In networks with M2-QAM mod-

ulation, the pseudo-beamformer combiner output is a combination of in-phase and

quadrature components of hard decisions and it is expressed as below

Ypbf ≡ Yi =
∑
j∈P

√
ρiVj = α

∑
j∈P

|hj|Vj

= α
∑
j∈P

|hj|(Re(Vj) + j Im(Vj)) (2.112)

where Re(Vj), Im(Vj) ∈ X for all j and are conditionally independent given the trans-

mitted symbol.

The asymptotic SNR of pseudo-beamforming for various modulation formats was

analyzed in [46]. The proof for obtaining mean and variance of in-phase or quadrature

component of M2-QAM hard decisions using the transition probabilities is stated in

the following.

Proof: An M2-QAM constellation has real-valued alphabet containing M sym-

bols for each of its in-phase (I) and quadrature (Q) components given as XI/Q =

{x1, x2, · · · , xM} = {−(M − 1)a, · · · ,−a, a, · · · , (M − 1)a} where a is just a constant

used for scaling the symbols to satisfy the energy constraint E[X2
I/Q] = Es. Now we

can compute the conditional mean of hard decisions for I or Q component at the

receive node j as E[Re(Vj)|X = x`] =
∑M

m=1 xmpm,`, where pm,` is the transition

probability and is defined as pm,` := Prob(decide Vj = xm|X = x`). If we assume

the standard hard decision regions for M2-QAM and an AWGN channel with magni-

tude |hj| and noise variance of N0/2, we can express the transition probabilities for

m ∈ {2, · · · ,M − 1} as

pm,` = Q((2|`−m| − 1)ρj)−Q((2|`−m|+ 1)ρj) (2.113)
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and for m ∈ {1,M} as

pm,` = Q((2|`−m| − 1)ρj) (2.114)

for ` ∈ {1, · · · ,M} where ρ2
j :=

|hj |2a2
N0/2

and Q(x) :=
∫∞
x

1
2π
e−t

2/2dt is the tail probabil-

ity of standard Guassian density. In the low per-node SNR regime of interest, ρj → 0

and the arguments of the Q-functions would be small. For small arguments we can

approximate the Q-functions as

Q(x) =
1

2
−
∫ x

0

1√
2π
e−t

2/2dt ≈ 1

2
− x√

2π
. (2.115)

Therefore for low per-node SNR regime with small ρj and using the facts that xm =

−xM−m+1 for m ∈ {1, · · · ,M}, and |`−1|−|`−M | = 2`−M−1 since always M ≥ `

and ` ≥ 1, so |`−1| = `−1 and |`−M | = M− ` and therefore x` = (2`−M−1)a for

` ∈ {1, · · · ,M}, we can drive the conditional mean of the hard decisions as follow.

E[Re(Vj)|X = x`] ≈
(

1

2
− (2|`− 1| − 1)ρj√

2π

)
x1

+
M−1∑
m=2

2ρj√
2π
xm +

(
1

2
− (2|`−M | − 1)ρj√

2π

)
xM

=

(
2(2`−M − 1)ρj√

2π

)
xM

=

(
2(M − 1)ρj√

2π

)
x` (2.116)

For computing the variance of hard decisions we use the fact that x2
1 = (M − 1)2a2

and all the terms with ρj or ρ2
j are discarded since the ρj → 0 in a low per-node SNR

regime. Therefore, the variance of hard decisions would be calculated as

var[Re(Vj)|X = x`] = E[Re(Vj)
2|X = x`]− (E[Re(Vj)|X = x`])

2

≈ 2

(
1

2
− (2|`− 1| − 1)ρj√

2π

)
x2

1

+ 2

M/2−1∑
m=2

2ρj√
2π
x2
m −

(
2(M − 1)ρj√

2π

)2

x2
`

≈ 2(M − 1)2a2 (2.117)
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***

Following the same procedures for M -PAM, we derive the conditional mean and

variance of hard decisions for M2-QAM. First, we derive the conditional mean of

M2-QAM hard decisions for in-phase and quadrature components as

E[Re(Vj)|X = x`] = E[Im(Vj)|X = x`] =

(
2(M − 1)ρj√

2π

)
x` (2.118)

since the statistics of in-phase and quadrature components are the same. Second, the

conditional variance of M2-QAM hard decisions in the low per-node SNR regime can

be calculated as

var[Re(Vj)|X = x`] = var[Im(Vj)|X = x`] ≈ 2(M − 1)2a2 (2.119)

The only difference here with the M -PAM is a 2 multiplier which is the result of having

X = XI + jXQ in M2-QAM. These results allow us to compute the conditional mean

and variance of the pseudo-beamformer output with M2-QAM hard decisions. The

conditional mean can be computed as

E[Ypbf |X = x`] = α
∑
j∈P

|hj|E[Re(Vj)|X = x`] + j α
∑
j∈P

|hj|E[Im(Vj)|X = x`]

= α
∑
j∈P

|hj|E[Re(Vj)|X = x`](1 + j)

= α
∑
j∈P

|hj|
(

2(M − 1)ρj√
2π

)
x`(1 + j) (2.120)

by replacing the ρj from ρ2
j :=

|hj |2a2
N0/2

we have

E[Ypbf |X = x`] = α
∑
j∈P

(
2(M − 1)|hj|2a√

2πN0/2

)
x`(1 + j)

=
α2(M − 1)ax`√

πN0

(1 + j)
∑
j∈P

|hj|2 (2.121)

using the fact that
∑

j∈P |hj|2 = ‖h‖2, we get

E[Ypbf |X = x`] =
2α(M − 1)a‖h‖2

√
πN0

x`(1 + j) (2.122)
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Similarly, the conditional variance of the pseudo-beamformer output with M2-QAM

hard decisions in the low per-node SNR regime can be computed as

var[Ypbf |X = x`] = var

[
α
∑
j∈P

|hj|Re(Vj)
∣∣∣X = x`

]
+ var

[
α
∑
j∈P

|hj|Im(Vj)
∣∣∣X = x`

]

= 2α2
∑
j∈P

|hj|2var[Re(Vj)|X = x`]

= 2α2
∑
j∈P

|hj|2(M − 1)2a2

= 2α2(M − 1)2a2
∑
j∈P

|hj|2 (2.123)

It follows from the fact that var(x + jy) = var(x) + var(y). Therefore we would have

var[Ypbf |X = x`] = 2α2(M − 1)2a2‖h‖2 (2.124)

Now we can calculate the SNRpbf as

SNRpbf =
|E[Ypbf |X = x`]|2

var[Ypbf |X = x`]

=
4α2(M − 1)2a2‖h‖4|x`|2|1 + j|2

2α2(M − 1)2a2‖h‖2πN0

(2.125)

By replacing the |x`|2 = 2Es and using the facts that limN→∞
‖h‖2
N

= 2λ and Es = E(1)s

N

we would have

SNRpbf →
2‖h‖2 2Es 2

πN0

=
8λE (1)

s

πN0

(2.126)

Therefore, with M2-QAM and for all M , we have

SNRM
2−QAM

pbf ≈ 2

π
SNRM

2−QAM
bf (2.127)

2.7.3.4 Pseudo-Beamforming: Noisy Channel Estimation

To model the effect of channel estimation error on the decision variable at an

individual receiver, we first define the perfect and noisy channel estimate, respectively,
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as follow

hj = |hj|ejθ

ĥj = |ĥj|ejθ̂ (2.128)

we also have ĥ = h + h̃, where h̃ ∼ CN (0, 2δ) is the channel estimation error. To

compute the conditional mean and variance of the pseudo-beamformer output with

noisy channel estimation and computing the SNR afterwards, we have to compute

the conditional mean and variance of the hard decisions for M2-QAM modulation.

For this purpose, we first have to express the decision variable of the receivers for

cases with and without perfect channel estimation. For the case with perfect channel

estimation, decision variable would be as follow

Uj =
1

hj
(hjX +Wj)

= X +
Wj

hj
(2.129)

and with estimation error it would be as

Uje =
1

ĥj
(hjX +Wj)

=
hj

ĥj
X +

Wj

ĥj
(2.130)

where yj = hjX + Wj is the received signal at the receiver, and Uj is the decision

variable obtained by compensation of channel effect on the received signal, based on

the estimation of channel by the receiver. In order to find the transition probabilities

we have to calculate the mean and variance of the decision variable at the receiver.

For the case that has no channel estimation error we can obtain the mean as

E[Uj|X = x`] = E[X +
Wj

hj
|X = x`]

= X +
1

hj
E[Wj|X = x`] = X (2.131)
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where we used the fact that Wj and hj are independent and E[Wj] = 0. For variance

calculation we would have

var[Uj|X = x`] = var[X +
Wj

hj
|X = x`]

=
1

|hj|2
var[Wj|X = x`] =

N0

2|hj|2
(2.132)

since X is independent of Wj and hj, and the channel hj is considered constant

during transmission time-slot. Using the equations (2.131) and (2.132) we can obtain

the transition probabilities of pm,` := Prob(decide Vj = xm|X = x`) for M2-QAM

modulation as stated in [46] as follow

pm,` = Q

(2|`−m| − 1)a√
N0

2|hj |2

−Q
(2|`−m|+ 1)a√

N0

2|hj |2


= Q ((2|`−m| − 1)ρj)−Q ((2|`−m|+ 1)ρj) (2.133)

where ρj =
|hj |a√
N0/2

is the signal to noise ratio at the receiver j. Here the transmitted

signal is X = x` = 2` −M − 1 and the detected signal is assumed to be Vj = xm =

2m−M − 1.

Now, if we consider channel estimation error at the receiver, the mean of decision

variable would be obtained by following terms

E[Uje|X = x`] = E[
hj

ĥj
X +

Wj

ĥj
|X = x`]

= hjXE[
1

ĥj
|X = x`]. (2.134)

In order to obtain the E[ 1

ĥj
|X = x`], we have to use the following equation about the

mean of inverse of random variable

E[
1

X
] =

1

E[X]
+

var[X]

E[X]3
. (2.135)

Therefore, by applying the above method in (2.134) we get

E[Uje|X = x`] = hjX

(
1

E[ĥj]
+

var[ĥj]

E[ĥj]3

)
, (2.136)
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where the mean and variance of channel estimation ĥj is

E[ĥj] = E[hj] + E[h̃j] = hj (2.137)

var[ĥj] = var[hj] + var[h̃j] = 2δ. (2.138)

By replacing (2.137) and (2.138) in equation (2.136) we would have

E[Uje|X = x`] = X

(
1 +

2δ

|hj|2

)
. (2.139)

Since phase of the received signal in M -PAM modulation (as in in-phase or quadrature

part of M2-QAM) does not have effect in final decision and on error probability

calculation, as stated here [50], we can use h and |h| interchangeably.

We now have to calculate the variance of decision variable in order to be able to

obtain the transition probabilities when there is channel estimation error. To obtain

variance we have to calculate

var[Uje|X = x`] = var[
hj

ĥj
X +

Wj

ĥj
|X = x`]

= |hj|2|X|2var[
1

ĥj
|X = x`] + var[

Wj

ĥj
|X = x`]

= |hj|2|X|2var[
1

ĥj
|X = x`] +

N0

2
E[

1

|ĥj|2
|X = x`]. (2.140)

Now we have to obtain the var[ 1

ĥj
] and E[ 1

ĥ2j
] to be able to calculate the variance of

decision variable. To do so, we use the equation below to obtain the variance of the

inverse of a random variable

var[
1

X
] =

var[X]

E[X]4
. (2.141)

We also have to calculate the mean and variance of the square of channel estimation

E[ĥj
2
] = E[h2

j + h̃2
j + 2hjh̃j] = |hj|2 + 2δ. (2.142)

var[ĥj
2
] = var[h2

j + h̃2
j + 2hjh̃j] = E[|h̃j|4]− 4δ2 + 8|hj|2δ. (2.143)
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Using the equations in (2.135, 2.141, 2.142 and 2.143) and replacing them in (2.140)

we get

var[Uje|X = x`] = |X|2 2δ

|hj|2
+
N0

2

(
1

|hj|2 + 2δ
+

E[|h̃j|4]− 4δ2 + 8|hj|2δ
(|hj|2 + 2δ)3

)
. (2.144)

By having mean and variance of decision variable with channel estimation error we

can obtain the transition probabilities as

pm,` = Q

 (2|`−m| − 1)a
(

1 + 2δ
|hj |2

)
√
|X|2 2δ

|hj |2 + N0

2

(
1

|hj |2+2δ
+

E[|h̃j |4]−4δ2+8|hj |2δ
(|hj |2+2δ)3

)


−Q

 (2|`−m|+ 1)a
(

1 + 2δ
|hj |2

)
√
|X|2 2δ

|hj |2 + N0

2

(
1

|hj |2+2δ
+

E[|h̃j |4]−4δ2+8|hj |2δ
(|hj |2+2δ)3

)
 , (2.145)

which in this equation we can replace the |X2| with 2Es. Now by having the transition

probabilities we can compute the mean and variance of hard decisions at the receiver.

Before that, to make the calculation simpler we define the signal to noise ratio at the

receiver j in case of having channel estimation error ρ̂j as

ρ̂j =
a
(

1 + 2δ
|hj |2

)
√

2Es 2δ
|hj |2 + N0

2

(
1

|hj |2+2δ
+

E[|h̃j |4]−4δ2+8|hj |2δ
(|hj |2+2δ)3

) . (2.146)

We also can replace the variance of channel estimation error 2δ with N0

PEs . Using

the same proof as in case with perfect channel estimation, we can get the mean and

variance of hard decisions as

E[Re(Vj)|X = x`] ≈
(

2(M − 1)ρ̂j√
2π

)
x` (2.147)

var[Re(Vj)|X = x`] ≈ 2(M − 1)2a2, (2.148)

To obtain the SNR at the receiver with channel estimation error, first we have to

obtain the mean and variance of pseudo-beamformer combiner output as stated in
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(2.112), but this time we have to use the magnitude of channel estimation with error.

Ypbfe ≡ Yi =
∑
j∈P

√
ρiVj = α

∑
j∈P

|ĥj|Vj

= α
∑
j∈P

|ĥj|(Re(Vj) + j Im(Vj)). (2.149)

We then can compute the mean and variance of pseudo-beamformer output jusy like

the ones in (2.120 and 2.123) but this time we have magnitude of channel estimation

error and corresponding SNR at the reciever. So, the mean can be calculated as

E[Ypbf |X = x`] = α
∑
j∈P

|ĥj|
(

2(M − 1)ρ̂j√
2π

)
x`(1 + j), (2.150)

and variance as

var[Ypbf |X = x`] = 2α2(M − 1)2a2
∑
j∈P

|ĥj|2. (2.151)

However, due to complexity of mathematical proof of these equations, we use analyt-

ical solutions to calculate the SNR for large number of receivers and in low per-node

SNR regime. So, as the result we have the SNRpbfe as

SNRpbfe =
|E[Ypbfe|X = x`]|2

var[Ypbfe|X = x`]

=
4α2(M − 1)2a2|x`|2|1 + j|2

∑
j∈P |ĥj|

ρ̂j
a

2α2(M − 1)2a2πN0

∑
j∈P |ĥj|2

=
4|x`|2

∑
j∈P |ĥj|

ρ̂j
a

πN0

∑
j∈P |ĥj|2

(2.152)

By replacing the |x`|2 = 2Es and using the facts that limN→∞
‖h‖2
N

= 2λ, Es = E(1)s

N
,

P = P (1)N and 2δ = N0

PEs we would have

SNRpbf →
8λE (1)

s

πN0(1 + N0

4λP (1)E(1)s

)
(2.153)

Therefore, with M2-QAM and for all M , we have

SNRM
2−QAM

pbfe ≈ 2

π
SNRM

2−QAM
bfe (2.154)
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Using the results in (2.126) and (2.153) we can compute the penalty of channel esti-

mation error in an pseudo-beamforming as N →∞ as

Ppbf =
SNRpbf
SNRpbfe

→ 1 +
N0

4λP (1)E (1)
s

. (2.155)

2.7.4 Numerical Results

The simulation results of this section are presented here. In this simulation

a 16-QAM modulation is chosen for the forward link between single transmitter

and the receive cluster. The number of receive nodes inside the cluster are N =

[10 20 40 80 160 320 640 1280 2560 5120 7680]. The number of iterations for each

channel/noise realization is chosen to be 1000 and the per-symbol transmit energy

with one receiver E (1)
s = 10 and training signal length with one receiver P (1) = 1. The

magnitude of each symbol is a =
√

2 and the number of payload symbols per block is

Q = 100. The total noise power N0 = 15 and channel variance in real and imaginary

dimension is λ = 2.

Figure 2.5 shows the comparison of the SNRs between ideal receive beamforming

and pseudo-beamforming each with and without channel estimation error. The results

from Figure 2.5 confirms our proofs that the ratio of the SNRs between ideal receive

beamforming and pseudo-beamforming in both case of perfect and noisy channel

estimation are equal to 2
π

and the SNR in each case converges to the calculated limit

for large N.

Figure 2.6 shows the comparison of the penalties between the ideal and pseudo

beamformer. It can be seen that, the penalty term in both cases converges to the

same number since the SNR ratios in each case, as shown in equation (2.43) for an

ideal beamformer and (2.89) for a pseudo beamformer are the same.

Figure 2.7 shows the mean and variance of the hard decisions when there is channel

estimation error. The results from the figure show that, the calculated mean of the

hard decisions closely follows the numerical results as the number of N gets large.
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Figure 2.5: Comparison of the SNRs between ideal receive beamforming and pseudo-
beamforming with and without channel estimation error in 16-QAM modulation. The
dotted lines are the calculated SNRs for large N in each scenario.

Also, the variance of the hard decisions approaches to the upper bound obtained from

the theoretical results for large N .

2.7.5 Conclusion

Like previous section with M -PSK modulation, in this section we used theoretical

calculations, asymptotic analysis and numerical results from simulation, to obtain

and characterize the effect of imperfect channel estimation in a distributed reception

system this time with M2-QAM modulation. Using theoretical computations, we

derived closed-form expressions for the SNR of both ideal receive beamforming and

pseudo-beamforming. As it was expected, the results of our analysis show that chan-
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Figure 2.6: Comparison of the penalties between the ideal and pseudo beamformer
in 16-QAM modulation.

nel estimation error in 16-QAM modulation degrades the performance of distributed

reception with both ideal and pseudo-bemforming techniques by almost 0.75 dB com-

pared to 1.38 dB in QPSK modulation. Just like the previous case with M -PSK mod-

ulation, the SNR ratio between ideal receive beamforming and pseudo-beamforming

does not depend on the amount of channel estimation error and are identical to the

SNR ratios with no channel estimation error. So, our analysis shows, channel estima-

tion error causes the same amounts of performance degradation in ideal beamforming

and pseudo-beamforming systems despite the fact that the channel estimation er-

rors manifests themselves quite differently in both systems. Also, simulation results

confirmed our calculations for the mean and variance of hard decisions with channel

estimation error, and also our results for the penalty term in both ideal and pseudo-
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Figure 2.7: Mean and variance of the hard decisions when there is channel estimation
error in 16-QAM modulation.

beamforming techniques.
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Chapter 3

Oscillator Modeling For Improved

Phase Synchronization

3.1 Introduction

Characterization and modeling of clock oscillator stability is important for many

applications requiring an accurate time and/or frequency reference. This chapter

focuses on the application area of cooperative communication protocols [51–54], in

which two or more sources transmit simultaneously in a single sub-channel. A key

challenge is maintaining synchronization between transmitters to pico-second accu-

racy, which in turn requires characterizing the stability of the independent frequency

references for each transmitter.

Oscillator stability has been traditionally characterized by the Allan variance and

multistate stochastic models [55–57] which were originally developed for high preci-

sion, high cost sources such as atomic clocks. Knowledge of model parameters allows

development of tracking and prediction techniques (e.g. based on the Kalman filter)

which enable accurate prediction of and compensation for oscillator drift.

Difficulty arises in applying these techniques to low cost, moderate precision crys-

tal oscillators used in applications such as software-defined radio (SDR), as significant
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deviations in measured phase noise from the prediction of models in [56, 57] are ob-

served for some oscillators. For the novel contributions of this work, we present

measured phase noise data for a range of crystal oscillators, propose an alternative

phase noise modeling strategy, and show improved phase tracking and prediction

performance resulting from the proposed model.

3.2 Background

In this section a general definition of cooperative communication and how these

types of networks work is given along with an example of phase realignment of trans-

mitters. Also, the phase noise of the software-defined radio output is shown and

analyzed.

3.2.1 Cooperative communication

In cooperative communication protocols, two or more sources transmit simulta-

neously in the same sub-channel [51–54].

Figure 3.1 shows a conceptual view of the beamforming principle, in which the

individual transmitter carrier waveform phases are adjusted to arrive in-phase at the

receive antenna. Compared to to orthogonal transmit cooperation, these protocols

offer the potential for improved power efficiency since carrier signals from each source

arrive in phase and constructively combine at the intended destination. The key

challenge to realizing these benefits is maintaining strict synchronization between

transmitters: Phase offset must be less than a fraction of the carrier waveform, of

order picoseconds for commonly used SDR frequencies.

Figure 3.2 from [52] shows the need for continuously updated phase realignment.

This figure shows beamforming gain in a three-source system over time, with a gain of

0 dB corresponding to incoherent transmission and a theoretical maximum gain of 10

dB. At time t = 0 the oscillators are synchronized and gain of 10 dB is briefly observed,
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Figure 3.1: Conceptual beamforming.

but gain quickly drops near zero in less than 10 ms as the source oscillator phases

drift out of phase alignment. Interrupting channel usage for phase measurement and

realignment on a millisecond time scale would detract significantly from the achievable

system data rate, adding an unacceptable overhead in data transmission.

To extend the amount of time available between necessary phase realignments,

phase error prediction is also used. At t = 50 ms the oscillator phases are realigned,

and based on the observed oscillator behavior, the phase error drift of each source

oscillator is predicted and partially canceled. Due to unpredictable random drift, the

observed beamforming gain decreases over time, in this case to approximately 9 dB

by the next resynchronization at t = 100 ms. With prediction, the allowable time

between phase realignment is extended to 50 ms in this example.

The following section describes sources of phase noise and oscillator drift for SDRs

used in cooperative communication.
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Figure 3.2: Need for clock resynchronization.

3.2.2 SDR output phase noise

Figure 3.3 shows a simplified block diagram of a software-defined radio as imple-

mented in the USRP-2 [58] platform. Precise frequency reference is required for both

the baseband digital-to-analog converter (DAC) functions (400 MS/s clock DAC-

CLK) and the local oscillator (LO) synthesizer which upconverts the I/Q baseband

data signals for transmitting at RF. In [58] the frequency reference is provided by a

temperature compensated crystal oscillator (TCXO), which will influence the spectral

characteristics of the RF output.

Figure 3.4 shows the measured phase noise of the USRP output when producing

a continuous unmodulated 900MHz carrier. (All measurements in this work were
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Figure 3.3: SDR simplified block diagram.

performed using the Keysight E5052B Signal Source Analyzer [59]). As described

in [60,61], the output phase noise is a combination of contributions from the reference

oscillator (green highlight) and the phase-locked loop (PLL) synthesizer (yellow). At

offset frequencies above ≈ 10 kHz, noise power is dominated by the PLL synthesizers

voltage-controlled oscillator (VCO) phase noise as well as spurs due to DAC quanti-

zation noise and nonlinearity. For synchronization purposes, we are concerned with

oscillator drift at time scales of ≈ 100 µs and longer, which is determined by noise

power at offset frequencies below 10 kHz. At offset frequencies < 10 kHz performance

is dominated by the REF source, and shows two regions with

• -40 dB/decade slope corresponding to a 1/f 4 noise power law for offset frequen-

cies f < 100 Hz, and

• -20 dB/decade slope corresponding to a 1/f 2 noise power law for offset frequen-

cies 100 Hz < f < 10 kHz.

The 1/f 4 and 1/f 2 noise power laws follow from a simple model for oscillator
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Figure 3.4: Measured phase noise of USRP carrier output.

phase noise, which will be briefly reviewed in the following section.

3.3 Oscillator Noise Modeling

In this section the two-state oscillator phase noise model would be described in

details and the role of oscillator model in phase prediction is shown.

3.3.1 Two-state oscillator phase noise model

In [56], the output of a sinusoidal oscillator is modeled as

u(t) = U0 sin(2πν0t+ ϕ(t)) (3.1)
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in which ν0 is the nominal frequency, ϕ(t) is an error term due to oscillator phase

noise, and U0 is the oscillator amplitude. Any effects due to variation in U0 are

assumed to be negligible since the analysis considers phase noise only; for this reason

the analysis also applies to non-sinusoidal oscillators such as the frequency reference

used in [58].

In (3.1) the error ϕ(t) has units of radians of phase. This error can be expressed

in terms of time error x(t) by normalizing to the nominal radian frequency

x(t) =
ϕ(t)

2πν0

(3.2)

with which (3.1) becomes

u(t) = U0 sin 2πν0(t+ x(t)) (3.3)

In [56] it is shown that the output noise process can be modeled by a simplified two-

state system shown in graphical form in Figure 3.5 and expressed mathematically

as

x(t) = x1(t) =

∫ t

0

(x2(t) + ξ1(t))dt (3.4)

x2(t) =

∫ t

0

ξ2(t)dt (3.5)

in which ξ1(t) and ξ2(t) are noise processes. As a time error, x1 has units of seconds

[s]; due to the time derivative to ẋ1, x2 and ξ1(t) are dimensionless. Similarly, the

units of ξ2(t) are [s−1].

Expressing the system of Figure 3.5 in state space form gives:ẋ1

ẋ2


︸ ︷︷ ︸
Ẋ

=

0 1

0 0


︸ ︷︷ ︸

A

x1

x2


︸ ︷︷ ︸
X(t)

+

ξ1

ξ2


︸ ︷︷ ︸
ξ(t)

(3.6)
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Figure 3.5: 2-state clock noise model.

As in [56], we model the process noise terms ξ1(t) and ξ2(t) as zero mean in-

dependent Gaussian random processes. Since these processes are independent, the

autocorrelation is

Rξ,ξ(τ) = E
[
ξ(t)ξT (t+ τ)

]
=

q1 0

0 q2


︸ ︷︷ ︸

Q

δ(τ) (3.7)

where δ(τ) is the Dirac delta function.

From (3.4) and (3.5) with the noise model of (3.6), we expect the power spectral

density to exhibit a 1/f 2 region corresponding to a Wiener process from the integra-

tion of ξ1(t), and a 1/f 4 region corresponding to the integration of x2(t), which is

itself a Wiener process as the integral of ξ2(t). Table 3.1 lists all reference sources

evaluated for this work. As an example, measured data from CS4 at a frequency of

ν0 = 40MHz in Figure 3.6 shows a phase noise plot L(f) with approximate 1/f 4 and

1/f 2 characteristics until reaching the noise floor of the measurement.

In accordance with [55] we can model the single-sided spectral density of phase

fluctuations as

SΦ(f) = 2L(f) =
h−2ν

2
0

f 4
+
h0ν

2
0

f 2
(3.8)

with best-fit values to the measured L(f) for parameters h−2 and h0 as shown in

Figure 3.6. Note that there are also 1/f and 1/f 3 regions corresponding to flicker
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Figure 3.6: Measured phase noise for oscillator CS4 with 2-state model fit.

(1/f) and integrated flicker (1/f 3) noise respectively. For simplicity these models were

not incorporated in this work, but could be taken into account for a more accurate

description of phase noise.

To fully describe the system of Figure 3.5, we need numerical values for q1 and q2

which describe the random processes. In [56, 57] these are obtained from the Allan

variance σ2
y(τ), a commonly used measurement for extremely stable clock sources [55].

For the two-state model of Figure 3.5, [56,57] shows that the Allan variance will take

the form

σ2
y(τ) =

q1

τ
+
q2τ

3
(3.9)

The Allan variance (time domain) can be related to the phase noise (frequency
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Table 3.1: Clock sources evaluated in this work

Source Type Brand ν0 [MHz]
CS1 VCXO A 40
CS2 VCXO A 100
CS3 XO B 80
CS4 XO B 40
CS5 OCXO C 40
CS6 TCXO C 40
CS7 XO D 40
CS8 TCXO E 100
CS9 VCXO F 40

Key to Oscillator Type
XO Crystal Oscillator

TCXO Temperature Compensated XO
OCXO Oven Controlled XO
VCXO Voltage Controlled XO

domain) using expressions in [55]. For the two state noise model, [55] gives a form of

σ2
y(τ) =

h0

2τ
+

2π2h−2τ

3
(3.10)

Equating coefficients in (3.9) and (3.10) gives

q1 =
h0

2
q2 = 2π2h−2 (3.11)

Figure 3.6 shows the best-fit parameters for the two-state model given the mea-

sured noise performance.

3.3.2 Role of oscillator model in phase prediction

One value of the oscillator noise model is its role in determining a filter for pre-

diction of oscillator phase error over time. Although the noise sources ξ1 and ξ2 are

uncorrelated white noise sources, the integration in the model of Figure 3.5 imposes a

correlation in the output error x(t) that can be utilized in predicting future evolution

of oscillator error.
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In [52] it is shown that optimal minimum mean squared error (MSE) phase track-

ing and prediction can be achieved with a Kalman filter derived from the state-space

model of the phase noise process. Since the Kalman filter operates in discrete time

on measured samples of oscillator phase error, the continuous time model of (3.6) is

converted to a discrete time model subject to the time interval between relative phase

error measurements.

It is important to note that the size of the Kalman gain matrix is set by the number

of states in the oscillator noise model. The results in Figure 3.2 were obtained using

a 2 × 2 Kalman gain matrix resulting from the two-state noise model described in

section 3.3.1.

3.4 Three-state Oscillator Model

In this section a three-state model for better prediction of oscillator’s phase noise

performance is introduced. For this reason, we first investigated the phase noise per-

formance of some low-cost oscillators which are suitable for use as frequency reference

in an SDR. Then after proposing the new three-state model, the parameters for PLL

in those oscillators are determined.

3.4.1 Survey of crystal oscillators

To investigate the applicability of the two-state model, phase noise performance

was measured for a range of low-cost crystal oscillators suitable for use as the fre-

quency reference in an SDR application. The oscillators tested are given in Table 3.1

and measured characteristics are shown in Figure 3.7. For offset frequencies below ≈

100 Hz, all of the plots show behavior consistent with the two-state model. At higher

offset frequencies, however, oscillators CS7 and CS8 show additional noise power be-

yond what could be predicted by a two-state model. Since tracking and prediction

behavior in the cooperative communication application can rely on offset frequencies
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up to ≈ 10 kHz, it is important to modify the two-state model to model the extra

noise power and allow development of an appropriate Kalman filter.

Figure 3.7: Summary of phase noise measurements.

3.4.2 Development of three-state model

The shape of excess noise power in the phase noise plots for oscillators CS7 and

CS8 is similar to the phase noise of the synthesized SDR output shown in Figure

3.4. Indeed, the approach we will take in modeling the system for oscillators CS7

and CS8 is to assume that a phase-locked loop synthesizer is used to develop the

output clock frequency. From the characteristics of extra noise power in CS7 and
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CS8, such as low pass filter behavior and -20 dB
dec

slope, it can be inferred that, the

new model should have an extra part performing as a low pass filter with one-pole

transfer function system. Therefore, addition of this one pole or state to the two-state

model, suggests that a three-state model should be able to better predict this extra

noise power existing in these two oscillators phase noise plots. Figure 3.8 shows the

proposed three-state model, with the previous two-state clock model as the input to

a PLL synthesizer [60].

Figure 3.8: Three-state model for phase noise of source with PLL synthesizer.

Since the controlled variable in a PLL is phase, the output state x1 must be

multiplied by 2πν0 to convert the time variable x1 in seconds to an equivalent phase in

radians at the PLL input. The voltage controlled oscillator (VCO) is represented with

an integrator, since phase is the integral of frequency. Two parameters characterize

the VCO for purposes of state space modeling:

• For consistency with the noise representation in the 2-state oscillator model,

VCO phase noise is modeled as a white noise input ξ3(t) with units rad/s.

• The loop bandwidth of the PLL response is determined by time constant τL.

The block diagram for clock multiplication PLL synthesis as described in [60] usually

shows a divide-by-N in the PLL feedback path, to accomplish the frequency multi-

plication by N from input to output. In this case the effect of 1/N in the feedback is

reflected in scaling of τL and other signal sources in the block diagram.
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Expressing the system of Figure 3.8 in state space form gives:
ẋ1

ẋ2

ẋ3


︸ ︷︷ ︸
Ẋ

=


0 1 0

0 0 0

2πν0
τL

0 −1
τL


︸ ︷︷ ︸

A


x1

x2

x3


︸ ︷︷ ︸
X(t)

+


ξ1

ξ2

ξ3


︸ ︷︷ ︸
ξ(t)

(3.12)

with output x3 now in units of radians of phase.

3.4.3 Determining PLL parameters

As in [56], we model the new process noise term ξ3(t) as a zero mean independent

Gaussian random process; now the Q matrix in the autocorrelation of (3.7) is

Q =


q1 0 0

0 q2 0

0 0 q3

 (3.13)

The new model parameters q3 and τL can be determined from the phase noise

plot. From Figure 3.8 the transfer function from ξ3 to x3 is

x3 =

(
τL

1 + sτL
ξ3

)
(3.14)

Since ξ3 is a white noise source, we expect from (3.14) to see a lowpass charac-

teristic in the output phase noise due to ξ3, which is observed in the measured phase

noise of Figure 3.9.

To account for the lowpass phase noise power spectral density, we add a lowpass

term to (3.8)

SΦ(f) = 2L(f) =
h−2ν

2
0

f 4
+
h0ν

2
0

f 2
+

hν
1 + (f/fL)2

(3.15)

For q3 describing the variance of ξ3, using the square of the magnitude of the

transfer function in (3.14) and equating coefficients with (3.15) gives

τL =
1

2πfL
q3 =

hν
τ 2
L

(3.16)
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Figure 3.9: Measured phase noise for oscillator CS8 with 3-state model fit.

Figure 3.9 shows the best-fit parameters for the three-state model given the measured

noise performance for oscillator CS8.

3.5 Measurement and Simulation results

To test the applicability of the three-state model, a Kalman filter was defined using

(3.12) with parameters from Figure 3.9 for oscillator CS8. A Monte Carlo approach

was used to generate simulated phase error waveforms with noise power as shown in

Figure 3.9. Phase error was sampled at a 2 MHz rate to capture dynamics up to the

1 MHz offset frequency in Figure 3.9.

Figure 3.10 shows sample waveforms for a prediction time of 10 µs. The three-

state filter prediction (red) was compared to a two-state filter (blue) using only the q1
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Figure 3.10: Prediction for oscillator CS8 with 2- and 3-state model fits.
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and q2 parameters corresponding to the low-offset-frequency region in Figure 3.9. To

emphasize oscillator modeling, no measurement noise was included. Figure 3.10(a)

shows the behavior of both filters relative to the actual phase error over a time scale

of seconds. Both filters track the long term phase error closely, as expected since both

filters share the two states corresponding to the low offset frequency (1/f 4 and 1/f 2)

phase noise asymptotes in Figure 3.9.

Figure 3.10(b) shows the prediction (blue) and actual phase (gray) for the two-

state filter; prediction error is shown in Figure 3.10(c). Figure 3.10(d) and (e) show the

prediction and error for the three-state filter; in the case of this particular waveform

the MSE is improved by 2.9 dB over the two-state filter.

Figure 3.11: Relative performance, 2-state vs. 3-state model fit.

Figure 3.11(a) shows the standard deviation (averaged over the Monte Carlo en-

semble) for both filters over a range of prediction times from 100 µs to 100 ms. As
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expected, error increases with prediction time, but at all times the three-state filter

error is smaller. Figure 3.11(b) shows that the three-state filter advantage exceeds

2.5 dB for prediction times up to 10 ms; for longer prediction times the advantage is

less pronounced as the performance of both predictors is degraded.

3.6 Conclusion

A survey of widely available, low-cost oscillators shows two distinct types of shape

for the frequency domain characteristic of phase noise performance. For oscillators

exhibiting a phase noise density similar to that of a PLL synthesizer architecture, the

traditional two-state model yields suboptimal performance in phase tracking and pre-

diction. The proposed three-state model is shown to provide up to 3 dB improvement

in MSE of prediction.
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Chapter 4

Wireless Power Transfer With

Simultaneous Distributed

Beamforming Using One-bit

Feedback

In this chapter three different rules are introduced to make the maximum possible

power delivery to a cluster of receive nodes in a distributed reception scenario. These

three rules are, Unanimous, Majority and Summation rules. The Unanimous rule

updates the transmitters’ phases if all the receive nodes receive higher power than

the previous time slot. While, the phase update happens in the Majority rule if more

than half of the nodes are shown improvement in their received power. The third one

or Summation rule updates the transmitters’ phases if sum of the received power by

all the nodes has improved compared to the previous time slot. Performance of these

proposed rules are measured and compared against each other and it is shown that

among these three, the Summation rule has a better performance of about 1.45 dB

and 0.23 dB over Unanimous and Majority rules respectively. Also, the problem of
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maximizing the received weighted sum power is introduced and a solution for that is

given.

4.1 Introduction

A wireless transmission system with multiple transmitters and receivers as illus-

trated in Figure 4.1 is considered here. This system includes N number of distant

transmitters which send their signals to a receive cluster with M number of receivers.

Each node in the cluster measures the power or the Received Signal Strength (RSS)

of the received signal and compares that to the previous received RSS and determines

if the received power has increased or not. These decisions are then exchanged over

a wireless local area network between the nodes inside the cluster using the methods

in [32,46,47,49] and based on one of the proposed rules in this paper a final decision

is made and the result is sent back to the transmitters through a one-bit feedback

which they use to adjust their phases and enhance their beamforming.

Figure 4.1: A wireless transmission system with multiple receivers and one-bit
feedback

Wireless power transfer is one of the topics that is gaining more attention in the

recent years especially by rapid expansion of mobile and wearable devices and also

wireless sensor networks which they all have one problem in common and that is their

limited power resources and the need to be recharged frequently using a power supply

73



and usually by wire. Most of these application consists of one or more transmitters

with multiple antennas and only one receiver, so most of the research done in this

area are focused on single receiver networks. For example in [62] a new channel

training algorithm has been proposed to achieve optimal design of transmit signals in

networks with multiple transmitters and single receiver. In [63] distributed adaptation

by transmitters have been used to achieve phase alignment using only one-bit feedback

from the receiver indicating if the received power has increased or decreased, where

then, the transmitters update their phases by a small random amount after receiving

the feedback at each iteration. This paper uses the method described in this work

and also [64] by assuming multiple receivers and proposes three different decision

rules to decide if the received power has been improved or declined at the receive

cluster. There are a number of other papers that have studied the concept of having

multiple receivers but they have used a different approaches which mostly consists of

channel state information (CSI) calculation and decision making in the transmitter

side. A channel learning method using an optimization technique called analytic

center cutting plane method (ACCPM) that only requires one-bit feedback from each

receiver has been proposed in [65,66]. Four protocols have been introduced for wireless

sensor networks with multiple mobile chargers by [67] which are distributed and use

limited information about the network. From these four, two of them use distributed,

limited knowledge coordination and the other two perform centralized, global network

knowledge coordination and charging.

The main contribution of this paper is that, three new simple rules for decision

making about the received power in the receive cluster are proposed and since these

rules are simple and fast to perform they do not require too much processing power

and energy from the nodes and they can be implemented at the receiver side. Also, the

final decision about the received power level is sent back with a single one-bit feedback

signal, transmitted by the receive node which has the highest received power.

The rest of this chapter is organized as follows. Section 4.2 describes the system
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model that is used here and defines the transmitted signal, channel characteristics

and received signal strength or power at the receivers. In Section 4.3 the problem

of maximizing received power is explained and in Section 4.4 the solution to this

problem is discussed. Section 4.5 talks about proposed decision making models and

how they work and how feedback generation and phase update process are done. In

Section 4.7 the results of simulation of implementing these rules in the corresponding

defined scenario is presented and in Section 4.8 the conclusions are stated.

4.2 System Model

We assume there are N number of distant transmitters each with single antenna.

The channel between each transmitter and receiver is assumed to be complex Gaussian

and is fixed for all iterations but it is a different value for each transmitter. At the

receiver side, we have M number of receivers in a receive cluster which is assumed to

be fully connected using a reliable wireless or wired local area network. The channel

between each transmitter and receiver is defined as below,

hn,m ∼ CN (0, 1) (4.1)

Where hn,m with n ∈ {1, . . . , N} and m ∈ {1, . . . ,M} is the channel between trans-

mitting node n and receiving node m. Magnitudes of these channels, an,m are nor-

malized and their phases are shown with φn,m.

At the beginning of transmission each transmitting node picks a random phase

from a uniform distribution between [−π, π] and uses this phase to send the signal to

the receiver over the channel. The transmitted signal is

xn,k = ejθn,k (4.2)

Where θn,k is the phase of the nth transmitter at time slot k. Also, it is assumed

that the magnitude of transmitted signal is one. All the nodes inside the receive
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cluster receive these signals and then their RSS are measured at each node locally.

The received signal at each node in the receive cluster is

ym,k =
N∑
n=1

hn,mxn,k =
N∑
n=1

an,me
j(θn,k+φn,m) (4.3)

and the received power at each node is defined by

Pm,k = |ym,k|2 (4.4)

These measured values are then shared among all the nodes and based on one of

the decision rules introduced in 4.5, it is decided if the received power has increased

inside the cluster or not. If it is increased a one-bit feedback of one is sent to the

transmitters otherwise a zero would be sent as the feedback. For each of these rules,

it is assumed that, the feedback bit is transmitted by the node that has received the

highest power in that time slot.

4.3 Problem Setup

In this section we discusses the basic problem setup for simultaneous distributed

beamforming and then we provide some 3 transmitter results. Let N and M cor-

respond to the number of transmitters and receivers, respectively. We assume we

have single-path channels from each transmitter to each receiver. Let the path length

in meters from transmitter n to receiver m be denoted as dn,m. Then the time of

flight from transmitter n to receiver m is τn,m = dn,m/c, where c is the speed of light.

Assuming far field conditions hold such that we can use Friis’ equation with isotropic

antennas, we can write the gain of the channel from transmitter n to receiver m as

an,m =
λ

4πdn,m
, (4.5)
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where λ = c/fc is the wavelength at carrier frequency fc. Hence, the impulse response

of the channel from transmitter n to receiver m can be written as

gn,m = an,mδ(t− τn,m)

=
λ

4πdn,m
δ(t− τn,m). (4.6)

Suppose transmitter n transmits a constant complex baseband signal given as xn(t) ≡

ejθn on carrier frequency fc. Then the baseband received signal at receiver m from

transmitter n can be written as

rn,m = an,me
j(θn−ωcτn,m), (4.7)

where ωc = 2πfc. Hence, the complex baseband channel can be written as hn,m =

an,me
−jφn,m where φn,m = ωcτn,m.

The transmitters adjust their phases θn to achieve a particular beam pattern. The

power of the received signal at receiver m can be written as

ρm =

∣∣∣∣∣
N∑
n=1

hn,me
jθn

∣∣∣∣∣
2

. (4.8)

If we assign a positive weight wm to receiver m, we can define the weighted sum

received power as

Γ =
M∑
m=1

wmρm

=
M∑
m=1

wm

∣∣∣∣∣
N∑
n=1

hn,me
jθn

∣∣∣∣∣
2

. (4.9)

Given any weighting {w1, · · · , wm} and channels {h1,1, · · · , hN,M}, we can formulate

an optimization problem to maximize the weighted sum received power as

Γ∗ = max
{θ1,...,θn}

Γ. (4.10)

This, of course, will not have a unique solution for two reasons:
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• Adding or subtracting the same phase from all θn does not affect (4.8). Hence,

we can factor out θ1 and consider only the phase differences with respect to θ1.

To do this, define

∆n = θn − θ1. (4.11)

Of course, ∆1 = 0. Then we can rewrite (4.8) as

ρm =

∣∣∣∣∣
N∑
n=1

hn,me
j∆n

∣∣∣∣∣
2

. (4.12)

This means that the optimization problem can be reduced by one parameter

and can be rewritten as

Γ∗ = max
{∆2,...,∆n}

Γ, (4.13)

with

Γ =
M∑
m=1

wm

∣∣∣∣∣
N∑
n=1

hn,me
j∆n

∣∣∣∣∣
2

. (4.14)

• Adding or subtracting multiples of 2π from any of the phase difference terms

∆n results in the same solution. Hence, it makes sense to constrain the search

to −π < ∆n ≤ π for all n = 2, · · · , N . Remember ∆1 = 0.

4.4 Problem Solution

The problem setup that we have is as follow and the goal is to maximize the

received weighted sum power Γ,

Γ =
M∑
m=1

wm

∣∣∣∣∣
N∑
n=1

hn,me
j∆n

∣∣∣∣∣
2

. (4.15)

where we wanted to find a Γ∗ such that,

Γ∗ = max
{∆2,...,∆n}

Γ (4.16)
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where −π ≤ ∆n ≤ π for n = 2, . . . , N and ∆1 = 0.

We can rewrite the Γ as following and consider it as a multivariate problem,

Γ =
M∑
m=1

wm

∣∣∣∣∣∣h1,me
j∆1 + h2,me

j∆2 + · · ·+ hN,me
j∆N︸ ︷︷ ︸

Km

∣∣∣∣∣∣
2

. (4.17)

since we know that hn,m = an,me
−jφn,m , then we can write Km as,

Km = a1,me
j(−φ1,m+∆1) + a2,me

j(−φ2,m+∆2) + · · ·+ aN,me
j(−φN,m+∆N ). (4.18)

If we want to maximize the Γ with respect to a desired ∆n for example for n = k,

we have to take the derivative of Γ with respect to ∆k and set it equal to zero while

assuming the other ∆n with n 6= k are constant. For this reason we can rewrite Km

as follow,

Km =

 Am, for all n 6= k︷ ︸︸ ︷
a1,m cos(−φ1,m + ∆1) + · · ·+ aN,m cos(−φN,m + ∆N) +ak,m cos(−φk,m + ∆k)


+ j

 Bm, for all n 6= k︷ ︸︸ ︷
a1,m sin(−φ1,m + ∆1) + · · ·+ aN,m sin(−φN,m + ∆N) +ak,m sin(−φk,m + ∆k)


= Kr,k,m + jKi,k,m.

(4.19)

where

Kr = Am + ak,m cos(−φk,m + ∆k). (4.20)

Ki = Bm + ak,m sin(−φk,m + ∆k). (4.21)

So, then we would have,

∂Γ

∂∆k

=
M∑
m=1

wm
∂

∂∆k

|Km|2 . (4.22)

Which results in,

∂

∂∆k

|Km|2 =
∂

∂∆k

(
K2
r +K2

i

)
= 2Kr

∂Kr

∂∆k

+ 2Ki
∂Ki

∂∆k

. (4.23)
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Therefore,

∂

∂∆k

|Km|2 =− 2Krak,m sin(−φk,m + ∆k) + 2Kiak,m cos(−φk,m + ∆k)

=− 2Amak,m sin(−φk,m + ∆k)− 2a2
k,m sin(−φk,m + ∆k) cos(−φk,m + ∆k)

+ 2Bmak,m cos(−φk,m + ∆k) + 2a2
k,m cos(−φk,m + ∆k) sin(−φk,m + ∆k)

=− 2Amak,m sin(−φk,m + ∆k) + 2Bmak,m cos(−φk,m + ∆k).

(4.24)

Replacing the results from (4.24) into (4.22) we get,

∂Γ

∂∆k

=
M∑
m=1

wm (−2Amak,m sin(−φk,m + ∆k) + 2Bmak,m cos(−φk,m + ∆k)) = 0.

(4.25)

Which results in,

M∑
m=1

wm (Amak,m sin(−φk,m + ∆k)) =
M∑
m=1

wm (Bmak,m cos(−φk,m + ∆k)) . (4.26)

If we expand the term inside sin() and cos() functions we get,

M∑
m=1

PA,k,m︷ ︸︸ ︷
wmAmak,m sin(−φk,m) cos(∆k) +

M∑
m=1

QA,k,m︷ ︸︸ ︷
wmAmak,m cos(−φk,m) sin(∆k)

=
M∑
m=1

PB,k,m︷ ︸︸ ︷
wmBmak,m cos(−φk,m) cos(∆k)−

M∑
m=1

QB,k,m︷ ︸︸ ︷
wmBmak,m sin(−φk,m) sin(∆k)

(4.27)

After simplification we have,

M∑
m=1

Pk,m︷ ︸︸ ︷
(PB,k,m − PA,k,m) cos(∆k) =

M∑
m=1

Qk,m︷ ︸︸ ︷
(QA,k,m +QB,k,m) sin(∆k) (4.28)

Therefore, the critical points for Γ function would be,

tan(∆k) =

∑M
m=1 Pk,m∑M
m=1 Qk,m

→ ∆k = tan−1

(∑M
m=1 Pk,m∑M
m=1 Qk,m

)
(4.29)
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To find out the values of ∆ks we have to replace the Pk,m and Qk,m by their content

as a function of ∆n, so for Pk,m we would have

Pk,m = PB,k,m − PA,k,m

= wmBmak,m cos(−φk,m)− wmAmak,m sin(−φk,m)

= wmak,m(Bm cos(−φk,m)− Am sin(−φk,m))

(4.30)

and for Qk,m,

Qk,m = QA,k,m +QB,k,m

= wmAmak,m cos(−φk,m) + wmBmak,m sin(−φk,m)

= wmak,m(Am cos(−φk,m) + Bm sin(−φk,m))

(4.31)

Now we have to replace he value for Am and Bm from (4.19) into the (4.30) and

(4.31). By doing so, for Pk,m we get,

Pk,m = wmak,m


 N∑

n=1
n6=k

an,m sin(−φn,m + ∆n)

 cos(−φk,m)

−

 N∑
n=1
n6=k

an,m cos(−φn,m + ∆n)

 sin(−φk,m)


= wmak,m

 N∑
n=1
n6=k

an,m (sin(−φn,m + ∆n) cos(−φk,m)− cos(−φn,m + ∆n) sin(−φk,m))


= wmak,m

 N∑
n=1
n6=k

an,m sin(−φn,m + φk,m + ∆n)

 (4.32)
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and for Qk,m we get,

Qk,m = wmak,m


 N∑

n=1
n6=k

an,m cos(−φn,m + ∆n)

 cos(−φk,m)

+

 N∑
n=1
n6=k

an,m sin(−φn,m + ∆n)

 sin(−φk,m)


= wmak,m

 N∑
n=1
n6=k

an,m (cos(−φn,m + ∆n) cos(−φk,m) + sin(−φn,m + ∆n) sin(−φk,m))


= wmak,m

 N∑
n=1
n6=k

an,m cos(−φn,m + φk,m + ∆n)

 (4.33)

Therefore, by replacing (4.32) and (4.33) into (4.29), the ∆k would be

∆k = tan−1


∑M

m=1 wmak,m

(∑N
n=1
n6=k

an,m sin(−φn,m + φk,m + ∆n)

)
∑M

m=1 wmak,m

(∑N
n=1
n6=k

an,m cos(−φn,m + φk,m + ∆n)

)
 . (4.34)

We can further simplify this solution by assuming that phases in the equation (4.14)

are summed to zero so that the vectors are added together like a scalar and give

the maximum summation. So, if we replace hn,m = an,me
−jφn,m in that equation, we

would have

Γ =
M∑
m=1

wm

∣∣∣∣∣
N∑
n=1

an,me
j(∆n−φn,m)

∣∣∣∣∣
2

. (4.35)

Now if we set the phases to zero we would have

∆n = φn,m. (4.36)

By replacing the above result in (4.34) we get

∆k = tan−1


∑M

m=1 wmak,m

(∑N
n=1
n6=k

an,m sin(φk,m)

)
∑M

m=1 wmak,m

(∑N
n=1
n6=k

an,m cos(φk,m)

)
 . (4.37)
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In the range of −π ≤ ∆k ≤ π, each ∆k would have two answers which means

Γ has two critical points where one is minimum and the other is maximum due to

trigonometric structure of Γ. To find out the absolute maximum and minimum over

all ∆ks we have to form the Taylor expansion of the Γ and form the Hessian matrix.

In this case the Hessian matrix would be a diagonal matrix since the second partial

derivatives of the form ∂2Γ
∂∆i∂∆j

= 0 for all i 6= j.

So, to form the Hessian we get another derivative from (4.25) and then we would

have,

∂2Γ

∂∆2
k

=
M∑
m=1

wm (−2Amak,m cos(−φk,m + ∆k)− 2Bmak,m sin(−φk,m + ∆k)) . (4.38)

The results from (4.38) forms the elements on the diagonal of Hessian matrix. Then,

by replacing the values from (4.29) into the Hessian matrix we would be able to find

out the absolute maximum and minimum of received weighted sum power.

For the special case of N = 3, we have only ∆2 and ∆3 to maximize since ∆1 = 0.

To do so, we have to do two steps, the first one is to keep ∆2 as constant and find

the max and min of ∆3, and then the next step is to set ∆3 as constant and solve for

max and min of ∆2.

For the case that ∆2 is kept constant (∆2 = 0), the first and second derivative of

weighted sum power with respect to ∆3 are shown in the Figure 4.2. The points of

zero crossing for the first derivative give us the points on ∆3 axis at which the max

and min happens, and the second derivative plot shows which one of these two are

min and which one is the max.

For the case where ∆3 is kept constant (∆3 = 0), the result is shown in Figure 4.3.

Comparing these two figures with the contour plots that we had for N = 3 (Figure

4.4), we find out that the obtained values for ∆3 and ∆2 (for respective constant ∆2

and ∆3), are consistent with the contour plot.

Based on the problem setup and the results, here we have a multivariate optimiza-
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Figure 4.2: First and second derivative with respect to ∆3 when ∆2 = 0.
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Figure 4.3: First and second derivative with respect to ∆2 when ∆3 = 0.
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Figure 4.4: Contour plots of received weighted sum power vs ∆3 and ∆2.

tion problem which is not convex since its second derivative is not always positive (or

always negative) and it changes its sign, but the above calculations show that in the

range of [−π, . . . π], there are one minimum and one maximum for each variable in

this problem.

4.5 Proposed Decision Making Methods

Based on the received one-bit feedbacks from receivers, three methods are intro-

duced to help decision making in transmitters regarding when and how to update

their phases. These methods are described in more details in the following sections.

A one-bit feedback signal is sent as one if the received power in current iteration is

higher than the previous one, and it is zero otherwise.
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4.5.1 Unanimous Rule

This rule is defined as follow,

db =

1, Pm,k+1 > Pm,k, for all m

0, Otherwise.

(4.39)

Where db is the decision bit at the transmitters and Pm,k is the received power by

receiver m at time k. In this rule, if all the received one-bit feedback signals from

receivers are one, then the decision bit would be one and transmitters update their

phases as described in (4.43), otherwise the phase are updated according to (4.44).

4.5.2 Majority Rule

If this rule is applied at transmitters, the decision bit would be one if majority of

the received one-bit feedback signals are one, and it would be zero otherwise. We can

define the rule as follow,

db =

1, Pm,k+1 > Pm,k, for all m ∈ {1, . . . ,m′}

0, Otherwise.

(4.40)

Where m′ > M
2

is the number of nodes that have an increase in their power.

4.5.3 Summation Rule

If this rule is in effect, receivers sent full feedback signals with the amount of

power they have received, then at the transmitters these feedback signals are summed

together and if the result is higher than the sum power from previous iteration, the

decision bit at transmitter would be one, otherwise it would be zero.

db =

1,
∑M

m=1 Pm,k+1 >
∑M

m=1 Pm,k

0, Otherwise.

(4.41)
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4.6 Phase Update Procedure

At the beginning of transmission, all the transmitters pick up a random phase

from a set of uniformly distributed phases over the range of [−π, π].

θn,k ∼ U [−π, π] (4.42)

Using these phases a common signal is sent by transmitters through N × M

complex Gaussian noiseless channels as defined in (4.1) with normalized magnitude.

At the receive cluster, each node receives the signals from all the transmitting nodes

and calculates the total received power, which is the sum of the power from each

received signal at the place of that node. Then each node generates a one-bit feedback

signal indicating if the received power has increased at the place of that node or not

and these one-bit feedback signals are then sent to the transmitters. In the case of

Summation rule, the whole received power as a full feedback is sent to transmitters

from each node. It is assumed that the feedback signals would reach at all transmitters

without any error. Afterward, based on what are the feedback signals the following

procedure is performed to update the phase at each transmitter.

If based on the received feedback signals and the applicable rule, the decision bit

is one, then all the phases would be updated by adding one small phase perturbation

drawn from a uniformly distributed phases as described below,

θk+1 = θk + δk

δk ∼ U [−απ, απ] (4.43)

Here δk is the vector of generated phase perturbations at time slot k and α < 1 is the

scaling factor that determines how large or small should the perturbation be. With

large values of α the convergence to the steady state power would be faster but it

may cause the algorithm to stuck in a local maximum power rather than the global

maximum achievable power. On the other hand, small values would cause the phase

update process to take much longer time to approach the final value, so a proper
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value should be selected for update process. This perturbation would be kept until a

feedback of zero is received.

If the decision bit is determined to be zero, at the receive cluster, the nodes

would replace their current power reading with the power from previous time slot. At

the transmitters’ side the phase from previous time slot would be updated with the

current phase perturbation and then a new perturbation would be generated. Also,

the phase from previous time slot would replace the current phase as described below,

θk+1 = θk−1 + δk

δk+1 = δnew

Pk = Pk−1

θk = θk−1 (4.44)

After all the necessary updates have been done, a signal with the updated phase

would be sent to the receivers and this process continues until the power reaches to

a steady state level.

4.7 Simulation results

In this section the numerical results of the simulation for each proposed rule is

presented. For the simulation we have assumed N = 10 transmitters and M = 3

receivers. The complex Gaussian channels are generated with zero mean (µ = 0)

and unit variance (σ2 = 1). The initial phases of transmitters are selected from

a uniformly distributed numbers between −π and π. The scaling factor for phase

perturbation distribution range is selected to be α = 1
50

. For each rule the number of

iterations is chosen to be 10,000. The position of the transmitters and receivers are

assumed fixed.

The results for each rule are as follow. For these results to be comparable with

each other, the random number generator has been seeded to a same number for each
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rule’s simulation.

4.7.1 Unanimous Rule Results

As can be seen from Figure 4.5 and also the contour plot of Figure 4.6, in Unani-

mous rule the received power at each node increases by each iteration and reaches to

the maximum achievable power for that node based on the current channel conditions,

and it is expected, since in this rule all the receive nodes should have an increase in

their power for the feedback to be one. In the phase update process as it is expected,

the phases do not converge to the same value since the channel for each transmitter

differs from the others but phase of each transmitter converges to a final value that

results in the best beamforming and maximum power at the receiver side. In this

example, the maximum power is received by the first receiver and it equals 17.78 dB.

4.7.2 Majority Rule Results

In Majority rule, since th decision about the feedback is based on an increase in

the majority of the nodes’ power and not all of them, at each iteration, different set

of receivers get the higher power and as a result the output power plot would be

fluctuating a lot. To make the output for this rule suitable to read and compare,

the received power is averaged over 10 monte-carlo iterations. Figure 4.7 shows these

averaged power for each node in the receive cluster, and Figure 4.8 shows the contour

plot of the received power. It can be seen that in this case it is possible to achieve

higher levels of power compared to Unanimous rule but the received power is not

reaching a constant value as it does in Unanimous rule. For the same reason, the

phases at transmitters do not converge to a constant value and they also have fluc-

tuation from one iteration to another. Here in this example, the maximum power is

received by the third receiver and it equals ≈ 19 dB.
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Figure 4.5: Received power at each node in Unanimous rule over iterations.

4.7.3 Summation Rule Results

Since in this rule the sum of all the received powers are considered, it is possible

to receive a feedback of one while some of the nodes are experiencing loss of power

and that is because the other nodes may have a large increase in their received power

such that it compensates for the loss of the other nodes. As a result, we see that in

Figure 4.9 some receivers show a decrease in their power while at the same time the

other receivers have an increase in their power. Figure 4.10 shows the contour plot

of the received power and it can be seen that the maximum power can be reached

with this rule. Also, due to use of this method, it is possible that at some point the

loss in some nodes become greater than the gain in the other nodes which will cause

a zero feedback to be sent and consequently changes the transmitters’ phase update
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Figure 4.6: Contour plot of the received power in Unanimous rule over all transmitters
phase difference iterations.

process. For the case of this simulation, the maximum power is received by the third

receiver and it equals 19.23 dB.

4.7.4 Effect Of Scaling Factor α On Convergence

The value that is chosen for the scaling factor in phase perturbation can slow

or expedite the convergence process or even causes divergence. To show the effect

of this scaling factor α, a receiver in Summation rule is selected and the effect of

changing the α is demonstrated on that particular receiver. For this purpose, a range

of different values are selected for α and defined as below,

α =
1

n
, n = [10, 50, 100, 150, 200]. (4.45)
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Figure 4.7: Received power at each node in Majority rule over iterations.

The result of implementing these scaling factors is depicted in Figure 4.11. As can

be seen, when α gets smaller the convergence becomes slower, and at some point it

will diverge.

4.7.5 Effect Of Sparsity On Convergence

When the carrier frequency of transmission gets large and wavelength of the signal

gets smaller than the distance between receivers, the array becomes sparse and will

cause Majority and Unanimous rules to stop updating before reaching to optimum

power level, while Summation rule is still able to reach to the optimum power level.

To show this effect, the carrier frequency have been increased to 1 GHz, and the

results of having sparse array for each different rules are shown in Figures 4.12, 4.13
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Figure 4.8: Contour plot of the received power in Majority rule over all transmitters
phase difference iterations.

and 4.14.

4.8 Conclusion

In this chapter we proposed three different rules that can be applied in the receiver

side and we compared their results and efficiencies. Due to their simplicity and easy

implementation, they do not required too much processing power and energy from

the receivers, and compared to other methods, in these proposed rules only a one-bit

feedback signal is sent from each receiver in the receive cluster. As shown in the

results, the Summation rule can achieve a higher received power compared with the

other two rules which is about 1.45 dB and 0.23 dB over Unanimous and Majority
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Figure 4.9: Received power at each node in Summation rule over iterations.

rules respectively. Also it converges to the maximum power faster than the other

two rules. At the end, the effect of having different scaling factors on convergence

speed and also the effect of having sparse array on the performance of each rule

is investigated. The results show that the Summation rule is also more robust to

sparsity compared to the two other rules.
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Figure 4.10: Contour plot of the received power in Summation rule over all transmit-
ters phase difference iterations.
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Figure 4.11: The effect of different scaling factors in received power for one of the
receivers in Summation rule.
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Figure 4.12: Contour of received power in Unanimous rule with sparse array.
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Figure 4.13: Contour of received power in Majority rule with sparse array.

98



Figure 4.14: Contour of received power in Summation rule with sparse array.
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Chapter 5

Summary and Future Work

5.1 Conclusions

In Chapter 2 we investigated the effect of channel estimation error on performance

of distributed reception networks which using hard decisions to exchange information

between receive nodes. In this process we assumed two different modulation schemes

in transmission phase, M -PSK and M2-QAM. We showed that, in case of M -PSK the

performance of the network with distributed reception with both ideal and pseudo-

bemforming techniques reduces only by almost 1.38 dB when QPSK is used for exam-

ple. In M2-QAM transmission this performance degradation is about 0.75 dB when

16-QAM is used, but the interesting outcome of our analysis in either of the cases

is that, the SNR ratio between ideal receive beamforming and pseudo-beamforming

does not depend on the amount of channel estimation error and are identical to the

SNR ratios with no channel estimation error. So, our analysis shows, channel estima-

tion error causes the same amounts of performance degradation in ideal beamforming

and pseudo-beamforming systems despite the fact that the channel estimation errors

manifests themselves quite differently in both systems.

In Chapter 3 a survey of widely available, low-cost oscillators have been performed

which shows two distinct types of shape for the frequency domain characteristic of
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phase noise performance. It has been shown that the traditional two-state model

is not fully capable of doing a good phase tracking and prediction for oscillators

exhibiting a phase noise density similar to that of a PLL synthesizer architecture.

So, we introduced a three-state model which is capable of providing up to 3 dB

improvement in MSE of prediction.

In Chapter 4 we analyzed the concept of wireless power transfer using one-bit

feedback by doing convergence analysis on maximization of weighted sum power re-

ceived at the receivers. Also, we proposed three different methods of decision making

for phase correction at the transmitters based on the received one-bit feedback signals

from receivers. And, at the end, the effect of sparsity in the network is investigated.

5.2 Future Work

One of the areas that can be investigated in the future in the topic of channel

estimation error effect, is having multiple transmitters instead of one in the network

and measuring the performance of the system and effect of additional transmitter on

the overall system performance. In the topic of phase noise prediction of oscillators

one interesting area would be the use of Artificial Intelligence and Machine Learning

in the process of phase noise error estimation and prediction. As a suggestion in

could thought as a time-series prediction using deep learning and neural networks.

In wireless power transfer topic, it would be interesting to see how we can overcome

the effect of sparsity as the transmission frequency increases, since the application

of signals with higher frequencies are increasing and the use of networks with those

set of frequencies are expected to increase in the future. Another possible area to

investigate in this field, is the power compensation due to the loss of connection from

one of the transmitters in the system, especially when the receivers have a minimum

power constraint to remain operable.
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