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Abstract 

 

An innovative artificial immune system (AIS) is proposed herein for structural health 

monitoring (SHM) to ensure the structural integrity and functionality. While satisfactory 

results were obtained by previous AIS schemes, their performance is strongly structural-

parameter-value (SPV) dependent and deviations of SPVs in testing from training due to 

modeling errors and measurement noises significantly deteriorates the AIS’ performance. 

This thesis presents a less SPV-dependent AIS with a three-phase architecture, including 

damage-existence-detection, damage-location-determination, and damage-severity-

estimation, using specially designed feature vectors (FVs) based on structural modal 

parameters. The maximum-relative-modal-parameter-change is used to detect the 

damage’s existence and estimate its severity, and the pattern in normalized-modal-

parameter-change is used to determinate the damage’s location. Comparisons between 

the proposed FVs and their existing counterparts were conducted for 2/3/4-degree-of-

freedom structures to illustrate the superior performance and less SPV-dependence of the 

proposed method, particularly in determining damage location. The proposed AIS was 

tested on a 4-degree-of-freedom model using 440 randomly generated damage conditions 

with a different SPV set per condition. A success rate of 95.23% in the determination of 

damage’s existence and its location was obtained. The trained AIS for the 4-degree-of-

freedom model was further evaluated by a four-story and two-bay by two-bay prototype 

structure used in the benchmark problem proposed by the IASC-ASCE Structural Health 

Monitoring Task Group. Results have shown great potentials of the proposed approach in 

its real-world applications.  
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1 Introduction 

 

This section introduces the two most important concepts in this thesis: the structural 

health monitoring (SHM) and the artificial immune system (AIS). Some previous studies 

in the AIS’ application to SHM tasks are reviewed, from which the topic of this thesis is 

derived. Besides, the major differences between the proposed methodology and the 

conventional ones are also stated in this section. 

 

1.1 Structural Health Monitoring (SHM) 

 

From a coffee machine to the Burj Khalifa (also known as the Burj Dubai, the tallest 

man-made structure (829.8  𝑚) in the world (Burj Khalifa n.d.)), engineering structures 

work as the foundation of our modern world. People rely on these engineering structures 

in almost every aspect of their lives. The reliability of an engineering structure not only 

decides its ability to perform the designed tasks in a expected period of time, but also 

affects the safety of people’s life and property in many occasions. 

 

To ensure this vitally important reliability, health checks for a structure need to be 

performed periodically in its lifespan and also immediately after unexpected events. 

However, conventional approaches for the health checks rely heavily on the expertise and 

experience of professional workers, which makes the health check a time and money 

consuming process. Besides, manual health checks usually interfere with the structural 

functionality, which puts the structure partially or completely out of work when the check 
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is undergoing. In addition its high cost and associated inconvenience, the manual health 

check’s accuracy is significantly influenced by the executor and is susceptible to all kinds 

of human errors. 

 

With the aforementioned disadvantages of the conventional approach for structural health 

checks, the engineering area calls for the development of a technique to monitor the 

structural health condition in an automatic, efficient, and effective fashion. And the 

structural health monitoring (SHM) technique emerges at this demand. 

 

1.1.1 Definition of SHM 

 

Structural health monitoring (SHM) refers to the process of implementing a strategy to 

identify the damage and its status in engineering infrastructures. The damage here can be 

changes in the material and/or geometric properties, boundary conditions and system 

connectivity of a structure (Farrar and Worden 2007). Engineering infrastructures 

include, but are not limited to, beams, trusses, plates, shells and frames, bridges, offshore 

platforms, other large civil engineering structures, aerospace structures, and composites 

(Doebling, et al. 1996). The specific objectives of the SHM systems can be described as 

determining (i) the damage existence, (ii) the damage location, (iii) the damage type, and 

(iv) the damage severity (Worden, et al. 2007). 

 

An effective SHM system is supposed to be capable of detecting the structural damage in 

its early stage, well before catastrophic structural failures that threaten the safety of 
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people’s life and property. With this early knowledge about the damage, timely actions 

can be taken to prevent further developments of the damage, which not only exclude the 

possibility of structure failures, but also reduce the required expense for the structure 

maintenance and repair. 

 

Besides, SHM systems can be invaluable in more dramatic scenarios, such as the 

structural health screening in the aftermath of earthquakes, hurricanes, explosions, and 

many other unexpected destructive events. The information provided by the SHM 

systems can be extremely helpful for the post-event damage assessments and the repair 

priority development. 

 

1.1.2 Development of SHM and Its Application 

 

Because of its benefits and potential in both the routine structure maintenance and the 

quick screening in emergency situations, SHM technique attracts increasing attentions 

from researchers, engineers, and also government officials through its development. 

 

SHM systems aim to automatically evaluate the structural-damage-conditions based on 

the measurements taken actively or passively by sensors. Various methodologies have 

been proposed in the literature. Several classifications of the SHM techniques exist, one 

of which divides the methodologies into two categories: the global methods and the local 

methods. 
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The global methods are able to detect the damage that affects the overall characteristic of 

a structure. They can detect the damage in a wide range of locations in the structure, but 

are usually less competent in determining the damage type and severity. The structural 

modal parameters, such as the natural frequencies and the mode shapes, are usually 

employed as the damage-sensitive-variable in the global SHM methods. Doebling, et al. 

(1996) and Sohn, et al. (2004) presented excellent literature reviews on the global SHM 

methods. 

 

The methods in the other category, i.e. the local methods, are only good at detecting the 

damage that exists in a limited area near the monitoring sensors. On the other side, the 

local methods exhibit preeminent performance in determining the damage type and 

severity, which is not the global methods’ area of expertise. An example of the local 

method is presented by Honarvar, et al. (2013), who successfully took advantage of the 

ultrasonic method to detect a thinning rate as low as 10 µμm year with an uncertainty of 

±1.5 µμm year in industrial piping systems. 

 

The SHM technique has been applied to many structures all over the world to assistant 

the conventional manual structural health checks. For instance, a sophisticated system 

named the Wind and Structural Health Monitoring System (WASHMS) was installed in 

the Tsing Ma, Ting Kau, and Kap Shui Mun bridges to monitor the health conditions of 

these bridges. Besides this, other similar systems have been deployed all across the world, 

including Europe (Casciati 2003), United States of America (Pines and Aktan 2002), and 

China (Ou and Li 2006).  
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1.2 Biological Immune System (BIS) 

 

Human bodies are protected from pathogenic organisms and other invaders by our 

biological immune system (BIS), through a series of processes and reactions named the 

immune response. The immune response involves unnumbered cooperations between 

related cells, tissues, and organs. 

 

Cells involved in the immune response are mainly the white blood cells, i.e. the 

leukocytes, which have two basic types: phagocytes and lymphocytes. Lymphocytes 

allow the BIS to memorize previous invaders, recognize them if they attack again in the 

future, and then destroy them in a much faster fashion than the speed in the first 

encounter. The two kinds of lymphocytes in our bodies are B-lymphocytes and T-

lymphocytes, or simply B-cells and T-cells. 

 

A foreign substance (such as a bacterium or a virus) that invades the body is called an 

antigen, which can be neutralized by a portion of a B-cell named an antibody. When 

immune cells detect new antigens, a primary-immune-response is initiated: B-cells 

having high affinities with this antigen undergo clone and mutation processes to generate 

more B-cells with similar antibodies, which are specialized proteins that can neutralize 

specific antigens. These antibodies react with this antigen and prevent it from harming 

our bodies. 

 

After the invading antigens have been neutralized, some immune cells become memory 
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cells and stay in the immune system with a longer lifespan. If the same kind of antigen 

intrudes again, these memory cells will initiate a secondary-immune-response, which is 

much faster and also more efficient than the primary-immune-response, to eliminate these 

intruders. Details about the basic mechanisms and concepts in the BIS can be found in the 

reference (Lerner and Lerner 2008). 

 

1.3 Artificial Immune System (AIS) 

 

Biological immune system (BIS) makes itself more and more efficient and effective by 

continuously learning from its own experiences, and keeps these “memories” in its 

memory-cell-set. This learning capacity has attracted attentions from a significant 

number of researchers, who explored the possibility of introducing this capacity into 

other disciplines to seek new approaches for the problems that are difficult or even 

impossible to solve using conventional methods. 

 

As one of these explorations’ results, artificial immune system (AIS) is an 

interdisciplinary area relating to immunology, computer science, and engineering 

(Dasgupta, Yu and Nino 2011). AIS takes advantages of the BIS’ learning capacity and 

the computer’ computational power. It advances forward with the development of 

modern computers, and becomes more sophisticated, powerful and affordable in recent 

decades. Many algorithms have been proposed in this area, such as the negative selection 

algorithm (Forrest, et al. 1994), the positive selection algorithm (Nguyen, Nguyen and 

Luong 2013), and the clonal selection algorithm (de Castro and Von Zuben 2002). 



 

 7 

Despite its relative short history (since the mid-1980s), the AIS has been successfully 

applied to many areas, such as data mining (Puteh, et al. 2008), optimization (Vieira, de 

Lima and Jacob 2008), text processing (Albergante 2008), pattern recognition (Li, Wang 

and Wang 2009), anomaly detection (Gadi, Wang and do Lago 2008), and SHM (Chen 

and Zang 2009, 2011 and Xiao 2012). Applications of the AIS in these areas have 

brought new approaches and promised new possibilities to achieve their corresponding 

objectives. With its satisfactory performance in these aforementioned areas, the AIS has 

become an active research area and the related studies are undergoing all around the 

world. 

 

1.4 Previous Work in Literature 

 

This thesis focuses on the artificial immune system’s (AIS’) application in the structural 

health monitoring (SHM) area. As mentioned earlier, researchers have investigated the 

possibility of applying the AIS to SHM tasks, and satisfactory results have been obtained. 

 

Chen and Zang (2009, 2011) proposed a methodology of applying the artificial-immune-

pattern-recognition to the structure damage classification (different damage location and 

severity) task. Detailed discussions about the principles, concepts, and procedures of their 

method are presented in their articles. The principle-component-analysis and the 

multiple-regression-analysis were employed to extract the feature vectors (FVs) from the 

structural dynamic response in the time domain. This method’s performance was 

evaluated for two structures: the benchmark structure proposed by the International 
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Association for Structural Control - American Society of Civil Engineers (IASC-ASCE) 

Structural Health Monitoring Task Group; and a three-story frame provided by Los 

Alamos National Laboratory. Their results showed that their method is suitable for the 

structure damage classification. 

 

Xiao (2012) explored the feasibility of using the natural frequencies and the mode shapes 

as the FVs for the AIS in SHM tasks. The structural damage was detected, located, and 

estimated by the proposed AIS, which was trained using limited known damage 

conditions. Both FVs (formed by the natural frequencies or the mode shapes) occupy 

different positions in the feature space when representing different damage conditions. A 

comparison between the analytical calculation results and the numerical simulation 

results was provided in her thesis. Her method was tested by the simulation data and also 

in a real seismic scenario. Satisfactory results were acquired and analyzed in both cases. 

 

The AIS constructed in these pioneering studies successfully introduced the advantages 

of the biological immune system (BIS) into the SHM area, and achieved promising 

results. Because the AIS derives from the BIS, many concepts and mechanisms in the 

AIS are directly borrowed from the BIS. A comparison is presented in Table 1-1 to 

clarify the differences between the definitions of some frequently used terminologies in 

the BIS and in the AIS for SHM tasks. 
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1.5 Thesis Contribution 

 

As explained earlier, one attractive feature of the biological immune system (BIS) is its 

learning capacity, using which the BIS can continuously evolve itself to be more efficient 

and effective. In the artificial immune system (AIS), this learning process is named as the 

AIS training process. The antigens used in this AIS training process are referred to as 

known antigens, which means the information of the damage conditions represented by 

these antigens are known to the AIS. The AIS learns from these known antigens and 

obtain the ability to recognize unknown antigens, which means the information of the 

damage conditions represented by these antigens are unavailable to the AIS. 

Table 1-1: Comparison between some terminologies used in the BIS and the AIS. 

Terminology Definition in BIS Definition in the AIS for SHM 

Antigen 

A molecular pattern that can 
cause the reaction of the immune 
system, which is usually harmful 
to the human body. 

A data structure that consists of some 
related information about a structural- 
damage-condition. 

Antibody 
A portion of a receptor molecule 
that can bind with a specific 
molecular pattern. 

A data structure that consists of some 
related information about a structural- 
damage-condition. This structure is 
generated mathematically by the AIS. 

Affinity 
A measurement of the binding 
strength between an antigen and 
an antibody. 

A criterion defined to scale the 
relationship between the FV of an 
antigen and the one of an antibody. 

Memory 
Cell 

An immune cell that contains 
information about previously 
invading antigens. It stays in the 
immune system and will initiate 
a secondary-immune-response if 
it recognizes known antigens. 

A member in a database of AIS, which 
stores the data structures of previous 
invading antigens. This database is used 
by AIS to recognize unknown structure 
damage conditions. 

Immune 
Response 

The process taken by the 
immune system to neutralize 
invading antigens. 

The recognition process performed by 
AIS to determine unknown structural 
damage conditions. 
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The AIS training process is a key step in the construction of an AIS. Although the 

aforementioned pioneering studies acquired satisfactory results, they have one common 

issue in the AIS training: The accuracy of the structure-parameter-values (SPVs) used in 

the AIS training (i.e. the training SPVs) significantly affects the overall performance of 

the trained AIS. In other words, the AIS needs accurate training SPVs to guarantee its 

satisfactory performance. 

 

This reliance of the AIS’ performance on its training SPVs’ accuracy limits the AIS’ 

applicability in the SHM area, as a result of the following reasons: If the AIS is trained 

using the simulated measurements, the discrepancy between the training SPVs and the 

SPVs of the structure under monitoring is unavoidable, because a simulation model is 

always a simplification and an approximation of the actual structure. Limited by the 

associated difficulty and cost, an accurate simulation model is usually unavailable in 

many real world scenarios. Because the AIS’ performance depends on the accuracy of the 

training SPVs, this unavoidable discrepancy will deteriorate the AIS’ performance, and 

therefore limit its applicability in the SHM area. 

 

Alternatively, if the AIS is trained by the measurements from an interested physical 

structure, the difference between the SPVs of different structures will prevent this trained 

AIS from being applicable to other structures, due to the reliance of the AIS’s 

performance on its training SPVs. As a result, each structure needs an uniquely trained 

AIS to perform SHM tasks. Also, the AIS needs re-training if the SPVs of the interested 

structure change, which is not uncommon for some structures (e.g. offshore oil platforms). 



 

 11 

To tackle the problem caused by the reliance of the AIS’ performance on its training 

SPVs and extend the AIS’ applicability in the SHM area, an AIS is proposed in this these, 

which differentiates itself from existing methodologies by its SPV insensitive feature 

vectors (FVs) and a three-phase recognition process. 

 

Results from some comparisons, a case study and a benchmark study prove that, the 

performance of the proposed AIS does not obviously rely on its training SPVs. Namely, 

the negative effect of the SPVs change on the AIS’ performance is reduced to an 

unnoticeable level in the proposed AIS. 

 

With this ameliorated characteristic, the proposed AIS can be applied to the physical 

structures if it is trained by the simulation data, or it can be applied to other similar 

structures if it is trained by one physical structure. The proposed AIS in this thesis is 

more applicable to the SHM area with this high tolerance to the discrepancy between the 

training SPVs and the SPVs of the structure under monitoring, compared to the AIS that 

was previously proposed in the literature. 
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2 Construction of Artificial Immune System (AIS) 

 

In the artificial immune system (AIS) applied to structural health monitoring (SHM) tasks, 

one antigen or one antibody is defined to be a data structure representing one structural-

damage-condition. This data structure consists of a damage flag (Is the structure 

damaged?), a damage-location-label (Where is the damage?), a damage-severity-label 

(How serious is the damage?), and a feature vector (FV) containing characteristics of this 

damage (Figure 2-1). Similar with the biological immune system (BIS), antigens are 

external invaders to the AIS, while antibodies are generated by the AIS to react with 

invading antigens. Namely, antigens in the AIS are generated from the dynamic 

responses of structures, while antibodies are mathematically calculated inside the AIS. 

 

The proposed AIS consists of three phases, including damage-existence-detection, 

damage-location-determination, and damage-severity-estimation. Output of a previous 

phase works as the input for its next phase: Phase 2 (damage-location-determination) is 

performed only when Phase 1 (damage-existence-detection) suggests that there is some 

damage in the structure; Phase 3 (damage-severity-estimation) is executed only when 

Phase 2 has determined the damage’s location, which will be used as the known 

information in Phase 3. 

 

Figure 2-1: Data structure of the antigen/antibody in the AIS. 
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Imitating the BIS, the memory-cell-set in the AIS is the core of its learning capacity. The 

training process used to generate a mature memory-cell-set is described as follows: 

Firstly, a number of training antigens are generated from the known structural-damage-

conditions. All entries of a training antigen’s data structure (FV and the labels) are known 

to the AIS. These training antigens interact with an initial antibody set, which is 

randomly created by the AIS, to stimulate these antibodies’ primary-immune-response. 

This interaction process is detailed in the following paragraphs. 

 

For convenience, the FVs of a training antigen and an antibody are denoted by ag and ab, 

respectively. To quantify the intimacy between ag and ab, a variable named the affinity 

value is defined to be 

  aff ab,ag( ) = 1
1+ dis ab,ag( )

 (3-1) 

where dis ab, ag  is the Euclidean distance between ab and ag in the feature space. With 

the stimulation from a training antigen, initial antibodies carry out a clone process. In the 

BIS, antibodies having higher affinity values with the training antigen will generate more 

clones in the clone process. Correspondingly in the AIS, an antibody with a higher 

affinity value calculated from Equation (3-1) will have more clones in this process. Thus, 

the clone number (CN) of an antibody under stimulation is calculated using 

 CN = round CR ⋅aff ab,ag( )( )  (3-2) 

where CR is a pre-specified clone rate and round(∙) is a function that returns the integer 

nearest its argument. 
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The cloned antibodies undergo a mutation process, which is intended to increase the 

diversity of the antibody set and possibly generate antibodies having higher affinity 

values with the training antigen. To be consistent with the principles in the BIS, 

antibodies having higher affinity values with the training antigen experience smaller 

mutation extent. Therefore the mutation process is defined by 

 abm = ab +MR ⋅δ  (3-3) 

where ab! is the FV of a mutated antibody (The subscript “m” stands for the word 

“mutation”), δ  is a standard normal random variable having the same dimensional 

structure with ab, and MR is the mutation rate, which is defined as 

 MR = 1− aff ab,ag( ).  (3-4) 

 

Following the clone and mutation processes, the affinity values between all antibodies 

and the training antigen are calculated using Equation (3-1). Antibodies with an affinity 

value higher than a pre-specified candidate-selection-threshold (CST) are sifted as the 

candidate-memory-cells (CMCs), and their damage locations are labeled using the 

damage-location-label of the training antigen. Afterwards, these candidates are 

introduced into the existing memory-cell-set one-by-one. It is notable that the memory-

cell-set is empty at the very beginning of the training process. 

 

For one candidate-memory-cell, if there is no existing memory cell having the same 

location label with it, it will be injected into the memory-cell-set directly. Otherwise, if 

there are memory cells having the same location label with it, the affinity values between 

this candidate and these memory cells will be calculated (Equation (3-1)). If the 
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maximum of these affinity values is lower than a pre-specified candidate-injection-

threshold (CIT), this candidate will be injected into the memory-cell-set. If not, this 

candidate will be discarded. This process repeats for every candidate. The AIS’ reaction 

to a training antigen ends when all candidate-memory-cells have been introduced into the 

memory-cell-set. This process is schematically described in Figure 2-2. The AIS training 

process finishes when all training antigens have gone through this interaction process. At 

this point, the AIS’ memory-cell-set is named as the mature-memory-cell-set. 

 

The mature-memory-cell-set is used by the AIS in Phase 2 to determinate the damage’s 

location of an unknown structural-damage-condition, in which the unknown antigen 

interacts with memory cells and binds with one selected-memory-cell that has the highest 

affinity value with it. The unknown antigen is labeled using the damage-location-label of 

the selected-memory-cell. Besides Phase 2, the AIS also needs Phase 1 and Phase 3 to 

determinate the damage’s existence and severity, where the maximum-relative-modal-

parameter-change (MRMPC) is used. The MRMPC’s relationships with the damage’s 

severity are built for all damage’s locations. In Phase 1, the unknown condition will be 

labeled as “damaged” if the MRMPC is bigger than a pre-specified threshold. And in 

Phase 3, the damage’s severity is estimated using its relationship with the MRMPC and 

the information of the damage’s location. 

 

After the mature-memory-cell-set and the relationships between the MRMPC and the 

damage’s severity are obtained, this AIS is trained and ready to be applied to SHM tasks 

to classify new-coming unknown structural-damage-conditions.  
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Figure 2-2: Schematic illustration of the AIS’ reaction process to a training antigen. 
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3 Feature Vector 

3.1 Introduction to Feature Vector 

 

The feature vector (FV) in this context refers to a mathematical expression of the key 

characteristics of a structural-damage-condition, and therefore is an important component 

in the data structure of an antigen/antibody. AIS uses FVs to recognize different 

structural-damage-conditions. Due to its significance, the performance of the FV affects 

the overall performance of the AIS to a significant extent. 

 

Following parts in this section compares the performance of the proposed FV with its 

conventional counterpart, both of which are based on structural modal parameters. Their 

performance is evaluated by the extent of the separation between FVs representing 

different conditions, and the concentration of FVs standing for the same condition in the 

feature space. 

 

The modal parameters are functions of the physical properties (such as mass and 

stiffness) of the structure. Changes in the physical properties, as a result of damage, will 

cause changes in the modal parameters (Doebling, et al. 1996). This dependence of modal 

parameters on physical properties attracts many researchers to use modal parameters as 

the damage-sensitive-variable for SHM techniques. And many techniques have been 

proposed to extract modal parameters from the structural dynamic responses. 
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In the previous study about the AIS’ application in SHM tasks, modal parameters are also 

employed to form FVs (Xiao 2012). However, modal parameter values heavily rely on 

the structural-parameter-values (SPV). As a result, the FVs formed by modal parameters 

are also profoundly dependent on specific SPV. The limitations and disadvantages caused 

by this dependence have been discussed in Section 1.5. 

 

In this thesis, FVs for the AIS are proposed to be formed using the pattern in modal-

parameter-change, instead of using the modal parameters directly (conventional 

approach). Comparisons are made between the proposed and the conventional approaches 

to construct FVs in the subsequent parts of this section. Results suggest that the FVs 

formed in the proposed method are less dependent on the SPV and the damage severity, 

while at the same time, more sensitive to the damage location, which makes them much 

more appropriate for the damage-location-determination in SHM tasks. 

 

3.2 Simulation Setup 

 

Performance of the proposed FVs and the ones is compared in three structure models, 

including a 2-degree-of-freedom (2-DOF), a 3-degree-of-freedom (3-DOF), and a 4-

degree-of-freedom (4-DOF) structure model. These three models are simplified to the 

2/3/4-DOF mass-spring-damping model, respectively. These structure models and their 

corresponding simplified models are illustrated in Figure 3-1 (𝑛 is the number of DOF (2, 

3, or 4 in this thesis)). 
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The governing equation for the 𝑛-DOF mass-spring-damping model in Figure 3-1 is 

  M!!X +C !X + KX = F  (4-1) 

where 

 

M =

m1 0 ! 0
0 m2 ! 0
" " # "
0 0 ! mn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

and 

 

K =

k1 + k2 −k2 0 ! 0 0
−k2 k2 + k3 −k3 ! 0 0
0 −k3 k3 + k4 ! 0 0
" " " # " "
0 0 0 ! kn−1 + kn −kn
0 0 0 ! −kn kn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

are the system’s mass and stiffness matrices, respectively. 

 
X = x1 x2 ! xn⎡

⎣
⎤
⎦
T
 and 

 
F = f1 f2 ! fn⎡

⎣
⎤
⎦
T

 

are the story displacement vector and the external force vector, respectively. 𝑥! and 𝑓! are 

the displacement and the external force on the  𝑖-th story, respectively. 

 

Figure 3-1: 𝑛-DOF chain structure and its mass-spring-damping model. 
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Rayleigh damping is assumed as 

 C =αM + βK  (4-2) 

where 𝛼 and 𝛽 are pre-specified parameters. 

 

Simulations are performed using the fourth-order Runge-Kutta (RK4) algorithm with 

MATLAB. Non-zero initial displacement condition is used to excite the structure into 

free vibrations. The dynamic response of the structure (displacement and velocity of each 

story) is recorded up to 30s with the sampling rate of 1000Hz. Then the fast Fourier 

transform (FFT) is performed to transfer the first story displacement data from the time 

domain to the frequency domain, from where the modal parameters, including the natural 

frequencies and the mode shape information, are extracted. 

 

There are two points need attention: 1) In this thesis, modal parameters are extracted 

from the structural dynamic response in free-vibrations. However, the forced-vibration is 

more frequently used in real-world scenarios. The free-vibration is used herein because 

the modal parameter extraction from dynamic response is easier and also more accurate 

in the free-vibration situation. The focus of this thesis is the development and the proof-

of-concept demonstration of the proposed methodology. Issues related to the more 

realistic and more complicated excitation methods are out of this thesis’ scope, and need 

to be investigated in future studies. 2) Only the displacement data of the 1st story is used 

to extract modal parameters for the proposed AIS. In this way, sensors on one single 

story (the 1st story) are sufficient for the AIS. Generally, a method with less demanding 

requirement has better feasibility and applicability in real-world scenarios. 
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To simulate different damage on a story, the stiffness value of this story is reduced to 

different extents. In this thesis, damage is assumed to be present on only one of the 

stories (single-damage-situation), which means only one stiffness value is reduced in 

each damage condition. 

 

3.3 Performance Comparison of Feature Vectors 

 

In this subsection, natural frequencies and mode shape information are employed 

separately as the damage-sensitive-variable to build FVs. FVs are constructed using the 

conventional approach and also the proposed approach. Comparisons are made between 

the conventional FV and the proposed one. 

 

3.3.1 Natural Frequency and Pattern in Natural Frequency Change 

 

In order to perform the comparison, the FVs are first formed in the conventional 

approach by the natural frequencies directly, according to the following formula: 

 
 
FV = f1 f2 ! fn⎡

⎣
⎤
⎦
T

 (4-3) 

where 𝑓! (𝑖 = 1, 2,… ,𝑛.𝑛 is the number of natural frequencies considered) is the 𝑖-th 

natural frequency (arranged from the lowest to the highest) acquired from the structural 

dynamic response. 
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The proposed approach to construct FVs based on changing patterns is derived in 

following sections, after which comparisons are carried out with the 2/3/4-DOF structure 

models. 

 

3.3.1.1 2-DOF Structure Model 

Simulation Parameter 

 

In this part, the 2-DOF chain structure and its corresponding 2-DOF mass-spring-

damping model are employed for simulations. The SPV sets used for this model are 

partially listed in Table 3-1. 

 

The “original set” in Table 3-1 is selected based on (Ellis and Bougard 2001) and (Xiao 

2012). And the “mutated set” in Table 3-1 is generated by adding random deviations, 

which are within the range of 15%, to the “original set”. Employing mathematical 

expressions, the SPV values in the “mutated set” is calculated using following equations: 

 mi,new = mi,original +15%×mi,original ×δ  (4-4) 

 ki,new = ki,original +15%× ki,original ×δ  (4-5) 

 ci,new = ci,original +15%× ci,original ×δ  (4-6) 

where 𝑖 = 1, 2,… ,𝑛.𝑛 is the number of structural DOF. 𝑚!,original, 𝑘!,original, and 𝑐!,original 

Table 3-1: SPV sets used for the 2-DOF structural model (incomplete). 

Name Mass (10!kg) Stiffness (10! kg s!) Damping 
𝑚! 𝑚! 𝑘! 𝑘! 𝛼 (10!!s!!) 𝛽 (10!!s) 

Original Set 2.50 2.50 3.00 2.50 2.00 1.50 
Mutated Set 2.84 2.49 3.27 2.23 1.95 1.70 
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are the values in the “original set”, and 𝑚!,new, 𝑘!,new, and 𝑐!,new are the values in a new 

generated SPV set (the “mutated set” in this case). 𝛿 is a uniformly distributed random 

number generated by MATLAB and 𝛿 ∈ −1, 1 . 

 

The SPV sets for the 3-DOF and 4-DOF structural models are selected and generated in 

the same fashion. This process will not be explained again in their sections to avoid 

repetitions. Other simulation parameters such as the calculation algorithm and the 

measurement sampling rate have already been described in Section 3.2. 

 

Feature Vector Performance 

 

The natural frequencies of the 2-DOF structure are extracted from simulated dynamic 

responses, which is obtained with the previously described simulation parameters and the 

“original set” in Table 3-1.  

 

The FVs are first constructed using natural frequencies directly (conventional approach, 

Equation (4-3) for 𝑛 = 2). The feature space with these conventional FVs is plotted in 

Figure 3-2. In Figure 3-2, black, red, and blue colors are used to denote the FVs 

representing “healthy”, “1st story damage”, and “2nd story damage” conditions, 

respectively. The “healthy” condition is emphasized by a star mark in the figure. The 

number annotated beside a point in Figure 3-2 (b) is the damage severity of the damage 

condition represented by that specific point. For all other following figures in this thesis, 
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the implications of the colors and the numbers near points are the same as in Figure 3-2, 

and therefore will not be explained again unless necessary. 

 

Figure 3-2 shows that a FV gets closer to the “healthy” point when the damage severity 

of the condition represented by it becomes smaller, no matter where the damage location 

is. The distance between FVs from different damage locations are not significant, 

compared to the distance between FVs from the same damage location. For example, the 

distance between the “10% damage on the 1st story” and the “10% damage on the 2nd 

  

 (a) (b) 

Figure 3-2: Feature space of the 2-DOF model with conventional FVs in one SPV set. (a): 

original graph; (b): graph with annotations. 
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story” is smaller than the distance between the “10% damage on the 2nd story” and the 

“20% damage on the 2nd story”. This distribution of FVs in the feature space is not 

desirable for AIS, because AIS discriminates different damage conditions by the 

distinctness of their FVs. The adjacent positions of the FVs from different damage 

locations increase the difficulty for AIS to distinguish one damage location from another. 

 

In contrast to the FVs formed by natural frequencies directly, an approach of forming 

FVs by the pattern in natural-frequency-change is proposed as a more preferable option 

for the AIS in SHM tasks. To reveal this pattern, vectors are drawn from the “healthy” 

point to different “damaged” points in the feature space (Figure 3-3). 

 

Figure 3-3: Feature space of the 2-DOF model with conventional FVs in one SPV set. 

Arrows are drawn from the “healthy” point to damaged points. 
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It is shown in Figure 3-3 that the direction and magnitude of a vector (arrow) are decided 

by the damage location and severity of its “ending point”, respectively. In other worlds, 

the pattern in natural-frequency-change with different damage can be summarized as: 

Damage moves the FV away from the “healthy” position in the feature space. The 

direction of this movement is decided by the damage location. While the distance of this 

movement is controlled by the damage severity. Taking advantage of this pattern in 

natural-frequency-change, directions and magnitudes of these arrows are used for the 

damage-location-determination (Phase 2) and the damage-severity-estimation (Phase 3), 

respectively. 

 

To extract the direction of arrows in the feature space, a variable named the normalized 

frequency change (NFC) is defined as follows: 

 
 
NFCi =

Δi

Δ1
2 + Δ2

2!+ Δn
2

 (4-7) 

where 

 Δi = fhealthy, i − fi  

where 𝑖 = 1, 2,… ,𝑛 (𝑛 is the number of natural frequencies considered). 𝑓!  is the 𝑖-th 

natural frequency, and 𝑓healthy,  ! is the value of the 𝑖-th natural frequency in the healthy 

condition. With the NFC, the proposed FVs are constructed in the following format: 

 
 
FV = NFC1 NFC2 ! NFCn

⎡
⎣

⎤
⎦
T
. (4-8) 

According to this new definition, FVs are constructed using simulated dynamic responses 

of the 2-DOF structure model in different damage conditions with the “original set” in 
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Table 3-1. The feature space with these FVs is plotted in Figure 3-4. Compared with 

Figure 3-2, FVs representing the same damage location in Figure 3-4 are better clustered, 

and the FVs from different damage locations are better separated. 

 

 

(a) 

 

(b) 

Figure 3-4: Feature space of the 2-DOF model with proposed FVs in one SPV set. (a): 

original graph; (b): graph with annotations. 
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Since AIS discriminates different damage conditions based on their characteristic FVs, it 

is apparently easier for AIS to correctly recognize different damage locations with this 

better separation between FVs from different damage locations in Figure 3-4. In brief, the 

characteristics of FVs in Figure 3-4 are more desirable from the perspective of AIS in 

SHM tasks, compared with the ones in Figure 3-2. 

 

In addition, one point should be noted that the “healthy” point in Figure 3-2 disappears in 

Figure 3-4. The reason is that, the NFC is defined to be the normalized difference 

between frequency values in “healthy” and damaged conditions (Equation (4-7)). For the 

“healthy” condition itself, this difference will become zero, and therefore cannot be 

normalized using Equation (4-7) or plotted in Figure 3-4. 

 

Because the NFC definition does not include the “healthy” condition, FVs formed by 

NFCs can only be used to instances that are known to have damage somewhere in the 

structure. Therefore, a damage existence detection phase is required before the damage 

location determination phase. Also because the NFC definition, which only considers the 

direction information of arrows drawn in Figure 3-3, another damage severity estimation 

phase employing the arrows’ magnitude information is added after the damage location 

determination phase. These three phases of the proposed AIS will be demonstrated in 

later sections. 
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Structure-Parameter-Value Variation 

 

As functions of the structural physical properties, structural natural frequencies change 

correspondingly with the SPV changes. FVs based on natural frequencies also change 

their positions in the feature space with the change in SPV. As explained earlier, the 

sensitivity of FVs to the SPV change limits the applicability of the AIS in the SHM area. 

 

To evaluate and compare the effects of the SPV change on the conventional FVs and the 

proposed FVs, the dynamic responses of the 2-DOF structure model in different damage 

conditions were simulated using two different SPV sets (the “original set” and the 

“mutated set”) in Table 3-1. And natural frequencies of the structure model in different 

damage severities with these two different SPV sets are extracted from simulation results. 

 

Using the conventional approach, FVs are constructed using natural frequencies directly, 

according to Equation (4-3). The feature space with theses FVs is plotted in Figure 3-5. 

In Figure 3-5 and all following figures, points and circles are used to denote the FVs 

generated with the “original set” and the “mutated set” in Table 3-1 (or other 

corresponding tables), respectively. 

 

It is shown clearly in Figure 3-5 that, the SPV change significantly affect the locations of 

FVs in the feature space, which are constructed from natural frequencies directly. The 

FVs representing “2nd story damage” (“original set”) mix with the ones from “1st story 

damage” (“mutated set”). Due to this mixture, the challenge faced by the AIS in the 
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damage-location-determination task has been significantly exacerbated, which is 

evidently not desirable. 

 

In contrast to the situation in Figure 3-5, FVs constructed by the changing pattern (NFC) 

exhibit desirable characteristics. The NFCs of the 2-DOF structure under these two SPV 

sets (Table 3-1) are acquired from the simulated dynamic responses using Equation (4-7), 

and are then employed to form FVs according to Equation (4-8). It is notable that, the 

proposed FVs are calculated using the healthy natural frequencies as the reference. Thus 

for a new SPV set, the healthy natural frequencies under this SPV set have to be known, 

in order to calculate the proposed FVs for damage conditions with this SPV set. The 

feature space with the proposed FVs is shown in Figure 3-6. 

 

In Figure 3-6, the positions of FVs formed by the NFCs are not obviously affected by the 

SPV difference. More specifically, even though there are two different SPV sets in Figure 

3-6, FVs representing the same damage location are still clustered together, and the ones 

from different damage locations are still well separated. This suggests the proposed FV is 

less dependent on the SPV than the conventional one. Because of this less, the trained 

AIS using the proposed FV will be able to maintain satisfactory performance, even when 

there is a discrepancy between the training SPV and the SPV of the structure under 

monitoring. Therefore, the proposed FVs are desirable and superior for the AIS in SHM 

tasks, compared to FVs formed in conventional approaches. 

  



 

 31 

 

Figure 3-5: Feature space of the 2-DOF model with conventional FVs in two SPV sets. 

 

  

 

Figure 3-6: Feature space of the 2-DOF model with proposed FVs in two SPV sets. 
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Structure-Parameter-Value Uncertainty 

 

Previous comparisons suggest that, the proposed FVs, which are formed by changing 

patterns, are more suitable for the AIS in SHM tasks than the conventional FVs, which 

are formed by natural frequencies directly. However, the previous comparisons are based 

on two specific SPV sets: the “original set” and the “mutated set” in Table 3-1. A study 

with more SPV sets is needed to testify that the superiority of the proposed FVs is not an 

exception caused by specific SPVs. Therefore, the “original set” in Table 3-1 is used as 

the nominal SPV set. 300 more SPV sets are generated by this nominal set with a 15% 

uncertainty for each value in this set (Equation (4-4) through Equation (4-6)). 

 

With these 300 SPV sets and 11 damage conditions per SPV set (5 for each damage 

location and one for the “healthy”), there are 3300 new structural-damage-conditions here. 

Dynamic responses of the 2-DOF structure with these 3300 new conditions are simulated 

using the aforementioned simulation setup. Natural frequencies of the 2-DOF structure in 

each condition are extracted from these simulation results. 

 

With the obtained natural frequency values, FVs are first formed by the conventional 

approach based on natural frequencies directly (Equation (4-3) for 𝑛 = 2). The feature 

space with points representing these 3311 FVs is plotted in Figure 3-7, including the 11 

ones from the nominal SPV set (the “original set” in Table 3-1). 
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Figure 3-7 shows that, with significant SPV difference, FVs representing “healthy” 

condition are overwhelmed by the ones standing for “damaged” conditions. And within 

the “damaged” conditions, FVs representing “1st story damage” and the ones standing for 

“2nd story damage” are mixed with each other. In brief, FVs from different damage 

conditions are not clearly recognizable, and they mix with each other when the SPV set 

changes. 

 

To complete the comparison, FVs are reformed by the proposed approach based on the 

pattern in natural-frequency-change. The NFCs of the 2-DOF structure model under the 

301 SPV sets are acquired using Equation (4-7) and FVs are constructed using Equation 

 

Figure 3-7: Feature space of the 2-DOF model with conventional FVs in 301 SPV sets. 
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(4-8). The feature space with points representing these FVs is plotted in Figure 3-8. 

 

Figure 3-8 shows that the FVs with damage on the 1st story and the ones with damage on 

the 2nd story are still well separated, despite the significant difference existing in the 301 

SPV sets. This good separation results in the high tolerance of AIS to the discrepancy 

between the training SPV and the SPV of the structure under monitoring. 

 

The trained AIS may be employed to assess a newly-occurred unknown strucdtural-

damage-condition by comparing its FV with the known memory cells obtained after 

training. Because of the poor separation exhibited in Figure 3-7, the AIS trained by one 

SPV set will not be reasonably accurate if being applied to a structure with another SPV 

set. In other words, the performance of a trained AIS will be deteriorated by an 

unacceptable extent, if there exists a significant discrepancy between the training SPVs 

and the SPVs of the structure in monitoring, which is unavoidable in many occasions. 

 

Figure 3-8: Feature space of the 2-DOF model with proposed FVs in 301 SPV sets. 
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Thus, the dependence of the AIS’ performance on specific SPV set significantly limits its 

application in practical SHM tasks. 

 

In contrast, the proposed FVs formed by the changing pattern are sensitive to the damage 

location but insensitive to the SPV changes, as compared to the conventional FVs formed 

by natural frequencies directly. This characteristic makes the proposed FVs more suitable 

for the damage-location-determination in SHM tasks. With FVs formed by the pattern in 

natural-frequency-change, the discrepancy between the training SPV and the SPV of the 

structure in monitoring will not significantly degrade the AIS’ performance. Therefore, 

the proposed FVs are more applicable to the SHM tasks with practical limitations. 

 

3.3.1.2 3-DOF Structure Model 

Simulation Parameter 

 

In this section, a more complicated structure model with more DOFs is employed: a 3-

DOF structure model and its corresponding 3-DOF mass-spring-damping model. The 

SPV sets for this 3-DOF model are listed in Table 3-2, excluding the 300 SPV sets 

employed in the statistic study section. 

 

Table 3-2: SPV sets used for the 3-DOF structural model (incomplete). 

Set Name Mass (10!kg) Stiffness (10! kg s!) Damping 
𝑚! 𝑚! 𝑚! 𝑘! 𝑘! 𝑘! 𝛼 (10!!s!!) 𝛽 (10!!s) 

Original Set 2.50 2.50 1.50 3.00 2.50 2.00 2.00 1.50 
Mutated Set 2.44 2.81 1.63 3.41 2.62 1.72 2.21 1.70 



 

 36 

The values listed in Table 3-2 are selected (“original set”) or calculated (“mutated set”) 

using the same method that previously worked for the 2-DOF model and has been 

explained in Section 3.3.1.1. Other simulation parameters such as the calculation 

algorithm and the measurement sampling rate are the same with those described in 

Section 3.2. 

 

Feature Vector Performance 

 

The characteristics of the two kinds of FVs are presented and compared in this section, 

one of which is constructed by natural frequencies directly (conventional approach) and 

the other one is formed by pattern in natural-frequency-change. 

 

In order to generate these two kinds of FVs, dynamic responses of the 3-DOF model 

under different conditions with the “original set” (Table 3-2) are simulated. And natural 

frequencies of the 3-DOF model in each damage condition are extracted from these 

simulated dynamic responses. 

 

Firstly, FVs are constructed in the conventional fashion using Equation (4-3) (𝑛 = 3). It 

is worthy of attention that, the feature space involved here is a 3-dimensional (3-D) 

Cartesian coordinate system, because there are three natural frequencies in the 3-DOF 

model. The 3-D feature space with these conventional FVs is shown in Figure 3-9. 
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Similar with the situation in the 2-DOF model, Figure 3-9 shows that a FV moves closer 

to the “healthy” point when its damage severity get smaller, regardless of its damage 

location. This causes poor separations between FVs representing different damage 

locations in the adjacent area of the “healthy” point. 

 

Besides, the separations between FVs with same damage location but different damage 

severities are equally obvious, if not more so, with the separations between the “healthy” 

point and “damaged” points. For example, the separation between the FVs of “10% 

damage in 3rd story” and “20% damage in 3rd story” is approximately the same distinct 

   

 (a) (b) 

Figure 3-9: Feature space of the 3-DOF model with conventional FVs in one SPV set. (a): 

original graph; (b): graph with annotations. 
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with the separation between the “healthy” point and the FV of “10% damage in 3rd story”. 

In brief, FVs constructed from natural frequencies directly (conventional approach) 

exhibit poor performance in the feature space: FVs representing same damage location 

are not well clustered, while the separation between FVs from different damage locations 

are not significant. 

 

In the other approach, NFCs are calculated using Equation (4-7) (𝑛 = 3), and are used to 

form FVs according to Equation (4-8) (𝑛 = 3). Because NFC stands for the normalized 

frequency change, which means the square sum of all entries of NFC equals one, a 

conversion from the 3-D Cartesian coordinate to the spherical coordinate is performed to 

reduce one unnecessary dimensionality. This conversion is performed using 

 
θ = tan−1 NFC2

NFC1
ϕ = cos−1 NFC3

⎧

⎨
⎪

⎩
⎪

. (4-9) 

After this conversion, FVs are constructed in the form of 

 FV = θ ϕ⎡
⎣

⎤
⎦
T

. (4-10) 

 

With Equation (4-9) and Equation (4-10), FVs of the 3-DOF model in different damage 

conditions with the “original set” (Table 3-2) are obtained fro simulated dynamic 

responses. The 2-D feature space based on the two spherical coordinates is plotted in 

Figure 3-10, together with FVs formed in the proposed approach. 
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It is evident from the comparison between Figure 3-9 and Figure 3-10 that, the proposed 

FVs representing different damage locations are better separated in the feature space, and 

the ones standing for the same damage location are better clustered. As explained earlier, 

this characteristic of the proposed FVs is beneficial to the AIS in the damage-location-

determination of SHM tasks. 

 

Structure-Parameter-Value Variation 

 

As explained earlier, SPV changes cause the changes in the natural frequencies, which 

further results in the changes in the FVs. The FVs constructed in the conventional 

approach are especially susceptible to the SPV changes, and therefore have limited 

   

 (a) (b) 

Figure 3-10: Feature space of the 3-DOF model with proposed FVs in one SPV set. (a): 

original graph; (b): graph with annotations. 
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applications in real world SHM scenarios. 

 

To compare the effects of the SPV change on the conventional FVs and the proposed 

FVs, two SPV sets (“original set” and “mutated set” in Table 3-2) are employed. Natural 

frequencies of the 3-DOF structure models under these two SPV sets are acquired from 

simulated dynamic responses. 

 

The conventional FVs are formed according to Equation (4-3). The feature space with 

points representing these FVs is plotted in Figure 3-11, where lines are drawn between 

points representing the same damage location in order to make the architecture clearer. 

Similar with the situation in the 2-DOF structure model, FVs representing different 

damage locations from different SPV sets mix with each other in Figure 3-11. 

 

On the other hand, the proposed FVs are formed by the NFCs using Equation (4-7), 

Equation (4-9), and Equation (4-10). The two SPV sets (“original set” and “mutated set” 

in Table 3-2) are considered. The feature space with FVs from these two SPV sets is 

plotted in Figure 3-12. 

 

It can be seen in Figure 3-12 that, Regardless of the significant difference existing 

between the two SPV sets, the FVs representing different damage locations are still well 

separated, while at the same time the FVs from the same damage location still tend to 

occupy the same area in the feature space.  
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 (a) (b) 

                          

 (c) (d) 

Figure 3-11: Feature space of the 3-DOF model with conventional FVs in two SPV sets. 

(a), (b) and (c) are three orthographic views of the graph in (d).  
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(a) 

  

(b) 

Figure 3-12: Feature space of the 3-DOF model with proposed FVs in two SPV sets. (a): 

original graph; (b): graph with annotations. 
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Structure-Parameter-Value Uncertainty 

 

Previous comparisons suggest that, the proposed FVs (formed by changing patterns) are 

more suitable for the AIS in SHM tasks than the conventional FVs (formed by natural 

frequencies directly). However, the previous comparisons are based on two specific SPV 

sets: the “original set” and the “mutated set” in Table 3-2. A study with more SPV sets is 

needed to testify that the superiority of the proposed FVs is not an exception caused by 

specific SPVs. Thus, the “original set” in Table 3-2 is used as the nominal SPV set. 300 

more SPV sets are calculated by this nominal set with a 15% uncertainty for each value in 

this set (Equation (4-4) through Equation (4-6)). 

 

With these 300 SPV sets and 16 damage conditions per SPV set, 4800 new structural-

damage-conditions are simulated here, with the previously described simulation setup. 

Natural frequencies of the 3-DOF structure in each condition are extracted from these 

simulation results. 

 

The conventional FVs with these 301 SPV sets (including the nominal set) are formed 

using Equation (4-3) (𝑛 = 3). The feature space with points representing these 4816 FVs 

is plotted in Figure 3-13, where lines are drawn between points from the same damage 

location to make the architecture clearer. 
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Figure 3-13 clearly shows that, FVs representing the “healthy” conditions are 

overwhelmed by other FVs, and FVs representing different damage locations mix with 

each other, when multiple different (but similar) SPV sets are considered. 

 

If the proposed approach is employed to construct FVs, the NFCs of the 3-DOF structure 

model in different damage conditions with these 301 SPV sets are acquired using 

Equation (4-7), and used to form FVs according to Equation (4-9) and Equation (4-10). 

The feature space with points representing these FVs is plotted in Figure 3-14. 

 

The difference between Figure 3-13 and Figure 3-14 is apparent: In Figure 3-14, FVs 

representing different damage locations are better separated, while FVs representing the 

same damage location are better clustered. In other words, the performance of the 

proposed FVs (Figure 3-14) is more suitable for the AIS in SHM tasks, comparing with 

the conventional FVs (Figure 3-13). 
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 (a) (b) 

                          

 (c) (d) 

Figure 3-13: Feature space of the 3-DOF model with conventional FVs in 301 SPV sets. 

(a), (b) and (c) are three orthographic views of the graph in (d).  
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3.3.1.3 4-DOF Structure Model 

Simulation Parameter 

 

In this part, the 4-DOF structure model and its corresponding 4-DOF mass-spring-

damping model are employed for simulations. The SPV sets used for this model are 

partially listed in Table 3-3. 

 

 

Figure 3-14: Feature space of the 3-DOF model with proposed FVs in 301 SPV sets. 

Table 3-3: SPV sets used for the 4-DOF structural model (incomplete). 

Set Name 
Mass (10!kg) Stiffness (10! kg s!) Damping 

𝑚! 𝑚! 𝑚! 𝑚! 𝑘! 𝑘! 𝑘! 𝑘! 𝛼 (10!!s!!) 𝛽 (10!!s) 
Original Set 2.50 2.50 2.50 1.50 3.00 2.50 2.50 2.00 2.00 1.50 
Mutated Set 2.74 2.80 2.22 1.69 3.12 2.20 2.33 2.03 2.28 1.71 
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The values listed in Table 3-3 is selected or calculated in the same way with the SPV for 

the 2-DOF structure model, which has been explained in Section 3.3.1.1. Other 

simulation parameters such as the calculation algorithm and the measurement sampling 

rate have already been described in Section 3.2. 

 

The 4-DOF mass-spring-damping model has four distinct natural frequencies. In many 

real-world problems, the structural response is dominated by its low-frequency contents. 

Thus, the higher the natural frequency is, the more difficult or expensive it is to be 

measured accurately. As a result practical or cost issues, the full frequency spectrum of a 

structure with multiple (four or more) natural frequencies is often unavailable. 

 

In order to improve the applicability of the proposed method, and also to guarantee the 

realistic significance of the discussion, the incomplete frequency spectrum is simulated 

by only considering the three lower frequencies of the 4-DOF structure. The 4th natural 

frequency (also the highest frequency), is assumed to be unable to measure. Therefore it 

should be noted that, the discussion here is based on incomplete natural frequency 

information, which is different with the discussions in previous sections. 

 

Feature Vector Performance 

 

Natural frequencies are extracted from simulated dynamic responses of the 4-DOF 

structure model in different structural-damage-conditions with the “original set” in Table 



 

 48 

3-3. The first three natural frequencies are kept and used to build FVs, while the last (also 

the highest) natural frequency is discarded in further discussions. 

 

First, FVs are formed in the conventional approach using natural frequencies directly. 

Only the three lower natural frequencies are used to form FVs according to Equation 

(4-3) (𝑛 = 3). The feature space with points representing these FVs is plotted in Figure 

3-15. 

 

In Figure 3-15 (b), the damage severities of FVs are not annotated due to the space 

limitation. For FVs standing for the same damage location (points with the same color), 

   

 (a) (b) 

Figure 3-15: Feature space of the 4-DOF model with conventional FVs in one SPV set. 

(a): original graph; (b): graph with annotations. 



 

 49 

their damage severities change from 10% to 50% at an interval of 10%, with the increase 

in their distances to the “healthy” point in the feature space. 

 

The situation in Figure 3-15 is similar with the situations in the 2-DOF and 3-DOF 

structure models: FVs representing different damage locations are not well separated, 

while FVs from the same damage location are not well clustered. 

 

In the proposed approach, the NFCs of the three lower natural frequencies are calculated 

using Equation (4-7). FVs are formed using these calculated NFCs according to Equation 

(4-9) and Equation (4-10). Because only three natural frequencies are considered, the 

conversion from the Cartesian coordinate to the spherical coordinate is still performed to 

reduce unnecessary dimensionality. The feature space with points representing these FVs 

is plotted in Figure 3-16. 

 

Figure 3-16 show similar situations with FVs in the 2-DOF and 3-DOF structure models, 

even though the frequency spectrum is incomplete (only the three lower natural 

frequencies are considered) in this case. The FVs formed by the changing pattern exhibit 

superior characteristics in the feature space: FVs from different damage locations are 

better separated, and FVs from the same damage location are better clustered, comparing 

with the FVs constructed by natural frequencies directly. 
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(a) 

 

(b) 

Figure 3-16: Feature space of the 4-DOF model with proposed feature in one SPV set. 

(a): original graph; (b): graph with annotations.  
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Structure-Parameter-Value Variation 

 

As explained earlier, natural frequencies of a structure change correspondingly with its 

SPV. To compare the effects of SPV change on the two kinds of FVs, the natural 

frequencies of the 4-DOF structure model under two SPV sets (“original set” and 

“mutated set” in Table 3-3) are acquired. 

 

The conventional FVs are formed according to Equation (4-3). The feature space with 

points representing these FVs is plotted in Figure 3-17. In Figure 3-17, lines are drawn 

between points representing the same damage location in order to make the architecture 

clearer. 

 

Alternatively, the NFCs of the 4-DOF structure models under two SPV sets (“original set” 

and “mutated set” in Table 3-3) are acquired and used to form FVs according to Equation 

(4-7), Equation (4-9), and Equation (4-10). The feature space with points representing 

these FVs is plotted in Figure 3-18. 

 

Figure 3-17 and Figure 3-18 clearly show that, the proposed FVs have better performance 

compared with the ones formed by natural frequencies: They are better separated when 

the damage locations are different, and are better clustered when the damage locations are 

the same. Besides, FVs representing the same damage locations with different SPV sets 

still occupy adjacent positions in the feature space (Figure 3-18), which indicates that the 

FVs formed by changing patterns are less sensitive to the SPV difference. 
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 (a) (b) 

          

 (c) (d) 

Figure 3-17: Feature space of the 4-DOF model with proposed FVs in two SPV sets. (a), 

(b) and (c) are three orthographic views of the graph in (d).  
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(a) 

 

(b) 

Figure 3-18: Feature space of the 4-DOF model with proposed FVs in two SPV sets. (a): 

original graph; (b): graph with annotations.  
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Structure-Parameter-Value Uncertainty 

 

Previous comparisons suggest that, the proposed FVs (formed by changing patterns) are 

more suitable for the AIS in SHM tasks than the conventional FVs (formed by natural 

frequencies directly). Nevertheless, the previous comparisons are based on two specific 

SPV sets: the “original set” and the “mutated set” in Table 3-3. A study with more SPV 

sets is needed to testify that the advantage of the proposed FVs is not an exception caused 

by specific SPVs. Thus, the “original set” in Table 3-3 is considered to be the nominal 

SPV set. 300 more SPV sets are generated by this nominal set with a 15% uncertainty for 

each value in this set (Equation (4-4) through Equation (4-6)). 

 

With these 300 SPV sets and 21 damage conditions per SPV set, there are 6300 new 

structural-damage-conditions here. Dynamic responses of the 4-DOF structure with these 

6300 new conditions are simulated using aforementioned simulation setup. The three 

lower natural frequencies of the 4-DOF structure in each condition are extracted from 

these simulations. The conventional FVs are formed using Equation (4-3) (𝑛 = 3). The 

feature space with points representing these 6321 FVs is plotted in Figure 3-19, including 

the 21 ones from the nominal SPV set (the “original set” in Table 3-3). 

 

On the other hand, the NFCs of the 4-DOF structure model under all 301 SPV sets, 

including the “original set”, are acquired and used to form FVs in the proposed approach 

(Equation (4-7), Equation (4-9), and Equation (4-10)). Points representing these FVs are 

plotted in the feature space and shown in Figure 3-20.  
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 (a) (b) 

          

 (c) (d) 

Figure 3-19: Feature space of the 4-DOF model with conventional FVs in 301 SPV sets. 

(a), (b) and (c) are three orthographic views of the graph in (d).  
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Figure 3-19 and Figure 3-20 clearly show that the FVs formed by changing patterns are 

better clustered when damage locations are the same, and better separated when damage 

locations are different, even though only the lower three frequencies are considered. 

 

Results in this section conform that the proposed approach of building FVs is more 

suitable for the AIS in SHM tasks compared with the conventional one, because the FVs 

based on changing patterns are less dependent on SPV and more sensitive to damage 

location.  

 

Figure 3-20: Feature space of the 4-DOF model with proposed FVs in 301 SPV sets. 
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3.3.1.4 Review 

 

In this part, natural frequencies are used as the damage-sensitive-variable, based on 

which the feature vectors (FVs) are constructed. Comparisons are presented between the 

FVs formed by natural frequencies directly and the FVs built by changing patterns. Three 

different structure models with 2-, 3- and 4-DOF are employed in simulations, together 

with their corresponding 2-, 3- and 4-DOF mass-spring-damping mathematic models. 

 

The proposed FVs, which are formed by the changing pattern, exhibits more desirable 

characteristics than the conventional FVs: They are better clustered in the feature space 

when representing the same damage location, and are better separated when standing for 

different damage locations. 

 

The effect of SPV changes on the two kinds of FVs are also investigated and compared, 

using two SPV sets (the “original set” and the “mutated set” in corresponding tables). 

Results suggest that the proposed FVs are less dependent on SPV and more tolerant to 

SPV changes. This characteristic is suitable for the AIS in SHM tasks, because the 

discrepancy between the training SPV and the SPV of the structure under monitoring 

always exists in practical SHM scenarios. 

 

To further support the conclusions acquired and eliminate the effect of specific SPV on 

these conclusions, 300 different SPV sets are generated by the “original” set with random 
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deviations, which are within a 15% range around the corresponding values in the 

“original set”. 

 

Results from the 2-, 3- and 4-DOF structure models and the 301 SPV sets are consistent: 

The proposed FVs (formed by the changing pattern) have superior performance 

compared with the conventional FVs (formed by natural frequencies directly). This better 

performance is reflected in two aspects: First, the proposed FVs are better clustered in the 

feature space when representing the same damage location, and are better separated when 

standing for different damage locations. Second, the proposed FVs are less dependent on 

SPV. In other words, they still occupy similar positions in the feature space even with 

different SPV sets. 

 

On the other hand, FVs formed by natural frequencies exhibit less satisfactory 

performance. They mix with each other in the feature space regardless of different 

damage locations, when the damage severity is small. And their positions in the feature 

space are highly dependent on the SPV sets they are in. FVs representing different 

damage locations interfere with each other when they are in different SPV sets. 

 

AIS recognizes unknown antigens based on the characteristics of their FVs. Therefore, 

the FVs formed by the changing patterns are more suitable for the AIS in the damage 

location determination of SHM tasks. 
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3.3.2 Mode Shape Information and Pattern in Mode Shape Change 

 

As another modal parameter besides the natural frequency, the mode shape changes 

correspondingly with the variation in structural properties. Similar with the natural 

frequency, the mode shape has also been employed as the damage-sensitive-variable in 

many vibration-based SHM methodologies (Doebling, et al. 1996). Some researches have 

suggested that the mode shape is as sensitive, if not more, as the natural frequency to the 

damage in structures (Srinivasan and Kot 1992). 

 

The mode shape information can be expressed in a matrix as follows 

 

 

a11 a12 ! a1m
a21 a22 ! a2m
" " # "
an1 an2 ! anm

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

where 𝑎!" stands for the amplitude of the 𝑗-th natural frequency on the 𝑖-th story. 𝑚 is the 

number of modes considered and 𝑛 is the number of structural stories. The conventional 

definition of the mode shape refers to column vector of this matrix, as indicated by 

. 

One column vector contains the amplitudes of one natural frequency on every structural 

story. This definition requires the sensors to be mounted on every structural story in order 

to measure the mode shape information. In order to relax this demanding system 
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requirement, another approach is employed in this thesis to extract the mode shape 

information. The row vectors of the mode matrix are taken as illustrated by 

. 

Using this approach, the data required are the amplitudes of different natural frequencies 

on the same structural story. Namely, the measurement data from the sensors on one 

single structural story is enough to build the row vector. 

 

The values in the mode matrix are affected by the initial condition and the external 

excitation. But after an appropriate normalization, both the column vector and the row 

vector are uniquely decided by the structural properties, and are theoretically irrelevant to 

the initial condition or the external excitation. Therefore, these two kinds of vectors are 

both suitable to work as the damage-sensitive-variable. With an attempt to minimize the 

requirement of the proposed methodology, the row vector is used in this thesis as the 

representation of the mode shape information. Therefore it is noteworthy that, the mode 

shape information here has a different meaning with its conventional definition.  Also, 

considering the convenience in practical SHM systems, data of the 1st story displacement 

is employed to extract this mode shape information. 

 

Same as in the previous parts, two kinds of FVs are presented here: The conventional 

FVs are formed using the mode shape information directly, while the proposed FVs are 

derived from the pattern in the mode-shape-change. 
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To begin with, the conventional FVs are constructed from the mode shape information 

directly. The normalization process is performed by dividing every entry in the row 

vector with the first entry. After the normalization, the format of FVs becomes 

 
 

FV = 1 a12
a11

a13
a11
!

a1m
a11

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

 (4-11) 

where 𝑎!! is the amplitude of the 𝑖-th natural frequency (arranged from the lowest to the 

highest) on the 1st story, and 𝑚 is the number of mode shapes considered. 

 

3.3.2.1 2-DOF Structure Model 

Simulation Parameter 

 

The 2-DOF structure model, the SPV sets, and all the simulation parameters used in this 

part is the same as those in Section 3.3.1.1. The difference between this part and Section 

3.3.1.1 is that, the values extracted from the simulated dynamic responses here are the 𝑦-

coordinates (amplitude values) of the peaks in the frequency spectrum, while in Section 

3.3.1.1 the 𝑥-coordinates (frequency values) of the peaks are considered. 

 

Feature Vector Performance 

 

Dynamic responses of the 2-DOF structure model in different damage conditions with the 

“original set” of in Table 3-1 are obtained through simulations, from which the mode 

shape information for each damage condition is extracted. 
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For the conventional FVs, Equation (4-11) (𝑚 = 2) is applied to generate the FV for each 

damage condition based on the mode shape information directly. The feature space with 

these 11 FVs is shown in Figure 3-21, 5 of which are for each damage location and 

another one for the “healthy” condition. In the figure, 𝑥 stands for the first entry of the 

FV vector and 𝑦 means the second entry (Equation (4-11)). 

 

 

(a) 

 

(b) 

Figure 3-21: Feature space of the 2-DOF model with conventional FVs in one SPV set. 

The positions of 𝑥  and 𝑦  axes are exchanged. (a): Original graph; (b): Graph with 

annotations. 



 

 63 

As suggested by Figure 3-21, points from different damage locations are distributed on 

different sides of the “healthy” point. But the points representing the same damage 

location are not well clustered in the feature space. For instance, there exists an obvious 

distance between the point of “40% damage on the 2nd story” and the point of “50% 

damage on the 2nd story”. Besides, the points corresponding to small damage severities 

are much closer to the “healthy” point than the points representing bigger severities. 

 

In other words, the FVs representing the same damage location are not well clustered. 

And the FVs representing different damage locations are not well separated. This poses 

significant challenge for the AIS to determine the correct damage location of an unknown 

condition based on the position of its FV in the feature space. 

 

The positive information revealed by Figure 3-21 is that, the points representing different 

damage locations are on the different sides of the “healthy” point: The points 

corresponding to the “1st story damage” lie on the left side, while the points from the “2nd 

story damage” are on the right side. 

 

The shape formed by FVs in Figure 3-21 has similar characteristic with the shape in 

Figure 3-2: If a vector is drawn from the “healthy” point to a “damaged” point, its 

direction and magnitude are decided by the damage severity and location of the damage 

condition represented by this “damaged” point, respectively. 
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The vectors drawn from the “healthy” point to “damaged” points are named as the modal-

shape-change (MSC) in this thesis and their coordinates in the feature space are 

 
 

MSC = 0
a12, damage

a11, damage

−
a12, healthy

a11, healthy

!
a1m, damage

a11, damage

−
a1m, healthy

a11, healthy

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

 (4-12) 

where 𝑚 is the number of mode shapes considered. 

 

In order to make the FV representing the same damage location better clustered, the 

MSCs are normalized to make the square sum of all the entries of a vector equals to one. 

The vector after this normalization is referred to as the normalized-modal-shape-change 

(NMSC) in following parts and is defined as 

 
 
NMSC = msc1

S
msc2
S

!
mscm
S

⎡

⎣
⎢

⎤

⎦
⎥

T

 (4-13) 

where 

  S = msc1
2 +msc2

2 +!+mscm
2  

where msc! is the 𝑖-th entry of the MSC vector (Equation (4-12)). 

 

Values of the NMSCs are a proper representation of pattern in mode-shape-change. 

Therefore, they are proposed to be used as FVs for the AIS in SHM tasks. With Equation 

(4-12) and Equation (4-13), FVs of the 2-DOF structure model in all damage conditions 

with the “original set” in in Table 3-1 are calculated. The feature space with these FVs is 

plotted in Figure 3-22. 
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Figure 3-22 shows an impressive result: All the five FVs representing the same damage 

location cluster at the same position in the feature space, which results from the 

normalization process described by Equation (4-13). This distinct difference between 

FVs from different damage locations makes it easier for the AIS to determine the correct 

damage location of an unknown damage condition, based on the position of its FV in the 

feature space. 

  

 

(a) 

 

(b) 

Figure 3-22: Feature space of the 2-DOF model with proposed FVs in one SPV set.  The 

positions of 𝑥 and 𝑦 axes are exchanged. (a): Original graph; (b): Graph with annotations. 
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Structure-Parameter-Value Variation 

 

Similar with natural frequencies, mode shapes are also dependent on the SPVs. FVs 

formed by the mode shape information change correspondingly when the SPV changes, 

which results in the AIS’ low tolerance to the discrepancy between the training SPV and 

the SPV of the structure under monitoring. The proposed FV is less susceptible to the 

effect of the SPV change, and is therefore better suited for the AIS in SHM tasks. To 

explore the effect of the SPV change on the two kinds of FVs, the “original set” and 

“mutated set” in in Table 3-1 are employed for simulations. 

 

FVs are first constructed using the conventional approach with Equation (4-11). The 

feature space with these FVs is plotted in Figure 3-23. It is clearly shown in Figure 3-23 

that, FVs representing different damage locations mix with each other due to the SPV 

variation. This mixture deprives the FVs of their functionality of being used to determine 

damage locations of unknown conditions. 

 

For the proposed approach to construct FVs, the NMSCs of the 2-DOF structure with the 

“original set” and the “mutated set” (Table 3-1) are acquired using Equation (4-12) and 

Equation (4-13). They are used to formed FVs, which are plotted in the feature space 

(Figure 3-24). 
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(a) 

 

(b) 

Figure 3-23: Feature space of the 2-DOF model with conventional FVs in two SPV sets.  

The positions of 𝑥  and 𝑦  axes are exchanged. (a): Original graph; (b): Graph with 

annotations. 

 

Compare with FVs in Figure 3-23, positions of the FVs in Figure 3-24 are not negatively 

affected by the SPV change. FVs from the same damage location still occupy the same 

location in the feature space, despite the SPV variance. The characteristic of the proposed 

FVs exhibited in Figure 3-24 makes them much more appropriate for the damage-

location-determination tasks than the conventional FVs. 
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(a) 

 

(b) 

Figure 3-24: Feature space of the 2-DOF model with proposed FVs in two SPV sets. The 

positions of 𝑥 and 𝑦 axes are exchanged. (a): Original graph; (b): Graph with annotations. 

 

Structure-Parameter-Value Uncertainty 

 

Due to the same reason in the corresponding part of Section 3.3.1.1, a study with more 

SPV sets is needed to support the superiority of the proposed FVs, which is constructed 

by the pattern in the mode-shape-change. The “original set” in Table 3-1 is again used as 

the nominal SPV set. 300 more SPV sets are generated by this nominal set with a 15% 

uncertainty for each value in this set (Equation (4-4) through Equation (4-6)). 
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With these 300 SPV sets and 11 damage conditions per SPV set, there are 3300 new 

structural-damage-conditions here. Dynamic responses of the 2-DOF structure with these 

3300 new conditions are simulated using the aforementioned setup. The mode shape 

information of the 2-DOF structure in each condition are extracted from these simulation 

results. 

 

With this obtained mode shape information, FVs are first formed by the conventional 

approach (Equation (4-11) for 𝑛 = 2). The feature space with points representing these 

3311 FVs is plotted in Figure 3-25, including the 11 ones from the nominal SPV set (the 

“original set” in Table 3-1). Figure 3-25 shows that the FVs representing different 

damage locations in different SPV sets mix with each other, which is unacceptable from 

the AIS perspective. 

 

Using the proposed approach, FVs are constructed using the NMSCs from the 301 SPV 

sets, according to Equation (4-12) and Equation (4-13). The feature space with these FVs 

is plotted in Figure 3-26. 

 

Figure 3-25: Feature space of the 2-DOF model with conventional FVs in 301 SPV sets.  

The positions of 𝑥 and 𝑦 axes are exchanged. 
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Figure 3-26 shows that FVs representing the same damage location still occupy the same 

position in the feature space, despite the significant difference existing between these 301 

SPV sets. The reason behind this can be explained as: No matter what the SPVs are, for 

one specific SPV set, the FVs representing the “1st story damage” are always on the left 

side of the “healthy” point, and the FVs standing for the “2nd story damage” are always 

on the right side in Figure 3-25. The relative position between the FVs with the same 

SPV set is consistent with all the 301 SPV sets. Equation (4-12) and Equation (4-13) 

extract this relative position information and use it to form the new FVs, which are shown 

in Figure 3-26. 

 

The characteristic of the FVs in Figure 3-26 makes the proposed FV more suitable for the 

damage-location-determination task than its conventional counterpart. And this 

superiority generally exists in different SPV sets. 

  

 

Figure 3-26: Feature space of the 2-DOF model with proposed FVs in 301 SPV sets. The 

positions of 𝑥 and 𝑦 axes are exchanged. 
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3.3.2.2 3-DOF Structure Model 

Simulation Parameter 

 

The 3-DOF structure model employed here is the same one that is in Section 3.3.1.2. Part 

of the SPV sets involved in this section is also listed in Table 3-2. All the simulation 

parameters are the same with Section 3.3.1.2, except that the interested value here is the 

𝑦-coordinates (amplitudes) of peaks in the frequency domain, while previously it is the 𝑥-

coordinates (frequencies). 

 

Feature Vector Performance 

 

The mode shape information is extracted from simulated dynamic responses of the 3-

DOF structure model in different damage conditions with the “original set” of Table 3-2. 

Equation (4-11) is employed to construct the conventional FVs, which are plotted in the 

feature space (Figure 3-27). In Figure 3-27, 𝑥, 𝑦 and 𝑧 stand for the first, the second and 

the third entry of the FV vector (Equation (4-11)), respectively. The 𝑥-axis is hidden 

because the 𝑥-coordinate of every point is always 1 based on the definition. 

 

On the other hand, the proposed FVs are constructed by the NMSCs of the 3-DOF 

structure model with the “original set” SPV set in Table 3-2, according to Equation 

(4-12) and Equation (4-13). The feature space with these FVs is plotted in Figure 3-28. In 

Figure 3-28, the 𝑥-axis is not shown because the 𝑥-coordinate of every point is always 0, 
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as a result of Equation (4-12). In addition, points in Figure 3-28 lie on a circle due to the 

normalization process (Equation (4-13)). 

 

Comparing with the ones in Figure 3-27, FVs in Figure 3-28 exhibit better characteristic: 

 

(a) 

 

(b) 

Figure 3-27: Feature space of the 3-DOF model with conventional FVs in one SPV set. 

(a): Original graph; (b): Graph with annotations. 
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FVs from the same damage location are better clustered, while the ones representing 

different damage locations are better separated. 

 

Structure-Parameter-Value Variation 

 

To explore the effect of SPV change on the two kinds of FVs, the “original set” and the 

“mutated set” in Table 3-2 are employed. The mode shape information is extracted from 

the 3-DOF structure model in different damage conditions with these two different SPV 

sets. 

 

The conventional FVs are constructed by the mode shape information with Equation 

 

 (a) (b) 

Figure 3-28: Feature space of the 3-DOF model with proposed FVs. (a): Original graph; 

(b): Graph with annotations. 



 

 74 

(4-11) and are plotted in the feature space (Figure 3-29). In Figure 3-29, the 𝑥-axis is not 

shown because the 𝑥-coordinate of every point is always 1. Figure 3-29 clearly show that 

the difference between the two SPV sets significantly changed the FV positions in the 

feature space, which is undesirable. 

 

Alternatively, the proposed FVs are constructed using the NMSCs according to Equation 

(4-12) and Equation (4-13). These FVs are plotted in the feature space (Figure 3-30). In 

Figure 3-30, the 𝑥-axis is not shown because the 𝑥-coordinate of every point is always 0. 

 

Compared with the ones in Figure 3-29, FVs in Figure 3-30 exhibit more desirable 

characteristics: FVs from the same damage location are better clustered, and the ones 

representing different damage locations are better separated. The proposed FV are less 

affected by the SPV change, and tend to occupy similar positions in the feature space 

with different SPV sets. 

 

Figure 3-29: Feature space of the 3-DOF model with conventional FVs in two SPV sets. 
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Structure-Parameter-Value Uncertainty 

 

Due to the same reason in the corresponding part of Section 3.3.1.2, a study with more 

SPV sets is needed to support the advantage of proposed FVs. The “original set” (Table 

3-2) is used as the nominal SPV set. 300 more SPV sets are calculated by this nominal set 

with a 15% uncertainty for each value in this set (Equation (4-4) through Equation (4-6)). 

 

With 300 SPV sets and 16 damage conditions per SPV set, there are 4800 new structural-

damage-conditions here. Dynamic responses of the 3-DOF structure with these 4800 new 

conditions are simulated using the aforementioned setup. The mode shape information of 

the 3-DOF structure in each condition are extracted from these simulation results. 

  

 (a) (b) 

Figure 3-30: Feature space of the 3-DOF model with proposed FVs in two SPV sets. (a): 

Original graph; (b): Graph with annotations. 
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With this mode shape information, FVs are first formed by the conventional approach 

(Equation (4-11) for 𝑛 = 3). The feature space with points representing these 4816 FVs is 

plotted in Figure 3-31, including the 16 ones from the nominal SPV set. In Figure 3-31, 

the 𝑥-axis is not shown because the 𝑥-coordinate of every point is always 1. It is clearly 

shown in Figure 3-31 that, FVs representing different damage locations mix with each 

other, due to the difference existing between these 301 SPV sets. 

 

To complete the comparison, the proposed FVs are formed using Equation (4-12) and 

Equation (4-13) and are plotted in the feature space (Figure 3-32), where the 𝑥-axis is not 

shown because the 𝑥-coordinate of every point is always 0 based on its definition. 

 

Figure 3-32 shows that, even though the FVs representing the “2nd story damage” mix 

with the ones representing the “3rd story damage” at one side, the FVs standing for 

different damage locations are still clearly separated in the feature space and easy for the 

 

Figure 3-31: Feature space of the 3-DOF model with conventional FVs in 301 SPV sets. 
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AIS to recognize. The position of a FV in Figure 3-32 is decided by the vector direction 

from the “healthy” point to its corresponding point in Figure 3-31. Due to the significant 

difference existing between these 301 SPV sets, it is possible that the vectors, which are 

from the “healthy” points to damaged points representing different damage locations in 

different SPV sets, have similar directions. This may explain the mixture in Figure 3-32. 

 

Even though mixture happens between the FVs representing the “2nd story damage” and 

the “3rd story damage”. The performance of the proposed FV still affirms that it is more 

suitable for the AIS in the damage-location-determination, compared with the FVs 

formed in the conventional approach.   

 

Figure 3-32: Feature space of the 3-DOF model with proposed FVs in 301 SPV sets. 
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3.3.2.3 4-DOF Structure Model 

Simulation Parameter 

 

The 4-DOF structure model employed here is the same one appeared in Section 3.3.1.3. 

Part of the SPV sets involved in this part is also listed in Table 3-3. All the simulation 

parameters are the same with Section 3.3.1.3, except that the information extracted here 

is the 𝑦-coordinates (amplitudes) of peaks in the frequency domain, while previously it is 

the 𝑥-coordinates (frequencies). 

 

As mentioned earlier in Section 3.3.1.3, only the three lower natural frequencies are 

considered to be available in this 4-DOF structure model, in an attempt to imitate the 

incomplete frequency spectrum difficulty commonly present in practical SHM scenarios. 

Therefore, only the mode shape information corresponding to the three lower natural 

frequencies are employed to build FVs in this section. 

 

Feature Vector Performance 

 

To begin with, the mode shape information of the 4-DOF structure model is extracted 

from simulated dynamic responses of the structure model in different structural-damage-

conditions with the “original set” in Table 3-3. This mode shape information is used to 

form the conventional FVs according to Equation (4-11). Constructed FVs are plotted in 

the feature space (Figure 3-33), where the 𝑥-axis is not shown because the 𝑥-coordinate 

of every point is always 1. 
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The five points in the same color represent the five different damage severities in the 

same damage location. From the point nearest the “healthy” point to the point farthest the 

“healthy” point, they represent 10%, 20%, 30%, 40%, and 50% stiffness loss on that 

specific story alone. When the damage severity is relatively small, the corresponding 

point becomes very close with the “healthy” point and points representing other damage 

locations. 

 

 

 (a) (b) 

Figure 3-33: Feature space of the 4-DOF model with conventional FVs in one SPV set. 

(a): Original graph; (b): Graph with annotations. 



 

 80 

With the mode shape information of the 4-DOF structure model in different damage 

conditions with the “original set” in Table 3-3, the NMSCs are calculated using Equation 

(4-12) and Equation (4-13). These NMSCs are used as the proposed FVs and are plotted 

in the feature space (Figure 3-34), where the 𝑥 -axis is not shown because the 𝑥 -

coordinate of every point is always 0. FVs in Figure 3-34 lie on a circle because of the 

normalization process (Equation (4-13)). 

 

In Figure 3-34, FVs with the same damage location are better clustered and the ones with 

different damage locations are better separated, compared with FVs in Figure 3-33. Using 

the FV performance criteria defined earlier, FVs In Figure 3-34 possess better 

performance than the ones in Figure 3-33.  

 

 (a) (b) 

Figure 3-34: Feature space of the 4-DOF model with proposed FVs in one SPV set. (a): 

Original graph; (b): Graph with annotations. 
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Structure-Parameter-Value Variation 

 

To investigate the effect of SPV change on the positions of FVs in the feature space, the 

“original set” and “mutated set” in Table 3-3 are employed. The mode shape information 

is extracted from the simulated dynamic response of the 4-DOF structure model in 

different damage conditions with these two SPV sets. 

 

This information is used to form the conventional FVs according to Equation (4-11). 

Constructed FVs are plotted in the feature space (Figure 3-35). In Figure 3-35, the 𝑥-axis 

is not shown because the 𝑥-coordinate of every point is always 1. 

 

To use the pattern in mode-shape-change, Equation (4-12) and Equation (4-13) are 

 

Figure 3-35: Feature space of the 4-DOF model with conventional FVs in two SPV sets. 
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employed to calculate the NMSCs, which are used as the FVs and are plotted in the 

feature space (Figure 3-36). In Figure 3-36, the 𝑥-axis is not shown because the 𝑥-

coordinate of every point is always 0. 

 

Compare Figure 3-36 with Figure 3-35, it is clear that FVs in Figure 3-36 exhibit more 

desirable characteristics: The FVs from the same damage location are better clustered, 

while the ones from different damage locations are separated more distinctly. The 

proposed FVs are less affected by the SPV change, and still tend to occupy similar 

positions in the feature space despite the difference existing between the two SPV sets. 

  

  

(a) (b) 

Figure 3-36: Feature space of the 4-DOF model with proposed FVs in two SPV sets. (a): 

Original graph; (b): Graph with annotations. 
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Structure-Parameter-Value Uncertainty 

 

Due to the same reason in the corresponding part of Section 3.3.1.3, a study with more 

SPV sets is needed to support the superiority of the proposed FVs. The “original set” in 

Table 3-3 is again used as the nominal SPV set. 300 more SPV sets are generated by this 

nominal set with a 15% uncertainty for each value in this set (Equation (4-4) through 

Equation (4-6)). 

 

With these 300 SPV sets and 21 damage conditions per SPV set, there are 6300 new 

structural-damage-conditions here. Dynamic responses of the 4-DOF structure with these 

6300 new conditions are simulated using the aforementioned setup. The mode shape 

information of the 4-DOF structure in each condition are extracted from these simulation 

results. 

 

The 301 sets of conventional FVs are constructed from the mode shape information 

according to Equation (4-11) (𝑛 = 3) and are plotted in the feature space (Figure 3-37), 

where the 𝑥-axis is not shown because the 𝑥-coordinate of every point is always 1. 

 

Alternatively, the proposed FVs are formed using the pattern in mode-shape-change 

according to Equation (4-12) and (4-13). These FVs are plotted in the feature space 

(Figure 3-38), where the 𝑥-axis is not shown because the 𝑥-coordinate of every point is 

always 0. 
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Figure 3-37: Feature space of the 4-DOF model with conventional FVs in 301 SPV sets. 

 

Figure 3-38: Feature space of the 4-DOF model with proposed FVs in 301 SPV sets. 



 

 85 

The mixture between FVs representing different damage locations happens in both Figure 

3-37 and Figure 3-38. However, it is obvious that the FVs in Figure 3-38 are better 

separated when the damage locations are different, compared with the FVs in Figure 

3-37. 

 

3.3.2.4 Review 

 

Comparisons in this part conclude the same result with Section 3.3.1: The proposed FV, 

which is formed by the pattern in mode-shape-change, exhibits more desirable 

characteristics than the conventional FV that is constructed by the mode shape 

information directly. FVs based on the pattern in mode-shape-change are more sensitive 

to the damage location, less sensitive to the damage severity or the SPV difference. 

Therefore, FVs formed by the changing pattern are more suitable for the AIS in the 

damage location determination of SHM tasks. 

 

3.4 Section Summary 

 

Comparisons are made in previous sections, which are between two kinds of FVs for the 

AIS in SHM tasks: The conventional kind is constructed from the modal parameter 

directly. And the proposed one is formed by the pattern in model-parameter-change. 

 

Three linear structure models (2/3/4-DOF) are considered. And results of comparisons 

are consistent in all three structure models. The proposed FVs formed by the changing 
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pattern exhibit better characteristics: FVs from the same damage location occupy 

adjacent positions, while FVs representing different damage locations are distinctly 

separated in the feature space. 

 

The AIS’ capacity of recognizing unknown antigens relies on the interactions between 

FVs of the unknown antigens and its memory cells. If the FVs representing different 

damage conditions mix with each other in the feature space, the AIS will become unable 

to distinguish one condition from another. 

 

Based on the comparison results presented and analyzed previously, the proposed 

approach of constructing FVs using the pattern in modal-parameter-change is superior. 

FVs formed using this approach are insensitive to the SPV change and the damage 

severities, while they are much more sensitive to the damage location. This characteristic 

makes them more suitable for the damage location determination in SHM tasks. 
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4 Artificial Immune System (AIS) Performance 

 

Based on the comparisons between the proposed FV and the conventional one in 

preceding sections, the AIS constructed in the proposed method is expected to be 

applicable to the SHM task, where a discrepancy exists between the training SPV and the 

SPV of the structure in monitoring. 

 

In this section, the AIS formed in the proposed method is applied to recognize unknown 

structure-damage-conditions in two SHM scenarios and its performance is evaluated. One 

of the two scenarios is a 4-DOF structural model with different SPV set for each damage 

condition, while the other scenario is a benchmark structure with different structure 

models and SPV sets. 

 

4.1 4-DOF Structure Model Test 

4.1.1 Artificial Immune System (AIS) Construction 

 

The proposed AIS is trained using simulated dynamic responses of a 4-DOF structure 

model with the “original set” in Table 3-3. Some known structural-damage-conditions are 

simulated and used as the training antigens. Damage severities of these training antigens 

range from 10% to 50% stiffness loss at an interval of 10%. The single-damage-situation 

is assumes, which means that only one story in the structure is damaged in each 

structural-damage-condition. 
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In order to make this test more realistic, only the lower three natural frequencies are used 

as known and the fourth one is considered to be unable to measure. Similar with the 4-

DOF case in Section 3.3.1.3, the normalized-frequency-changes (NFCs) of these training 

damage conditions are calculated according to Equation (4-7), and an conversion is made 

from the Cartesian coordinates to spherical coordinates (Equation (4-9)), which are then 

used to build FVs with Equation (4-10). These FVs have been previously shown in 

Figure 3-16. 

 

These FVs, together with the information about their corresponding damage locations and 

damage severities, form the training antigens for the AIS. These training antigens are 

employed to train the AIS using the process described in Figure 2-2. 

 

For the AIS training process, the following parameters are specified: the clone rate (CR) 

is set to be 10, the candidate-selection-threshold (CST) is set to be 0.9, and the candidate-

injection-threshold (CIT) is set to be 0.98. After the training process, the FVs of the 

mature memory-cell-set are plotted in the feature space (Figure 4-1). 

 

As explained earlier, FVs formed by the NFCs are suitable for the damage location 

determination task, but not for the damage existence detection and the damage severity 

estimation tasks. Two phases are added before and after the damage location 

determination phase, respectively.  
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Figure 4-1: Feature space of the 4-DOF structure model with FVs of the mature memory-

cell-set. 

 

For Phase 1, AIS detects the damage existence according to the maximum-relative-

frequency-change (MRFC), which is defined to be: 

  (5-1) 

where max  () is a function that returns its maximum argument. And 

  

where 𝑖 = 1, 2,… ,𝑛 (𝑛 is the number of natural frequencies considered). 𝑓!  is the 𝑖-th 

natural frequency, and 𝑓healthy,  ! is the 𝑖-th frequency value in the healthy condition. 

 

If the maximum-relative-frequency-change (MRFC) of an unknown condition is higher 

than a pre-specified threshold, named the damage-existence-threshold (DET), AIS will 

 
MRFC = max( Δ1

fhealthy, 1

, Δ2

fhealthy, 2

,!, Δn

fhealthy, n

)

Δi = fhealthy, i − fi
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consider this condition as “damaged” and passes it to Phase 2, which determines the 

damage location of the damage in this condition. In this section, the damage-existence-

threshold is set to be 1%. 

 

The maximum-relative-frequency-change (MRFC) is also used in Phase 3 to estimate the 

damage severity. Relationships between the damage severity and the maximum-relative-

frequency-change (MRFC) are plotted in Figure 4-2. 

 

The straight lines in Figure 4-2 are the least square best-fit lines of the data points. 

Equations of these best-fit lines and their corresponding coefficients of determination are 

also shown in the figure. It is clearly shown in Figure 4-2 that the relationship between 

the maximum-relative-frequency-change (MRFC) and the damage severity is 

approximately linear (𝑅! > 0.97). 

 

The relationships between the damage severity and the maximum-relative-frequency-

change (MRFC) for each story shown in Figure 4-2 are recorded in the AIS, and are used 

for the damage-severity-estimation task. After the AIS has determined the damage 

location of one unknown structural-damage-condition, the maximum-relative-frequency-

change (MRFC) of this condition is calculated and is used to calculate the damage 

severity with the coefficients corresponding to its damage location. The calculation 

formula is 

  (5-2)  DS = 1
a
MRFC− b( )
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 (a) (b) 

  

 (c) (d) 

Figure 4-2: Relationships between the damage severity and the MRFC for each structural 

story. (a), (b), (c) and (d) are for the 1st story, the 2nd story, the 3rd story, and the 4th story, 

respectively. 
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where DS  represents the damage severity, and 𝑎  and 𝑏  are coefficients, which are 

different for each damage location. After the training, the coefficients (𝑎 and 𝑏) are listed 

in Table 4-1, which are also shown in the equations in Figure 4-2. 

 

4.1.2 Testing Damage Conditions 

 

To test the performance of the proposed AIS after training, 440 different structural-

damage-conditions are generated (110 conditions for each structural story) using the 

same 4-DOF structural model. Damage severities of these 440 conditions are randomly 

selected within the range from 10% to 50%, and the single-damage-situation is assumed. 

The SPV set of the 4-DOF structural model is different for each damage condition, and is 

generated in the same way with the ones used for the statistic study (Section 3.3.1.3). 

 

FVs of these 440 unknown conditions are constructed, and are used to build unknown 

antigens. The FVs of these 440 unknown antigens are plotted in the feature space (Figure 

4-3). 

 

The significance of this AIS performance test is that, the AIS is trained using only 20 

structural-damage-conditions with one SPV set (the “original set” in Table 3-3), while 

Table 4-1: Coefficients used for the damage-severity-estimation in the SHM task. 

Coefficient 1st story 
damage 

2nd story 
damage 

3rd story 
damage 4th story damage 

𝑎 0.3819 0.3383 0.2905 0.3483 
𝑏 -0.0281 -0.0215 -0.0112 -0.0166 
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there are 440 unknown structural-damage-conditions from 440 different SPV sets, which 

can be as different as 15% with the corresponding values in the SPV set used for training. 

 

4.1.3 Testing Procedures 

 

For each unknown structural-damage-condition, Phase 1 of the AIS recognition process is 

the damage-existence-detection. The MRFC of the unknown structural-damage-condition 

is calculated using Equation (5-1). As explained earlier, the natural frequencies of a 

structure change correspondingly with its healthy situation. Therefore, the MRFC can be 

used as an effective indicator of the damage existence: If MRFC > DET, the AIS labels 

the damage flag of this unknown condition as “damaged” and pass its information to 

Phase 2 (damage-location-determination). Otherwise, if MRFC ≤ DET, the damage flag 

of this unknown antigen is set to be “healthy” and the AIS recognition process ends here. 

 

Figure 4-3: Feature space with FVs of the 440 unknown antigens used to test the 

performance of the trained AIS. 



 

 94 

For the unknown conditions labeled as “damaged”, the NFCs of the structure in these 

conditions are calculated using Equation (4-7) and FVs of these unknown damage 

conditions are constructed using Equation (4-9) and Equation (4-10). With their FVs, 

these unknown damage conditions are packaged as unknown antigens (Figure 2-1) and 

introduced into the AIS’ mature memory-cell-set to stimulate a secondary-immune-

response. 

 

In this phase, the affinity values between the FV of an unknown antigen and the ones of 

the memory cells are calculated using Equation (3-1). Then this unknown antigen 

interacts with the memory cell having the highest affinity value with it, which is named 

the selected memory cell. The damage location represented by this selected memory cell 

is read out by the AIS and used to label the unknown antigen. In other word, the 

unknown antigen is determined to be representing a damage condition, whose damage 

location is the same with the selected memory cell. 

 

After the damage location has been determined, the damage severity of the unknown 

antigen is estimated using Equation (5-2) and coefficients in Table 4-1 corresponding to 

its damage location. At the end of this process, the damage flag, the damage location, and 

the damage severity of the unknown antigen have been determined by the AIS.  
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4.1.4 Testing Results 

 

Among the 440 unknown damage conditions, the trained AIS succeeded in detecting the 

damage existence and correctly pointing out the damage location in 419 cases, which 

results in a success rate of 95.23%. 

 

To quantify the performance of the AIS in the damage severity estimation task, a variable 

named the severity deviation (SD) is defined as the difference between the estimated and 

the real damage severities: 

 SD = DSestimated −DSreal  (5-3) 

where DSestimated and DSreal are the estimated and real damage severities, respectively. 

 

The distribution of the SD of the cases, which are correctly recognized by AIS in the 

damage existence detection and the damage location determination, is shown in Figure 

4-4. 

 

In Figure 4-4, the blue bars represent the distribution in a range of 0.01, and the red curve 

represents the “best-fit” Gauss curve generated by the curve fitting toolbox of MATLAB. 

The equation of this “best-fit” Gauss curve is 

  (5-4) 

where 𝑃 is the percentage. 

 

P = 13.79e
− SD+0.005643

0.04011
⎛
⎝⎜

⎞
⎠⎟
2
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Figure 4-4 shows that the major portion of the SDs is within the ±5% range, which 

suggests a relative accurate damage severity estimation result. In order to investigate the 

relationship between the percentage and the SD in another perspective, the data shown in 

Figure 4-4 is reorganized and shown in Figure 4-5 again. 

 

The 𝑥-axis of Figure 4-5 is the absolute value of the SD. The blue points in Figure 4-5 

represent the accumulated percentage. It can be seen from Figure 4-5 that, in nearly 90% 

cases, the SD result of the AIS is within a range of ±5%. 

 

Figure 4-4: The distribution of the SDs of the damage-severity-estimation and its best-fit 

Gauss curve. 
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Figure 4-5: The accumulated percentage of the absolute severity deviation. 

 

4.1.5 4-DOF Structural Model Test Summary 

 

The proposed AIS is evaluated in a 4-DOF structure test. 21 known damage conditions (5 

for each story and 1 for the “healthy” condition) with the “original set” (Table 3-3) are 

used to train the AIS. The trained AIS is then applied to 440 unknown damage conditions, 

each of which has a different SPV set. 

 

The significance of this test is that, the AIS is trained using very limited known instances 

(21 cases). And unknown damage conditions are from different SPV sets, which can be 

as different as 15% with the SPV used for the training. This test simulates the practical 

challenges faced by the AIS when it is applied to similar but not identical structures after 

training, i.e. the discrepancy between the training SPV and the SPV of unknown 

conditions. 
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With an overall success rate of 95.23% in the damage-existence-detection and damage-

location-determination, and nearly 90% of the damage-severity-estimations having a SD 

value less than 5%, the proposed AIS’ performance is proved to be satisfactory in this 4-

DOF structural test. 

 

4.2 Benchmark Problem Test 

 

The proposed AIS has been evaluated using the 4-DOF structure model in the preceding 

part, in which it exhibits satisfactory performance. Nevertheless, the previous evaluation 

only explores the situation when there exists a discrepancy between the training SPV and 

the SPV of the structure in monitoring. It remains unclear what the AIS’ performance is 

when the structure model in monitoring is different with the structure model for training. 

 

Even though the proposed AIS is only expected to deal with the problem when the SPV 

sets are different, it will still be interesting and also meaningful to evaluate the AIS in the 

situation where the structure model in monitoring is different with the one for training. 

To investigate this, a benchmark problem is employed, which is proposed by the 

International Association for Structural Control-American Society of Civil Engineers 

(IASC-ASCE) Structural Health Monitoring Task Group (Johnson, et al. 2004). 
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4.2.1 Introduction to Benchmark Problem 

 

The structure in this benchmark problem is a four-story, two-bay by two-bay, steel-frame, 

quarter-scale model structure in the Earthquake Engineering Research Laboratory at the 

University of British Columbia (UBC). It has a 2.5  𝑚×2.5  𝑚 plan and is 3.6  𝑚 tall 

(Johnson, et al. 2004). An analytical diagram of the structure model with strong and weak 

directions annotated is shown in Figure 4-6. 

 

There exist two analytical structure models in this benchmark problem: one is a 12-DOF 

shear-building model, and the other one is a 120-DOF model. Both models are finite-

element-method based and their MATLAB codes are available on the website (NEEShub 

 

Figure 4-6: An analytical diagram of the structure model used in the benchmark problem 

with strong and weak directions annotated (Johnson, et al. 2004). 
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n.d.) for academic use. Coupled with other factors, the two analytical models result in 

five different model cases, which are listed in Table 4-2. 

 

Eight damage patterns are defined for each model case. They are listed in Table 4-3, and 

are graphically illustrated in Figure 4-7 except for Pattern 0 (Undamaged) and Pattern 7 

(User defined). 

 

The performance of the AIS are investigated in all 5 model cases of the benchmark 

problem. As mentioned earlier, the single-damage-situation is assumed in the AIS. 

However, damage exists on two different stories in Pattern 2, 4, and 5 (Table 4-3), which 

violate the single-damage-situation assumption. Despite this, all the 7 damage patterns, 

excluding Pattern 7 (User define), are included in the investigation for each model case. 

 

The fact that damage happens on more than one story significantly increases the 

difficulty in recognizing unknown structural-damage-conditions. Because the single-

damage-situation is taken as a known condition by the AIS, the AIS will only point out 

one damage location, even though damage may also exist on another story. 

  

Table 4-2: Configurations of the model cases in the benchmark problem. 

Case Index Number of DOF Symmetric Load Position 
1 12 Yes At all stories 
2 120 Yes At all stories 
3 12 Yes At roof 
4 12 No At roof 
5 120 No At roof 
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Table 4-3: Damage patterns in the benchmark problem. 

Damage 
Pattern Index 

Damage Location 
(Story) Detailed Damage Information 

1 2 3 4 
0     Undamaged. 
1     All braces of the 1st story are broken. 
2     All braces of the 1st and the 3rd stories are broken. 
3     One brace on one side of the 1st story is broken. 

4     One brace on one side of the 1st and the 3rd stories 
are broken 

5     Pattern 4 plus unscrew the left end of one element 
of the 1st story. 

6     Area of one brace on one side of the 1st story is 
reduced to 2/3. 

7     User defined damage conditions. 
 

 

Figure 4-7: Graphical illustrations of Pattern 1 to 6 (Johnson, et al. 2004). 
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4.2.2 Unknown Structural-Damage-Conditions for Test 

 

Sixteen accelerometers, two in the 𝑥 and two in the 𝑦 directions per story, are mounted 

on the outer surface of the benchmark structure. MATLAB codes of the benchmark 

problem provide the measured acceleration data from all sixteen accelerometers. 

 

In real world scenarios, the measurement data from sensors are usually limited and 

incomplete. In order to simulate this practical limitation and therefore make this 

investigation more practical, only the first two of the sixteen accelerometers are used. 

These two sensors are mounted along the 𝑥 and 𝑦 directions on the 1st story, respectively. 

Data from them are used to extract modal parameters of the structure needed by the AIS. 

 

To further limit the available information in an attempt to make this test more realistic, 

only the lower three natural frequencies in either direction are considered, which 

responses to the practical situation that the complete frequency spectrum is usually 

inconvenient or expensive to obtain. 

 

For each model case, dynamic responses of the benchmark structure with seven different 

damage patterns are obtained from the provided MATLAB codes. The data associated 

with Pattern 0 (Undamaged) is considered to be a known condition, and is used as the 

reference for further calculations. Normalized-frequency-changes (NFCs) are calculated 

according to Equation (4-7), and are then converted to spherical coordinates using 

Equation (4-9). Finally, FVs are constructed based on Equation (4-10). 
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With these FVs, the six damage patterns generate six unknown antigens. These unknown 

antigens are introduced into the AIS, which is trained using the 4-DOF structure model 

with the “original set” in Table 3-3. 

 

The trained AIS determine the health conditions of these unknown antigens through the 

three phases described earlier. Results are presented and analyzed in the ensuing part. 

 

4.2.3 Benchmark Problem Results 

4.2.3.1 Model Case 1 

 

As indicated in Table 4-2, the excitation method in Model Case 1 is the “ambient” 

excitation along the 𝑦-direction at all stories. Because there is no external excitation 

applied along the 𝑥-direction, the data from the 1st accelerometer (𝑥-direction at the 1st 

story) is discarded, and only the data from the 2nd accelerometer (𝑦-direction at the 1st 

story) is used. 

 

Antigens formed by the six damage patterns in previously described approach are 

introduced into the trained AIS as unknown antigens. The trained AIS recognizes these 

unknown antigens through the three-phase procedure, which has also been described in 

previous parts. 

 

Results from the AIS about these six damage patterns are listed in Table 4-4, which 

shows that, the trained AIS correctly points out the damage location for the damage 
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patterns with the single-damage-situation (Pattern 1, 3, and 6). For the other three damage 

patterns (Pattern 2, 4, and 5), which have two damaged stories, the trained AIS only 

successfully points out one of the damaged stories. 

 

Even though the trained AIS fails in pointing out both the damaged stories in the damage 

patterns with two damage locations, this mistake is understandable because the single-

damage-situation is imbedded in the AIS as a known condition. 

 

As for the damage-severity-estimation, the trained AIS overestimated the severity in 

every damage pattern. It is noteworthy that the estimated severity is compared with the 

severity along the 𝑦-direction, because the accelerometer in use is mounted along the 𝑦-

direction. 

 

Table 4-4: Results from the AIS about the damage patterns in Model Case 1. 

Damage 
Pattern 
Index 

Real Damage Condition AIS Result 
Location (Story) Severity (Stiffness Loss) Location 

(Story) 
Severity 

(%) 1 2 3 4 𝑥 
(%) 𝑦 (%) 

1     45.24 71.03 1 93.78 

2     45.24 71.03 3 146.72     45.24 71.03 
3     0 17.76 1 21.39 

4     0 17.76 1 21.39     11.31 0 

5     0 17.76 1 21.39     11.31 0 
6     0 5.92 1 11.60 
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For Pattern 3, 4, 5 and 6, the trained AIS generates relatively accurate damage-severity-

estimation results, whose severity deviations are within 10%. The estimations made by 

the AIS about Pattern 1 and 2 are much bigger than the actual damage severity. 

Nevertheless, if the fact that the AIS is trained using a 4-DOF structure model, while 

Model Case 1 of the benchmark problem has 12 DOF and different SPV sets is taken into 

account, the overall performance of the proposed AIS in Model Case 1 is still remarkable. 

 

4.2.3.2 Model Case 2 

 

Model Case 2 is similar with Model Case 1, except that it has a 120-DOF model while 

the one in Model Case 1 is 12-DOF. The excitation method in Model Case 2 is also the 

“ambient” excitation along the 𝑦-direction at all stories. 

 

Because the external excitation is only applied along the 𝑦 -direction, thus the 

measurement data from the 2nd accelerometer (𝑦-direction at the 1st story) is used. Results 

from the AIS about the six damage patterns in Mode Case 2 are listed in Table 4-5. 

 

As suggested in Table 4-5, the AIS correctly pointed out the damage location (or one of 

the damage locations) in five damage patterns (Pattern 1, 2, 3, 4, and 5). Because the 2nd 

accelerometer (𝑦-direction at the 1st story) is used, the damage severity estimation results 

from the AIS are compared with the actual severity along the 𝑦-direction. For Pattern 3, 

4, and 5, the AIS’ estimations are relatively accurate (severity deviations are within 5%). 
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For Pattern 1 and 2, the estimations from the AIS are much higher than the actual 

severities. 

 

The inaccuracy of the damage-severity-estimation in Pattern 1 and 2 can be possibility 

attributed to the fact that, the structure is severely damaged in these two patterns: The 1st 

story in Pattern 1 is heavily damaged (stiffness loss 74.99 along the 𝑦-direction), and the 

AIS overestimated about 30% stiffness loss. In Pattern 2, the stiffness loss is 74.78% on 

the 1st story and 76.00% on the 3rd story along the 𝑦-direction. The AIS only detected the 

damage on the 3rd story and the estimated damage severity is 167.76%, which is roughly 

the sum of the two damage severities of the 1st and the 3rd stories. In brief, the AIS is 

more accurate in damage-severity-estimation when the damage is relatively small. 

 

Even though the structural in Modal Case 2 is much different with the 4-DOF structure 

used for training, the AIS still exhibits acceptable performance in unknown structural-

damage-condition recognitions.  

Table 4-5: Results from the AIS about the damage patterns in Model Case 2. 

Damage 
Pattern 
Index 

Real Damage Condition AIS Result 
Location (Story) Severity (Stiffness Loss) Location 

(Story) 
Severity 

(%) 1 2 3 4 𝑥 (%) 𝑦 (%) 
1     54.50 74.99 1 102.07 

2     54.14 74.78 3 167.76     59.60 76.00 
3     0 19.15 1 23.61 

4     0 19.15 1 23.61     15.20 0 

5     0 20.37 1 24.06     15.20 0 
6     0 6.30 3 12.51 
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4.2.3.3 Model Case 3 

 

This model case is the same with Model Case 1 except that, the excitation method in this 

model case is an external force applied at the roof along the direction of ± 𝚤 − 𝚥 . With 

this excitation method, the data from the 1st (𝑥-direction at the 1st story) and the 2nd (𝑦-

direction at the 1st story) accelerometers is used. Results from the AIS about the six 

damage patterns are listed in Table 4-6. 

 

As suggested by Table 4-6, the AIS successfully pointed out the damage locations in 

Pattern 1, 3, 4, 5, and 6, some of which (Pattern 4 and 5) have two damaged stories. And 

for Pattern 2, the AIS only detected the damage on the 3rd story, while ignored the 

damage on the 1st story. 

 

The success of the AIS in Pattern 4 and 5 can be attributed to the fact that, the most 

Table 4-6: Results from the AIS about the damage patterns in Model Case 3. 

Damage 
Pattern 
Index 

Real Damage Condition AIS Result 
Location 
(Story) 

Severity 
(Stiffness Loss) 𝑋-Direction Sensor 𝑌-Direction Sensor 

1 2 3 4 𝑥 (%) 𝑦 (%) Location Severity Location Severity 
1     45.24 71.03 1 50.01% 1 95.08% 

2     45.24 71.03 3 81.20% 3 145.69%     45.24 71.03 
3     0 17.76 Healthy  1 23.46% 

4     0 17.76 3 14.72% 1 23.46%     11.31 0 

5     0 17.76 3 14.72% 1 23.46%     11.31 0 
6     0 5.92 Healthy  1 11.16% 
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significant damage along the 𝑥-direction happens on the 3rd story, while the dominate 

damage along the 𝑦-direction is on the 1st story. In this way, the 1st and the 2nd 

accelerometers detected different damaged stories. Combining the measurement data 

from the 1st and the 2nd accelerometers, the AIS was able to identify both damaged stories 

in the damage pattern. For Pattern 2, because the most significant damage on the 1st and 

the 3rd story are both along the 𝑦-direction, both accelerometers detected the 3rd story as 

damaged while missed the 1st story. As a result, the AIS only recognized one of the 

damage locations. 

 

As for the damage-severity-estimation, even though the estimations made by the AIS are 

generally higher than the actual severities, these estimations are still within the acceptable 

range in Pattern 3, 4, 5, 6, and also the 𝑥-direction in Pattern 1 (severity deviation smaller 

than 6%). For Pattern 2, the estimations are about the sum of the severities on the 1st and 

the 3rd stories. 

 

Compared with the results in previous model cases, the results here are more satisfactory. 

One possible reason is that both the 1st and the 2nd accelerometers are employed and the 

information about the 𝑥-direction and the 𝑦-direction are analyzed. 

 

4.2.3.4 Model Case 4 

 

The situation in Model Case 4 is the same with Model Case 3, except that the structural 

model in this case is asymmetric while the one in Model Case 3 is symmetric. The 
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asymmetry of the structural model is created by replacing one 400  𝑘𝑔 slab on the 4th 

story with a 550  𝑘𝑔 one. 

 

The excitation method in this model case is an external force applied at the roof along the 

direction of ± 𝚤 − 𝚥 . With this excitation method, the measurement data from the 1st (𝑥-

direction at the 1st story) and the 2nd (𝑦-direction at the 1st story) accelerometers is used. 

Results from the AIS about the six damage patterns in this case are listed in Table 4-7. 

 

The AIS’ performance in damage-location-determination here is exactly the same with 

the result in Model Case 3. This may results from the fact that the analytical structure 

models in both cases are the same 12-DOF finite element model with the same excitation 

method. The difference between the two cases is that the structural model in Model Case 

3 is symmetric while the one in Model Case 4 is asymmetric. The identical results from 

both cases suggest that the symmetry of the structural model does not affect the AIS’ 

Table 4-7: Results from the AIS about the damage patterns in Model Case 4. 

Damage 
Pattern 
Index 

Real Damage Condition AIS Result 
Location 
(Story) 

Severity 
(Stiffness Loss) 𝑋-Direction Sensor 𝑌-Direction Sensor 

1 2 3 4 𝑥 (%) 𝑦 (%) Location Severity Location Severity 
1     45.24 71.03 1 45.86% 1 95.50% 

2     45.24 71.03 3 81.26% 3 145.01%     45.24 71.03 
3     0 17.76 Healthy  1 19.84% 

4     0 17.76 3 11.67% 1 19.84%     11.31 0 

5     0 17.76 3 11.67% 1 19.84%     11.31 0 
6     0 5.92 Healthy  1 13.81% 
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performance in the damage-location-determination task. 

 

Although the symmetry does not affect the AIS’s performance in the damage-location-

determination task, it does have an influence on the results in the damage-severity-

estimation. Estimations made by the AIS in this case are different with the estimations in 

Model Case 3: The AIS generated more accurate damage-severity-estimations about 

Pattern 1, 3, 4, and 5 in this case. While, the estimation about Pattern 2 is as accurate as 

and the estimation about Pattern 6 is less accurate than the corresponding results in 

Model Case 3. Overall, the performance of the trained AIS in Mode Case 4 is similar 

with its performance in Model Case 3, which is acceptable. 

 

4.2.3.5 Model Case 5 

 

The configuration of Model Case 5 is the same with Model Case 4, except that the 

structural model in Model Case 5 is 120-DOF while the one in Model Case 4 is 12-DOF. 

Both the structural models are asymmetric. And the excitation methods in both cases are 

the same external force applied at the roof along the direction of ± 𝚤 − 𝚥 . 

 

With the external force applied along the direction of ± 𝚤 − 𝚥 , the measurement data 

from the 1st (𝑥-direction at the 1st story) and the 2nd (𝑦-direction at the 1st story) 

accelerometers is used. Results from the AIS about the six damage patterns in this case 

are listed in Table 4-8. 
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As indicated by Table 4-8, the AIS successfully pointed out the correct damage location 

for Pattern 1, 3, 4, 5, and 6. In addition, the AIS found damage in one of the damage 

locations in Pattern 2. 

 

In the damage-severity-estimation part, the AIS is more accurate about the damage along 

the 𝑥-direction. Its estimations along the 𝑦-direction are accurate in Pattern 3, 4, 5, and 6 

(severity deviation < 10%). But the estimations made by the AIS along the 𝑦-direction in 

Pattern 1 and 2 are much higher than the actual severities. In brief, the overall 

performance of the trained AIS in this case is satisfactory, with an exception in the 

damage-severity-estimation along the 𝑦-direction, which is not accurate. 

 

It is noteworthy that the structure model in this case is a 120-DOF one and asymmetric, 

which is the most different one in the benchmark problem with the 4-DOF structure 

model used for the AIS training. Considering this significant difference, the proposed 

Table 4-8: Results from the AIS about the damage patterns in Model Case 5. 

Damage 
Pattern 
Index 

Real Damage Condition AIS Result 
Location 
(Story) 

Severity 
(Stiffness Loss) 𝑋-Direction Sensor 𝑌-Direction Sensor 

1 2 3 4 𝑥 (%) 𝑦 (%) Location Severity Location Severity 
1     54.50 74.99 1 58.06% 1 103.93% 

2     54.14 74.78 3 111.38% 3 163.24%     59.60 76.00 
3     0 19.15 Healthy  1 24.55% 

4     0 19.15 3 15.76% 1 24.55%     15.20 0 

5     0 20.37 3 19.37% 1 27.77%     15.20 0 
6     0 6.30 Healthy  1 15.24% 
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AIS’ performance in this case is still satisfactory and implies its promising applicability 

to real world scenarios. 

 

4.2.4 Benchmark Problem Summary 

 

In the preceding part of this section, the proposed AIS was trained using a 4-DOF 

structure model, which was minutely analyzed in Section 3.3.1.3. After that the trained 

AIS was applied to a benchmark problem proposed by the IASC-ASCE Structural Health 

Monitoring Task Group. 

 

There are five modal cases with eight damage patterns per model case in the benchmark 

problem. The proposed AIS were evaluated using all the five cases of the benchmark 

problem. The trained AIS exhibited satisfactory damage-location-determination capacity 

and acceptable damage-estimation-accuracy. 

 

The significance of this investigation is that, the structure models, the SPVs, and the 

simulation method of the benchmark problem are obviously different with their 

counterparts in the AIS training. The 4-DOF structure model used for training is a model 

more simpler than the more accurate and more realistic 12- and 120-DOF structural 

models in the benchmark problem, which are constructed based on measurements from a 

physical structure with the finite-element-method. 
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Results of the AIS in the benchmark problem indicate that the proposed AIS can be 

potentially trained using a much simplified structure model of the structure under 

monitoring, and still exhibits satisfactory performance in SHM tasks. This characteristic 

makes the proposed AIS more applicable to real world SHM scenarios.  



 

 114 

5 Conclusions and Future Studies 

 

A parameter-insensitive artificial immune system (AIS) is proposed in this thesis, whose 

most distinct characteristic is its unique approach to construct FVs, which employ the 

pattern in modal-parameter-change instead of using modal parameters directly, and its 

three phase architecture, including damage-existence-detection (Phase 1), damage-

location-determination (Phase 2), and damage-severity-estimation (Phase 3). 

 

Through a series of comparisons between the performance of the proposed method and 

the conventional one in three structure models (2-DOF, 3-DOF and 4-DOF), it is clearly 

shown that the proposed FVs formed by pattern in modal-parameter-change have 

superior characteristics, compared with the ones constructed by modal parameters 

directly: FVs representing different damage locations are better separated in the feature 

space, while FVs standing for the same damage location are better clustered. More 

importantly, the proposed FVs are less sensitive to structural-parameter-value (SPV) 

differences. 

 

In order to fully take advantage of the sensitivity of the proposed FV to damage locations, 

the AIS is divided into three phases: damage-existence-detection (Phase 1), damage-

location-determination (Phase 2), and damage-severity-estimation (Phase 3). Output from 

the previous phase works as the input to the next phase. 
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The proposed method is applied to an AIS in a 4-DOF structure model. The AIS is 

trained using 21 known structural-damage-conditions, including the “healthy” condition. 

To evaluate the performance of the trained AIS, 440 unknown structural-damage-

conditions with randomly selected SPV sets and damage severities are generated using 

the same 4-DOF structure model. The AIS acquired an overall success rate of 95.23% in 

damage-existence-detection and damage-location-determination, and accurate results 

(nearly 90% cases are within a 5% severity deviation) in damage-severity-estimation. 

 

In addition to the 4-DOF structure model test, a benchmark study, which was proposed 

by the International Association for Structural Control-American Society of Civil 

Engineers (IASC-ASCE) Structural Health Monitoring Task Group, is employed to 

further assess the efficacy of the proposed AIS in practical scenarios. The overall 

performance of the proposed AIS in this benchmark study is satisfactory, which is 

significant considering that the AIS is trained using a 4-DOF structure model while the 

models in this benchmark study are 12-DOF and 120-DOF finite-element-models with 

different SPV sets. 

 

In summary, the proposed AIS exhibits consistent and satisfactory performance in SHM 

scenarios, especially when there is a discrepancy between the training SPV and the SPV 

of the structural under monitoring. The tolerance of the proposed AIS to this discrepancy 

significantly extends the AIS’ applicability to real world SHM tasks, and contributes to 

the exploration of developing the AIS to be a more general method instead of an 

individual structure dependent system. 
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Besides the overall satisfactory performance of the proposed AIS, there exist some 

limitations that need to be further investigated in future studies. One major limitation to 

this study is the practical issues involved in the modal parameter extraction. In this thesis, 

modal parameters are extracted from the structural free vibration initiated by an initial 

displacement. This is acceptable in the proof-of-concept demonstration. However, in real-

world scenarios, a more convenient and realistic excitation method for one structure is the 

ambient excitation, caused by its surrounding environment (such as the wind or the 

traffic). The difficulties and challenges involved in the modal parameter extraction with 

the ambient vibration should be investigated in future studies. 

 

The proposed AIS is designed to have a 3-phase procedure, separating the damage-

existence-detection, the damage-location-determination, and the damage-severity-

estimation tasks. The focus of this thesis is on the 2nd phase (damage-location-

determination). Due to the definition used in the proposed method, the feature vector 

representing the health condition cannot be plotted in the feature space for phase 2. This 

does not cause any problem, because phase 2 is only performed when the damage has 

been detected in phase 1. In other words, if the structure is healthy, the AIS will not use 

phase 2 to determinate the damage location, therefore will not encounter the “undefined” 

condition. There exists the possibility of modifying the definition to include the healthy 

condition in the feature space, which requires further study about the mathematic 

principles behind the proposed feature space.  
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