
1

Automated Detection of Jackals and Foxes in the Arava Valley

by

Lillian Carleu

Liam Hall

Jacob Reiss

Jason Rockmael

2

Automated Detection of Jackals and Foxes in the Arava Valley

An Interactive Qualifying Project

submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

degree of Bachelor of Science

By

Lillian Carleu

Liam Hall

Jacob Reiss

Jason Rockmael

Date:

24 February 2023

Report Submitted to:

Dr. Nitzan Segev

Arava-Dead Sea Science Center

Professors Isa Bar-On and Erin Solovey; Graduate Student Co-advisor Tess Meier

Worcester Polytechnic Institute

This report represents work of one or more WPI undergraduate students submitted to the faculty
as evidence of a degree requirement. WPI routinely publishes these reports on its web site

without editorial or peer review.

3

ABSTRACT:

Monitoring animal populations has been a long-standing challenge in wildlife ecology. One

focus of the Arava-Dead Sea Science Center (ADSSC) is monitoring jackal and fox populations

as agricultural zones expand. Researchers at the ADSSC use camera traps for ecological

monitoring, and manually sort the images into categories. This process takes at least 12 hours of

work per week. To reduce the workload of researchers at the ADSSC, their image sorting process

was automated using machine learning and integrated into the current workflow. Over 90%

accuracy in classifying “jackals”, “foxes”, “other”, and “empty” was achieved using our machine

learning algorithm. A comprehensive user manual was created to allow researchers at the

ADSSC and future users to utilize the software with ease.

4

ACKNOWLEDGEMENTS:

We would like to thank Dr. Nitzan Segev for her cooperation and contributions to the project.

She is very passionate about her work and helped motivate the team to produce high quality

results. Without the data that she provided, this project would not have been achievable. Special

thanks goes to Liri Koplevich, Dr. Segev’s research assistant, for his help with gathering data and

his witty humor. We would also like to thank our advisors, Dr. Isa Bar-On, Dr. Erin Solovey, and

Tess Meier. Their guidance throughout the project helped us stay on track. Extra thanks goes to

Dr. Solovey for her consultation regarding the code for the project. Lastly, we would like to

thank Kibbutz Ketura, the Arava Institute, and the Arava-Dead Sea Science Center for their

hospitality and enthusiasm for our project.

5

AUTHORSHIP PAGE:

Paper Section Primary author(s) Primary
editor(s)

Abstract Lillian Carleu All

Chapter 1: Introduction

1.1 Arava-Dead Sea Science Center Lillian Carleu Lillian Carleu

1.2 The ADSSC’s Current Workflow for
Monitoring Large Carnivore Populations

Lillian Carleu, Jason
Rockmael

Lillian Carleu

1.3 Goal Statement and Objectives All All

Chapter 2: Background

2.1 The Arava Valley Lillian Carleu Lillian Carleu

2.2 Standard Image Processing Workflow of
Ecologists

Lillian Carleu, Jacob
Reiss

Lillian Carleu

2.3 Timelapse Software Liam Hall Lillian Carleu

2.4 MegaDetector and EcoAssist Jason Rockmael Lillian Carleu

2.5 Machine Learning and Artificial Intelligence Jacob Reiss, Jason
Rockmael

Lillian Carleu

2.6 Transfer Learning with ImageNet Jacob Reiss Lillian Carleu

2.7 AI Hyperparameters Jason Rockmael Lillian Carleu

2.8 Implications of Machine Learning Lillian Carleu Lillian Carleu

2.9 Use Cases of the Arava-Dead Sea Science
Center

Lillian Carleu, Jason
Rockmael

Lillian Carleu

Chapter 3: Automating Image Classification
Overview

Lillian Carleu, Jacob
Reiss

Lillian Carleu,
Jacob Reiss

Chapter 4: Determining Image Sorting Lillian Carleu, Jason Lillian Carleu,

6

Categories Rockmael, Jacob
Reiss

Jacob Reiss

Chapter 5: Data Collection and Curation

5.1 Data Collection Jason Rockmael Lillian Carleu,
Jacob Reiss

5.2 General Dataset Description Jacob Reiss Lillian Carleu

5.3 Dataset Preprocessing Jacob Reiss Lillian Carleu

5.4 Dataset Labeling Jacob Reiss Lillian Carleu

5.5 Dataset Overview Jacob Reiss Lillian Carleu

Chapter 6: AI Model for Detection of Jackals
and Foxes

6.1 MegaDetector Results Jason Rockmael Lillian Carleu

6.2 Implementing and Training the Model Lillian Carleu, Jacob
Reiss

Jacob Reiss,
Jason Rockmael

6.3 Best Performance Jason Rockmael Jacob Reiss

6.4 Optimization Experiment Overview and
Methodology

Lillian Carleu, Jacob
Reiss, Jason
Rockmael

Lillian Carleu,
Jacob Reiss,
Jason Rockmael

6.5 Epoch Experimentation Jacob Reiss Lillian Carleu,
Jason Rockmael

6.6 Variation of Steps per Epoch Experimentation Jacob Reiss Lillian Carleu,
Jason Rockmael

6.7 Variation of Validation Steps Experimentation Jacob Reiss Lillian Carleu,
Jason Rockmael

6.8 Variation of Optimizer Jason Rockmael Jacob, Lillian
Carleu

6.9 Variation of Activation Function Jason Rockmael Jacob Reiss

6.10 Variation of Unit Size Jason Rockmael Jacob Reiss

Chapter 7: Integration with Research
Workflow

7

7.1 Integration with Timelapse Liam Hall, Jacob
Reiss

Lillian Carleu,
Jason Rockmael

7.2 Finalizing an Application and User Manual Lillian Carleu, Jason
Rockmael

Lillian Carleu,
Jacob Reiss

7.3 Use by the Arava-Dead Sea Science Center Jason Rockmael Lillian Carleu

7.4 Hardware Requirements and
Recommendations

Jason Rockmael Liam Hall, Jacob
Reiss

Chapter 8: Conclusions and
Recommendations

Lillian Carleu, Liam
Hall

Lillian Carleu,
Jason Rockmael

OTHER CONTRIBUTIONS

Person Contribution(s)

Lillian Carleu Team manager, researched extensively, head
of writing, labeled some of the dataset,
worked with design elements.

Liam Hall Wrote the user manual, integrated
MegaDetector with the application, labeled
some of the dataset.

Jacob Reiss Designed and programmed the application,
integrated Timelapse with application,
integrated MegaDetector with the application,
ran optimization experiments and tests, wrote
the user manual, helped sort labeled data, did
citation review, helped sponsor in integrating
our software.

Jason Rockmael In charge of communications, labeled the
majority of the dataset, integrated
MegaDetector with the application, general
optimization experiments and tests, confusion
matrices, team GitHub organizer, helped write
user manual, and helped sponsor in
integrating our software.

8

TABLE OF CONTENTS

ABSTRACT: 3

ACKNOWLEDGEMENTS: 4

AUTHORSHIP PAGE: 5

TABLE OF CONTENTS 8

TABLE OF FIGURES 11

TABLE OF TABLES 13

CHAPTER 1: INTRODUCTION 14

1.1 Arava-Dead Sea Science Center 14

1.2 The ADSSC’s Current Workflow for Monitoring Large Carnivore Populations 15

1.3 Goal Statement and Objectives 16

CHAPTER 2: BACKGROUND 17

2.1 The Arava Valley 17

2.2 Standard Image Processing Workflow of Ecologists 17

2.3 Timelapse Software 18

2.4 MegaDetector and EcoAssist 20

2.5 Machine Learning and Artificial Intelligence 22

2.6 AI Hyperparameters and Architecture 22

2.7 Transfer Learning with ImageNet 24

2.8 Implications of Machine Learning 24

2.9 Use Cases of the Arava-Dead Sea Science Center 24

CHAPTER 3: AUTOMATING IMAGE CLASSIFICATION OVERVIEW 26

CHAPTER 4: DETERMINING IMAGE SORTING CATEGORIES 26

CHAPTER 5: DATA COLLECTION AND CURATION 28

5.1 Data Collection 28

5.2 General Dataset Description 30

9

5.3 Dataset Preprocessing 30

5.4 Dataset Labeling 31

5.5 Dataset Overview 31

CHAPTER 6: AI MODEL FOR DETECTION OF JACKALS AND FOXES 31

6.1 MegaDetector Results 31

6.2 Implementing and Training the Model 32

6.3 Best Performance 32

6.4 Optimization Experiment Overview and Methodology 34

6.5 Epoch Experimentation 35

6.6 Variation of Steps per Epoch Experimentation 37

6.7 Variation of Validation Steps Experimentation 39

6.8 Variation of Optimizer 41

6.9 Variation of Activation Function 43

6.10 Variation of Unit Size 44

CHAPTER 7: INTEGRATION WITH RESEARCH WORKFLOW 46

7.1 Integration with Timelapse 46

7.2 Finalizing the Application and User Manual 46

7.3 Use by the Arava-Dead Sea Science Center 47

7.4 Hardware Requirements and Recommendations 48

CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 49

REFERENCES 50

APPENDIX A 54

In-depth Explanation of Neural Networks 54

APPENDIX B 56

GitHub Repository 56

APPENDIX C 57

10

User manual 57

APPENDIX D 59

Timelapse Manuals 58

APPENDIX E 59

MegaDetector Links 59

APPENDIX F 60

EcoAssist Instructions 60

APPENDIX G 65

VGG-16 Description 65

APPENDIX H 66

Expanded Confusion Matrix 66

11

TABLE OF FIGURES

Figure 1: Jackal and fox crossing the Israeli-Jordanian border and damage to a pumpkin patch
and irrigation system caused by jackals 15

Figure 2: Timelapse being used to process camera trap data of a jackal crossing the
Israeli-Jordanian border 19

Figure 3: Image showing bounding boxes around an animal, person, and vehicle in Timelapse 21

Figure 4: Photo of a hyena (top left), jackal (top right), fox (bottom left), and wolf (bottom right)
at night, taken by one of our sponsor’s cameras 25

Figure 5: Overview of our automated sorting process. 26

Figure 6: Example of an Israeli-Jordanian border crossing 28

Figure 7: Map of trail cameras from winter 2023 29

Figure 8: Browning Dark Ops trail camera with SD card 29

Figure 9: Percentage breakdown of the training and validation data 31

Figure 10: Confusion Matrix showing actual vs predicted categories 33

Figure 11: Final run using optimal parameters from previous experiments 34

Figure 12: Performance metrics of variation 3, trial 2 36

Figure 13: Performance Metrics of variation 1, trial 3 38

Figure 14: Performance metrics of variation 1, trial 1 40

Figure 15: Performance Metrics of AdaGrad trial 1 42

Figure 16: Performance Metrics of SELU/ReLU trial 2 44

Figure 17: Performance metrics of 1024 trial 1 45

Figure A1. Structure of a deep neural network 55

Figure F1: EcoAssist on startup 60

Figure F2: EcoAssist with options for running MegaDetector 61

Figure F3: EcoAssist after completing run 62

Figure F4: Example of image data in a JSON File 63

Figure F5: Timelapse with recognition options shown 64

12

Figure F6: Settings for sorting images in Timelapse using recognition data 65

Figure H1: Full Confusion Matrix 66

13

TABLE OF TABLES

Table 1: Variation of epoch count 36

Table 2: Variation of Steps per epoch 38

Table 3: Variation of validation steps 40

Table 4: Variation of optimizer 42

Table 5: Variation of activation function 43

Table 6: Variation of Unit size 45

Table 7: List of recommended hardware components 48

14

CHAPTER 1: INTRODUCTION

1.1 Arava-Dead Sea Science Center

The Arava-Dead Sea Science Center (ADSSC) is a research institution that operates along the

Dead Sea and the entire Arava Valley, a region that covers approximately 20% of the area of the

State of Israel. The valley contains an array of extreme geographical, physical, and climatic

conditions, displaying unique flora and fauna that do not exist anywhere else in the world

(ADSSC, n.d.). The ADSSC conducts research based on cross-border scientific cooperation and

sustainable development, focusing on climate change, infrastructure, water, biodiversity, and

sustainable agriculture in a hyper-arid climate (ADSSC, n.d.). Much of the research involves

monitoring the impact of agricultural expansion on both native and invasive flora and fauna.

As agricultural zones expand in the Arava Valley, these zones serve as oases for animals,

providing easy access to both food from crops and water from irrigation pipes (Barocas et al.,

2018). In a study conducted by Barocas, et al. on the behavioral adaptations of large carnivores

to human activity in an extremely arid landscape, it was shown that “driven by availability of

food subsidies, large carnivore populations are increasingly inhabiting the vicinity of humans”

(Barocas, et al., 2018). Researchers at the ADSSC have interest in these patterns and have noted

an increase in the populations of large carnivores where food subsidies are more abundant.

Jackals and foxes are the largest and most harmful of the large carnivores in this area, because of

the damage they do to crops by trampling them while playing, and damage to irrigation pipes by

chewing through them, which wastes water and puts crops at risk (Figure 1). In addition to this,

these animals prey on livestock and they pose a health risk to communities because they carry

diseases that are dangerous and transferable to humans and domesticated animals, such as

rabies.1 Currently, jackals are classified as a pest in Israel (Moran, 2003).

1 N. Segev, personal communication, January 23, 2023

15

Figure 1: Top: Damage to a pumpkin patch and irrigation system caused by jackals

Bottom: Jackal and fox crossing the Israeli-Jordanian border

1.2 The ADSSC’s Current Workflow for Monitoring Large Carnivore Populations

Currently, the researchers at the ADSSC set up trail cameras twice per season to photograph and

monitor wildlife. Poles are hammered into the ground across from points of interest and

motion-sensing trail cameras are attached. The cameras are left for two weeks, after which the

images are downloaded to a laptop and sorted. Researchers have interest in sorting these images

to gain quantitative data about specific species’ populations and behavioral patterns.

The manual sorting process for these images involves going through the images individually by

hand, and determining which animal, if any, is in each image. Researchers label the images with

the season and time of day visually, as well as the number of animals present in the photo using a

16

software called Timelapse. It provides quick dropdown menus to classify each of the images and

has several display modes. Additionally, this software can quickly sort the data in a table and

export it as a comma-separated value (CSV) file which allows for easy transfer to external

applications.

At the ADSSC, approximately 800 photos are taken per day, and the researchers label images at

a rate of approximately 420-480 images per hour. This is a time-consuming process, as it takes

over 11 hours of work per week to process a week’s worth of photos, taking away time from

other research tasks.2 This process does not factor in misclassification due to human error and the

additional time consumed from rechecking photos. Furthermore, teaching others this manual

labeling process is time-consuming.

1.3 Goal Statement and Objectives

The goal of our project is to develop an automated system to detect and record jackal and fox

activity in the Arava Valley to reduce the workload for researchers at the Arava-Dead Sea

Science Center (ADSSC). To achieve this goal, our team developed the following objectives: 1)

identify clear sorting categories for photographs taken by the ADSSC to categorize invasive

jackals and foxes, 2) automate the detection and classification of foxes and jackals using

machine learning, 3) optimize our software to have high accuracy in classifying jackals and

foxes, and 4) create a practical process, as well as user manual, to integrate our software into the

ADSSC’s current workflow. Moving forward, the ADSSC is considering the construction of an

automated deterrence system for these mammals. They could use our software as a foundation

for such a project, in order to determine whether an object in front of a camera should be

deterred or not.

2 N. Segev, personal communication, January 23, 2023

17

CHAPTER 2: BACKGROUND

2.1 The Arava Valley

The Arava Valley is a hyper-arid zone in the Negev desert (Portnov & Safriel, 2003). Desert

ecosystems have low biological activity and biodiversity and it is typically difficult for

non-native species to survive (Faragalla, A., 1988).

Agricultural zones are now expanding at unforeseen rates due to technological advances. Highly

productive agroecosystems in the desert are an intrusion to the natural ecosystem. Irrigation

systems in these zones create favorable environments for pest species: the continuity of oases

and crops creates refuges for pests to multiply (Faragalla, A., 1988). Agricultural zones have

human communities in close proximity, where large quantities of food scraps are dumped.

Predators that would not be able to survive on natural prey in the Negev alter their dietary

preferences to survive, and rely heavily on the availability of garbage. The availability of

human-provided resources to predators results in behavioral changes and trophic cascades

(Newsome, et al., 2015). A study by Greenville et al. showed that the strongest effect on prey

populations in the desert ecosystem is suppression from introduced predators (Greenville,

Wardle, & Dickman, 2017). A study showed that foxes are much more commonly occuring and

active at locations close to agricultural zones (Shanas, Shapira, & Sultan, 2008).

2.2 Standard Image Processing Workflow of Ecologists

Monitoring animal populations has been a long-standing challenge in wildlife ecology (Bayne, et

al., 2015). However, with the improvement of remote-sensing and other technical capabilities,

camera traps have become widely adopted by researchers to survey wildlife distribution,

abundance, and behavior (Berger-Tal & Lahoz-Monfort, 2018). A trail camera refers to a

motion-sensing camera utilized for field research. Camera trapping does have sources of

sampling error such as imperfect detection (Bayne, et al., 2015). These cameras take thousands

of photos, many of which do not contain animals (Andrews, et al., 2017). Even so, each image

must be analyzed to determine what species is in the photo. This can take researchers days to

18

process, depending on how many cameras they use and how much movement occurs in these

areas. Thus, researchers have sought different ways of making the process more efficient.

In the case of the Wildlife Spotter Project, citizen science was used to classify images, with

specific categories being provided for the volunteers (Andrews, et al., 2017). While this achieved

96% accuracy, it still took days to process all of the data, and required willing volunteers to

manually classify sets of images.

To speed up this process, ecologists have also looked into machine learning, a field of artificial

intelligence that involves training a program to perform a specific task. Many studies have

shown that neural networks, an implementation of machine learning, have achieved 90-98%

accuracy at classifying images, greatly reducing the workload on ecologists (Andrews, et al.,

2017). A study investigating the performance of various machine learning models on the

Wildlife Spotter dataset was found to be up to 96% accurate (Andrews, et al., 2017). Another

study that used multiple neural network implementations on the Northeast Tiger and Leopard

National Park dataset found that neural networks could be up to 88% accurate at making

predictions on videos (Chao, et al., 2022). Another benefit of neural networks is that they take

significantly less time to process images.

2.3 Timelapse Software

In the ADSSC’s current workflow, a software called Timelapse is used to analyze and label the

image data of the local ecology.3 Timelapse provides a graphical user interface that allows the

user to label the wildlife in the image using a dropdown list of animals (Timelapse, 2021). Other

information can be added to the images, including the season, whether it is day or night, and a

counter for how many of the specified animals are in the image as shown in Figure 2. This

information is automatically formatted into a data table as shown in Figure 2, which can be

exported and used elsewhere. Sorting within the data table is also supported, which allows the

user to view various columns of the data in either ascending or descending order. The number of

images that the user views can be specified, from one to twenty-four images at a time. Images

can also be ‘auto-played’, or cycled through automatically, and the speed of this can be varied.

Comma-separated values (CSV) files can be imported into and exported out of Timelapse. This
3 N. Segev, personal communication, January, 2023

19

feature helps the user to integrate Timelapse into their workflow, as CSVs can be read by

spreadsheet applications, such as Excel and Google Sheets.

Figure 2: Timelapse being used to process camera trap data of a jackal crossing the
Israeli-Jordanian border

20

2.4 MegaDetector and EcoAssist

The most time consuming portion of the current categorization process is manually sorting

through thousands of images and differentiating empty images from those that contain animals or

other objects. Microsoft’s MegaDetector software (Appendix E) classifies animals, people,

vehicles, and empty images automatically. MegaDetector has been used successfully in

conjunction with Timelapse by ecologists for past research, and there is a full guide (Appendix

D) on how to import MegaDetector results into Timelapse. MegaDetector is also widely used

because of its fast runtime on most NVIDIA graphics cards. One concern with this software is

that it must be run in Windows Command Prompt, so users that are not familiar with shell scripts

will have difficulty running the software. To address this issue, researchers use EcoAssist

(Appendix E) as well. EcoAssist is a graphical user interface developed by an independent

wildlife researcher to make the MegaDetector software more user friendly for other researchers

that are less familiar with Windows Command Prompt.

With EcoAssist installed, the user chooses the desired folder for classification within the

graphical user interface, runs the MegaDetector software on the chosen dataset, and has the

option to post-process the data to sort the data automatically. After MegaDetector has completed

its run, it automatically outputs a JavaScript Object Notation (JSON) file that contains data for

blue, red, and white bounding boxes that correspond to animal, human, and vehicle, respectively.

Additionally, JSON files produced by MegaDetector contain confidence values for its detections

on each image, which correspond to the certainty of the algorithm. These JSON files can then be

imported into Timelapse and the images in the dataset can be sorted by both the classification

and confidence values. If objects are detected, the image will have a blue, red, or white bounding

box around the objects of interest (Figure 3).

21

Figure 3: Image showing bounding boxes around an animal, person, and vehicle in
Timelapse

22

2.5 Machine Learning and Artificial Intelligence

Machine learning is a field of artificial intelligence (AI) that uses computer systems which learn

and adapt by using algorithms and statistical models to analyze and draw inferences from

patterns in data (Baker, Herbert Chan, & Nichols, 2019). A neural network is analogous to a

brain, where each component in the neural network represents a neuron.

Neural networks come in many forms and are highly configurable. In the machine learning field,

convolutional neural networks (CNNs) are widely used for image classification (Andrews, et al.,

2017). CNNs can be trained on large quantities of image data that have been pre-processed in

order to recognize patterns that appear in the data. Image processing CNNs take in an image as

an input, process it through the layers of the network, and then output a classification with a

confidence value. A more detailed breakdown of CNNs can be found in Appendix A.

Optimizing CNN models is also highly important. For the software to be useful to users, a model

has to be fast and accurate in its classification.

2.6 AI Hyperparameters and Architecture

There are several variables in the code of an AI model that affect the AI’s classification. These

variables are called “hyperparameters” and are manually set by the developer to improve the

accuracy and loss values of the model. Accuracy in image recognition refers to the AI’s ability to

correctly categorize photographs. Accuracy is a percent value represented as a decimal of how

many images the AI correctly identifies. Loss measures the magnitude of error the algorithm

makes when analyzing a photo in the dataset. Loss is not a percentage and can have any positive

value. Loss values under one are typically considered “good” values, with values closer to zero

being the best.

One hyperparameter in CNNs is the number of epochs. An epoch refers to one iteration through

all the training data. While the number of epochs is directly proportional to the accuracy, too

many epochs will cause the model to overfit since it has seen the same data too many times.

Overfitting means that the artificial intelligence would have a harder time making predictions on

images outside of the training set.

23

Another hyperparameter to consider is the number of steps per epoch in CNNs. A step refers to

the number of times a batch is fed into a network per epoch. A batch refers to a set of images that

are processed together. Steps per epoch is also directly proportional to the accuracy at the

expense of an increased runtime, until overfitting occurs.

In order to decrease the loss values of a model, an optimizer is used. There are several different

optimizers such as Adam, Adamax, and Adagrad that employ different algorithms in order to

minimize the loss of the model. Each implementation requires a different algorithm, thus

multiple optimizers should be tested to determine the best one for the specified task.

While the previous hyperparameters affect the AI model as a whole, there are also

hyperparameters that only affect one specific layer of the model. One of these hyperparameters is

the activation function, which determines how many and which individual neurons should be

activated within a particular layer. Neurons are a fundamental unit of a neural network, which

store information as it passes through the network. Another hyperparameter for each layer is the

unit size, which refers to the number of neurons within a layer. Both the activation function and

the unit size can greatly affect accuracy and loss values.

Each of these hyperparameters are typically experimented with individually in order to determine

how they affect the model. However, there are certain hyperparameters, such as activation

functions, where the combinations between layers matter. An improvement to hyperparameters

drives an increase in accuracy and a decrease in loss. An optimal set of hyperparameters is

determined once the highest overall accuracy and lowest overall loss is achieved.

The model architecture also affects the accuracy and runtime of the model. As the number of

layers increases, the accuracy of the model also increases, however, runtime greatly increases as

well. Overfitting can also occur if the model has too many layers. An example of a model is the

VGG-16 architecture. VGG-16 has 16 overall layers with the last three layers being dense. For

more information on dense layers, refer to Appendix A. For more information on the

specifications of the VGG-16 model, refer to Appendix G.

24

2.7 Transfer Learning with ImageNet

Transfer learning is a concept from machine learning in which information learned by one

implementation of a neural network model is transferred and applied to another model trying to

accomplish a similar task. It is often used for models when there is not enough training data to

achieve a reliable accuracy (Khoshgoftaar, Wang, & Weiss, 2016). Transfer learning improves

the accuracy of a model by utilizing pretrained weights, as well as prebuilt architecture, from

another model which was trained on a dataset of a suitable size (Keras, 2020). This also helps to

reduce overfitting.

There are open-source databases that can be used for transfer learning. Google’s ImageNet is one

of these databases, and it contains over 14 million images that are freely accessible to use for

image recognition in AI models. The use of ImageNet for transfer learning is widespread in the

machine learning discipline. Models pretrained on ImageNet have been used in many

applications, including AIs that detect medical issues in medical images (Richmond & Xie,

2018), animal identification (Cowley, et al., 2021), and species classification (Andrews, et al.,

2017).

2.8 Implications of Machine Learning

Technology can provide key tools to collect more data and to improve the monitoring of wildlife.

As innovation progresses, technology becomes less resource intensive, further enabling

researchers to use new technological tools. Therefore, there is a strong drive for ecologists to

collaborate with technologists (such as engineers, computer scientists, and data analysts) to

expand the scope of current technologies and tailor tools optimized to fulfill specific research

goals (Berger-Tal & Lahoz-Monfort, 2018).

One concern is the trustworthiness and explainability of machine learning, particularly by users

from outside the field. The abstract nature of ‘black box’ systems, such as those found in deep

learning, can make it difficult for researchers to fully understand and trust the software that will

be implemented (Ahamed, et al., 2022). As neural network-based technologies are still quite

new, they face the problem of technology abandonment, as they will not be used if they are not

clearly understood.

25

With the average user not understanding the inner workings of machine learning, overtrust can

become an issue, as well (Kaluarachchi, Nanayakkara, & Reis, 2021). Overtrust refers to the

phenomenon where the user trusts the system beyond its capabilities (Butz, Diefenbach, &

Ullrich, 2021). When utilizing AI models, it is of paramount importance that the model is

manually checked for inaccuracies at regular time intervals. While the dataset the model trains

on is as large and diverse as possible, biases may still develop and inaccuracies tend to

compound. As shown in Figure 4, it can be hard to differentiate between animals even by human

reviewers, especially during the night. If the model is overtrusted, incorrect data may be used to

make hypotheses, and may lead to false information being published or used for grant

applications.

Alternatively, there is a sense in which the intelligent systems that we are using approach

determinism by means of probability and statistics. The most relevant example of this is

confidence values, which indicate how confident the system is in its classification. Low

confidence values indicate that the user should manually review photos.

Figure 4: Photo of a hyena (top left), jackal (top right), fox (bottom left), and wolf (bottom

right) at night, taken by one of our sponsor’s cameras

26

2.9 Use Cases of the Arava-Dead Sea Science Center

At the ADSSC, our software may be utilized by researchers and interns. While they are

tech-savvy, the importance of integrating our system into their current workflow as well as

making a clear manual to explain how to use our software in detail was of the utmost importance.

Troubleshooting guides and installation instructions were highly important to ensure that

technological abandonment would not occur, and that the software could be implemented with

ease.

CHAPTER 3: AUTOMATING IMAGE CLASSIFICATION OVERVIEW

Figure 5: Overview of our automated sorting process

Our first objective was to identify clear sorting categories for photographs. We conducted

various interviews with our sponsor to gauge what our application should focus on. Additionally,

trail cameras were placed at strategic intervals across from designated animal border crossings

and left out for two weeks before photographic data was downloaded to a laptop and analyzed.

To address our second objective of automating the detection and classification of foxes and

jackals using machine learning, and our third objective of optimizing our software to have high

accuracy in classifying jackals and foxes, a deep learning model was constructed. The

27

photographic data collected was used for training, and was preprocessed using various methods

to make it more suited for the model to train on. Multiple optimization experiments were needed

to ensure a suitable accuracy in making predictions.

To address our fourth objective of creating a practical process, as well as user manual, to

integrate our software into the ADSSC’s current workflow, demonstrations and interviews were

conducted with our sponsor throughout the process to help ensure our application integrated

smoothly with her current workflow, which utilizes Timelapse (see Figure 5). Additionally,

various applications required to run our software were consolidated to reduce the amount of steps

required to successfully use our software, thus making our application more practical.

Interviews, demos, and consultations were conducted regularly to help ensure that our final

product will be usable in the future.

CHAPTER 4: DETERMINING IMAGE SORTING CATEGORIES

Sorting categories were determined through several interviews on the use cases of the software

with our sponsor, as well as our analysis of the 14,570 images we collected. These photos,

obtained from the 20 cameras, were sorted and analyzed to gain an understanding of the dataset

we would be working with. Our sponsor’s main subjects of focus were jackals and foxes, as

these were the most common animals found in the images and they cause the most damage out of

the large carnivores in the Arava Valley. She also wanted to be able to easily analyze other

images that contain animals in them while being able to skip over all the images that contained

nothing of interest. To address this, four main categories were determined: “empty”, “fox”,

“jackal”, and “other”. Images that contained nothing of interest would be sorted into the “empty”

category, while foxes, jackals, and other animals would be sorted into their respective categories.

We decided to further break down the “fox” and “jackal” categories to reduce the AI’s confusion

when it sees animals from different angles. “Fox” and “jackal” both had subcategories of “back”,

“front”, and “side”. Each of these subcategories, as well as the “other” and “empty” categories,

were stored as subdirectories under one folder labeled “Training Data.” The sorting process was

done by navigating to the directory that stored the data of each camera and then manually sifting

through the images using Microsoft Photos, moving them into their respective subdirectories.

28

The “Training Data” folder was then used for training the deep learning model. When the model

made a prediction, it classified an image as one of the eight categories, and then condensed the

“fox” and “jackal” subcategories into either “fox” or “jackal”.

CHAPTER 5: DATA COLLECTION AND CURATION

5.1 Data Collection

Twenty trail cameras were placed at strategic points across from designated animal border

crossings in order to track behavioral patterns (Figure 6). These cameras were left out for two

weeks at a time, with the locations, spanning the Eilat-Eilot region, being rotated twice per

season (Figure 7). There were three types of cameras used in this data collection process:

Bushnell Aggressors, Browning Dark Ops (Figure 8), and ATC 70s. The Bushnells and

Brownings use SD cards (Figure 8) to store all the photographic data from the camera which was

then downloaded to a laptop as each camera was collected. The ATCs use a USB-A to micro

USB adapter to connect directly to the laptop. The data was downloaded from the cameras’

storage.

Figure 6: Example of an Israeli-Jordanian border crossing

29

Figure 7: Map of trail cameras from winter 2023

Figure 8: Browning Dark Ops trail camera with SD card

30

5.2 General Dataset Description

A total of 5,751 images were used for training and validating the model. Of this, 809 images

were of foxes (170 fox-back, 139 fox-front, 502 fox-side), 1,380 were of jackals (311

jackal-back, 236 jackal-front, 833 jackal-side), 2,946 were empty (no animal present), and 614

were of other (cars, other animals, people, etc.).

5.3 Dataset Preprocessing

To properly train the neural network, photographic data from the trail cameras had to be

pre-processed. We relied on manual editing in addition to using the Keras.utils and

Tensorflow.image modules to process the images. Many of the images in the dataset were

unfocused or too dark, which could confuse the AI. To address this, we manually edited these

images using Microsoft Photos. Unfocused images were cropped to have the animal of interest in

the center, and images that were too dark were brightened for clarity. This was done solely for

training and validation. The images the model will make predictions on will be unmodified.

Keras.utils was used to construct a set of training and validation data from our image directory.

These images were a mix of both grayscale and color images that were all converted to grayscale

for the purpose of standardization. The images were compressed to adhere to the size constraints

of the model, which takes inputs of 224 by 224 pixels. The dataset was shuffled, batched into

sets of eight, and split for training and validation. The split is 70-30 between training and

validation, which is needed in order to avoid biased results. In this case, the validation set refers

to a small subset of images that are classified at the end of each epoch to determine the model’s

accuracy on new data. The dataset must be shuffled to improve the accuracy of the network:

without randomization, the network may overfit, thus hindering its learning capabilities as it

analyzes different categories. The data was batched to reduce stress on computer memory. Since

we worked on a dataset of thousands of images, having a small subset loaded onto memory is

less taxing on the computer than the entire dataset. The shuffle/validation split seed was chosen

arbitrarily. The images were then converted into the RGB color model through the use of the

Tensorflow.image module. This was done to implement the VGG-16 model trained on Google’s

ImageNet, which inputs RGB images, for transfer learning.

31

5.4 Dataset Labeling

The dataset was originally mixed together and unsorted. First, we sifted through collected data

both from the ADSSC and from images we collected, sorting each image into “empty”, “jackal”,

“fox”, and “other”. The folders “jackal” and “fox” were further sorted into “fox-back”,

“fox-front”, “fox-side”, “jackal-back”, “jackal-front”, and “jackal-side”. During this process,

some images that were unclear or unable to be identified without the context of the photos taken

in the same episode were removed from the dataset.

5.5 Dataset Overview

Figure 9: Percentage breakdown of the training and validation data

70% of the dataset was used for testing (4,026 images), while 30% was reserved for validation

(1,725 images). Figure 9 shows the breakdown of the dataset. Note that the dataset is

unbalanced, but representative of the data from the trail cameras.

CHAPTER 6: AI MODEL FOR DETECTION OF JACKALS AND FOXES

6.1 MegaDetector Results

Using an NVIDIA GeForce RTX 3050 graphics processing unit, we were able to classify 34,493

images in 2 hours and 43 minutes with above 90% accuracy using MegaDetector. Not only is this

a 405% increase in speed compared to the ADSSC’s current process, but other tasks can be

32

completed while the software runs in the background, as well. By automating this process, this

will save researchers at the ADSSC several hours per week.

6.2 Implementing and Training the Model

Given the ubiquity and success of the convolutional neural network (CNN) within the machine

learning industry for image classification, we decided to implement a CNN model. After

comparing different CNN models such as ResNet50 and VGG-19, we settled on the VGG-16

model. Despite requiring more storage space than other models, the ADSSC was not concerned

with storage space and the VGG-16 model performed the best. The VGG-16 model was used

throughout the entire project.

6.3 Classification Results

Below, we report our main result of the classification model, demonstrating our software’s

ability to classify images as being empty, or containing a jackal, fox, or other. Four metrics were

used to evaluate the performance of the model: loss, validation loss, accuracy, and validation

accuracy. Loss measures the magnitude of error the algorithm made when analyzing a photo in

the training dataset. Validation loss measures the magnitude of error the algorithm made when

analyzing a photo in the validation dataset. Accuracy is derived from making predictions on the

training dataset, while validation accuracy is derived from making predictions on the validation

dataset.

After determining the optimal parameters from our experiments, reported in sections 6.5-6.10, a

final run was conducted using these parameters with steps per epoch being set to None. This

resulted in the steps per epoch defaulting to the number of batches in the dataset (in this case,

504). This method results in significantly higher accuracy with little to no overfitting, especially

compared to the previous experiments, in which 30 steps per epoch were used.

Furthermore, validation steps were also revisited, being set to None. We found that the difference

in performance between validation steps being set to None and to 10 after all other

hyperparameters had been chosen was negligible, with the value of 10 resulting in a significantly

faster run time. Thus, we decided to use 10 validation steps over None, despite our initial

experimentation.

33

Additionally, transfer learning was implemented to improve the accuracy of our model in all

experiments. We decided to use the weights of a VGG-16 model that was trained on Google’s

ImageNet database. The improved accuracy of the model trained by ImageNet was verified by

comparison to the same VGG-16 model without transfer learning.

Figure 10: Confusion Matrix showing actual vs predicted categories

Figure 11 shows a confusion matrix which demonstrates where the AI misclassified images on a

dataset of 4,025 images. The x-axis represents the actual labeled category of the image and the

y-axis represents the category predicted by our AI. If the AI were to have 100% accuracy, the

diagonal of the matrix will add up to the total number of images in the dataset. In this matrix, the

diagonal adds up to 4,017. This means that only eight images out of 4,025 were misclassified.

The only mistakes in which the animal was not correctly identified was labeling two images of

foxes as empty, five images of foxes as jackals, and one image of a jackal as a fox.

34

Figure 11: Final run using optimal parameters from previous experiments

The other parameters and hyperparameters used for this run were: 15 epochs, SELU/ReLU

activation functions, AdaGrad optimizer, 1,024 unit size for the 14th and 15th layers, and 10

validation steps. As shown in Figure 10, there was no overfitting in this run, which resulted in

very high accuracy and validation accuracy and very low loss and validation loss values. After

early stopping at epoch nine, the final values had an accuracy of 0.9794, a loss of 0.0804, a

validation loss of 0.4392, and a validation accuracy of 0.9125. This means that the overall

accuracy of categorizing photos into “fox”, “jackal”, “empty”, and “other” was 91.25%. This

means that the ADSSC researchers will only have to manually sort through approximately 1,000

images every two weeks rather than the current 14,000-15,000. This will also reduce the

workload of the researchers from 11 or more hours per week to approximately one hour per

week.

6.4 Improving Accuracy: Optimization Experiment Overview and Methodology

Neural networks have different hyperparameters that affect the speed, accuracy, and overall

performance of a model, thus, experimentation was needed to determine the best performing set

of hyperparameters that would result in the highest accuracy, as reported in section 6.3. Thus,

experiments were conducted with each hyperparameter in an effort to maximize accuracy as

described in the sections below.

35

The experiments conducted intended to determine the best performing hyperparameters for the

model. In the first three experiments, the batch size was set to eight, the activation functions on

the first and second dense layers were set to ReLU, and the optimizer used was Adam. Early

stopping was also incorporated with a patience value of three. The last three experiments

conducted tested three other important hyperparameters: optimizer algorithm, activation

function, and unit size. After the experiments were conducted, it was concluded that training

with 15 epochs, steps per epoch set to None, and validation steps set to 10 had the best

performance.

In reference to the network’s structure, it was determined that the first and second dense layers

would consist of 1,024 neurons each. The Scaled Exponential Linear Unit (SELU) activation

function was utilized for the first dense layer since it learns faster and more efficiently than other

activation functions. The Rectified Linear Unit (ReLU) activation function was utilized for the

second dense layer because it avoids the learning slowdown that results from using other

activation functions. The pairing of SELU and ReLU was also chosen because they performed

best out of the combinations tested. The SoftMax activation function was used for the final dense

layer to specify the probability of output categories from multiple neurons. Eight neurons were

implemented in the final dense layer to represent the eight output categories.

The AdaGrad optimizer was used for the model. Multiple industry-standard optimizers were

tested and AdaGrad performed the best. The model was trained for 15 epochs with steps per

epoch set to None and an additional 10 validation steps. This was found to be the most optimal

when compared to other variations.

6.5 Epoch Experimentation

The first experiment was carried out to determine what number of epochs resulted in the best

performing validation accuracy and validation loss. All other hyperparameters were kept

constant. Table 1 shows the results of the trials. Figure 23 shows the best performing model of

the experiment. Three variations of epoch count were performed. The values experimented with

were 5, 10, and 15. Each value was tested three times.

36

Table 1: Variation of epoch count

Variation Trial
Epoch
Count

Steps
per

Epoch
Validation

Steps Loss
Accurac

y
Validatio
n Loss

Validation
Accuracy

Avg
validation

loss

Avg
validation
accuracy

1
1 5 10 10 10.399 0.675 15.149 0.625

11.121 0.650

2 5 10 10 14.466 0.663 6.249 0.638

3 5 10 10 14.479 0.638 11.966 0.688

2
1 10 10 10 4.866 0.713 6.852 0.663

6.185 0.663

2 10 10 10 4.521 0.800 8.780 0.600

3 10 10 10 5.277 0.713 2.924 0.725

3
1 15 10 10 3.819 0.763 5.340 0.625

4.259 0.646

2 15 10 10 4.869 0.600 1.785 0.675

3 15 10 10 2.628 0.788 5.653 0.638

Figure 12: Performance metrics of variation 3, trial 2
When 5 epochs were used, the average validation loss was 11.121, the average validation

accuracy was 0.650, the standard deviation of validation loss was 4.510, and the standard

deviation of validation accuracy was 0.033.

When 10 epochs were used, the average validation loss was 6.185, the average validation

accuracy was 0.663, the standard deviation of validation loss was 2.984, and the standard

deviation of validation accuracy was 0.063.

37

When 15 epochs were used, the average validation loss was 4.259, the average validation

accuracy was 0.646, the standard deviation of validation loss was 2.148, and the standard

deviation of validation accuracy was 0.026.

In all nine trials, overfitting occurred, resulting in a significant difference between validation

accuracy and training accuracy. In Variation 3 Trial 3, early stopping occurred at epoch 9. Early

stopping occurs when the validation loss does not improve after 3 epochs, and terminates the

training program earlier to reduce overfitting. From these trials, it was determined that an epoch

count of 15 would perform best out of the other tried values. It had the best average validation

loss, a slightly less average validation accuracy than 10 epochs, and a more consistent

performance than other trials.

The experiments concluded that the model will use 15 epochs as a hyperparameter. While an

epoch count of 10 did perform slightly better than 15 in terms of validation accuracy, it was more

inconsistent in performance than with 15 and the validation loss was significantly higher.

Furthermore, the incorporation of early stopping will help prevent overtraining of the model,

should 15 epochs ever prove to be too much. Moving forward, all experiments had the epoch

hyperparameter set to 15.

Figure 12 shows the best performance with the epoch count set to 15. The validation accuracy of

the model gradually increased with each epoch, however the training accuracy dropped from

over 80% in epoch 8 to 62% in epoch 15. This was most likely caused by the learning rate of the

model being too high, resulting in the weights in the last three dense layers changing too

frequently.

6.6 Variation of Steps per Epoch Experimentation

The second experiment intended to determine how many steps per epoch performed best. All

other hyperparameters were kept constant. Table 2 shows the results of each trial. Figure 13

shows the results of the best performing model. Three variations in steps per epoch were

38

investigated: None4, 20 steps, and 30 steps. 10 steps was skipped as its values can be found in

Table 1. Each variation was tested three times.

Table 2: Variation of Steps per epoch

Variation Trial
Epoch
Count

Steps
per

Epoch
Validation

Steps Loss Accuracy
Validation

Loss
Validation
Accuracy

Avg
validation

loss

Avg
validation
accuracy

1 1 15 None 10 0.744 0.747 0.808 0.688

0.978 0.675

2 15 None 10 0.763 0.733 1.319 0.650

3 15 None 10 0.708 0.748 0.807 0.688

2

1 15 20 10 0.910 0.706 1.108 0.650

3.991 0.663

2 15 20 10 2.479 0.688 5.310 0.650

3 15 20 10 4.305 0.681 5.554 0.688

3
1 15 30 10 2.124 0.700 3.505 0.663

2.441 0.654

2 15 30 10 0.903 0.738 1.434 0.650

3 15 30 10 1.081 0.725 2.383 0.650

Figure 13: Performance Metrics of variation 1, trial 3

When the steps value was set to None, the average validation loss was 0.978, the average

4 When specifying the number of steps per epoch in Keras’ implementation of a neural network, entering “None”
defaults the number of steps to be the number of batches for training data. “None” is a default python value.

39

validation accuracy was 0.675, the standard deviation of validation loss was 0.295, and the

standard deviation of validation accuracy was 0.022.

When 20 steps were used, the average validation loss was 3.991, the average validation accuracy

was 0.663, the standard deviation of validation loss was 2.499, and the standard deviation of

validation accuracy was 0.022.

When 30 steps were used, the average validation loss was 2.441, the average validation accuracy

was 0.654, the standard deviation of validation loss was 1.037, and the standard deviation of

validation accuracy was 0.007.

In all nine trials, overfitting occurred, which can be seen in Figure 13, where validation accuracy

continues to decrease as training accuracy increases. This resulted in a significant difference

between validation accuracy and training accuracy. Early stopping occurred in all trials except

Variation 2, Trial 1. From these trials, we concluded that the best value for the steps per epoch

hyperparameter was None. It had the lowest average validation loss, and the highest validation

accuracy out of all the trials.

As seen in Figure 13, the validation accuracy differed greatly from the accuracy metric with an

unspecified amount of steps, decreasing as training accuracy increased. This was most likely

caused by the model overfitting. However, this model still performed the best out of the three

variations, and as such this value would be revisited once all the hyperparameters had been

experimented with.

All three trials in Variation 1 took three to five hours to train the model, which led to all future

experiments not related to the epoch hyperparameters being conducted with 30 steps per epoch,

the second best performing variation, which took 45 minutes to an hour to train.

6.7 Variation of Validation Steps Experimentation

The third experiment intended to determine how many validation steps would result in the

highest validation accuracy and lowest validation loss. All other hyperparameters were kept

constant. Table 3 shows the results of each trial. Figure 14 shows the results of the best

performing model. Three variations in validation steps were investigated: None, 20 steps, and 30

40

steps. 10 steps was skipped as its values can be found in Table 2. Each variation was tested three

times.

Table 3: Variation of validation steps

Variation Trial
Epoch
Count

Steps
per

Epoch
Validation

Steps Loss Accuracy
Validation

Loss
Validation
Accuracy

Avg
validation

loss

Avg
validation
accuracy

1 1 15 None None 0.825 0.745 0.799 0.750

0.855 0.747

2 15 None None 0.922 0.744 0.951 0.744

3 15 None None 0.766 0.748 0.816 0.748

2
1 15 None 20 0.671 0.754 0.783 0.725

0.814 0.721

2 15 None 20 0.685 0.759 0.864 0.725

3 15 None 20 0.713 0.747 0.795 0.713

3
1 15 None 30 0.783 0.751 0.712 0.733

0.883 0.707

2 15 None 30 0.806 0.746 0.929 0.663

3 15 None 30 0.795 0.740 1.008 0.725

Figure 14: Performance metrics of variation 1, trial 1

When the steps value was set to None, the average validation loss was 0.855, the average

validation accuracy was 0.747, the standard deviation of validation loss was 0.083, and the

standard deviation of validation accuracy was 0.003.

41

When 20 steps were used, the average validation loss was 0.814, the average validation accuracy

was 0.721, the standard deviation of validation loss was 0.043, and the standard deviation of

validation accuracy was 0.007.

When 30 steps were used, the average validation loss was 0.883, the average validation accuracy

was 0.707, the standard deviation of validation loss was 0.153, and the standard deviation of

validation accuracy was 0.039.

In all nine trials, early stopping occurred, from as early as epoch 5 to as late as epoch 11. The

validation accuracy curve was closest to logarithmic when validation steps were set to None, as

seen in Figure 14. While validation accuracy was best when validation steps were set to None, all

future experiments were conducted with 10 validation steps as it significantly decreased the

validation time. Further, when this value was revisited in future experimentation, 10 validation

steps also performed better than None in certain models.

6.8 Variation of Optimizer

A major part of our AI model design process was choosing the best performing optimizer. The

Tensorflow optimizer module contains eight different optimizers: Adam, AdaMax, AdaGrad,

AdaDelta, Nadam, FTRL, RMSprop, and SGD. Each of these optimizers was tested at least once,

but AdaMax, AdaGrad, and FTRL showed significantly better performance than the other five

and were selected for further testing. The purpose of the optimizer experiment was to improve

the accuracy and validation accuracy values of the model.

42

Table 4: Variation of optimizer

Optimizer Trial Loss Accuracy
Validation

loss
Validation
accuracy

Avg
validation

loss

Avg
validation
accuracy

AdaMax
1 1.344 0.754 1.653 0.688

1.369 0.708

2 1.029 0.821 1.201 0.713

3 1.202 0.767 1.255 0.725

AdaGrad
1 0.639 0.813 0.801 0.788

0.943 0.742

2 0.785 0.779 1.185 0.675

3 0.606 0.808 0.844 0.763

FTRL
1 0.608 0.788 0.724 0.738

0.711 0.738

2 0.614 0.779 0.720 0.738

3 0.605 0.783 0.689 0.738

Figure 15: Performance Metrics of AdaGrad trial 1

Each test was performed using 15 epochs, 30 steps per epoch, and 10 validation steps. After

testing these three optimizers at least three times each, AdaGrad was chosen as our optimizer

going forward. As shown in Table 4, AdaGrad had good values for all four categories. While

FTRL had better loss values, AdaGrad had significantly better accuracy and validation accuracy.

Also shown in Table 4, FTRL had a standard deviation of zero for the validation accuracy,

meaning that it was not capable of increasing above a value of 0.7375 with the given parameters.

Therefore, while AdaGrad’s validation accuracy dipped below this value on occasion, the

43

average validation accuracy was higher than that of FTRL, with values as high as 0.825 in later

tests. In addition, Table 1 shows tests using the Adam optimizer, and compared to the results in

Table 1, AdaGrad showed nearly a 0.1 increase in average validation accuracy for 15 epochs.

Figure 15 shows the best performance of the three AdaGrad trials.

6.9 Variation of Activation Function

Activation function combinations can determine how quickly the model learns as well as how

accurately the model learns. As aforementioned, the Scaled Exponential Linear Unit (SELU) and

Rectified Linear Unit (ReLU) functions were our main focus for two dense layers at the end of

our model. Previous experiments were conducted using purely ReLU/ReLU, so we have tested

SELU/ReLU, ReLU/SELU, and SELU/SELU for comparison.

Table 5: Variation of activation function

Optimizer Trial Loss Accuracy
Validation

Loss
Validation
Accuracy

Avg
validation

loss

Avg
validation
accuracy

SELU/ReLU
1 0.968 0.725 0.707 0.775

0.694 0.783

2 0.851 0.758 0.636 0.788

3 0.829 0.754 0.738 0.788

ReLU/SELU
1 1.075 0.746 1.191 0.750

0.876 0.767

2 0.859 0.738 0.709 0.763

3 0.819 0.750 0.727 0.788

SELU/SELU
1 1.069 0.754 0.763 0.788

0.753 0.771

2 1.129 0.746 0.779 0.775

3 0.875 0.763 0.715 0.750

44

Figure 16: Performance Metrics of SELU/ReLU trial 2

15 epochs with 30 steps per epoch, 10 validation steps, AdaGrad optimizer, and 256 unit size

were used for this experiment. As shown in Table 5, the average validation accuracies for each

were very similar, however, SELU/ReLU resulted in a significantly lower average validation

loss. The standard deviations for validation loss and validation accuracy were both very low with

values of 0.052 and 0.007, respectively. This is important because while Figure 16 shows that

there appears to be heavy overfitting, the low standard deviation in validation accuracy means

that it is insignificant and our results are accurate. SELU/SELU had similarly low standard

deviations for validation loss and validation accuracy and it did not early stop, however,

SELU/ReLU was chosen as our combination due to the better average values. This means that

the 14th layer in our neural network uses the SELU activation function and the 15th layer uses

the ReLU activation function.

6.10 Variation of Unit Size

Unit size is another factor to consider in our AI model as it can greatly reduce the loss values at

the expense of runtime. Unit size refers to how many neurons are in a particular layer of the

neural network. Previous experiments were run using a unit size of 256, therefore, sizes of 128,

512, and 1,024 were chosen for comparison.

45

Table 6: Variation of Unit size

Unit Size Trial Loss Accuracy
Validation

loss
Validation
accuracy

Avg
validation

loss

Avg
validation
accuracy

512
1 0.692 0.783 0.669 0.788

0.720 0.750

2 0.923 0.746 0.664 0.763

3 0.920 0.783 0.827 0.700

128
1 0.789 0.750 0.703 0.775

0.620 0.783

2 0.769 0.742 0.491 0.813

3 0.819 0.758 0.668 0.763

1024
1 0.919 0.758 0.673 0.825

0.652 0.792

2 0.794 0.775 0.582 0.763

3 1.060 0.750 0.702 0.788

Figure 17: Performance metrics of 1024 trial 1

ReLU/ReLU activation functions and the AdaGrad optimizer were used in this experiment with

30 steps per epoch, 15 epochs, and 10 validation steps. As shown in Table 6, 128 validation steps

resulted in the same runtime as 256, with the best average validation loss value and close to the

best average validation accuracy value. However, the standard deviation of validation loss was

0.114, which was significantly higher than the standard deviation values for 512 and 1,024,

which were 0.092 and 0.062, respectively. Consequently, 1,024 was chosen as the best unit size

value as the validation loss values were more stable and it had the highest average validation

46

accuracy (Figure 17). Additionally, the runtime increase was minimal, with only a four second

increase per epoch compared to a unit size of 256. This means that overall, the total runtime

increase was only one minute with 15 epochs.

CHAPTER 7: INTEGRATION WITH RESEARCH WORKFLOW

7.1 Integration with Timelapse

For the final software to be easily usable by researchers at the ADSSC, it needed to be integrated

with Timelapse, a software the ADSSC uses to process images from trail cameras. Interviews

and demonstrations were conducted to gain an understanding of how Timelapse is used and to

explore potential methods of integration. Timelapse can import and export data through CSV

files, so our final product reads and writes CSV files as well.

Timelapse is CSV compatible, so we programmed our software to be able to read and write CSV

files. Our software can take in a directory containing a set of images that have or have not been

labeled yet and then make a prediction of what is in each image. A decoder reads the prediction

and confidence of said prediction, and then writes to a CSV file. It reads the file’s metadata to

extract its name and relative path in the directory. It adds this to a CSV file, and then adds the

prediction of what is in the image, and saves the CSV in the same directory as the images. Once

Timelapse is opened, a datatable can be filled out by importing the CSV, thus connecting the two

programs.

7.2 Finalizing the Application and User Manual

Our application was developed to have a “no-code” interface.5 Additionally, user manual drafts

were created, reviewed and tested, and rewritten to address any problems users might encounter,

from installation to troubleshooting and maintenance (Appendix C).

Multiple use case interviews were conducted with our sponsor to gauge what was required of the

final application. The information gained from these interviews was used as a basis to frame the

total process of the final application, as well as a framework for the user manual. It was

determined that integrating our software to be used alongside Timelapse was ideal for our

5 No-code interface refers to a user interface that requires no programming knowledge whatsoever to interact with.

47

sponsor. Multiple different applications and programming languages were consolidated within

our software. This reduced the number of steps required to run our application, thus decreasing

risk of random error and increasing ease of use.

A comprehensive user manual was created for ease of use (Appendix C). The manual details all

the steps of utilizing our software, from installation to running a dataset through for

classification. The manual also included troubleshooting options, as well as frequently asked

questions. Initial tests of the manual were conducted by a team member and they were successful

in running a dataset through the software. Then, the manual was brought to our sponsor and her

research assistants, who were also successful in running a dataset.

Our user manual is sufficient for troubleshooting or for a clean install of the program in the event

that the application crashes, gets uninstalled, or a change is made at the ADSSC that requires

maintenance on the hardware or software of the lab computers. Our sponsor indicated that she

has some programming experience and is comfortable and familiar with installing applications

similar to ours. Additionally, she indicated that this program will be utilized by interns from Ben

Gurion University, Northeastern University, and Worcester Polytechnic Institute, all of whom are

tech savvy and can easily follow this process. However, our sponsor mentioned that she does not

have experience using Python and is not familiar with Windows Command Prompt. Therefore,

our user manual contains highly detailed guides, as well as external contacts, for these portions

of the installation and maintenance process. In the event that the hardware of the ADSSC’s

computers is upgraded, our application will run significantly faster, especially if the graphics

processing unit is upgraded.

7.3 Use by the Arava-Dead Sea Science Center

In an interview with our sponsor, she expressed that she was pleased with the accuracy and

runtime of the software. She also believes that it will be incredibly useful for the ADSSC. During

an initial technical demonstration of our software with researchers at the ADSSC, confusions

were addressed and our user manual was updated accordingly. More detailed step-by-step guides

of each software within the new workflow were written. Our sponsor was able to successfully

install all necessary software on her own computer as well as complete a full trial run on a small

48

set of images. She was able to run EcoAssist, our AI model, and import the generated CSV into

Timelapse using only our user manual. In order to address overtrusting or undertrusting our AI,

we had our sponsor run multiple different sets of images on multiple computers in order to

confirm that the software works reliably in multiple settings. We also clearly defined which files

are necessary to manually review in order to ensure that the data is not blindly trusted as well.

Overall, our sponsor was pleased with the results of the project and has already begun

implementing it into the ADSSC’s workflow.

7.4 Hardware Requirements and Recommendations

The following is a list of the minimum and recommended computer requirements to run our

software as efficiently as possible.

Table 7: List of recommended hardware components

Component Minimum Recommended Best Purpose

Central
Processing Unit
(CPU)

Intel i5 or AMD
Ryzen 5

Intel i7* or
AMD Ryzen 7

Intel i9 or AMD
Ryzen 9

This will
determine the
processing speed
of the AI
classification
portion of the
software

Graphics
Processing Unit
(GPU)

NVIDIA
GeForce GTX
750 Ti

NVIDIA
GeForce GTX
1070

NVIDIA
GeForce RTX
3090

This will
determine the
processing speed
of MegaDetector

Random Access
Memory (RAM)

8GB DDR4 or
DDR5

16GB DDR4* or
DDR5

32GB or more
DDR4 or DDR5

This will
determine the
quantity of
images that can
be processed at
once by the AI

*- This component is currently in use by the ADSSC

“Minimum” is a recommendation from the experimenters of a component that is capable of

running the software incredibly slowly, but at minimal or low cost. “Recommended” is the

experimenters’ recommendation for a component that will have good runtime and a medium

49

cost. “Best” is the experimenters’ recommendation for a component that will run the software

incredibly quickly, but at a high cost.

CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS

Strategies for automating detection and previously manual classification of images of jackals and

foxes were investigated to save time for researchers at the Arava-Dead Sea Science Center. First,

sorting categories and subcategories were determined to train the AI. Microsoft’s MegaDetector

was used for the detection of animals, humans, and vehicles in the images. These images were

then classified by our software as “jackal”, “fox”, “other”, or “empty”. The resulting images and

classification tags were exported as a CSV file. The CSV files were then able to be imported to

Timelapse for viewing, thus integrating our software into the ADSSC’s established workflow.

Our software achieved above 90% accuracy in both the detection and classification softwares. A

comprehensive user manual was created after thorough interviews and user testing. Overall, this

will greatly reduce the workload for researchers at the ADSSC from approximately 11-12 hours

per week to 1-1.5 hours per week, allowing researchers to monitor jackal and fox populations

more efficiently.

The team recommends using MegaDetector to do a granular detection of animals in the images,

and to consider decreasing the lower confidence threshold if the researcher desires to reduce the

count of false negatives. These images should then be put through our software in order to get a

granular classification of the animal(s) present in the images. It is recommended that the

researcher classify the animal images of low classification confidence manually, according to the

confidence threshold lower bound that they see fit. Following this, the images may be analyzed

in Timelapse as would be otherwise standard procedure.

50

REFERENCES

ADSSC. (n.d.). About. Retrieved January 2023, from https://www.adssc.org/en/about/

ADSSC. (n.d.). Segev Nitzan Ph.D. Retrieved January 2023, from

https://www.adssc.org/en/segev-nitzan-phd-desert-ecology/

Ahamed, F., Farid, F., Gordon, S., et al. (2022). An Interpretable Artificial Intelligence Based

Smart Agriculture System. Tech Science Press. Retrieved from

https://researchdirect.westernsydney.edu.au/islandora/object/uws:63228/datastream/PDF/

view.

Andrews, K., Flemons, P., Maclagan, S.J., et al. (2017). Animal Recognition and Identification

with Deep Convolutional Neural Networks for Automated Wildlife Monitoring. IEEE

International Conference on Data Science and Advanced Analytics (DSAA). Retrieved

from https://ieeexplore.ieee.org/abstract/document/8259762/authors#authors.

Baker, M.A.B., Herbert Chan, H.W., & Nichols, J.A. (2019). Machine learning: applications of

artificial intelligence to imaging and diagnosis. National Library of Medicine. Retrieved

from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381354/.

Barocas, A., Hefner, R., Ucko, M., et al. (2018). Behavioral adaptations of a large carnivore to

human activity in an extremely arid landscape. Animal Conservation, 21(5), 433–443.

doi: 10.1111/acv.12414

51

Bayne, E., Boutin, S., Burton, C., et al. (2015). REVIEW: Wildlife camera trapping: a review

and recommendations for linking surveys to ecological processes. Journal of Applied

Ecology. Retrieved from https://doi.org/10.1111/1365-2664.12432.

Berger-Tal, O. & Lahoz-Monfort, J. J. (2018). Conservation technology: The next generation.

Society for Conservation Biology. Retrieved from https://doi.org/10.1111/conl.12458.

Butz, A., Diefenbach, S., & Ullrich, D. (2021). The Development of Overtrust: An Empirical

Simulation and Psychological Analysis in the Context of Human–Robot Interaction.

Frontiers in Robotics and AI. Retrieved from

https://www.frontiersin.org/articles/10.3389/frobt.2021.554578/full.

Chao, W., Chen, J. K., Feng, L., et al. (2022). Animal Detection and Classification from Camera

Trap Images Using Different Mainstream Object Detection Architectures. Open Access

Journals. Retrieved from https://doi.org/10.3390/ani12151976.

Cowley, F.C., Falzon, G., Hadavi, N., et al. (2021). Automated Muzzle Detection and Biometric

Identification via Few-Shot Deep Transfer Learning of Mixed Breed Cattle. Data-Driven

Agricultural Innovations. Retrieved from https://www.mdpi.com/2073-4395/11/11/2365.

Faragalla, A. A. (1988). Impact of agrodesert on a desert ecosystem. Journal of Arid

Environments, 15(1), 99–102. Retrieved from

https://doi.org/10.1016/S0140-1963(18)31010-3.

Greenville, A. C., Wardle, G. M., & Dickman, C. R. (2017). Desert mammal populations are

limited by introduced predators rather than future climate change. Royal Society Open

Science, 4(11). doi: 10.1098/rsos.170384

52

Hobbs MT, Brehme CS (2017) An improved camera trap for amphibians, reptiles, small

mammals, and large invertebrates. PLoS ONE 12(10): e0185026.

https://doi.org/10.1371/journal.pone.0185026

Kaluarachchi, T., Nanayakkara, S., & Reis, A. (2021). A Review of Recent Deep Learning

Approaches in Human-Centered Machine Learning. Sensors. Retrieved from

https://doi.org/10.3390/s21072514.

Keras. (2020). Transfer learning & fine-tuning. Keras.io. Retrieved from

https://keras.io/guides/transfer_learning/.

Khoshgoftaar, T. M., Wang, D., & Weiss, K. (2016). A survey of transfer learning. Journal of Big

Data. Retrieved from https://doi.org/10.1186/s40537-016-0043-6.

Moran, S. (2003). Checklist of vertebrate damage to agriculture in Israel, updated for 1993-2001.

511 Phytoparasitica, 31(2), 109–117. doi: 10.1007/BF02980779

Newsome, T. M., Dellinger, J. A., Pavey, C. R., et al. (2015). The ecological effects of providing

resource subsidies to predators. Global Ecology and Biogeography, 24(1), 1–11. doi:

10.1111/geb.12236

Portnov, B A, and U N Safriel. “Combating Desertification in the Negev: Dryland Agriculture

vs. Dryland Urbanization.” Journal of Arid Environments 56, 659-680. Academic Press,

23 Sept. 2003. www.sciencedirect.com/science/article/pii/S0140196303000879.

Research Gate. Research Gate- Nitzan Segev. Nitzan Segev. Retrieved January 2023, from

https://www.researchgate.net/profile/Nitzan-Segev.

53

Richmond, D. & Xie, Y. (2018). Pre-training on Grayscale ImageNet Improves Medical Image

Classification. European Conference on Computer Vision. Retrieved from

https://openaccess.thecvf.com/content_ECCVW_2018/papers/11134/Xie_Pre-training_on

_Grayscale_ImageNet_Improves_Medical_Image_Classification_ECCVW_2018_paper.

pdf.

Sarker, I. H. (2021). Deep Learning: A Comprehensive Overview on Techniques, Taxonomy,

Applications and Research Directions. Advances in Computational Approaches for

Artificial Intelligence, Image Processing, IoT and Cloud Applications. Retrieved from

https://link.springer.com/article/10.1007/s42979-021-00815-1.

Shapira, I., Sultan, H., & Shanas, U. (2008). Agricultural farming alters predator-prey

interactions in nearby natural habitats. Animal Conservation, 11(1), 1–8. doi:

10.1111/j.1469- 1795.2007.00145.x

Timelapse. (2021). Timelapse: An Image Analyser for Camera Traps. Greenberg Consulting Inc.

Retrieved from https://saul.cpsc.ucalgary.ca/timelapse/.

54

APPENDIX A

In-depth Explanation of Neural Networks

The premise of a neural network is that it is a multi-layered set of neurons that stores values

known as activations. The activation for each neuron is calculated in the following way:

𝑎' = 𝑓(𝑤𝑎 + 𝑏)

where represents the calculated activation, is the activation function, represents the𝑎' 𝑓 𝑤

weight-matrix, represents a vector containing all of the previous layer’s neuron activations, and𝑎

represents the bias of the neuron for which the activation is being calculated (a real number).𝑏

This equation describes the feedforward nature of a network. There are four equations that

represent the backpropagation of a network, and they use an error value starting at the output

layer of the network, and backpropagate this error back through the network, at which point the

weights and biases of the network can be updated (Nielsen).

In a traditional neural network, each neuron in a given layer is connected to every neuron in the

next layer. These are known as dense layers. The final layer in a neural network contains as

many neurons as the number of possible outputs. For example, if a network were trying to

classify an image into two categories, the final layer would have two neurons, and so on. This

can be seen in figure A1.

55

Figure A1. Structure of a deep neural network. Retrieved from
https://www.ibm.com/topics/neural-networks.

The type of neural network used in the project is a convolutional neural network (CNN). CNNs

are one of the most efficient models to perform image classification (O'Shea and Nash). This is

because CNNs utilize three dimensions (height, width, depth) of images (Nguyen et al.). Height

and width refer to the pixel dimensions of the image, while depth refers to the color channels of

the image. For example, the depth of a grayscale image is one, while the depth of an RGB image

is three. Furthermore, not all layers in a CNN are dense layers. CNNs utilize local connectivity,

in which each neuron is connected to a local cluster of neurons in the next layer, drastically

reducing the time and memory required to analyze inputs (Nguyen et al.).

56

APPENDIX B

GitHub Repository

The codebase can be found here: https://github.com/CitrusFroot/IQPMammalsC23.git

https://github.com/CitrusFroot/IQPMammalsC23.git

57

APPENDIX C

User manual

The user manual for the application can be found here: Current User Manual

https://docs.google.com/document/d/10mbCfUvm2daI8wLL4SGGRV_yvdrbNUhp2rW3a2ugVNQ/edit?usp=sharing

58

APPENDIX D

Timelapse Manuals

Manuals on how to use the Timelapse software can be found here:
http://saul.cpsc.ucalgary.ca/timelapse/pmwiki.php?n=Main.UserGuide

The Timelapse manual on image recognition can be found here:
http://saul.cpsc.ucalgary.ca/timelapse/uploads/Guides/TimelapseImageRecognitionGuide.pdf

The Timelapse manual on utilizing CSVs can be found here:
http://saul.cpsc.ucalgary.ca/timelapse/uploads/Guides/TimelapseReferenceGuide.pdf

http://saul.cpsc.ucalgary.ca/timelapse/pmwiki.php?n=Main.UserGuide
http://saul.cpsc.ucalgary.ca/timelapse/uploads/Guides/TimelapseImageRecognitionGuide.pdf
http://saul.cpsc.ucalgary.ca/timelapse/uploads/Guides/TimelapseReferenceGuide.pdf

59

APPENDIX E

MegaDetector Links

MegaDetector About page:
https://github.com/microsoft/CameraTraps/blob/main/megadetector.md

EcoAssist: https://github.com/PetervanLunteren/EcoAssist

https://github.com/microsoft/CameraTraps/blob/main/megadetector.md
https://github.com/PetervanLunteren/EcoAssist

60

APPENDIX F

EcoAssist Instructions

Figure F1: EcoAssist on startup

61

Figure F2: EcoAssist with options for running MegaDetector

62

Figure F3: EcoAssist after completing run

63

Figure F4: Example of image data in a JSON File

64

Figure F5: Timelapse with recognition options shown

Figure F6: Settings for sorting images in Timelapse using recognition data

65

APPENDIX G

VGG-16 Description

https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/

https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/

66

APPENDIX H

Expanded Confusion Matrix

Figure H1: Full Confusion Matrix

67

Figure H1 shows a full confusion matrix generated by the AI predictions. The labels 0-7

correspond to empty, fox-back, fox-front, fox-side, jackal-back, jackal-front, jackal-side, and

other, respectively. As shown by Figure H1, on this run the AI misclassified 39 images out of a

set of 4025. However, its main mistakes were confusion between categories one and three as well

as four and six. This means that the back and side of each animal were frequently confused, but

the animal itself was correct.

