
 1

eBay Distributed Log Processing

A Major Qualifying Project Report

submitted to the Faculty of the

WORCESTER POLYTECHNIC INSITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Patrick Crane

Alyssa Hargraves

Date: March 7, 2009

Approved:

Professor David Finkel, Major Advisor

 2

Abstract

 The MQP presented in this document was completed at eBay in San Jose, CA

between January and March 2009. eBay Research Labs was using Hadoop to process

their log data, and hoped for an easy way to increase their processing speed. To

accomplish this, we developed and tested a program to allow users to quickly connect

and configure their Windows computers as nodes on eBay‟s existing Hadoop cluster.

Additionally, we created an installer to handle the many prerequisites associated with

Hadoop on Windows.

 3

Executive Summary

 At the time of our arrival at eBay, eBay Research Labs (eRL) was using the open-

source Hadoop distributed computing system to process their daily log entries. The

Hadoop cluster ran only on Unix boxes, and developer workstations were left idle at

many points throughout the day. eRL wished for a means of taking advantage of those

idle workstations by using their processing power in their Hadoop distributed computing

cluster.

 The goal of our project was to design, develop, and test an easy to use Hadoop node

management program to take advantage of idle workstations by allowing users to add and

remove their computers from the cluster. This program was required to run on Windows

and needed a simple installer to take care of the many prerequisites associated with

running Hadoop in a non-Unix environment. Additionally, we were required to test our

solution on a cluster setup that is similar to eBay Research Labs‟ production environment

to ensure compatibility with their existing servers.

 Over the course of the nine-week program, we created three primary portions: a

Hadoop Runner program to deal with the client side portion of node management, a user-

friendly installer, and many setup scripts to assist the installer in the setup and

configuration process.

 The Hadoop Runner program performs the client side actions and is the primary

interface between a user and his or her computer‟s node status. This program was written

in Java and provides a graphical user interface to the user. The Hadoop Runner program

gives users the option to add or remove their computers from the cluster, lets them

specify the amount of hard drive space they are willing to make available to Hadoop, and

 4

shows them basic node status information such as whether or not their node is online and

how many jobs it is processing.

 The Hadoop Runner program also includes a user-friendly installer created using

Nullsoft Scriptable Install System. This installer along with its associated setup scripts

sets up the prerequisites of Cygwin, passphraseless secure shell access, and several of the

environment variables.

 Ultimately, the program we created gives users the freedom to easily add or remove a

Windows computer on eBay Research Labs‟ Hadoop cluster. This provides eBay

Research Labs with additional processing power. This processing power can be utilized

to perform additional jobs or more complex tasks in a shorter amount of time.

Additionally, it opens up the possibility of making Hadoop‟s log processing power

available to other departments within eBay in return for the use of their machines as

Hadoop nodes. We feel that this program can be continually modified to handle eBay‟s

growing needs, and hope to see it in use throughout the company.

 5

Table of Contents

1. Introduction ... 7

2. Background ... 8

2.1. eBay, Inc. .. 8

2.2. Hadoop .. 9

2.2.1. Overview ... 9

2.2.2. Benefits ... 9

2.2.3. How It Works .. 10

2.2.4. Hadoop on Windows... 12

2.3. eBay‟s Use of Hadoop .. 13

3. Methodology ... 14

3.1. Initial Hadoop Setup ... 14

3.1.1. Installing Hadoop .. 14

3.1.2. Configuring Hadoop ... 15

3.1.3. Starting Hadoop .. 15

3.2. Node Addition and Removal .. 16

3.2.1. Important Files .. 16

3.2.2. Node Addition ... 17

3.2.3. Node Removal .. 18

3.3. Secure Shell Key Generation .. 19

3.3.1. Single User Passphraseless SSH Setup ... 20

3.3.2. Multi-User Passphraseless SSH Setup .. 21

3.3.3. Expect ... 23

3.4. The Hadoop Runner Program ... 24

3.4.1. Key Functionality.. 24

3.4.2. User Interface .. 25

3.4.3. Client / Server Connectivity.. 28

3.4.4. Hadoop Property and Configuration Accessibility 28

3.5. The Installer .. 29

3.5.1. NSIS .. 29

4. Testing and Results ... 30

4.1. Command Line Component Testing ... 30

4.2. Hadoop Runner Testing .. 31

4.3. Hadoop Runner Job Testing.. 32

5. Recommendations and Conclusions ... 35

Appendices .. 37

5.1. Maintainer Documentation ... 37

5.1.1. Hadoop Upgrade / Reinstallation Requirements 37

5.1.2. Server Updates .. 38

5.1.3. GUI Updates ... 39

5.2. Server Side Configuration... 39

5.2.1. Jar File Setup... 39

5.2.2. Setup.ini Configuration ... 40

 6

5.2.3. Hadoop-Site.xml Requirements .. 41

5.2.4. Starting Server Side Socket .. 41

5.3. HadoopRunner.jar Parameters .. 41

5.4. Updating the Installer .. 42

5.5. Common Problems and Their Solutions ... 43

5.5.1. Invalid Namespace ID... 44

5.5.2. Spaces in Filepaths .. 45

5.6. Installation... 45

5.7. Uninstallation .. 47

 7

1. Introduction

 To better compete in an evolving online world, many companies store and analyze

log data. This data typically contains user actions and queries, and enables

companies to better serve the needs of their clients. eBay stores large anonymous log

files on a daily basis, and needs an effective means of analyzing that information.

Currently, they use the open source Apache Hadoop project to process their requests,

but they wish to improve the speed at which logs are processed.

 eBay Research Labs is responsible for running the log storage and processing

system, and they were interested in the development of tools for the Hadoop systems.

Specifically, eBay wanted the opportunity to run the processing of log files on

developer machines to speed up log processing time. This would allow the jobs to

complete faster, and as a result, they could free up their servers to perform more jobs

in a single day, or more complex job tasks.

 To implement this project, we developed both server and client side programs.

Additionally, we created installation files to automate the complex setup of Hadoop

and its prerequisites. Lastly, we tested the software we created by setting up a small

cluster with a Solaris master server and running sample jobs equivalent to those that

eBay Research Labs runs on a daily basis.

 This paper documents the background information necessary to understand the

problem, the tools we used to accomplish our goal, the steps we took to create the

program, the testing we performed, and details of the program that resulted.

 8

2. Background

2.1. eBay, Inc.

 eBay has been in operation since 1995, and today is the world‟s largest online

marketplace [1]. The company began when its founder, Pierre Omidyar, created his

AuctionWeb site and sold a broken laser pointer for $14.83 [2]. Since then, eBay has

grown into a multi-billion dollar company. The company‟s primary site, eBay.com,

allows users to list items from a variety of categories to sell at auction or at set prices to

other eBay users. The auction site is extremely popular, with approximately 84 million

active users worldwide and $60 billon worth of auction sales in 2007 alone [2].

 eBay‟s operations are not limited to auction hosting alone. In past years, eBay has

grown to include PayPal, a popular means of online payment for both individuals and

businesses [3]. PayPal is a feature seen throughout eBay.com as a means of paying for

and accepting payment for its auctions. Paypal allows anyone to pay through credit

cards, bank accounts, buyer credit, or account balances without requiring the user to share

financial information with the seller and is available in 190 markets and 17 countries [4].

Paypal was acquired by eBay in 2002, and has been deeply integrated throughout eBay‟s

auction site.

 eBay‟s other large company, Skype, operates outside of the auction and payment

realm. Instead, Skype focuses on providing voice over internet protocol communications

between Skype users to other users via internet, landline, and cell phones [3]. The

service is available in 28 languages and generates revenue through premium services

 9

including call forwarding, voicemail, and making and receiving calls to and from landline

and mobile phones [5].

2.2. Hadoop

2.2.1. Overview

 To meet the needs of an evolving online world and economy, it is necessary for eBay

to continually evaluate what users are doing on their site and what their needs are. As a

result, eBay‟s systems create anonymous logs of user actions on a daily basis. These logs

are then stored and processed using a distributed stream processing system known as

Hadoop.

 Before going into detail about eBay‟s existing Hadoop systems, it is important to

understand what Hadoop is. Hadoop is an Apache open-source software project that is

based upon the Google Big Table and Google File System projects [6]. It processes large

amounts of data by distributing the information among nodes in a cluster, and utilizes a

map / reduce algorithm to process that data, which will be explained in more detail in

Section 2.2.3. It provides its own open-source distributed file system to store the data on

the computing nodes [7]. Hadoop is used by eBay and many other companies to process

large files, and these companies often contribute to the open-source project [8]. For

example, Amazon uses Hadoop to build their search indices, Facebook uses Hadoop for

log storage, and Yahoo! uses Hadoop for its ad system and web search research [9].

2.2.2. Benefits

 Hadoop focuses on four especially important benefits that have helped it gain the

popularity it has today [10]:

 10

 Scalability – Hadoop can store and process petabytes of data.

 Affordability – Hadoop distributes the data and processing across clusters

of commodity hardware.

 Efficiency- Data can be processed in parallel among the nodes.

 Reliability- Hadoop automatically maintains multiple copies of the data

and automatically redeploys computing tasks in the event of failure.

2.2.3. How It Works

 Hadoop utilizes a Map / Reduce algorithm similar to the one developed by Google

[11] to process its data. The first portion of this algorithm is the map process, in which

the data, in the form of key / value pairs, is split into manageable segments by a master

node. Essentially, as described in Hadoop‟s documentation, “for each input key/value

pair (K,V), the map task invokes a user defined map function that transmutes the input

into a different key/value pair (K',V')” [6]. The smaller chunks of data are distributed

among nodes such that those with similar keys are grouped together. This allows for easy

data access based on the keys, and parallel processing of the data at a later state.

 Some companies use Hadoop‟s Map / Reduce to process large log files such as data

containing web page information. In this situation, the map state would split the log data

into smaller segments with some common feature, which would be the key portion of the

key / value pair. For example, internet data could be grouped by domain. The map phase

would process this data by grouping it such that the key is the domain and the content is

the value. This data would then be split among nodes in the cluster such that data with

similar keys were together.

 11

 The reduce portion of Map / Reduce first requires some of the data to be processed by

a specific job that is run on the nodes. The Hadoop user is responsible for writing the job

algorithm, so the actual steps performed during process may vary considerably based on

the type of file, the company running the cluster, and their ultimate goals. Once the Map

/ Reduce steps complete, a resulting output is produced.

 When the reduce function begins, the processed output is separated among the nodes

in the computing cluster based on how the data was initially distributed (in our previous

example, it was by a URL‟s domain). The purpose of the reduce step is to take all of

these individual answers and output a single final result. The reduce step aggregates all

of the individual answers and combines the results using a reduction algorithm. The

reduction algorithm is a process the Hadoop user writes, so the actual steps involved can

vary. The important part is that once those steps complete there is a resulting output that

is then appended into one sorted file [12].

 Returning to our website URL example, suppose the original data consisted of logs

that stored web addresses and content. The original map process could split the data

based on website URL as described previously. Suppose we wanted to solve the problem

of finding all web pages that contain information about Hadoop. Each node would search

for Hadoop information in its data, and send back a list of applicable key / value pairs

that matched our request. The reducer would combine the lists returned by all Hadoop

nodes to give a final result containing a sorted list of all web pages containing

information about Hadoop.

 12

2.2.4. Hadoop on Windows

 Despite its many benefits, Hadoop does not natively support running on Windows.

There are plans for this to come in the future, and it is currently listed as task number

HADOOP-4998 as a major priority update planned for version 0.21.0. However, the

current version is 0.19.0, so this update will likely not come for some time. As a result,

there are still a number of prerequisites that must be installed before Hadoop will work

with a Windows machine.

 First, all machines running Hadoop are required to have Java installed. Java is a

programming language, developed by Sun Microsystems, which executes on a local

virtual machine. As Hadoop is primarily written in Java code, this is necessary for it to

run. It is recommended that users have version 1.6.x installed from Sun [13].

 Additionally, Cygwin [14] is required for Windows. Cygwin provides a Linux-like

environment for Windows, including a fairly extensive Linux-like API. Hadoop uses

Unix commands within its code, which the Windows operating system does not natively

support. Due to this dependency, Cygwin is required to allow Hadoop to execute its

commands. It is also necessary to include the OpenSSH option during the Cygwin

installation to allow for Secure Shell (SSH) access, which is required for Hadoop to

communicate between the client and server nodes.

 Lastly, the Secure Shell protocol (SSH) [15] must be configured on all machines.

SSH is a security protocol that allows secure connections between machines using a

terminal. SSH supports several modes of authentication, one of which is the use of

public and private security keys to connect. Each client has a public and private key.

Authenticating based on public and private keys allows for passwordless authentication,

 13

which is a requirement of running Hadoop. Setting up this system entails generating the

public and private key pair, pushing them to the server, and configuring the files that deal

with authorized keys and known hosts. This will be further detailed in Section 3.3.

2.3. eBay’s Use of Hadoop

 At the time this project was completed, eBay was using Hadoop version 0.18.2 to

process their daily log files. The logs stored several hundred gigabytes of data per day,

and were split up into files of about four hundred to five hundred megabytes per file.

Logs were stored on a network file system and their Hadoop nodes that ran a maximum

of forty-four map processes at one time. A single Hadoop job on one of the log file

portions took about twenty minutes to process.

 eBay faced one major bottleneck in the processing of these log files. The logs were

stored on a network file system rather than locally on their Unix machines. When many

Hadoop nodes tried to read log data at once, they were limited by the output bandwidth of

the network file system. As a result, even if eBay were to add additional machines to

speed up log processing, their data would not process faster because the bandwidth from

the network storage would be split among even more computers.

 Ultimately, eBay Research Labs hoped to be able to take advantage of developer

workstations when they were not in use. This would provide many more potential nodes,

and in turn, would speed up the processing of jobs. Additionally, this would remove the

bottleneck by storing the log data locally on the participating nodes. However, eBay

Research Labs was aware that this should be a voluntary process. As a result, we were

asked to build an interface that allowed users to easily set up their Windows computer as

a Hadoop node. This tool was intended to allow for a quick install of all pre-requisites,

 14

including Cygwin and SSH configurations, and a user interface with which users could

add or remove their Windows computer from the Hadoop cluster at will.

3. Methodology

3.1. Initial Hadoop Setup

 To set up a testing environment, we created a Hadoop cluster on the two Windows

machines that were available to us. This involved setting up the prerequisite software

and SSH keys as described previously in Section 2.2.4. In the upcoming sections, we

will describe the process that we used to set up Hadoop. We found the Hadoop Quick

Start manual [13] to be very useful in the setup process, and recommend referencing that

guide when setting up Hadoop.

3.1.1. Installing Hadoop

 Once the prerequisite software was installed, installing Hadoop itself is very

straightforward. First, one must download a stable release from the Hadoop website at

http://hadoop.apache.org and unzip it to any directory. We used version 0.18.2, and for

simplicity we selected our Hadoop path to be C:/hadoop-0.18.2. However, the choice of

where to store Hadoop does not matter, and the software we created accepts other names

and storage locations for the main Hadoop directory. In the upcoming sections, we will

refer to the directory that Hadoop exists at as Hadoop_Home when specifying where files

are located.

 15

3.1.2. Configuring Hadoop

 Hadoop has many configurable options. Most of these options do not need to be set

when starting a cluster, but some of them are required. The first of the required settings

are located in Hadoop_Home/conf/Hadoop-env.sh. The user must modify the existing

JAVA_HOME variable to be set to the location of the Java install. For example, on our

machines, this line appears as “export JAVA_HOME="C:\Program Files

(x86)\Java\jre1.6.0_03."” The user must also modify the HADOOP_IDENT_STRING

variable with the name of the Hadoop cluster. On our file, this line was “export

HADOOP_IDENT_STRING="ebay".” This should be the same across all nodes, and it

is likely that the values for JAVA_HOME and HADOOP_IDENT_STRING on other

Hadoop clusters will be different.

 Additional Hadoop options are configured in Hadoop_Home/conf/Hadoop-site.xml.

This file stores the majority of Hadoop‟s important settings. The ones that are required

when starting a new cluster are fs.default.name (the name of the default file system),

mapred.job.tracker (the host and port that the MapReduce job tracker runs at), and

dfs.replication (the default block replication for the data) [13]. Many other options are

available, and are listed with descriptions in Hadoop_Home/conf/hadoop-default.xml

along with their default values.

3.1.3. Starting Hadoop

 Hadoop can be started once it has been installed, configured, and all other

prerequisites described in Section 2.2.4 are set up. If the desired setup will have slave

machines rather than just one machine running Hadoop jobs, then those steps should also

be performed on each slave node. Additionally, the IP address of each slave should be

 16

added with one IP per line to the slaves file located in Hadoop_Home/conf/slaves on the

master server.

 To start the Hadoop cluster, run the following commands [16]:

- bin/hadoop namenode –format (to format a new distributed filesystem)

- bin/start-dfs.sh (to start the Hadoop file system)

- bin/start-mapred.sh (to start map / reduce)

- bin/start-all.sh (to start both the Hadoop file system and map reduce in one

command)

The two start commands also reference the slaves file to start the file systems and map

reduce operations on the slave nodes. Hadoop can be stopped by replacing the “start”

with “stop” in the same commands.

3.2. Node Addition and Removal

 Since our project focuses on dynamic addition and removal of nodes, we first looked

into what was required for a node to be successfully added and removed from a cluster.

For this step we assumed that the node was configured for Hadoop as described in

Section 3.1. The steps below describe how a node can be added and removed on a basic

Hadoop setup.

3.2.1. Important Files

 Hadoop features two files that are central to the addition and removal of nodes on

Hadoop. The first of these two is the Hadoop_Home/conf/slaves file. This file on the

master server stores a list of all nodes. When Hadoop is started, this file is referenced to

start the datanodes and tasktrackers on all slave machines. The datanode process simply

 17

manages the storage of files on a node, and the tasktracker manages the node‟s jobs. If a

node is not listed in the slaves file, its datanodes and tasktrackers will not start, and

therefore it will not be used as a node in the cluster.

 The Hadoop_Home/conf/exclude file is equally important. This file is used to exclude

certain nodes from being started as part of the Hadoop cluster. Even if a node is in the

slaves file, it will not be started if it is also part of the exclude file. This file is also

necessary for removing nodes while Hadoop is still running. An alternative option to

having both a slaves and exclude file would have been to only use a single file listing

nodes that should be active, but that option would have made it difficult to track removed

or inactive nodes. As a result, using a slaves file for active nodes and an exclude file for

inactive nodes makes node management more straightforward.

3.2.2. Node Addition

 To add a new Hadoop node to a cluster there are only a few steps that need to be

taken. First, the user must add the node‟s IP address or hostname to the

Hadoop_Home/conf/slaves file located on the master server. This information will

usually already be there, unless this node has never existed on this cluster previously.

Also, the user must make sure that the node is not listed in the exclude file, or it will not

be added to the cluster.

 A new node can be started without affecting the running of the existing cluster. This

requires two commands to be executed on the new node‟s command line. First, the user

must navigate to the Hadoop_Home directory. Once there, running “/bin/hadoop-

daemon.sh start datanode” and “bin/hadoop-daemon.sh start tasktracker” will start the

 18

data storage and task tracker processes on the new node, therefore adding it to the cluster

[17].

3.2.3. Node Removal

 Node removal works in a way that is similar to node addition. First, the node must be

added to the exclude file. Next, the command “bin/Hadoop dfsadmin –refreshNodes”

must be run on the master server. This forces the master server to repopulate the list of

valid nodes from the slaves and exclude files. Since the node that is being removed is in

the exclude file, the master server will begin a decommissioning process on that node.

 Decommissioning a node is meant to prevent data loss and lasts until all blocks on the

node are replicated [17]. Depending on the amount of data stored on the system and how

often the system updates, this may take some time. To speed the decommission process

up, the several variables should be edited in Hadoop_Home/conf/Hadoop-site.xml. First,

the dfs.namenode.decommission.interval value specifies the number of seconds between

each check for decommissioned nodes. High values would result in “Decommission in

Progress” appearing even long after a node has been decommissioned successfully. By

default, this value is set to five minutes, but we recommend setting it to a lower value

such as 30 seconds. This gives the user a much more reasonable update timeframe,

which is important as it allows the user to regain full use of their workspace that much

faster.

 Additionally, we recommend changing some of the values associated with Map /

Reduce. Specifically, mapred.tasktracker.expiry.interval is set by default to be ten

minutes. This attribute is defined in the Hadoop-default.xml documentation as “the time-

interval, in milliseconds, after which a tasktracker is declared 'lost' if it doesn't send

 19

heartbeats” [18]. With a default value of ten minutes, it is possible for the master to

continue to attempt to send jobs to the decommissioning node. By lowering the value,

the master will more quickly register the node‟s tasktracker as dead and will not waste

time attempting to assign jobs to it.

 Similarly, we recommend changing mapred.task.timeout from its default value of ten

minutes to something lower. As stated in Hadoop-default.xml, mapred.task.timeout

defines “how long until a task it terminated if it neither reads an input, writes an output,

nor updates its status string” [18]. If there is the potential for nodes to frequently be

removed it is important that failed jobs due to removed nodes register as quickly as

possible so they can be reassigned. In our case, we changed both mapred.task.timeout

and mapred.tasktracker.expiry.interval to thirty seconds.

 The final value that we recommend editing is heartbeat.recheck.interval in hadoop-

site.xml. This attribute specifies how long the master will wait after not receiving a

heartbeat from a node before it considers it dead. Given that the slave nodes could be

shut down and never have time to properly decommission, this attribute is necessary to

quickly register a node as dead.

3.3. Secure Shell Key Generation

 Hadoop on Windows requires passphraseless secure shell (SSH) access. However,

this is somewhat complicated to set up. As a result, we felt it was necessary to automate

the process.

 To accomplish this, we created a shell script. This script was adapted from one that

already existed at http://www.macosxhints.com/article.php?story=2007091814022049.

The script first checks if Digital Signature Algorithm (DSA) keys already exist. If they

 20

do not, the keys are created and stored in the user‟s .ssh directory. Next, the appropriate

permissions are set on the directory. The script does these same steps on the server side

to ensure all of the necessary keys are created.

3.3.1. Single User Passphraseless SSH Setup

 Figure 1 (below) demonstrates what steps are required to enable passphraseless SSH

for a single user. To successfully connect to the master server, the client must to send its

public key to the master server‟s authorized_keys file. The authorized_keys file stores a

list of public keys that are allowed to access that machine through SSH. Our script

connects using SSH to the master server and concatenates the user‟s client-side public

key to the user‟s server-side authorized keys file. Likewise, the script retrieves the public

key from the server and concatenates it to the user‟s client-side authorized keys file. The

completion of these steps means that the client can successfully SSH to the master server

without a password. However, this only works for Hadoop if the administrator has set up

a dedicated user account for Hadoop.

Figure 1: Passphraseless SSH Requirements (single user)

 21

3.3.2. Multi-User Passphraseless SSH Setup

 In our case, a dedicated Hadoop user account was not available, so we had to follow

additional steps to set up passphraseless SSH. These steps are detailed visually in Figure

2. It is important to note that each SSH user has their own set of public keys, private

keys, and authorized keys files. Simply setting up passphraseless SSH for a single user

would not work if a separate user account is starting the server and executing the Hadoop

commands.

 To step around this issue, we added a socket connection between the new user on the

server-side and the Hadoop administrative account. This connection sends a command to

the Hadoop admin containing the private key. The connection on the Hadoop admin‟s

side writes the key to a Hadoop_Home/.ssh directory. Additionally, it modifies an

sshconfig file with lines specifying the hostname, username, and key location for the

connection that is being set up. The sshconfig file can be specified as an option when

connecting via SSH, which forces the connection to connect using a specific username

and key for each host. In doing so, the Hadoop admin is able to connect as a different

user for each host successfully without a password.

 22

Figure 2: Passphraseless SSH Requirements (multi-user) – Passphraseless SSH must be set up from User A to

User A, and their private key made available to the Hadoop Admin.

 It is important to note that passphraseless SSH between different users is not

recommended. Doing so opens up a security issue in which the Hadoop admin will have

SSH access to any client nodes under the user account that ran the installer on the client

computer. In our case, a dedicated Hadoop user account was not an option, and

connecting through a means other than SSH would be possible only with significant

modifications to the Hadoop code, ruining any chances of easily upgrading the Hadoop

version. We felt that the ability to upgrade Hadoop was more important, especially since

the security concern could be removed if a dedicated Hadoop user account were

approved. If at all possible, we strongly recommend a dedicated account to avoid this

security and privacy concern.

 23

3.3.3. Expect

 This SSH key automation script and the accompanying socket connection did

accomplish our goal of preventing the user from having to manually set up their SSH

keys while also allowing passphraseless SSH between user accounts, but we also felt that

the user should not have to deal with the command prompt requests during the install. In

the first version of the script it was possible that during execution the user would be

asked if they wanted to add a computer to their known hosts, if they wanted to create

their SSH keys, which types of SSH keys they wanted to create, and they were prompted

for their password several times. We decided that it was also necessary to automate the

process so that the user did not have to worry about any command line input. To

accomplish this task, we used a tool known as Expect.

 Expect is a government-funded project that is part of the National Institute of

Standards and Technology and began in September, 1987 [19]. It is a UNIX program

that was designed specifically to interact with interactive programs. A programmer can

write a script, usually in Tcl, or “Tool Command Language” [20], describing the

interactive dialogue; and the Expect program can then run that program non-interactively

[21]. For anyone interested in using Expect with Windows, it is an optional part of the

initial Cygwin setup.

 We used Expect to control the flow of our SSH key generation script. Using a simple

Expect program, we were able to automate the process of key generation and require user

input only once to get the username and to get the password. This step was passed on to

the installer to allow the user to enter this information in a more visually appealing

format than the command line, which later calls the Expect script with that information.

 24

The automation process was performed in a short Expect file of approximately twenty

lines, but makes the install process significantly more user-friendly. We simply tell

Expect what things the script could potentially ask the user for, and tell it what to give the

script in response. For example,

 expect "Enter passphrase \(empty for no passphrase\):" {

 send "\r"

 }

tells the program that the script could ask for a passphrase (in this case, it is the

passphrase to assign for SSH authentication). Since Hadoop requires passphraseless

SSH, Expect simply sends a newline character to the script, and the next operations

continue. Similar statements exist for the other output that the key generation script

could require. As a result of using Expect, the key generation script completes smoothly

while requiring very little from the end user.

3.4. The Hadoop Runner Program

 The portion of our project that is visible to the end-user is the Hadoop Runner

program. This program was created in Java using both NetBeans and Eclipse and can be

divided into three primary sections: user interface, client / server connectivity, and

Hadoop property and configuration accessibility.

3.4.1. Key Functionality

 Prior to beginning the development of the Hadoop Runner program, we felt it was

necessary to determine what features this should support. Through our discussions our

 25

project liaisons, we decided that the Hadoop Runner should support the following basic

functions:

 Addition of the node to the Hadoop cluster.

 Removal of the node from the Hadoop cluster.

 Configuring the storage space used by Hadoop.

 Displaying information about the status of the Hadoop node.

 With these requirements in mind, we began designing a program that would support

these basic features.

3.4.2. User Interface

 The user interface portion of Hadoop Runner was designed using NetBeans‟ Project

Matisse Graphical User Interface (GUI) Builder. This GUI Builder, which is included

with the NetBeans development environment, makes developing GUIs using Java‟s

Swing components very simple. Further information about this tool can be found at on

Netbeans‟ website [22].

 Prior to our preliminary meetings with our liaisons, we created a simple mockup of

what we had planned for the GUI (shown below in Figure 3: Initial GUI Mockup).

Initially, we had only planned to support adding and removing nodes, showing the

current status, and displaying the current job status.

 26

Figure 3: Initial GUI Mockup

 After discussing the preliminary UI with our liaisons, we were given feedback and

found that the GUI should provide some additional information to the user including

basic information about the space occupied by Hadoop. However, we were limited in

what we could display because of Hadoop‟s constraints. Hadoop does not offer any

publicly accessible functions that get basic node information such as total completed

jobs, job progress, space allocated to Hadoop on a node, and other similar requests. As a

result, we were limited to using attributes that were accessible through Hadoop‟s existing

web interface.

 Based on our liaisons‟ feedback and the information we had available through

Hadoop‟s interface, we decided that the user should have the following information

available in the GUI:

 Status of the node – Necessary to tell if the node is connected or not.

 Hostname – To make troubleshooting any problems easier for the Hadoop admin.

 Space occupied by the Hadoop Distributed File System (HDFS) – To assist the

user in choosing an appropriate amount of allocated space for Hadoop.

 27

 Number of running jobs – To inform the user if any jobs are in progress, which

may encourage them to keep their node online.

 Free Space – Only available when editing space allocated to Hadoop, to give the

user a value to assist them in choosing an appropriate maximum.

 Space Allocated to Hadoop – Only available when editing space allocated to

Hadoop, to keep the user aware of their current settings.

The GUI that we created to meet these requirements can be seen below in Figure 4.

Figure 4: Hadoop Node GUI

 Figure 4‟s screenshot of the GUI shows the two windows that the user is likely to see.

Other windows exist, but are only used to convey error messages. In Figure 4 the

window in the background is the primary user interface. The window in the foreground,

Hadoop Node Preferences, is only visible if the user chooses Edit -> Preferences from the

 28

main GUI menu. Both display helpful information to the user about their computer‟s

status and characteristics as a node on the Hadoop cluster.

3.4.3. Client / Server Connectivity

 One primary requirement of the Hadoop Node program is that the client and server be

able to communicate so instructions can be passed for operations such as node addition

and removal. To accomplish this task, we created a socket connection and a protocol for

communication between the client and the server. The client and server may need to

communicate for the following reasons:

General Hadoop Functionality:

 Client prompting server to be added to the list of nodes.

 Client prompting server to be removed from the list of nodes.

Setup:

 Client prompting server to add its key to the authorized keys, sshconfig, and .ssh

folder.

 As a result, we created a basic protocol to support this functionality as well as the

initiation of the connection between the client and server. Additionally, we synchronized

access to functions that modify files to avoid concurrent write attempts to the same file.

3.4.4. Hadoop Property and Configuration Accessibility

 The Hadoop Runner program also requires frequent reading and accessing of various

Hadoop related properties. To deal with this, we created a PropertyReader and

PropertyWriter factory. These allow for easy reading and writing of XML files and INI

files. The XML files must store information with <name> and <value> tags for the

 29

reader and writer to function properly. Similarly, any INI files must have a name = value

pair on each line.

 Within this project, the PropertyReader and PropertyWriter classes are used to access

the setup.ini and hadoop-site.xml properties. Setup.ini is primarily read from and written

to during setup to save important information including the location of Hadoop, the

master server address, and the location of Cygwin. Hadoop-site.xml is read from and

written to when any configuration changes within the settings of Hadoop are made, or

when the program needs information about Hadoop‟s configuration. The overall purpose

of the PropertyReader and PropertyWriter is to have an easy to use interface between the

Hadoop Runner program and its configuration files.

3.5. The Installer

3.5.1. NSIS

The Nullsoft Scriptable Installation System (NSIS) is a scripting framework for

building installer programs for Windows machines [23]. This was used to create the

actual installer for our project. To go from a clean machine to a running node on a

Hadoop cluster using our software, several steps by an installer program are necessary.

The installer includes the setup files as well as the Cygwin and Hadoop installations to

use. The user has the option of not including the setup files, Cygwin, or Hadoop; if

Cygwin and/or Hadoop are not included, the program will ask the user to specify the

directory of a working version of the omitted program.

 30

4. Testing and Results

 Much of our testing was done at the component and unit levels. Component level

testing is a method of testing in which the software is subdivided into similar parts,

stimuli is applied to the component and the result is evaluated through a state change

either within the component or elsewhere in the system [24]. In our case, the components

we tested fit into three main parts: command line level testing during initial setup, testing

of the HadoopRunner java components, and testing of the installer and its associated

setup scripts.

4.1. Command Line Component Testing

 The earliest testing that we performed was through the command line during initial

setup. This testing had little to do with the program we ultimately created, but was

instead needed to ensure that the prerequisites of Cygwin, Hadoop, and node addition and

removal were working as expected. During this portion of the project, we set up Cygwin,

passphraseless SSH, and Hadoop for distributed operation. Testing was performed at the

following checkpoints:

 Following the setup of the SSH server, to ensure a user could log in with a

passphrase.

 Following the setup of passphraseless SSH, to ensure the user could log in

without a passphrase.

 Following the setup of Hadoop on a single node, to ensure Hadoop could start and

run a sample job.

 31

 Following the setup of Hadoop on a distributed system (multiple nodes) to ensure

Hadoop was properly starting its nodes, running jobs, and assigning tasks.

 These basic tests enabled us to be confident that the software we needed to work with

was properly configured.

 Also, we needed to be sure that node addition and removal worked successfully prior

to attempting to automate the process. To accomplish this, we first tested node addition

and removal at the command line level. We manually followed the node addition and

removal steps described previously in Section 3.2 and were able to confirm that nodes

were successfully added and removed when those steps were followed by viewing the

Hadoop Administration webpage. With this knowledge, we had a clear plan for

automating the node addition and removal process, and were able to begin working our

program.

4.2. Hadoop Runner Testing

 We tested the Hadoop Runner program and its associated Java files primarily through

unit testing and component testing. Unit testing is a process of testing in which one takes

the smallest piece of testable software in the application, isolates it from the remainder of

the code, and determines whether it behaves exactly as expected [25]. We performed unit

tests as individual portions of code were finished. We primarily performed these tests

manually, though in hindsight, we should have used an easily automated test suite to

accomplish unit testing more effectively.

 We also tested our software at the component level. The Java portion of the project

could be split up into three separate sections – the initial setup related functions, the SSH

setup related classes, and the Hadoop Runner portion. To test the initial setup functions,

 32

we manually ran the main class and checked each file that it creates to ensure that the

proper output was produced. For the SSH related classes, we ran the setup file along with

the script that calls the class and attempted to passphraseless SSH directly after. A

successful attempt to connect using passphraseless SSH meant that this section worked

successfully.

 Lastly, the Hadoop Runner program was tested both client-side and server side. We

tested node addition by attempting to add a node, verifying it was added on the server

through the web interface, and verifying that its tasktracker and datanode were started

properly through the logs. For node removal, we verified that it was decommissioned

successfully through the web interface, and watched the client side log output to ensure

that the datanode and tasktrackers were stopped as expected.

4.3. Hadoop Runner Job Testing

 When the Hadoop Runner program was completed and the individual functions and

components had been tested, we felt that it was necessary to test it on a cluster similar to

the one used currently at eBay Research Labs. To do so, we set up a Solaris system to be

the master server, and set up the test node as the slave. We began with basic example

jobs included with Hadoop, and attempted simple node addition and removal to ensure

those ran without error. When those completed successfully, we began more in-depth

testing.

 Our primary goals of testing were as follows:

 To ensure a node could be added mid-job.

 To ensure a node could be repeatedly added and removed without failure.

 To ensure the jobs completed successfully, even with mid-job node removal.

 33

 To ensure data was not lost from node removal.

 To make these tests as realistic as possible, we copied some of eBay‟s sample log data

to our Hadoop file system, and the jobs we ran were the same as those that eBay runs on

its existing Hadoop server.

 Our first tests involved basic node addition and removal. We wanted to be sure that

nodes could be added to the server, and quickly used to the advantage of the cluster. To

test this, we began a job on the master server while our node was offline. We then

enabled our node using the client side program. We monitored the Hadoop

administrative web interface and saw that within seconds of being added it was listed as

in service and had been assigned a task.

 Our next test was to ensure that node addition and removal worked properly. Prior to

this, we had only tested each on a singular basis, and never repeatedly. We repeatedly

removed and added the node to make sure that the slaves and exclude files appeared

normal at the end of each attempt. In doing so, we uncovered a bug in which the node

was added to the slaves file after each addition resulting in many duplicate entries, and

were able to promptly correct it.

 Next, we tested node removal during a job. Since nodes are likely to be removed

while jobs are running, it is important that Hadoop recognizes this quickly and

redistributes the tasks accordingly. On our initial runs, we realized that tasks were not

quickly redistributed. To correct this, we reviewed the Hadoop documentation and found

that we had to modify some of the Hadoop-site.xml configuration options. The changes

that we made to correct this issue are documented in Section 3.2.3. On subsequent

 34

attempts, nodes were quickly identified after going offline and tasks were reassigned as

expected.

 Lastly, we tested to make sure that data was never lost during node addition and

removal. To accomplish this, we began a job and decommissioned a node partly through

the run. Prior to decommissioning, we ran the command “hadoop fsck folderName”

whose output is shown in Figure 5.

Figure 5: Hadoop FSCK Output

 The output reported that all data was accounted for. After decommissioning, we ran the

check again. We found that the data still existed, but was under-replicated. This was due

to the fact that replication was set to two and only one node was online. In an actual

Hadoop cluster, Hadoop would recognize the under replication automatically and

redistribute the data accordingly.

 35

5. Recommendations and Conclusions

 The Hadoop Runner program and installer work to correctly, quickly, and easily add a

node to an existing Hadoop cluster. The resulting program met the requirements that our

mentors had set at the start of the project. The nodes can be successfully added and

removed at will, the setup scripts deal with the initial configuration, the installer handles

the install of all necessary prerequisites, and the users have the freedom to choose how

much space Hadoop is using.

 Additionally, this project offers other potential uses aside from the current plans of

adding nodes to the existing cluster. First, the installer is flexible enough to be

configured for use on a different Hadoop cluster. As a result, it is possible that eBay

could set up another master server and use the installer to quickly and automatically

configure its data nodes. Previously, configuring its nodes would have taken several

hours or days of work on Windows.

 Also, this project opens up the possibility of using Hadoop to those at eBay who

otherwise may have never been introduced to it. For example, employees in a less

technical department may not have the resources or expertise to set up a Hadoop cluster

and run jobs, but they would likely have use for the information that could come from the

daily log data. eBay Research Labs could open up their Hadoop systems to be a

company wide tool available to run specific jobs in exchange for a certain number of

hours of node usage. With a simple installer, anybody can quickly configure a computer

for Hadoop with little time investment, so this prospect is an intriguing option.

 Although our program is certainly useful, there is also room for improvement that

could be added in a future project. For example, a scheduler system is one feature that

 36

we would have liked to implement but did not have the time to do so. This feature would

allow users to specify when to activate and decommission their computer as a node. This

would be especially helpful when encouraging users to add their node while they are

away at meetings, gone for the day, or for overnight job runs.

 Another feature that we would have liked to see added was client-based job

submission. This option would fit well with the job requests for node usage tradeoff that

was described earlier, as it would allow departments that are not programming-savvy to

easily submit requests for data through a user interface. Currently, job algorithms must

be written in java and the jobs must be run through the command-line while connected to

the Hadoop admin account on the master server. However, simple jobs could be run

though a visual interface that would help the less technical departments get useful

information.

 Overall, the creation of an easy to use node addition and removal tool opens many

new doors. Faster processing of log data and the ability to run more complicated jobs can

give eBay new insight into what users are doing on their site, and in turn, can help shape

the company‟s future. We hope to see this tool continue to be improved upon and

ultimately used throughout eBay to take advantage of their existing company resources.

 37

Appendices

5.1. Maintainer Documentation

5.1.1. Hadoop Upgrade / Reinstallation Requirements

 We avoided modifying Hadoop‟s Java code to allow for easy updates from one

version of Hadoop to another. However, there are some changes that will need to be

made when updating Hadoop. These changes were made to the hadoop-daemons.sh and

hadoop-daemon.sh scripts, path variables, and SSH options. By default, Hadoop looks

for Hadoop in the same location on every client machine when starting and stopping.

However, since this location can vary depending on the username it is stored under, the

startup scripts had to be modified and a HADOOP_HOME environment variable had to

be added.

 In hadoop-daemon.sh, the final line was modified as follows:

 Original:

#exec "$bin/slaves.sh" --config $HADOOP_CONF_DIR cd

"$HADOOP_HOME" \; "$bin/hadoop-daemon.sh" --config

$HADOOP_CONF_DIR "$@"

Modified:

exec "slaves.sh" --config $HADOOP_CONF_DIR

"hadoop-daemon.sh" --config $HADOOP_CONF_DIR "$@"

 Also, be sure to add the HADOOP_HOME environment variable to the master server

as well as HADOOP_HOME \bin to the PATH variable to ensure proper server-side

startup.

 38

 The hadoop-env.sh file located in HADOOP_HOME /conf should be modified to

account for the use of a configuration file in the SSH options. The new SSH_OPTS

parameter value should be “-F $HADOOP_HOME/sshconfig.” Unfortunately, Hadoop is

not consistent in its naming of this parameter. In the hadoop-env.sh file, it is specified as

SSH_OPTS, but in the slaves script in bin/slaves.sh, it is specified as

HADOOP_SSH_OPTS. It must be updated to “SSH_OPTS” in the slaves.sh script for

the changes to properly work.

 Finally, the hadoop-daemons.sh file should be modified. The line

HADOOP_CONF_DIR=$HADOOP_HOME/conf should be added early in the script

before the hadoop_rotate_log() function begins. This sets the client-side Hadoop

configuration directory to prevent the client computer from looking in the same directory

as the server. Additionally, the line “if kill -0 `cat $pid > /dev/null 2>&1; then” should

be changed to “if kill -0 `cat $pid| perl -ne '$_=~ s/^.*?(\d+).*$/$1/g; print;'` > /dev/null

2>&1; then” to account for Cygwin‟s addition of Windows line breaks at the end of the

process ID file.

5.1.2. Server Updates

 As explained in Section 3.3.3, we used Expect to automate the setup of passphraseless

SSH. However, server updates have the potential to break this part of the installer.

When we switched from a Windows Cygwin master server for testing to a Solaris master

server, we discovered that the exact wording of the prompts varied slightly. Accounting

for those variations was a simple matter of adding additional cases to the Expect script

that we had written. If a server update changes the wording of the prompts during SSH

related configurations, the Expect script will need to be updated to reflect those changes.

 39

5.1.3. GUI Updates

 The GUI for the Hadoop Runner program was created using Netbeans‟ GUI Builder.

As a result, we recommend continuing any GUI-related changes by editing those files in

NetBeans. Attempting to manually edit the code in an editor such as Eclipse could result

in the file not being readable by NetBeans‟ GUI Editor. It is certainly still possible to

work with the code in Eclipse, and working with non-GUI code will have no ill effects.

However, editing GUI related code in another editor is likely to make it unreadable by the

Netbeans GUI Builder, and would ruin the possibility of taking advantage of its simple to

use features. Ultimately it is up to the decision of the software‟s administrator, but we

recommend using the GUI Builder because of its simplicity and time-saving nature.

5.2. Server Side Configuration

 For the Hadoop Runner program to work properly on client side computers, the socket

listener must be started on the server. Please follow the steps below to ensure the server

is properly configured and the socket listener is running. These steps should be

performed after Hadoop has been set up and verified to be functioning. It is not

necessary for Hadoop to be started at this point.

5.2.1. Jar File Setup

 First, copy the Hadoop Runner jar file to a location on the server, and copy the

Apache Log4j jar file to a directory entitled “lib” within that same folder. These copies

can be done with the Unix commands “scp HadoopRunner.jar

username@master:/home/username” and “scp –r lib

username@master:/home/username.”

 40

5.2.2. Setup.ini Configuration

 Next, configure the server‟s setup.ini file. This file stores important information such

as the Hadoop home directory, the master server, and the Java home directory. On the

client machines, this file is created automatically during installation. However, since the

installer will never run on the server, the Hadoop administrator must set this up manually.

It is important that setup.ini be stored in the same location as HadoopRunner.jar.

Setup.ini should contain information similar to the following:

[Hadoop_Config]

Hadoop_Location=/home/ahargraves/hadoop-0.18.2

JAVA_HOME=/usr/java/jre

HADOOP_IDENT_STRING=eBay, Inc.

hadoop.tmp.dir=/home/ahargraves/Hadoop-tmp

MASTER=erl09.arch.ebay.com

 Your setup.ini file should be edited based on your server‟s configuration.

 HADOOP_LOCATION should be changed to reflect the location of your Hadoop

install.

 JAVA_HOME should represent the location of your Java install.

 HADOOP_IDENT_STRING should reflect the name of your Hadoop cluster (this

should be the same as what you have specified in

 HADOOP_HOME/conf/Hadoop-env.sh).

 Hadoop.tmp.dir should reflect the temporary storage space for Hadoop.

 MASTER should reflect the full hostname of the master server.

 41

5.2.3. Hadoop-Site.xml Requirements

 In the case where nodes may be frequently added and removed, there are additional

Hadoop-Site.xml configuration parameters that we recommend to ensure quick updates to

node status changes. These were detailed in Section 3.2 and should be referenced when

configuring the server. Once the HadoopRunner jar files have been transferred, the

setup.ini file is set up, and the hadoop-site.xml contains valid information, the server-side

socket listener can be started.

5.2.4. Starting Server Side Socket

 The server-side socket listener should be started whenever client machines have the

potential to be added or removed, or when the installer is running on a client computer.

We recommend running the server side socket whenever Hadoop is running. To start the

socket listener, follow these steps:

1. SSH to the master server (ssh username@master)

2. Change directory (cd) to the location of the Hadoop install

3. Once in the directory that contains HadoopRunner.jar, type

“java –jar HadoopRunner.jar HadoopMultiServer”

 At this point, the server-side listener has been started. If the command line window

remains open, you will see the output of any errors that occur during the client / server

communication, as well as information when a node is added or removed.

5.3. HadoopRunner.jar Parameters

 HadoopRunner.jar is the responsible for several things. It contains the server-side

program, the client side Hadoop Runner program, and two different setup programs. In

 42

this section, we will detail what each program is responsible for and how to begin each

one:

 Initial Setup:

o Run by the installer (java –jar HadoopRunner.jar InitialSetup)

o Responsible for setting up the environment variables

HADOOP_HOME and setting the PATH variable to include

HADOOP_HOME/bin. Also edits the /etc/passwd file to remove

spaces from the home directory, to avoid problems that Cygwin has

interpreting spaces.

 SSH Setup:

o Run by the script ssh-keys.sh, called within the host_config_expect

script portion of the installer (java –jar HadoopRunner.jar SSHSetup

client_hostname)

o Responsible for transferring the installing user‟s server-side private

key to the Hadoop admin. Required for multi-user passphraseless SSH

implementations.

 Hadoop Multi Server:

o The server-side listener as described in Section 5.2.4. This should

always be active, but must be manually started on the server side.

 Main GUI:

o The client-side Hadoop Runner program (java –jar HadoopRunner.jar

MainGUI) that should be called by the shortcut created by the installer.

5.4. Updating the Installer

As with any software project, the ability to update the final product is not only a good

idea but necessary to continual functioning. To this end, there are two ways of adding to

the installer. The first is through the „installer.ini‟ file. This file lists out properties and

their values, which the installer will read during compilation and export out to the

„setup.ini‟ file, which is used during installation to run the Java program and some of the

Cygwin setup scripts. This does not allow for major customization; rather it allows a user

to set the value of certain variables which are likely to change, such as the address of the

master Hadoop node and the identification token of the Hadoop cluster.

 43

To edit the installer itself, the NSIS compiler is required. This process is more

involved, as the installer has its own scripting language which a user would need to learn

before significant changes could be made. The original files used to compile the script

were provided to eBay for this purpose.

The configuration scripts run by both the installer and the Java programs can also be

updated. These scripts were written in Cygwin shell code, and as such should not be

difficult to update or expand upon by a user with knowledge of Cygwin or UNIX

systems.

The Java client allows for updates, but in most cases doing so requires changing of

the Java code and recompiling of the JAR. Some properties, such as those specified in the

setup.ini file of the Hadoop Runner directory can be changed without affecting the source

code, but aside from that source code changes would need to be made. These changes are

likely to be necessary if Hadoop updates the commands used to decommission or enable

nodes, or if it adds or removes information from the online status pages. Since Hadoop

has no way to get node status aside from the web-based utilities, we needed to parse the

HTML of the website to get the information we needed. Changes to the structure of the

page could affect the GUI accuracy, and would need to be updated. The source code for

the Java programs was provided to eBay to allow them to made further modifications as

necessary.

5.5. Common Problems and Their Solutions

 In this section, we detail problems that we encountered frequently over the course of

this project, as well as ways to solve these issues. We realize that eBay may hope to

upgrade their servers to a later version of Hadoop. Although we avoided modifying

 44

Hadoop‟s source code with the exception of the startup scripts, it is still likely that small

changes may need to be made to our program to keep it up to date. Additionally, some of

the issues we describe are general Hadoop setup problems that anyone setting up a

Hadoop cluster has the potential to face. We hope that by detailing problems we

frequently encountered we can make Hadoop setup and modification of our code more

straightforward. In general, utilizing the Hadoop log files, which are stored in the Logs

folder of the Hadoop install by default, can easily identify most problems. Additionally,

it is important to check log files on both the master and the problematic slave computers

because they store different information. Hadoop‟s error messages are occasionally

unclear, but the Hadoop user mailing lists are an excellent resource in the event that an

unclear error comes up.

5.5.1. Invalid Namespace ID

 The “Invalid Namespace ID” error was an error that we encountered frequently,

especially when first starting the datanodes and tasktrackers on a newly formatted

Hadoop cluster. Although it was unclear what was causing this error, it has a very simple

solution, and in our experience it did not reoccur unless starting from a newly formatted

cluster. To solve the Invalid Namespace ID error, first locate the log file that displays

this error on the master and slave PCs. The error will display what namespace was

expected, as well as what the computer has set currently. Simply navigate to the location

that you specified for Hadoop‟s storage, and open logs/hadoop-clustername-datanode-

hostname.log. Copy the expected Hadoop namespace ID from the log and paste it into

the version file stored in Hadoop‟s distributed file system. Saving the changes on this

and any other affected nodes should solve the issue.

 45

5.5.2. Spaces in Filepaths

 Many of the problems that we encountered were not caused by misconfigured settings,

and as a result were not easy to diagnose. Ultimately, we discovered that spaces in the

filepaths were the root cause of many of our issues. For example, attempting to start

Hadoop if the Hadoop home location had a space, or attempting to start SSH if the user‟s

home location had a space would frequently result in errors. Eventually, we discovered

that Cygwin was not always able to properly work with files that had spaces in their

location name. As a result, we opted to keep our user‟s home directories as

/home/username rather than C:/Documents and Settings/…etc. Also, we chose to restrict

the options that the user had when installing Hadoop and Cygwin to avoid these

problems. We recommend keeping these restrictions in place to avoid potentially

difficult to solve errors.

5.6. Installation

 In this section we detail how to install in the various cases where some of the pre-

requisites already exist on the computer.

 Installation in the ideal case is fairly simple. The ideal case would be a computer that

has a Java JDK in a file path that does not have spaces (C:\Program Files\Java would not

work, but C:\Java would) and has neither Cygwin nor Hadoop installed, though Hadoop

installations will not conflict. In this case the installer can install and run all scripts

normally, and the installation files will be contained within the

C:\Hadoop_Installer\Hadoop_Install folder.

 46

 Installation on a computer with Hadoop is not much more complex. The user will

need to deselect the "Hadoop" checkbox during section selection. This will add a page to

the process allowing you to specify the directory of Hadoop you want to use. After this,

installation will continue and the scripts will run normally. One thing to watch out for in

this case is that the installer's version of Hadoop (0.18.3 as the time of writing) has some

modifications to some of the Hadoop startup scripts and configuration files. The post-

installation scripts will change certain values in files in the conf directory of your Hadoop

installation, however the files containing potentially necessary modifications in the /bin

directory will not be copied over and the changes are not made by the scripts. The

directory set by the installer for HDFS will be in the C:/Hadoop_Installer/

Hadoop_Install/DFS directory, by default.

 Installation on a computer with a pre-existing Cygwin installation can become fairly

difficult. It is recommended that if the user already has a Cygwin installation that they

not install the installer's version of Cygwin. Also of note is that the Perl, awk, expect,

inetutils and OpenSSH plugins are required for the installation scripts and Hadoop to run.

The installer will ask for Cygwin's home directory and use this in executing the setup

scripts.

 The first script (mkpassgrp.sh) will generate group and passwd files if they do not

already exist, and set permissions on the /var directory to 711 using chmod, a change

necessary for the later SSH scripts. The next step in the installer modifies the home

directory of the current user in Cygwin to /home/<username>. This is to change the

default Windows home where the path contains spaces (Documents and Settings), which

need to be removed. The third step taken is to append three lines to the .bashrc file in the

 47

home directory, as well as a single line to the bash_profile file in the same directory.

These additions are appended and will not overwrite any existing data in the files. The

fourth and final step will use Expect to run the SSH configuration for the client and the

server. This uses ssh-keys.sh, as well as ssh-host-config -y, to set up. This will attempt

to create an SSHD service called 'sshd' and .ssh files in the user's home directory, located

in the /home/<username> folder on the local machine and the server. As a cleanup step

after this, the initial login information used by the installer is removed from setup.ini after

SSH setup.

 If Cygwin was pre-installed on the computer but the user had the installer install its

own version of Cygwin regardless, then an important case arises. The installer will, as

part of Cygwin installation, check for C:/Cygwin; if this exists, it will rename

cygwin1.dll to cygwin1.dll_ and alert the user to the change. This is necessary, since if

multiple versions of Cygwin exist on a machine they will fail to start until there is only a

single 'cygwin1.dll' file on the system. If the user has a pre-existing Cygwin in another

location, then they must perform this change manually.

5.7. Uninstallation

 Uninstallation of the program can be potentially difficult due to some of the actions

performed by the setup scripts. In this section, we detail the steps that should be taken if

a user wishes to uninstall the Hadoop Runner program and remove modifications made

by the setup scripts.

 In the ideal case where the installer installs all the necessary components, this process

is the least complex. Here, there are three steps. First, open up Cygwin and enter the

'cygrunsrv -L' command. This will list the Cygwin services which are installed; in this

 48

list should be a service 'sshd'. To remove this service, run the command 'cygrunsrv -R

sshd'. Next, exit the Cygwin window. For the second step, delete the Hadoop_Installer

directory to clean out all of the files that were installed. Finally, to remove the Cygwin

path from the Windows PATH variable, right click on My Computer, go to Properties-

>Advanced->Environment Variables and find the "PATH" entry in the second list. In

this string delete the entry corresponding to the installed Cygwin folder, generally of the

form ";C:/Hadoop_Installer/Hadoop_Install/Cygwin/bin". There will also be a path

similar to the previous but ending in "Hadoop/bin"; this can be removed as well.

 If Hadoop was already installed, the process is much the same as above; Hadoop

versions do not conflict, and the Hadoop installation only modifies the installed Cygwin's

.bashrc folder to have an entry Hadoop_Home, as well as the Windows PATH.

 If Cygwin was not installed and a pre-existing installation was used, reversions to the

effects of the scripts need to occur. As Cygwin installations can be very non-standard

there is no definite guide to doing this, however the actions the scripts perform are well-

documented and the scripts themselves can be found in the installation directory

(C:/Hadoop_Installer/Hadoop_Install). Changes to keep in mind are the addition of an

'sshd' service, modifications to the user's home directory and SSH key setup on both the

client's machine as well as the central server.

 If Cygwin was installed with the installer (and Hadoop was not), follow the actions for

an ideal install above. Keep in mind that if a pre-existing Cygwin installation was on the

machine it will need to have its cygwin1.dll_ file renamed to the original name of

cygwin1.dll.

 49

Works Cited

[1] eBay, Inc. “eBay Media Center: About eBay.” eBay. http://news.ebay.com/about.cfm

(accessed January 21, 2009).

[2] eBay, Inc. “eBay Media Center: Our History.” eBay.

http://news.ebay.com/history.cfm (accessed January 21, 2009).

[3] Yahoo!. “EBAY: Profile for eBay Inc.” Yahoo!.

http://finance.yahoo.com/q/pr?s=ebay (accessed January 21, 2009).

[4] PayPal. “About Us – Paypal.” https://www.paypal-media.com/aboutus.cfm (accessed

 January 21, 2009).

[5] Skype Technologies. “About Skype.” http://about.skype.com/ (accessed January 21,

 2009).

[6] Apache. “ProjectDescription – Hadoop Wiki.”

 http://wiki.apache.org/hadoop/ProjectDescription (accessed January 21, 2009).

[7] Apache. “Frontpage – Hadoop Wiki.” http://wiki.apache.org/hadoop/FrontPage

 (accessed January 21, 2009).

[8] Apache. “Who Are We.” http://hadoop.apache.org/who.html (accessed January 21,

 2009).

[9] Apache. “PoweredBy – Hadoop Wiki.” http://wiki.apache.org/hadoop/PoweredBy

 (accessed January 21, 2009).

[10] Apache. “Welcome to Hadoop!” http://hadoop.apache.org/core/ (accessed January

21, 2009).

[11] Dean, Jeffrey and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on

Large Clusters” (paper presented at the Sixth Symposium on Operating System

Design and Implementation, San Francisco, California, December 2004).

[12] Apache. “HadoopMapReduce.” http://wiki.apache.org/hadoop/HadoopMapReduce

 (accessed January 21, 2009).

[13] Apache. “Hadoop Quick Start.”

 http://hadoop.apache.org/core/docs/current/quickstart.html (accessed January 21,

 2009).

[14] “Cygwin Information and Installation.” http://www.cygwin.com/ (accessed February

 2, 2009).

[15] 360 Information Security. “SSH” http://www.360is.com/04-ssh.htm (accessed

 50

February 28, 2009).

[16] Apache. “Hadoop Cluster Setup.”

http://hadoop.apache.org/core/docs/current/cluster_setup.html

(accessed January 29, 2009).

[17] Apache. “Hadoop FAQ” http://wiki.apache.org/hadoop/FAQ (accessed January 29,

 2009).

[18] Apache. “Hadoop-Default” http://hadoop.apache.org/core/docs/r0.18.2/hadoop-

 default.html (accessed February 12, 2009).

[19] Libes, Don. “Expect,” National Institute of Standards and

 Technology. http://expect.nist.gov/ (last edited October 20, 2006).

[20] Tcl Developer Exchange. “Tcl Developer Site,” http://www.tcl.tk/ (accessed

February 2, 2009).

[21] Libes, Don. Exploring Expect: A Tcl-Based Toolkit for Automating Interactive

 Programs. O‟Reilly Media, Inc, 1994. Section 1.1.

[22] NetBeans. “NetBeans IDE 5.0 GUI Building Resources,”

http://www.netbeans.org/kb/articles/matisse.html (accessed February 12, 2009).

[23] “Nullsoft Scriptable Install System,” http://nsis.sourceforge.net/Main_Page

(accessed March 2, 2009).

[24] IBM. “Component Testing with IBM Rational Application Developer for

WebSphere Software.”

http://www.ibm.com/developerworks/rational/library/05/kelly-stoker (accessed

February 19, 2009).

[25] Microsoft. “Unit Testing”. http://msdn.microsoft.com/en-us/library

/aa292197(VS.71).aspx (accessed February 28, 2009).

